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Abstract

The primary function of the lung is to facilitate the transfer of molecular oxygen (O, dioxygen) from the
atmosphere to the systemic circulation. In addition to its essential role in aerobic metabolism, O, serves as the
physiologic terminal acceptor of electron transfer catalyzed by the NADPH oxidase (NOX) family of oxidore-
ductases. The evolution of the lungs and circulatory systems in vertebrates was accompanied by increasing
diversification of NOX family enzymes, suggesting adaptive roles for NOX-derived reactive oxygen species in
normal physiology. However, this adaptation may paradoxically carry detrimental consequences in the setting
of overwhelming/persistent environmental stressors, both infectious and noninfectious, and during the process
of aging. Here, we review current understanding of NOX enzymes in normal lung physiology and their
pathophysiologic roles in a number of pulmonary diseases, including lung infections, acute lung injury, pul-
monary arterial hypertension, obstructive lung disorders, fibrotic lung disease, and lung cancer. Antioxid. Redox

Signal. 11, 2505-2516.

Introduction

HE RESPIRATORY SYSTEM brings the ambient air that we

breathe into close proximity with the systemic circula-
tion. This allows the lungs to accomplish their primary func-
tion in the exchange of carbon dioxide for oxygen (O,),
essential for the maintenance of aerobic metabolism. The
average adult human breathes in 9,000 to 15,000 L of air (6-
10L/min) daily. This exposes the lungs to a variety of po-
tentially injurious environmental agents, both infectious and
noninfectious. The normal host response is to eradicate pu-
tative pathogens/injurious agents and to repair the damage
caused directly by the agent or by the associated immune/
inflammatory response. Human pulmonary diseases result, in
large part, when the host response to the attempted eradi-
cation of the offending agent is dysregulated or when the
repair/regenerative responses to ensuing tissue injury are
impaired. A number of host factors, including genetic/
epigenetic factors and age, may influence the susceptibility to
pulmonary disease and the clinical phenotype (e.g., severity,
progression) of the associated clinical syndrome.

NADPH oxidase (NOX) enzymes emerged during the
evolutionary transition from unicellular to multicellular
organisms, and the number of NOX/Dual oxidase (DUOX)
family enzymes have increased to seven in mammals (NOX1
to 5 and DUOX1 to 2) (11, 51, 116). NOX enzymes catalyze the
reduction of molecular oxygen (O,) to superoxide (O,""), the

typical primary product of the reaction (10, 57). Depending on
the microenvironment or cellular compartment in which it is
produced, spontaneous or superoxide dismutase (SOD)-
catalyzed reduction of O,"™ to hydrogen peroxide (H>O,) may
occur in association with the generation of other reactive ox-
ygen species (ROS). ROS function as signaling molecules and
regulators of cell function when they are generated in a
compartmentalized and regulated manner (126). Here, we
examine the roles of these ROS-generating enzymes in cellular
physiology of the lung and in the pathogenesis of pulmonary
diseases (Fig. 1).

NOX Enzymes in Pulmonary Infectious Disease

The lungs are well equipped to defend against myriad
microbial pathogens that may be transmitted to the lungs from
inhaled air, the systemic circulation, oropharyngeal aspira-
tion, or contiguous spread from surrounding tissues. Upper
airway defense mechanisms (e.g.,, mucociliary clearance)
work in concert with lower airway defenses (e.g., alveolar
macrophages) to combat microbial pathogens. The role of the
phagocytic “respiratory burst oxidase,” NOX2, in innate im-
mune responses is well established and suggests an archaic
host defense mechanism that is conserved across multiple
species (25, 42, 99). Evidence demonstrates that NOX2 medi-
ates its antimicrobial effect, at least in part, by facilitating
compartmentalized protease activation within phagosomes
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Pulmonary Vasculature
Pulmonary artery endothelial cells: NOX2, NOX4
Functions: Pro-inflammatory cytokine production,
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Trachea and Upper Airways

Airway epithelial cells: DUOX1, DUOX2

Functions: Host defense, mucin expression, cellular migration

Disease associations: Cystic fibrosis, viral infections,
pseudomonas, COPD (putative), asthma

barrier (dys)function, vascular remodeling
Disease associations: ALI/ARDS (putative),
pulmonary hypertension

Lower Airways/Alveolus

Airway epithelial cells: DUOX1,2

Functions: Host defense, acid
secretion

Disease associations: Unknown

Alveolar Space/Blood
Macrophage/neutrophils: NOX2
Functions: Antimicrobial
host defense, TLR4 crosstalk,
NF-xB activation
Disease associations: Chronic
granulomatous disease

Pulmonary Vasculature

Pulmonary artery smooth muscle cells: NOX4
Functions: Hypoxia-induced proliferation
Disease associations: Pulmonary hypertension

Bronchioles/Bronchoalveolar Junctions
Lung carcinoma cells: DUOX1, DUOX2
Functions: Cell migration, malignant phenotype
Disease associations: Lung cancer (putative)

Airways/Alveolus

Myofibroblasts: NOX4

Functions: Differentiation, activation
Disease associations: Fibrosis (putative)

Airways/Alveolus

Endothelial cells: NOX3

Functions: TLR4 crosstalk

Disease associations: Emphysema

FIG. 1. NOX Enzymes in lung cellular physiology and pulmonary disease. NOX/DUOX isoforms are expressed in a
number of lung cell types, including airway/alveolar epithelial, endothelial, and mesenchymal cells, extending from the
proximal trachea and large airways to terminal bronchioles and alveoli. Proposed functions of NOX isoforms in various cell
types and their putative roles in diverse lung diseases are indicated. Refer to text for related references and details.

through a transmembrane ion flux that is coupled to en-
dosomal O,"" release (101).

Chronic granulomatous disease (CGD), characterized by
susceptibility to recurrent pyogenic infections, is the proto-
typical example of a human disease associated with inherited
loss of function of genes encoding components of the NOX2
enzymatic complex. Initially characterized as a fatal granu-
lomatous disease of childhood, the clinical course of CGD is
marked by recurrent, suppurative infections and granuloma
formation (15, 106). Although CGD can be associated with a
defect in any of the subunits of the multicomponent NOX2
enzyme complex, the X-linked gene mutation in the catalytic
NOX2 subunit, identified and positionally cloned in 1986,
represents the most common site of mutations (102). Novel
mutations involving the o (p22?"*) and f (gp91""*) trans-
membrane subunits of NOX2 have been reported (13, 26, 27,
63, 64, 86, 121). Pulmonary infections remain a hallmark of the
disease and the leading cause of morbidity. A national CGD
registry report in 2001 noted a shift in the most common
infecting organisms away from staphylococci and enteric
bacteria to other pathogens, with Aspergillus pneumonia
and Burkholderia cepacia infections representing the leading
causes of death (49). Antimicrobial prophylaxis, interferon-y
administration, and granulocyte infusions remain the current
mainstay of treatment for CGD.

A murine model of X-linked CGD with targeted deletion of
the NOX2 gene encoding the 91-kDa cytochrome b subunit
has been described (99). These mice display the characteristic
susceptibility to Staphylococcus and Aspergillus infections and,
additionally, develop a persistent inflammatory response as-
sociated with high levels of inflammatory cytokines after
challenge with sterilized Aspergillus hyphae (81). Studies in

mice deficient in the p47""** subunit indicate a role for NOX
isoforms, requiring this subunit for enzyme activation in host
defense against Pseudononas pneumonia (103) and M. tuber-
culosis pneumonia (21); a potential role of NOX-derived ROS
in suppressing neutrophilic inflammation also was suggested
(21). Similar findings of a putative “antiinflammatory” role for
p477"* /NOX2 are reported in mice challenged with intra-
peritoneal live Escherichia coli to induce sepsis (35), and in
murine models of pneumococcal pneumonia (72), influenza
pneumonia (109), and disseminated Cryptococcus neoformans
infection (110).

In addition to immune defects, mice harboring muta-
tions of p22""** develop vestibular dysfunction associated
with otoconial malformation (85). A deficiency in neutro-
phil cytosolic factor-1, required for activation of NOX2,
appears to protect from virus-induced acute lung injury
(44). Together, these studies demonstrate the contextual
role of NOX2 (and potentially other p47""**- and p22""**-
requiring NOX enzymes) in modulating host inflammatory
responses, in addition to its recognized role in antimicrobial
killing.

Limited evidence supports the possibility that other NOX
isoforms may also participate in host innate immune
responses. Studies in gastric mucosal cells suggest a role for
NOX1 in antimicrobial host defense (52, 122), although a
similar role for NOX1 in the lung has yet to be demonstrated.
More recently, the identification of DUOX1 and DUOX2 in
salivary, tracheal, and bronchial epithelium has broadened
the role of NOX homologues in host defense as “tissue-
specific” generators of ROS (31, 36, 38, 82, 105, 108). DUOX
enzymes and their roles in host defense of the upper airways
are discussed elsewhere in this issue.
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NOX Enzymes in Acute Lung Injury

Acute lung injury (ALI) and the acute respiratory distress
syndrome (ARDS) represent clinical syndromes of varying
severity and diverse causes that are first seen with a set of de-
fined clinical-physiologic-radiologic criteria (141). The most
common risk factor associated with ALI/ARDS is sepsis;
other associated conditions include trauma, aspiration, pneu-
monia, acute pancreatitis, and transfusion of blood products
(141). A unifying pathophysiologic feature involves disrup-
tion of the alveolar—capillary membrane, resulting in diffuse
bilateral infiltrates on chest radiographs and arterial hypox-
emia that is typically refractory to high concentrations of O,
administration (141). The generation of ROS by nonenzy-
matic and enzymatic mechanisms, including activation of
NOX enzymes, contributes to the pathobiology of ALI/ARDS
(41).

NOX-dependent ROS generation by neutrophils appears to
play a major role in lung injury secondary to sepsis. Lipopo-
lysaccharide (LPS), a constituent of the outer membrane of
gram-negative bacteria, primes activation of the phagocytic
NOX2 enzyme. In guinea pigs, LPS-stimulated ROS genera-
tion by neutrophils and ALI were significantly reduced with
apocynin, a putative inhibitor of NOX2 (136, 140). Emerging
evidence suggests the presence of crosstalk between NOX
enzymes and Toll-like receptors (TLRs), which coopera-
tively participate in the host innate immune response. High-
mobility group box 1 (HMGBI1), an endogenous ligand for
TLR4, activates neutrophil-associated NOX, induces neutro-
philic inflammation, and results in organ failure in response to
hemorrhagic shock/resuscitation in mice (29). TLRs also
crosstalk with nonphagocytic NOX isoforms, as demon-
strated by the finding that LPS-induced ROS generation and
NF-«B activation is mediated by the interaction of TLR4 with
NOX4 (93).

Endothelial barrier dysfunction in ALI/ARDS may be
mediated by ROS-dependent mechanisms that involve inter-
actions of activated neutrophils with pulmonary vascular
endothelial cells (ECs) or more-direct activation of EC re-
sponses. In support of the latter concept, growing recognition
indicates the expression/activation of specific NOX isoforms
in vascular ECs. A role for NOX4 in LPS-induced proin-
flammatory responses by human aortic ECs has been reported
(92); in this study, downregulation of NOX4 by transfection of
NOX4 small interfering RNA (siRNA) resulted in a failure to
induce ROS generation and intercellular adhesion molecule
(ICAM)-1, monocyte chemoattractant protein (MCP)-1, and
interleukin (IL)-8 production in response to LPS. Pulmonary
ECs have been shown to generate ROS via both NOX2 and
NOX4 (94, 95). Circulating blood cells from septic patients
generate higher levels of phorbol ester—stimulated O," pro-
duction compared with those in control subjects, and this ac-
tivation is inhibited by simvastatin, a widely used cholesterol-
reducing drug (28). Further, recent data indicate that sim-
vastatin markedly decreases LPS-induced O, production in
human pulmonary artery ECs via dual inhibitory effects on
RhoA and Racl (17). Together, these studies suggest that ex-
cessive generation of ROS by activation of phagocytic and
nonphagocytic NOX enzymes may induce endothelial dam-
age or activation with the subsequent loss of barrier function
and pulmonary edema or both, key features of ALI/ARDS.
Further studies are required to characterize the relative con-
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tributions of different NOX isoforms in sepsis-induced
ALI/ARDS and to determine mechanisms for the modula-
tion of NOX activities by statins and other putative NOX in-
hibitors.

Mechanical ventilation provides life-sustaining support in
critically ill patients with ALI/ARDS. However, mechanical
ventilation itself may contribute to, and exacerbate, lung in-
jury. As a result, ventilator-induced lung injury (VILI) may
delay or prevent recovery from treatable clinical conditions
such as sepsis. Modes of mechanical ventilation associated
with greater mechanical distension/stretch enhance neutro-
phil infiltration and pro—inflammatory cytokine production in
the lung (1, 43). Administration of N-acetylcysteine attenuates
the influx of neutrophils into the alveolar space and reduces
apoptosis of airway epithelial cells in rats subjected to me-
chanical ventilation (117). Cyclical mechanical strain of alve-
olar epithelial cells leads to ROS generation, via both
mitochondrial and NOX-dependent pathways (16). Although
the enzymatic source(s) have not been identified, ROS-
mediated cellular damage or activation from biomechanical
stress or both may augment lung injury and delay/prevent
normal repair.

Patients with ALI/ARDS receiving mechanical ventilation
often require high O, concentrations to maintain arterial ox-
ygenation. Supraphysiologic levels of O, concentration (hy-
peroxia) and the associated generation of ROS is yet another
contributor to the “biotrauma” that can worsen ALI in me-
chanically ventilated patients. Hyperoxia remains a particular
problem in premature infants whose lungs may be ill adapted
to defend against ROS (8, 144). The effect of hyperoxia on
inflammation/injury has been studied in animal models and
lung EC culture systems (22, 83). Exposure of mice to hyper-
oxia (>95% oxygen) causes lung damage characterized by
inflammation, barrier dysfunction, pulmonary edema, and
impaired lung function (22). The increased generation of ROS
during hyperoxia may induce oxidative modifications of cel-
lular macromolecules, including carbohydrates, nucleic acids,
proteins, and lipids.

Exposure of human pulmonary artery ECs to hyperoxia
(95% O,) increases ROS production that is dependent on NOX
activation and independent of the mitochondrial electron
transport or xanthine/xanthine oxidase systems (91, 95).
NOX4, which is expressed at relatively higher levels com-
pared with other NOX homologues, is a major source of ROS
production in vascular ECs. In cultured human pulmonary
artery ECs, hyperoxia increases NOX4 mRNA and protein
levels by about eight- and threefold, respectively, compared
with normoxia over a 24-h period (94). Activation of lung EC—-
associated NOX by hyperoxia is regulated, in part, by ERK-
1/2 and p38 MAPKs (91, 132). More recently, a role for Src
kinase in this process was demonstrated (19); in this study,
exposure of lung vascular ECs to hyperoxia stimulated
tyrosine phosphorylation of p477"**, which was attenuated
by pharmacologic/genetic targeting of Src, suggesting Src-
dependent phosphorylation of p47”"* in EC-associated
NOX activation. In addition, evidence for in vitro phosphor-
ylation of p47""™ by Src and interaction between Src and
p477"°* in hyperoxia-induced O,"~ generation was demon-
strated (19). Interestingly, tyrosine phosphorylation of cor-
tactin is associated with hyperoxia-induced translocation of
p477"°* to the cell periphery and ROS generation in human
lung ECs (131).
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A role for NOX2 and NOX4 in hyperoxia-induced ROS
generation in pulmonary vascular ECs has been demon-
strated (94). Interestingly, knockdown of NOX4 or NOX2
with siRNA upregulates the mRNA and protein expression of
the other homologue in human pulmonary artery ECs; a
similar upregulation of NOX4 mRNA is observed in lungs of
NOX2 /= mice under normoxic conditions, suggesting a
compensatory mechanism (94).

The role of NOX2 in hyperoxic lung injury in mice geneti-
cally deficient in NOX2 has been investigated. Exposure of
wild-type mice to hyperoxia induces pulmonary edema and
neutrophil influx into the alveolar space, effects that are at-
tenuated in NOX2~/~ mice, thus suggesting a role for NOX2
in hyperoxia-mediated barrier dysfunction. However, the
observed protection in NOX2 /" is incomplete, suggesting
the potential involvement of other NOX isoforms, including
NOX4, in alveolocapillary barrier dysfunction (94, 95).

NOX Enzymes in Pulmonary Hypertension

Prolonged exposure to low O, tension induces pulmonary
arterial hypertension (PAH), characterized by vascular re-
modeling and enhanced vasoreactivity. Accumulating evi-
dence indicates that ROS derived from NOX isoforms, in
particular NOX2 and NOX4, are involved in long-term re-
sponses of the pulmonary vasculature to hypoxia (30, 33, 66,
79). ROS generation from NOX-independent sources may also
contribute to hypoxia-induced vascular dysfunction; for ex-
ample, hypoxia-exposed neonatal rat pups exhibit increased
serum and lung xanthine oxidase (XO) activity, increased
vascular XO-derived O,"~ production, and vascular ni-
trotyrosine formation (47). A role for NOX2 in hypoxia-
induced endothelial dysfunction involving intrapulmonary
arteries has been demonstrated (33). In pulmonary artery
adventitial fibroblasts, hypoxia significantly upregulates
NOX4 expression at the mRNA and protein levels, whereas
silencing of NOX4 by siRNA reduces ROS levels and de-
creases cellular proliferation (65). Hypoxia-dependent devel-
opment of PAH in mice has been linked to increased NOX4
expression in pulmonary artery smooth muscle cells (SMCs)
(79), suggesting a key role for NOX4 in the vascular re-
modeling associated with hypoxia-induced PAH. Hypoxia
increases the expression of TGF-f (48), production of the TGF-
p-activating protein, furin (76), and NOX4 expression (114).
TGEF-f-induced NOX4 expression and ROS production has
been implicated in proliferation of human pulmonary artery
SMCs (45, 114). NOX4 has also been shown to be critical for
HIF-2a expression and transcriptional activation in renal
carcinoma cells (71). Additionally, TGF-f/SMAD signaling
may synergize with hypoxia/HIF-1o (104), thereby setting up
a potential feed-forward mechanism in hypoxic vascular re-
modeling involving HIF-1o/HIF-20, transforming growth
factor-f (TGF-f), and NOX4.

NOX Enzymes in Obstructive Sleep Apnea
and Ischemia/Reperfusion

Obstructive sleep apnea is a clinical syndrome that is
characterized by intermittent periods of hypoxemia due to
partial/complete obstruction of the upper airway during
sleep. Obstructive sleep apnea is also a significant cause of
secondary PAH. Chronic intermittent hypoxia-induced pul-
monary hypertension is associated with increased lung levels
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of the NOX subunits, NOX4 and p22""*%, as well as activation
of platelet-derived growth factor receptor-fi and one of its
associated downstream effectors, AKT kinase (87). In
NOX2 /= mice, chronic intermittent hypoxia-induced de-
rangements, such as increased right ventricular systolic
pressure, right ventricle (RV) to left ventricle + septum weight
ratio, an index of RV hypertrophy, and thickness of the RV
anterior wall, as measured by echocardiography, are all at-
tenuated (87). These findings suggest that NOX2 contributes
to the development of pulmonary vascular remodeling, pul-
monary hypertension, and RV remodeling induced by
chronic intermittent hypoxia.

ROS also play a crucial role in ischemia/reperfusion injury
after lung transplantation. Normoxic lung ischemia induces
EC membrane depolarization because of acute alterations in
shear stress that activates EC-associated NOX activity via
a Racl and phosphoinositide-3-kinase (PI3K)-dependent
mechanism (150). Studies using p47""** knockout mice, wild-
type mice, and chimeras created by bone marrow transplan-
tation indicate that NOX-generated ROS, specifically from
bone marrow-derived cells, contribute to lung ischemia/
reperfusion injury (148). Furthermore, recent studies indicate
that activation of an EC-associated NOX may be the primary
mechanism for ROS generation during reoxygenation after
lung ischemia (5, 152). Neutrophil NOX-derived ROS also
contribute to organ injury after hemorrhagic shock in mice
(29). Enhanced formation of O,"~ by a p47” fox -requiring NOX
enzyme contributes to the liver injury caused by hemorrhagic
shock, and inhibitors of NOX enzymes may represent a novel
therapeutic approach for the treatment of hemorrhagic shock
(3, 62).

NOX Enzymes in Obstructive Lung Disorders

NOX-generated ROS have long been recognized to play
key roles in the pathogenesis of a number of diverse chronic
lung disorders that result in obstructive physiology, in par-
ticular asthma, cystic fibrosis, and emphysema (2, 50, 53, 73,
97, 113). With the recent identification of various NOX ho-
mologues, investigators have implicated specific NOX and
DUOX isoforms in the pathogenesis of obstructive lung dis-
orders; DUOX1, DUOX2, NOX2, and NOX4, and subunits
p227"°* and p47°"°* have been the most frequently reported.
DUOX1 has been shown to be induced by the T-helper 2 (Th2)
cytokines, interleukin (IL)-4 and IL-13, key effector cytokines
in asthma and allergic airways disease (38). DUOX]1, in ad-
dition to host defense functions, appears to promote epithelial
cell migration and maintenance of barrier function (142).
NOX4 has been implicated in TGF-fi—mediated proliferation
and hypertrophy of human airway smooth muscle, a hall-
mark of airwail remodeling in asthmatic patients (114). NOX
subunits, p227"** and p47”h°", were detected in airway SMCs,
and NOX-dependent ROS generation mediates TNF-o—
induced airway smooth muscle hyperresponsiveness, a
predictor of fatal asthma (123). Interestingly, recent haplotype
studies indicate that genetic variability in the gene encoding
p227"°* (CYBA, 16q24.3) may contribute to the susceptibility
to asthma (46).

Cystic fibrosis airway biopsy samples exhibit decreased
DUOX2 expression, suggesting that the enhanced suscepti-
bility to infections in cystic fibrosis may be linked to impaired
DUOX-mediated host defense (146). In support of NOX-
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mediated host defense in the lung, mice deficient in NOX2
have increased susceptibility to specific strains of Burkholderia
cepacia, a pathogen commonly encountered in cystic fibrosis
patients (111). Pseudomonas aeruginosa, another important path-
ogen in cystic fibrosis, appears to inhibit DUOX1-dependent
antimicrobial activity via toxin-mediated effects on airway
epithelium (100).

Smokers and those with COPD exhibit differential DUOX1
and DUOX2 depending on smoking status and type of lung
epithelium sampled. For example, airway epithelium of cur-
rent smokers expresses decreased DUOXI1 and increased
DUOX2 compared with those of never smokers, whereas
former smokers (all with COPD) demonstrated down-
regulation of both DUOX isoforms (84, 98). However, alveolar
epithelial DUOX1 and DUOX2 were expressed at low levels
and were unchanged regardless of smoking or COPD status
(84). Knockout mouse models have enabled investigators to
glean a functional role for NOX enzymes in obstructive lung
processes. Mice deficient in p47""* or NOX2 exhibit increased
cigarette smoke-induced lung inflammation and emphysema
despite decreased ROS production compared with control
mice (149). The lung responses in p47""**- and NOX2-null
mice were associated with increased production of proin-
flammatory cytokines/chemokines via a TLR4-NF-xB path-
way, indicating that NOX2 may mediate antiinflammatory
functions by restraining TLR4 activation (149). However,
another group reported that p47”"*null mice have less
inflammation, IL-6, keratinocyte-derived chemokine (KC/
CXCL1), and monocyte chemoattractant protein-1 (MCP1/
CCL2) in lung-lavage specimens after cigarette-smoke ex-
posure compared with wild-type mice (56). The differences
observed by these groups may be due to variability in lung-
compartment sampling, cellular distributions, and chronicity
of cigarette-smoke exposure. Gene-profiling studies in lung
tissues from cigarette smoke-exposed mice recently revealed
upregulation of NOX organizer 1 (NOXO1), which regulates
NOXT1 activation, indicating that other NOX isoforms may be
involved in lung responses to cigarette smoke (77). Further-
more, our ability to detect specific NOX and DUOX isoforms
in different lung compartments may be dependent on whe-
ther the particular isoform undergoes transcriptional or
posttranscriptional regulation (88).

More recently, unexpected roles for NOX3 in the lung are
being elucidated. The emergence of NOX3 in evolution cor-
responds with the full-time adaptation of vertebrates to the
land (51), raising potential unique roles for this isoform in the
adaptive physiology of this specialized “land organ.” Pre-
viously, NOX3 was detected only in fetal tissues (18), and its
only known physiologic role described in otolith biogenesis in
the inner ear, as demonstrated by the head-tilt phenotype of
mice deficient in functional NOX3 (9, 90). However, NOX3 is
inducible in murine adult lung and lung endothelial cells,
with the unexpected finding that NOX3 is regulated by TLR4
(151). Furthermore, NOX3 was found to be induced in aged
mice with targeted deletion in TLR4 in association with lung
destruction and emphysema, and these effects are reversed
with chemical NOX inhibitors or NOX3 siRNA, suggesting a
role for NOX3-generated ROS in age-related emphysema
(151). These studies were confirmed by breeding TLR4-null
with NOX3-null mice and demonstrating significant attenu-
ation in susceptibility to emphysema (Patty Lee, unpublished
data). In further support of the involvement of NOX3 in em-
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physema pathogenesis, lung-targeted, inducible NOX3
transgenic mice develop emphysema in the setting of NOX3
transgene induction (Patty Lee, unpublished data). Collec-
tively, these results reveal a previously unappreciated role for
NOX3 in the pathogenesis of emphysema.

We speculate that NOX3, because of its potentially delete-
rious effects in the lung, requires tight suppression in adult-
hood (e.g., by TLR4); however, aberrant or pathologic states of
TLR4 deficiency may allow unrestrained NOX3 activity and
ROS generation. Interestingly, recent human studies reported
that aging and cigarette smoke are associated with de-
pressed TLR4 function (69, 134), supporting the theory of a
disrupted TLR-NOX3 axis in human emphysema. Additional
studies in human subjects with emphysema are required to
elucidate/confirm these findings further. Furthermore, the
development of in vivo, cell-specific targeting of NOX iso-
forms will reveal the extent to which tissue distribution and
cell specificity determine NOX-mediated responses in ob-
structive lung disorders.

NOX Enzymes in Pulmonary Fibrosis

Pulmonary fibrosis is a specifc type of tissue-remodeling
response to known (e.g., environmental exposures, drugs,
connective tissue diseases) or unknown (i.e., idiopathic) injury
that is typically recurrent or chronic in nature. Tissue-
remodeling responses in fibrosis are characterized by the
accumulation of activated mesenchymal cells and the depo-
sition of excellular matrix (ECM) (40). A subset of activated
mesenchymal cells, referred to as myofibroblasts, are key ef-
fector cells in tissue remodeling and fibrotic reactions in di-
verse organ systems, including the lung (128). Myofibroblast
differentiation is critically dependent on the action of TGF-f1
(24, 127). In addition to the multiple fibrogenic actions,
myofibroblasts generate ROS in response to TGF-f1 (23, 125,
138). NOX4 has been identified as a source of TGF-f1-
induced ROS production in cardiac myofibroblasts and is
implicated in the induction of myofibroblast differentiation
(23). Although the cellular localization/compartmentalization
of NOX4 has not been clarified in myofibroblasts, a unique
feature of NOX4 activity is its capacity for constitutive gen-
eration of extracellular H,O, (74, 107, 137). Extracellular
generation of H,O, by lung myofibroblasts may mediate ad-
ditional fibrogenic effects in tissues by inducing epithelial cell
apoptosis by a paracrine mechanism (138), or by inducing
matrix-crosslinking reactions in the presence of extracellular
heme peroxidases (59).

Currently limited published studies are available on in vivo
roles for NOX4 in lung fibrosis; however, studies in kidney
fibrosis (12, 89, 120, 143), vascular-remodeling/fibrosis asso-
ciated with chronic hypertension (4), cardiac fibrosis (39, 112,
139), and pancreatic fibrosis (75) suggest a role for the NOX4
isoform in the fibrogenic process. Other NOX isoforms that
are reported to contribute to tissue fibrosis in nonpulmonary
organ systems include NOX1 (4, 75, 112, 139) and NOX2 (67,
75, 89,112, 143). A p47""*-requiring NOX isoform is required
for the development of fibrosis in a murine lung-injury model
that is inflammation dependent, and the observed protec-
tion in p47""*~/~ mice is associated with enhanced neutro-
philic inflammation and matrix metalloproteinase (MMP)-9
activity (70). Significant crosstalk occurs between the renin-
angiotensin—aldosterone system and TGF-f1 in organ fibrosis
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(130, 147), and this effect is, at least in part, mediated by
induction/activation of NOX1, NOX2, NOX4, or a combina-
tion of these (4, 12, 112, 120, 139, 143).

NOX Enzymes in Lung Cancer

Tumorigenesis entails a series of cellular/tissue alterations
that promote cell survival and growth while usurping normal,
homeostatic controls. For the malignant potential of cells to be
fully realized, it has been proposed that cancer cells develop
five essential capabilities: unrelenting cell proliferation, re-
sistance to apoptosis, intrinsic growth signaling with limited
response to growth-inhibitory factors, continual neovascu-
larization (angiogenesis), and capacity for migration and tis-
sue invasion (37). ROS have been implicated in the signaling/
regulation of the malignant phenotype (34, 58), and oxidative
stress—mediated epigenetic changes are increasingly recog-
nized (32).

Early studies indicated the generation of ROS by a NOX-
like flavoenzyme in several different cancer cells, although the
identity of the enzymatic source(s) was not known (119). With
the discovery of the different homologues of NOX/DUOX
enzymes, specific isoforms have been identified in a variety of
human malignancies, including colon (60, 96, 118), gastric
(129), pancreatic (61, 80, 135), and prostate (14) cancers. The
tumorigenic potential of NOX enzymes was first demon-
strated with athymic murine models. NOXI-transfected
cells produce phenotypically aggressive tumors in athymic
mice (115). In a similar murine model, injection of NOX1-
expressing cells resulted in rapid cell growth and tumor
formation, whereas injection of cells coexpressing NOX1 and
catalase failed to promote a mitogenic response or tumor
formation in vivo (7). Recently, NOX1 was found to medi-
ate malignant transformation of the Ras oncogene (78);
in this study, RNA interference-mediated knockdown of
NOX1 in K-Ras transformed cells reduced NOX1-dependent
O,"" production, resulting in abrogation of anchorage-
independent cell growth and capacity for tumor formation
in vivo (78).

NOX1 was originally referred to as the “mitogenic oxidase”
(7, 115); however, its effects on specific cell types are likely
contextual and include other cellular functions. Comparing
pathologic specimens of human gastric adenocarcinomas and
chronic atrophic gastritis, the presence of NOX1 was dem-
onstrated by mRNA expression and immunohistochemical
staining within adenocarcinomas, whereas it was notably
absent in control samples, supporting the utility of NOX1 as a
marker of malignant transformation (129).

In addition to propagation of tumor cell growth, evidence
supports a role for NOX1 in angiogenesis (6). Vascular endo-
thelial growth factor (VEGF) functions as a key mediator of
neovascularization within tumors. VEGF is upregulated
by H,O, and was found to enhance tumor cell prolifera-
tion and promote a migratory phenotype (20). Addition-
ally, Ras-induced VEGF transcription is dependent on Spl
phosphorylation/activation, which is mediated by a
NOX1/Ras/ERK-MAPK pathway (55). Other studies support
a role for the NOX2 isoform in angiogenesis (133).

Resistance to apoptosis is another hallmark of cancer cells
(37). NOX4-generated ROS confer an apoptosis-resistant
phenotype in pancreatic cancer cells (135). Similarly, NOX5 is
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expressed in DU-145 prostate cancer cells and was found to
mediate ROS production, cell proliferation, and resistance to
apoptosis (14). A potential mechanism by which the NOX
isoforms promote apoptosis resistance may involve ROS-
mediated inactivation of protein tyrosine phosphatases
(PTPs). In human pancreatic adenocarcinoma tissue samples,
NOX4 colocalized with low-molecular-weight PTPs in the
cytoplasm of tumor cells (61); furthermore, these investigators
showed that NOX4-dependent ROS production mediates PTP
inactivation and sustained phosphorylation of JAK2, a pro-
survival kinase (61). In human pancreatic adenocarcinoma
cells, the PI3K/AKT and apoptosis signal-regulating kinase 1
pathway has been shown to mediate NOX4-induced pro-
survival signaling (80).

Recent evidence also indicates a role for epigenetic mech-
anisms in the regulation of NOX/DUOX enzymes in cancer
cells. DUOX1 and DUOX2 and their maturation factors were
found to be downregulated by promoter methylation in pri-
mary lung carcinomas (68). In this study, restoration of a
functional DUOX1 altered the phenotypic profile of the lung
cancer cell lines, supporting a homeostatic function for DUOX
and providing the first evidence that epigenetic modification
of this family of enzymes may promote malignant potential
(68). An interesting aspect to the role of NOX/DUOX biology
in carcinogenesis is the number and diversity of the isoforms
involved in promoting the malignant phenotype, as illustrated
by the finding that two different NOX enzymes function to
mediate the same malignant trait—apoptosis resistance—in
two different cancers (14, 135).

Conclusions

The respiratory and the cardiovascular systems co-evolved
to allow transport of atmospheric O, to cells/tissues of inter-
nal organs in larger organisms that became dependent on
aerobic metabolism, but were limited by the diffusibility of O,
across multiple cell layers (124). The chemical properties of O,
and ROS appear to have been exploited further in the emer-
gence of biologic complexity; an increasing number of NOX
isoforms have emerged with mammalian evolution (11, 51,
116). Gene targeting of specific NOX isoforms or related
subunits in mice illustrates the complexity of these enzymatic
systems in vivo. Although NOX enzymes serve physiologic
functions in the lung, they may also contribute to disease
pathogenesis. The varying roles of NOX isoforms in emphy-
sema illustrate this pleiotropic nature. A deficiency in p477"*
or NOX2 appears to enhance cigarette smoke-induced em-
physema (149), whereas a deficiency in NOX3 is predicted to
confer protection against emphysema (151). Although such
observed differences may be model system-dependent or
isoform specific or both, these studies raise the intriguing
possibility of “antagonistic pleiotropy” of NOX genes (58). In
antagonistic pleiotropy, potentially harmful genes (e.g.,
NOX3) are retained during evolution because they confer an
early survival advantages, but their deleterious effects accrue
with age and result in age-related, chronic disease (54, 58,
145). The lungs may be particularly susceptible to toxic effects
of NOX activation because O, concentrations in lung tissues
are generally higher than those in other organs systems.

Future studies on the physiological roles of specific NOX
isoforms in the lung will provide important insights into their
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pathologic roles in pulmonary disease and opportunities for
therapeutic targeting. Because of their cell-specific and con-
textual effects, studies of NOX function in vivo will be more
informative when the gene can be conditionally deleted in
specific cell types (e.g., by inducible Cre recombinase under
the control of a cell-specific promoter to delete a targeted/
floxed gene). Animal models do not faithfully recapitulate
human disease expression/phenotype because of a multitude
of factors, including species-specific differences, disease het-
erogeneity, chronicity, and environmental influences that
may result in epigenetic alterations. This highlights the im-
portance of studying the expression and localization of NOX
isoforms in lung cells/tissues derived from patients with
specific lung disorders.
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Abbreviations Used

ALI = Acute lung injury
ARDS = acute respiratory distress syndrome
CGD = chronic granulomatous disease
DUOX = dual oxidase
EC = endothelial cell
ECM = extracellular matrix
HIF = hypoxia-inducible factor
HMGBI = high-mobility group box 1
H,0, =hydrogen peroxide
ICAM = intercellular adhesion molecule
IL =interleukin
LPS =lipopolysaccharide
MCP = monocyte chemoattractant protein
MMP = matrix metalloproteinase
NOX =NADPH oxidase
O, = oxygen
O,"” =superoxide anion
PAH = pulmonary arterial hypertension
PI3K = phosphoinositide-3-phosphate
ROS =reactive oxygen species
RV =right ventricle
SMC = smooth muscle cell
SOD = superoxide dismutase
TGEF-p = transforming growth factor-f
Th2 = T-helper 2
TLR = Toll-like receptor
VEGF = vascular endothelial growth factor
VILI = ventilator-induced lung injury
XO =xanthine oxidase
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