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Abstract 

We consider the functions of proof in mathematics from the perspective of the work of the 

mathematics teacher. The work of proving and the time spent on proving, what can a teacher 

account it to? How can he or she justify it? We frame that problem in a descriptive theory of 

teaching and place within that frame the work of scholars who have inquired on the function of 

proof in mathematics. We argue that the multiple functions that proof plays in mathematics are 

resources that a teacher could use to account for the work of proving. We describe how the 

functions of proof identified in the literature can assist the work of the teacher and illustrate the 

role these functions of proof can play using classroom scenarios that showcase the work of 

proving. Since the teacher is not only accountable to mathematics but also accountable to 

students’ learning of that mathematics some times work is valuable because it helps represent 

important mathematical knowledge, sometimes because it helps students acquire, or demonstrate 

they have, knowledge. The existence of these different sources of value is not only a resource for 

the teacher to value diverse work but also permits to anticipate management dilemmas 

concerning the different ways of accounting for the work of proving. 
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The purpose of this paper is to provide an instruction-based frame to the question, often 

asked in mathematics education, of what the functions of proof are in a classroom. We take aim 

at a problem of teaching: The work of proving and the time spent on proving, what can a teacher 

account it to? How can he or she justify it? We frame that problem in a descriptive theory of 

teaching and place within that frame the work of scholars who have inquired on the function of 

proof in mathematics (Bell, 1976; Hanna, 1990; de Villiers, 1990). We argue that the multiple 

functions that proof plays in mathematics are resources that a teacher could use to account for the 

work of proving. We describe how the functions of proof identified in the literature can assist the 

work of the teacher. Yet the teacher is not only accountable to mathematics when accounting for 

classroom work; she is also accountable to students’ learning of that mathematics. Those two 

demands for accountability provide different figurative currencies with which to value what is 

done in the classroom: Some times work is valuable because it helps represent important 

mathematical knowledge, sometimes because it helps students acquire, or demonstrate they have, 

knowledge. The existence of these two currencies is not only a resource for the teacher to value 

diverse work but also permits to anticipate management dilemmas concerning the different ways 
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of accounting for the work of proving. We illustrate how a teacher could account for the work of 

proving using scenarios of geometry instruction produced as animations of cartoon characters. 

We use a reconsideration of functions of proof in mathematics to show how these could provide 

currency for the teacher to value different kinds of mathematical work. The scenarios also permit 

to anticipate the different dilemmas a teacher might need to contend with by virtue of being 

accountable not only to mathematics but also to students’ learning. In particular we illustrate 

how these dilemmas could undercut the possibility that certain kinds of mathematical work be 

done in the classroom.  While this article presents a conceptual discussion and illustrations, a 

subsequent submission examines empirical data from teachers’ responses to those scenarios; 

such data informs about teachers’ perceptions of those dilemmas and tensions.  

 Several have written about the function of proof in mathematics, taking as background 

the usual logical (or philosophical) reason, according to which a proof confers truth to a 

statement. That “verification” function of proof is also, often interpreted in subjective terms, 

equating the truth of a statement with an individual’s belief in the truth of a statement and thus 

allocating proof a role in the subjective acquisition of such belief. Along those lines proof has 

been described as ascertaining for oneself or persuading others, convincing oneself, a friend, or 

an enemy, about the truth of a statement (Harel & Sowder, 1998; Inglis & Mejía Ramos, 2009; 

Mason, 1982). Duval (2002) has alluded to these two ways of reading the relationship between 

proof and knowledge, by saying that a proof can change the logical value as well as epistemic 

value of a statement: that is a proof may logically validate a statement, but it can also affect the 

belief of the cognizing subject on the truth of the statement.  

Those two functions of proof—to convince individuals and to establish results in the 

field—while apt to justify why proof deserves a place in mathematics classrooms, are by no 
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means the only functions of proof in mathematical activity. Mathematics education scholars have 

contributed to such elaboration on the functions of proof both by reflecting on its many roles in 

the discipline of mathematics and by identifying its roles in human understanding. From these 

roles researchers have derived recommendations for the direction of teaching in classrooms. 

Thus Hanna, (2000), Hersh, (1993), and (Knuth, 2002) have argued that proof has a role as a tool 

for promoting mathematical understanding in students. On the other hand, historically and at 

least in selected places in the curriculum (such as in the teaching of Euclidean geometry), proof 

has had a natural place in the communication of mathematical knowledge: The mathematical text 

to be communicated included proofs along with the statements of theorems. At least in the 

United States but also in other countries, the study of geometry has been a place where students 

have been charged with producing proofs  (Herbst, 2002). The implementation of calls, such as 

NCTM’s (2000), to extend the place of proof to more of the curriculum run into the issue of how 

a teacher may account for attention to the work of proving. While the argument has traditionally 

been that proof is central to mathematical work, this paper attempts to unpack that argument by 

inquiring into the different roles that proof plays in mathematical work and how those might 

apply to the mathematics classroom. We take as our charge to organize this field by embedding 

those various roles within an explicit treatment of the teacher’s role as manager of instruction.  

 

A Theoretical Perspective on Instruction and the Work of Teaching 

 We propose that mathematics instruction proceeds as a sequence of exchanges or 

transactions between, on the one hand, the moment-to-moment, possibly interactive work that 

students do with their teacher and on the other hand, the discrete claims a teacher can lay on 

what has been accomplished. Central to this theory of instructional exchanges is the notion of 
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didactical contract (Brousseau, 1997): The hypothesis that a bond exists that makes teacher and 

students mutually responsible vis-à-vis their relationships with knowledge. In particular, a 

contract exists that makes the teacher responsible to attend not only to the student as learner of 

mathematics but also to mathematics as the discipline to be represented so that it can be learned. 

A descriptive, general hypothesis of our theory is that one such contract exists in any instance of 

institutionalized mathematics instruction. Particular classrooms may have specific customary 

ways of negotiating and enacting that contract and those may vary quite a bit, but we expect they 

will always include specific ways in which the teacher is held accountable not only to the 

students’ insofar as learners of mathematics but also to mathematics as the discipline to be 

represented for its learning.   

 A second, related hypothesis helps us observe the work of the teacher in instruction. This 

hypothesis derives from the observation that classroom activity takes place in multiple 

timescales: While meaningful classroom interactions can be detected at a timescale of the 

fraction of a second, progress in the syllabus and consequential examinations take place in a 

larger timescale, of months and marking periods in a year. Thus, the second key hypothesis is 

that the work of the teacher includes managing activities and objects in two different timescales: 

the work done moment-to-moment (at the scale of the utterance) and the mathematical objects of 

knowledge, which exist at the larger scales of the month, semester- or year-long curriculum 

(Lemke, 2000, p. 277). In other words, we hypothesize that a teacher needs to operate symbolic 

transactions or exchanges between activities in one timescale and objects of knowledge in the 

other: activities at the scale of moment-to-moment interaction serve the teacher to deploy or 

instantiate mathematical objects of knowledge and reciprocally objects of knowledge serve to 

account for the activities done moment-to-moment. Further, we posit that this exchange is 
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complicated because, after the first hypothesis, the expression “mathematical objects of 

knowledge” contains two kinds of contractual implications: on the one hand objects of 

knowledge need to be represented so as to be available for study and learning by students, and 

on the other hand students need to learn them, eventually come to know them. While the 

relationship between those two elements is often seen as linear—namely knowledge 

representations are objects of study and learning, eventually being known by students—the 

notion that a didactical contract exists underscores the bidirectional nature of that relationship: 

Since students have to learn, the process of instruction includes making representations of 

knowledge that can be learnt by those students. Transformations and transpositions of the 

knowledge to be learned happen partly in response to the need for that knowledge to be learned 

(Chevallard, 1991).  

 A consequence of those hypotheses is that as the mathematics teacher manages 

exchanges between the mathematical work done and the objects of knowledge to lay claim on, 

she needs to attend to two complementary sets of values or two currencies. The work done needs 

to be accounted for as representation or embodiment of mathematical ideas (or practices) at 

stake in the contract.5 And the work needs to be accounted for as students’ actual learning of the 

ideas that they have contracted upon. The value of the work done can be assessed in each of 

those currencies. Of course we don’t mean to say that every bit of interactive work done 

necessarily has to be valuable in both currencies; what we say is that the teacher has two 

currencies with which they may give value to classroom work: One currency consists of claims 

                                                
5 This latter exchange contains two assumptions. One of them, likely to be unproblematic among mathematics 
educators is that the teacher is accountable to the discipline of mathematics for representing the subject matter. The 
other assumption is that such representation is achieved in and through interactive work: Knowledge is not only 
represented in the texts that students use or in what the teacher says but more generally in the discourse that is 
publicly created by humans, through language and with artifacts. The notion that a piece of knowledge may be 
represented through the coordination of multiple players is not only apparent in the traditional philosophical 
dialogue (as in Plato’s works) but also in orchestral music, dance, theater, and film. 
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on the representation of knowledge and the other currency consists of claims on students’ 

learning of that knowledge. A particular chunk of classroom work may be of high exchange 

value on one and low (or perhaps also high) on the other of those two currencies. 

  In describing the work of the teacher as one of managing exchanges between work done 

in interaction and objects contracted upon we therefore allude to the need for the teacher to 

attend to these two kinds of currency. Figure 1 represents those two. 

 

 

 

 

 

Figure 1. Instructional Exchanges. 

 

 In what follows we apply this framework to examine the functions of proof in the 

classroom. With this we mean to say we examine how a teacher might account for the work of 

proof. In this paper we leave the expression “the work of proof” somewhat vague, to mean any 

classroom performance that an observer (including the teacher) might describe by an appeal to 

the label “proof” (but see Herbst & Balacheff, 2009, for a more precise way of describing the 

work of proof). As noted above many kinds of work observable in the classroom might be 

described with the label “proof;” from the reproduction of what Euclid wrote after stating the 

Pythagorean proposition to the reasoning followed by a student as he derives a plausible 

conclusion from a statement. Our argument is that these varying kinds of work may fulfill one or 

more from a list of diverse functions, as these functions have been described in prior scholarship 
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on proof, and thus a teacher may account for them, or value them using different value tokens.  

Our general claim is that the various “functions” or “roles” of proof in mathematics constitute a 

set of tokens that a teacher may use to allocate value to classroom performances. Those tokens 

could be available for a teacher to value classroom performances, though the extent to which 

teachers perceive and appreciate those values is an empirical question, which we take on in the 

companion piece to this article. 

 

Functions of Proof and their Role in Instructional Exchanges  

 In this section we revisit each of the functions of proof that has been identified in the 

literature and unpack the theory of instructional exchanges to explain how each of these 

functions of proof might play a role in the practice of instruction. We exemplify how each of 

these functions of proof could be used to put a value on classroom performances by using them 

to inspect classroom scenarios in a common course of studies, the traditional high school 

geometry course in the United States. These scenarios have been represented in animated movies 

that were created by project ThEMaT (Thought Experiments in Mathematics Teaching) to 

facilitate thought experiments with teachers about what could happen in this course (see Herbst 

& Miyakawa, 2008; Herbst, Nachlieli, and Chazan, in revision, for more information on those 

animations). Like video records of classroom episodes, animations can be used to spur 

conversations among practitioners about practice; unlike classroom episodes, animated scenarios 

can be designed to showcase practices that might be rare in actual classrooms. The animations 

don’t mean to claim that such practices exist; rather, they mean to showcase what the practices 

could look like so as to ground their consideration by the theory of instructional exchanges.   
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The work of proving may count as verification of or conviction about the truth of a statement 

Mathematical statements don’t go without saying in the discipline of mathematics as they 

might, for example, in revealed or mystical knowledge. They are claimed to be true and their 

truth can be verified or refuted. Thus in the classroom the work of proving could be accounted 

for as accomplishing the verification of a statement. The management work of the teacher, 

effecting a transaction of the work done for the claim that the truth of a statement is known, 

includes not only attesting that the claim has been verified but also that students are convinced of 

the truth of the statement.  

Philosophy of science has traditionally described the difference between mathematics and 

the sciences in terms of their means of verification of claims. While claims to scientific truths are 

verified by experimentation, claims to logical and mathematical truth are verified by proof. 

Scholars like Bell (1976), de Villiers (1990), Hanna (1982), and Hersh (1993) have alluded to 

this function of proof. Bell (1976, p. 24) indicates that the role of proof is verification or 

justification of the truth of a proposition. Hanna (1990, p. 9) indicates that ‘proofs that (only) 

prove’ show that a theorem is true. In mathematics education scholarship, the verification 

function of proof has often, also been given a subjective interpretation according to which proofs 

are done to convince or persuade humans of the truth of a statement. Thus Mason (1982) spoke 

of proving as convincing oneself, convincing a friend, and convincing an enemy. Harel & 

Sowder (1998) conceived of “proof schemes” as oriented to ascertaining the truth of a statement 

for oneself and to persuading others of the truth of a statement.  

 Thus one function of proof is to show that a proposition is demonstrably true in 

mathematics. The truth of the statement being what matters, it might be just as good to know one 

proof than to know another one, or perhaps to know only that a proof exists (Bass, 2009).  But 
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classroom work serves not only to represent knowledge but also to promote and demonstrate 

students’ learning. In appraising the work done, a teacher needs to attend not just to whether the 

truth of a statement has been established but also to whether the audience stood the chance of 

being, and perhaps was, convinced of the truth of that statement. This presents a set of 

contingencies associated with a teacher’s chance to effect a transaction between the proving 

work done and the claim that the statement is known as true. Note how these contingencies play 

out in the following scenario. 

The animated story “The Midpoint Quadrilateral6” provides grounds to consider the role 

that this verification function of proof in mathematics can play in mathematics instruction. In the 

story, the teacher has tasked the class with proving that the midpoint quadrilateral, the dual, of an 

isosceles trapezoid is a rhombus (see Figure 2). A student, Kappa, attempts an argument that uses 

two observations made by other students. One observation, made earlier that day by Beta, 

asserted that the midpoint quadrilateral of an isosceles trapezoid has congruent consecutive sides. 

The other, a conjecture made the day before by Lambda, asserted that the dual of any 

quadrilateral is always a parallelogram. Kappa added that since the dual is at least a 

parallelogram, “opposite sides are congruent” and since also “sides next to each other are 

congruent” then “all [sides are] congruent. So it has to be a rhombus.” In the story, the teacher 

denies Kappa the opportunity to use Lambda’s conjecture to prove this claim, since Lambda’s 

conjecture had not been proved yet. Then Kappa spends most of his time looking for a proof that 

will verify Lambda’s conjecture. The actions of the teacher in the story show one way in which a 

teacher could be responsive to the notion that to accept a statement as true, the existence of a 

proof is needed. This notion compels the teacher to reject the application of the statement that 

                                                
6 This animated story can be seen in ThEMaT’s Researchers’ Hub, http://grip.umich.edu/themat 
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any midpoint quadrilateral is a parallelogram because this statement has not been proved yet. 

Additionally, the notion propels Kappa to search for a proof for the statement, whose existence 

would eventually enable him to use the statement that Lambda had conjectured. The function of 

proof as verification could assist the teacher in allocating value to two episodes: (1) his rejection 

of Kappa’s first argument and (2) Kappa’s later work searching for a proof of Lambda’s 

conjecture. The story also exemplifies how a teacher may be caught in between the possibility 

that an argument that convinces a student might not quite satisfy mathematical standards to be 

accepted as a verification of a truth. 

 

 

Figure 2: The dual of an isosceles trapezoid is a rhombus 

 

 In terms of the theory of instructional exchanges, the “Midpoint quadrilateral” scenario 

illustrates that a teacher may be confronted with the need to exchange two unequal terms. On the 

one hand there are chunks of mathematical work such as the work made by Kappa to prove that 

the midpoint quadrilateral of an isosceles trapezoid is a rhombus. On the other hand there are (1) 

the status that the teacher can attribute to that assertion as representations of knowledge and (2) 

what the teacher can acknowledge about the students’ state of conviction about that assertion. As 

regards the statement, that the midpoint quadrilateral of an isosceles trapezoid is a rhombus, to 
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the extent that its proof hinges on a statement whose theorem status is yet unclear, the teacher 

does not feel entitled to give to it the status of proof that that Kappa’s work seeks. And yet, 

Kappa himself appeared to be convinced by his argument, later seeking through a “proof” of 

Lambda’s conjecture to convince the teacher. The various contingencies associated with whether 

the work done amounts to verification, conviction, or both of them span a possible tension in 

teaching: if the work done to verify mathematically does not convince students, is its value 

sufficient? Likewise if the work done to convince students does not amount to a mathematical 

verification, is it worth enough?  

But conviction and verification are not the only functions of proof that could be used to 

allocate value to classroom work. In fact, De Villiers (1990) has critiqued this reduction of proof 

to verification or conviction adducing that, in mathematical work, a mathematician’s inner 

conviction of the truth of a statement often precedes his decision to prove. Yet the existence and 

importance of proof in mathematics is warranted on other functions that it serves.  

 

The work of proving may count as explanation or understanding of a statement 

Mathematical statements are connected with other statements by way of the concepts they 

predicate about. A second set of stakes of the work of proving is associated with the 

contingencies of on the one hand explaining mathematically why a statement is true and on the 

other hand, of attesting to students’ understanding of what the statement means.  

Hanna (1983), building on the work of philosopher Mark Steiner (1978), has contrasted 

the function of proof as verification of a statement with the role of proof as explanation of a 

statement. The word explanation here alludes to showing how the asserted property of a 

mathematical concept coheres and connects with the known properties of that mathematical 



Functions of proof—Herbst, Miyakawa, and Chazan 

 13 

concept. A proof can have the function of explaining why a theorem is a reasonable thing to say 

about a known concept by showing how the statement of a theorem coheres and connects with 

the key properties of the concepts involved in the proof. In this sense a proof can be an important 

tool for representing mathematical knowledge as made of connected, as opposed to disconnected, 

concepts and procedures. This explanatory function of proof has also been given a subjective 

interpretation in the notion that proofs can help students understand the meaning of mathematical 

ideas. Thus Hanna (2000) has expressed support for this function of proof in preferring proofs 

that explain over proofs that merely prove and in noting that the most important role of proof is 

to promote students’ understanding of mathematics. Knuth (2002) has echoed it arguing to 

teachers that proofs are valuable because they can help students understand mathematics.   

 

   
 

Figure 3. Steps of the construction of an angle bisector in the animation “Constructions...” 

 

This function of proof as explanation is illustrated in the animated story “Constructions, 

Theorems, and Corollaries.” The story shows a class of students who have learned a procedure to 

construct an angle bisector with compass and straightedge: They draw an arc of a circle centered 

at the angle’s vertex and that intersects the two legs of the angle, then using the same arc they 

center the compass on each of those intersection points and draw two new arcs inside the angle; 
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where these two arcs intersect they make a point and draw a ray emanating from the angle’s 

vertex and passing through this last point (see Figure 3). In the story, after reviewing that 

procedure, the teacher invites the class to develop the proof that the ray so constructed is indeed 

the angle bisector of the given angle. The proof revisits the steps of the construction. Segments 

are drawn to join the intersection of the last two arcs with each of the intersections of the first 

two arcs with the legs of the angle. In that way two triangles are formed that have as a common 

side a segment contained in the constructed, putative angle bisector (see Figure 4). To show that 

the ray is indeed an angle bisector, a proof is done that the two angles it makes with each of the 

original angle’s sides are congruent. The fact that the same arc had been used originally to 

intersect the two legs of the angle is used to justify that one side in each of two triangles is 

congruent; a similar feature about the second set of arcs is used similarly. The congruence of the 

two triangles thus entails the congruence of corresponding angles. The proof thus uses congruent 

triangles to explain why the procedure of construction of an angle bisector produces two 

congruent angles. The proof relates the procedure of construction to some known properties such 

as equal distance and congruent triangles. It also creates connections with some more complex 

figures such as the rhombus. In fact the story shows how the proof of the construction naturally 

creates conditions for students to notice properties about the diagonals of the rhombus, such as 

the property that says that diagonals of a rhombus bisect opposite angles, which the teacher 

introduces as warranted by the same proof. 

What is at stake in doing this proof? Certainly not how to do the construction procedure, 

which had been learned earlier and which could be performed without knowledge of its proof (in 

fact, it quite often is). We argue that there is more at stake than the verification that the 

construction provides the correct output. At stake also are the connections between this 
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procedure and other pieces of knowledge—such as triangle congruence, rhombi and their 

properties—connections that may tie the construction procedure to the edifice of declarative 

geometric knowledge. The work of the students in the story, noticing what the givens are and 

translating steps of the construction to steps of the proof seems instrumental to making those 

connections. Likewise the observations that students make of how the construction with its 

auxiliary lines resembles a rhombus, serve to further cement those connections.  

 

Figure 4. The proof of the angle bisector construction connects with the notion of rhombus. 

 

Hanna has cautioned that not every proof explains; in fact it is plausible that even proofs 

that are explanatory in the mathematical sense of showing connections with other concepts, may 

fail to create in students the sense that they understand what is connected with that statement. On 

the other hand it is also plausible that the work that eventually accomplishes students’ 

understanding of those connections might be questionable as a legitimate representation of what 

mathematicians would give as explanation. 
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  The work of proving can thus have the exchange value of explanation—it can achieve a 

clarification of the conceptual grounds on which something may be true or false and prompt a 

statement to change status from being obvious to being a claim in need of support. The example 

of the “Constructions ... ” story illustrates that the work of proving can have the exchange value 

of showing that specific connections between procedure (construction) and concept (rhombus, 

triangle congruency) exist. But the management required of the teacher includes more than 

making room for work that can count as a mathematical explanation of connections between 

concepts. It also requires that the teacher can ensure that students understand those connections. 

For a teacher to be able to exchange the work done for the claim that the statement has been 

explained there thus seems to be a need to attend both to what the explanation itself has as far as 

connections between concepts and to what the explanation does to students’ activity as far as 

enabling them to (feel like they can) do things that they might not have thought of doing before. 

The various contingencies associated with whether the work done amounts to explanation, 

understanding, or both of them span a possible tension in teaching: if the work done to explain 

mathematically does not help students understand, is its value sufficient? Likewise if the work 

done to help students understand does not amount to a mathematical explanation, is it worth 

enough? 

 

The work of proving may count as discovery of a reasonable statement 

A third set of stakes of the work of proving is associated with the contingencies of on the 

one hand representing a rational discovery of a mathematical statement and on the other hand, of 

attesting to students’ perception that the statement is plausible or reasonable. The management 

work of the teacher, effecting a transaction of the work done for the claim that the statement is 
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reasonable, includes not only to attest that the statement can be produced by reasoning but also 

that students can reason their way through to the statement.  

The work of Imre Lakatos (1976) has illustrated the notion that proofs and refutations are 

part and parcel of the generation of mathematical knowledge: Proof is not merely a process done 

after the formulation of statements but actually a process that enables the production, the shaping 

of plausible statements. With his study of the history of Euler’s theorem for polyhedra, Lakatos 

illustrates how the work of proving a naïve conjecture can lead to formulating a more precise 

conjecture and even defining precisely the concepts (e.g., polyhedron) alluded to in the naïve 

conjecture. De Villiers (1990) also alludes to this function of proof by noting that 

mathematicians working on advanced areas of mathematics such as non Euclidean geometries 

would be hard pressed if they had to depend only on intuition or experimentation to conjecture 

statements and only used proof to verify them. Hanna & Jahnke’s (1996) discussion of the 

exploration function of proof is also captured by this discovery function—in particular as proof 

plays the role of exploring the consequences of a definition or assumption. 

In the story “Constructions, Theorems, and Corollaries” described above, the task of 

proving that the ray constructed is indeed an angle bisector leads the class to consider two 

adjacent isosceles triangles, that they prove congruent (see Figure 4). The initial interest in that 

triangle congruence is to show that the two angles at the vertex A, (∠PAR and ∠QAR) are 

congruent by being corresponding parts of a triangle congruency. But when the class’s attention 

is turned to recognizing that the quadrilateral APRQ is a rhombus, they notice that the 

congruency also entails that AR is the angle bisector of ∠PRQ. The work of doing a proof 

produces reasonable statements that might not have been anticipated before.  
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The prior example shows how one important stake to be claimed by way of having done a 

proof is that a statement, which emerges from the proof, is, by virtue of the proof, reasonable. 

Likewise this function of proof also gives resources for the teacher to appraise what students do 

when they reason deductively. A teacher can call on this discovery function of proof to appraise 

the work of a student (or of the students with the help of the teacher) arriving deductively at a 

statement. 

 

Figure 5. What could be proved about this figure? 

 

The animated story “A Proof about Rectangles” illustrates how a student could engage in 

the work of proving to find out what is possible to claim. We argue that a teacher could use the 

“discovery” function of proof to appraise such student work. At the very beginning of the story 

the teacher has asked the class to think about a rectangle as in Figure 5 where it is known that E 

is the midpoint of segment DC and that ∠AEB is a right angle. The teacher asks what can be 

proved about the sides AB and BC. Rho contributes his thinking: “Well the corner triangles are 

isosceles so BC is half of DC which is the same of … so, I know… we could show it’s half of 

the other….” Rho seems to see that right triangles ADE and BCE are not only congruent to 

each other but also isosceles which (conceivably added to the facts that AB = DC = DE + EC, 

and that DE ≅ EC) suggest to him that AB is twice as long as BC. The teacher answers, “I know 

what you mean, and that is what we will be proving.” The work Rho has done has value for the 
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teacher who knows that Rho finds the statement that AB = 2 BC a plausible thing to conclude 

from the givens.  

This discovery function of proof stresses how the work of proving can be the source of 

mathematical propositions. In terms of the theory of instructional exchanges, this encourages us 

to look at the work the teacher does or the students do to come up with or introduce a new piece 

of mathematical knowledge, a definition or a theorem and to place special value to this work 

when it represents mathematical knowledge as reasonable (Ball & Bass, 2003). The various 

contingencies associated with whether the work done amounts to representing a rational 

discovery, coming up with a plausible statement, or both of them span a possible tension in 

teaching: if the work done to represent a rational discovery does not contribute to students’ 

capacity to propose the statement, is the rational derivation sufficiently valuable? Likewise if the 

work done to enable students to come up with a statement employs not deductive reasoning but 

only intuition or empirical work, is the rationality of mathematical practice sufficiently well 

represented? 

 

The work of proving may count as negotiation or demonstration of standards for communication 

 A fourth exchange value on the work of proving is the claim that a mathematical 

argument has been communicated. This requires the teacher to manage an exchange that involves 

not only whether the argument has been communicated but also whether students know how to 

communicate it. In his article “The role and function of proof in mathematics,” Michael de 

Villiers (1990) points to the importance of proof as a locus of mathematical debate. Building on 

positions taken by Davis & Hersh (1986) as well as by René Thom (1971), De Villiers argues 

cogently that the practice of constructing a proof stages the ongoing debate of what counts as a 
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mathematical argument within the mathematical community. This position about the function of 

proof as communication has some resonance also in Hyman Bass’s (2009) observation that 

mathematicians don’t quite do proofs (in the formal sense) but rather concern themselves with 

making other mathematical “practitioners convinced of the existence of proofs” (p. 3). Most of 

the time the work of showing that a proof exists, for example in communicating a result through 

a journal publication, includes some negotiation of how much about the argument is needed in 

order to communicate the result as one for which a proof exists. The recent story of Fermat’s last 

theorem, in particular the fact that the result initially claimed by Andrew Wiles in a lecture in 

1993 was eventually accepted only after firmed up in a paper by Richard Taylor and Andrew 

Wiles (1995), which filled a gap in the original proof (Faltings, 1995), attests to how the work of 

showing that a proof exists functions as a stage for the mathematical community to negotiate 

what would count as enough of such demonstration.  

 Any proof done in class can therefore have as an exchange value not just that it lays claim 

on the truth or on the explanation of the statement proved but also that it instantiates the nature of 

what counts as proof. Along those lines, the work of proving can be accounted for as 

demonstration of how much students have internalized and can reuse or transform existing 

standards for proving.  

 The animated story “The Square,” in which students discuss Alpha’s claim that in a 

square angle bisectors meet at a point because they are the diagonals, eventually showcases how 

a classroom could stage a debate on the nature of mathematical argument as the class deals with 

showing that a proof exists for the claim that diagonals of a square bisect opposite angles. To 

argue that the diagonal of a square bisects opposite angles Lambda adduces that a diagonal splits 

the square into two congruent isosceles triangles. Lambda adds that the same thing is the case 
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with the other diagonal. Thus Lambda’s argument unpacks Alpha’s argument (by showing why 

one could say that a diagonal is an angle bisector) and glosses over some details (e.g., it avoids 

showing in detail that both diagonals are angle bisectors and it overlooks the formal distinction 

that angle bisectors are rays while diagonals are segments; see Figure 6). Lambda’s argument 

illustrates the communication function of mathematical proof. The story also illustrates, how 

such attempts at communicating an argument might not be perceived as enough demonstration. 

In fact in the story, immediately after Lambda provides his argument, the teacher asks for a 

proof, what motivates Lambda to say, “I just did that.” When pit against the background of what 

proofs usually look like in geometry classes (for example as shown in the latter part of the story 

“A proof about rectangles”) one can understand why Lambda’s argument might seem to some as 

not abiding by enough of the standards for communication of a proof. 

 

Figure 6. Diagonals of a square bisect angles. 

 

In terms of the theory of instructional exchanges these observations help put forward the notion 

that work done to produce a proof can have the exchange value of communication. This 

exchange value puts a premium on the extent to which the work done creates a representation of 

the process of negotiating a mathematical argument. Since the work of the teacher includes 

creating (with students) representations of the mathematics to be learned and since this 

mathematics to be learned includes the practice of producing proofs acceptable to a community, 
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some of the work to be done includes transacting elements of an argument in formation so that 

the linguistic tokens useful to demand and comply with standards for argument can be claimed to 

have been publicly represented. In particular, language uses adapted to requesting further 

argument (e.g., “how can you say that… ”) or to avoiding further argument (e.g., “it follows 

easily that…,” “without loss of generality, let’s assume… ”) can be the elements of knowledge at 

stake to be exchanged for the work of showing that a proof exists. 

On the other hand, to the extent that performance also has to show that students have 

acquired the target knowledge, it is understandable that moments of negotiation of what counts 

as an acceptable mathematical argument, however they are implemented, might be followed by 

periods of use and transformation of those negotiated features. In particular, it is understandable 

that students in the high school geometry course would be asked to use particular forms (such as 

the two column form; see Herbst, 2002) for writing their proofs, that they would do problems 

where they practice using such forms, and that future negotiations of new arguments might be 

done against the background of such forms (see Weiss, Herbst, & Chen, 2008).  

The various contingencies associated with whether the work done amounts to negotiating 

the communication of a particular mathematical argument, employing learned standards for such 

communication, or both of them span a possible tension in teaching: if the work done to 

communicate an argument in a mathematically acceptable way does not contribute to students’ 

sense that they know what a good proof is, is that work sufficient? Likewise, if the work done to 

enable students to practice and transform standards for communication of an argument produces 

a communication that is reiterative, redundant, or protracted, is the work done mathematically 

justifiable? 
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The work of proving may count as systematizing mathematical knowledge 

 A fifth exchange value on the work of proving is the claim that a mathematical statement 

has been incorporated into a theory or mathematical system of postulates, definitions, and other 

theorems. This has been referred to as the systematizing function of proof by De Villiers (1990) 

as well as by Bell (1976) and also alluded to by Hanna & Jahnke’s (1996) “incorporation” 

function of proof, whereby a proof may incorporate a known proposition into a different theory, 

thus enabling the representation of that proposition in a new light. Accordingly, the work of 

producing a proof of a statement may be accounted for as showing that a statement is deducible 

or derivable from some other statements.  While research grounded on the van Hiele levels of 

geometric thought has shown that high school geometry students tend not to achieve 

understanding of this aspect of mathematical rigor (Usiskin, 1982) the expectation that students 

will learn that geometric knowledge is organized as a system of axioms, theorems, and 

definitions has continued to be present in geometry textbooks. This expectation is present, at the 

very least, in the fact that a large part of the plane geometry material that students learn in high 

school geometry is material they already know; however, they are getting to know it differently, 

through deductive means. One might expect that teachers would create opportunities for students 

to show that they understand how new statements relate to known statements, including 

postulates, definitions, and theorems.  

 The story "Postulates and theorems on parallel lines" illustrates a kind of work that could 

be accounted for or justified by recourse to this systematization function of proof.  In this story, 

the teacher first gives as a postulate the statement that a transversal that intersects two parallel 

lines creates congruent corresponding angles. Then she proves as a theorem the statement about 

the congruence of alternate-interior angles determined by a transversal line that intersects parallel 
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lines. The proof given for this theorem shows this statement as deducible from the one offered as 

postulate earlier. Later on in the same lesson, however, the teacher says they could just as well 

have taken as a postulate that alternate interior angles are congruent and use it to prove the 

theorem that parallel lines imply corresponding angles are congruent. In one of the variants of 

this story, the teacher asks students to disregard the earlier postulate, proposes as postulate what 

they had last proved as theorem, and sets about to prove as theorem what had earlier been offered 

as a postulate. In this way the story stresses that a proof establishes a logical relationship of 

deducibility between postulate and theorem, adding to the knowledge of those statements 

knowledge about the organization of a mathematical theory.  

Other variants of this story show that students may not necessarily understand what the 

point could be of changing postulates and proving as a theorem something that was before a 

postulate: In version C of the story, a student reacts to the proposition that parallel lines imply 

congruent alternate interior angles by saying “I don’t get it, that’s a theorem;” someone else 

reacts to the proposition that they would prove as a theorem that parallel lines imply congruent 

corresponding angles by saying “that’s a postulate.” With expressions like these the story 

illustrates the difficulties that students might have understanding the nature of a mathematical 

system or differentiating the notion of truth from that of deducibility. In this way the story 

illustrates how the systematization function of proof can be useful for a teacher to justify why 

spend time proving that by taking different statements as postulates one might be able to prove 

different theorems. The story also illustrates that students may have difficulty accepting that the 

same statement may be a postulate in one system and a theorem in another (see Figure 7a and 

7b). 
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Figure 7a. One possible systematization. Figure 7b. Another possible systematization. 

 

This function of proof, to show the dependency of a proposition on others, also offers the teacher 

a resource to manage the work of allocating value to arguments that students produce even when 

they might not have done enough to establish the truth of all the propositions that sustain the one 

whose truth they claim. The systematization function of proof can help the teacher manage 

allocating value when the work done shows that the student knows how the provability of a 

statement depends on the truth of other statements. An example of this was provided above 

when, in the context of “The Midpoint Quadrilateral,” we discussed Kappa’s proof of the claim 

that the dual of an isosceles trapezoid is a rhombus. 

 From the perspective of the theory of instructional exchanges this systematization 

function of proof is important to show that inasmuch as classroom work has to create a 

representation of mathematics, the work of doing of a proof serves to represent the architecture 

of mathematical theories. The doing of a particular proof in class may have as its exchange value 

the representation of the deducibility of a given proposition from other propositions. As a 

resource for the teacher this function of proof identifies a source of values that can be used to 

appraise the work of showing the dependence of a theorem on other theorems or the equivalence 

of two propositions. It also provides resources for a teacher to appraise work students do when 

they conceive of the architecture of a proof but are unable to provide all the details. But it also 

permits to anticipate dilemmas a teacher may need to manage. The various contingencies 

associated with whether the work done amounts to representing the deducibility of a statement 
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from other statements, eliciting students’ understanding of what a mathematical system is, or 

both of them span a possible tension in teaching: If the work done to show that one or more 

propositions entail another one makes students think they can just assume propositions to be true, 

is the work done justifiable? (see Nachlieli & Herbst, 2009). Likewise if the work done to enable 

students to learn what a mathematical system is includes making them take as postulates 

statements that are not postulates in mathematics, is the architecture of mathematical theories 

appropriately represented? 

 

The work of proving may count as containing or showing a mathematical technique 

A sixth exchange value for the work of proving is the claim that a mathematical 

technique (procedure, method) has been represented and/or learnt. Rav (1999) brings up a 

function of proof in mathematics that has not been addressed by any of those listed above: Proofs 

are bearers of mathematical knowledge. He argues that the entire mathematical know-how is 

embedded in the collection of proofs. This is one of reasons why mathematicians are keen to 

attend to the proofs rather than only to the theorem statements when they read scholarly articles. 

In their commentary on Rav’s (1999) contribution, Hanna & Barbeau (2008) further show how 

relevant this function of proof is in mathematics education by exemplifying how school-level 

proofs are bearers of mathematical knowledge. By participating in the proof of a statement, 

techniques become part of the body of mathematical knowledge. In arguing that the work of 

proving could be justified on account of creating a context where to anchor particular 

mathematical techniques or practices we call attention to the teacher’s possibility to use the work 

of proving to (1) represent a particular mathematical technique and (2) observe students’ 

capacity to use a technique.  
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   The story “Intersection of Medians” provides a good example of how a proof could be 

used to represent a technique. In this story the teacher shows that the intersection of medians in a 

triangle is a point such that it determines, with the three vertices of the triangle, three triangles of 

equal area. The proof that the teacher gives shows the statement as a consequence of applying 

the notion that one median splits a triangle into two triangles of equal area and that when one 

subtracts equal areas from equal areas one gets equal areas (see also Herbst, 2005, 2006). While 

the statement proved is not obvious it may not be highly consequential either. But the proof is 

important in its capacity to show how a seemingly obvious statement, the additive rule for areas, 

underpins a powerful method: To compare the areas of two figures, see if they can be 

represented as juxtapositions of simpler figures that can be matched. In the story, the teacher 

makes very little explicit about why he thinks this is “a cool proof” (see Figure 8) but the fact 

that it bears this important technique could be a justification for why having students learn it. 

 

 

Figure 8. The centroid splits a triangle into three equal areas. 

 

While Rav’s (1999) article has been a landmark in the scholarly literature on proof in 

mathematics education, one could hardly argue the novelty of its claim to teachers of geometry. 
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Geometry instruction, at least in the United States, shows a concentration of proof problems for 

students in the first half of the course, when students study parallelism and congruence. Two key 

techniques could be shown to account for most of the proof exercises students do in this period: 

the technique of finding corresponding angles determined by a transversal cutting parallel lines 

and the technique of finding corresponding triangles that could be proved congruent. As Herbst 

& Brach (2006) have noted, the proofs that students do are rarely proofs of important 

propositions; but these proof exercises always stage applications of a technique for proving. In 

terms of the theory of instructional exchanges, then, this function of a proof underscores that the 

work of doing of a proof may be instrumental to representing a technique, which is the 

knowledge at stake in that work. One can understand why a teacher might then ask students to 

prove a particular theorem in a particular way or why a teacher might want to show a different 

proof of a theorem that had already been proved before: To do these things helps represent new 

techniques or helps demonstrate how those techniques can be put to use in doing authentic 

mathematical work.   

The various contingencies associated with whether the proving work done amounts to 

representing a mathematical technique, giving students opportunity to show they have learned a 

technique, or both of them, span a possible tension in teaching: If the work done to prove a 

proposition allocates too much attention to the proposition proved in detriment of the technique 

used, would this put the value of the time spent doing the proof at risk? Conversely, ad hoc proof 

exercises for learning or practicing a technique could keep these techniques in focus, but their 

lack of grounds on an authentic problem of the discipline could put their mathematical value at 

risk.  
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The work of proving may count as establishing the theoretical predictability of an empirical fact 

A seventh exchange value for the work of proving is the claim that a mathematical theory 

can predict an empirical fact. From a reflection on the relationship between mathematical proof 

and empirical sciences such as physics, Hanna and Jahnke (1996) identified three functions of 

proof. Two of them (exploring and incorporating) have been covered by two of the functions 

described above (discovery and systematization, respectively). The third function of proof 

identified by Hanna and Jahnke (1996) is the construction of an empirical theory: Proofs are 

crucial elements for constructing an empirical theory. An empirical theory (e.g., mechanics) can 

be seen as a system of propositions, each of which asserts empirical statements of fact, connected 

by deductive relationships that are established by proofs. This function of proof is particularly 

important as it helps relate theoretical knowledge of mathematics to some empirical aspects of 

students’ mathematical activity including drawing geometric diagrams, sketching graphs, 

estimating calculations, and so on.  

The story “The Tangent Circle” showcases how the work of proving could help establish 

the theoretical predictability of a successful drawing, which had originally been achieved 

through trial and error, hands-on experiences with a diagram. The story shows how a class works 

on the problem of drawing a circle tangent to two intersecting lines at two specified points. 

Through interacting with the diagram, the class discovers what could be seen as a collection of 

empirical facts: if the points of tangency are chosen equidistant from the point of intersection 

they succeed in drawing a circle tangent at those points but when those points appear not 

equidistant, the circle turns out to be not tangent (see Figure 9). At the end of the story, the 

teacher indicates that only a proof could confirm that such empirical success is mathematically 

valid. Indeed, a proof that two right triangles (with a common hypotenuse at the segment whose 
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extremes are the circle's center and the intersection of the lines) are congruent if and only if their 

legs are congruent establishes the tangency of such circle as a consequence of Euclidean 

geometry. In this case, the proof here enables a connection between the empirical fact of having 

given equidistant points and the empirical fact of being able to draw a circle tangent at those two 

points. 

  
 

Figure 9a. When points are not equidistant the 
tangent circle cannot be drawn. 

Figure 9b. When points are equidistant the 
tangent circle can be drawn. 

 

From the perspective of the theory of instructional exchanges, this function of proof is 

important in high school geometry as a way to organize a disorganized set of concomitant facts 

about diagrams that might be known from earlier courses and through empirical or perceptual 

means. While students may already be able to lay claim on many of the truths about geometric 

figures after their earlier experiences with geometry, the high school geometry class puts them 

again as stakes of the learning process. If they exist as prior knowledge they need to be 

“forgotten” and reconstructed, this time deductively (González, 2009). At the same time, 

diagrams continue to provide perceptual or empirical grounds for plausibility (Herbst, 2004; 

Polya, 1954). Thus just like in physics, proof can articulate relationships between possible facts, 

effectively representing possible facts as predictions based on known facts and deductive 

inferences from those known facts; predictions that can be confronted and perhaps confirmed by 
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empirical interactions with diagrams (see Herbst, 2003, for an example). Such function of proof 

helps the teacher represent geometry as a theoretical field of study and thus underscores how 

measurement and proof can coexist in the work that students do in class. This function of proof 

helps represent the relationships between the theoretical notion of geometric figure and its 

concrete representations (in diagrams or other forms) as a case of the relationships between 

theory and field of experience (see also Boero, Garuti, and Mariotti, 1996). The teacher can use 

this function of proof to account for the work of proving: Statements that are known to be true 

through intuitive or empirical means can still be proved in order to show that they are predictably 

true.  

The various contingencies associated with whether the proving work done amounts to 

establishing the predictability of an empirical fact, enabling students to know what to expect 

from an experience, or both of them span a possible tension in teaching: If the work done to 

prove a proposition allocates too much attention to the conclusion established in detriment of the 

necessity established between givens and conclusion, would this put the value of the time spent 

doing the proof at risk? Conversely, problems that give students the opportunity to predict 

empirical facts given some empirical conditions might elicit their use of any prediction method 

thus possibly compromising the mathematical value of the work done. 

 

Conclusion and Implications 

Seven functions of proof in mathematical activity have been reviewed and discussed: 

verification, explanation, discovery, communication, systematization, containment of techniques, 

and theoretical prediction of empirical observations. The paper illustrates with scenarios of 

geometry instruction how a teacher could use those functions of proof to allocate value to 
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different kinds of proving work. Those scenarios are useful not only because they permit to 

illustrate the more general point that, as a diverse set of performances, the work of proving can 

be valued along a many-valued scale. They are useful also because they permit a common way 

of inquiring on the perspective of teachers.  

Indeed, the functions of proof discussed above constitute a hypothesis: That various 

stakes of knowledge are to be claimed through the work done in class--the truth of a proposition, 

the connections between concepts, the reasonableness of mathematical propositions, the norms 

of mathematical argument, the relationship between propositions, specific techniques for 

handling mathematical concepts, and the relationships between mathematical theory and 

concrete representations. Those stakes of knowledge are important elements of mathematical 

practice and knowledge. But, do practitioners perceive them as important?  

Our discussion of functions of proof based on the theory of instructional exchanges has 

made heavy use of the hypothesis that a teacher is obligated not only to mathematics (he or she 

has the responsibility to represent the discipline) but also to students (he or she needs to promote 

and certify their learning). That theoretical examination led us to derive possible dilemmas that a 

teacher may need to manage as s/he manages the exchanges between work done and the values 

to be claimed. The analysis permits to ask further empirical questions. Do teachers perceive 

those dilemmas? And, how do they value instructional actions such as those observed in the 

illustrative scenarios where teachers attempt to make room for work of proving that could be 

accounted for in these many ways? The analysis also provides a plausible justification for the 

relatively small place that proof actually plays in classrooms—the existence of those dilemmas 

might account for why only some of the work of proving exemplified here actually takes place in 

real geometry classrooms.  
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