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Abstract
The dramatic land-use shift from forest and agricultural to exurban residential land uses creates an 

excellent opportunity for ecosystem restoration and carbon sequestration through yard design and 

management. Yard management in a residential subdivision is rarely an autonomous endeavor. Cultural 

and local norms play an important role in how residents design and maintain their yards. Studies show 

that residents are influenced by the behavior of their neighbors. Yet, social influence has rarely been 

incorporated into carbon sequestration studies in residential landscapes. Agent-based modeling offers 

an ideal framework for exploring how social complexities among humans could affect their 

environment. 

An agent-based model called ELMST (Exploratory Land Management and Carbon Storage), was 

developed to explore how management of individual yards and neighborhood influence could affect 

carbon storage at the scale of a residential subdivision. The model was run under four scenarios: (tier-0) 

no management, (tier-1) individual management without influence (tier-2) individual management with 

opportunity to adapt based on neighbor behaviors, and (tier-3) adaptive management, as in tier-2, but 

several residents were given an incentive to innovate their yard to a native prairie design upon model 

start-up. The model was parameterized with interview and fieldwork data from exurban homes 

Southeast Michigan. Total carbon within the subdivision was compared among scenarios for year 30. 

Tier-1 showed a significantly higher quantity of carbon than all others, including tier-0 (no 

management). Results from tier-2 and tier-3 showed a greater variability of carbon storage at the 

subdivision level, suggesting that a wide range of outcomes can emerge as a result of neighborhood 

influence and divergent local norms. Considering model sensitivity of individual management 

behaviors, the model showed that turfgrass fertilization and mowing the lawn while allowing grass 

clippings to decompose on-site dramatically increased carbon stored at the parcel level, when compared 

with the no management scenario. Comparatively, removing grass clippings dramatically decreased 

carbon stored at the parcel level, when compared with the no management scenario. The native prairie 

innovation was able to propagate through the subdivision in tier-3 in the ELMST model. Prairie-based 

parcels were shown to store less carbon overall than the conventional lawn-based parcels that were 

fertilized or mown while allowing grass clippings to remain on-site, but stored more carbon than if 

grass clippings were removed all together. Model results imply that trade-off between carbon storage 
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and other ecosystem services may need to be considered when developing policies for 

environmentally-friendly residential landscapes.

The ELMST model was developed to be expanded and re-used for a variety of locales, cultures and 

climates. Results from this study may be used to formulate better research questions and hypothesis, 

inform data collection, expand intuition of policy makers, and advance the development of agent-based 

models with regards to coupled human and natural systems.
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Introduction

Climate change due to carbon dioxide and other greenhouse gas accumulations in the atmosphere is a 

global issue. Between 1850 and 1998, approximately 405 Gt of carbon dioxide was emitted into the 

atmosphere, increasing the concentration of carbon from 285 ppmv to 366 ppmv (approximately 28 

percent) through the burning of fossil fuels, cement production, and land-use/land-cover change (IPCC 

2000). While a portion of these anthropogenic emissions are absorbed by oceans and terrestrial 

ecosystems, at least 40 percent remain in the atmosphere (IPCC 2000). 

Addressing the excess atmospheric carbon is an increasing topic of interest. Terrestrial sequestration 

may be included in a suite of possible solutions to remove excess carbon from the atmosphere. Many 

programs have been created to explicitly enhance terrestrial carbon sequestration through reforestation 

programs and agricultural land management practices (Benson & Surles 2006). Policies may take time 

to implement and could incur unexpected costs and limitations. This thesis investigates a relatively 

low-cost and convenient means of carbon sequestration through simple yard management practices in 

residential subdivisions. In 2000, residential areas accounted for 13.4 percent of the conterminous 

United States and were expanding at a rate of 1.60 percent per year – out-pacing the rate of population 

growth by roughly 25 percent (Theobald 2005). The distributed land management practices inherent 

across residential landscapes may offer an opportunity for climate change mitigation through terrestrial 

carbon storage and other ecosystem services. 

Cultural and local norms play an important role in how residents design and maintain their yards. 

Studies show that residents are influenced by what their neighbors do (Galster 1987; Nassauer, Wang, 

& Dayrell 2009; Ioannides 2002). However, a current gap in scientific knowledge relates to how 

neighborhood influence could affect adoption of management regimes and yard types at the parcel 

level, which are likely to have implications for carbon storage at the subdivision level. An agent-based 

model, ELMST (Exploratory Land Management and Carbon Storage) was created to compare four yard 

management scenarios in terms of potential carbon storage at the subdivision level. The model offers 

an exploration into how social influence among residential neighbors may affect human-ecosystem 

interactions within individual parcels. The ELMST model operates at the parcel-level, however, 

measurements are addressed at the subdivision level to show how individual behaviors scale-up to 

create landscape-level phenomena. 
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The overarching research question is "how could resident management and neighborhood influence 

affect carbon storage in the vegetation and soils of a residential subdivision?" The scenarios presented 

in this study are tier-based: (tier-0) no management, (tier-1) individual management without influence 

(tier-2) individual management with opportunity to adapt based on neighbor behaviors, and (tier-3) 

adaptive management, as in tier-2, but several residents were given an incentive to innovate their yard 

to a native prairie design upon model start-up. Empirical data from homeowner interviews and 

fieldwork in exurban residential areas of Southeast Michigan were used to parameterize the model 

whenever possible, otherwise reasonable values from literature were used. As a result, this study is 

particular to the vegetation, climate and culture of Southeast Michigan exurban residential areas.

This thesis offers a unique contribution to the studies of climate change science, land-use/land-cover 

change (LUCC), and coupled human and natural systems (CHANS) in that it addresses the social 

aspects of land management and resulting effects on carbon storage and sequestration. A contribution to 

the area of complex systems and agent-based modeling is also provided through the development of 

ELMST, a novel agent-based model created to be re-used for a variety of locales, cultures and climates.

Background

More than three-quarters of the Earth’s ice-free land has been altered by humans (Ellis & Ramankutty 

2008). Human activities alter the natural carbon stocks and fluxes in terrestrial carbon pools through 

land-use change, land-cover change and land management. Land-use and land-cover change (LUCC) 

account for more than 30% of the carbon efflux into the atmosphere – a rate exceeded only by the 

burning of fossil fuels (Dixon et al. 1994; IPCC 2000). Land-use alterations are largely due to 

conversion from forests and prairies to farm fields and other agricultural lands (Houghton, Hackler, & 

Lawrence 1999). Alterations have serious implications on plant and animal communities, soil 

composition, water quality, and many other ecosystem services (Wu 2002). 

The United States has seen dramatic LUCC shifts since 1950 – the most dramatic being the expansion 

of exurban areas just beyond the urban-rural fringe1. A study conducted by Brown et al. (2005) found 

that between 1950 and 2000, the area of urban land-use increased by one percent while cropland 

1 An on-line animation of eastern U.S. patterns of urban, suburban, exurban and rural development from 1980 to 2020: 
 http://www.ecologyandsociety.org/include/getdoc.php?articleid=1390&type=figure11 (Theobald 2005)

http://www.ecologyandsociety.org/include/getdoc.php?articleid=1390&type=figure11
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decreased by 11 percent. The decrease in agricultural land was primarily due to the development of 

exurban land uses, which increased sevenfold to tenfold during this same time period (Brown et al. 

2005). 

Carbon Storage

Agricultural fields are commonly stripped of vegetation, soil organic carbon and other nutrients as a 

result of intensive row-crop agriculture (Meyer, Baer, & Whiles 2008; Pouyat, Yesilonis, & 

Golubiewski 2008). The dramatic land-use shift from agricultural to exurban residential land creates an 

excellent opportunity for ecosystem restoration and carbon sequestration (Brown et al. 2005; Lesch 

2010). Developers will typically purchase an agricultural field from a farmer for residential subdivision 

development. The soil will be graded, homes will be built, and turfgrass will be established. In some 

cases, small trees may also be planted (Westbrook 2010). When a resident moves into their new home, 

decisions will be made regarding how to best manage the vegetation in the yard. Management activities 

include tasks such as mowing the lawn, removing fallen leaves, and yard re-design. Because 

neighborhood yards are relatively discrete and thought to be managed autonomously by their owners, 

the carbon dynamics in one parcel may be significantly different from the carbon dynamics in another 

parcel. The mosaic of individual yard designs and management regimes at the parcel-level are likely to 

have macro-level impacts at the subdivision level (Kaye et al. 2006). Through distributed land 

management, residential subdivisions have the potential to be a cost-effective venue for carbon 

sequestration – especially given the large and expanding areas of exurban development (Brown et al. 

2005; Theobald 2005; Bowman & Thompson 2009).

In terrestrial ecosystems, atmospheric carbon is sequestered through the process of photosynthetic 

growth and stored as biomass in living vegetation, such as grasses and trees. Vegetation will naturally 

senesce to produce litter which will decompose over time. Decomposition allows a portion of litter 

carbon (about 20 percent) to be transfered to the soil; the remainder is respired back to the atmosphere 

in the form of carbon dioxide (Currie & Aber 1997). Carbon stored in soil may respire back to the 

atmosphere, however soil respiration occurs at a considerably lower rate when compared with litter 

decomposition (Kucharik et al. 2001). The amount of time carbon spends in each pool (living biomass, 

litter and soil) is defined as the mean residence time. Mean residence time (MRT) plays a crucial role in 

the carbon cycle. Grasses, leaves and litter have an MRT of months to years, while woody biomass and 
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soils have an MRT of years, decades or even centuries, making these pools relatively persistent stocks 

of carbon (IPCC 2000).

Humans participate in the carbon cycle through LUCC and management activities. Neighborhood 

residents manage the vegetation in their yards, thereby changing the MRT within a given carbon pool. 

For example, if a resident decides to remove fallen leaves from her yard, carbon is not only removed 

from the litter pool, but is also denied transfer to the soil pool. When a resident mows her lawn and 

allows grass clippings to remain on the turfgrass, additional carbon is transferred to the litter pool, and 

eventually to the soil pool through decomposition. The processes of photosynthetic growth, 

decomposition and respiration play important roles in net flux of carbon between vegetation, litter, soil 

and atmosphere. Human-induced management activities may affect the natural carbon flux, thereby 

changing the way a landscape stores and sequesters carbon (IPCC 2000).

Default Management

Developers play an important role in pioneer resident management practices and local norms. For 

example, developers understand the importance of turfgrass areas for active families (Westbrook 2010), 

implying that active families purchase yards with large areas of turfgrass and will manage the turfgrass 

accordingly. Similarly, developers who create innovative subdivisions with open spaces and 

conservation features will market these neighborhoods to a particular audience in order to receive the 

best price (Bowman & Thompson 2009). Initial landscapes not only attract a particular audience, they 

also suggest aesthetic cues to care (Nassauer 1993), which may have profound effects on future local 

norms in the subdivision. 

Developers invest significant time and resources when developing a new subdivision, and these 

investments come without a guaranteed payoff (Bowman & Thompson 2009). Risks associated with 

subdivision design, planning and engineering lead developers to create conventional subdivisions that 

have historically been known to meet revenue goals (Westbrook 2010; Bowman & Thompson 2009). 

According to research conducted by Westbrook (2010), developers acknowledge a value in ecological 

design alternatives, such as low-impact development or conservation design (Bowman & Thompson 

2009). However, these techniques require changes to standard planning and engineering, and have not 
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been consumer tested in specific areas. Changes to standard development and uncertain marketability 

increase the risk of innovative, ecological designs even further. Home-buyers are also at financial risk 

when purchasing innovative property, anticipating uncertainty of re-sale and estimated property value.

Thaler and Sunstein describe the concept of "choice architects" in their 2009 book, Nudge. Choice 

architects organize the context of human decision-making and behavior by creating a "default" designs. 

The book argues that behavior is predictably altered by default circumstances, and that there is "no 

such thing as a 'neutral' design" (Thaler & Sunstein 2009, p. 3). Developers may unknowingly be 

choice architects whose development strategies are likely to effect how future residents will manage 

their yards. Initial yard design may have a significant impact on local subdivision norms and ultimately 

carbon storage patterns over time. 

The potential to leverage ecologically friendly outcomes through default yard designs is not often 

practiced – the perceived financial risk may be too great and consumers may be reluctant to buy in. 

While this paper acknowledges the importance of developers as choice architects with respect to initial 

yard design and ecosystem services, the depth of this topic is beyond the scope of this thesis. The focus 

of this paper is placed on conventional subdivisions; subdivisions that developers create with the 

perceived confidence of meeting revenue goals.

Neighborhood Influence

In 1997, a National Housing Survey conducted by Fannie Mae found that 71 percent of Americans 

preferred a "single-family detached house with a yard on all sides" (Burchell et al. 2005). Today, more 

than 55 million single-family homes in the United States occupy the density gradient from urban to 

exurban to rural (U.S. Census Bureau 2000). While single-family homes provide lodging and security, 

they also furnish an implicit community structure. Americans spend a great deal of time in residential 

subdivisions, taking care of their yards and interacting directly or indirectly with their neighbors 

(Bishop 2008; Ioannides 2002). Perceptions, interactions, and management behaviors among residents 

provide both the social fabric and ecosystem functionality within a residential subdivision (Cook et al. 

2004) 

When Americans search for a new home, a number of factors are typically considered: market price, 
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distance to urban centers, distance to good schools and work locations, and recreational opportunities 

(Brown & Robinson 2006). Qualities associated with particular local norms are also considered, 

including neighborhood aesthetics and social dynamics (Bishop 2008; Brown & Robinson 2006). 

People will generally seek out a community where "the cultural ideals fit their values – where they 

don't have to live with neighbors or community groups that might force them to compromise their 

principles or their tastes" (Smith, Clurman, & Wood 2005, p. 83). Over the past 30 years, the United 

States has been sorting itself into homogeneous neighborhoods of similar values and ideals (Bishop 

2008). Homophily seems to be a strong driver of resident location (Bishop 2008; Brown & Robinson 

2006; Christakis & Fowler 2007), and neighborhood aesthetics are likely to be a reflection of 

neighborhood norms. Neighborhood norms may bolster individual identity, which may be expressed in 

the form of individual yard aesthetics, thereby creating an implicit norm in which yard design and 

management play a fundamental role. Newcomers to a particular subdivision may evaluate the yard 

types in an effort to understand the neighborhood culture and determine whether or not the perceived 

culture compliments their concept of who they are, or who they would like to be (Akerlof & Kranton 

2010).

 

Individual yards in residential subdivisions are inherently public spaces. Front yards in-particular, 

provide an accessible visual area, conceivably placing pressure on an individual to "fit in" with 

neighborhood expectations and aesthetic norms (Nassauer, Wang, & Dayrell 2009). Not only do yard 

aesthetics reflect on the identity of an individual resident, but they also reinforce (or challenge) the 

local norm (Centola, Willer, & Macy 2005; Akerlof & Kranton 2010). This thesis will define a norm as 

a shared expectation about what is appropriate. The term "neighborhood influence" will be used to 

describe the conscious or unconscious imitation of neighboring residents' management behaviors or 

yard designs (Christakis & Fowler 2009).

Residents pay close attention to their neighbors' yards, often resulting in a neighborhood influence 

effect (Nassauer, Wang, & Dayrell 2009). Neighborhood influence is shown to be a significant factor in 

resident behavior (Ioannides 2002) where each resident serves as both a source and target of influence 

(Mason, Conrey, & Smith 2007). Individual residents appear to make autonomous decisions regarding 

the design and maintenance of their own parcels. However when living within close proximity of their 

neighbors, it may be difficult to avoid bias toward yard design and management decisions (Christakis 
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& Fowler 2009; Thaler & Sunstein 2009).

Galster (1987) asserted that the degree to which a resident feels cohesion with his neighbors provides a 

great deal of explanatory power with regards to upkeep and management of his dwelling. However, 

most of his neighbors must also feel this same level of cohesion and solidarity in order for management 

influence to cascade through the subdivision. The tendency to identify closely with neighbors offers 

greater potential for a more robust local norm. Galster also found that the level of social interaction 

among neighbors appeared to have little impact on management; positing that identification with 

neighborhood norms and neighborhood influence may be independent of personal social interaction 

among residents. However, if social connections are present, then personal social interactions do 

become an important factor for the diffusion of management behavior (Barabasi 2003; Galster 1987; 

Christakis & Fowler 2009).

In addition to neighborhood cohesion, Galster encouraged public policy officials to consider 

neighborhood influence when providing incentives for yard innovation. Residents who do not directly 

receive incentives but live near those who do, may alter their behavior because of local pressures to 

conform or boosted optimism for the particular innovation (Galster 1987). An example, relating to the 

present study, may be if a few residents receive an incentive to replace 25 percent of their turfgrass 

with native prairie, then the choice of these few residents may be sufficient to spread the native prairie 

yard style throughout the subdivision, thereby creating a new local norm. However, these types of 

scenarios are difficult to predict and depend on many known and unknown factors including 

socioeconomic characteristics of the residents, overall neighborhood cohesion, education for 

sustainable landscapes, optimism for the new yard design and perceived effect on property value 

(Galster 1987).

Studies show that neighborhood influence has a substantial effect on the behaviors and preferences of 

individuals who live in a residential subdivision (Galster 1987; Nassauer, Wang, & Dayrell 2009; 

Ioannides 2002). True management preferences of individual residents may never be understood, or 

may be non-existent, given the seemingly pervasive impact of local norms, cultural norms and 

neighborhood influence. While beyond the scope of this thesis, the emerging science of choice raises 

similar questions about the rationality of judgment and decision-making (Thaler & Sunstein, 2009).  
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Agent-Based Models

A pressing challenge in ecological research is to understand the complex feedbacks between human and 

environmental systems (Cook et al. 2004). Experiments regarding ecological outcomes of socially 

influenced landscapes are difficult to carry out. For example, Cook et al. (2004) described an adaptive 

experimental design using in situ human subjects living in a residential subdivision in the Central 

Arizona - Phoenix Long Term Ecological Research program (CAP LTER). Each section of the 

neighborhood was fitted with a different landscape design treatment. Residents were permitted to 

manage and alter the design of their own yards as they pleased, while ecological and social data were 

collected for many years. Although experimental designs involving actual human subjects could offer 

"realistic" empirical data, these types of experiments are often not feasible, involving such challenges 

as ethical limitations, participant bias, long time-frames and budget constraints (Cook et al. 2004).

Models may offer a practical surrogate for in situ human experiments in a variety of different 

landscapes. Equation-based models have traditionally been used by scientists to gain a better 

understanding of a particular system and to make predictions about future states of that system (Grimm 

& Railsback 2005). While equation-based approaches are useful for many natural systems, they are 

generally unable to account for the stochastic elements inherent in human systems, such as individual 

identity, decision-making, group dynamics, and social interactions (Cioffi-Revilla 2010). Individual 

human states and processes are of central importance when studying human-natural systems – small 

changes in individual behavior may result in unexpected environmental outcomes.

Agent-based models offer a compromise between deterministic, equation-based models and in situ 

human experimentation by providing a virtual laboratory in which heterogeneous agents interact with 

one another, and with a changing environment (Cioffi-Revilla 2010). Interactions among agents and 

environment could lead to large-scale outcomes and/or exhibit emergent properties that cannot be 

deduced by the simple aggregation of individual agent behaviors (Axelrod & Tesfatsion 2010).

Agent-based models (ABMs) are a computer programs that incorporate assumptions and logic derived 

from the real world into code. The computer code is then iterated through according to rules embedded 

in the program (Page 2005). Agent-based models are often run numerous times to generate a 
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distribution of output patterns that may result from stochastic elements built into the model. Datasets 

may then be analyzed using traditional statistical methods. 

Theories of social influence have notably been explored through the use of agent-based models 

(Xianyu 2010; Cioffi-Revilla 2010; Centola, Willer, & Macy 2005; Epstein 2008; Axelrod 1997; 

Axelrod & Tesfatsion 2010; Page 2005; Dixon, David S., Reynolds; Mason, Conrey, & Smith 2007). 

Researchers have also begun to use agent-based models to study the effects of urban sprawl and 

deforestation on ecosystem services and climate change (Brown & Robinson 2006; Brown et al. 2008; 

Robinson 2009; Liu et al. 2007; An et al. 2005; Zellner et al. 2009). However, social influence has 

rarely been incorporated into to LUCC at high resolutions, and particularly in residential landscapes. 

Thus, in the present study, an agent-based model was developed to explore how individual management 

and neighborhood influence could affect carbon storage within a residential subdivision.

Summary

Disciplines such as epidemiology, public health, economics, politics, and marketing have used social 

influence to understand the dissemination of disease, obesity, wealth, voter turn-out, and the latest 

trends in fashion (Mossel & Roch 2007; Christakis & Fowler 2009; Christakis & Fowler 2007; Thaler 

& Sunstein 2009). Yet only a handful of studies have examined the effect that neighborhood influence 

has on resident management behaviors (Galster 1987; Nassauer, Wang, & Dayrell 2009; Ioannides 

2002), and none of these studies attempt to model the effect of management decisions on carbon 

storage and other ecosystem services. An agent-based model offers an ideal framework for exploring 

the complexities between humans and the environment. Here lies an opportunity to build on the 

CHANS knowledge-base (Liu et al. 2007), promote the use of agent-based models for exploratory 

policy analysis (Bankes 1993), and contribute to the study of LUCC and climate change science (IPCC 

2000).

The overarching research question addressed in this thesis is "how could resident management and 

neighborhood influence affect carbon storage in the vegetation and soils of a residential subdivision?" 

An agent-based model, Exploratory Land Management and Carbon Storage (ELMST), was developed 

to assist in the exploration of carbon storage in a residential subdivision under four scenarios: (tier-0) 

no management, (tier-1) individual management without influence, i.e. intrinsic management, (tier-2) 
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individual management with opportunity to adapt based on neighbor behaviors, and (tier-3) adaptive 

management, as in tier-2, but several residents were given an incentive to innovate their yard to a native 

prairie design upon model start-up. The model was parameterized with interview and fieldwork data 

from exurban residential landscapes in Southeast Michigan wherever possible, otherwise values from 

literature were used. Total subdivision carbon was compared among scenarios.  

Research Questions and Hypothesis
To address the overarching research question, three specific questions were formulated that lend 

themselves directly to each model scenario. Each specific question is associated with one or more 

hypotheses to help structure testable model scenarios and research experiments. 

Q1 How could intrinsic management affect carbon storage in a residential subdivision after 30 

years?

H1.1: The total carbon2 in an managed subdivision without neighborhood influence will be less than 

the total carbon in an unmanaged subdivision after 30 years. 

When residents manage their yards according to their own internal preferences (i.e. without 

being influenced by their neighbors or adopting new management strategies), some 

management behaviors encourage carbon storage, while others remove carbon entirely from 

the subdivision. 

Fertilizer may be applied to the lawn, increasing the rate of turfgrass growth and aboveground 

carbon. Allowing grass clippings and/or fallen leaves to remain on the parcel is expected to 

keep carbon in the subdivision, transferring a portion to the soil pool through decomposition. 

Some residents may choose to have yard waste (i.e., grass clippings and/or fallen leaves) 

picked up by the municipality, thereby completely removing a portion of carbon from the 

subdivision. Using the distribution of management behaviors derived from interview data in 

Southeast Michigan (Table 2), total carbon in an intrinsically managed subdivision is expected 

to be less than the total carbon in an unmanaged subdivision.

2 Here and elsewhere in this analysis, 'total carbon' refers to summed carbon pools in soil and vegetation in residential 
yards at any point in time. Carbon in residential structures is not considered, nor is carbon from energy use included in 
the analysis. Carbon that is exported from residential yards, i.e. yard waste, is considered a loss of carbon from the 
yards.
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Q2 How could neighborhood influence affect carbon storage in a residential subdivision after 

30 years?

H2.1: The total carbon in a managed subdivision having neighborhood influence will be less than 

the total carbon in an unmanaged subdivision. 

H2.2: There will be no significant difference in total carbon between a managed subdivision having 

neighborhood influence and a managed subdivision absent of neighborhood influence. 

When neighborhood influence is applied to a subdivision, it may be reasonable for the 

distribution of intrinsic management behaviors to evolve into a more homogeneous 

management culture over time. The majority of management behaviors after 30 years may 

represent an averaging of management regimes inherent among residents when the 

subdivision was first developed. Therefore, the total average carbon in a managed subdivision 

having neighborhood influence is expected to be statistically similar to the total subdivision 

carbon resulting from intrinsic management behaviors.

Q3 How could an incentive to innovate to a native prairie yard design3 in a managed 

subdivision with neighborhood influence affect carbon storage in a residential subdivision 

after 30 years?

H3.1: The total carbon in a subdivision having incentive to innovate to a native prairie yard will be 

less than the total carbon in an unmanaged subdivision. 

H3.2: The total carbon in a subdivision having incentive to innovate to a native prairie yard will be 

greater than the total carbon in a managed subdivision absent of neighborhood influence. 

H3.3: The total carbon in a subdivision having incentive to innovate to a native prairie yard will be 

greater than the total carbon in a managed subdivision having neighborhood influence. 

Similar to the hypothesis in Q2, when neighborhood influence is applied to a subdivision, it 

may be reasonable for the distribution of intrinsic management behaviors to evolve into a 

more homogeneous management culture after 30 years' time. With an incentive to innovate to 

3 A native prairie yard design is assumed have 25 percent of a one-acre parcel planted with native prairie grasses, such as 
Little Bluestem (Schizachyrium scoparium) and Indian Grass (Soghastrum nutans). 
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a native prairie yard design provided to just a few residents, the innovative design is expected 

to propagate through the neighborhood. Native prairie is also expected to store more carbon 

over time than turfgrass because of its relatively high above- and below-ground biomass and 

its comparably low soil respiration rate (Meyer, Baer, & Whiles 2008). The majority of 

management behaviors after 30 years may represent an averaging of intrinsic management 

strategies among residents, this time with the inclusion of native prairie yards. The total 

carbon in an incentive-based subdivision is, therefore, expected to be greater than those 

subdivisions without an incentive to innovate (i.e. a subdivision having intrinsic management 

and a subdivision having neighborhood influence). However, the incentive-based subdivision 

still considers the same distribution of management behaviors (Table 2), with the additional 

management option of removing prairie thatch, which may aid in decreasing the overall 

carbon in the subdivision. Therefore, the total carbon in an incentive-based subdivision is 

expected to be less than the total carbon in an unmanaged subdivision. 

Methods

The Exploratory Land Management and Carbon Storage (ELMST) agent-based model was developed 

to assist in the exploration of how management behaviors and neighborhood influence could affect 

carbon storage in a residential subdivision. A four-tier experimental design was developed to assist in 

hypothesis testing: (tier-0) no management, (tier-1) intrinsic management, (tier-2) adaptive 

management, and (tier-3) adaptive management with incentive to innovate (Figure 1). 

Tier-0 (No Management): The subdivision is developed. Residents do not participate in yard 

management, allowing vegetation to grow, senesce and decay naturally.   

Tier-1 (Intrinsic Management): The subdivision is developed. Each resident manages his yard 

according to an intrinsic management behaviors derived from Southeast Michigan interview data 

(Table 2),  e.g. fertilizing, mowing the lawn, removing grass clippings, removing fallen leaves. 

Residents are not influenced by neighboring behaviors, keeping the same management routine 

throughout the model run.  



13

Tier-2 (Adaptive Management): The subdivision is developed. Each resident begins an intrinsic yard 

management routine, however a resident is now able to adapt her individual management behaviors 

based on those of her neighbors. 

Tier-3 (Adaptive Management with Incentive to Innovate): The subdivision is developed as usual. 

However, three residents are randomly selected to receive an incentive to innovate their yards with a 

native prairie design. Residents are able to adapt their management behaviors based on the behaviors of 

their neighbors. Residents may also choose to adopt the new prairie design through the process of 

neighborhood influence. 

Model Description

A salient concern with agent-based models is the ability to communicate the complexity inherent in the 

model effectively. Specifically, how system-level properties emerge from the adaptive behavior of 

heterogeneous agents (Grimm et al. 2006). The following description of the ELMST model uses the 

ODD protocol developed by Grimm et al. (2006). This protocol uses three standard blocks (Overview, 

Design Concepts and Details) to quickly supply information about the focus, resolution and complexity 

of the model in a format that may be consistent with other ABM descriptions (Grimm & Railsback 

2005; Grimm et al. 2006).

Overview

The ELMST (Exploratory Land Management and Carbon Storage) model was developed in the Eclipse 

Integrated Development Environment (version 3.5), written the Java 1.6 programming language and 

uses the Recursive Porous Agent Simulation Toolkit (i.e., Repast Simphony) framework and libraries 

(Eclipse 2000; Java 2002; Repast 2007).

Purpose

The purpose of the ELMST model is to explore the potential effect of yard management and 

neighborhood influence on carbon storage in a residential subdivision. ELMST implements a simple 

residential subdivision having a set number of distinct parcels. Individual residents use basic 

management strategies to alter the vegetation and litter produced by natural ecosystem processes within 

a parcel. Carbon trajectories at various spatial scales may be observed over time (biomass pool, land-
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cover type, parcel, and subdivision). The ability to turn on and off model components allows the user to 

incrementally explore how management behaviors and agent interactions could affect carbon storage at 

various spatial and temporal scales. 

ELMST was designed for re-use and extendability. Virtually any climate, land-cover type and culture 

may be modeled using different initial parameterizations. The functionality of the model may be 

programmatically extended to create alternative land-cover types, agent behaviors, social network 

strategies and influence mechanisms.

The following sections provide a description of the ELMST model used for this study. Whenever 

possible interview and field data from exurban residential areas of Southeast Michigan were used for 

initial model parameterization (Project SLUCE2 2009), otherwise values from literature pertaining to a 

similar biome as Southeast Michigan were used (Table 1, Table 2). Calibrated model parameters 

include the percentage of living biomass that naturally senesces to produce litter and soil respiration. 

The ELMST implementation used for this study is specific to conventional exurban subdivisions in 

Southeast Michigan. 

Structure

The subdivision environment houses two distinct modules: the ecosystem module and the resident 

system module. The ecosystem module provides components and processes related to the annual 

functionality of distinct biomass pools and land-cover types. The resident system module includes a 

collection of agents within a lattice-based social network. Agents may interact directly with the 

ecosystem module and neighboring agents through yard management behaviors and neighborhood 

influence respectively (Figure 2).

Ecosystem Module Structure

Subdivision parcels are heterogeneous, each containing land-cover areas of varying types and sizes 

(measured in m2). Land-covers are represented as a-spatial entities within a parcel and include: (1) 

impervious surface, e.g., house, driveway, sidewalks, (2) turfgrass, (3) tree cover, and (4) native prairie 

(Figure 4). Impervious surfaces, turfgrass and tree cover are common to Southeast Michigan residential 

subdivisions. Native prairie is relatively less common, but offers much in the way of ecosystem 
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services and carbon storage (Meyer, Baer, & Whiles 2008; Nassauer et al. 1997). The model uses native 

prairie to explore possible outcomes of carbon storage if a few agents are provided with an incentive to 

install this feature in their own yards. Native prairie is used in the model to demonstrate how 

neighborhood influence could play a role in the diffusion of uncommon yard designs across a 

subdivision, creating a new local norm and potentially altering the neighborhood carbon storage over 

time.

With the exception of impervious surfaces, each land-cover type is composed of four biomass pools: 

(1) aboveground vegetation, (2) below-ground vegetation, i.e., roots, (3) litter, and (4) soil organic 

matter (Figure 4). Biomass pools are fundamental model structures, providing temporary containers for 

carbon as it moves through the ecosystem. Each biomass pool within each land-cover type is uniquely 

parameterized (Table 1) and validated (Table 3) using data from fieldwork and literature.

Resident Module Structure

One agent (i.e. resident) is assigned to each parcel in the subdivision. Agents are heterogeneous, 

maintaining their yard according to their own intrinsic management routine (Table 2). Each 

management routine consists of seven management decisions: (1) when to mow the lawn, (2) blade 

hight of lawnmower, (3) whether or not to fertilize the lawn, (4) whether or not to leave grass clippings 

on the lawn, (5) whether or not to remove fallen leaves, (6) whether or not to install native prairie, and 

if a native prairie has been installed, (7) whether or not to remove thatch from the prairie. Each 

management decision requires a yes/no value, with the exception of lawn mowing schedule and blade 

height. Options for lawn mowing include: every week, every other week, once per month and never. 

Blade height was automatically set to result in a turfgrass biomass density of 40 g/m2 after a lawn is 

mowed – a value approximated using a typical three-inch blade height, as determined by interview data 

(Project SLUCE2 2009). Approximate after-mow biomass was back-calculated using the maximum 

turfgrass biomass density used in the ELMST model (330.00 g/m2) and maximum height of Kentucky 

bluegrass (a two foot estimate) (USDA).

Each agent keeps a list of its immediate von Neuman neighbors for the duration of the model run, 

creating a static, lattice-based social network (Figure 3). The social network is used to determine which 

neighbors could influence a particular agent.
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The Prairie Incentive Program 

In some cases, the model may use a prairie incentive program to encourage installment of native prairie 

throughout the subdivision. The seasonally wet conditions associated with these land-cover types tend 

to have a lower respiration rate than turfgrass or tree cover soils, and are likely to store comparatively 

more carbon over the long-term (Meyer, Baer, & Whiles 2008). Depending upon spatial configuration 

within the yard, native prairie may also be considered a beautiful focal point of the yard, while 

promoting a variety of ecosystem services, such as storm water infiltration, biodiversity, and native 

ecosystem restoration (Nassauer 1993; Nassauer et al. 1997).

Model Component Activation

Several model components may be activated to validate the model and/or compare the effect of a given 

component on carbon dynamics and outcomes. Components that have the option to be activated (or 

deactivated) are: the ecosystem module, resident management, resident influence, and the incentive 

program. Activation of certain components allows the user to incrementally compare model outcomes 

under different scenarios. This thesis uses the model component activation feature to systematically test 

hypothesis using a tier-based research approach (Figure 1). 

Processes

The model runs on a weekly time-step where one year is equal to fifty-two weeks. Weeks are numbered 

zero to fifty-one and reset every first week in January. Four seasonal effects typical to Southeast 

Michigan are represented in the model: (1) start of growing, (2) growing season, (3) end of growing 

season and (4) dormant season. The growing season is assumed start on week 17 (approximately the 

first week in May). Ecological processes of photosynthetic growth, litter decomposition and soil 

respiration begin on week 17 and continue through week 38. On week 39 (approximately the first week 

in October), foliage and grasses senesce to produce litter. All ecological activity ceases on week 40 and 

and remains inactive into the following calendar year. Week 17 signals the start of the next growing 

season, when growth, decomposition and respiration resume (Figure 7).

Agent management routines and neighborhood influence also follow seasonal triggers. Turfgrass 

fertilization and prairie installation may only occur at the onset of the growing season (week 17). 
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During the growing season, turfgrass lawns are mowed according to individual mow schedules and 

grass clippings may (or may not) be removed. Neighborhood influence also occurs over the coarse of 

the growing season, when residents are more likely to be working in their yards and mingling with 

neighbors. At the end of the growing season (week 39), after the leaves fall and grasses senesce, agents 

are triggered to remove leaf and prairie litter, if they so choose. The dormant season prompts inactivity 

for both yard management and neighborhood influence (Figure 7).

Ecosystem Module Processes

The fundamental ecological mechanisms in the model are the addition, transfer and loss of carbon 

among the four biomass pools. For example, during the growing season, tree cover produces foliage 

through the process of photosynthetic growth. At the end of the growing season, leaves senesce, 

producing leaf litter. As litter decomposes, a proportion (20 percent) of the carbon is transferred to the 

soil pool while the remainder is respired back to the atmosphere (Aber, Melillo, & McClaugherty 1990; 

Currie & Aber 1997). Assuming soil respiration to be relatively low, the majority of carbon remains in 

the soil pool for long periods of time (Kucharik et al. 2001). With the exception of impervious surfaces, 

each land-cover instance maintains its own carbon-cycle process, allowing for variation of carbon 

inputs and outputs among biomass pools within each land-cover type (Figure 4, Figure 5).

Resident Module Processes 

The ELMST model has an option to activate resident management activity, allowing for alterations of 

land-cover vegetation and litter pools within each parcel. Agents may choose to take part in or abstain 

from certain management activities throughout the year. Fertilization results in a higher turfgrass 

growth rate, resulting in a greater accumulation of above- and below-ground biomass. Lawn mowing 

removes biomass from aboveground vegetation; the choice to remove grass clippings determines if the 

discarded biomass is transferred to the turfgrass litter pool, or removed from the system entirely. 

Similarly, the choice to remove of fallen leaves and/or prairie thatch also eliminates carbon from the 

system. The choice to install a native prairie at the start of the growing season is an exceptional task in 

that it replaces a portion of the turfgrass land-cover type with the prairie land-cover type. Aboveground, 

below-ground and litter biomass belonging to the replaced turfgrass portion are completely removed 

from the system, leaving the previous soil organic matter (SOM) in place. Initial above- and below-

ground prairie vegetation is then installed. If thatch is not removed, the prairie litter pool will 



18

accumulate biomass starting from zero (Figure 6).

If neighborhood influence is activated, agents will evaluate the maintenance routines of their immediate 

von Neuman neighbors every week during the growing season. After evaluation, an agent may decide 

to adopt a new management behavior based on the management behavior of its neighbors. The more 

neighbors deciding to practice a particular a behavior, the more likely an agent is to adopt this same 

decision. Because certain management tasks occur at designated times during the year (e.g. fertilization 

only occurs only at the start of the growing season), an agent may decide to participate in a behavior 

before they are actually able to perform the task. For example, an agent may be decide to remove fallen 

leaves on their property on week 20, however this behavior will not be carried out until week 39. 

Moreover, an agent could be indecisive about a particular management decision, causing an agent to 

"change its mind" several times over the coarse of the growing season. The standing decision on the 

week that the task is scheduled to be performed determines what the agent ultimately does. 

Design Concepts

Design concepts, as described in this thesis, illustrate the general approach of complex adaptive 

systems, including emergence, adaptation, sensing, stochasticity, interaction, collectives and 

observation (Grimm et al. 2006). Describing the ELMST model in terms of these design concepts 

explicitly links the general concepts of the model with various properties of complex adaptive systems. 

Emergence. – Emergence distinguishes which system-level phenomena emerge from individual model 

attributes. In tier-0 and tier-1, the resulting total carbon trajectory is deterministic, based on initial 

model conditions, and emerging from the interaction of ecosystem processes (tier-0) and consistent 

management behaviors (tier-1). Tiers -2 and -3 include neighborhood influence –  individual agents 

may adapt their behaviors based on the behaviors of their neighbors. Total carbon stored at the 

subdivision level now becomes an emergent property of adaptive agent management and ecosystem 

processes. A local norm may emerge as a result of neighborhood influence, creating solidarity among 

agent management behaviors, and potentially resulting in the lock-in of a particular carbon trajectory.

Adaptation. – Adaptation describes which agent behaviors are modified as a response to the behaviors 

of neighboring agents. Specific to tiers -2 and -3, agents may adapt their maintenance routine to better 
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"fit in" with their immediate neighbors. Each maintenance routine may be broken down into a set of 

individual behavioral decisions. Each decision may altered based on the collective decisions exhibited 

by immediate neighbors; the more neighbors exhibiting a particular maintenance decision, the more 

likely this same decision will be adopted by an agent. Exactly one behavioral decision may be adopted 

by an agent at each time-step during the growing season. The likelihood of adopting a particular 

behavior is a linear function of the number of neighbors exhibiting the behavior. However, fertilization 

and prairie installation are less likely than all other behaviors because of the additional costs associated 

with adoption. This concept is discussed more in the sub-models section on neighborhood influence. 

Sensing. – Sensing describes how agents and/or the environment are able to identify and respond to 

certain model attributes. Both ecosystem and agents are able to sense the weekly time-step of the model 

and the current the season (i.e. onset of the growing season, growing season, end of the growing 

season, and dormant season). The environment uses seasonal information to trigger photosynthetic 

growth, litter decay, soil respiration and senescence, while agents in tiers -1, -2, and -3 use seasonal 

information to manage their yards accordingly (Figure 7). In tiers -2 and -3, agents are also able to 

sense the management decisions of their immediate, von Neuman neighbors. Neighborhood influence 

and adaptation are driven by the collective neighbor management decisions perceived by individual 

agents.

Stochasticity. – Stochasticity characterizes which elements of the model contain stochastic processes. 

The model offers four stochastic processes: (1) initialization of land-cover areas within a parcel for all 

tiers, (2) initialization of agent management behavior in tiers -1, -2 and -3, (3) neighborhood influence 

in tiers -2 and -3, and (4) initialization of agent incentives in tier-3 only. Areas of land-cover types 

within each parcel are randomly selected from a normal distribution provided by fieldwork data (Table 

1). Agent management behavior probabilities were derived from interview data and assigned using a 

roulette wheel algorithm (Sabar et al.). Neighborhood influence also uses a roulette wheel algorithm to 

determine which behavior an agent will adopt. If the model offers a native prairie incentive program 

(i.e. tier-3), all agents are placed in a random lottery, each having an equal chance of being selected to 

receive the incentive. 

Interaction. – Interactions identify the assumed correspondences among individuals. In tiers -1, -2 and 
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-3, agents interact with the landscape through management of aboveground vegetation and litter. 

Specific landscape interaction will depend on the type of management behavior performed (Table 2). In 

tiers -2 and -3, agents also interact indirectly with their immediate neighbors by observing the 

management decisions of each neighbor, creating a "mental tally" of how many neighbors have decided 

to participate in a particular management behavior, and randomly choosing one of these behaviors to 

imitate. Agent-to-environment and agent-to-neighbor interactions occur every week during the growing 

season.

Collectives. – Collectives denote aggregations in the model that allow for the scaling-up or lock-in of 

system-level phenomena. Environmental collectives are represented explicitly in the ELMST model 

through component aggregation. The subdivision is composed of many parcels; a parcel is composed of 

many land-cover types (i.e. impervious, turfgrass, tree cover and prairie); each land-cover type contains 

four biomass pools (i.e. aboveground, below-ground, litter and soil); and each biomass pool has a 

particular biomass density, measured in g/m2 (Figure 4). Biomass density may be easily converted 

carbon density (Nowak 1994; Currie 2003). Total carbon within a subdivision is therefore dependent on 

the many individual biomass pools that comprise the lowest level of collectives in the ELMST model.

Collectives are also found within, and among agents. Each agent contains a management routine which 

is composed of many separate management decisions. Management decisions include: lawn 

fertilization, mow schedule, whether or not to remove grass clippings, fallen leaves or prairie thatch, 

and whether or not to install a native prairie landscape. Concrete behaviors associated with these 

decisions create an individual management routine for each agent. Individual management routines are 

likely to alter above-ground and/or litter carbon pools. Alterations to total carbon in aboveground and 

litter pools due to management behaviors will affect the carbon contained at the biomass pool, land-

cover, parcel and subdivision scales (Figure 6).

Individual agents are part of larger agent collectives. Each agent holds an internal list of their 

immediate von Neuman neighbors. The neighbor list is used to determine the probability of agent 

adaptation in tiers -2 and -3 through the process of neighborhood influence. Neighborhood influence 

creates an opportunity for an agent to adopt a new management behavior based on the behaviors of its 

neighbors. A greater cohesion of management routines may result, wherein agents become more similar 



21

to their neighbors over time. The dissemination of management behaviors may create a type of 

management-based culture (Axelrod 1997). The emergence of a management culture may result in the 

lock-in of a particular carbon trajectory at the subdivision-level. The stochasticity inherent in 

neighborhood influence is likely to yield many different solutions for total carbon stored at the 

subdivision-level for tiers -2 and -3.

Observation. – Observation describes which data are to be collected for analysis, validation and 

hypothesis testing. The main objective of this study is to compare total subdivision carbon under 

various management scenarios. Observation of total subdivision carbon is accomplished by summing 

the total carbon contained in each environmental collective. Each biomass pool maintains a density 

(measured in g/m2), which is converted to carbon (g C/m2) by multiplying the biomass density by 50 

percent (Eq. 1a) (Nowak 1994; Currie 2003). Total carbon contained in a single biomass pool within a 

particular land-cover type may then be calculated by multiplying the carbon density of a biomass pool 

by the area of the land-cover within a parcel (Eq. 1b). The sum of the total carbon in each biomass pool 

yields the total carbon within a particular land-cover type (Eq. 1c). Summing the carbon in each land-

cover type provides the total parcel carbon (Eq. 1d). Finally, the total carbon in the subdivision is 

simply by the sum of the total carbon contained in each parcel (Eq. 1e).

C=0.5b  (1a)

poolT=C  land area (1b)

land T= poolT
aboveground

 poolT
below− ground

pool T
litter

pool T
soil (1c)

parcelT=∑ landT  (1d)

subdivisionT=∑  parcelT  (1e)

A set of aggregations where b is biomass in g/m2, C is carbon density in g C/m2, poolT is total 

carbon within a biomass pool, landT is total carbon within a land-cover type, parcelT is total 

carbon within a parcel and subdivisionT is total carbon within a subdivision.   

Details

Initialization

The model was initialized with a single subdivision represented as a two-dimensional, 9x9 grid, with 
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each grid-cell representing a one acre (4,046.86 m2) parcel (Figure 3) such that the entire subdivision 

comprised a virtual area of approximately 32.78 hectares (327,795.66 m2). One agent (i.e. resident) was 

assigned to each parcel and initialized with an intrinsic yard management routine (Table 2). Agents 

were incorporated into a lattice-based social network, having explicit connections to immediate, von 

Neuman neighbors (Figure 3). While agents represent nodes of the network; connections between 

agents create bidirectional edges over which neighborhood influence may travel (Figure 3). 

Activation order determines the order of individual model processes within a single time-step. The 

ELMST model maintains a similar activation order throughout an entire model run. The ecosystem 

module is processed first, allowing for the natural photosynthetic growth, litter decay, soil respiration 

and senescence to occur during the appropriate seasonal times (Figure 7). The order to which individual 

biomass pools are processed is inconsequential since each pool acts independently from all others. 

The resident module is processed only after the ecosystem module processes are complete. The resident 

module processes agent management behaviors before neighborhood influence occurs with respect to 

the appropriate season (Figure 7). The agents themselves are processed in a random order during each 

time-step. 

The model was run 100 times under each research tier (Figure 1). Each run under a tier was 

parameterized identically (Table 1, Table 2), with the exception of the random seed, which was 

systematically incremented for each run. Four component activation parameters may be turned on or 

off to distinguish under which tier the model should be run (Table 6). 

Input

Model input parameters were derived from fieldwork and interview data collected from twenty-six 

exurban residential homes in Southeast Michigan as part of a larger project, Spatial Land Use Change 

and Ecological Effects at the Rural-Urban Interface (Project SLUCE2 2009). Where fieldwork or 

interview data were unavailable, values from literature pertaining to a similar biome as Southeast 

Michigan were used (Table 1, Table 2). 

In a few cases, model parameters needed to be calibrated as a consequence of of model assumptions 
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and lack of definitive data. Calibrated parameters for each land-cover type include percentage of living 

biomass that naturally senesces to produce litter and soil respiration. Natural litter production was 

calibrated to (1) permit stable regrowth during the following growing season for turfgrass and prairie 

based on literature values of maximum biomass (Table 3) and (2) to provide a reasonable amount of 

soil carbon accumulation given the annual litter decay rate of 0.25 (Currie et al. 2009) also based on 

literature values (Table 3). ELMST implementation used for this study is specific to conventional 

exurban subdivisions in Southeast Michigan. 

Ecosystem Module Input

Land-Cover Type Distribution. – Categories for the ELMST land-cover types (i.e. impervious, 

turfgrass, tree cover and prairie) are generalizations derived from fieldwork eco-zone data (Table 11). 

Land-cover proportion distributions for parcels in the subdivision were created using the mean and 

standard deviation obtained from spacial fieldwork data associated with parcels having an area equal-to 

or less-than one acre (4,046.86 m2, n=16) (Table 12). For each parcel in the model, a random 

proportion was drawn from an assumed normal distribution for each land-cover type (Table 1). Once 

proportions had been drawn for each land-cover type for an individual parcel, a normalization 

algorithm was applied such that the proportions among land-cover types within a parcel summed to 

one. The actual square-meter area for each land-cover type was calculated from the resulting product of 

the land-cover proportion and 4,046.86 m2 (one acre).

Vegetation Biomass Distribution. – Above-ground biomass was initialized to the same value for each 

type of land-cover in the model (Table 1). Not only does this make for a parsimonious assumption, but 

the development of a conventional subdivision lends itself to a similar paradigm – developers lay 

established turfgrass sod and may install a few young trees of roughly the same age (Westbrook 2010; 

Bowman & Thompson 2009). Below-ground biomass was initialized based upon a root-to-shoot ratio 

for aboveground biomass within each land-cover type (Smith, Shugart, & Woodward 1997).

Initial Litter Biomass and Soil Organic Matter. – For this study, a conventional subdivision was 

assumed be built on land previously used for agriculture. Exhausted agricultural fields tend have 

depleted litter biomass and surface soil organic matter (Pouyat, Yesilonis, & Golubiewski 2008). As a 

result, each of these pools was simply initialized with a zero biomass (Table 1). Over time, the model 
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accumulated both litter and soil organic matter through ecosystem processes of growth, senescence and 

decay (Figure 5, Figure 6). 

Resident Module Input

Management Routine. – Individual management behaviors assigned to each agent upon model start-up 

were determined from interview data (Project SLUCE2 2009). Residents from 16 exurban households 

in Southeast Michigan having a parcel area of one acre or less were asked about their fertilization 

practices, lawn mowing schedule, if they remove grass clippings and if they remove fallen leaves. 

Probabilities for each management behavior were derived from an approximate proportion of the 

number of residents who indicated they participated in a given behavior (Table 2). Respondents were 

not asked about the removal of prairie thatch; this initialization was assumed to be the same as the 

probability of applying fertilizer. A roulette wheel algorithm (Sabar et al.) was then used to determine 

agent initializations for each management decision using the probabilities described in Table 2. Initial 

probability of prairie installation was set to zero for all modeling tiers. However, tier-3 (adaptive 

management with an incentive to innovate), used a random lottery process to determine which three 

agents would receive the incentive to install native prairie yard design. Agents were assumed to always 

accept the offered incentive. 

Sub-Models

This section provides an overview of the design and implementation for each of the primary controlling 

process in the ELMST model.

Ecosystem Module Sub-Models

Land-cover type proportion normalization algorithm. – Each parcel may contain four land-cover types: 

impervious surface, turfgrass, tree cover and prairie. Individual land-cover proportions within an each 

parcel were randomly selected based on an assumed normal distribution provided by SLUCE2 

fieldwork (Table 1). A random "raw" parcel proportion value is drawn from a normal distribution for 

each type of land-cover (Figure 1), and stored in a list. Each item in the list is then divided by the sum 

of list values. The resulting fraction is the actual proportion of the parcel the land-cover type will be 

assigned. Actual area is then derived by multiplying the land-cover proportion by 4046.86 m2 and 

stored in an instance of the land-cover object (Figure 8).  
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Carbon Content. – The amount carbon of stored per unit of biomass was determined by multiplying the 

biomass quantity by a factor of 0.5 (Nowak 1994; Currie 2003). This same factor is applied to all 

biomass pools (i.e. above-ground, below-ground, litter and soil). 

c= 0 .5b  (2)

where c is carbon density b is biomass density. 

Photosynthetic Growth. – Richards Growth Model was used to increase the biomass of the 

aboveground and below-ground vegetation. This model uses a relative growth rate (RGR) which 

assumes that new growth is proportional to a plant's current biomass (Blackman 1919). Richards 

Growth Model also assumes a bounded growth, such that the biomass follows sigmoid curve. 

Parameters for Richards Growth Model include (1) a relative growth rate (RGR), (2) maximum 

biomass or carrying capacity, and (3) a delta value that determines the shape of the curve (Richards 

1959).

v'  t = k
1−δ 

V  t   v  t 
w 

 δ−1 

−1  δ≠1 (3)

where v'(t) is equal to the new growth at time t, v(t) is the biomass at time t, k is the relative growth rate 

(RGR), w is the maximum biomass capacity and δ is a number or fraction indicating the shape of the 

growth curve (Damgaard 2004; Damgaard; Richards 1959). Individual growth rates, maximum 

capacities, and delta values were used do parameterize each vegetative land-cover – turfgrass, tree 

cover and native prairie (Table 1). 

Litter Production. – Litter from above- and below-ground biomass pools were combined into the same 

litter pool at the end of the growing season (Smith, Shugart, & Woodward 1997). While tree cover 

senesces a small proportion biomass, turfgrass and prairie land-cover types will senesce most of their 

biomass at the end of the growing season. However, enough above- and below-ground biomass must be 

left in place for photosynthetic growth to function normally at the onset of the next growing season. 
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Therefore, the proportion of litter produced by above- and below- ground biomass pools was calibrated 

to permit stable regrowth during the following growing season for each individual vegetative land-

cover type (Table 1). 

For turfgrass and prairie, a percentage of the maximum capacity biomass was used, producing a 

constant biomass starting point for the following year's growth for all grasses. For tree cover, only the 

foliage on trees will senesce at the end of the growing season. Since tree biomass does not "start over" 

like grasses, a percentage of the individual tree cover biomass will be converted to litter, allowing the 

resulting biomass to be variable over time, such that tree cover can continue to grow where it left off 

during the year prior (Table 1).

  

Litter Decay. – Litter accumulated at the end of the growing season begins decompositions at the start 

of the following growing season. A standard exponential decay function is used to model litter decay 

(Aber, Melillo, & McClaugherty 1990).

N  t  =N0 e−k  (4)

where N(t) is the resulting litter at time t, N0 is the quantity at time t-1 and k is the decay rate per year. 

The decay rate was determined to be 0.25 per year (Currie et al. 2009). The difference between N0  and 

N(t) yields the amount of decayed matter produced by the litter pool within a single time-step. Only 20 

percent of the carbon in the decayed matter is transferred to the soil, while the remainder is respired 

back to the atmosphere (Aber, Melillo, & McClaugherty 1990; Currie & Aber 1997).

Soil Respiration. – The proportion decayed matter that is transferred to the soil pool undergoes a 

second phase of decomposition, resulting in the respiration of carbon from the soil. Soil respiration 

uses the same standard exponential decay function as litter decomposition (Eq. 4), but with a different 

decay rate (k). The decay rate for soil organic matter (SOM) was calibrated for each vegetative land-

cover type so that the soil organic carbon (SOC) approaches a representative equilibrium within a 

reasonable time-frame (Simmons et al. 2008; Pouyat, Yesilonis, & Golubiewski 2008) (Table 1).

Resident Module Sub-Models
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Prairie Installation. – The prairie installation process replaces 25 percent of the turfgrass area within a 

parcel with native prairie grasses. A check is performed to ensure the parcel contains 25 percent or 

greater of the turfgrass land-cover type. If so, a 25 percent (1011.72 m2) area of the turfgrass 

aboveground, below-ground and litter biomass are removed completely from the model, leaving the 

previous soil organic matter (SOM) in place (Figure 6). A new prairie land-cover type is then inserted 

into the model, equal to the portion of removed turfgrass (1011.72 m2). Initial above- and below-ground 

prairie vegetation is also installed (Table 1). The opportunity to install prairie is set to occur once per 

year, at the start of the growing season.

Fertilization. – Fertilization assumes a one-time application of slow-release methylene urea fertilizer 

(such as Scotts 41-0-0) at the beginning of the growing season. Fertilizer is assumed to increase the 

relative growth rate for both above- and below-ground biomass by a factor of 4.83 (Agnew & 

Christians 1993). Fertilizer must be re-applied at the start of each growing season, otherwise turfgrass 

growth is assumed to return to its original rate (Figure 6).

Mow Schedule. – Residents may participate in a variety of different lawn mowing schedules during the 

coarse of a growing season. Applicable mow schedules include: once per week, once every other week 

and once per month. The option to never mow is also available in the model, but is never used as a 

result of the interview data (Table 2). The model runs on a weekly time-step. If the agent is set to mow 

once per week, every time step within the growing season will trigger the agent to mow. To determine 

when an agent will mow for the every other week or every month schedule, the week number is 

compared with the agent's mow schedule using the modulus operator.  

mowThisWeek = (w % x == 0) (5)

where w is the week number within the growing season (i.e. a number from 18 to 38), x is equal to 2 

for a mow schedule of every two weeks and 4 if the mow schedule is once per month.  mowThisWeek 

is a true/false value that indicates if the agent will mow the lawn on the current week. 

An assumed three-inch blade-height is represented as an exogenous after-mow biomass of 40 g/m2 for 

all agents. After-mow aboveground biomass was approximated by the back-calculation of maximum 
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turfgrass biomass density used in the ELMST model (330.00 g/m2, Table 1) and an estimated maximum 

height of Kentucky bluegrass equal to two feet (USDA). Mowing has no direct effect on below-ground 

vegetation or soil biomass pools, but may have an effect on the litter pool if grass clippings are allowed 

to decompose on-site (Figure 6).

Grass Clipping Removal. – After an agent mows, the grass clippings may either be removed completely 

from the model, or transferred to the turfgrass litter pool (Figure 4). 

Leaf Litter Removal: An agent may choose to remove newly senesced leaf litter from his or her parcel 

once per year at the end of the growing season. Leaf litter is considered to be the aboveground portion 

of litter produced by tree cover. Since both above- and below-ground vegetation is senesced into the 

same litter pool, the aboveground portion is determined using the root-to-shoot ratio for tree cover (1:4) 

(Smith, Shugart, & Woodward 1997).  

Alitter=
blitter

1r
 (6)

where Alitter is the aboveground litter biomass for a given year, blitter is the total litter biomass for a given 

year, and r is the root-to -shoot ratio for a particular land-cover type. The calculated aboveground litter 

biomass is removed from the total litter produced for the current year.

Prairie Thatch Removal. – If an agent has a prairie yard design, he or she may choose to remove newly 

senesced prairie thatch once per year at the end of the growing season. Thatch is considered to be the 

aboveground portion of litter produced by prairie. Since both above- and below-ground vegetation is 

senesced into the same litter pool, the aboveground portion is determined using eq. 6 and the root-to-

shoot ratio for prairie grasses (2:3) (Smith, Shugart, & Woodward 1997). 

Neighborhood Influence. – Agents may be influenced by their immediate von Neuman neighbors. Each 

agent is able to assess the management behaviors of immediate neighbors and keep a count of how 

many neighbors participate in a particular behavior. The method of neighborhood influence in the 

ELMST model uses a basic roulette wheel algorithm. Imagine a roulette wheel where each wedge 

represents a management behavior. The size of the wedge is determined by how many neighbors 

practice a particular behavior, creating a linear relationship among the number of immediate neighbors 
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practicing a behavior and the likelihood of behavior adoption. During each time-step in the growing 

season, an agent may assess the behaviors of her neighbors, construct a “mental roulette wheel” and 

randomly select a behavior to adopt from the roulette wheel.  

There are two caveats regarding the likelihood of adopting fertilization and prairie installation 

behaviors as a result of neighborhood influence. While all other options (i.e. mow schedule, remove 

grass clippings, remove fallen leaves and remove prairie thatch) are relatively simple behaviors in 

practice, fertilization and prairie installation have additional associated costs. Fertilization requires the 

resident to purchase fertilizer, apply it at the start of the growing season and the increased growth rate 

of fertilized turfgrass remains for the duration of the growing season. Additional fertilization costs were 

estimated do decrease the likelihood of fertilization adoption as a result of neighbor behaviors by a 

“willingness to fertilize” factor of 0.50 (Table 2). 

A similar situation occurs for the decision to install prairie. If a resident decides to install prairie, a 

portion of turfgrass is removed and replaced with 1011.72 m2 of native prairie grasses (25 percent of the 

parcel). The cost and planning necessary to install prairie is assumed to be higher than that of fertilizer 

application. Moreover, once a prairie landscape is installed, it is considered permanent, and cannot be 

reverted back to turfgrass, which bolsters the increased cost of prairie installation. As a result, a 

“willingness to install prairie” factor is applied to prairie installation, decreasing the likelihood of 

prairie adoption by a factor of 0.25 as a result of neighborhood influence (Table 2). 

Statistical Analysis

The model was run 100 times under each research tier (Figure 1). Each run under a tier was 

parameterized identically (Table 1, Table 2), with the exception of the random seed, which was 

systematically incremented for each run. Management and neighborhood influence effects were 

monitored across tiers. Total subdivision carbon was averaged over year 30 for each of the 100 in-tier 

runs. Quantitative comparisons of total carbon storage at the subdivision level were made between each 

tier using descriptive statistics and two-tailed Student's t-tests.  
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Results

Model Verification and Validation

Verification and validation are the primary processes used to ensure the credibility and usefulness of 

computational models. Verification is used to ensure that the implementation of the actual model 

matches the conceptual model intended. Validation is a process used to determine if the model reflects 

the real-world to the degree that it is useful for its intended use (Thacker et al. 2004).

The ELMST model was verified extensively throughout the development process using repeated unit 

and functional tests of sub-model components. Validation was based on initial model parameterization 

using fieldwork and interview data from exurban residential homes in Southeast Michigan (Project 

SLUCE2 2009). Where fieldwork and interview data were unavailable, values from literature were 

used. In some cases, parameters were calibrated to produce reasonable model behavior (Table 1). 

ELMST validation involved frequent comparisons of model output with real-world data provided by 

literature (Table 3).

Parcel Land-Cover Area Verification

Each parcel may contain four land-cover types: impervious, turfgrass, tree cover and prairie. Individual 

land-cover proportions within an each parcel were randomly selected based on an assumed normal 

distribution provided by SLUCE2 fieldwork (Table 1). Random proportion selections were then 

normalized and converted into actual area values based on a one-acre parcel (4046.86 m2). Prairie land-

cover occurs in tier-3, and only when residents decide to innovate their yards. Yard innovation removes 

an area of turfgrass equivalent to one-quarter of the parcel, and replaces this area with the prairie land-

cover type. Assertions in the code ensure that parcel land-cover areas always sum to 4048.68 m2. The 

model was run 100 times for each tier using different random seeds. Land-cover area results conclude 

that the average areas for each land-cover type follows correct proportions and sum to 4048.68 m2 

(Table 7).

Ecosystem Module Validation

Ecosystem module validation was performed by comparing carbon density results from the unmanaged 

model scenario (tier-0) with carbon density values found in peer-reviewed literature for various years 

since vegetation establishment. Densities were compared across vegetative land-cover types (turfgrass, 
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tree-cover and prairie) for each biomass pool (aboveground, below-ground, litter and soil). Results 

were also compared with SLUCE2 fieldwork data. While not year specific, SLUCE2 field data 

provides concrete carbon densities for Southeast Michigan exurban residential areas and provides an 

interesting check across ELMST and literature values (Table 3). Overall results showed that the 

ELMST model keeps within a reasonable range of both literature and SLUCE2 data values.

Actual carbon dynamics within the model were assessed using graphs of carbon density within each 

biomass pool for each vegetative land-cover type. Unmanaged turfgrass and prairie offered a stable 

cycle of aboveground, below-ground and litter carbon after several years (Milesi et al. 2005; Cahill, 

Kucharik, & Foley 2009), while tree cover rapidly increased in aboveground and below ground 

biomass for about 30 years before growth slowed and eventually settling at an equilibrium (Hutnik 

Russell J., Yawney 1961) (Figures 12 - 17). 

Resident Module Verification and Validation

Similar to ecosystems, human systems contain a set of rules or heuristics which determine system 

functionality. However, human systems tend to be highly variable and dynamic, proving validation 

especially difficult and subjective. Thus, only land management behaviors were verified to function as 

expected while neighborhood influence validation relied on general theories and case studies from 

social psychology.

The probability that a resident performs a particular management behavior was determined by SLUCE2 

interview data (Table 2). When the model was run 100 times under each tier for 30 years, the ratios of 

management behaviors remained similar to the original probabilities, with the exception of fertilization 

and prairie behaviors due to to “willingness to fertilize” and prairie installation incentives respectively 

(Table 4). 

Previous studies have shown that residents pay close attention to their neighbors, often resulting in a 

neighborhood influence effect, and significantly affecting the behaviors of individual residents (Galster 

1987; Nassauer, Wang, & Dayrell 2009; Ioannides 2002). Neighborhood influence in the ELMST 

model was implemented using a roulette wheel algorithm where the quantity of neighbors performing a 

management behavior determined likelihood of resident adoption. The probability proportional to the 
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number of neighbors performing a behavior provided a reasonable guess as to the details of the 

neighborhood influence mechanism. Thus, the roulette wheel algorithm can be used in a computational 

experiment that reveals how the total subdivision carbon would behave if proportional selection was a 

correct assumption (Bankes 1993). 

Effect of Individual Management Behaviors

The differential effect of each individual management behavior on the outcome of total carbon at the 

subdivision level was evaluated. Testing the effect of individual behaviors assumed the standard 9x9 

subdivision used in this study. All agents were set to perform a single management task consistently for 

the duration of the model run. Total carbon in the subdivision (measured in Mg C) was recorded for the 

ten years between year 25 and 35 of the model (Figure 9; Table 5). The effect of individual 

management behaviors provided insight into outcomes with heterogeneous agents, parcels and 

neighborhood influence effects.

Model results show that fertilization has the greatest positive effect, increasing the total carbon in an 

unmanaged subdivision by approximately 40 percent on average, relative to unmanaged parcels. 

Mowing the lawn and leaving the grass clippings to decompose on-site and may also increase the total 

carbon in the model by about 17 to 20 percent, relative to the unmanaged scenario, as does having one-

quarter of every parcel in native prairie and allowing the thatch to decompose on-site. Removing grass 

clippings after mowing significantly decreases the amount of carbon in a subdivision by roughly 40 to 

44 percent when compared with no management. Removing fallen leaves and prairie thatch has less of 

an effect, decreasing the modeled carbon storage by approximately 4 to 7 percent relative to the 

unmanaged scenario. 

Model Application 

The model was applied using the four tier-based research scenarios as illustrated in Figure 1. In this 

section, results for each tier are described, followed by a comparison among tiers used to test research 

hypothesis. 

Tier-0 – No Management 

When a conventional subdivision is developed and no management takes place over a span of 30 years, 
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the total carbon in the subdivision is deterministic because the rules that determine growth, senescence, 

litter decay and respiration remain constant. Year 30 model results yield a carbon store range from 234 

to 272 Mg C with an average of 255 (± 8.13) Mg C. The low variability in this case is due to annual 

seasonal shifts in growth, senescence, litter decay and respiration.  

Tier-1 – Intrinsic Management 

The tier-1 model scenario involves a developed conventional subdivision where residents manage 

vegetation and litter according to their intrinsic preferences, without adaptation and without 

neighborhood influence. In this scenario, the total carbon in the subdivision is also deterministic 

because the rules that determine growth, senescence, litter decay and respiration remain constant as do 

management behaviors. Year 30 model results yield a carbon store range from 399 to 568 Mg C with an 

average of 487 (± 31) Mg C. The variability in this scenario is due to the interaction of annual seasonal 

shifts in natural processes (growth, senescence, litter decay and respiration) and intrinsic land 

management behaviors of fertilization, lawn mowing, and grass clipping or leaf removal. Prairie is not 

assumed to be present in this scenario.

Tier-2 – Adaptive Management 

In the tier-2 ELMST scenario, a conventional subdivision is developed and residents manage 

vegetation and litter according to their intrinsic preferences, but also have the ability to influence one 

another. With the ability to adopt new management behaviors over a 30 year span, the total carbon in 

the subdivision depended on emergent local norms resulting from neighborhood influence. Year 30 

model results yield a carbon store range from 182 to 586 Mg C with an average of 387 (± 75) Mg C. 

The variability in this case was due to the interaction of annual seasonal shifts in natural processes 

(growth, senescence, litter decay and respiration), land management behaviors (fertilization, lawn 

mowing, and grass clipping or leaf removal) and management adaptation based on the behaviors of a 

resident's immediate von Neuman neighbors. Prairie is not assumed to be present in the tier-2 scenario. 

Tier-3 – Adaptive Management with Incentive to Innovate

In tier-3, approximately four percent (three out of eighty-one) residents in a conventional subdivision 

accept an incentive to innovate their yards from a conventional turfgrass design to a 25 percent native 

prairie design (Table 7); residents manage their yards and are responsive to the management behaviors 
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and innovative yard designs of their neighbors. Year 30 model results yield a carbon store range 

between 170 and 586 Mg C with an average of 325 (± 47) Mg C. The variability in this case is due to 

the interaction of annual seasonal shifts in natural processes (growth, senescence, litter decay and 

respiration), land management behaviors (fertilization, lawn mowing, and grass clipping or leaf 

removal), landscape re-design to a native prairie yard, and management adaptation based on the 

behaviors and yard designs of immediate von Neuman neighbors.

Hypothesis Results: Comparison Among Tiers

Results show that tier-0 had a significantly lower total subdivision carbon than all other tiers (p<0.01), 

while tier-1 had significantly higher total carbon than all other tiers (p<0.01). Tier-2 was shown to have 

a significantly higher subdivision carbon that tier-3. Comparative results of total carbon between each 

model scenario tier was determined using a two-tailed Student's t-test (Table 10). 

Discussion

Effect of Individual Management Behaviors

The model showed that individual management behaviors are likely to affect the way a landscape stores 

carbon (Figure 9). Fertilization was assumed to increase the relative growth rate by a factor of 4.83 

when using a slow-release nitrogen-based fertilizer such as Scotts 41-0-0 (Agnew & Christians 1993). 

Limiting effects of soil nitrogen on fertilizer function were left out of the model for simplicity. The 

relatively high increase in turfgrass growth is likely to account for the 40 percent increase in 

subdivision carbon (Table 5). 

Mowing the lawn and allowing grass clippings to decompose on-site accounted for an increase in total 

subdivision carbon of approximately 20 percent in the ELMST model. Turfgrass was modeled to grow 

over sigmoid curve, where new growth is proportional to a plant's current biomass (Damgaard 2004; 

Damgaard; Richards 1959). As biomass approaches maximum capacity, growth rate begins to decrease 

(Blackman 1919). The removal of aboveground biomass after mowing causes the growth to be set back 

to a higher growth rate based on the new biomass value (i.e. 40 g/m2). While lawn mowing may 

increase the rate at which turfgrass grows in the model, removing grass clippings reduces the amount of 

carbon stored by over 40 percent from the unmanaged baseline (Table 5).
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The relatively small effect of fallen leaf removal is likely due to the small proportion of tree cover area 

assigned to each parcel in the model (about 0 to 4 percent; Table 7).

Research Question 1: Intrinsic Management and Carbon Storage

Analysis of model results did not support the hypothesis that after 30 years, the total carbon in an 

intrinsically managed subdivision would be less than the total carbon in an unmanaged subdivision 

(H1.1). Instead, model results found that the total carbon in an intrinsically managed subdivision to be 

significantly higher than total carbon in an unmanaged subdivision (Figure 11; Table 10). 

During model initialization, each agent was assigned a set of intrinsic management behaviors based on 

approximate probabilities from 2009 SLUCE2 interview data for parcels of one acre (4,046.86 m2) or 

less (Table 2). Behaviors included: fertilizer application, mow schedule, grass clipping removal and 

removal of fallen leaves. The average behavior across the 100 runs for tier-1 were in accordance with 

the initial parameterization probabilities assigned to each management behavior (Table 4). Upon further 

examination of Table 2 and Figures 9 and 11, the increase in total subdivision carbon for tier-1 is likely 

due to the 35 percent of residents fertilizing their lawns and 88 percent of residents who keep grass 

clippings on the lawn after mowing. A resident average of 43 percent, removed fallen leaves. However, 

because of the relatively small proportion of tree cover associated with each parcel (about 0 to 4 

percent; Table 7), this had little effect on total subdivision carbon (Figure 9).

ELMST land-cover areas were initialized based on 2009 SLUCE2 fieldwork data for parcels of one 

acre (4046.86 m2) in area or less (Tables 11 and 12). Turfgrass proved to be the dominant land-cover, 

ranging between 50 to 80 percent of each parcel area (Table 12). A study by Milesi et al. (2005) found 

that turfgrass covered roughly 1.9% of the land in the conterminous United States, making it the "single 

largest irrigated crop in the country." The Milesi et al. study also evaluated the effect of different turf 

management scenarios on carbon storage, involving different fertilization and irrigation techniques, and 

removal of grass clippings versus on-site decomposition. Results from the Milesi study were in 

agreement with results provided by the ELMST model in that: (1) an unmanaged landscape dominated 

by turfgrass displays the lowest range of carbon flux when compared with other management scenarios 

for both the Milesi and ELMST study, (2) a well-maintained lawn that is fertilized and mowed, 

allowing grass clippings to remain on the lawn, acts as a carbon sink and (3) bagging and removing 
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grass clippings reduces overall carbon storage  (Milesi et al. 2005)(Figure 9, Figure 11). 

Result from the model showed that intrinsic management of residential parcels in conventional exurban 

subdivisions in Southeast Michigan may store nearly twice the carbon than unmanaged subdivision 

after 30 years (Table 10). The intrinsic management scenario (tier-1) relies on initial allocation of 

management behaviors, which do not change over time. The outcome of tier-1 is therefore, 

deterministic given the initial agent behaviors and ecosystem variables. Model results found that the 

variability of carbon storage from an intrinsically managed subdivision over year 30 is also greater than 

that of an unmanaged subdivision. Greater variability is most likely be due to the manual alteration of 

carbon mean resident time (MRT) within each biomass pool through the various intrinsic management 

behaviors. Moreover, the greater total carbon in a managed subdivision (tier-1) may be due to the 

majority of agents mowing their lawns and leaving the grass clippings to decompose on-site. In 

addition, 35 percent of residents fertilize their lawn, which dramatically increases the affect on total 

subdivision carbon (Figure 9, Table 5). 

Research Question 2: Adaptive Management and Carbon Storage

Model results did not support either hypothesis for a subdivision having neighborhood influence (H2.1 

and H2.2). Results showed that the total carbon in a subdivision having neighborhood influence (tier-2) 

to be significantly higher than an unmanaged subdivision (tier-0), and significantly lower than a 

managed subdivision without neighborhood influence (tier-1), however tier-2 had the largest variability 

of total subdivision carbon over the 100 model runs (Figure 11; Table 10). 

Total subdivision carbon among individual model runs varied greatly. This variance is likely due to the 

assortment of “management cultures” that emerged through the process of neighborhood influence. For 

example, in one model run, removing leaf litter may have been adopted as a subdivision norm, while 

another model run may have demonstrated a subdivision where most residents allow leaf litter to 

remain on their individual parcels. When behaviors were averaged among the model runs over 30 

years, results showed overall behaviors to remain relatively stable, with the exception of fertilizer 

application, which dropped from 35 percent of the residents to zero residents after 30 years. 

The zero percent fertilization result in tiers-2 and -3 is due to the willingness to fertilize parameter 

(Table 2). Willingness to fertilize was set to a best-guess assumption of 0.50 and applied during the 
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neighborhood influence process to reflect a higher cost of adopting the fertilization behavior. For 

example, switching lawn mowing schedules, or deciding to remove fallen leaves at the end of the 

growing season are associated with the relatively low costs for adopting the new behavior. Adopting a 

fertilization regimen, however, accrues the cost of buying fertilizer, applying the fertilizer, and the 

commitment of always having a fertilized lawn for the remainder of the growing season. External 

social stigmas regarding the environmental effects of fertilizer application may also play into a 

resident's willingness to fertilize. The willingness to fertilize parameter was set such that the likelihood 

of a resident to adopt the fertilization behavior to be half that of other management behavior adoption 

probabilities in tier-2 and tier-3. Willingness to fertilize was the same for all residents, and remained 

constant throughout each model run. Sensitivity analysis showed agent adoption of fertilization 

behavior to be highly sensitive to the willingness to fertilize parameter implementation. Results showed 

that if willingness to fertilize is less-than one, the number of residents who fertilized their lawn will 

decrease over time; the lower the willingness to fertilize, the faster the decrease in the number of 

residents who fertilize. After 30 years, the model showed the number of residents who fertilized their 

lawns to be zero for all 100 runs at the set willingness to fertilize value of 0.5 (Table 4).

The present model implementation found that when neighborhood influence is applied to a 

conventional residential exurban subdivision initialized with interview and field data from Southeast 

Michigan, the subdivision may store either more or less carbon than an unmanaged subdivision after 30 

years (Figure 11), depending on the local norms which emerged from neighborhood influence of 

management behaviors. In most cases, the model found that the subdivision will store more carbon than 

an unmanaged subdivision, even with infrequent lawn fertilization.

As with tier-1, tier-2 relies on the initial distribution of management behaviors as a starting point for 

subdivision evolution. Through the process of neighborhood influence, emergent local norms relating 

to yard management behaviors are likely to cause a carbon trajectory lock-in at the levels of the 

biomass pools, land-covers and subdivision. Whereas the carbon-trajectory for tiers -0 and -1 were 

locked-in from the start, the trajectory for tier-2 was erratic for the first few years, before finally 

stabilizing as resident management converged into a local norm (Figure 32 - 39). The ELMST model 

showed that neighborhood influence allows for a wide range of carbon trajectory lock-ins as illustrated 

by Figure 11. 
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Research Question 3: Adaptive Management with Incentive to Innovate

Model results did not support the three hypothesis for a subdivision having an incentive to install native 

prairie (H3.1, H3.2 and H3.3). Results showed that the total carbon in a tier-3 subdivision to be 

significantly higher than a tier-0 (unmanaged) subdivision. However, total carbon in a tier-3 

subdivision after 30 years was also found to be significantly lower than both a tier-1 subdivision and a 

tier-2 subdivision  (Figure 11; Table 10).  Tier-3 was also found to be less variable than tier-2 for total 

subdivision carbon over the 100 model runs. 

Tier-3 attempts to use the neighborhood influence to hone in on a more environmentally-friendly set of 

management choices. After the model is initialized with the conventional subdivision, three residents 

are provided an incentive to innovate their conventional yards to a native prairie yard by converting 25 

percent of their turfgrass to native prairie. Residents are assumed to always accept the incentive. Tier-3 

investigates neighborhood influence as a tool to transform a conventional subdivision into a more 

ecologically-friendly subdivision that provides more carbon storage and greater ecosystem services. 

Similar to tier-2, a willingness to fertilize parameter was set to 0.50 and applied during the 

neighborhood influence process to reflect the higher cost of adopting the fertilization behavior. A 

similar result occurred: by year 30,  residents in all 100 subdivisions did not apply fertilizer (Table 4). 

Similar to fertilization, native prairie installation also accrues a higher cost than most other 

management behavior adoptions. Prairie installation involves the cost of removing a portion of 

turfgrass, regrading the land to promote water infiltration, and planting prairie grass plugs. 

Furthermore, native prairie installations are permanent. There is no option in the ELMST model to 

uninstall a native prairie in favor of turfgrass or any other land-cover type, also adding to the cost. The 

willingness to install prairie parameter is set to 0.25, making the likelihood of adoption of prairie by a 

resident one quarter of the likelihood of most other behaviors. Because prairie installation is permanent 

and the adoption of prairie is not as likely, the dissemination of prairie throughout the subdivision 

propagated slowly at first, then increased as more residents installed prairie (Figure 40).

Further Research

The current research assumes an immediate, von Neuman social network. While this type of network 

provides reasonable assumption for the present study, it may be interesting explore if different network 
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topologies yield similar results. It is often the case that the topology of a network determines the 

propagation of information, behavior and influence (Barabasi 2003; Christakis & Fowler 2009). While 

neighborhood residents are shown to pay close attention to their neighbors (Galster 1987; Nassauer, 

Wang, & Dayrell 2009; Ioannides 2002), is seems reasonable that these neighbors may not always be 

immediate von Neuman neighbors. Fences, large lots, social ties with neighbors down the block, or 

resident similarity may drive other neighborhood topologies. If residents adapt their behavior based on 

their neighbors' behavior, then the total carbon outcome of the influenced-based model scenarios (i.e. 

tier-2 and tier-3) could be dramatically different based on who the residents are influenced by. 

Furthermore, residents may choose to pay attention to different neighbors over time, creating a 

dynamic network topology that changes based on resident preferences. The methods described in this 

paper could be repeated with different network topologies to discover how robust (or fragile) the total 

carbon storage is to the social network of its residents. 

Conclusion

The exploratory, agent-based ELMST model demonstrated how a managed subdivision could store 

significantly more carbon than unmanaged subdivision after 30 years. The model also showed how a 

wide range of carbon storage possibilities could arise through neighborhood influence. One experiment 

considered using social influence among immediate neighbors to propagate a more environmentally 

friendly prairie-based yard design through a subdivision. The prairie design was able to disseminate to 

nearly all subdivision parcels within 30 years through the process of social influence. Model results 

found that a prairie-based subdivision tended to store more carbon than an unmanaged subdivision. 

However, the model also showed that the prairie-based subdivision stored significantly less carbon than 

a managed conventional subdivision after 30 years. 

Higher carbon storage in a managed conventional residential subdivisions may be associated with 

turfgrass fertilization and allowing grass-clippings to decompose on-site after mowing the lawn. While 

the model showed that managed turfgrass may offer the potential to store a significant amount of 

carbon, turfgrass traditionally offers less in the way of other ecosystem services such as run-off water 

infiltration, biodiversity and native ecosystem restoration. While fertilization may account for a great 

deal of carbon storage in residential subdivisions, over-fertilization and lawn chemicals may pose an 

environmental hazard. From a policy perspective, this research suggests that trade-offs may need to be 
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considered when determining between carbon storage and other ecosystem services in residential 

landscapes.
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Figures
Figure 1: Tier-Based Research Schematic

Each tier describes a different social scenario within a residential subdivision. This thesis explored the possible differences  
in carbon storage among tiers using a conventional exurban subdivision typical to Southeast Michigan.
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Figure 2: Conceptual Model Overview

The ELMST model describes a subdivision environment having a simple ecosystem module and resident module. The  
ecosystem module is a basic carbon-cycling application which includes photosynthetic growth, litter decay and soil  
respiration. The resident module is responsible for resident management of aboveground vegetation and litter, as well as the  
process of resident management adaptation through the process of neighborhood influence.

Figure 3: Subdivision Environment and Social Network Structure

An illustration of the subdivision environment (left) and resident network (right). Each grid cell in the subdivision  
environment represents a one-acre parcel (4046.86 m2). Parcels are heterogeneous, containing their own a-spatial land-
cover proportions and biomass pools. Each resident is assigned one parcel to manage. In addition to management, each  
resident maintains a connection with his or her immediate von Neuman neighbors, forming a lattice-based social network.  
The social network structure determines how neighborhood influence is transferred among subdivision residents.
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Figure 4: Ecosystem Components

A subdivision contains many parcels. Each parcel contains a given area of each land-cover type. Four land-cover types are  
considered in the model: impervious surfaces, turfgrass, tree cover and prairie. With the exception of impervious surfaces,  
each land-cover type contains four biomass pools: aboveground, below-ground, litter and soil.

Figure 5: Unmanaged Carbon-Cycle

The unmanaged carbon-cycle in the ELMST model is a simplified process, meant to capture only the most fundamental  
processes and stocks. The cycle begins with growth of aboveground and below-ground vegetation. Vegetation will  
eventually senesce to produce litter. For simplicity, the model places both aboveground and below-ground litter into the  
same litter pool. Litter will decompose over time, respiring a majority of the carbon into the atmosphere (about 80%) and  
transferring rest to the soil pool as soil organic matter (SOM). Over time, soil will slowly respire carbon back into the  
atmosphere. 
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Figure 6: Managed Carbon-Cycle

Management manipulates the carbon-cycle by providing additional senescence (mowing), increased growth (fertilizing),  
land-cover change (installing prairie). Land-cover change removes the current vegetation and litter from the parcel and  
replaces these pools with new vegetation and litter pool having zero biomass. Residents may gather prairie thatch, fallen  
leaves and/or grass clippings for pick-up by the local municipality, thereby completely removing carbon from the system.
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Figure 7: Seasonal Processes and Agent Activities

The ELMST model maintains a weekly time-step. Weeks are numbered 0 to 51 and correspond to the first week in January  
and last week in December respectively. After week 51, week numbers start again from 0. The model was initialized to begin  
ecosystem, management and neighborhood influence processes on week 26 of the first model year (roughly the first week in  
July) because the model was initialized with turfgrass and prairie vegetation data gathered from Southeast Michigan in  
mid-summer of 2009 (Project SLUCE2 2009). Once ecosystem and resident processes begin, they continue for an indefinite  
length of time as determined by the modeler. Weeks are further divided into four generic seasons: (1) Start of Growing  
Season, (2) Growing Season, (3) End of Growing Season and (4) Dormant Season. Each season is associated with a set of  
processes. Some processes may or may not occur depending on the scenario being run, individual resident management  
decisions, and available land-cover. 
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Figure 8: ELMST Class Diagram

ELMST class diagram illustrating important relationships among model components.
Note: class methods are not shown
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Figure 9: Effect of Individual Management Behaviors on Total Subdivision Carbon

Individual effect of management behaviors assumed the standard 9x9 subdivision used in this study. All agents were set to  
perform the same management behavior consistently for the duration of the model run. Total carbon in the subdivision  
(measured in Mg C) was recorded for ten years between year 25 and 35. Each box plot represents an individual run where a  
single management behavior was performed, illustrating the effect that each management behavior could have on total  
subdivision carbon. Student's t-test results showed that the mean total subdivision carbon for each behavior was  
significantly different from all other behaviors (p<0.01), with the exception of behaviors 2 and 3 (mowing every week and  
mowing every other week, while keeping grass clippings on the lawn) which shown to have a less significant difference in  
means (p<0.05). Behaviors that  showed no significant difference in carbon storage were 5 and 6 (mowing every week and  
mowing every other week, while removing grass clippings), which had a p-value of 0.63. 

Management behavior key:
NoMgmt = No Management. Equivalent to tier-0.

  1 = Fertilize lawn every year.

  2 = Mow every week. Keep grass clippings on lawn after each mow.

  3 = Mow every other week. Keep grass clippings on lawn after each mow.

  4 = Mow every four weeks. Keep grass clippings on lawn after each mow.

  5 = Mow every week. Remove grass clippings after each mow.

  6 = Mow every other week. Remove grass clippings after each mow.

  7 = Mow every four weeks. Remove grass clippings after each mow.

  8 = Remove fallen leaves every year.

  9 = Install prairie. Leave prairie thatch every year.

10 = Install prairie. Remove prairie thatch every year.
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Figure 10: Model Results: Histograms of Total Average Subdivision Carbon by Tier

Histograms showing the distribution of total average subdivision carbon for model year 30. Each histogram describes the  
outcomes for 100 model runs within each research tier. Model runs were parameterized identically for each tier except for  
the random seed, which determined land-cover areas, agent behaviors, neighborhood influence and agent selection for  
prairie incentive. Land-cover type area and agent behavior probabilities were determined using fieldwork and interview  
data from exurban residential homes in Southeast Michigan. Neighborhood influence was based on a randomly weighed  
probability of neighbor behaviors. A random lottery was used to select three agents to participate in the native prairie  
incentive program. Only tier-3 includes native prairie yard designs. 
Tier-0: no management
Tier-1: intrinsic management
Tier-2: adaptive management
Tier-3: adaptive management with an incentive to innovate with native prairie.
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Figure 11: Model Results: Box Plot of Total Average Subdivision Carbon by Tier

Box plot showing the distribution of total average subdivision carbon for model year 30. Each distribution shows the range  
of outcomes for 100 model runs within each research tier. Model runs were parameterized identically for each tier except  
for the random seed, which determined land-cover areas, agent behaviors, neighborhood influence and agent selection for  
prairie incentive. Land-cover type area and agent behavior probabilities were determined using fieldwork and interview  
data from exurban residential homes in Southeast Michigan. Neighborhood influence was based on a randomly weighed  
probability of neighbor behaviors. A random lottery was used to select three agents to participate in the native prairie  
incentive program. Only tier-3 includes native prairie yard designs. 
Tier-0: no management
Tier-1: intrinsic management
Tier-2: adaptive management
Tier-3: adaptive management with an incentive to innovate with native prairie.
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Tables

Table 1:  Ecosystem Initialization Parameters

Impervious Turf Grass Tree Cover Prairie

Parcel Area

     Proportion of Area 0.34 (0.11)a 0.65 (0.12)a 0.01 (0.03)a 0.00 (0.00)a 

Initial Biomass (g/m2)

     Above-ground (M) 0.00 174.15b 1,500.00c 337.60b

     Below-ground 0.00 (0.667*M)d (0.25*M)e (0.667*M)f

     Litter 0.00 0.00g 0.00g 0.00g

     SOM 0.00g 0.00g 0.00g 0.00g

Growth

     RGRMax NA 0.20h 0.04i 0.10j

     Fertilizer Growth Factor NA 4.83t NA NA

     BiomassMax  (g/m2) NA 330.00k 20,000.00l 1,000.00m

     Richards Delta (δ) NA 0.0n 2.0o 0.0n

Litter Senescence and Decay

     Living Biomass to Litter NA 0.80p 0.05p 0.45p

     Decay Rate NA 0.25q 0.25q 0.25q

     Decayed Matter to SOM NA 0.20r 0.20r 0.20r

Soil Respiration

Soil Respiration Rateq NA 0.002s 0.004s 0.0015s

a    Mean and standard deviation proportion derived from fieldwork parcels (n-16) having an area less-than or equal to 4,046.86 m2 (1 acre) . Standard  
deviation values in parenthesis (Project SLUCE2 2009)

b Initial biomass derived from fieldwork parcels having an area less-than or equal to 4,046.86 m2 (1 acre). Biomass values represent mean above-ground 
dry biomass of sampled vegetation (SLUCE, unpublished data) 

c Initial biomass calibrated by back-calculating tree cover growth model and assuming biomass after 100 years is equal to approximately 3,798 g/m2 

(Fahey et al. 2010)
d    A function of above-ground biomass and above-to-below ground ratio for cool season grasses and shrubs (Smith, Shugart, & Woodward 1997)
e    A function of above-ground biomass and above-to-below ground ratio for temperate deciduous forest (Smith, Shugart, & Woodward 1997)
f    A function of above-ground biomass above-to-below ground ratio for warm season grasses and shrubs (Smith, Shugart, & Woodward 1997)
g Subdivision assumed to be built on previous agricultural land with depleted soil and litter densities. 
h Approximate relative growth rate for Kentucky Bluegrass (Poa pratensis) provided by Van Arendonk, J.J.C.M., Poorter (1994)
i   Maximum Relative growth rate for temperate deciduous trees (Portsmuth & Niinemets 2007; Génard, Pagès, & Kervella 1998)
j   Relative growth rate approximated by averaging the relative growth rates of healthy C4 grass – Big Bluestem (Andropogon gerardii), Little Bluestem 

(Schizachyrium scoparium) and Indiangrass (Sorghastrum nutans) – 0.10, 0.11 and 0.09 respectively (Levang-brilz & Biondini 2002)
k Maximum biomass derived from NPP value for proportion of above-ground biomass for cool grass and shrubs (Smith, Shugart, & Woodward 1997)
l Estimate for pre-European settlement deciduous forest carbon density in Southern Wisconsin (Rhemtulla, Mladenoff, & Clayton 2009) then multiplied 

by two for biomass estimate (Nowak 1994; Currie 2003)
m  Maximum above-ground biomass estimation for natural wet prairie sloughs (Meyer, Baer, & Whiles 2008, Figure 1)
n Best fit monomolecular model of turf and prairie grass growth over time as described by Dunn et al.(1988) for Richards Growth Model (Richards 1959)
o Best fit the logistic model of deciduous tree growth over time as described by Hutnik & Yawney (1961) for Richards Growth Model (Richards 1959)
p Calibrated to produce reasonable living biomass growth and soil carbon accumulation (Table 3).  
q Litter decay rate per year (Currie et al. 2009, Figure 2.f)
r The proportion of decayed matter that is transferred to the soil carbon pool (Aber, Melillo, & McClaugherty 1990; Currie & Aber 1997)
s Calibrated to produce a representative soil organic carbon (SOC) accumulation; settling on a reasonable constant quantity (Table 3).   
t Fertilizer is assumed to increase the relative growth rate for both above- and below-ground biomass by a factor of 4.83 (Agnew & Christians 1993)
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Table 2: Resident Initialization Parameters

Task Description Options Approx.Prob*

Fertilize Lawn
(Turfgrass) 

A resident may decide to apply fertilizer to their lawn once at the 
beginning of each growing season. The fertilizer will increase the 
relative growth rate of the lawn by a factor of 4.83 for the duration 
of that growing season. Growth will return to its original rate the 
following season unless the resident decides to apply fertilizer 
again at the start of the growing season. In the scenarios that apply 
neighborhood influence, the willingness to fertilize factor is 
applied to reflect the higher cost of adopting the fertilization 
behavior.

Apply Lawn Fertilizer?

     APPLY 0.35

     DO NOT APPLY 0.65

     WILLINGNESS TO FERTILIZE 0.50

Mow Schedule
(Turfgrass)

A resident may choose how often to mow the entire area of 
turfgrass on his parcel with a lawn mower. All lawn mowers are 
assumed to have the same blade height and will leave an 
aboveground biomass of 40 g/m2 on the lawn after each mow.

Mow Frequency

     EVERY WEEK 0.31

     EVERY OTHER WEEK 0.54

     EVERY FOUR WEEKS 0.15

Remove Grass Clippings
(Turfgrass)

When a resident mows his lawn, some of the turfgrass vegetation 
is removed from the aboveground biomass pool. The removed 
vegetation may either be bagged and removed from the system, be 
allowed to remain on the turfgrass as litter.

What Happens To Grass Clippings?

    REMOVE FROM SUBDIVISION 0.12

    REMAIN ON PARCEL 0.88

Remove Fallen Leaves
(Tree Cover)

At the end of the growing season, foliage from tree cover will 
naturally senesce and fall to the ground. The resident may then 
decide to remove these leaves completely from the subdivision, or 
allow them remain on the parcel. 

Remove Fallen Leaves?

     REMOVE FROM SUBDIVISION 0.42

     REMAIN ON PARCEL 0.58

Install Native Prairie+

(Prairie)
A resident may decide to install a native prairie at the start of the 
growing season. Once a prairie has been installed, it will remain 
there for the duration of the model run. In the scenarios that apply 
neighborhood influence, the willingness to install factor is applied 
to reflect the higher cost of adopting a native prairie yard design. 
Once native prairie has been installed, cannot be uninstalled.

Install Prairie?

      INSTALL 0.00

      DO NOT INSTALL 1.00

     WILLINGNESS TO INSTALL  0.25

Remove Prairie Thatch
(Prairie)

At the end of the growing season, prairie grass will naturally 
senesce and form a dense litter layer. The resident may either 
choose to gather and dispose of this litter, or allow it to remain on 
the parcel. 

Remove Prairie Litter?

     REMOVE FROM SUBDIVISION 0.12

     REMAIN ON PARCEL 0.88

* Approximate probabilities are derived from Project SLUCEII 2009 interview data (n=16).
+ Native prairie is used in tier-3 only; assumed to be installed as a result of an incentive program or through the process of  
neighborhood influence. 
Note: A management decision may still be made even if the applicable land-cover type is not present on the parcel. For  
example, if an agent does not have any tree cover on its parcel, the agent will still have a management decision value  
associated with the raking of fallen leaves. This may be akin to anticipated management behavior if a certain land-cover  
type were present on a resident's parcel, but is not currently.
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Table 3: Validation of Unmanaged ELMST Carbon Density

Above-Ground (g C/m2) Below-Ground (g C/m2) Litter (g C/m2/yr) SOC (g C/m2)

Turf Grass

     Years 5 5 10 15 1000

     ELMST 23.10 – 115.24 15.41–76.86 153.59c 392.07 – 418.60 2,997.29 – 3,002.10

     ELMST with Fertilizationα 23.10 – 164.47 15.41 – 109.70 235.67 597.44 – 638.19 4,599.10 – 4,606.47

     Literature+ 22 – 121a 15.37–76.85b 165d 200e 3,300f

     SLUCE2* 47.551 95.251 115.20 3,328.00

Tree Cover

     Years 100 100 100 15 1000

     ELMST 7,303.94 – 7,688.36 1,825.99 – 1,922.09 480.52h 305.13 – 345.87 4,681.71 – 4,696.73

     Literature+ 7,596g 1,825.99 – 1,922.09b 387.20i 520.00j 1,333k

     SLUCE2* 11,881.352 3,960.452 802.60 4,828.80

Prairie

     Years 10 10 10 15 1000

     ELMST 165.30 – 300.55 110.26 – 200.47 255.46m 573.26 – 613.75 5,866 – 5,873

     Literature+ 317l 110.26 – 200.47b 288.40n 971o 5,000p

     SLUCE2*, 4 150.583 301.623 95.90 3,399.20

Year rows indicate years since model initialization for each land-cover type. All SOC assume surface soil

α   Fertilization assumes a one-time application of slow-release methylene urea fertilizer (such as Scotts 41-0-0) at the beginning of the growing season. 
Fertilizer is assumed to increase the relative growth rate for both above- and below-ground biomass by a factor of 4.83 (Agnew & Christians 
1993) Relative growth rate is assumed to return to its original value at the beginning of the following growing season if fertilizer has not been re-
applied.   

* SLUCEII values derived from unpublished field data from Southeast Michigan exurban residential parcels (Project SLUCE2 2009)
Data is averaged among 26 managed Southeast Michigan exurban residential parcels developed between 1950 and 2000 on various soil types and  
various land-use histories. Therefore, these data do not correspond to a particular year. 

1 Applied 0.667 root-to-shoot ratio to SLUCEII combined average aboveground-belowground turf grass without woody vegetation value of 142.80 g/m2 to  
obtain respective above- and below-ground carbon values for managed turf grass vegetation. 

2 Applied 0.25 root-to-shoot ratio to SLUCEII combined average aboveground-belowground dense tree value of 15,841.80 g/m2 to obtain respective  
above- and below-ground carbon values for tree cover. 

3 Applied 0.667 root-to-shoot ratio to SLUCEII combined average aboveground-belowground old field without woody vegetation value of 452.20 g/m2 to  
obtain respective above- and below-ground carbon values for prairie vegetation. 

4 Prairie values were derived from old fields found on residential parcels in Southeast Michigan containing a mixture of C3 and C4 grasses and forbs. The  
prairie in the ELMST model represents a wet prairie swell or rain garden containing C4 grasses such as Indian-grass and Little Bluestem. Therefore  
these values should only be used to compare carbon storage between unmanaged, voluntary fields with managed, deliberate native prairie land-covers.

+ Literature Values assume no resident management and were derived from a variety of sources for the years indicated.
Turf Grass 
a Identified in Table 2 of Milesi et al. (2005)
b Above- to Below-ground ratio from Table 15.5 of Smith, T.M., Shugart, H.H., Woodward (1997)
c During year 15: (212.82 – 59.23) g C/m2

d Identified in Table 2 of Milesi et al. (2005) and converted to carbon density (Currie 2003) before including a 0.667 proportion of below-ground litter  
(Smith, Shugart, & Woodward 1997)

e Identified in Table 5 of Simmons et al. (2008) for restored grassland on a mined site at the Oe/Oa soil horizons.
f Turf grass SOC identified by  Pouyat, Yesilonis, & Golubiewski (2008)
Tree Cover
g  Carbon density estimate of 100 year-old northern hardwood forest determined to be 9,495 g C/m2 (Fahey et al. 2010, Figure 1) and multiplied by a 

factor of 0.8 for urban tree carbon density (Nowak 1994)
h During year 100 (665.82 – 185.29) g C/m2

i Carbon density estimate of 100 year-old northern hardwood forest litter flux. Combined above- and below-ground biomass flux determined to be 484 g  
C/m2/yr (Fahey et al. 2010, Figure 1) and multiplied by a factor of 0.8 for urban tree carbon density (Nowak 1994)

j Identified in Table 5 of Simmons et al. (2008) for a reference forest at the Oe/Oa soil horizons and multiplied by a factor of 0.8 for urban tree carbon  
density (Nowak 1994)

k Identified in Figure 1 of Garten (2009) in for surface soils in upland oak-hickory forest.
Prairie
l Average total above-ground biomass identified as 634 g/m2 by Meyer, Baer, & Whiles (2008) for natural wet prairie sloughs and converted to carbon 
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density (Currie 2003)
m During year 10 (267.99 – 133.39) g C/m2

n  Biomass litter identified for C4 grasses in Table 3 of Cahill, Kucharik, & Foley (2009) and converted to carbon density (Currie 2003) before including 
a 0.667 proportion of below-ground litter (Smith, Shugart, & Woodward 1997)

o Identified in Meyer, Baer, & Whiles for restored wet prairie sloughs (2008) 
p Maximum SOC identified for natural wet prairie sloughs by Meyer, Baer, & Whiles (2008), Figure 2

Table 4: Verification of Resident Behavior Across Research Tiers

Average Behavior Across 100 Runs For Year 30

Behavior Initial Parameterization Tier-0 Tier-1 Tier-2 Tier-3

Fertilize Lawn

Apply Fertilizer 0.35 NA 0.35 0.00 0.00

Do Not Apply Fertilizer 0.65 NA 0.65 1.00 1.00

Mow Schedule

Every Week 0.31 NA 0.31 0.29 0.28

Every Other Week 0.54 NA 0.54 0.55 0.55

Every Four Weeks 0.15 NA 0.15 0.16 0.17

Never 0.00 NA 0.00 0.00 0.00

Remove Grass Clippings

Remove from Subdivision 0.12 NA 0.13 0.12 0.12 

Remain on Parcel 0.88 NA 0.87 0.88 0.88

Remove Fallen Leaves

Remove from Subdivision 0.42 NA 0.43 0.34 0.36

Remain on Parcel 0.58 NA 0.57 0.66 0.64

Install Native Prairie

Installed 0.00 NA 0.00 0.00  0.99

Not Installed 1.00 NA 1.00 1.00 0.01

Remove Prairie Thatch*

Remove from Subdivision 0.35 NA NA NA 0.37

Remain on Parcel 0.65 NA NA NA 0.63

Average behavior proportions among 100 runs for each research tier. Note that each tier maintains the approximate initial  
parameterization value across model runs except for fertilization. This is due to the "willingness to fertilize factor" which  
reduces the likelihood of a resident not currently fertilizing to apply fertilizer. 
*  Prairie thatch only removed if native prairie has been installed.
Tier-0: no management
Tier-1: intrinsic management
Tier-2: adaptive management
Tier-3: adaptive management with an incentive to innovate
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Table 5: Sensitivity of Management Behaviors on Total Subdivision Carbon

Sensitivity of Individual Behavior on Total Subdivision Carbon

Behavior Approx. Effect* Confidence Interval P-Value

Apply Fertilizer to Lawn + 40% 107.51 – 112.85 < 0.01

Mow Schedule + Leave Clippings

Every Week + 20% 59.39 – 64.31 < 0.01

Every Other Week + 20% 56.12 – 61.05 < 0.01

Every Four Weeks + 17% 45.65 – 50.42 < 0.01

Mow Schedule + Remove Clippings

Every Week - (44%) - (124.29 – 120.91) < 0.01

Every Other Week - (44%) - (124.02 – 120.63) < 0.01

Every Four Weeks - (40%) - (110.65 – 107.19) < 0.01

Remove Fallen Leaves - (4%) - (10.77 – 6.65) < 0.01

Install Native Prairie + Leave Thatch + 21% 55.98 – 60.63 < 0.01

Install Native Prairie + Remove Thatch - (7%) - (21.01 – 16.99) < 0.01

Sensitivity analysis conducted assumes the standard 9x9 subdivision used in this study where all agents perform one  
management behavior consistently for the duration of the model run. Total carbon in the subdivision (measured in Mg C)  
was recorded for ten years between year 25 and 35 of the model. A two-sample Student's t-test was used to determine  
significants and confidence intervals between a subdivision with no management (i.e. tier-0) and a subdivision having a  
single management behavior performed annually by all agents.
*  Approximate effect compares the means between an unmanaged subdivision and a subdivision having the given behavior 

performed consistently on all parcels. 

Table 6: Model Component Activation Across Research Tier Scenarios

Research Scenarios

Component Activation Parameter Tier-0 Tier-1 Tier-2 Tier-3

Ecosystem ON ON ON ON

Intrinsic Management OFF ON ON ON

Neighborhood Influence OFF OFF ON ON

Incentive Program OFF OFF OFF ON

Initial values among tiers are assumed to be identical with the exception of model component activation (as shown here)  
and random seed generation. Model component combinations are used to create the tier-based research design (see: Figure  
1). Comparisons between tiers are used to test research hypothesis (See: Table 6) 
Tier-0: no management
Tier-1: intrinsic management
Tier-2: adaptive management
Tier-3: adaptive management with an incentive to innovate.
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Table 7: Model Results: Average Parcel Land-Cover Area Across Research Tiers

Research Scenarios

Land-Cover (m2) Tier-0 Tier-1 Tier-2 Tier-3

Impervious 1357.69 (345.07) 1357.69 (345.05) 1357.68 (345.05) 1357.69 (345.06)

Turf Grass 2616.81 (345.36) 2616.81 (345.34) 2616.82 (345.35) 1616.27 (359.56)

Tree Cover 72.36 (84.54) 72.36 (84.54) 72.36 (84.54) 72.36 (84.54)

Prairie 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1000.54 (61.71)

Average Total 4046.86 4046.86 4046.86 4046.86

Average land-cover area within a parcel was gathered for year 30 across 100 runs for each research tier (see: Figure 1). 
Average Standard deviation among runs are shown in parenthesis.
Tier-0: no management
Tier-1: intrinsic management
Tier-2: adaptive management
Tier-3: adaptive management with an incentive to innovate

Table 8: Model Results: Average Carbon Density Across Research Tiers

Research Scenarios

Land-cover (g C/m2) Tier-0 Tier-1 Tier-2 Tier-3

Turf Grass 

     Aboveground 46.82 (32.35) 24.95 (9.21) 24.25 (6.23) 24.18 (6.00)

     Below-ground 31.23 (21.58) 37.06 (30.91) 34.28 (26.81) 33.98 (26.38)

     Litter 172.11 (54.97) 308.62 (212.58) 240.64 (151.01) 234.04 (142.13)

     Soil 774.94 (9.82) 1756.71 (1244.36) 1357.02 (852.64) 1146.93 (714.77)

Total Average Density 1025.10 2127.34 1656.19 1439.13

Tree Cover

     Aboveground 4301.73 (3243.72) 4301.54 (3243.77) 4301.71 (3243.73) 4301.56 (3243.77)

     Below-ground 1075.43 (810.93) 1075.39 (810.94) 1075.43 ( 810.93) 1075.39 (810.94)

     Litter 311.01 (265.91) 198.58 (240.70) 217.66 (203.50) 212.32 (202.33)

     Soil 739.27 (557.58) 472.66 (525.02) 510.87 (401.36) 500.35 (396.10)

Total Average Density 6427.44 6048.17 6105.67 6089.62

Prairie

     Aboveground 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 195.36 (4.49)

     Below-ground 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 130.30 (32.68)

     Litter 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 185.89 (71.18)

     Soil 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 727.07 (188.15)

Total Average Density 0.00 0.00 0.00 1238.62

One-hundred run average carbon density results for each for each research tier (see: Figure 1).
Standard deviation among averages is given in parenthesis, and provides an indication of global neighborhood similarity or  
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cohesion. 

Table 9: Model Results: Total Average Subdivision Carbon Across Tiers

Research Scenarios

Land-cover (Mg C) Tier-0 Tier-1 Tier-2 Tier-3

Turf Grass

     Parcel Average 2.68 5.57 4.33 2.33

     Subdivision Average 217.28 450.91 351.05 188.41

Tree Cover

     Parcel Average 0.47 0.44 0.44 0.44

     Subdivision Average 38.07 35.45 35.79 35.69

Prairie 

     Parcel Average 0.00 0.00 0.00 1.24

     Subdivision Average 0.00 0.00 0.00 100.38

SUBDIVISION TOTAL AVERAGE 254.95 486.36 386.84 324.48

One-hundred run average total carbon results for each for each research tier (see: Figure 1).
Parcel averages in Mg C were calculated by multiplying average land-cover area (Table 7) by average total carbon density  
(Table 8).
Subdivision averages were calculated by multiplying the parcel average by the total number of parcels (i.e. 81).
Subdivision total average is the sum of subdivision averages for each land-cover type.
Tier-0: no management
Tier-1: intrinsic management
Tier-2: adaptive management
Tier-3: adaptive management with an incentive to innovate
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Table 10: Hypothesis Results for Total Subdivision Carbon Over Year 30

Description Hypothesis Outcome Approx. Effect* Conf. Interval P-Value

Q1 How could intrinsic management alone affect carbon storage in 
a residential subdivision after 30 years?

H1.

1

The total area carbon trajectory in a managed subdivision will be 
lower than the total area carbon trajectory in an unmanaged 
subdivision. 

Tier-1 < Tier-0 Tier-1 > Tier-0 + 91% 224.95 – 237.84 < 0.01

Q2 How could intrinsic management with the addition of 
neighborhood influence affect carbon storage in a residential 
subdivision after 30 years?

H2.

1

The total area carbon trajectory in a subdivision having 
neighborhood influence will be lower than the total area carbon 
trajectory in an unmanaged subdivision. 

Tier-2 < Tier-0 Tier-2 > Tier-0 + 52% 117.00 – 146.95 < 0.01

H2.

2

There will be no significant difference in the total area carbon 
trajectory between an influence-based managed subdivision and a 
managed subdivision absent of social influence. 

Tier-2 == Tier-1 Tier-2 < Tier-1 - (20%) 83.32 – 115.51 < 0.01

Q3 How could intrinsic management with the addition of 
neighborhood influence and a single incentive to install native 
prairie affect carbon storage in a residential subdivision after 
30 years?

H3.

1

The total area carbon trajectory in a managed subdivision with 
innovation incentives and neighborhood influence could be lower 
than the total area carbon trajectory in an unmanaged subdivision. 

Tier-3 < Tier-0 Tier-3 > Tier-0 + 27% 59.84 – 78.87 < 0.01

H3.

2

The total area carbon trajectory in a subdivision with innovation 
incentives could be higher than the total area carbon trajectory in a 
subdivision having management, but no neighborhood influence. 

Tier-3 > Tier-1 Tier-3 < Tier-1 - (33%) 150.82 – 173.25 < 0.01

H3.

3

The total area carbon trajectory in a subdivision with innovation 
incentives and neighborhood influence could be higher than the 
total area carbon trajectory in a management subdivision with 
neighborhood influence. 

Tier-3 > Tier-2 Tier-3 < Tier-2 - (16%) 45.11 – 80.13 < 0.01

This table provides a summary of the stated hypothesis and results comparing the total subdivision carbon between tiers  
over model year 30. Results were obtained by running the model 100 times for each tier. Model runs were parameterized 
identically for each tier except for the random seed, which determined land-cover areas, agent behaviors, neighborhood  
influence and agent selection for prairie incentive. Land-cover type area and agent behavior probabilities were determined  
using fieldwork and interview data from exurban residential homes in Southeast Michigan. Neighborhood influence was  
based on a randomly weighed probability of neighbor behaviors. A random lottery was used to select three agents to  
participate in the native prairie incentive program. Only tier-3 includes native prairie yard designs. 
Results were obtained by running a two-tailed Student's t-test between each pair of model tiers and comparing against their  
respective alternative hypothesis. None of the hypothesis from this study were confirmed. 
* Approximate effect calculated using percent difference in carbon means between tiers.
Tier-0: no management
Tier-1: intrinsic management
Tier-2: adaptive management
Tier-3: adaptive management with an incentive to innovate with native prairie.
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Table 11: Fieldwork: Eco-Zone Categories Translated to ELMST Land-Cover Types
Eco-Zone Description Code Frequency Notes ELMST Land-Cover

Home/Building HO 26 Home or other buildings such as sheds and barns. Impervious

Pavement RP 26 Paved areas such as driveways, walkways and pools. Impervious

Shrubs with mulch and herbs CMSH 25 Gardens which are often  times found around the periphery of 
a house and classified  as impervious in areal photographs.

Impervious

Turf grass without woody vegetation CTG 25 Includes a mixture of C3 grasses and forbs. Turf Grass 

Turf grass with sparse woody 
vegetation

CTGW 24 Includes a mixture of C3 grasses, forbs with a scattering of 
individual trees or shrubs.

Turf Grass 

Vegetable garden CVG 8 Small, infrequent areas often times found within a CTG eco-
zone and classified as turf grass on areal photographs. 

Turf Grass 

Water WA 4 Small pond on property. Turf Grass 

Deciduous shrub CDS 1 Dense woody shrubs Tree Cover

Deciduous Tree CDT 5 Dense woody trees Tree Cover

Deciduous shrub and tree CDST 3 Dense woody shrubs and trees Tree Cover

Old field COF 4 Includes a mixture of C4 grasses, C3 grasses ans forbs. Prairie

Old Field with woody vegetation CFW 2 Includes a mixture of C4 grasses, C3 grasses, forbs and small 
clumps of deciduous shrubs or trees.  

Prairie

Mapping of eco-zone categories from fieldwork data to ELMST land-cover types. 
Source: (Project SLUCE2 2009)

Table 12: Fieldwork: Land-Cover Areas for Parcels of One Acre or Less

Parcel ID                                                Total Area (m  2  )                                                                                      Proportion of Parcel Area                               

Impervious Turf Grass Tree Cover Prairie Total Impervious Turf Grass Tree Cover Prairie Total

R04 577.35 2642.28 0.00 0.00 3219.63 0.18 0.82 0.00 0.00 1.00

R06 423.71 1800.50 0.00 25.40 2249.61 0.19 0.80 0.00 0.01 1.00

R09 787.54 1246.88 0.00 0.00 2034.43 0.39 0.61 0.00 0.00 1.00

R10 838.17 2658.42 0.00 0.00 3496.59 0.24 0.76 0.00 0.00 1.00

R11 356.90 535.57 0.00 0.00 892.47 0.40 0.60 0.00 0.00 1.00

R12 732.45 1226.50 0.00 0.00 1958.95 0.37 0.63 0.00 0.00 1.00

R13 567.16 1050.17 0.00 0.00 1617.33 0.35 0.65 0.00 0.00 1.00

R15 836.57 1045.18 0.00 0.00 1881.75 0.44 0.56 0.00 0.00 1.00

R16 434.90 464.37 118.35 0.00 1017.62 0.43 0.46 0.12 0.00 1.00

R17 586.07 2203.64 0.00 0.00 2789.71 0.21 0.79 0.00 0.00 1.00

R18 341.77 1155.36 0.00 0.00 1497.13 0.23 0.77 0.00 0.00 1.00

R19 532.94 921.11 0.00 0.00 1454.05 0.37 0.63 0.00 0.00 1.00

R20 537.21 581.30 0.00 0.00 1118.51 0.48 0.52 0.00 0.00 1.00

R21 871.91 1410.21 0.00 0.00 2282.12 0.38 0.62 0.00 0.00 1.00

R22 505.45 431.48 0.00 31.30 968.24 0.52 0.45 0.00 0.03 1.00

R24 400.97 1396.03 0.00 0.00 1797.01 0.22 0.78 0.00 0.00 1.00

Mean 583.19 1298.06 7.40 3.54 1892.20 0.34 0.65 0.01 0.00 1.00

StdDev 178.46 711.29 29.59 9.74 778.70 0.11 0.12 0.03 0.00 0.00

Bold values used for initial model parameterization. 
Source: (Project SLUCE2 2009)
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Appendix I: Visualizations of Select ELMST Model Runs

Figure 12: Validation: Unmanaged Turf Grass Carbon Pools – 200 Years

Figure 13: Validation: Unmanaged Turf Grass Carbon Pools – 20 Years
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Figure 14: Validation: Unmanaged Tree Cover Carbon Pools – 100 Years

Figure 15: Validation: Unmanaged Tree Cover Litter Pools – 100 Years
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Figure 16: Validation: Unmanaged Prairie Carbon Pools – 1000 Years

Figure 17: Validation: Unmanaged Prairie Carbon Pools – 20 Years
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Figure 18: Tier-0 Sample Run: Turfgrass Carbon Pools – 50 Years

Random Seed: 4390116

Figure 19: Tier-0 Sample Run: Tree Cover Carbon Pools – 50 Years

Random Seed: 4390116
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Figure 20: Tier-0 Sample Run: Prairie Carbon Pools – 50 Years

Random Seed: 4390116
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Figure 21: Tier-0 Sample Run: Total Subdivision By Carbon Pool – 50 Years

Random Seed: 4390116

Figure 22: Tier-0 Sample Run: Total Subdivision Carbon By Land-Cover Type – 50 Years

Random Seed: 4390116
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Figure 23: Tier-0 Sample Run: Total Subdivision Carbon – 50 Years

Random Seed: 4390116
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Figure 24: Tier-1 Sample Run: Proportion of Resident Behaviors – 30 Years

Random Seed: 4390116

Figure 25: Tier-1 Sample Run: Proportion of Lawn Mowing Schedules – 30 Years

Random Seed: 4390116
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Figure 26: Tier-1 Sample Run: Turfgrass Carbon Pools – 50 Years

Random Seed: 4390116

Figure 27: Tier-1 Sample Run: Tree Cover Carbon Pools – 50 Years

Random Seed: 4390116
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Figure 28: Tier-1 Sample Run: Prairie Carbon Pools – 50 Years

Random Seed: 4390116
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Figure 29: Tier-1 Sample Run: Total Subdivision By Carbon Pool – 50 Years

Random Seed: 4390116

Figure 30: Tier-1 Sample Run: Total Subdivision Carbon by Land-Cover Type – 50 Years

Random Seed: 4390116
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Figure 31: Tier-1 Sample Run: Total Subdivision Carbon – 50 Years

Random Seed: 4390116
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Figure 32: Tier-2 Sample Run: Proportion of Resident Behaviors – 30 Years

Random Seed: 4390116

Figure 33: Tier-2 Sample Run: Proportion of Lawn Mowing Schedules – 30 Years

Random Seed: 4390116
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Figure 34: Tier-2 Sample Run: Turfgrass Carbon Pools – 50 Years

Random Seed: 4390116

Figure 35: Tier-2 Sample Run: Tree Cover Carbon Pools – 50 Years

Random Seed: 4390116
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Figure 36: Tier-1 Sample Run: Prairie Carbon Pools – 50 Years

Random Seed: 4390116
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Figure 37: Tier-2 Sample Run: Total Subdivision Carbon by Carbon Pool – 50 Years

Random Seed: 4390116

Figure 38: Tier-2 Sample Run: Total Subdivision Carbon by Land-Cover Type – 50 Years

Random Seed: 4390116
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Figure 39: Tier-2 Sample Run: Total Subdivision Carbon – 50 Years

Random Seed: 4390116
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Figure 40: Tier-3 Sample Run: Proportion of Resident Behaviors – 30 Years

Random Seed: 4390116

Figure 41: Tier-3 Sample Run: Proportion of Lawn Mowing Schedules – 30 Years

Random Seed: 4390116
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Figure 42: Tier-3 Sample Run: Turfgrass Carbon Pools – 50 Years

Random Seed: 4390116

Figure 43: Tier-3 Sample Run: Tree Cover Carbon Pools – 50 Years

Random Seed: 4390116
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Figure 44: Tier-3 Sample Run: Prairie Carbon Pools – 50 Years

Random Seed: 4390116
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Figure 45: Tier-3 Sample Run: Total Subdivision Carbon by Carbon Pool – 50 Years

Random Seed: 4390116

Figure 46: Tier-3 Sample Run: Total Subdivision Carbon by Land-Cover Type – 50 Years

Random Seed: 4390116
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Figure 47: Tier-3 Sample Run: Total Subdivision Carbon – 50 Years

Random Seed: 4390116
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