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INTRODUCTION

T
ranscription factors, often characterized as undrug-

gable, are nonetheless emerging as potentially attrac-

tive therapeutic targets due to their fundamental role

in human disease.1–6 One class of transcription fac-

tors, transcriptional activators, plays a key regulatory

role by binding to DNA and assembling the transcriptional

machinery at a particular gene, thus stimulating gene expres-

sion. Miscued transcription caused by malfunctioning activa-

tors has been implicated in the onset of many cancers and

this has spurred widespread interest in the development of

small and large molecules that directly target misregulated

genes.2–5 The development of small molecule transcriptional

activation domain (TAD) mimics is an advantageous strategy

to modulate transcription because, similar to natural TADs,

these molecules can function as activators when tethered to a

DNA-binding domain (DBD) and as inhibitors when not

localized to DNA (Figure 1a).6 TAD mimics are thus
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ABSTRACT:

Previously it was demonstrated that amphipathic

isoxazolidines are able to functionally replace the

transcriptional activation domains of endogenous

transcriptional activators. In addition, in vitro binding

studies suggested that a key binding partner of these

molecules is the CREB Binding Protein (CBP), more

specifically the KIX domain within this protein. Here we

show that CBP plays an essential role in the ability of

isoxazolidine transcriptional activation domains to

activate transcription in cells. Consistent with this model,

isoxazolidines are able to function as competitive

inhibitors of the activators MLL and Jun, both of which

utilize a binding interaction with KIX to up-regulate

transcription. Further, modification of the N2 side chain

produced three analogs with enhanced potency against

Jun-mediated transcription, although increased

cytotoxicity was also observed. Collectively these small

KIX-binding molecules will be useful tools for dissecting

the role of the KIX domain in a variety of pathological

processes. # 2010 Wiley Periodicals, Inc. Biopolymers 95:

17–23, 2011.
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promising candidates for modulating gene transcription, for

use as mechanistic probes, and as transcription-targeted

therapeutics.6

Like their natural counterparts, small molecule TADs

must interact with coactivators in the transcriptional

machinery in order to function. This presents a formidable

challenge since the number of putative coactivator targets of

activators is large, with few validated as physiologically rele-

vant.7 One target of importance is the CREB binding protein

(CBP), a large (265 kDa) multidomain coactivator and

histone acetyl transferase.8,9 CBP integrates transcriptional

signals from [100 transcription factors and is an essential

protein for cell growth and development. In contrast to most

coactivators, the individual domains of CBP have proven

amenable to structural characterization and, concomitantly,

have been attractive targets for the development of small and

large molecule transcriptional regulators.10–16 A domain that

has attracted much attention in this regard is the KIX do-

main, an 87-residue module whose solution structure has

been elucidated.17 Despite its relatively small size, the KIX

domain contains at least two activator binding sites,

the CREB/Myb site and the MLL/Jun/Tat/Tax site (Figure

1b).18–23 Screening against the KIX domain has led to the

discovery of both peptides and peptidomimetic TADs that

function well in cells11,24; derivatives of these peptides have

been useful tools for defining characteristics of activator

binding sites.25 Not just useful for creating activators, a small

molecule screen against the KIX domain has also yielded

naphthol AS-E phosphate and related derivatives that com-

petitively inhibit the KIX-CREB binding interaction.14,16

Complementary to genetic strategies, compounds that in-

hibit KIX-binding activators will be useful tools in dissecting

the role of the KIX domain in physiological processes such as

cell differentiation and hematopoiesis.26–29 Furthermore,

both MLL and Jun have been implicated in several cancers,

including leukemias and solid tumors30–35; thus compounds

that block these proteins from forming key interactions with

CBP may prove useful in the development of transcription-

targeted therapeutics.1–9,36

We identified several isoxazolidine-based TADs through a

top-down discovery strategy that reconstitute the function of

a natural activator when localized to a promoter (e.g. 1a,

Figure 1c).37–39 Subsequent in vitro binding studies revealed

that one target of these small molecules is the KIX domain of

CBP, more specifically the MLL/Jun/Tat/Tax site within that

domain (Figure 1b).12 What was not clear from these studies

was if this interaction is essential for function in a cellular

context. Here we provide evidence that the isoxazo-

lidine �CBP interaction is required for cellular activity. Con-

sistent with this model, in the absence of DNA binding,

isoxazolidine 1 is able to competitively inhibit transcription

mediated by the KIX-dependent activators MLL and c-Jun.

Based on natural peptide ligands for KIX, alteration of the

aromatic side chain of 1 led to the identification of two mol-

ecules with enhanced potency, although increased cytotoxic-

ity was also observed.

FIGURE 1 (a) Transcriptional activators, minimally comprised of

a DNA-binding domain (DBD; blue oval) and a transcriptional acti-

vation domain (TAD; red rectangle), upregulate transcription by

stimulating chromatin remodeling and facilitating the assembly of

the RNA polymerase II holoenzyme at a promoter.66 The TAD is

primarily responsible for the direct binding interactions with the

transcriptional machinery (gold) in order to accomplish this. Poten-

tial binding partners of TADs within the transcriptional machinery

include enzymes that modify chromatin, the proteasome, and/or

coactivators. Small or large molecule mimics of TADs can serve as

competitive inhibitors of activators, thus down-regulating transcrip-

tion. b) The two activator-binding sites within the KIX domain of

CBP/p300. Highlighted in green in the space-filling diagram of the

KIX domain are the residues that experience the greatest chemical

shift perturbation upon interacting with the TAD of MLL as meas-

ured by 1H-15N-HSQC experiments;19 the TADs of Tat, Tax, and

Jun occupy a similar binding site.21–23 In red are the amino acids

that change when interacting with Myb.36 Pymol figures were gener-

ated from 1kdx. (c) Isoxazolidine-based mimics of transcriptional

activation domains. DBD5 OxDex conjugated to an ethylene glycol

linker (AEEA).37–39
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RESULTS AND DISCUSSION

Cellular Activity of 1 Depends Upon CBP
Previously we demonstrated that amphipathic isoxazolidine

1 activates transcription and interacts with the KIX domain

of CBP, while 2, bearing an alkene in place of the hydroxyl

functional group at C3, does not activate nor does it interact

with KIX.12,37–39 To assess if CBP is required for 1-mediated

transcriptional activity, the impact of lowering CBP concen-

trations via shRNA knockdown was examined in the pres-

ence of 1 conjugated to the glucocorticoid receptor (GR)

ligand OxDex (1a).40 In these experiments, cells were trans-

fected with a luciferase reporter bearing five Gal4 binding

sites and a plasmid encoding a fusion protein of the Gal4

DBD and the minimal ligand binding domain of GR in the

presence of 1a. In this two-hybrid assay, molecules tagged

with the GR ligand OxDex will interact with the fusion pro-

tein and thus be localized to DNA.11 The knockdown of CBP

with shRNA resulted in an 86 6 8% decrease (from 70-fold

to 12-fold) in 1a-driven luciferase expression, while a

scrambled shRNA had no effect (see Supporting Information

Figure S1). Additionally, the expression of exogenous CBP

partially rescued the activity of 1a (from 12- to 50-fold, see

Supporting Information Figure S1. In contrast, increased

CBP concentration had no impact on the ability of isoxazoli-

dine 2a to activate transcription, suggesting there is a direct

link between CBP concentration and 1a-driven activation.

Additionally, a change in CBP concentration had no effect on

expression of a luciferase gene driven by a CMV promoter

that does not contain Gal4 binding sites (see Supporting In-

formation Figure S2). Taken together, these data reveal that

the activity of 1a is directly impacted by CBP concentration

in the cell.

Another common strategy for altering cellular CBP avail-

ability is to use the viral protein E1A to sequester it.41–44 As

shown in Figure 2, there is an 80 6 3% decrease (from 70-

fold to 15-fold) in isoxazolidine 1a-mediated activation

when E1A is present. In sum, modulation of transcriptional

activity by affecting the availability of CBP supports the

model that 1a functions as a transcriptional activator recruit-

ment of CBP in a cellular context.

Inhibition of MLL and Jun

Although a number of natural TADs interact with the KIX

domain,19,21,44,45 the isoxazolidine TADs were the first exam-

ples of small molecules that interact with the site utilized by

the amphipathic TADs of MLL, Jun, Tat, and Tax.12 The

overlapping binding footprint of 1b with that of MLL and

Jun should enable the small molecule to function as a com-

petitive inhibitor of these activators. Towards this end, a se-

ries of activator competition studies were performed using

proteins composed of the MLL and Jun TADs and the DBD

of Gal4. Although 1b is considerably smaller than the mini-

mal TADs for MLL and Jun, it was able to inhibit the activa-

tion of both MLL and Jun in a dose-dependent manner

(Figure 3a). The EC50 for inhibition of Jun by 1b is 19 lM
and for inhibition of MLL it is 36 lM. In addition, ESX, an

activator that is not known to bind the KIX domain was not

inhibited in a similar series of experiments. This is consistent

with previous results performed in two ESX-driven cell

lines where 1 exhibits inhibition only at high concentrations

(� 50 lM).46

The previous reporter gene experiments demonstrated

that 1b inhibits the minimal TAD of Jun. It was unclear,

however, if the isoxazolidine would function in a similar

manner with the full-length Jun protein in an endogenous

promoter context. To assess if inhibition of native Jun could

be accomplished with isoxazolidine 1b, we chose to examine

expression of the cyclin D1 protein, a key component of the

cell cycle machinery.48–52 Cyclin D1 expression is regulated

FIGURE 2 Isoxazolidine-driven gene expression requires CBP.

HeLa cells were transfected with a plasmid encoding the DBD of

Gal4 fused to the ligand-binding domain of the glucocorticoid re-

ceptor (500 ng/mL), a firefly luciferase reporter plasmid containing

five Gal4 binding sites (500 ng/mL), and a Renilla transfection con-

trol (10 ng/mL). Additional plasmids were transfected as indicated

for CBP (100 ng/mL), CBP shRNA (100 ng/mL), and E1A (100 ng/

mL) experiments. Four hours post-transfection, 10 lM 1a was

added as a solution in DMSO such that the final concentration of

DMSO was 1% (v/v). Luciferase output was measured 24h after

addition of compound; fold activation is a ratio of firefly and

Renilla luminescence divided by the ratio of firefly and Renilla signal

observed with DBD alone. Each value represents at least three indi-

vidual experiments with the indicated error (standard deviation of

the mean, SDOM).
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by the AP-1 transcription factor that is a Jun homo- or a

Jun-Fos heterodimer.35,53–55 As illustrated in Figure 3b, treat-

ment of Jun-expressing MCF-7 breast cancer cells with 40

lM 1b (a concentration two-fold higher than the EC50) led

to a significant decrease in cyclin D1 expression. In the same

time course, expression of Jun was minimally impacted while

the control, GAPDH, was unchanged. Thus, isoxazolidine 1b

exerts an inhibitory effect on expression of a Jun-regulated

gene not only in an artificial reporter system, but also in a

native context. The demonstration of isoxazolidine 1b-medi-

ated inhibition of a Jun-regulated gene is a key step in devel-

oping a new chemical tool for probing the Jun pathway.

Inhibition of MLL and Jun With N2 Analogs

Although the results of Figure 3a illustrate that isoxazolidine

1b serves as a transcriptional inhibitor, concentrations

[ 20 lM are required. For these molecules to serve as probes

of KIX function, an increase in potency is highly desirable.

Like a peptide, the isoxazolidine is a modular scaffold, ame-

nable to functionalization at the N2, C3, C4, and C5 posi-

tions. Thus, to design new molecules with increased potency,

we looked to natural KIX-binding peptides for functional

groups. The sequences of several natural TADs that bind the

MLL/Jun/Tat/Tax site of the KIX domain (Figure 4a) possess

diverse amphipathic sequences. Whereas Tax and Jun only

possess aliphatic hydrophobic side chains, Tat and MLL

TADs contain aromatic side chains from tryptophan and

phenylalanine, respectively. These sequence differences may

contribute to the range of dissociation constants observed

for these activators (MLL 5 2.5 lM,19 Tat 5 11 lM,20 Jun 5

30 lM54), though this has not been determined. In the case

of the isoxazolidine scaffold, an isoxazolidine bearing a

biphenyl substituent at the N2 position (3) does not bind the

KIX domain or activate transcription;12,56 thus we used

biphenyl as an upper limit on steric modification. Early in

our studies, we observed that a smaller substituent, p-

hydroxyphenyl (4), did not negatively impact KIX binding by
1H-15N-HSQC binding experiments (Supporting Informa-

tion Figure S4). Thus, to assess the functional impact of aro-

matic and aliphatic substituents at the N2 position of 1, a

small series of isoxazolidines was prepared bearing function-

ality similar to that of natural activators (4, 7-9) and small

steric (5) and electronic (6) modifications.

While 1b and 4 exhibit no measurable toxicity at concen-

trations � 50 lM, the remaining analogs inhibited cell

growth at concentrations above 10 lM, limiting the range of

concentrations that could be examined (see Supporting In-

formation Figure S3). As expected, biphenyl 3 did not affect

Jun-driven transcription; in addition, compounds 4, 8, and 9

exhibited little activity. However, as shown in Figures 4c and

S5, isoxazolidines 5, 6, and 7 inhibited Jun transcriptional ac-

tivity in a dose-dependent manner. Indeed, these three com-

pounds are more effective than 1 (1.3- to 2-fold greater inhi-

bition at 10 lM). The levels of inhibition achieved by these

molecules is higher for Jun than for MLL, perhaps a reflec-

tion of the[10-fold difference in the dissociation constants

of these two activators (Supporting Information Figure S5).

Despite the improved activity of isoxazolidines 5-7 relative

to 1, none of the three exhibit submicromolar EC50s; this

highlights one of the challenges of designing small molecule

transcriptional modulators, which possess a much smaller

surface area relative to their peptidic counterparts.57–60 While

the isoxazolidine shares an overlapping binding surface with

FIGURE 3 Inhibition of KIX-targeting TADs by 1b. (a) Isoxazoli-

dine 1b decreased Jun and MLL minimal TAD-driven activation in

a dose-dependent manner while not affecting ESX, an activator that

is not known to bind the KIX domain.47 Cells were transfected with

Firefly (500 ng/mL) and Renilla luciferase (10 ng/mL) plasmids in

addition to plasmids encoding the DBD of Gal4 fused to the mini-

mal activation domains of either MLL (250 ng/mL), Jun (100 ng/

mL), or ESX (500 ng/mL, 0.1 mL of total transfection solution).

Four hours post-transfection cells were treated with increasing con-

centration of 1b (0 ? 50 lM) as a solution in DMSO such that the

final DMSO concentration was 1% (v/v). Percent inhibition is the

ratio of fold activation of Jun at each concentration of compound

and the fold activation of Jun in a DMSO-treated control. Each bar

represents at least three independent experiments with the indicated

error (SDOM). (b) MCF-7 cells were treated with 40 lM 1b (as a

solution in DMSO such that the final concentration of DMSO was

1% v/v) for 24 h, at which time the cells were lysed and the lysates

separated by SDS-PAGE. Western blots were performed using com-

mercial antibodies against GAPDH, Jun, and cyclin D1.
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that of Jun and MLL, the peptidic ligands for KIX interact

with a significantly larger area of the domain and make more

intermolecular contacts that contribute both to binding

affinity and specificity.12,19,21 To more substantially increase

potency, it may be necessary to utilize a small molecule

framework that can incorporate additional functional groups

for interaction with the KIX domain, such as dimeric isoxa-

zolidines, for example.12 In addition, we note that recent

advances with cell-permeable, constrained peptides have

shown promising results in inhibiting activators that interact

with other domains of CBP.15

In summary, here we have demonstrated that the isoxazo-

lidine transcriptional activation domain mimic 1 requires

CBP for cellular function and, consistent with this mecha-

nism, 1 can competitively inhibit the ability of the native

KIX-dependent activators Jun and MLL to function. Investi-

gation of analogs of 1 led to the identification of three addi-

tional Jun and MLL-inhibitors with improved potency. These

inhibitors will be useful tools for further dissecting the role

of the KIX domain in a variety of physiological and patho-

logical processes either alone or in combination with mole-

cules that target other sites within CBP and/or its HAT activ-

ity.8,14,61–63 The answers to these questions will further define

the role of CBP in small molecule-mediated gene expression

and provide a platform for development of new classes of

small molecule transcriptional modulators.

MATERIALS AND METHODS

Plasmids
The murine-CBP expression plasmid pRC/RSV-m CBP-HA64 and

the 12S E1A expression plasmid, pBabe 12S E1A65 were purchased

from Addgene. Plasmid Gal4-MLL(2829-2883) was constructed by

PCR amplification of the MLL minimal activation domain (residues

2829–2883)44 from a full length MLL plasmid containing an N-ter-

minal flag tag, (F-MLL, a gift from Dr. Jay Hess) using PCR primers

(50-GACTGGATCCCT GAAATCAGATTCAGACAATAAC-30 and 50-
CAAGGCGGCCGCA AGACCCAATCCTTCACCAAG-30. The PCR

product was digested with BamH1 and Not1 and ligated into the

plasmid pCMV-Gal4 using standard molecular biology techniques.

The plasmid pTKGG encoding the DNA binding domain of Gal4

fused to the minimal ligand binding domain of the glucocorticoid

receptor was the generous gift of Dr. Tom Kodadek. The plasmid

encoding the Jun TAD fused to the Gal4 DBD and the luciferase re-

porter plasmids, pG5luc and pRLSV40, were purchased from Prom-

ega. The CBP shRNA construct was prepared as previously

described.40

Transcriptional Inhibition Assay
HeLa cells (10,000 per well) were transfected with a Firefly luciferase

reporter (500 ng/mL), and Renilla (10 ng/mL) control plasmid in

addition to a plasmid encoding for either the MLL (250 ng/mL) or

Jun (100 ng/mL) activation domain fused to the DNA-binding do-

main of Gal4 in 0.1 mL Optimem. The Optimem was removed and

0.1 mL of DMEM supplemented with 10% FBS and compound was

FIGURE 4 (a) Sequences of KIX-binding TADs. (b) Analogs of 1b tested for MLL and Jun

inhibition; see Supporting Information for complete details of synthesis and characterization. (c) Inhi-

bition of Jun with isoxazolidine analogs. Inhibition assays were carried out as described in Figure 3a.
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added four hours post-transfection and the luminescence was

assessed after 24 h as described above.

Western Blot
HeLa cells (10,000 per well) were lysed using passive lysis buffer

(Promega) with Complete1, EDTA-free protease inhibitors (Roche)

for 10 min at room temperature on an orbital shaker. Lysates were

centrifuged at 14,000 rpm for 20 min and the supernatant was mixed

with 43 loading dye (Invitrogen) and BME (final concentration of

1%). The samples were then heated at 958C for 10 min, separated by

SDS-PAGE, transferred to a PVDF membrane and probed using

standard conditions. Jun (sc-1694, 1:1000), cyclin D1 (sc-718,

1:1000), CBP (sc-7300, 1:500), and GAPDH (sc-47724, 1:2000) anti-

bodies were all purchased from Santa Cruz Biotechnology.

The authors thank Dr. Ryan Casey for the gift of compound 5 and

Mr. Chris Taylor for a sample of isoxazolidine 3. We appreciate Jeff

Kampf ’s assistance with obtaining the solid state structure of 4.

REFERENCES
1. Verdine, G. L.; Walensky, L. D. Clin Cancer Res 2007, 13, 7264–

7270.

2. Pandolfi, P. P. Oncogene 2001, 20, 3116–3127.

3. Darnell, J. E., Jr. Nat Rev Cancer 2002, 2, 740–749,

4. Koh, J. T.; Zheng, J. ACS Chem Biol 2007, 2, 599–601.

5. Koehler, A. N. Curr Opin Chem Bio 2010, 14, 331–340.

6. Lee, L. W.; Mapp, A. K. J Biol Chem 2010, 285, 11033–11038.

7. Mapp, A. K.; Ansari, A. Z. ACS Chem Biol 2007, 2, 62–75.

8. Vo, N.; Goodman, R. H. J Biol Chem 2001, 276, 13505–13508.

9. Goodman, R. H.; Smolik, S. Genes Dev 2000, 14, 1553–1577.

10. Kung, A. L.; Zabludoff, S. D.; France, D. S.; Freedman, S. J.; Tan-

ner, E. A.; Vieira, A.; Cornell-Kennon, S.; Lee, J.; Wang, B.;

Wang, J.; Memmert, K.; Naegeli, H. U.; Petersen, F.; Eck, M. J.;

Bair, K. W.; Wood, A. W.; Livingston, D. M. Cancer Cell 2004,

6, 33–43.

11. Liu, B.; Alluri, P. G.; Yu, P.; Kodadek, T. J Am Chem Soc 2005,

127, 8254–8255,

12. Buhrlage, S. J.; Bates, C. A.; Rowe, S. P.; Minter, A. R.; Brennan,

B. B.; Majmudar, C. Y.; Wemmer, D. E.; Al-Hashimi, H.; Mapp,

A. K. ACS Chem Biol 2009, 4, 335–344,

13. Cebrat, M.; Kim, C. M.; Thompson, P. R.; Daugherty, M.; Cole,

P. A. Bioorg Med Chem 2003, 11, 3307–3313,

14. Best, J. L.; Amezcua, C. A.; Mayr, B.; Flechner, L.; Murawsky, C.

M.; Emerson, B.; Zor, T.; Gardner, K. H.; Montminy, M. Proc

Natl Acad Sci USA 2004, 101, 17622–17627,

15. Henchey, L. K.; Kushal, S.; Dubey, R.; Chapman, R. N.; Ole-

nyuk, B. Z.; Arora, P. S. J Am Chem Soc 2010, 132, 941–943.

16. Li, B. B. X.; Xiao, X. S. ChemBioChem 2009, 10, 2721–2724.

17. Radhakrishnan, I.; Perez-Alvarado, G. C.; Parker, D.; Dyson, H.

J.; Montminy, M. R.; Wright, P. E. Cell 1997, 91, 741–752.

18. Radhakrishnan, I.; Perez-Alvarado, G. C.; Parker, D.; Dyson, H. J.;

Montminy, M. R.; Wright, P. E. J Mol Biol 1999, 287, 859–865.

19. Goto, N. K.; Zor, T.; Martinez-Yamout, M.; Dyson, H. J.;

Wright, P. E. J Biol Chem 2002, 277, 43168–43174.

20. Zor, T.; De Guzman, R. N.; Dyson, H. J.; Wright, P. E. J Mol

Biol 2004, 337, 521–534.

21. Campbell, K. M.; Lumb, K. J. Biochemistry 2002, 41, 13956–

13946.

22. Vendel, A. C.; Lumb, K. J. Biochemistry 2004, 43, 904–908.

23. Vendel A. C.; McBryant, S. J.; Lumb K. J. Biochemistry, 2003,

12481–12487.

24. Frangioni, J. V.; LaRiccia, L. M.; Cantley, L. C.; Montminy, M.

R. Nat Biotechnol 2000, 18, 1080–1085.

25. Rowe, S. P.; Mapp, A. K. Biopolymers 2008, 89, 578–581.

26. Iyer, N. G.; Ozdag, H.; Caldas, C. Oncogene 2004, 23, 4225–4231.

27. Kasper, L. H.; Fukuyama, T.; Biesen, M. A.; Boussouar, F.; Tong,

C. L.; de Pauw, A.; Murray, P. J.; van Deursen, J. M. A.; Brindle,

P. K. Mol Cell Biol 2006, 26, 789–809.

28. Iyer, N. G.; Xian, J.; Chin, S. F.; Bannister, A. J.; Daigo, Y.; Apari-

cio, S.; Kouzarides, T.; Caldas, C. Oncogene 2007, 26, 21–29.

29. Kimbrel, E. A.; Lemieux, M. E.; Xia, X. B.; Davis, T. N.; Rebel,

V. I.; Kung, A. L. Blood 2009, 114, 4804–4812.

30. Kinoshita, I.; Leaner, V.; Katabami, M.; Manzano, R. G.; Dent,

P.; Sabichi, A.; Birrer, M. J. Oncogene 2003, 22, 2710–2722.

31. Hanson, R. D.; Yu, B. D.; Hess, J.; Korsmeyer, S. J Blood 1997,

90, 184–194.

32. Li, J. J.; Cao, Y.; Young, M. R.; Colburn, N. H. Mol Carcinogen

2000, 29, 159–169.

33. Ayton, P. M.; Cleary, M. L. Gene Dev 2003, 17, 2298–2307.

34. Leaner, V. D.; Kinoshita, I.; Birrer, M. J Oncogene 2003, 22,

5619–5629.

35. Wisdom, R.; Johnson, R. S.; Moore, C. Embo J 1999, 18, 188–

197.

36. De Guzman, R. N.; Goto, N. K.; Dyson, H. J.; Wright, P. E.

J Mol Biol 2006, 355, 1005–1013.

37. Minter, A. R.; Brennan, B. B.; Mapp, A. K. J Am Chem Soc

2004, 126, 10504–10505.

38. Buhrlage, S. J.; Brennan, B. B.; Minter, A. R.; Mapp, A. K. J Am

Chem Soc 2005, 127, 12456, 12457.

39. Rowe, S. P.; Casey, R. J.; Brennan, B. B.; Buhrlage, S. J.; Mapp,

A. K. J Am Chem Soc 2007, 129, 10654–10655.

40. Naidu, S. R.; Love, I. M.; Imbalzano, A. N.; Grossman, S. R.;

Androphy, E. J. Oncogene 2009, 28, 2492–2501.

41. Bannister, A. J.; Kouzarides, T. Embo J 1995, 14, 4758–4762.

42. Green, M.; Panesar, N. K.; Loewenstein, P. M. Oncogene 2008,

27, 4446–4455.

43. Peter Pelka, J. N. G. A., Joseph, T.; Andrew, S. T.; Roger, J. A. G.;

Joe, S. M. Nuc Acids Res 2009, 37, 12, 1095–1106.

44. Ernst, P.; Wang, J.; Huang, M.; Goodman, R. H.; Korsmeyer, S.

J. Mol Cell Biol 2001, 21, 2249–2258.

45. Lee, L. W.; Taylor, C. E. C.; Desaulniers, J. P.; Zhang, M. C.; Hoj-

feldt, J. W.; Pan, Q.; Mapp, A. K. Bioorg Med Chem Lett 2009,

19, 6233–6236.

46. Chang, C. H.; Scott, G. K.; Kuo, W. L.; Xiong, X. H.; Suzdalt-

seva, Y.; Park, J. W.; Sayre, P.; Erny, K.; Collins, C.; Gray, J. W.;

Benz, C. C. Oncogene 1997, 14, 1617–1622.

47. Kim, J. K.; Diehl, J. A. J Cell Phys 2009, 220, 292–296.

48. Fu, M. F.; Wang, C. G.; Li, Z. P.; Sakamaki, T.; Pestell, R. G.

Endocrinology 2004, 145, 5439–5447.

49. Arnold, A.; Papanikolaou, A. J Clin Oncol 2005, 23, 4215–4224.

50. Tashiro, E.; Tsuchiya, A.; Imoto, M. Cancer Sci 2007, 98, 629–

635.

51. Stacey, D. W. Curr Opin in Cell Biol 2003, 15, 158–163.

52. Albanese, C.; D’Amico, M.; Reutens, A. T.; Fu, M.; Watanabe,

G.; Lee, R. J.; Kitsis, R. N.; Henglein, B.; Avantaggiati, M.;

22 Bates et al.

Biopolymers



Somasundaram, K.; Thimmapaya, B.; Pestell, R. G. J. Biol Chem

1999, 274, 34186–34195.

53. Bakiri, L.; Lallemand, D.; Bossy-Wetzel, E.; Yaniv, M. Embo J

2000, 19, 2056–2068.

54. Amanatullah, D. F.; Zafonte, B. T.; Albanese, C.; Fu, M. F.; Mess-

iers, C.; Hassell, J.; Pestell, R. G. Methods Enzymol 2001, 333,

116–127.

55. Casey, R. J.; Desaulniers, J. P.; Hojfeldt, J. W.; Mapp, A. K. Bio-

organ Med Chem 2009, 17, 1034–1043.

56. Cochran, A. G. Chem Biol 2000, 7, R85–R94.

57. Berg, T. Angewandte Chemie-Int Ed 2003, 42, 2462–2481.

58. Arkin, M. R.; Wells, J. A. Nat Rev Drug Disc 2004, 3, 301–

317.

59. Fletcher, S.; Hamilton, A. D. Curr Opin Chem Biol 2005, 9,

632–638.

60. Bannister, A. J.; Kouzarides, T. Nature 1996, 384, 641–643.

61. Ogryzko, V. V.; Schiltz, R. L.; Russanova, V.; Howard, B. H.;

Nakatani, Y. Cell 1996, 87, 953–959.

62. Marian A. Martinez-Balbas, A. J. B.; Klaus Martin, P. H.-S.; Mi-

chael, M.; Tony, K. EMBO J 1998, 17, 6, 2886–2893.

63. Chrivia, J. C.; Kwok, R. P. S.; Lamb, N.; Hagiwara, M.;

Montminy, M. R.; Goodman, R. H. Nature 1993, 365, 855–

859.

64. Samuelson, A. V.; Lowe, S. W. Proc Natl Acad Sci USA 1997, 94,

12094–12099.

65. Ptashne, M.; Gann, A. Nature 1997, 386, 569–577.

66. Ansari, A. Z.; Mapp, A. K.; Nguyen, D. H.; Dervan, P. B.;

Ptashne, M. Chem Biol 2001, 8, 583–592.

Reviewing Editor: Gary D. Glick

Transcription Tools 23

Biopolymers


