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Tooling Adjustment Strategy for Acceptable
Product Quality in Assembly Processes
Anantanat Kantanyarata and Jionghua (Judy) Jinb∗†

This paper develops an approach to minimize the number of process tooling adjustments and deliver an acceptable
fraction of non-conforming products based on given product quality specification limits in assembly processes. A linear
model is developed to describe the relationships between product quality and process tooling locating positions.
Based on the model, the process mean shifts of tooling locating positions are estimated for both deterministic and
stochastic cases by using the least-square estimation or linear mixed model estimation, respectively. A simultaneous
confidence interval is obtained to construct the estimation region of a process mean shift under the given false
alarm rate. Furthermore, a tooling adjustment strategy is proposed to determine when the process adjustment is
essentially needed in order to ensure an acceptable fraction of non-conforming units based on the given product
quality specification limits. Finally, a case study is conducted to illustrate the developed methodology by using a
real-world autobody assembly process. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: mean shift; simultaneous confidence interval; acceptable fraction non-conforming; linear mixed model; process
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1. Introduction

In an automotive assembly process, fixture faults are considered as one major root cause of dimensional variation1. Here fixture
faults are referred as the significant deviations of locating pins or blocks from their nominal positions relative to the designed
part features. There are two kinds of fixture faults: (i) the fault due to the mean shift of fixture locating positions, and (ii) the

fault due to the increasing variances of fixture locating positions. In practice, a mean-shift fault is often feasible to be corrected
by tooling adjustments. Therefore, this paper will mainly focus on how to monitor process mean shifts and determine when
tooling adjustments are essentially needed to satisfy the requirement of acceptable non-conforming units. Generally, the part
locating positions, which are determined by the fixture tooling condition, are usually not directly measurable. This brings out
research challenges on how to quickly determine fixture mean shifts, and furthermore, how to decide when a tooling adjustment
is essentially needed under the given satisfactory fraction of non-conforming products.

Statistical Process Control (SPC) has been widely used in industry. It mainly focuses on detecting process changes and further
identifying and eliminating root causes for process improvement. The detailed discussion of SPC is provided by Montgomery2.
The new concept of integrating SPC with Automatic Process Control (APC) provides an active approach for process variation
reduction through compensating process changes by using feedback and/or feedforward control. A detailed discussion on SPC
and APC integration can be found in Reference3, and a summary and a unified view on the process adjustment problem is
provided by Del Castillo et al.4. Furthermore, a Run by Run (RbR) controller was developed to automatically adjust the process
operation parameters to ensure consistency in process outputs5. The problem of a dead band in process adjustment was also
studied in6, 7 by considering the deterministic drift or shift and their effects of delay in adjustment action on the process
operation performance. Recently, Jin and Ding8 further developed a cautious control method based on a response surface model
by considering the measurement uncertainty of process inputs of blank thickness for stamping process control. Although the
new concept of integration of SPC and APC has been increasingly applied in many manufacturing industries, there is still limited
application in autobody assembly processes due to the numerous varieties of fixtures and the high cost of installing adaptive
tooling. In another aspect, when the process capability is high, some small process mean shifts are usually acceptable since the
process can still deliver a satisfactory fraction of non-conforming products. In this case, a process adjustment is only needed
when the mean shift is large enough. Therefore, it is of interest in determining the acceptable range of mean shifts to avoid
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Figure 1. A 3-2-1 fixturing of the rigid part

unnecessary tooling adjustments under the given requirement of product quality specifications and the acceptable fraction of
non-conforming units.

Acceptance control chart was first proposed by Freund9, who designed the control limits to achieve an acceptable fraction of
non-conforming units. This control chart is especially used when the process natural dispersion is small relative to the specification
limits such that the process is still capable of producing the satisfactory fraction non-conforming even under a certain mean shift.
Wesolowsky10 proposed the procedure to find a sample size and control limits that minimized the sampling cost while ensuring
a fraction of non-conforming units. This acceptance control chart is a simultaneous chart for two correlated processes. Steiner
and Wesolowsky11 extended this work for products with multiple characteristics. Duncan12 provided a detailed discussion on this
topic. As the acceptance control chart allows a small mean shift under the given fraction of non-conforming units, it minimizes
the unnecessary alarm signals of out-of-control conditions. In these existing approaches, the derivation of the control charts is
directly based on product quality specification limits, which cannot be directly applied for the decision of tooling adjustments
because such a decision needs to know which tool and how much the tool adjustments should be done once the out-of-control
condition is indicated by the acceptance control chart. Therefore, further research effort is still needed to develop an effective
tooling adjustment strategy based on the product quality specifications, which can not only ensure product quality under an
acceptable fraction of non-conforming units, but also avoid unnecessary tooling adjustments.

The objective of this paper is to develop an effective tooling adjustment strategy for assembly processes based on the
given product quality specification limits and the acceptable fraction of non-conforming products, which can avoid unnecessary
tooling adjustments. Specifically, this paper includes three major steps for the methodology development: (a) modeling of the
relationship between the product quality and process fixture locating positions and transforming the product quality specification
limits into tooling tolerance region; (b) estimation of the mean shift of fixture locating position deviations based on the product
measurements; and (c) development of a tooling adjustment strategy by considering the estimation uncertainty of tooling
deviations. The remainder of the paper is organized as follows. Section 2 discusses the detailed development of the proposed
methodology. In Section 3, a case study is performed using an exemplary autobody assembly process. Finally, the paper is
concluded in Section 4.

2. Methodology development

Before discussing the methodology development, a fixture tooling system and its associated faults are introduced first. In this
research, a commonly used 3-2-1 fixturing system for rigid part assembly is considered. As shown in Figure 1, there are two
locating pins: P1 and P2. P1 is a four-way pin, which has a pin-hole configuration to control the part position in both the x- and
z-directions. P2 is a two-way pin that has a pin-slot configuration to control the part position only in the z-direction. Three blocks
are used to control the part position in the y-direction.

In this study, the mean shifts of locators are investigated. In practice, a mean shift may be caused by a block wear out or
loosen, a bent pin or a mislocated pin, etc. These faults have a linear relationship with the geometry of the part orientations,
thus leading to assembled part dimensional deviation or quality defects. The first effort of the methodology development is to
model the relationships between mean shifts of locating positions and the part quality.

2.1. Modeling of relationships between part quality and tooling mean shifts

With the assumption of small locating position deviations, a linear model can be obtained to represent the relationships between
part quality and fixture locating position deviations for assembly processes13--16:

yi =Cui +wi , i=1, 2,. . . , n. (1)

Here, yi denotes an m-dimensional measurement vector on the ith part; C denotes an m×p linearized effect matrix of each
tooling deviation on the measurement vector yi , obtained by kinematics analysis; ui denotes a p-dimensional tooling deviation
vector that has potential mean shifts; wi denotes the m-dimensional vector of independent and identical measurement noises
at individual measurement points on products, which follow the multivariate normal distribution of wi ∼N(0, diag{�2

w . . . �2
w}) with

the same variance �2
w for different measurement points. The value of �2

w can be obtained based on the sensor specifications
from sensor manufacturers or estimated based on the existing technique of gage R&R study2.

The tooling deviation vector, ui , can be decomposed into a fixed component and a random component as:

ui =l+vi , (2)
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Here, l is a p-dimensional mean vector of each fault. vi is a p-dimensional random vector representing the random variation
of each fault component, which indicates that individual parts can be randomly located within the design tolerances of the
clearances between parts and fixture tooling. Under the assumption of independent fixture faults, vi is assumed to follow the
normal distribution of vi ∼N(0, diag{�2

uj
}j=1,. . .,p), where �2

uj
denotes the variance of individual locator component j, which can be

obtained based on the designed process tolerance17. Therefore, a linear model with potential mean shifts is expressed as follows:

yi =Cl+(Cvi +wi), i=1, 2,. . . , n, (3)⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

nm︸ ︷︷ ︸
y

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C(m×p)

C(m×p)

...

C(m×p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(nm)×p︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�1

�2

...

�p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

p︸ ︷︷ ︸
l

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Cv1 +w1

Cv2 +w2

...

Cvn +wn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

nm︸ ︷︷ ︸
e

.

Or

y=Cl+e. (4)

Equation (4) will be used to estimate the mean deviations of the process faults.

2.2. Estimation of mean shifts

In this section, the mean shifts will be estimated by using the linear model (4). In practice, there are two types of mean-shift faults:
(i) non-random mean-shift faults contributed by bent pins, mislocated pins, or broken pins, etc. Under such extreme tooling faults,
the excessive mean shifts of fixture locating positions are generated, which affect the product quality much more dominantly
than the random error vi due to the designed fixture tolerance; and (ii) random mean-shift faults contributed by the loosened or
worn-out blocks or locating pins, etc. Under such tooling faults, mean shifts show a random variation pattern, which is affected
by the design tolerance of the clearance between parts and fixture tooling. Different algorithms will be adapted to estimate these
two types of mean-shift faults, respectively.

(1) For non-random tooling deviations, vi =0,∀i
As vi =0, ∀i, the model (3) becomes yi =Cl+wi . l can be estimated by using the least-squares estimation method, i.e.

l̂= (CTC)−1CTy= 1

n
(CTC)−1CT

n∑
i=1

yi , (5)

Rl̂ = var(l̂)=�2
w(CTC)−1 = 1

n
�2

w(CTC)−1, (6)

where (5) provides the estimated mean shifts, and (6) provides the covariance of the estimator that reflects the uncertainty
of the estimation.

(2) For random tooling deviations, vi �=0
As vi �=0, assume vi ∼N(0, diag{�2

uj
}j=1,. . .,p), the random part in the model is the summation of the vectors of Cvi +wi ,

which is denoted as

�=

⎡
⎢⎢⎢⎣

Cv1 +w1

...

Cvn +wn

⎤
⎥⎥⎥⎦

(nm)×1

.

As a result, the covariance of the random term is no longer diagonal. In this study, the variances (�2
uj

and �2
w) are assumed

constant and known, which can be obtained from the estimation based on historical data, the specifications of the tooling
elements, tolerances of the part, and sensor specifications.

For the case with a non-diagonal variance of y, a linear mixed model is used to estimate its covariance. Assume that there
are no interactions among the locator deviations, then the covariance matrix of u, Ru, is diagonal, i.e. Ru =diag[�2

u1
. . . �2

up
]. By

taking covariance on both sides of (4), we have

Ry =cov(y)=cov(Cl+e)=var(e)=

⎡
⎢⎢⎢⎢⎣

CRuCT +�2
wI 0

. . .

0 CRuCT +�2
wI

⎤
⎥⎥⎥⎥⎦

nm×nm

. (7)
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It is known that y∼N(Cl,Ry). The ordinary least-square estimation provides unbiased linear estimates. Although the covariance
of y is not diagonal, the ordinary least-squares estimation can still be used to provide an unbiased estimate of each mean fault.
However, these estimates do not have the minimum variance property18. The analysis based on a linear mixed model with fixed
effects and known variance can be used to estimate the mean faults and also provide the minimum variance for the estimate.
In this paper, a linear mixed model is used to get the following estimation results:

l̂= (CTR−1
y C)−1CTR−1

y y

=
(

n∑
i=1

CT(CRuCT +�2
wI)−1C

)−1(
n∑

i=1
CT(CRuCT +�2

wI)−1yi

)
(8)

Rl̂ = var(l̂)= (CTR−1
y C)−T =

(
n∑

i=1
CT(CRuCT +�2

wI)−1C

)−1

. (9)

Appendix A provides the detailed derivations for the results in (5)–(9).

2.3. Simultaneous confidence intervals of mean shifts

In the paper, simultaneous confidence intervals, rather than an individual interval for each mean shift, is used to construct a
tooling estimation region to avoid the excessive number of false alarms. There are various methods available to construct the
simultaneous confidence intervals. One common approach is the Bonferroni method using the individual false alarm rates �j =� / p,
where � is the designed ideal total false alarm rate. However, the actual total false alarm error tends to be much smaller than
� due to the correlation between variables. Another approach is Hotelling’s statistic, which approximately maintains a total false
alarm error rate equal to a specified level �19. However, its drawback is that when the process is out of control, the specific
variables contributing to this out-of-control signal are not directly known. Hayter and Tsui20 propose a procedure that provided
simultaneous confidence intervals with exact total false alarm rate � based on M Statistic. The advantage of this approach is that
it is easy to identify out-of-control variables and also satisfy the exact overall false alarm rate �. This paper adopts this approach
to develop a simultaneous confidence interval of the mean-shift estimation, which will be discussed in detail as follows.

Suppose l̂∼Np(l,Rl̂), where Rl̂ is a p×p variance matrix with the diagonal elements of Rl̂ equal to �2
j and off-diagonal

elements of Rl̂ equal to �jk , for j �=k. Suppose R is a correlation matrix transformed from Rl̂ through �jk =�jk / (�j�k). Let DR,� be
the critical point at level �. Without loss of generality of the methodology development, the null hypothesis is H0 :l=l0, where
l0 is a zero vector. The alternative hypothesis is H1 :l �=l0. According to Reference20, it yields

Pr{�j ∈ [�j −�jDR,�,�j +�jDR,�] for 1≤ j≤p}=1−�.

That is, the simultaneous confidence intervals with confidence level of 1−� are [�j −�jDR,�,�j +�jDR,�] for 1≤ j≤p. Equivalently,
M statistic will conclude a mean shift when the following condition is held:

M= max
1≤j≤p

|�̂j −�0j|
�j

>DR,�. (10)

The following procedure will be used to select an appropriate critical point20:

1. A large number (N) of the realization vectors l1,. . . ,lN are generated from the p-dimensional multivariate normal distribution
with mean zero and the variance matrix equal to the correlation matrix R. Each lj is p-dimensional vector.

2. M statistics of each lk = (�k
1 . . . �k

p) are calculated. In the case of l0 =0 and �j =1, it has

Mk = max
1≤j≤p

|�k
j | for k =1,. . . , N.

3. The (1−�)th percentile of the set of {M1,. . . , MN} is determined and used as an estimate of the critical point DR,�.

2.4. Simultaneous control strategy under a satisfactory fraction of non-conforming units

After estimating the mean-shift faults, it is desirable to systematically identify when the faults should be corrected through tooling
adjustments. In this section, a simultaneous control strategy under a satisfactory fraction of non-conforming units is proposed
based on the transformed tooling tolerance range and simultaneous confidence intervals.

It is known that the quality conformity of a product is often assessed by whether its key product characteristics (KPCs) can
meet the product specification limits. KPCs are often selected as the critical features of products, which have direct impacts
on the customer satisfaction based on the designed product functionality. In the paper, KPCs refer to the critical dimensional
measurement points specified on parts; and a non-conforming product is defined by at least one of its KPC measurements
exceeding the product specification limits. Moreover, the fraction of non-conforming units is assessed by 100% inspection of
every individual product in the paper. We also assumed that measurement gages are capable, and both the false alarm rate and
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Figure 2. Tolerance and simultaneous confidence regions of two tooling deviations

the miss detection rate regarding the conformity decisions of products’ quality due to the measurement gages are ignorable in
the paper.

In assembly processes, the dimensional errors of KPCs are essentially affected by key control characteristics (KCCs) of tooling
components, which refers to the key positioning elements of fixture locators in the paper, such as the positions of locating
pins or locating blocks. Therefore, it is very critical to design appropriate tooling tolerance limits for individual KCCs in order
to ensure that the produced products satisfy the acceptable fraction non-conforming �. The paper21 showed how to transfer
the pre-given product specification limits of KPCs into the tooling tolerance limits of KCCs for assembly processes. It, in fact,
provided a conservative design to ensure that the designed tooling system can produce quality products with at most the
fraction of non-conforming units equal to � as long as the tooling KPCs’ deviations are within the designed tooling tolerance
limits. For example, the tooling tolerance region, which is formed by two KCCs’ deviations of u1 and u2 with an ellipse boundary
in Figure 2, is obtained by transferring the product specification limits on KPCs into the tooling tolerance region on KCCs. The
detail procedures for how to obtain the ellipse function are given in Reference21, which is also summarized in Appendix B.

In practice, tooling locator deviations of KCCs are not directly measurable during production. The following method is proposed
to decide whether the actual KCCs deviations during production are within the ellipse of the tooling tolerance region based on
KPCs measurements. Suppose f (u,r,�) is a function representing the ellipse, where u is a vector of KCCs deviation and r is the
allocated variances of the allowable tolerances for the KCCs. g(l̂,Rl̂,�) is a function representing the simultaneous confidence
intervals represented by the rectangle as shown in Figure 2, which is determined using the method in Section 2.3. It should
be notified that � in g(l̂,Rl̂,�) is used to represent the confidence level (1−�) of the simultaneous confidence intervals of the
tooling KCCs’ mean shifts by considering the estimation uncertainty. In Figure 2, the rectangle area � is called the simultaneous
confidence region, and �′ is defined as the intersection area between the simultaneous confidence region (rectangle area �)
and the tooling tolerance region (ellipse area). Therefore, 	=�′ / � represents the fraction of the intersection area over the total
rectangle area. Intuitively, it can be understood that a tooling adjustment is not necessarily needed if 	=100%, whereas a tooling
adjustment is essentially needed if 	=0%. Therefore, under an appropriate threshold 
, a tooling adjustment is needed whenever
the condition of 	<
 is held. The general strategy to determine whether a tooling adjustment should be done is given as follows:

Step 1. Transform the product KPC specification limits into the tooling KCC tolerance using the algorithm provided by Shiu
et al.21, i.e. obtain the tooling tolerance region represented by f (u,r,�) under the given acceptable fraction of non-conforming
products �.
Step 2. Estimate the means of tooling deviations, l̂, and obtain the associated covariance of the mean estimates, Rl̂. Construct
the simultaneous confidence region represented by g(l̂,Rl̂,�).

Step 3. Determine �′ and � using the following equations:

�′ =
∫
X

hl̂(u) du, (11)

and

�=
∫
H

hl̂(u) du (12)

where h(u)∼N(l̂,�l̂), X={u : [u∈g(l̂,Rl̂,�)]∩[u∈ f (u,r,�)≤0]}, and H is the set of limits of the simultaneous confidence

intervals for each axis. These integrals can be solved using the Monte Carlo simulations. Then, we can get 	=�′ / �.
Step 4. If 	<
, perform process corrective action via the tooling adjustment. Otherwise, do nothing until the next inspection,
and then return to Step 1.

The determination of 
 can be obtained by simulating M samples of the mean shifts l1,. . . ,lM. Each lj(j=1,. . . , M) is a
p-dimensional vector that can satisfy the quality requirement with the fraction of non-conforming units equal to �. Then, we can
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Figure 3. The right-hand aperture of an autobody13

Table I. Nominal x–z coordinates for measurement points and locating pins

Point M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 P1 P2

Nominal x 3134 4015 2184 4895.3 3721 3264 4895 4895.5 4693.8 4899 2184 4680
(mm) z 1200 1618.5 1489 1510.5 1256.5 1930 1608 1273 2228.5 1214.5 1489 1428

further get the estimated mean shifts and the simultaneous confidence intervals corresponding to each sample lj(j=1,. . ., M),

which are further used to calculate 	j =�
′j / �j for each sample lj based on (11) and (12). The conservative threshold 
 that

can ensure the satisfactory quality can be determined by 
=max(	j ,∀j=1,. . ., M). The detailed simulation procedures via a grid
searching approach are given as follows:

Step 1: Find the feasible maximum range for each tooling component’s deviation. In this step, each tooling component
is investigated individually. Specifically, in order to obtain the maximum range for ui(i=1,. . . , p), we set all other tooling
components’ deviations equal to zero. The maximum range of ui is obtained by iteratively increasing ui with a small searching
step until the constraint of the given fraction of non-conforming units is not held.
Step 2: Use a grid searching approach to obtain the feasible tooling deviations by considering all combinations of tooling
components’ deviations. Specifically, within these maximum ranges of individual tooling components obtained in Step 1, we
simulate the tooling component deviations with each increasing step of �=maximum range/ N0 (N0 is the total number of
simulation steps for each KCC, N0 =100 is used in the paper). Those samples with the feasible tooling deviation boundary are
selected to ensure the fraction of non-conforming units equal to �. The total number of the selected samples in this step is
denoted as M.
Step 3: Calculate 	j(j=1,. . ., M) for each sample of the selected feasible tooling deviations, which is obtained based on (11) and
(12) using the estimated mean shifts and simultaneous confidence intervals.
Step 4: Determine the threshold 
, which is equal to the maximum of 	j (j=1,. . ., M).

3. Case study

A case study is conducted in an automotive body assembly application to illustrate the developed methodology. The part used
in the case study is a side aperture of a car body as shown in Figure 3, in which two locating pins, i.e. P1 as the four-way pin
and P2 as the two-way pin, are used. In this case study, only the variation in the x–z plane is considered for the side aperture
assembly. There are 10 points being measured along the x- and z-directions. Table I provides the nominal positions in the x–z
coordinates of those pins and measurement points.

In this case study, for each part i, the measurement yi is a four-dimensional vector, yi ≡ [M2(x) M8(x) M1(z) M9(z)]T. Therefore,
m=4. In this case study, two fixture faults are considered, which are P1 failure in the x-direction (fault 1) and P2 failure in the
z-direction (fault 2), i.e. p=2. The C matrix in Equation (1) is13:

CT =
[

0.354 0.354 0 0

−0.026 0.043 0.187 0.495.

]

The model parameters used in this study are listed in Table II.
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Table II. Model parameters used in the case study

n �w �u1 �u2 � � 
 {Tyj }m
j=1

50 0.1 0.5 0.5 0.05 0.05 0.95 1.0 mm

Table III. The results of Cases 1 and 2

Case �̂1 �̂2 Rl̂(10−3) DR,� S. I. of l1 S. I. of l2

vi =0 0.484 2.040

[
0.799 −0.019

−0.019 0.709

]
2.243 [0.421, 0.528] [1.978, 2.099]

vi �=0 0.443 1.959

[
5.8 −0.000

−0.000 5.7

]
2.237 [0.273, 0.614] [1.790, 2.128]

∗S. I. stands for simultaneous interval.

Figure 4. The KCC tolerance region and simultaneous confidence region for vi =0: (a) KCC tolerance region and simultaneous confidence region
and (b) Intersection areas for both cases

3.1. Mean estimations and simultaneous confidence intervals

Two case studies were conducted: the first case assumes vi =0 and the second case assumes vi �=0. In both cases, the mean-shift
faults of 0.5 mm and 2.0 mm are generated from the tooling error of P1 in the x-direction and tooling error of P2 in the z-direction,
respectively. The results of the simultaneous tests are provided for each case as shown in Table III.

3.2. Simultaneous control strategy

The simultaneous control strategy under a satisfactory fraction of non-conforming units is performed for two cases of vi =0 and
vi �=0. The KPC tolerances, {Tyj }m

j=1 =1.0 mm, are transformed into the KCC tolerances according to Reference21. From Appendix

B, the function of this ellipse is

f (u,r,�)=
( u1

2.814

)2 +
( u2

2.020

)2 =1,

where r= [1.1502 0.8252]T and the acceptable fraction of non-conforming �=5%. The estimated l̂ and simultaneous confidence
intervals determined in the previous section are investigated using the procedure in Section 2.4 to determine when to perform
the corrective action under the given fraction of non-conforming units at most �=5%. The simulation shows that the conservative
threshold 
 is 0.70 for vi =0 and 0.95 for vi �=0.

Under the given mean-shift faults, Figures 4 and 5 show the tolerance region, the simultaneous confidence region, and their
intersection areas of the tooling deviation corresponding to vi =0 and vi �=0, respectively. �′

vi=0
and �′

vi �=0
are the intersection

areas between the simultaneous confidence region and the tolerance region for vi =0 and vi �=0, respectively. �vi=0 and �vi �=0

are the areas of simultaneous confidence region for vi =0 and vi �=0, respectively.
In Figure 4(a), the rectangle is the simultaneous confidence region and the ‘×’ is the position of the l̂ under vi =0. In Figure

5(a), the rectangle is the simultaneous confidence region and the ‘+’ is the position of the l̂ under vi �=0. The dash circle is
enlarged and presented in Figures 4(b) and 5(b), respectively. From (11) and (12) and given the hl̂(u) for vi =0 and vi �=0, the
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Figure 5. The KCC tolerance region and simultaneous confidence region for vi �=0: (a) KCC tolerance region and simultaneous confidence region
and (b) Intersection areas for both cases

Table IV. The results from the simultaneous control strategy

Case �′ � 	 % non-conforming unit

vi =0 0.0799 0.9487 0.0842 0.11
vi �=0 0.5694 0.9427 0.6040 0.14

Monte Carlo simulation is used to determine the areas of �′
vi=0

, �′
vi �=0

, �vi=0, and �vi �=0 in Figures 4(b) and 5(b), respectively.

The results are shown in Table IV.
From Table IV, the corrective action needs to be performed for both cases since the 	’s are less than the threshold values

of 
 of 0.70 and 0.95 corresponding to vi =0 and vi �=0, respectively. Although, the estimated l̂ under vi �=0 is located inside
the tolerance ellipse in Figure 5(b), the result of 	 shows that this set of the tooling deviations produces more than 5% of
non-conforming units, which is not acceptable. In addition, the fractions of non-conforming units are higher than 5% for both
cases, which confirms the need for the corrective action.

4. Summary

In this paper, a new methodology was developed to determine when tooling adjustments are essentially needed based on product
quality specification limits and the acceptable fraction of non-conforming products. In the paper, a linear fault model is proposed
to determine the geometric relationship between part quality measurements and fixture locating position deviations. Based on
this linear model, a least-square estimation and a linear mixed model are used to estimate the potential mean-shift faults and
assess the variance of these estimations. A simultaneous confidence interval is constructed to determine the mean-shift estimation
region under the given false alarm rate. Furthermore, by considering the estimation uncertainty, a decision strategy is proposed
to determine when a tooling adjustment is essentially needed for ensuring the acceptable fraction of non-conforming units and
meanwhile for avoiding unnecessary tooling adjustments. A case study using an autobody assembly process was conducted to
illustrate the implementation procedures and the effectiveness of the developed methodology.

The proposed methodology can also be applied to a general multi-station assembly process. It is known that a state-space
model has been widely used for effectively modeling the variation propagations in a multi-station assembly process14, which
can be further transferred into a linear regression model that is used in the paper. The detailed relationship between a linear
regression model and a state-space model for a multistage manufacturing process and a linear regression model can also be
found in Reference22.

Furthermore, it should be notified that the proposed strategy will bring forth direct savings in the production cost by avoiding
unnecessary tooling adjustments. Extensive future research is still needed to determine the amount of adjustments of individual
tools by considering the production cost associated with each tool adjustment. For this purpose, an optimal objective function
needs to be defined for achieving an optimal tooling adjustment strategy, such as minimizing the total number of adjustments
over the production cycle23, and minimizing the total production variations8, and minimizing the number of resetting tooling
components24.
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Appendix A: Mean faults estimation

This appendix provides the derivations of l̂ and Rl̂ for each case.

(1) For non-random tooling deviations, vi =0, ∀i. The least-square estimation is applied to the linear model in (4) and the results
of the estimation are expressed as follows:
The estimated mean shift, l̂ is:

l̂= (CTC)−1CTy

=

⎛
⎜⎜⎜⎝[CT . . . CT]

⎡
⎢⎢⎢⎣

C

...

C

⎤
⎥⎥⎥⎦
⎞
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−1

[CT . . . CT]
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y1

...

yn

⎤
⎥⎥⎥⎦

=
(

n∑
i=1

CTC

)−1

CT
n∑

i=1
yi = (nCTC)−1CT

n∑
i=1

yi = 1

n
(CTC)−1CT

n∑
i=1

yi . (A1)

The covariance of the estimated mean shift, Rl̂, is:

Rl̂ = var(l̂)=�2
w(CTC)−1

= �2
w

⎛
⎜⎜⎜⎝[CT . . . CT]

⎡
⎢⎢⎢⎣

C

...

C

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

−1

= 1

n
�2

w(CTC)−1. (A2)

(2) For random tooling deviations, vi �=0,∀i. As the covariance of y is not diagonal, the linear mixed model is used to estimate
the mean shift and its covariance. First, the covariance of y is determined by taking covariance on both sides of (4) and
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the result is the following:

Ry = var(e)=var

⎛
⎜⎜⎜⎝
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Cv1 +w1
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By applying the linear mixed model, the estimated l is determined as follows:

l̂= (CTR−1
y C)−1CTR−1

y y=
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The covariance of l̂ is determined as

Rl̂ = var(l̂)= (�TR−1
y C)−T =
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Appendix B: Tolerance allocation21

To find a function representing the ellipse f (u,r,�), suppose KPCs are the deviation distance from the nominal of each measurement
point and are represented by yi for i=1,. . ., m. The relationship between KPCs and KCCs is linear and expressed as Cu=y, where
C is a coordinate transformation from the fixture error vector to the part locating error and u is a p-dimensional vector of
tooling deviation. Let {Tyi }m

j=1 be the allowable tolerances for the KPCs. Suppose that r= [�P1 ,. . . ,�Pp ]T is a vector of the allocated

variances of the allowable tolerances for the KCCs. The tolerances for KCCs are allocated the following steps:

Step 1: For i=1,. . ., m, define zi ≡ci / Tyi where ci = [Ci1 . . . Cip].

Step 2: For i=1,. . ., m, set z̄i ≡ [z2
i,1 . . . z2

i,p]T.

Step 3: Cost function: F(r)=∏p
j=1 1 / �Pj .

Step 4: For given �, K is the 1−� percentile of the �2
p(�). Minimize F(r) subject to ȳTr≤1 / K (i=1,. . ., 9) and �P1 ,. . . ,�Pp>0.

The allocated tolerances of xi is determined by the ith element of r. Therefore, the tolerance ellipsoidal region for the KCCs
is determined as

∑p
j=1(u2

j / �2
Pj

)≤K , i.e. f (u,r,�) is represented by
∑p

j=1 u2
j / �2

Pj
=K .
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