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Genetically Determined Amerindian Ancestry Correlates
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Objective. To assess whether genetically deter-
mined Amerindian ancestry predicts increased presence
of risk alleles of known susceptibility genes for systemic
lupus erythematosus (SLE).

Methods. Single-nucleotide polymorphisms
(SNPs) within 16 confirmed genetic susceptibility loci

for SLE were genotyped in a set of 804 Mestizo lupus
patients and 667 Mestizo healthy controls. In addition,
347 admixture informative markers were genotyped.
Individual ancestry proportions were determined using
STRUCTURE. Association analysis was performed us-
ing PLINK, and correlation between ancestry and the
presence of risk alleles was analyzed using linear regres-
sion.

Results. A meta-analysis of the genetic associa-
tion of the 16 SNPs across populations showed that
TNFSF4, STAT4, ITGAM, and IRF5 were associated with
lupus in a Hispanic Mestizo cohort enriched for Euro-
pean and Amerindian ancestry. In addition, 2 SNPs
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PhD: Instituto de Investigaciones Biomédicas de la Universidad
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within the major histocompatibility complex region,
previously shown to be associated in a genome-wide
association study in Europeans, were also associated in
Mestizos. Using linear regression, we predicted an
average increase of 2.34 risk alleles when comparing
an SLE patient with 100% Amerindian ancestry versus
an SLE patient with 0% Amerindian ancestry (P <
0.0001). SLE patients with 43% more Amerindian an-
cestry were predicted to carry 1 additional risk allele.

Conclusion. Our results demonstrate that Amer-
indian ancestry is associated with an increased number
of risk alleles for SLE.

Differences in the prevalence and severity of
systemic lupus erythematosus (SLE) between various
ethnicities are well documented. In particular, individu-
als of self-reported Hispanic (or Mestizo), Asian, or
African ancestry in the US and Europe have been shown
to have an earlier age at onset of SLE, a higher
frequency of severe SLE-associated renal disease, and a
higher frequency of relapses of SLE than individuals of
European ancestry (1–8). While socioeconomic factors
play a role in the increased morbidity and mortality
among Hispanic individuals, the question of whether the
presence of genetically defined ancestry correlates with
an increased frequency of risk alleles for lupus has never
been analyzed. We have previously shown that an in-
creased proportion of Amerindian genome increases the
risk for SLE (9), and this observation was confirmed in
another study (10). Further, a strong genetic association
between IRF5 and SLE in Mexican individuals, com-
bined with an increased frequency of homozygosity for
the risk haplotype, has been reported (11).

In the present work we analyzed 804 Mestizo
individuals with lupus for genetic association with poly-
morphisms within 16 confirmed SLE susceptibility loci
(12–31) and investigated whether the frequency of risk
alleles correlates with a higher proportion of genetically
determined Amerindian ancestry as defined using a set
of admixture informative markers. We found that, in
Mestizo SLE patients, Amerindian ancestry increases
the odds of having more lupus risk alleles as compared
with European ancestry.

PATIENTS AND METHODS

Cases and controls. A total of 804 patients with SLE
and 667 healthy controls were studied. Three hundred seventy-
three of the SLE cases and 272 of the controls were from the
Lupus Family Registry and Repository at Oklahoma Medical
Research Foundation (OMRF) (http://lupus.omrf.org). The
great majority of these individuals are of Mexican ancestry and

were born in and/or living in the US. Two hundred forty-two
SLE cases and 240 controls were from a multicenter collabo-
ration in Argentina (the Argentine Lupus Collaboration [Ap-
pendix A]); these subjects have been previously reported and
were used in analyses of genetic associations for STAT4 (12),
IRF5 (13), BANK1 (19), and TNFSF4 (20). The remaining
subjects are individuals reported here for the first time, from
the Latin American Collaboration on Lupus, which is enrolling
and studying SLE patients from Latin America on an ongoing
basis. These subjects comprise 101 SLE cases and 64 controls
from throughout Mexico (specifically, from the cities of
Guadalajara, Morelia, Culiacan, and Mexico City) and 88 cases
and 91 controls from Lima, Peru. All cases fulfilled the
American College of Rheumatology classification criteria for
SLE (32).

Genotyping. Genotyping was performed using the Il-
lumina Custom Bead system on an iSCAN instrument. Geno-
types for the following single-nucleotide polymorphisms
(SNPs) within 16 confirmed susceptibility genes for SLE were
used: rs2476601 (PTPN22), rs1801274 (FCGR2A), rs2205960
(TNFSF4), rs7574865 (STAT4), rs231775 (CTLA4),
rs11568821 (PDCD1), rs6445975 (PXK), rs10516487 (BANK1),
rs907715 (IL21), rs3131379 (MSH5, within the class III major
histocompatibility complex [MHC] region), rs1270942 (CFB,
within the class III MHC region), rs2070197 (IRF5),
rs13277113 (C8ORF13-BLK region), rs1800450 (MBL2),
rs4963128 (KIAA1542), and rs1143679 (ITGAM) (12–31).

In addition, 347 admixture informative markers were
used to genotype all individuals (33–35) (see Supplementary
Table 1, available in the online version of this article at
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1529-
0131). We selected a panel of admixture informative markers
that had large frequency differences between European pop-
ulations and Amerindian populations. In addition, the inter-
marker distance between 2 adjacent admixture informative
markers was at least 1 Mb, to ensure that the admixture
informative markers were not in linkage disequilibrium in the
parental populations.

Population structure determination. Population struc-
ture was analyzed with STRUCTURE, version 2.3.1 (36), which
implements a model-based clustering method for inferring
population substructure using admixture informative markers.
We set most of the parameters to their default values as
advised in the user’s manual. Specifically, we chose the admix-
ture model and the option of correlated allele frequencies
between populations, as suggested by Falush et al (36). The
range of possible populations we tested was K 3–5, as described
(35). The best-fitting K was 4, as a mixture of 4 populations:
African, European, Asian, and Amerindian.

We selected genotypes from European, Amerindian,
Asian, and African individuals in the HapMap version 3 data
set (37) as potential ancestral populations. Subjects were
excluded if they showed �10% African or Asian ancestry, in
order to enrich for 2 ancestral populations, European and
Amerindian. Among the samples, 45 individuals were excluded
from further analyses.

Principal components analysis. To account for con-
founding population substructure or admixture in the studied
population, we used principal components analysis (38–41) as
implemented in HelixTree, using genotype data from the 347
admixture informative markers. The first 3 principal compo-
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nents explained 71.7% of the variance among the first 10
principal components and had eigenvalues of 42.1, 21.3, and
8.3. The eigenvalues for principal components 4–10 showed a
plateau, suggesting that the first 3 principal components
accounted for most of the populations’ substructure in this
analysis. All individuals who were not clustering with the main
Amerindian cluster (more than 4 SD from cluster centroids)
were excluded from subsequent analysis. Using this method,
we identified 23 outlier individuals (15 healthy controls and 8
SLE patients).

Statistical genetic analysis. The genetic association
analysis was performed using PLINK, version 1.0.7 (42). First,
quality control filters were applied to remove SNPs with
differential rates of missing data between cases and controls
(P � 0.05), significant deviation from Hardy-Weinberg equili-
brium in controls (P � 0.001), or a minor allele frequency of
�1%. Allele frequencies of the remaining SNPs (16 of 16)
were tested by chi-square test for significant association within
each study population. The meta-analysis of all of the popula-
tions was conducted using standard methods based on the
Cochran-Mantel-Haenszel test (43). The Breslow-Day test
(44) was performed for all SNPs, to assess heterogeneity of the
odds ratios in different populations. The pooled odds ratio was
calculated according to a fixed-effects model (Mantel-
Haenszel meta-analysis) for SNPs with homogeneity between
populations, as well as a random-effects model (DerSimonian-
Laird) when heterogeneity was present, using StatsDirect
software, version 2.4.6. Alternatively, we also derived principal
components on a population-specific basis using HelixTree,
version 7.2.3, and applied an adjustment for the first 5 principal
components.

Regression analysis. We used linear regression to
model the relationship between the proportion Amerindian
ancestry and the number of SLE risk alleles. Our initial model
included proportion Amerindian ancestry, sex, and the inter-
action between sex and Amerindian ancestry as predictor
variables for the number of SLE risk alleles. There was no
evidence of interaction, so we refit the model with the 2
remaining predictor variables. Since we were interested in the
association between the number of risk alleles and the propor-
tion Amerindian ancestry, we removed sex from the model as
neither predictor variable was significant while both were fit.
Our final model included the proportion Amerindian ancestry
as a predictor of the number of SLE risk alleles. All linear
modeling assumptions were assessed and met.

RESULTS

Population structure analyses showed the follow-
ing mean proportions of Amerindian ancestry for each
of the sets included (Table 1): Amerindian ancestry was
30.7% among OMRF Hispanics, 24.7% among Argen-
tines (consistent with what we had described previously)
(45), 52.9% among Mexicans, and 72.6% among Peru-
vians. OMRF Hispanics differed from the Latin Amer-
ican subjects from Mexico, Peru, and Argentina in that
the former group had a higher proportion of North
European ancestry, suggesting that some of the samples
may include second- or third-generation Mexican Amer-
icans where inclusion of the European American genetic
pool, mainly of North European ancestry, has occurred.
On the other hand, the Latin American groups had a
substantial proportion of South European ancestry (Ta-
ble 1), as expected by the known history of these
populations.

For individual ancestry proportions, there were
no differences between cases and controls in the 4
clusters. In addition, we did not observe any differences
after comparing the clusters with and without prior
populations.

We first determined the genetic association with
each of the 16 SLE SNPs, for the overall group of
Hispanic cases and the overall group of Hispanic con-
trols. Association was observed for TNFSF4, STAT4,
IRF5, MSH5, CFB, and ITGAM, and a trend toward
association was observed for PDCD1 (Table 2). The
SNPs for C8orf13-BLK, BANK1, and PXK showed a
significant degree of heterogeneity across the different
country sets (P � 0.0001, P � 0.023, and P � 0.001,
respectively), and this could have contributed to the fact
that the final meta-analysis did not show a genetic
association for these variants. This is particularly true for
the C8orf13-BLK SNP, but it might not explain the

Table 1. Average ancestry proportions of the population sets studied

Population No. of individuals Amerindian South European North European African

Yoruba (YRI; HapMap version 3) 167 0.001 0.000 0.001 0.998
European (CEU; HapMap version 3) 165 0.003 0.003 0.994 0.000
Spain 1,062 0.013 0.868 0.114 0.004
Portugal 386 0.008 0.863 0.126 0.003
Mexico 165 0.529 0.353 0.096 0.022
Peru 179 0.726 0.190 0.052 0.032
Argentina 482 0.247 0.645 0.100 0.008
OMRF Hispanic* 645 0.307 0.454 0.153 0.085

* OMRF � Oklahoma Medical Research Foundation.
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results for BANK1 and PXK, which could relate to
insufficient power for detection of the genetic associa-
tion.

We have previously shown that Amerindian an-
cestry increases the risk for lupus (9), and this was later
confirmed (10). Therefore, we investigated whether the
proportion of Amerindian ancestry in an individual had

any effect on the number of risk alleles. Linear regres-
sion (Figure 1) showed that, on average, one could
predict an increase of 2.34 SLE risk alleles in a subject
with 100% Amerindian ancestry as compared with a
subject with 0% of such ancestry (P � 0.0001), and an
individual with 43% more Amerindian ancestry would
have, on average, 1 additional risk allele.

Table 2. Meta-analysis of the genetic association of 16 risk gene polymorphisms in Hispanic subjects*

Gene/SNP
GG,

no. (%)
AG,

no. (%)
AA,

no. (%)
Allele G,
no. (%)

Allele A,
no. (%) OR (95% CI) P

PTPN22/rs2476601
SLE patients (n � 794) 712 (89.7) 81 (10.2) 1 (0.1) 1,595 (94.8) 83 (5.2) 1.233 (0.866–1.754) 0.2832
Controls (n � 648) 596 (91.8) 49 (7.6) 3 (0.6) 1,241 (95.6) 55 (4.4)

FCGR2A/rs1801274
SLE patients (n � 767) 184 (25.8) 385 (50.2) 198 (24) 781 (51) 753 (49) 0.885 (0.762–1.027) 0.1182
Controls (n � 640) 178 (22.7) 317 (49.5) 145 (27.8) 607 (47.4) 673 (52.6)

TNFSF4/rs2205960
SLE patients (n � 794) 310 (39) 381 (48) 103 (13) 1,001 (63) 587 (37) 1.488 (1.269–1.745) 1.65 � 10�6

Controls (n � 649) 329 (50.7) 265 (40.8) 55 (8.5) 923 (71) 375 (28.9)
STAT4/rs7574865

SLE patients (n � 727) 268 (36.9) 350 (48.1) 109 (15) 886 (61) 568 (39) 1.41 (1.2–1.659) 5.81 � 10�5

Controls (n � 595) 255 (42.9) 276 (46.4) 64 (10.8) 786 (66.1) 404 (33.9)
CTLA4/rs231775

SLE patients (n � 783) 294 (37.5) 364 (46.5) 125 (16) 952 (60.8) 614 (39.2) 0.976 (0.838–1.137) 0.7882
Controls (n � 640) 246 (38.4) 300 (46.9) 94 (14.7) 792 (62) 488 (38)

PDCD1/rs11568821
SLE patients (n � 778) 671 (86.2) 102 (13.1) 5 (0.6) 1,444 (92.8) 112 (7.2) 0.758 (0.576–0.997) 0.0571
Controls (n � 636) 529 (83.2) 99 (15.6) 8 (1.3) 1,157 (91) 115 (9)

PXK/rs6445975
SLE patients (n � 785) 332 (42.3) 350 (44.6) 103 (13.1) 1,114 (64.6) 556 (35.4) 1.077 (0.8–1.45) 0.622
Controls (n � 647) 290 (44.8) 280 (43.3) 77 (11.9) 860 (66.5) 434 (33.5)

BANK1/rs10516487
SLE patients (n � 753) 536 (71.2) 190 (25.2) 27 (3.6) 1,262 (83.8) 244 (16.2) 0.711 (0.425–1.189) 0.194
Controls (n � 612) 402 (65.7) 179 (29.2) 31 (5.1) 983 (80.3) 241 (19.7)

IL21/rs907715
SLE patients (n � 781) 353 (45.2) 345 (44.2) 83 (10.6) 1,051 (67.3) 511 (32.7) 1.107 (0.942–1.299) 0.2298
Controls (n � 635) 307 (48.3) 267 (42) 16 (19.6) 881 (69.4) 389 (30.6)

MSH5/rs3131379
SLE patients (n � 796) 692 (86.9) 102 (12.8) 2 (0.3) 1,486 (93.3) 106 (6.7) 1.773 (1.255–2.505) 0.0013
Controls (n � 651) 602 (92.5) 48 (7.4) 1 (0.2) 1,252 (96.2) 50 (3.8)

CFB/rs1270942
SLE patients (n � 796) 698 (87.7) 96 (12.1) 2 (0.3) 1,492 (93.7) 100 (6.3) 1.881 (1.311–2.698) 0.0007
Controls (n � 652) 608 (93.3) 43 (6.6) 1 (0.2) 1,259 (96.5) 45 (3.5)

IRF5/rs2070197
SLE patients (n � 768) 507 (66) 233 (30.3) 28 (3.6) 1,247 (81.2) 289 (18.8) 2.058 (1.632–2.595) 1.65 � 10�9

Controls (n � 536) 421 (78.5) 104 (19.4) 11 (2.1) 946 (88.2) 126 (11.8)
C8orf-BLK/rs13277113

SLE patients (n � 753) 232 (31) 362 (48.3) 155 (20.7) 826 (55.1) 672 (44.9) 1.228 (0.771–1.955) 0.3869
Controls (n � 611) 252 (41.2) 262 (42.9) 97 (15.9) 766 (62.7) 456 (37.3)

MBL2/rs1800450
SLE patients (n � 793) 510 (64.3) 253 (31.9) 30 (3.8) 1,273 (80.3) 313 (19.7) 1.058 (0.878–1.276) 0.5831
Controls (n � 648) 424 (65.4) 195 (30.1) 29 (4.5) 1,043 (80.5) 253 (19.5)

KIAA1542/rs4963128
SLE patients (n � 762) 375 (49.2) 311 (40.8) 76 (10) 1,061 (69.6) 463 (30.4) 0.983 (0.835–1.157) 0.8761
Controls (n � 632) 358 (51.7) 280 (40.4) 55 (7.9) 996 (72) 390 (28)

ITGAM/rs1143679
SLE patients (n � 795) 538 (67.7) 234 (29.4) 23 (2.9) 1,310 (82.4) 280 (17.6) 2.232 (1.767–2.818) 6.22 � 10�11

Controls (n � 650) 541 (83.2) 102 (15.7) 7 (1.1) 1,184 (91.1) 116 (8.9)

* SNP � single-nucleotide polymorphism; OR � odds ratio; 95% CI � 95% confidence interval; SLE � systemic lupus erythematosus.
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DISCUSSION

It has been consistently shown that patients of
Mestizo (Hispanic) descent have more severe clinical
lupus disease, severe SLE-related renal disease, and
earlier age at onset. Mestizos are a very heterogeneous
group of individuals with different cultural backgrounds
but in general a common mother tongue, Spanish. The
complexity of the Mestizo population does not allow for
appropriate genetics studies unless such complexity is
taken into consideration (1). With the aim of investigat-
ing whether genes identified as being related to lupus in
Europeans also play a role in the disease in Mestizos, we
selected a group from Latin American countries with an
enrichment of Amerindian and European ancestries
based on population history, and a group of Hispanic
subjects from the US, primarily originating from Mexico.

In general, the populations of Mexico, Peru, and
Argentina have a lower proportion of African ancestry
and are primarily of European and Amerindian ances-
try. Our collection also includes samples from southern
Europe (Spain and Portugal) as a reference, so we were
able to discern between North and South Europeans. In
this regard, Hispanic subjects from the OMRF showed a

high proportion of North European ancestry, in accor-
dance with recent inclusion of a European American
gene pool.

Testing of the 16 SNPs representing risk variants
of lupus susceptibility genes described in Europeans
confirmed the genetic associations previously found for
IRF5, STAT4, TNFSF4, ITGAM, and to a lesser degree,
the 2 SNPs within the MHC region and PDCD1. Inter-
estingly, the 2 SNPs used here for the MHC were the
same ones included in the genome-wide association
study, and in that study the highest genetic association in
Europeans was detected with those genes (16). In the
present study, the genetic associations of the non-MHC
variants were stronger than for the MHC, suggesting two
possibilities: either the MHC effect originates from the
European admixture on the Amerindian background
and it is “diluted,” and/or other Amerindian genes play
a very important role in disease susceptibility in Hispan-
ics and in some way substitute for the strong effect of the
MHC in Europeans. However, these 2 SNPs in the MHC
region do not tag MHC haplotypes and cannot be seen
as representing the main effect on the MHC region in
this population. For this, dense coverage of the region

Figure 1. Scatterplot of the input data, overlaid with the fitted regression line, 95% confidence limits, and
95% prediction limits. The 95% confidence limits in the plot are pointwise limits that cover the mean
number of risk alleles for a particular proportion of Amerindian ancestry with probability of 0.95. The 95%
prediction limits illustrate the pointwise limits, with probability of 0.95, for a future measurement of risk
alleles in relation to a given proportion of Amerindian ancestry.
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would be required. Such studies are under way; we are at
present performing a genome-wide association study in
Hispanic Mestizo individuals to address this question.

With regard to the remaining genetic association
it is important to point out that this replication is not
completely independent: the samples from the Argen-
tine subjects have been used previously in our work on
BANK1, IRF5, TNFSF4, and STAT4 (12,13,19,20). Our
previous work (9) showed an increased frequency of
Amerindian genome in patients with SLE in the same
set of Argentine subjects, whereas in the present study
we observed a very similar average proportion of Am-
erindian genome between cases and controls; however,
we also have included new samples in the present study.
The previous work used a completely different, and
smaller, set of admixture informative markers. At this
point, we are unable to explain the reason for the
discrepancy.

Because the sets of Mexican and Peruvian sam-
ples used for the first time in this study were each
relatively small, the associations were not discernible at
the individual cohort level. In the Peruvian sample there
was weak association with FCGR2A (P � 0.02), IRF5 (P
� 0.004), and ITGAM (P � 0.01), while association with
BANK1 (P � 0.0002) and ITGAM (P � 0.001) was
shown in the Mexican set. Most of the contribution to
the genetic associations observed in the meta-analysis
was provided by the Argentine and the OMRF Hispanic
cohorts.

PDCD1 warrants further discussion. We identi-
fied PDCD1 as a susceptibility gene for lupus after
linkage analysis in Icelandic and Swedish multiplex
families, and we described a polymorphism in intron 4
associated with SLE, with replication in European
American, Swedish, and Mexican cases (31). A second
independent study replicated this genetic association in
Mexican pediatric SLE patients (46), and a correlation
between surface levels of PDCD1 protein (programmed
death 1 [PD-1]) in CD4�CD25� T cells and the asso-
ciated variants (known as PD-1.3) was recently described
(47). In the present study, the association was observed
only in the Argentine SLE cases and controls (P �
0.013), a set not previously analyzed for this polymor-
phism. Important, and possibly affecting our results, is
the fact that the Argentine set had the highest propor-
tion of European ancestry; this may also be the reason
the association was detectable in that set. Finally, no
association with CTLA4, IL21, MBL2, or KIAA1542 was
observed, while BLK showed, as mentioned above, ex-
tensive heterogeneity. The negative results for BLK in
the meta-analysis should be viewed with caution.

What is the significance of the increased risk,
among individuals with Amerindian genome, of carrying
risk alleles of lupus susceptibility genes identified in
Europeans? First, it is possible that in Hispanics/
Mestizos, the “European” risk alleles interact with genes
that are important on the Amerindian background. This
is somewhat reminiscent of what happens in New Zea-
land mouse strains, where the New Zealand white
background interacts with genes found in the New
Zealand black background, leading to a strong and florid
lupus-like disease in the resultant F1 strain (48,49). In
that scenario Mestizo individuals from Latin America
would, to some degree, behave as a sort of genetic F1,
where unknown genetic interactions might occur, lead-
ing to an increased risk of developing severe SLE in the
admixed population. On the other hand, our results
might also be explained by an enrichment of European
risk alleles due to positive selection.

From the data presented here we can suggest that
the admixture may in part be responsible for the in-
creased susceptibility to SLE, and that the Amerindian
background genome contributes to this increased risk.
Studies to identify genes of Amerindian origin that
contribute to the increased risk of the disease are clearly
warranted.
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