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SUMMARY. Cluster randomization trials with relatively few clusters have been widely used in recent years for evaluation of
health-care strategies. On average, randomized treatment assignment achieves balance in both known and unknown confound-
ing factors between treatment groups, however, in practice investigators can only introduce a small amount of stratification
and cannot balance on all the important variables simultaneously. The limitation arises especially when there are many con-
founding variables in small studies. Such is the case in the INSTINCT trial designed to investigate the effectiveness of an
education program in enhancing the tPA use in stroke patients. In this article, we introduce a new randomization design,
the balance match weighted (BMW) design, which applies the optimal matching with constraints technique to a prospective
randomized design and aims to minimize the mean squared error (MSE) of the treatment effect estimator. A simulation
study shows that, under various confounding scenarios, the BMW design can yield substantial reductions in the MSE for the
treatment effect estimator compared to a completely randomized or matched-pair design. The BMW design is also compared
with a model-based approach adjusting for the estimated propensity score and Robins-Mark-Newey E-estimation procedure
in terms of efficiency and robustness of the treatment effect estimator. These investigations suggest that the BMW design
is more robust and usually, although not always, more efficient than either of the approaches. The design is also seen to be
robust against heterogeneous error. We illustrate these methods in proposing a design for the INSTINCT trial.

KEY worDSs: Clustered randomized trial; Experimental design; Optimal full matching; Propensity score matching; Random-

ization study.

1. Introduction and Motivating Example

Cluster randomized trials have been widely used in the past
three decades for the evaluation of health care and educational
strategies, in which intact social units are selected as the units
of randomization. On average, randomized treatment assign-
ment avoids bias, achieves balance of both known and un-
known confounding factors between intervention groups, and
provides valid comparisons of competing intervention strate-
gies. There is much literature that discusses design methods
for cluster randomizations such as the completely randomized
design (Abdeljaber et al., 1991), matched-pair design (COM-
MIT, 1995), stratified design (Graham et al., 1984), and min-
imization design (Pocock and Simon, 1975). However, inves-
tigators can only introduce a small amount of stratification
in practice, which does not ensure balance on all important
variables, and post hoc adjustment for many confounders is
also problematic. These limitations are particularly important
when there are many confounding variables in a small study.

Tissue plasminogen activator (tPA) is a clot-busting drug,
which has been found to be an effective treatment for the
prevention of post-stroke disability if administered within a
three-hour time window of the onset of an ischemic stroke
(NINDS, 1995). However, the use of tPA has remained rel-
atively low. A randomized clinical trial, INSTINCT, was de-
signed in order to investigate the effectiveness of an education
program administered to hospital emergency departments in
enhancing tPA therapy for stroke patients. Historical data
were collected from 24 participating hospitals in Michigan re-
garding previous stroke volume and demographic variables.
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Hospitals were the units of randomization and those assigned
to the treatment group received educational interventions de-
signed to promote appropriate tPA use, whereas the other
hospitals served as controls. The primary outcome is the fre-
quency of appropriate tPA use in each hospital. Stroke vol-
ume at baseline (low versus high), population density (ur-
ban versus rural), age, and gender mix are cluster-level fac-
tors thought to be strongly associated with outcome. Among
these, stroke volume measured as number of stroke discharges
and population density were classified as binary. Percentage
of female (male) stroke patients who are older than 65 years is
used as a continuous measure. It is possible to create balance
on stroke volume and population density through stratified
randomization, however, it is not feasible to balance on all
covariates at the same time. As a result, direct estimation of
the treatment effect may be subject to bias due to possible im-
balance on confounding factors. To resolve this problem, this
article describes and evaluates a new randomization design
based on propensity score matching.

The method of propensity score matching has been widely
used in observational studies to control for bias (Rosen-
baum and Rubin, 1984; Gu and Rosenbaum, 1993; Ming
and Rosenbaum, 2000; Rosenbaum, 2002; Hansen, 2004).
The propensity score is defined as the conditional proba-
bility of a subject being assigned to the treatment group
given the observed covariates. Rosenbaum and Rubin (1984)
showed that exact matching of treated and control sub-
jects on the propensity score will balance all the observed
covariates. In nonrandomized experiments, the propensity
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score function is always unknown but the sample estimates
of the propensity score can be used. On the other hand, in
a randomized clinical trial, the true propensity score is often
a known function from the randomization scheme. For exam-
ple, in the simplest randomized trial, subjects are assigned to
treatment or control by the flip of a fair coin and the propen-
sity score is equal to one half for all the subjects and the two
treatment groups are perfectly matched on the true propen-
sity score (Joffe, 1999). However, especially in small studies,
substantial chance imbalances may still exist and yield some
(conditional) bias in the direct treatment effect estimator. Al-
though methods based on the estimated propensity score have
not been widely used in the randomized studies, it could have
some substantial advantages over the methods by using the
true scores under certain scenarios. Robins, Mark, and Newey
(1992) has shown that there are even theoretical advantages
to using estimated propensity scores.

We introduce a new randomization design, the balance
match weighted (BMW) design, which applies the optimal
full matching with constraints technique (Olsen, 1997) to the
given randomization with the general aim of reducing the
mean squared error (MSE) of the treatment effect estimator.
In this design, treated and control subjects are matched into
subsets based on their estimated propensity score and an over-
all estimate is constructed using a weighted sum of the subset-
specific estimates. In contrast to the existing stratified design,
which first stratifies and then randomizes within strata, the
BMW design first randomly assign the units to treatments
and then stratifies on the randomized sample. In an imple-
mentation of the design, this randomization-stratification pro-
cess is repeated M times in order to choose a randomization
that gives a good overall balance. In general, the BMW design
has two advantages. First, it reduces the chance imbalance
between the treatment groups in observed covariates through
optimal matching, and hence decreases the (conditional) bias
in the resultant estimator. Second, it controls for the increase
in variance due to matching by using the full matching with
constraints technique (Olsen, 1997), in which the choice of the
constraint, k, adjusts for the trade-off between the potential
gain in bias reduction and possible loss in precision. We ex-
amine various strategies for selecting M and k, seeking a good
choice that yields good results with respect to MSE. It is ob-
vious that MSE performance also depends on the inherent de-
gree of confounding, so we compared the BMW design with
the completely randomized design and matched-pair design
under different confounding scenarios. If there is no confound-
ing, the three design methods perform equally well. However,
if there is considerable confounding, the BMW design can re-
sult in a substantial reduction in the MSE of the treatment
effect estimator.

The design we propose is appropriate for the situation
where all units are available for randomization at the onset,
and cannot be applied to clinical trials with staggered entry.
Pocock and Simon (1975) proposed a sequential strategy, min-
imization design, which makes the assignment decision one
unit at a time, based solely on the covariate information of
previously assigned subjects. On the other hand, the mini-
mization design is not well suited for trials where all observa-
tional units are available for randomization at the onset.

The rest of the article is organized as follows. Notation
and models are presented in Section 2. The BMW design is
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outlined in Section 3 and Section 4 gives results of a simu-
lation study comparing the performance of the BMW design
with the completely randomized design, a matched-pair de-
sign, the model-based approach by adjusting for the estimated
propensity score, and the Robins-Mark-Newey E-estimation
procedure. Its performance under heterogeneous error is also
investigated. Section 5 outlines a case study and the article
concludes with discussion in Section 6.

2. Methods

In this section, we present the notation and problem formu-
lation as well as introduce some optimal matching techniques
employed in the proposed design.

2.1 Optimal Matching

Consider a study with the aim of assessing the effect of treat-
ment. Let N denote the number of subjects available for the
study. We assume that N is even and N/2 subjects are ran-
domized to each of the treatment and control groups, but
the method we propose could allow imbalance in the ran-
domized assignment. Thus, we suppose that a randomiza-
tion process divides the N subjects into a set T of N/2 sub-
jects to be treated and a set C of N/2 subjects to receive
the control. We also assume that a vector of r covariates,
X = (X1, Xs,...,X,)7T, is observed for each individual.

Similarity of covariates is measured through an estimated
propensity score. Writing Z = 1 for the treated subjects, and
Z = 0 for the control subjects, the (estimated) propensity
score distance between the treated unit ¢ and control unit jis
given by

di.j = |61 - 6]"7 (1)

where 31 is the estimate of the true propensity score, d; =
Pr(Z=1|X;), and is obtained from a model such as the
logistic regression model

d;

Pr(Z=1|X;;a)

,
=exp| o + Zanij
j=2

.
/ 1+ exp a1+Zanij . (2)
Jj=2

In a randomized clinical trial, the true propensity score
d; is typically determined by the randomization scheme and
known. We consider the estimated propensity score §; in
defining the distances with the aim of producing a design
that reduces the actual observed imbalance between treated
and control subjects. Matching assembles treated and con-
trol units that are as similar as possible into the same stra-
tum using the overall estimated propensity score distance
measure. Given T and C, we consider the collection P p
of all possible matchings, where a matching corresponds
to a collection of S strata comprised of matched subsets
{(ClaT1)7 (C‘Q7 T‘Q)7 ey (CVS',T‘S)}7 in WhiCh7 Ch Cz, ey CS is a
partition of C,T1,Ts,...,Ts is a partition of T, and 1 < S <
N/2. As is often done (e.g., Rosenbaum, 2002), we measure

the quality of a parti(szular matching as

A= w(|T.,|C) e T x T, (3)

s=1
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where

Tsxos: |8:_;5;|/‘Ts><ce‘

>

(i,7)€Ts xCg

is the average distance between the |T; x Cy| possible pairs in
the sth strata, and w(.,.) is a weight function. Thus, A is a
weighted sum of average distances and an optimal matching
minimizes A over Po p.

A full matching is one in which each stratum is comprised
of one treated (or control) subject matched to one or more
control (or treated) subjects so that min(|Ts[,|Cs|) = 1, for
s=1,2,...,5. Rosenbaum (2002, Lemma 2) showed that
if the weight function in (2) is neutral or favors small sub-
classes, then there is always a full matching that is optimal.
Among the class of full matchings with the weight function
w(|Ts|, |Cs|) = |Ts| + |Cs| — 1, equation (3) reduces to

A= Z|T\+\C’|—1)0TS><072 S -5l

s=1 (i,j)€Ts xCs
(4)

In this article, we use this total distance measure to evaluate
the quality of a matching. One potential drawback of the op-
timal full matching is that some of its matched subsets can be
very unbalanced with many controls to one treatment or vice
versa. The imbalance among full matching subsets decreases
the precision of the estimated treatment effect. One remedy
for this is to constrain the full matching so that the ratio of
the number of treated versus the number of controls in each
stratum is between a lower and upper bound. To accomplish
this, we choose an integer k € {1,2,..., N/2 — 1} and consider
the optimization problem

Minimize A = Z Z |25\1 - 3\] l, (5)

s=1 (i,j)€Ts xCy

over the class of full matchings subject to k=! < |T,]/|Cs| < k
We refer to the solution to this optimization problem as the
optimal full matching with constraint k. When k£ = 1, we ob-
tain the best matched-pair design with one treated unit and
one control unit in each stratum. This assignment leads to
a treatment effect estimator with minimum variance in the
linear model discussed in the next section, but can result in
relatively large bias. When k = N/2 — 1, there is no constraint
on the balance in the relative numbers of treated and control
units in any matched subset, the covariates are optimally bal-
anced so the bias of treatment effect estimator tends, in this
case, to be small, but the variance is larger. The BMW de-
sign we propose searches for the optimal full matching with
constraint k. The choice of k represents a trade-off between
bias and variance. In the next section, we examine the MSE
as a measure of this trade-off with a class of linear models.
For a specific model in this class, we can choose k to generate
a BMW design that achieves minimum MSE. It is observed
that the choice of k£ does not depend much on the specific
model.

2.2 Model

To appreciate the effect of treatment on response in a pooled
sample and matched sample, respectively, consider the follow-
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ing model: Let Y;,i = 1,2,..., N, represent responses of the
unit 4, conditional on a given treatment assignment 7', C, and
X7

y;:a+ﬁl(i€T)+ZWszj+€n (6)

i=1

where I(+) is the indicator function, 3 denotes the true treat-
ment effect, ¥1,72,...,7 are the confounding effects, and
€= (e1,€9,...,6x) is the vector of the measurement errors
with Ele|T,C, X] = 0, var[e|T,C, X] = 0?I,0% < 400 and [ is
the N x N identity matrix.

2.2.1 Pooled sample. Under model (6), the common treat-
ment effect estimator based on the unstratified pooled sample

is Byoot = Yr — Y, which has conditional expectation
BBy | T,C.X] =B+ 7(Xjr—-Xc),  (7)
j=1

where the subscripts C and T mean that the averages are
computed over the control and treatment groups, respectively.
The MSE (conditional on T, C, and X) is

Z’YJ iT —

2

+20?/N.
(8)

2.2.2 Matched sample. Under model (6), estimating the
treatment effect for the matched sample involves the compu-
tation of a weighted sum. In the sth matched subset (7}, C;),
the treatment effect estimator is Emam.s = Ur,
has conditional expectation

MS’E(ﬂW,; | T,C, X) Xc)

—Y¢,» which

E[B\stmta,s | T7 07 X] = ﬁ + Z Vi (Yst _ch.s ) (9)

Jj=1

The overall estimate can be constructed using a weighted sum,

S
ﬂstmta = g wsﬂstmtms,
s=1

where ZS w, = 1,w, > 0. It should be noted that this strat-
ified estimator can be modified to accommodate different
weighting methods. Two common choices are weighting in
proportion to the number of subjects that each subset con-
tains, (|7%|+ |Cs])/N (Cochran, 1968), or the inverse vari-
ance weighting, (1/|T.| + 1/|C,)71/ S0, (1/|Ty| + 1/|C, )
For the purpose of this discussion, the former weighting
method is considered, but it can be easily modified to handle
the latter. It follows that the MSE of the stratified estimator
(conditional on T',C, and X) can be written as

(10)

MSE(B\stmm | T’ 07 X)

s
D I > v (Xir, - Xje,)

s=1 j=1

IT\HCl 1 2
+Z ‘T€|+‘Cs| o°.
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With no confounding effects or chance imbalance in co-
variates, the pooled estimator is the unbiased estimate of the
treatment effect with minimum variance. In the presence of
confounding, stratification reduces the bias but increases the
variance. We use the MSE to measure the trade-off between
bias and variance.

3. The BMW Design

In a randomized trial with fixed small sample size N and many
confounding covariates, it may be impossible to produce bal-
ance on all of the variables simultaneously. In order to reduce
the actual observed imbalance as well as increase precision
of the estimator, we propose the BMW design. The design
with specified parameters k£ and M is defined algorithmically
as follows:

Step 1. Randomize half of the subjects to the treatment
group, and half to control to obtain sets T and C;

Step 2. Compute the estimated propensity scores and create
the |T'| x |C| matrix of estimated propensity score distances;

Step 3. Obtain the optimal full matching with constraint k
and record the total distance Ay;

Step 4. Repeat Steps 1 to 3 M times; choose the
randomized sample with minimum total distance Aj =
min(Ayg, Ao, ..., Aprg). The choice of M is discussed below.

It is clear that the choice of k represents a trade-off between
bias and variance. We use MSE as a measure of the trade-off.
The choice of k (k € (1,2,...,N/2 — 1)), which minimizes the
MSE of the treatment effect estimator, depends on the con-
founding effect v = (1,72, ..., ). If v were known and M is
fixed, it would be possible to compute the MSE for each k
based on the BMW design in Step 1 to 4 above. It would be
possible then to select the k£ that minimizes the MSE. In prac-
tice, of course, the true value of v is unknown; therefore in
the next section we use a simulation study to evaluate the ef-
fects of k on reducing the MSE under a variety of assumptions
about the size of the confounding effects. We find that k = 2
is a suitable choice under most of the confounding scenarios
considered.

Clearly, the larger M is, the better the matching the BMW
design attains. In the next section, we examine how the MSE
depends on M and find that most of the gain is attained by
relatively small M of 10 or 20 in the cases considered, and
we recommend a value of M in this range. It should also be
noted that, as M increases, the BMW design becomes more
deterministic.

The implementation of Step 3, which searches the optimal
full matching with constraint & (Olsen, 1997) is conducted us-
ing the Optmodel Procedure in SAS (Version 9.1.3.2). A simi-
lar program Optmatch in R has also been developed (Hansen,
2004).

There are alternative ways to adjust for the covariate im-
balance resulting from randomization. Since small sample
sizes do not allow for control of all variables by model-based
method, one possible approach, suggested by an associate edi-
tor, is to adjust the estimated propensity score in a regression
model such as:

Yi=a+BIGieT)+~0 +e:. (12)

Let BMB denote the ordinary least squares estimate of [
from (12). Our simulations and investigations suggest that
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the model-based approach seems to work well if the model
for the propensity score is appropriately specified, where, by
appropriately specified, we mean that the regression model
for the propensity score includes the same regression param-
eters and is of the same form as the true model for the
outcome variable Y. For example, if the true model is Y; =
a+BIGE€eT)+1X; +7%X? +e and we specify logit(;) =
logit(Pr(Z =11 X;;a)) = aq + a2 X; + a3 X7, then regression
adjustment using 25\, will tend to work well. In fact, if the con-
founding effects are large, 5y, p tends to be somewhat more ef-
ficient than the estimator obtained from the BMW approach.
On the other hand, the BMW approach is more robust if
the propensity score model is inappropriately specified as, for
example, if the same true model of Y holds and we specify
logit(0;) = logit(Pr(Z =1| X;; @) = a; + aeX;. This is ex-
amined further in the simulations of Section 4.

Robins et al. (1992) proposed another procedure based on
the propensity score in observational studies. TEISH" approach
is designed to provide a consistent estimator, 8, when the
model for propensity score d; is correctly specified. This esti-
mator is

i=1 i=1
At the suggestion of a reviewer, we also evaluate this approach
in the simulations of the next section.

4. Simulation Study

In order to assess the performance of the BMW design, we first
carried out a simulation study to compare it with a completely
randomized design and a matched-pair design. In doing so,
we considered a wide variety of settings and, for each setting,
estimated the MSE based on 1000 replications.

4.1 Structure of the Simulation

For each of N subjects, we generated a set of r covariates
X1, Xy,...,X,, where the covariates were drawn indepen-
dently from various distributions as described below. Given a
randomization of subjects to the two treatment groups, the
responses were generated conditional on the treatment assign-
ment (Z; =0 or 1) and the covariates (X;;), where Pr(Z; =
1| X;;) = 0.5. Specifically, the response was obtained from

Y, = B8Z; +Z’YjX7tj + &,

Jj=1

(14)

where ; '<! N(0,1) and i =1,2,..., N. In the simulations,
we considered the following:

e The true treatment effect was taken to be = 0.7

e The true confounding effects were v; =v,j=1,...,r
where v = 0.5,1.0,1.5. Note that the results we obtain
do not depend on the choice of 5. When the covariates
follows symmetric distributions, the results do not de-
pend on the signs of the components of v either.

e For the first three settings, we considered r =4 co-
variates selected from the following distributions:
(i) X1, X2, X3, X, %" Bernoulli(0.5); (1) X, X, "~
Bernoulli(0.5); X3, X, "~ N(0,0.25); (i) X1, Xo '
Bernoulli(0.5); X3, X4 o Bernoulli(0.66).
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e For the fourth case, we considered r = 8 covariates:
X1, Xo, X, X4, X5, X, X7, X <" Bernoulli(0.5)
e We consider sample size of N = 30, 60.

The completely randomized design assigns half of the units
at random to each of the two treatment groups. For this de-
sign, the treatment effect estimator is Bpopes = Y7 — Y ¢ and
the corresponding MSE (conditional on T, C, and X) is given
in (8). We also consider a matched-pair design in which each
unit is matched (so much as possible) to another unit based
on the first covariate X;. One unit in each pair is then ran-
domly assigned to treatment and one to control. The BMW
design, as described in the preceding section, creates an op-
timally matched sample for each constraint k, where k = 1,
2,...,N/2—1, and for each choice of M, this leads to the
weighted treatment effect estimator B\st'rata in (10) along with
its MSE (11). We further consider ﬁMB , from the model-based
approach by adjusting for the estimated propensity score (12)
and the Robins-Mark-Newey E estimator Be (13). Finally,
we examine the possible effects of homoscedastic error on the
BMW design by allowing the error variance to depend on the
first covariate X;.

4.2 Results

The average MSEs based on 1000 replications are summarized
in Table 1. From Cochran (1968), the true unconditional MSE

of Epwl is 207 /N, where o7 refers to the overall variability in
outcome Y. In this, one part, Z,‘ yivar(X

variability in the observed covariates X, X, ..

—Xjc), is due to
., X, and the

other to the conditional variations of Y given Xi, X, ..., X,.
Formally, the unconditional MSE is (from (8))
K 2 5
a _ S £ 2
MSE (Bpoot) = E[{AZ%(XM XkC)} + NU ‘|
c=1
- 2
= Z'y,%var(XkT —XkC) =+ NO'Z
k=1
203 (15)
=5

With prerandomization matching or postrandomization strat-
ification on covariates, the average MSE values are also ob-
tained in the simulation. A similar formula to (15) can be
obtained for the matched-pairs design, but formulas for the
BMW design are complicated. For the BMW design, the av-
erage MSE for each constraint k = (1,2,...,N/2 —1) were
examined in the simulations, but only those for k¥ = 1,2,3
are displayed since the MSE changes little when k increases
over three. The percent reduction in MSE is 100 x (MSE —
MSEp,w)/ MSE, where MSE%,y, corresponds to the mini-
mal value of MSE for each k in the BMW design, and MSE
refers to the MSE value for the design to which BMW is be-
ing compared (e.g., the completely randomized design or the
matched-pair design).

It is interesting to examine how the MSE of the treat-
ment effect estimator is affected by various parameter set-
tings. Overall, the BMW design shows significant reductions
in MSE as compared to both the completely randomized and
matched-pair designs.
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4.2.1 Confounding effects ;. Table 1 reveals that as the
confounding effects, measured by . ~;, increase, the aver-
age MSEs generally increase. However, the MSE in the BMW
design increases much more slowly than the MSE in the com-
pletely randomized or matched-pair design. This suggests that
the BMW design becomes much more effective in reducing
the MSE when confounding effects increase. Specifically, as
we raise 22:1 7, from 2.0 to 6.0 for Bernoulli-distributed co-
variates (Table 1), the MSE reduction of the BMW design
with &k = 2 compared to the matched-pair design varies dra-
matically from 5.96% to 53.77% for M =5, from 7.50% to
54.59% for M = 10, and from 9.36% to 56.10% for M = 20.
An even larger reduction in MSE arises when comparing the
BMW design with the completely randomized design.

4.2.2 The choice of the constraint k. We now examine the
MSE as a function of k. When the model contains four co-
variates of various forms (Table 1) and there is relatively
little confounding such as 22:1 v; = 2.0, then the MSEs
corresponding to k = 1 are slightly smaller than those corre-
sponding to k = 2. As thl 7, increases, however, a greater
reduction in MSE due to constraint & = 2 becomes appar-
ent. Intuitively, for a small sample with strong confounding
effects, bias reduction is more important than variance re-
duction, so the larger value of k (k= 2) is more efficient.
However, when the number of covariates is r = 8, the con-
straint £ = 2 minimizes the MSE for all confounding effects
considered.

4.2.3 Number of replication M. The MSE is obviously a de-
creasing function of M for given v and k. However, when
it comes to percent reduction in MSE attained from us-
ing the BMW design as compared to the completely ran-
domized design or matched-pair design, simulations suggest
an interesting interplay between the number of replica-
tions, M, and the confounding effect Zj ;. The results
suggest that if there is little confounding (23:1 v; = 2.0)
and the covariates are independently Bernoulli distributed
(Table 1), the percent reduction in MSE of the BMW de-
sign versus the matched-pair design increases from 7.96% to
10.29% to 13.46% for M from 5 to 10 to 20, with k = 1. If
there is relatively more confounding (Z;:1 v; = 6.0), the per-
cent reduction in MSE increases more modestly from 53.77%
to 54.59% to 56.10% with M, while using matching with con-
straints k = 2. Similar trends are seen in comparing the BMW
design with the completely randomized design or using differ-
ent covariate distributions. We conclude that, when confound-
ing effects are relatively strong, the BMW design even with
relatively small M is very effective in reducing MSE. A good
compromise value of M is M = 10 for the cases considered.

4.2.4 Covariate settings. There are four covariate settings
examined in the simulation studies. The results suggest that,
in situations where existing designs often fail in producing bal-
ance across covariates, the BMW design provides a useful ap-
proach. Gains in efficiency are substantial when the covariates
are Bernoulli variables with important, but somewhat more
modest gains, when the covariates include continuous vari-
ables. For given 7, the gains due to the BMW design are sim-
ilar for symmetric and asymmetric Bernoulli distributions for
the covariates. Finally, when the number of Bernoulli covari-
ates increases from four to eight, the BMW design achieves a
larger reduction in MSE.
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Table 1
Percent reductions in the MSE of treatment effect estimator for the BMW design compared to a completely randomized design
(CR) and matched-pair design (MP). Sample size N = 30 subjects. Number of replications = 1000.

MSE percent reduction(%)
(BMW vs. CR design)

MSE percent reduction(%)
(BMW vs. MP design)

MSE MSE
v > M  (CR) k=1 k=2 k=3 (MP) k=1 k=2 k=3
X1, X0, X3, Xy P Bernoulli(0.5)

5 12.21 10.30 6.87 7.96 5.96 2.37
(0.5, 0.5, 0.5, 0.5) 2 10 0.166 14.43 11.77 7.14 0.158 10.29 7.50 2.64
20 17.45 13.54 8.81 13.46 9.36 4.40
5 35.61 4358  39.67 24.57  33.90 29.33
(1.0, 1.0, 1.0, 1.0) 4 10 0280 4037 4445  41.74 0.239 30.15 34.92 31.75
20 50.39 48.66  46.21 41.87  39.86 36.99
5 45.39 61.58 57.94 34.29 53.77 49.39
(1.5, 1.5, 1.5, 1.5) 6 10 0450 5219  62.26 59.02 0.374 4247 54.59 50.69
20 58.43 63.52 60.64 49.97  56.10 52.64
X1, X5 %" Bernoulli(0.5); X5, X, %" N(0,0.25)
5 8.77 5.67 1.09 4.45 1.21 ~3.59
(0.5, 0.5, 0.5, 0.5) 2 10 0.155 9.46 5.85 1.66 0.148 5.17 1.40 —2.99
20 12.17 7.74 3.52 8.01 3.38 ~1.05
5 24.37  30.79 27.29 13.20 20.58 16.56
(1.0, 1.0, 1.0, 1.0) 4 10 0218 2889 3240 29.18 0.190 18.39 2242 18.73
20 32.85 33.09  30.13 22.94  23.22 19.82
5 35.91 50.61 47.45 19.56 38.01 34.04
(1.5, 1.5, 1.5, 1.5) 6 10 0316 4298 5208 4845 0.252 28.43  39.85 35.29
20 48.35 51.58  48.30 35.17  39.22 35.10
X1, X Sl Bernoulli(0.5); X3, X, S Bernoulli(0.66)
5 12.11 12.08 7.31 8.03 8.00 3.01
(0.5, 0.5, 0.5, 0.5) 2 10 0.165 14.93 12.99 8.78 0.158 10.98 8.96 4.55
20 16.13 12.69 8.72 12.24 8.64 4.48
5 32.21 40.76  36.77 20.97  30.94 26.29
(1.0, 1.0, 1.0, 1.0) 4 10 0267  37.92 43.13 39.39 0.229 27.63  33.71 29.34
20 41.88  44.14 4122 32.25 34.88 31.48
5 50.98 61.68 59.36 40.15 53.20 50.37
(1.5, 1.5, 1.5, 1.5) 6 10 0430  50.63 59.12 55.57 0.352 42.75 52.60 48.48
20 55.05 59.33 56.08 4787 52.84 49.07
X1, X, X3, X4, X5, Xo, X7, Xs ' <" Bernoulli(0.5)
5 17.35 23.93 18.68 10.06 17.21 11.49
(0.5, 0.5, 0.5, 0.5, 4 10 0.204 18.63 24.30 19.63 0.187 11.44 17.62 12.53
0.5, 0.5, 0.5, 0.5) 20 22.65 25.22 19.42 15.82 18.62 12.30
5 28.74 5241 52.21 23.39  48.83 48.62
(1.0, 1.0, 1.0, 1.0, 8 10 0390 3580  56.12 53.11 0.363 30.97  52.82 49.58
1.0, 1.0, 1.0, 1.0) 20 43.23 57.60 54.22 38.96 54.41 50.78
5 35.07  66.86  68.47 29.12 63.83 65.58
(15,15, 1.5, 1.5, 12 10 0725  46.71 71.55 69.76 0.664 41.83  68.94 66.99
1.5, 1.5, 1.5, 1.5) 20 52.71 73.14 70.29 48.38 70.68 67.57

4.2.5 Sample size N. Sample size has an impact on the per-
formance of the BMW design, and as sample size becomes
very large, we would expect the relative gains to decrease
as randomization itself guarantees substantial balance among
the covariate values. Our simulation results reveal, however,
that when the sample size increases from 30 to 60, the percent
reduction in MSE from the BMW design decreases only very
little. This suggests a possible value for this approach even

in larger studies. Computational aspects are easily accommo-
dated for the larger sample sizes; for example, the processing
time for the simulations with N = 60 increases by about 40%
over those for N = 30.

It is also of interest to compare the BMW design with the
model-based approach adjusting for the estimated propen-
sity score and Robins-Mark-Newey E-estimation procedure
in terms of efficiency and robustness of the treatment effect
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Table 2
Percent reductions in the MSE of treatment effect estimator for the BMW design compared to the model-based adjustment
approach adjusting for the estimated propensity score (MB) and E estimation procedure (E-est), where the propensity score
model is appropriately and inappropriately specified, respectively. Number of replications = 1000.

MSE percent reduction(%)
(BMW vs. MB)

MSE percent reduction(%)
(BMW vs. E — est)

MSE MSE
y M (MB) k=1 k=2 k=3 (E—est) k=1 k=2 k=3
Where propensity score inappropriately specified (17)—(18)
x A Normal(0,0.25)
(0.5, 0.5) 10 0.185 0.65 14.75 12.25 0.334 45.06 52.85 51.47
(1.0, 1.0) 10 0.365 —0.15 30.03 32.31 0.964 62.10 73.52 74.39
(1.5, 1.5) 10 0.665 5.80 41.88 46.12 2.013 68.90 80.81 82.21
Where propensity score appropriately specified (15)—(16)
X1, Xo, X3, Xy '~ Bernoulli(0.5)
(0.5, 0.5, 0.5, 0.5) 10 0.165 15.01 15.74 6.79 0.211 33.41 33.98 26.97
(1.0, 1.0, 1.0, 1.0) 10 0.166 —0.87 6.02 1.44 0.528 68.38 70.54 69.10
(1.5, 1.5, 1.5, 1.5) 10 0.166 —29.84 —2.49 —11.31 0.971 77.85 82.52 81.01
X1, X, "~ Bernoulli(0.5); X3, X4 "~ Bernoulli(0.66)
(0.5, 0.5, 0.5, 0.5) 10 0.152 7.19 5.08 0.48 0.247 42.97 41.68 38.85
(1.0, 1.0, 1.0, 1.0) 10 0.152 —8.99 0.16 —6.41 0.492 66.32 69.15 67.12
(1.5, 1.5, 1.5, 1.5) 10 0.153 —32.00 —9.29 —18.78 0.916 77.99 81.78 80.19
X1, Xo "% Bernoulli(0.5); X5, X, %" N(0,0.25)
(0.5, 0.5, 0.5, 0.5) 10 0.148 5.41 1.64 —2.74 0.203 30.71 27.95 24.74
(1.0, 1.0, 1.0, 1.0) 10 0.148 —4.52 0.64 —4.09 0.387 59.89 61.88 60.06
(1.5, 1.5, 1.5, 1.5) 10 0.148 —21.56 —2.15 —-9.91 0.689 73.82 78.00 76.33

estimator. Therefore, we evaluate the MSE property of the
three approaches under two scenarios, one where the propen-
sity score model is appropriately specified and one where it is
not.

4.2.6 Propensity score appropriately specified. Under this
scenario, we specify the true model and propensity score
model as follows:

.
Yi=a+BIGeT)+ Y X+

Jj=1

(16)

4
logit(5;) = logit{Pr(Z = 1| X;;a)} = ag + Y _ a; X;;. (17)

i=1

From the results summarized in Table 2, we see that the
MSE obtained by the model-based approach remains rel-
atively constant as the confounding effects increase, pro-
vided the terms in the propensity score model mimic that
in the true model for Y. If there is relatively little con-
founding (ijl v; < 6.0), the MSEs in the BMW design are
slightly smaller than those from the model-based approach.
As 25:1 7y, increases, however, a somewhat greater reduction
in MSE is obtained through the model-based approach. Both
the BMW design and the model-based estimate perform much
better than the E-estimation procedure in the context of these
small randomized experiments.

4.2.7 Propensity score inappropriately specified. In practice,
the true model for outcome Y is unknown, and due to the
small sample size, it is difficult to determine what model

is best; consequently, adjustment for many potential con-
founders may not work well. The simulation studies in Table 2
suggest that when the propensity score model does not mimic
the correct regression terms in the true model, the BMW de-
sign provides a more robust approach than the model-based
approach. For illustration purposes, we looked at a true model
and propensity score model as follows:

Vi=a+BIi€T)+ X +7X] +e. (18)

logit(6;) = logit{Pr(Z =1| X;;)} = a1 + v X;, (19)

where X, "% Normal(0,1). As the confounding effects ~; in-
creases from 0.5 to 1.5, the percent reduction in MSE of
the BMW design compared to the model-based approach in-
creases from 14.75% to 41.88%, for M = 10. Again, the E-
estimation procedure does not perform well in this context.
This suggests that the BMW design is more robust than the
model-based approach when the propensity score model is
inappropriately specified, as would often be the situation in
practice.

4.2.8 Heteroscedastic errors. In the clustered randomized
trials with few but relatively large clusters, the hemoscedas-
ticity error assumption is unlikely to hold. To investigate
the effects of this, we allowed the error distribution of the
outcome to vary by the first covariate X; in our simu-
lation studies. In particular, in the model (6), we speci-
fied &; "~ N(0,1) if X, =1 and ; "~ N(0,0.25) if X; = 0,
where X, X, & Bernoulli(0.5) and X3, X, o N(0,0.25).
The results in Table 3 suggest that the relaxation of the
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Table 3
Percent reductions in the MSE of treatment effect estimator for the BMW design compared to a completely randomized design
(CR) and matched-pair design (MP) under the heteroscedastic and hemoscedastic error assumption, respectively. Number of

ii.d

replications = 1000. X7, X, o Bernoulli(0.5); X5, X, ~ N(0,0.25).

MSE percent
reduction(%) MSE percent reduction(%)
MSE (BMW vs. CR design) MSE (BMW vs. MP design)
v S M  (CR) k=1 k=2 k=3 (MP) k=1 k=2 k=3
g AT N(0,1) if Xy =1 and & "<7 N(0,0.25) if X; =0
(0.5, 0.5, 0.5, 0.5) 2 10 0.089 14.19 13.32 8.83 0.075 —0.90 —-1.93 —7.20
(1.0, 1.0, 1.0, 1.0) 4 10 0.152 41.40 49.28 44.78 0.121 26.63 36.50 30.87
(1.5, 1.5, 1.5, 1.5) 6 10 0.258 52.57 65.36 65.05 0.166 26.48 46.31 45.83
E; i-’i/d N(O, 1)
(0.5, 0.5, 0.5, 0.5) 2 10 0.155 9.46 5.85 1.66 0.148 5.17 1.40 —-2.99
(1.0, 1.0, 1.0, 1.0) 4 10 0.218 28.89 32.40 29.18 0.190 18.39 22.42 18.73
(1.5, 1.5, 1.5, 1.5) 6 10 0.316 42.98 52.08 48.45 0.252 28.43 39.85 35.29
Table 4

Optimal matched sample produced by the BMW design with k = 2 and M = 10 for the case study. X;: percent of females greater
than 65 years of age among all females in the census tract (%); Xo: percent of males greater than 65 years of age among all
males in the census tract (%); Xs: stroke volume (low vs. high); X,: population density (urban vs. rural). The estimated

propensity score (§) was shown for each subject and the total propensity score distance A = 0.202 for the stratum.

Treatment group

Control group

Strata ID(5) X, X, X; X, 1D(3) X, X, X, X,

1 1(0.33) 0.15 0.13 0 0 6 (0.35) 0.19 0.07 0 0

2 2 (0.38) 0.17 0.11 1 0 8 (0.35) 0.22 0.14 0 0
11 (0.40) 0.22 0.14 1 0

3 3 (0.63) 0.13 0.06 1 1 9 (0.63) 0.14 0.06 1 1

19 (0.67) 0.25 0.15 1 1

4 4 (0.58) 0.12 0.06 0 1 12 (0.60) 0.07 0.06 1 1

5 14 (0.32) 0.13 0.07 0 0 13 (0.32) 0.13 0.09 0 0
15 (0.31) 0.10 0.06 0 0

6 17 (0.41) 0.24 0.12 1 0 10 (0.41) 0.26 0.18 1 0
22 (0.43) 0.30 0.17 1 0

7 20 (0.60) 0.08 0.06 1 1 16 (0.61) 0.10 0.07 1 1

18 (0.61) 0.09 0.05 1 1

8 21 (0.60 0.18 0.14 0 1 5 (0.61) 0.19 0.13 0 1

9 24 (0.62) 0.23 0.16 0 1 7 (0.62) 0.24 0.19 0 1

23 (0.62) 0.11 0.07 1 1

hemoscedasticity error assumption has little impact on the
performance of the BMW design. The case study in the
next section is a case where such heteroscedasticity may be
present.

5. Planning an Educational Study for tPA Usage
in Stroke

In this section, we consider the use of the BMW design in
planning an educational study to increase tPA therapy use
for stroke patients as described in the Introduction. As noted
there, four covariates were measured on participating insti-
tutions, and it was impossible to simultaneously obtain a
balance in a matched-pair design. The simulation study in
Section 4 suggests that design parameter k=2 and the

number of replication M = 10 give results that are close to
optimum over a broad class of covariate distributions and
confounding effects. We therefore choose these parameters in
proposing a design for the tPA study.

We randomly assigned the 24 hospitals to two treatment
groups, and estimated the sample-based propensity score for
each hospital. The hospitals were then optimally matched into
subsets with & = 2, which gave a minimum total distance of
2.5887. We then randomized the hospitals an additional nine
times obtaining distance measures: 2.05, 2.50, 0.20, 1.42, 0.49,
3.00, 1.14, 0.72, and 1.48. The fourth randomization produced
the smallest distance. The corresponding BMW design is pre-
sented in Table 4, where there were nine matched subsets with
treated hospital 1 matched to control 6, treated hospitals 2
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Figure 1. Covariate imbalances from the matched-pair

design (matching on the categorical covariates: Population
density and stroke volume) and the BMW design. The
imbalance value in covariate X for unit ¢ was computed as
Imbalance(X;) = . cp X;/|Tsl = 3 e, Xi/|Cs| = Xp, —

Xc,, where s is the stratum that unit i belongs to.

and 3 jointly matched to control 8, and so on. For compari-
son, the data were also randomized by using a matched-pair
design, where the 24 hospitals were matched into 12 pairs
based on the two binary covariates, rural versus urban popu-
lation density and low versus high stroke volume. One hospi-
tal in each pair was then randomized to treatment and one to
control. Figure 1 illustrates treatment to control group imbal-
ance in the two continuous covariates, under the BMW and
the matched-pair design.

When + is known, we can determine the constraint k that
minimizes the MSE when using the BMW design. Prelim-
inary data provided estimates of the regression parameters
in a logit model for the proportion of stroke cases receiv-
ing tPA as —0.63 (stroke volume), 0.02 (population density),
4.33 (percent female older than 65), and —1.23 (percent male
older than 65). Since there are 24 hospitals, k can take values
from 1 to 11. For k = 1, M = 10 randomizations gave a mini-
mum distance of 0.2936. We then repeated the above process
with the same randomized samples but with constraints k =
2, 3,...,11 and for each k, searched for the optimal sam-
ple with minimal distance. Third, based on the approximate
value of 7 above, we computed the MSE from (11) as 0.1076,
0.1045, and 0.1114 for the optimal sample with constraint
k =1,2,3. This suggests that pair matching and matching
with constraint k& = 2 achieve approximately the same level
of optimality in terms of minimizing MSE. Compared with
the matched-pair design described above, the BMW design
reduced the MSE of the treatment effect estimator by 42%.
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6. Discussion

The BMW design is, in essence, applying the optimal full
matching with constraints technique to randomization in or-
der to achieve overall balance between treatment groups and
control the variance of the treatment comparison and so yield
good MSE properties. One of the virtues of this design is
that it will not only reduce the chance imbalance in observed
covariates but also preserve the advantage of traditional ran-
domized designs in balancing the unobserved covariates on
average. Although only partial balance on the observed co-
variates is achieved by the BMW design, it is substantially
better than the balance obtained by random assignment of
treatments. When there is considerable confounding in small
studies, this improvement in balance can result in a substan-
tial decrease of MSE in the treatment effect estimator.

The BMW design can be revised to allow the user to select
other criteria besides MSE to compromise between bias and
variance. If variance of the estimator is not a concern, one can
modify this design to achieve optimal balance and so reduce
conditional bias (i.e., set k = N/2 —1). On the other hand, if
the objective is to minimize variance, optimal pair matching
with constraint k£ = 1 is the best full matching choice.

We recommend use of a super-population model for anal-
ysis, and this is the basis of the simulation comparisons that
we have made. It is worth noting, however, that the BMW
design with a choice of M that is not too large, can also form
the basis of a randomization test. Suppose, for example, that
a sample has been collected using the BMW design with given
k and M and the value of the test statistic (e.g., t statistic)
has been computed. We now repeat the BMW design with the
same k and M a large number B of times and each time com-
pute the test statistic based on the fixed outcomes observed.
This would lead to a randomization test and confidence inter-
vals following standard methods. This would typically yield a
reasonably large reference set as the basis of the test. On the
other hand, if M is too large, most of the probability will be
concentrated on relatively few designs and the randomization
distribution becomes less useful. For example, with continu-
ous covariates, if M = co and k= 1, then the BMW design will
always lead to the same set of matched pairs with the same
treatment assignments. With smaller M or discrete covariates,
the reference set is larger.

The model-based approach of adjusting for the estimated
propensity score and the Robins-Mark-Newey E-estimation
procedure could be considered as alternatives to the BMW
design. Our simulation studies suggest that, when the propen-
sity score model is appropriately specified, the BMW design
is more efficient than the model-based approach when the
confounding effects are relatively small; the model-based ap-
proach, however, becomes more efficient than the BMW de-
sign when the confounding effects increase. On the other hand,
when the propensity score model is inappropriately specified,
the BMW design achieves substantial gain over the model-
based approach. In the context considered in this article, the
E-estimation procedure is the least efficient and robust.

Greevy et al. (2004) proposed another multivariate match-
ing design based on Mahalanobis distance. This approach
searches for the optimal multivariate nonbipartite match-
ing followed by randomization within pairs. We also investi-
gated this in a simulation study presented in Table 5. As the
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Table 5
Percent reductions in the MSE of treatment effect estimator for the BMW design compared to multivariate nonbipartite
matching design (NB). Number of replications = 1000.

MSE percent reduction(%)
(BMW vs. NB design)

MSE
v > M (NB design) k=1 k=2 k=3
X1, X0, X3, Xy P Bernoulli(0.5)

5 —0.07 —2.27 —6.11

(0.5, 0.5, 0.5, 0.5) 2 10 0.146 247 ~0.55 ~5.90
20 591 1.44 —-3.91

5 2.42 14.49 8.53

(1.0, 1.0, 1.0, 1.0) 4 10 0.185 9.62 15.79 11.68
20 24.78 22.18 18.44

5 1.77 30.92 24.36

(1.5, 1.5, 1.5, 1.5) 6 10 0.250 14.01 32.12 26.28
20 25.24 34.40 29.20

X1, Xy, X3, X4, X5, Xo, X7, Xs "~ Bernoulli(0.5)

5 —8.15 0.51 —6.35

(0.5, 0.5, 0.5, 0.5, 4 10 0.156 —6.41 0.96 ~5.13
0.5, 0.5, 0.5, 0.5) 20 —-1.15 2.18 —5.39
5 —25.19 16.39 16.07

(1.0, 1.0, 1.0, 1.0, 8 10 0.222 —12.76 22.92 17.65
1.0, 1.0, 1.0, 1.0) 20 0.26 25.53 19.59
5 —39.10 29.01 32.47

(1.5, 1.5, 1.5, 1.5, 12 10 0.338 —14.16 39.06 35.22
1.5, 1.5, 1.5, 1.5) 20 —1.31 42.46 36.37

confounding effects increase, or the number of covariates in-
crease, the BMW design becomes much more effective in re-
ducing MSE compared to Greevy’s design. This may be be-
cause the Mahalanobis distance is inferior to propensity scores
when there are many covariates.

In general terms, the BMW design appears to provide
a viable approach in the context of small studies where
adjustment for randomization imbalance may be impor-
tant. Furthermore, the simplicity of this matching-based de-
sign allows researchers to perform simple stratified analy-
ses that adjust for imbalance in the randomization, which is
appealing.

Finally, simulation shows that the BMW design can sub-
stantially reduce the MSE of the treatment effect estimate, as
compared to the existing randomized designs in linear mod-
els. These investigations could be extended to other regression
models, such as the class of general linear models. It should
also be noted that the BMW design can be generalized to
clinical trials with more than two treatment arms. Baseline
category logit model can be used to estimate the probabil-
ity of a subject being assigned to each treatment arm, and
Euclidean distance can be used to measure the quality of a
matching.

7. Supplementary Materials

The data for the case study and SAS macro implementing
the BMW design are available under the Paper Informa-

tion link at the Biometrics website http://www.biometrics.
tibs.org.
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