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1. Introduction

Vector analysis is an indispensable tool in the teaching and learning of electromagnetics,
hydrodynamics, and mechanics. In a book on the history of vector analysis [1], Michael J. Crowe
made a very thorough investigation of the decline of quaternion analysis and the evolution of
vector analysis during the 19th century until the beginning of this century. The topics covered are
mostly vector algebra and quaternion analysis. He did not comment much on the technical aspects
of the subject from the point of view of a mathematician or theoretical physicist. For example, the
difference between the presentations of Gibbs and Heaviside, considered to be two founders of
modern vector analysis, is not discussed in Crowe's book, and less attention is paid to the history

of vector differentiation and integration, and to the role played by the del operator, V.

A short history of vector analysis is also found in several other books. For example, in a book by
Burali-Forti and Marcolongo [2] published in 1920, there are four historical notes in the appendix
entitled: On the definition of abstraction, On vectors, On vector and scalar (interior) products, and
On grad, rot, div. In another book published in 1965 by Moon and Spencer [3] there is a brief but
very critical review of the history of vector analysis from a technical perspective. Many of the
assertions in that book will be discussed later. One important reason for these two authors to
present vector analysis by way of tensor analysis is stated very firmly in the introduction of that
book [3, p. 9]:

The present book differs from the customary textbook on vectors in stressing the

idea of invanance under groups of transformations. In other words, elementary

tensor technique 1s introduced, and in this way, the subject is placed on the firm,

logical foundation which vector textbooks have previously lacked.

In Appendix C of that book [3, p. 323] they make the following comment about the del operator:
In reading the foregoing book [referring to their book], one may wonder why
nothing has been said about the operator V, which is usually considered such an

important part of vector analysis. The truth is that V, though providing the subject
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with fluency, is an unreliable device because it often gives incorrect results. For

this reason - and because it is not necessary - we have omitted it in the body of the

book. Here, however, we shall indicate briefly the use of the operator V
These two quotations are sufficient to indicate that after decades of application of vector analysis
there seems to be no systematic treatment of the subject that could be considered satisfactory
according to these two authors. This observation is also supported by the fact that we have so far
no standard notations in vector analysis. Many books on electromagnetics, for example, use the
linguistic notations for the gradient, divergence, and curl - namely, grad u, div 7 and curl 7
while many others prefer Gibbs' notations for these functions, namely Vu, V./,and Vx 7. Is
there a good explanation to the students why we do not yet have a universally accepted standard
notation besides saying: "It is a matter of personal choice."? In regard to Moon and Spencer's
comments about the lack of a firm, logical foundation in previous books on vector analysis, there
has been no elaboration. They do give an example of an incorrect result from using V to find the
expression for divergence in an orthogonal curvilinear coordinate system, but no explanation was
given as to the cause of such a wrong result. In fact, the views expressed by these two authors are
also found in many books treating vector analysis. These will be reviewed and commented upon

later.

In writing this essay, we have in mind the reader who already has an acquaintance with the subject
matter of vector analysis, and who feels the need for a critical scrutiny of what he or she has
already learned. Many students must have felt such a need, because the conventional curriculum
avoids thorough critical examination of many topics. The primary objective of many schools of
physical and engineering sciences is to teach the students how-to use particular tools (such as
vector analysis) to formulate and to solve problems. It is usually felt that students in the hard
sciences, particularly at the undergraduate level, do not have the luxury of time to deal with the
logic and many of the fine points of subject fundamentals. Many of these subtle details are

overlooked in favor of developing skills in applying results, sometimes bluntly. This essay
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attempts to point out those inadequate or illogical treatments of some basic aspects of the subject
which have arisen in the past, and offers a more logical and systematic alternative for the reader to

consider.
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2. Notations and Operators

2.1 Past and Present Notations in Vector Analysis

In a book on advanced vector analysis published in 1924, Weatherburn [4] compiled a table of
notations in vector analysis which had been used up to that time. The names of the authors in that
table are: Gibbs/Wilson, Heaviside, Abraham, Ignatowsky, Lorentz, and Burali-Forti/Marcolongo.
In Moon and Spencer's Vectors (quoted in the previous chapter), published in 1965, there is also a
table of notations. The names of the authors in that table are: Maxwell, Gibbs, Gibbs/Wilson,
Heaviside, Gans, Lagally, Burali-Forti, Marcolongo, Phillips, and Moon/Spencer. Among these
authors, Gibbs, Wilson, Phillips, Moon, and Spencer are American. Maxwell and Heaviside
belong to the English schools. Abraham, Ignatowsky, Gans, and Lagally belong to the German
schools. Lorentz was a Dutch physicist and Burali-Forti and Marcolongo were Italians.
Ignatowsky was a native of Russia but was trained in Germany. For our study, we prepare
another list which contains several contemporary authors and some more notations in Table I. The
dyadic notation is added because we need it to characterize the gradient of a vector, which 1s a
dyadic function. A rudimentary introduction to dyadic analysis will be given after we present the
list of notations given below. In looking at this list, most readers will recognize the linguistic
notations grad u, div a, curl a, or rota for the three key functions. They are probably
accustomed to Gibbs' notations Vu, V.a, and V x a except that the period "' in V.o is now
replaced by a dot ' as in Wilson's notations, and his Greek letters for vectors are now commonly
replaced by boldface, Clarendon or equivalent fonts while the linguistic notations are used by
many authors in Europe and a few in the U. S. A. There is no doubt that Gibbs' notations have
been adopted in many books published in the U. S. A. We quote here two very well known books
in electromagnetic theory, one by Stratton, and another by Jackson Their treatises are well known

to many electrical engineers as well as physicists.

Historically, vector analysis was developed a few years after Maxwell formulated his monumental

work in electromagnetic theory. When he wrote his treatise on electricity and magnetism [5] in
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Table I: Notations

Author(s) Vectors
Maxwell [5] o,p
4.8
Gibbs [6] a.fp
Wilson [7] a,b
Heaviside [8] a,b
Gans [9] 4,4

Burati-Fortl/ a,b
Marcolongo (2]

Stratton [10] a,b
Jackson [11] Z,E

Moon/ C_I,B
Spencer [12]

Author(s)

a scalar
Maxwell 5] Vu
Gibbs [6] Vu
Wilson [7] Vu
Heaviside [8] Vu
Gans [9] Vu; grad u

Burati-Forti/ grad
Marcolongo [2]

Stratton [10]  Vu

Jackson [11] Vu

Moon/ grad u
Spencer [12]

Scalar Product Vector Product

Sop

a.p

a-b

gradient of gradient of
a vector

Va
Va

V.a

Dyadic

in 3-space

Vop

divergence of curl or rot

avector  ofavector
-SVp VVp
V-a Vxa
V-a Vxa

Va, diva VVa; curl a

V-E; diva Vxa; rota

div a rot a
V.-a V xa
V.a Vxa
div a curl a

ap

ab

~T

Viu

V.-Vu
V- -Vu

Viu
Au

Viu

Viu
Viu

page 5

Tensor
In 3-space

&

&3

e

Laplacian of Laplacian of
a scalar

a vector

V-Va
V-Va

* Upper case script symbols are used here in place of capital German letters originally used by Maxwell and Gans.
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1873, vector analysis was not yet available. Its forerunner, quaternion analysis, developed by
Hamilton (1805 - 1865) in 1843, was then advocated by many of Hamilton's followers. It is
probably for this reason that Maxwell wrote an article in his book (Article 618) entitled
"Quaternion Expressions for the Electromagnetic Equations.” Maxwell's notations on our list are
based on this document. Actually, he used very little of these notations in the entire book and in

his papers published elsewhere.

The notation used by Heaviside is not conventional from the present point of view. His notation
for the scalar product and the divergence does not have a dot and his notation for the curl is of
quaternion form like Maxwell's. The notations used by Burati-Forti and Marcolongo are obsolete
now. Occasionally we still see the notation anb for the cross product in European books. As a
whole, we now have basically two sets of notations in current use: the linguistic notation and
Gibbs' notation. The names of Moon and Spencer are included on our list primarily because these
two authors considered the use of V to be unreliable and they frequently emphasize their view
that the rigorous method of formulating vector analysis is to follow the route of tensor analysis. In
addition, their new notation for the Laplacian of a vector function will be a subject of detailed

examination in the chapter on orthogonal curvilinear systems.

2.2 Quaternion Analysis

The rise of vector analysis as a distinct branch of applied mathematics has its origin in quaternion
analysis. It is therefore necessary to review briefly the laws of quaternion analysis to show its
influence upon the development of vector analysis and also explain the notations in the previous

list. Quaternions are complex numbers of the form
q=w+ix+ jy+kz (2.1)

where w, x, y, and z are real numbers, and i, j, and & are unit vectors, directed along the x, y, and z

axes respectively. These unit vectors obey the following laws of multiplication:
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=k jk=i ki=j

(22

Ji=—k kj=—i ik=— 2.2
ii= jj=kk=-1
We must not at this stage associate the above relations with our current laws in vector analysis.
We consider the subject as a new algebra, which is indeed  the case. The product of the

multiplication of two quaternions o and p in which the scalar parts w and w' are zero is obtained

as follows:
We let
oc=iD + jD, + kD,
p=iX+jY +kZ
then

op=—-(D,X +D,Y +D,Z)
+i(D,Z- DY)
+ j(D, X -D/Z)
+k(D)Y-D,X)

The resultant quaternion, op, has two parts, one scalar and one vector. In Hamilton's original

notation they are:

S.op=-(D,X +D,Y +D,Z) (2.4)
V.op=i(D,Z-D.Y)
+ j(D, X - D,Z) (2.5)
+ k(DY - D, X)

The period between S or V' and ogp can be omitted without causing any ambiguity. When one
identifies o as V, Hamilton's del operator, that 1s:

o=V= i£+j—a—+k—01 (2.6)
& T

then
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o o a) e

SVp=- +—+
p (ac a &

R A i
d &

(&X &
+J[ = —5) (2.8)

(5}’ 6X)
+k| ——-——
& &

SVp is the quaternion notation used by Maxwell for the negative of the divergence of p and he
called it the convergence of p. He used the quaternion notation J'Vp for the curl of p. The term
'curl' was his creation, and it is now a standard name. According to Crowe [1, p. 142] the term
'divergence' was originally due to William Kingdom Clifford (1845 - 1879) who was also the first
person to define the modern notations for the scalar and vector products. However, his original
definition of the scalar product is the negative of the modern scalar product. In the list of
notations, we notice that Heaviside used the quaternion notation for the curl even though he was
opposed to quaternion analysis. In one of his writings [8, p. 35] he concurred with Gibbs'
treatment of vector analysis but criticized Gibbs' notations without offering a reason. Heaviside's

remark will be quoted and discussed in Sec. 3.1.

We should mention that the long controversy between quaternionists led by Tait and the
proponents of the then new vector analysis led by Gibbs was covered in great detail by Crowe [1].
Such stories are very educational to young scientists and engineers. The other topic which needs
to be reviewed deals with the dyadic notation which was used by Gibbs, Wilson, and Jackson but
not the other authors in the previous list. An understanding of this notation is necessary in order
to explain the Laplacian of a vector function, particularly in the general curvilinear coordinate
system. Additionally, dyadic analysis is a natural extension of vector analysis. Problems
formulated using tensor analysis in a three-dimensional Euclidean space can be handled by dyadic

analysis in a relatively simpler format.
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2.3 Dyadic Analysis

For the time being, we will provide the basic formulas in dyadic analysis to be used in our
investigation of the past works. In vector algebra, a vector function denoted by F is represented

in a Cartesian coordinate system by:

F=YF%,i=123 (2.9)

where x,, with i =1,2,3 denotes the unit vector in the x,y,z direction and /- corresponds to the
components of F in the x,y, and z direction. It is understood that the summation goes from i=1 to
3. A dyadic function or a dyadic for short, denoted by F is defined in the same Cartesian

coordinate system by

F:Zﬁjfj,jzl,zg (2.10)
J

where

Fp=Y F%, i=12.3 (2.11)
]

denotes three independent or distinct vector functions. The relative position of F,; and % , In
(2.10) must be maintained in that order, and one is not supposed to interchange the ordering of
these two vectors. In other words, the commutative rule does not apply to (2.10). When (2.11) is

substituted into (2.10), we obtain:
F=Y S Fif (2.12)
iJ

Equations (2.10) - (2.12) contain the definition of a dyadic in a Cartesian coordinate system.

There are nine scalar components of F . The doublets XX j, juxtaposed together % and ¥, with

ij = (1,2,3), are called dyads, and there are nine of them too. The dyads are not commutative,

that is:
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= =T
The transpose of a dyadic /', denoted by [F] is defined by

gl

I
:n - M
k)

H)
><)
—_
t9

13)

31)

i
There are two scalar products between a dyadic and a vector. The anterior scalar product

between a vector a and a dyadlc F denoted by a- F is defined by

F=Y(aF —ZZG, X (2.14)

J

which is a vector. The posterior scalar product between a and ? denoted by ?-5, is defined by

Fa=3Fl%a)=F Ya,F (2.15)
i J

J
which is also a vector. In general,

-a

il
il

a-F#
The two products are equal when Fisa symmetric dyadic characterized by F;; = F};. There are

two vector products possible between a and F . The anterior vector product is defined by

axF= Z(axF)x —ZZF(axx) (2.16)

which is a dyadic. The posterior vector product is defined by

?xc;:ZE(fjxa) ZZFUx,(x xa) (2.17)
J

which is another dyadic.

The gradient of a vector function in a Cartesian system, denoted by VEF , 1s defined by
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X

.

{:

-~ J

C

- ~ C"‘ : -
ZES WL 3
ox )

! { i

Ke

(2.18)

.
=225
ry '

which is a dyadic. We will derive the expression for the gradient of F in general curvilinear
systems later. This introduction of dyadic analysis is merely presented to show that the gradient of
a vector function as tabulated in the list of notations in Table I is a dyadic. It should be mentioned

that a dyadic can also be written in the form

x|
x|

B (2.19)

Knowing F and with a specified A we can find B as follows:
—_ = —_— —_— —_2 —
AF=A4-4B=4B
Hence,

A-F (2.20)

where 4- F is the anterior scalar product between Aand F.If Bis specified, we can find A as

follows:
F-B=AB-B=4B
hence
i-LFB (2.21)
g

where ?-—E is the posterior scalar product between B and ? In the list of notations, Gibbs and

Wilson use the A B form for the dyadics. The next topic to be reviewed deals with operators.
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2.4 Operators

For our convenience we would like to discuss in sufficient detail, the classification and the
characteristics of a number of operators appearing in this study. We will focus on unary and
binary operators and will consider such operators in cascade or compound arrangements as the

complexity of the case at hand requires.

A unary operator involves only one operand. A binary operator needs two operands, one anterior,

and another posterior. A cascade operator could be unary or binary. As an example we consider

o 0 . .
the derivative symbol > to be a unary operator. When it operates on an operand P, it produces

.. o .
the derivative, Q.i In some writings, the operator > 1s denoted by D_. The operand under

consideration can be a scalar function of x and other independent variables or a vector function,

or a dyadic function, that is,

EX

P@ &
are all valid applications of the unary differential operator.

The partial derivative of a dyadic function in a Cartesian system is defined by
Fs
& J

oF;

ity
ST,

JF, .
a

(2.22)

We list in Table II below, several commonly used unary operators and their possible operands.

The function a in the weighted differential operator ag 1s assumed to be a scalar function. A

vector operator such as a gc— can operate on a dyadic that would yield a 'tridic' - a quantity which

is not included in this study. The last operator in the table is the del operator or the gradient

operator. It can be applied to an operand which is either a scalar or a vector.
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Table II: Valid Application of Some Unary Differential Operators

c c - - C
Operator - a— a— V= 2.23
pet & & o Lty )
Type of Operand 5, b, b b, b, b b, b b, b

ox ox ax “ox Tox “ox
A binary operator requires two operands. In arithmetic and algebra we have four binary operators:
+ (addition), — (subtraction), x (multiplication), and + (division). In these cases, we need two
operands, one anterior and another posterior, as in 2+3, 4—3, 5x3, and 6+3. It should be
remarked that the symbols + and — are also used to denote 'plus' and 'minus' signs. For example,
-a= |a| when a is negative. In this case the minus sign is not considered to be a binary operator in
our classification, but rather as a unary 'sign change' operator. The two binary operators involved
frequently in our work are the dot (-) and the cross (x). They appear in Gibbs' notations for the
scalar and vector products, that s, a-b and axb. We consider the dot and the cross as two

binary operators, and their operands, one anterior and one posterior, must be vectors, that is
A-Band AxB
The dot operator is not the same as the multiplication operator in arithmetic and the cross

operator is not the same as the multiplication operator, although we use the same symbol.

According to the definitions of the scalar and vector products,

A-B=B-A=[4|Bcos® (2.24)

AxB= —Ex2=|Z“§]sin 8¢ (2.25)

where 6 is the angle measured from A to B in the plane containing these two vectors and ¢ is the
unit vector L to both 4 and B and is pointed in the right-screw advancing direction when A4 turns
into B. The dot and the cross can also be applied to operands where one of them or both are

dyadics. Thus, we have
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- == — (2.206)

The first two entities are vectors and the remaining four are dyadics.

The last group of operators are called cascade or compound operators. Of particular concern in
this study is the proper treatment of a pair of operators of different types, which are applied
sequentially. When one of the operators is a scalar differential unary operator, and the other is a
vector binary operator, there arise a number of hazards in their application which, if not properly
treated, could lead to invalid results. Several commonly used cascade operators are of the form:

17 c

—_ .V’ X
ay oy

XV (2.27)

These operators also require two operands; the anterior operand must be a vector and the

posterior operand must be compatible with the part in front. Thus we can have

3B 4 i_;
3" 4
.Vu, A-VB:

Ax@ Zx-é’?—
&’

&y
ZxVu, AxVB

&;l

Ny

(2.28)

In (2.27) the unary operator —;— and V, and the binary operators - and x are not commutative;

hence, the following combinations or assemblies are not valid cascade operators.
74 17

—. V., —x, V 2.29
7y é,yx x (2.29)

These assemblies are formed by interchanging the positions of the symbols in (2.27). They are not

operators in the sense that we cannot find an operand to form a meaningful entity. For example,

4 £.B. V.4 V-B

(2.30)

x 4,

x B, V x 4

<
ol

X

k]

@Im A

9.
¥
K4
¥
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do not have any meaningful interpretation.

The reader has probably noticed that there are two assemblies, V.A and V < A in (2.30) which

correspond to Gibbs' notation for the divergence and curl This is very true. but that does not

mean that V- A4 is a scalar product between V and A, noris V x A a vector product between V
and A In fact, this is a central issue in this study to be examined very critically in the following
chapters. We now have the necessary tools to investigate many of the past presentations of vector

analysis.
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3. The Pioneer Works of J. Willard Gibbs (1839 - 1903)

3.1 Two Pamphlets Printed in 1881 and 1884

Gibbs' original works on vector analysis are found in two pamphlets entitled Elements of Vector
Analysis [6], privately printed in New Haven. The first consists of 33 pages published in 1881 and
the second of 40 pages published in 1884. These pamphlets were distributed to his students at
Yale University and also to many scientists and mathematicians including Heaviside, Helmholtz,
Kirchhoff, Lorentz, Rayleigh (Lord), Stokes, Tait, and Thomson (J. J.) [12, Appendix IV]. The

contents are divided into five chapters and a note on bivectors:
Chapter I. Concerning the algebra of vectors
Chapter II. ~ Concerning the differential and integral calculus of vectors
Chapter III.  Concerning linear vector functions

Chapter IV.  Concerning the differential and integral calculus of vectors (Supplement to

Chapter II)
Chapter V.  Concerning transcendental functions of dyadics
A Note on bivector analysis

The most important formulations for our immediate discussions are covered in Articles 50 - 54

and 68 - 71 which are reproduced below:
Functions of Positions in Space

50. Def. - If u is any scalar function of position in space (i.e., any scalar quantity having
continuously varying values in space), Vu is the vector function of position in space which
has everywhere the direction of the most rapid increase of u, and a magnitude equal to the
rate of that increase per unit of length. Vu may be called the derivative of u, and u, the

primitive of Vu.
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We may also take any one of the Nos. 51, 52, 53 for the definition of Vu.

51. If p s the vector defining the position of a point in space,

du=Vu-dp

52. Vu:ifiﬁ+jgli+k-dﬁ (3.1)
dc “dy d-

53 @:-IVH £1E=j-V1,iil—‘:/f Vu
dy dz

54. Def. - If w is a vector having continuously varying values in space,
cdo . do | do

V-a):z-—d;—+j-gy—+k = (3.2)
wa:ix%”x‘—;-y“hkxd‘i’ (3.3)
V- is called the divergence of wand V x @ its curl.
If we set
o=Xi+Yj +Zk,
we obtain by substitution the equation
V-w:£+£+£ (3.4)
de dy dz
and
wa=i(£—£)+j(£—§£)+k[ﬂ—i)(—) (3.5)
dy d:z dz dx dc ay

which may also be regarded as defining V- @ and V x @.

Combinations of the Operators V. V- and V x

68. If w is any vector function of space, V-V x @ = 0. This may be deduced directly from

the definition of No. 54.

The converse of this proposition will be proved hereafter.
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69. If u i1s any scalar function of position in space, we have by Nos. 52 and 54

V-Vu= d: + d-, + d', u
dcm dyt d-

(3.6)

70. Def. - If w 1s any vector function of position in space, we may define V-V by the

equation

VoVes| L 4 4, (3.7)
dx- dy” dz”

the expression V-V being regarded, for the present at least, as a single operator when
applied to a vector. (It will be remembered that no meaning has been attributed to V

before a vector.) It should be noticed that if
w=IiX+jY+kZ,

V-Vo=iV-VX+ jV-VY+ikV.VZ (3.8)
that is, the operator V-V applied to a vector affects separate}y its scalar components.
71. From the above definition with those of Nos. 52 and 54 we may easily obtain

V-Vo=VV.0-VxVxw 3.9

The effect of the operator V-V is therefore independent of the direction of the axes used

in its definition.

In quoting these sections we have changed Gibbs' original notation for the divergence from V.@
to V-0, i.e., the period has been replaced by a dot. In addition, some equation numbers have been

added for our reference later on.

After Gibbs revealed his new work on vector analysis he was attacked fiercely by Tait, a chief

advocate of the quaternion analysis, who stated [13, Preface]:
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Even Prof. Willard Gibbs must be ranked as one of the retarders of quaternion
progress, in virtue of his pamphlet on vector analysis; a sort of hermaphrodite

monster, compounded by the notations of Hamilton and Grassman

This infamous statement has been quoted by many authors in the-past. Gibbs' gentlemanly but firm

response to Tait's attack was [14]:

The merit or demerits of a pamphlet printed for private distribution a good many
years ago do not constitute a subject of any great importance, but the assumption
implied in the sentence quoted are suggestive of certain reflections and inquiries
which are of broad interest; and seem not untimely at a period when the methods
and results of the various forms of multiple algebra are attracting so much
attention. It seems to be assumed that a departure from quaternionic usage in the
treatment of vectors is an enormity. If this assumption is true, it is an important
truth; if not, it would be unfortunate if it should remain unchallenged, especially
when supported by so high an authority. The criticism relates particularly to
notations, but I believe that there is a deeper question of notions underlying that of
notations. Indeed, if my offense had been solely in the matter of notation, it would
have been less accurate to describe my production as a monstrosity, than to

characterize its dress as uncouth.

Gibbs then continued on to explain the advantage of his treatment of vector analysis in

comparison to quaternion analysis. In the final part of that paper he stated:

The particular form of signs we adopt is a matter of minor consequence. In order
to keep within the resources of an ordinary printing office, I have used a dot and a
cross, which are already associated with multiplication, which is best denoted by
the simple juxtaposition of factors. I have no special predilection for these
particular signs. The use of the dot is indeed liable to the objection that it interferes

with its use as a separatrix, or instead of a parenthesis.
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Although Gibbs considered his choice of the signs or notations a matter of minor importance,
actually it had a tremendous consequence as will be shown in this study. Before we discuss it, a
comment from Heaviside, generally considered by the scientific community as a co-founder with
Gibbs of the modern vector analysis, should be quoted. During the peak of the controversy

between Tait and Gibbs, Heaviside made the following remark [8, p. 35]:

Prof. W. Gibbs is well able to take care of himself. I may, however, remark that the
modifications referred to are evidence of modifications felt to be needed, and that
Prof. Gibbs' pamphlet (Not published, New Haven, 1881-4, p.83), is not a
quaternionic treatise, but an able and in some respects original little treatise on
vector analysis, though too condensed and also too advanced for learners' use, and
that Prof. Gibbs, being no doubt a little touched by Prof. Tait's condemnation, has
recently (in the pages of Nature) made a powerful defense of his position. He has
by a long way the best of the argument, unless Prof. Tait's rejoinder has still to
appear. Prof. Gibbs clearly separates the quaternionic quesiion from the question
of a suitable notation, and argues strongly against the quaternionic establishment of
vector analysis. I am able (and am happy) to express a general concurrence of
opinion with him about the quaternion and its comparative uselessness in practical
vector analysis. As regards his notation, however, I do not like it. Mine is Tait's,

but simplified, and made to harmonize with Cartesians.

There are two implications in Heaviside's remark which are of interest to us. When he considered
Gibbs' pamphlet to be too condensed it implies that some of the treatments may not have been
obvious to him (or may not even have been comprehended by him). Secondly, he stated dislike for
Gibbs' notations but without giving his reason(s). The fact that Heaviside used some of Tait's
quaternionic notations seems to indicate that he did not approve of Gibbs' notations at all. We

now believe that many workers, including Heaviside, did not appreciate the most eloquent and
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complete theory of vector analysis formulated by Gibbs. For this reason. we would like to offer a

digest of Gibbs' work so we can have a clear understanding of his formulation.
3.2  Divergence and Curl Operators and Their New Notations

The basic definitions of the gradient, divergence, and the curl formulated by Gibbs are given by
(3.1), (3.2), and (3.3). For convenience, we will make some changes in symbols to allow the

convenience of using the summation sign. These changes are:
x, ¥, 2 toXx], X, X3
i, j, k, tOi’l, .iz, .€3.
The old total derivative symbols will be replaced by partial derivatives and the Greek letters for

vectors by boldface letters. Thus, Egs. (3.1) - (3.3) become:

Vu=Y g 2% (3.10)
~  Ox;
. OF
V.F= L2 3.11
Z,-:x’ ™ (3.11)
Vszz.féi X 0”{7 (3.12)
i Xi

It is understood that the summation goes fromi/=1to 3

The most important information passed to us by Gibbs concerns the nomenclature for the
notations in these expressions. In the title preceding Article 68 quoted previously, he designated
V, V- and V x as operators. If we examine the expressions given by (3.10), (3.11), and (3.12) it

is quite obvious that the gradient operator or the del operator is unmistakably given by

~ a
V= — 3.13

For the divergence, Gibbs used two symbols, a del followed by a dot, to denote his divergence
operator. For the curl, he used a del followed by a cross to denote the curl operator. If we
examine the expressions for the divergence and the curl defined by (3.11) and (3.12) it is clear

that his two notations mean:
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(V-)G—»Z.{',-ﬁ—i (3.14)
C i

-
3

C

v ¥
( X)G —)Z X; x é‘xi

We emphasize this point by labeling his two notations with a subscript 'G’, and we use an arrow
instead of an equal sign to denote 'a notation for.'

According to our classification of the operators in Chapter 2, Gibbs' (V) . and (V x)G are not

compound operators; they are assemblies used by Gibbs as the notations for the divergence and
curl. On the other hand, the terms at the right side of (3.14) and (3.15) are indeed compound
operators according to our classification. Since these operators are distinct from the gradient

operator we will introduce two notations for them. They are:

~ O
=) X - 3.16
v Z’: e (3.16)
N ’
V= - X — 3.17
Zx,xaxj ( )

They are called, respectively, the divergence operator and the curl operator. Although these
operators are so far defined in the Cartesian coordinate system we will demonstrate later that they
are invariant to the choice of coordinate system. One important feature of V and V is that both

these operators are independent of the gradient operator V. In other words, V_is not a constituent

of the divergence operator nor of the curl operator. These two symbols are suggested by the

: : . . o 7
appearance of the dot or the cross in between the unit vectors X, and the partial derivatives —

ox;

of the V operator as defined by (3.13). In Gibbs' notations, (V) ; and (Vx) 5> Y 1s a part of his
notations for the divergence and the curl that leads to a very serious misinterpretation by many
later users and which is a key issue in our study. With the introduction of these two new

notations, Egs. (3.1) to (3.9) become:

Vu=>» x,— (3.18)
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vF=Y% <L (3 19)

cx,;

177
VF = (61 (3.20)
VF = \jf (3.21)

! !

.

VF=Y % f?:" et
: ox, ox; (3.22)

(7, j,k)=(1,2,3) in cyclic order

8%
VVu=> (3.23)

2

. OX;

O*F
VVF=> 5 (3.24)

i OX,
VVF=> X, VVF, (3.25)

!

VVF=VVF-VYVF (3.26)

In these formulas the del operator only enters in the gradient of a scalar, (3.18), or of a vector,
(3.24) - (3.26). Except for the notations for the divergence and the curl, we have not changed the

content of Gibbs' work at all. These equations will be used later in our study of other people's

presentations.
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4. Book by Edwin Bidwell Wilson Founded upon the Lectures of J. Willard
Gibbs

4.1 Gibbs' Lecture Notes

In 1901 the first book on vector analysis by an American author was published. The book was
written by Wilson [7], then an instructor at Yale University, and founded upon the lectures of
Gibbs. According to the general preface of that book, the greater part of the material has been
taken from the course of lectures on Vector Analysis delivered annually at Yale University by
Professor Gibbs. There is one historical document well-kept at the Sterling Memorial Library of
Yale University which is the record of the lectures [15]. It is a cloth-bound book of notes, hand-
written in ink on 8-1/2" by 11" ruled. paper, consisting of fifteen chapters covering 289 - plus

pages. The title page and the table of contents are:
Lectures Delivered upon
Vector Analysis
and its
Applications to Geometry and Physics
by
Professor J. Willard Gibbs 1899-90

reported by Mr. E. B. Wilson

Table of contents page
Ch. 1 Fundamental Notions and Operators 1
Ch. 2 Geometrical Applications of Vector Analysis 11
Ch. 3 Products of Vectors 25
Ch. 4 Geometrical Applications of Products 50

date: 95/05/23



An Historical Study of Vector Analysis page 25

Ch. 5 Crystallography 62
Ch. 6 Scalar Differentiation of Vectors 72
Ch. 7 Differentiating and Integrating Operations 83
Ch. 8 Potentials, Newtonians, Laplacians, Maxwellians 110
Ch. 9 Theory of Parabolic Orbits 125
Ch. 10 Linear Vector Functions 164
Ch. 11 Rotations and Strains 200
Ch. 12 Quadratic Surfaces 223
Ch. 13 Curvature of Curved Sﬁrfaces 234
Ch. 14 Dynamics of a Solid Body 261
Ch. 15 Hydrodynamics 276

4.2 Wilson's Book

Presumably, Wilson's book (436 pages) is mainly based on these notes. It was mentioned in the
preface of Wilson's book that some use, however, has been made of the chapters on vector
analysis in Heaviside's Electromagnetic Theory (1893) and in Foppl's lectures on Maxwell's
Theory of Electricity (1894). Apparently, Gibbs himself was not involved in the preparation of

this book. We quote here two paragraphs in the preface by Professor Gibbs:

I was very glad to have one of the hearers of my course on Vector Analysis in the

year 1899-1900 undertake the preparation of a text-book on the subject.

I have not desired that Dr. Wilson should aim simply at the reproduction of my
lectures, but rather that he should use his own judgment in all respects for the

production of a text-book in which the subject should be so illustrated by an
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adequate number of examples as to meet the wants of students of geometry and

physics.
In the general preface, Wilson stated:

When I undertook to adapt the lectures of Professor Gibbs on Vector Analysis for
publication in the Yale Bicentennial Series, Professor Gibbs himself was already so
fully engaged in his work to appear in the same series, Elementary Principles in
Statistical Mechanics, that it was understood no material assistance in the
composition of this book could be expected from him. For this reason he wished
me to feel entirely free to use my own discretion alike in the selection of the topics
to be treated and in the mode of treatment. It has been my endeavor to use the
freedom thus granted only in so far as was necessary for presenting his method in

text-book form.
One very important remark by Wilson is found in the preface:

It has been the aim here to give also an exposition of scalar and vector products of
the operator V, of divergence and curl which have gained such universal
recognition since the appearance of Maxwell's Treatise on Electricity and
Magnetism, slope, potential, linear vector functions, etc. such as shall be adequate

for the needs of students of physics at the present day and adapted to them.

We would like to point out here that in Gibbs' pamphlets and in the lecture notes reported by
Wilson, there is no mention of the scalar and vector products of the operator V. We believe this
concept or interpretation was created by Wilson and u‘nfortunately, it has had a tremendously
detrimental effect upon the learning of vector analysis within the framework of Gibbs' original

contributions.
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In explaining the meanine of the divergence of a vector function Wilson musinterpreted Gibbs'
p g g g p

notation for this function, namely V-F  After defining the V operator for the gradient in a

Cartesian system as
. c . C c
V:l—;—'-'rjﬂ +A~:— (4])
cx T Cy C:

he stated in Sec. 70, p. 150 of Wilson's book [7]:

Although the operation V¥ has not been defined and cannot be at prescnt. two
formal combinations of the vector operator V and a vector function ' may be
treated. These are the (formal) scalar product and the (formal) vector product of V

into V. They are:

VY= ii+ji+k cly (4.2)
’ ox 0y Ot
Vv =il Skl |y (4.3)
ox "oy O
) . e J 7 )
The differentiations —, —, , being scalar operators, pass by the dot and the
Ox 0Oy Oz
cross, that is
V.V= i-ﬁV+j-é’V+k'§V (4.4)
Ox oy oz

oV av) 45)

VxV = ix—é’—li+j><————+kx
Ox Oy 0z

They may be expressed in terms of the components V,, V,, V; of V

We have identified the equations with our own numbers. In order to compare these expressions

with Gibbs' expressions now described by (3.19) to (3.22), we again, will change the notations for

Vix, vy z i j kto F,x,x,, x;;X,X,, X;; and V-¥Vand VxV to VF and VF. Eq. (4.1) to
(4.5) become:
V=YL (4.6)
- .
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. C
VF = X -F 4.7
Z"C’%) (4.7)
VF= Z.{-. a x F (4.8)
; 'é’x,
. oF
VF: X - 49
gv, ox) (4.9)
. CF
VF=) x 410
T (4.10)

Equations (4.6), (4.9), and (4.10) are identical to Gibbs' (3.13), (3.19), and (3.21). However,
(4.7) and (4.8) are not found in Gibbs' works. Wilson obtained or derived (4.9) and (4.10) from
(4.7) and (4.8). The derivation involves two crucial steps or assumptions. First, he considers
Gibbs' notations V- F and V x F as 'formal' scalar and vector products between V and F. In the
following we will refer to this model as the FSP (formal scalar product) and FVP (formal vector

product). He did not explain the meaning of the word 'formal'. Secondly, after he formed the FSP
and FVP he let the differentiation 5—5— pass by the dot and the cross with the argument that the

1

: - o . :
differentiations —, (i =1,2,3) are scalar operators. The statement appears to be quite firm. But
i

standard books on mathematical analysis do not have such a theorem. Later on, [7, p. 152]

Wilson attempts to soften his attitude by saying:

From some standpoints objections may be brought forward against treating V as a
symbolic vector and introducing V-¥ and V xV as the symbolic scalar and vector
products of V into V respectively. These objections may be avoided by simply
laying down the definition that the symbol V- and Vx, which may be looked upon

as entirely new operators quite distinct from V, shall be
ov .oV ov

. +J- +k-
Ox oy oz

V-V=i (4.11)

and
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"[/ "’/ ',"/
LA L (4.12)
cX cy CcZ

VxV=ix

But for practical purposes and for remembering formulas, it seems by all means

advisable to regard
V=i 4 j—fy— Yy
ox T oy oz

as a symbolic vector differentiator. This symbol obeys the same laws as a vector

o . . 2 .
just in so far as the differentiations —ﬁ ——, —, obey the same laws as ordinary
Ox Oy Oz

scalar quantities.

The contradictions between the above statement and the FSP and FVP assertion seems quite
evident. Equations (4.11) and (4.12), of course, are the same as Gibbs' (3.11) and (3.12) with V
replaced by F and x, y, z; ahd i, j, k; by x,, x,, x, and X,, X,, X,. The difference is that Gibbs
never spoke of a FSP and FVP but Wilson introduced these concepts to derive the expressions for
div F and curl F by imposing some non-valid manipulations. What is the consequence? Many
later authors followed his practice and encountered difficulties when the same treatment was
applied to orthogonal curvilinear coordinate systems. Before we discuss this topic, Heaviside's
treatment of vector analysis, particularly his handling of V should be reviewed and commented

upon.

We have pointed out that Gibbs' pamphlets were communicated to Heaviside. On the other hand,
Wilson also mentioned some use of Heaviside's treatment of vector analysis in his book
Electromagnetic Theory (1893) in his preface. The exchange between Heaviside and Wilson was
therefore, mutual. However, Heaviside goes his own way in presenting the same topics. Before

we turn to the next chapter, Wilson's FSP and FVP model will be analytically examined.

If we start with one of Gibbs' definitions of divergence, without using his notation but rather by
using the linguistic notation, i.e.,

A
ox:

X

divF=Y (4.13)

!
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then by substituting F = X, - Finto (4.13) we find

N F
div F :Z———C(:’ )
) C‘XI-

. (4.14)
:Z['i.l—if‘—+%\_lf‘}
- cx; Cx;
Since ox; =0 (4.14) reduces to
. OF
div F=) x;: 415
g @15

which is obviously not equal to

J.F

or V- F . This is a proof of the lack of validity of the FSP. A similar proof can be executed with

B

é
ox;

respect to the FVP. Another demonstration of the fallacy of a FSP is to consider a 'twisted'

differential operator of the form

~ 0 . 0
V,=x, +X +X 4.16
! - 5x1 3 5x2 ! 5x3 ( )

and a 'twisted' vector function defined by
F = x,F +XF, + X F (4.17)

If the FSP were a valid product then by following Wilson's pass-by procedure we obtain
a2 N oF, . oK
17 X1 V74 Xr V74 X3

V,-F, = (4.18)

In other words, div F is now treated as the formal scalar product between V; and F;. The result
is the same as Wilson's FSP between V and F. Such a manipulation is, of course, not a valid
mathematical procedure. We have now refuted Wilson's treatment of div F and curl F based on

the FSP and FVP. The legitimate compound differential operators for the divergence and the curl

are, respectively, V and ¥ defined by (3.16) and (3.17). (V-) . and (V x) . are merely Gibbs'

G G

notations suggested for the divergence and the curl. They are not operators.

date: 95/05/23



An Historical Study of Vector Analysis page 31

4.3 The Spread of the Formal Scalar Product (FSP) and Formal Vector Product (FVP)

Being the first book on vector analysis published in 1901 in the U S A., Wilson's book became
very popular. The 8th reprinting was made in 1943 and a paperback reprint by Dover Publications
appeared in 1960. Many later authors freely adopted Wilson's presentation using the FSP and
FVP to derive the expressions for divergence and curl in the Cartesian coordinate system. We
have found over fifty books [16] containing such a treatment. We now quote herein a few

examples to show Wilson's influence.

1.) In the book Advanced Vector Analysis by Weatherburn [4] published in 1924, we find the

following statement:

To justify the notation V-, we have only to expand the formal products according
to the distributive law, then
_ - 2\l = & . -
V-f= ai— || f =) —+—=div
! [Z( ox; ﬂ ! ZI: x; /

i 1

We shall remark here that any distributive law in mathematics should be proved. In this case, there
is no distributive law to speak of because the author is dealing with an assembly of mathematical
symbols and V- is not a compound operator. Incidentally, Weatherburn's book appears to be the

first book published in England wherein Gibbs' notations, but not Heaviside's, have been used in

addition to the linguistic notations, namely, grad u, div 7 and curl 7

2) A German book by Lagally [17] published in 1928 contains the following statement on p. 123:

The rotation (curl) of 7 is denoted by the vector product between V with field

function 7 ... and

. . O . O
div gradf:V-Vf:(Z.vigz)-(%:xj-—é,xij]:vzf

i 1
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The above is an English translation of the original text in German. It is seen that a term like

. C . C . .
X| — - X} — 1s an assembly of symbols. It is not a compound operator.
le C‘xl

3.) In a book by Mason and Weaver [18, p. 336] we find the following statement:

The differential operator V can be considered formally as a vector of components
2

=, so that its scalar and vector products with another vector may be
ox Oy oz

I

taken.

In comparison with Wilson's treatment Mason and Weaver have used the word 'formally' to be

associated with V and then speak of scalar and vector products with vector functions.

4.) In a book Applied Mathematics by Schelkunoff [19, p. 126], the author first derived the

differential expression for the divergence based on the flux model; then he added:

In Sec. 6 the vector operator del was introduced. If we treat it as a vector and
multiply it by a vector F, we find

s[5 2[5 r |- T
~ Ox 7 7

I i X;

For this reason V- may be used as an alternative for div; however, the notation is

tied too specifically to Cartesian coordinates.

There are two messages in this statement: the first one is his acceptance of the FSP as a valid
entity. The second one is his implication that FSP only applies to the Cartesian system. Actually,
the divergence operator, V, is invariant with respect to the choice of the coordinate system, a
property to be demonstrated later, but V' is an assembly, not an operator. Only by means of an
illegitimate manipulation does it yield the differential expression for the divergence in the

Cartesian coordinate system.

5.) From a well-known book by Feynman, Leighton and Sands [20, p. 2-7] we find the following

statement:
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Let us try the dot product between V with a vector field that we know, say 7 we

write

V. f=V f+V [ +V |

or

7 Of\' Of." +é’fz
Ox ﬁy oz

The authors remarked on the same page before the above statement:

With operators we must always keep the sequence right, so that the operations

make the proper sense ...

This remark is very important. Our discussion and use of the operators in chapter 2, particularly
that related to the compound operators, closely adheres to this principle. In the case of Gibbs'
notation, V-?, we are faced with a dot symbol after V, so that the differentiation cannot be

applied to £ it is blocked by a dot in the assembly. Thus, the authors seem to have violated their

own rule by trying to form a dot product or FSP.

6.) In the English translation of a Russian book by Borisenko and Tarapov [21, p. 157] we find

the following statement:

The expression (4.29) (V = Zik a”i) for the operator V implies the following
Xk

representation for the divergence of A
o —

div2=%='k A=V-4
é’xk o"xk

A coordinate-free symbolic representation of the operator V is

Lzm——ﬁn (4.19)

V-0

where (---) is some expression (possibly preceded by a dot or a cross) on which the

given operator acts. In fact, according to (4.31) and (4.29),

date: 95/05/23



An Histoncal Study of Vector Analysis page 34

1 - e
grad ¢ = {J'l—{yl_'ﬁq)” ds, (4.20)
div 4= Limi, A-ndS (4.21)

1"—=0
S

From the above statement we see that the two authors believe the validity of the FSP. Their
(4.19) also implies that they consider V as a constituent of the divergence and the curl in addition
to comprising the gradient operator. The formula described by (4.19) appeared earlier in the book
by Gans [22, p. 49, Sixth Edition] who used both Gibbs' notations and the linguistic notations in
this edition.

There are several authors presenting V as defined by » (4/Jx,)x; instead of > %,(4/&x;), and
the Laplacian, defined by div grad, is often treated as the scalar product between two nablas,
presumably because Gibbs used V-V as the notation for this compound operator. These
practices, including the use of a FSP and FVP, go beyond the boundary of the U. S. A. and

continental Europe. There are books in Chinese and Japanese doing the same.
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5. V in the Hands of Oliver Heaviside (1850 - 1925)

Although we have traced the concept of the FSP and FVP as due to Wilson, the same practice is
found in the works of Heaviside. In Vol. I of his book Llectromagnetic Theory [8.§ 127]

published in 1893, Heavside stated:

When the operand of V is a vector, say D, we have both the scalar product and

the vector product to consider. Taking the formula along first, we have
divD=V,D,+V,D, +V,D,

This function of D is called the divergence and is a very important function in

physical mathematics.

He then considered the curl of a vector function as the vector product between V and that vector.
At the time of his writing he was already aware of Gibbs' pamphlets on vector analysis but
Wilson's book was not yet published. It seems, therefore, that Heaviside and Wilson
independently introduced the misleading concept for the scalar and vector products between V
and a vector function. Both were, perhaps, induced by Gibbs' notations for the divergence and the
curl. Heaviside did not even include the word 'formal' in his description of the products. We
should mention that Heaviside's notations for these two products and the gradient are not the

same as Gibbs' (See the table of notations in Sec. 2.1). His notation for the divergence of f is
V7 and his notation for the curl of 7 is VV7 (a quaternion notation) while his notation for the
gradient of a scalar function f is V. f. Having treated V-f and V x f (Gibbs' notations for the
divergence and the curl) as two 'products’, Heaviside simply considered V as a vector in deriving

various differential identities. One of them was presented as follows [8, § 132]:

The examples relate principally to the modification introduced by the

differentiating functions of V.

(a) We have the parallelopiped property
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NIVE=VI'EN=EI'NV (176)

where V is a common vector. The equations remain true when V is vex, provided
we consistently employ the differentiating power in the three forms. Thus, the first
form, expressing N component of curl E, is not open to misconception. But in
the second form, expressing the divergence of VVE N, since N follows V, we must
understand that N is supposed to remain constant. In the third form, again, the
operand E precedes the differentiator; we must either, then, assume that V acts

backwards, or else, which is preferable, change the third form to V' NV—I_Z_ the
scalar product of VNV and E, or (V—NV)E if that 1s plainer.

(b) Suppose, however, that both vectors in the vector product are variable. Thus,

required the divergence of V/ EH, expanded vectorially. We have
VVEH=EVHV=HVVE, (177)

where the first form alone is entirely unambiguous. But we may use either of the
others, provided that the differentiating power of V is made to act on both E and
H . But if we keep to the plainer and more usual convention that the operand is to
follow the operator, then the third term, in which E alone is differentiated, gives
one part of the result, whilst the second form, or rather its equivalent, —E’VVE,
wherein H alone is differentiated, gives the rest. So we have, complete, and

without ambiguity

div VE H=HCurl E-E Curl H (178)
a very important transformation.

First of all, in terms of Gibbs' notations, Heaviside's Eqs. (176), (177), and (178) would be written

in the form

N-VxE=V(ExN)=E-(NxV) (5.1)
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.

V(ExH)=E-(HxV)=H-(V<E) (5.2)

V(ExH)=H V<E-E-VxH (s.

N
[U9]
N

And in terms of the new notations for the divergence operator and the curl operator, Heaviside's

three equations will be written in the form

N-VE=V(ExN)=E-(NxV) (5.4)
V(ExH)=E-(HxV)=H(VE) (5.5)
V(ExH)=HYE-E-VH (5.6)

According to the established mathematical rules, Heaviside's logic in arriving at his (178) or our
(5.1) or (5.4) is entirely unnacceptable; in particular, present day students would never write an
equation (177) or (5.2) or (5.5) with V being the V operator. The second term in (5.2) or (5.5) is
a weighted operator while the first and the third are functions and they are not equal to each
other. His Eq. (178) or (5.3) in Gibbs' notation or (5.6) in our notation is a valid vector identity
but his derivation of this identity is not based on established mathematical rules. It is obtained by a
manipulation of mathematical symbols and selecting the desired terms. The most important
message passed to us is his practice of considering V.f and V x 7 as two legitimate products,
the same as Wilson's FSP and FVP. Heaviside's 'equations' will be examined again in a later
section and will be cast in proper form in terms of the symbolic vector and/or a partial symbolic

vector.
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6. Shilov's Formulation of Vector Analysis

A book in Russian on vector analysis was written by Shilov [23] in 1954, who advocated a new
formulation with the intent of providing a rather broader treatment of vector analysis. Shilov's
work was adopted by Fang [24] who studied in the U. S. S. R. We were informed of Shilov's
work through Fang. After a careful examination of the English translation of the two key chapters
in that book we found the contradictions as described below:

Shilov defined an 'expression' for V denoted by 7(V) as:

7(V) :—GiT(i)+—oiT(j)+:CiT(k) (6.1)
ox Cy oz

where i, j, kdenote the Cartesian unit vectors and V (nabla) is identified as the Hamilton
differential operator, that is,
’ o 174

V=i—+j—+k—
ox ~Jy Oz

Equation (6.1) is the same as Shilov's Eq. (18) on p. 18 of [24]. We want to emphatically call
attention to the fact that the only meaningful expression for 7(V) involving V is Vf, the gradient
of /. In that case, (6.1) is an identity because the right side of (6.1) yields
o . ‘. o 0 N7 7
L)+ 2+l =i Zs 2Lk L
X Oy

oz Ox jo”_y oz

which is Vf.

The most serious contradiction in Shilov's work is his derivation of the expression for the

divergence and the curl by letting 7(V) equal to V- 7 and V x f respectively. We have pointed

out before that these two products do not exist. Shilov is defining a meaningless assembly to

make it meaningful. It is like defining 2 + x3 to be equal to 2 x +3 (= +6).
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7. Orthogonal Curvilinear Systems

After having revealed a number of 'historical' confusions and contradictions in vector analysis so
far presented in the Cartesian system, we now examine several presentations in curvilinear
coordinate systems. We will show even more clearly the sources of the various

misrepresentations.

In this section we limit ourselves to problems in orthogonal curvilinear coordinate systems,
leaving the discussion of non-orthogonal curvilinear systems to a later section. In an orthogonal

curvilinear system with coordinate variables v, /=12,3, the total differential of the position

vector r of a point in 3-dimensional space can be written in the form

dr = —5—r—dv1 + or dv, +de\)3 (7.1)

oy Ov, ovs

If we denote the metric coefficients in an orthogonal curvilinear system by 4 with 7=(1,2,3),
then

i, i=(1,2,3) (7.2)

u-u.=0i#j (7.3)
and uxu =a,, izjzk (7.4)
with (7, j, &) in cyclic order of (1,2,3). Thus i,,4,, and 4, form a right-hand system.
For our discussion, a review of the invariance of the three differential operators is in order.

7.1 Invariance of the Differential Operators V, V and V in Orthogonal Curvilinear
Systems

When (7.2) is substituted into (7.1) we obtain

dr= Zh,.ﬁldv, (7.5)
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It 1s understood that the summation in (7.5) goes from /=1 to 3. The total differential of a scalar

function is defined by

df =Y —v. 76
which can be written in the form
of
d hidv,
Yy = Zh v, !
P (7.7)
4, of uhdv,
h Ov;

The last line of (7.7) represents the scalar product of the gradient of fand dr given by (7.5). Thus

df =Vf-dr (7.8)
where
Vf = Z'; j{ (7.9)
If we write dr = rdr in (7.8), then
A ¢y (7.10)
or

The name for the gradient used by Maxwell is space-variation, presumably because of the
relationship described by (7.10). In view of (7.9), the gradient operator in an orthogonal

curvilinear coordinate system is therefore given by

V= Zh o"v (7.11)

For the special case of the Cartesian coordinate system, , =1, &, = X,, v, = x,, we recover the
del operator of Hamilton. Although our derivation of (7.11) is independent of the choice of the
coordinate system, it is desirable to show analytically that the gradient operator is indeed invariant

to that choice. If we have another orthogonal curvilinear coordinate system with coordinate

variables v/, unit vectors &' and metric coefficients 4’ and we denote the gradient operator in that

system by V', we want to show that
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Since

hence

Thus,

or

Now

i, 0,,‘)’ m(a)-a,)
i
! !
4 i fl ﬁ..vf_'
J 1
h; Ov;

Substituting (7.15) into (7.16), we obtain

or

By definition,

o,
R

and by the chain rule of differentiation, we have

ovy
IZ:;h':E:c?v é9v

page 41

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)
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Eliminating 12} / h} between (7.17) and (7.19) we obtain

u cv'

PO e (720
gk

vl Sy
h v, &V Oy

Since

é’\)k _Zé‘vk 5\} B l.i=k
ov; 5 ov; ov; |0, ik
eq. (7.20) reduces to

u. ¢

!

V= L—=V 7.21
p h Ov; ( )

This completes our proof. By following the same procedure it is not difficult to show that the
divergence operator and the curl operator are also invariant with respect to the choice of the

orthogonal curvilinear coordinate system, i.e.,

V: _L,____: —_— :V' 722
p h; Ov; ; ]' ﬁv} ( )
and
a. 0 a,
v=SZ, Y S/, =V 7.23
= h  Ov ; i oV (7:23)

With these expressions at our disposal, let us look at some of the treatments of the FSP and FVP
in orthogonal curvilinear coordinate systems and some of the presentations of vector identities

involving the del operator.
7.2 Two Examples from the Book by Moon and Spencer
In the book by Moon and Spencer [3, p. 325] they stated:

Let me apply the definition, Eq. (1.4), (of V in the orthogonal curvilinear system,

our 7.20) to divergence. By the usual definition of a scalar product,

cp 1AW, 1 AW, 1 a)

3
7.24
I Ox! I Ox? I ox° ( )
811 822 833
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But this is not divergence, which is found to be ...

Similar inconsistencies are obtained with other applications of Eq. (14).

! . . . .
In (7.24), their (g )* correspond to our metric coefficients /4, and their x' to our variables

In the first place, they have now applied the FSP to V and Vin an orthogonal curvilinear
coordinate system without realizing that the FSP is a non-valid entity in any coordinate system
including the Cartesian system. After obtaining a wrong formula for the divergence. (7 24), they
did not offer an explanation of the reason for the failure. It is seen in our discussion of the

invariance of V that V f isequal to V'f’" and V f or V'f’ is not a scalar product between V
and f nor V'and f'.
In discussing the Laplacian of a vector function, the two authors stated 3, p. 235]:
Section (7.08) showed that there are three meaningful combinations of differential
operators: div grad, grad div, and curl curl. Of these, the first is the scalar

Laplacian, V*. It is convenient to combine the other two operators to form the

vector Laplacian, &:

% = grad div - curl curl | (7.25)

Evidently the vector Laplacian can operate only on a vector, so

QE =grad divE - curl curl E (7.26)
Since the quantities on the right are vectors, ®E transforms as a univalent tensor
or vector.

As noted in Table 1.01 (their table of notations on page 10), the scalar and vector
Laplacians are often represented by the same symbol. This is poor practice,

however, since the two are basically quite different:
V* = div grad (7.27)

% = grad div - curl curl (7.28)
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This difference is evident also when the expression for the vector Laplacian is

expanded. ...
Analytically it can be proved [25, pp. 124 - 126] that in any orthogonal curvilinear system,
div grad f = grad div f —curl curl f

or
VVf=VVf-VYf (7.29)

where V f denotes the gradient of a vector function that is a dyadic function. The divergence of a
dyadic function is a vector function. The use of V* to denote the Laplacian is an old practice, but
the use of VV is preferred because it shows the structure of the Laplacian when it is applied to
either a scalar function or a vector function. By treating (7.25) as the definition for the Laplacian
applied to a vector ﬁmction, the two authors have probably been influenced by a remark made by

Stratton [10, p. 50]:

The vector V-VF may now be obtained by subtraction of (85) [an expansion of
V xV x F in an orthogonal curvilinear system] from the expansion of VV - F | and
the result differs from that which follows a direct application of the Laplacian to

the curvilinear components of F .

As shown in our proof [25, pp. 124 - 126] VFis a dyadic, where the gradient operator must
apply to the entire vector function containing both the components and the unit vectors. When
this is done, we find that (7.29) is indeed an identity. In view of our analysis, it is clear that a
special symbol for the Laplacian is not necessary when it is operating on a vector function. The
same remark holds true for the two different notations for the Laplacian introduced by Burati-

Forti and Marcolongo as shown in Table 1.

These two examples also show why Moon and Spencer thought that V is an unreliable device.
The past history of vector analysis seems to have led them to make such a conclusion. V is a

reliable device when it is used in the gradient of a scalar or vector function, but not in any other
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application. For the divergence and the curl, the divergence operator, V. and the curl operator.

Vv, are the proper operators They are distinctly different from V.

7.3 A Search for the Divergence Operator in Orthogonal Curvilinear Coordinate

Systems
In a very well known book on the methods of theoretical physics [26, p. 44] the authors try to

find the differential operators for the three key functions in an orthogonal curvilinear coordinate

system. They state:

The vector operator must have different forms for its different uses:

V= Zﬁ——é’v— for the gradient
i i

i

= .__Z i _0"_[9) for the divergence
RAAN

and no form which can be written for the curl.

We have used Q to represent 4 A,k and have changed their coordinate variables &; to v; and their
symbols a; to & . It is obvious that the 'operator' introduced by these two authors for the

divergence can produce the correct expression for the divergence only if the operation is

interpreted as

f

o(Q.
;é’v,- P f) (7.25)

._I_Zﬁ a(Q 1
Q<" v\ h Q

i

Such an interpretation is quite arbitrary, and it does not follow the accepted rule of a differential

operator because the first term within the bracket is a function so the entire expression represents

the scalar product of [] and f . One is not supposed to move the unit vector &, to the right side
of Q/h and then combine &, with -f as shown in the right term of (7.25). It is a matter of
creating a desired expression by arbitrarily rearranging the terms in a function and the position of

the dot operator. A reader must recognize now that V can never be a part of the divergence
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operator nor the curl operator. The proper operators for the divergence and the curl are V and V¥

respectively. We could have used any two symbols for that matter such as D and C.

7.4 The Use of V to Derive Vector Identities

There are many authors who have tried to apply identities in vector algebra to 'derive' vector

identities involving the differential functions V/, Vf and ¥f. We quote here two examples. The

first example is from the book by Borisenko and Tarapov [21, p. 180] where a problem is posed

and 'solved":

Prob. 7. Find V(A4 B)

Solution. Clearly

V(A4-B)=V(A.-B)+V(A-B,)

(7.26)

where the subscript ¢ has the same meaning as on p. 170 (the subscript ¢ denotes

that the quantity to which it is attached is momentarily being held fixed).

According to formula (1.30)
cla-b)=(a-c)b-ax(bxc)

Hence, setting

a=A,b=B, c=V,
we have

V(A4,-B)=(A,-V)B+ A, x(VxB)

and similarly,

V(A-B,)=V(B,-A)=(B,-V)A+B_ x(V x A)

Thus, finally,

V(A-B)=(A4-V)B+(B-V)A+Axcurl B+ B xcurl A

(7.27)

(7.28)

(7.29)

(7.30)
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As far as the final result, (7.30), is concerned, they have indeed obtained a correct answer. But

what is the justification of applying (7.27) with ¢ replaced by V and why cannot the same

formula be applied directly to V(A-B)? There is no way to provide the answers to these

questions. A reader has to accept blindly such a treatment.
The second example is found in the book by Panofsky and Phillips [27, p. 470]. They wrote:

Vx(AxB)=(V-B)A-(V-A)B

=(V-B,)A+(V - B)A, - (V-A)B-(V-A)B, (7.31)

where the subscript ¢ indicates that the function is constant and may be permuted
with the vector operator, with due regard to sign changes if such changes are

indicated by the ordinary vector relations.

It is seen that their (V-B)A in the first line is not (div B)A. Rather it is equal to
(V-B)A+(V-B)A,. Secondly, if B, is constant, the established rule in differential calculus
would consider their V- B, (i.e., div B,) =0. The use of algebraic identities to derive differential
identities by replacing a vector by V has no foundation - the first line of (7.31). For the exercise in

consideration, one way to find the identity is to prove first that
V(AxB)=V(BA- AB)
or
Curl (4 x B) = div (BA- AB) (7.32)

where AB is a dyadic and BA its transpose (see Sec. 2.3). Then by means of dyadic analysis one

finds

V(BA)=(VB)A+B-VA (7.33)

V(AB)=(VA)B+A-VB (7.34)

Hence

V(AxB)=(VB)A+B-VA
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-(VAB-A-VB (7.35)
where VA and VB are two dyadic functions. A simpler method of deriving (7.35) will be shown
in later section. It should be emphasized that one cannot legitimately write

Vx(AxB)=(V-B)A-(V-A)B
as the two authors did and then change (V-B)A to V~(BA), and similarly for (V-A)B in order

to create a desired identity.
A general comment on the analogy and no analogy between algebraic vector identities and

differential vector identities was made by Milne [28]. It was stated on p. 77:

The above examples [referring to nine differential vector identities expressed in

linguistic notations such as [grad (X-Y) =(grad X )-Y +(grad Y) X etc.] whilst

exhibiting the relations between the symbols in vector or tensor form, conceal the

nature of the identities. A little gain of insight is obtained occasionally if the symbol

V is employed. E.g., Example (9) [curl curl X =grad div X A VED ¢ ] may be
written

Vx(VxX)=V(V-X)-V?X (7.36)
which bears an obvious analogy to

0x(QxX)=0(0 X)-0°X (7.37)
where ( denotes a vector function.

On the other hand Example (5)
[Curl (XxY)=Y -grad X - X -grad Y + X divY - ¥ divX]

may be written

Vx(XxY)=Y.-VX-X-VY+X(V.Y)-¥Y(V - X) (7.38)

which bears no obvious analogy to
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Ox(XxY)=X(Q-Y)-Y(Q-X) (7.39)

To obtain a better analogy, one would have to write

Ox(XxY)=0-(YX - XY) (7.40)
and replace Q by V.

We do not understand why (7.40) is a better analogy than (7.39) because as algebraic vector

identities, they are equivalent. There is only one interpretation of (7.40), namely,

Qx(XxY)=(Q-Y)X-(Q-X)Y (7.41)

By replacing Q by V in (7.40), and treating the resultant expression as the divergence of the
dyadic XY —YX the manipulation is identical to the one used by Panofsky and Phillips. This
short paragraph on the role played by del in an authoritative book on vectorial mechanics shows
the consequence of treating Gibbs' notations for the divergence and the curl as two products, one

scalar and and one vector.

We have now shown the failures by several prominent authors in trying to invoke V as an
operator, not only for the gradient but also for the divergence and the curl. The role is now filled
in by the symbolic vector to be discussed in the next section. Many of the ambiguities which have
occurred in the past presentations covered in this paper will be recast correctly and
unambiguously by our new method utilizing the symbolic vector. In fact, the entire subject of
vector analysis can be developed from one single defining equation including the derivation of
vector identities and integral theorems. The method can also be extended to non-orthogonal

curvilinear systems.
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8. The Method of Symbolic Vector

The method of symbolic vector was first disclosed in an article published in 1991 [29]. The entire
subject was then expanded and compiled in a book [25] published in 1992, We are not going to
give any derivations nor proofs of the theorems to be used here. Rather, we will just use some
important formulas in that method in order to clarify the historical presentations covered in the

previous sections.

In the first place, a symbolic expression, denoted by 7(V), involves a symbolic vector, or a

dummy vector denoted by V. The symbolic expression is defined by

ﬁ 7(A)dS

I(V)= Lim-*——— (8.1)

AV 0 AV

where n denotes an outward unit normal vector of a surface, S, enclosing the volume Al” The
symbolic expression is created by replacing a vector in a well-defined vector expression by V

Some of the well-defined vector expressions are:

ad, a-d, axd, a-(dxb), da-b), d-(ab), d x(ab), and d x (a x b) (8.2)

where the dot and the cross represent the two binary operators, namely, the scalar product

operator and the vector product operator.

When the vector d in (8.2) is replaced by V, the symbolic vector or the dummy vector, we obtain

the following symbolic expressions:
a¥, a-V, axV, a-(Vxb), ¥(a-b), v{ab), vx(ab), and v x(axb) (8.3)
To be more specific, if 7(V) contains only one function besides V, like the first three expressions

in (8.3), we sometimes would use the notation 7(V,a) where a may be a scalar or a vector.
When 7(V) contains two functions like the last five in (8.3), the notation 7( V,a,b) will be used
for clarity if necessary, where a and b may be scalars or vectors or one of each. As far as the

notation is concerned, we may use any other symbol to denote the symbolic vector such as §

date: 95/05/23



An Historical Study of Vector Analysis page 51

(symbolic) or D (dummy). We adopt the symbol ¥V because by a proper choice of the symbolic

expression, we can produce the three key functions, V/, V F_and V¥ F that makes V the creator

of the operators V, V and V.

The definition of 7(V) given by (8.1) is the most important formula in our new method. We
would like to consider three simple symbolic expressions to derive the expressions for the

gradient, the divergence, and the curl. Let us consider an expression 7( V) given by
(V)y=a-v (8.4)
7(h) is then given by

T(hA)=a-n (8.5)

which is a function of both @ and #. By substituting (8.4) and (8.5) into (8.1), we obtain

ﬁa-ﬁdS

a-v= LimS (8.6)
AV=0 AV

For simplicity, let us evaluate the limit of the integral-differential expression in (8.6) in the

Cartesian coordinate system; we obtain:

. oa
a-V: X  — 87
Zv, ox (8.7)

which is the expression for the divergence of @ now denoted by Va. The chain of events is

ﬁa-fzdS

recapitulated in the following line:

da
a-¥=Lim 33— =%% ——
AV—0 AV ;x, ox;

= Va (divergence of @) (8.8)

If we start with a 7( V) represented by V-a@ we would obtain the same result because n-a=a-n,

le.,

Va=a-V=Va (8.9)
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We also want to remark that the dot in @-V or V-a is a sign or a binary operator for the scalar

product, but the product is executed in ri-aor a-a. This is one of the most important and delicate
concepts in the method of symbolic vector. A reader must grasp firmly this concept in order to

understand and to use this method freely without uncertainty.

The symbolic vector V and the function a in the symbolic expression V-a is therefore
commutative. At this stage we request the reader to leave aside Gibbs' notations for the
divergence and the curl. The use of Gibbs' notation now would bring lots of confusion into

understanding the method of symbolic vector. On the other hand, if we had used § as the notation

for the symbolic vector we would obtain

S-a=a-S=Va (8.10)
that does not change the result at all.
We consider now a symbolic expression given by f V or V f. Then, an application of (8.1) yields
the expression for the gradient, i.e.,

fV=Vf=Vf (8.11)
Finally, if we let 7(V) equal to ¥ x f or — f x V we obtain the eXpression for the curl:

Vxf=-fxV=Vf (8.12)

The three sample examples show very clearly that by means of the definition of 7(V) we can
readily derive the differential expressions for the three key functions in vector analysis. In general,
the integral/differential limit for any 7{V) defined by (8.1) can be evaluated in an orthogonal

curvilinear system that yields

1w 8|Q. .
T(V):—KSZE[—ET(%)} (8.13)

where A4, and &, denote, respectively, the metric coefficients and the unit vectors in that system,

and Q = h h,h,. The derivation of (8.13) is found in [25, p. 38].
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There are two lemmas associated with the definition of 7(V):

Lemma 1: For any symbolic expression 7( V), which is generated from a valid vector expression.

we can treat V in that expression as a vector, and all of the algebraic identities in vector algebra

are applicable. Thus we have

av=v a (8.14)

Va=a-v (8.15)
Vxa=-axV¥ (8.16)
b-(ax¥)=V(bxa)=a-(Vxb) (8.17)
Vx(axb)=(V-b)a-(V-a)b (8.18)

When 7(V') contains more than one function besides V, say, two functions a and b which could

be both scalars or vectors or one of each, we will specifically use the form 7(V a,b) to write

such a symbolic expression. In this case we have
Lemma 2: For a symbolic expression containing two functions, the following relation holds true:
T(V,a’b):: T( Va’asb) +T( Vb)a’b) (819)

where V , and V, denote two partial symbolic vectors.

A symbolic expression containing a partial symbolic vector is defined by

{ﬁT(ﬁ,a,b) dS} |

N

T(V,ab)= ALim

im 7 (8.20)

In an orthogonal curvilinear coordinate system, the differential form of 7( V ,,a,b) is given by

lw 38|Q.,.
T(Va,a,b)=EZE[XT(ui,a,b)] (8.21)

b=constant
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Similarly for 7(V¥,,a,b). Lemma 1 also applies to expressions containing a partial symbolic
vector. There is no need for us to consider symbolic expressions containing more than two

functions. For example, to determine an expression like
(axV)-(bxc)
we can treat (@ x V)-d first. After we obtain the result we let d = b x ¢ and simplify the resultant.

With (8.13) - (8.21) and the two lemmas at our disposal, we can re-examine the presentations by

these authors discussed previously.

To find the expressions for the three key functions in orthogonal curvilinear systems, we let 7(V)

equalto V for fV, f-VorV.f, and Vxf or - f xV respectively in (8.13), one finds

Vf=fV= h——ji— Vf (gradient of /) (8.22)
V. f f-V= Z 4 g— =V f(divergence of f) (8.23)
Vxf=-fxV= ZA x—f—Vf(curloff) (8.24)

Equations (8.23) and (8.24) can be converted into the form

1 g Q
Vf=EZE(Zﬁ) (8.25)
h hf,
Zkh [ f*) (5v{)} (8.26)

In (8.26) the summation is taken in the cyclic order of i, j,k = (1,2,3). In obtaining these results

we made use of the following identities [25, p. 13 - 15]:

Z jv [gu ) 0 (8.27)

dii [1511 L1 oh, J
= i i,

ov,

i . 8.28
h ov. '’ h ov, ( )
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ch
cu L =) (8.29)

J

cy h &v

In (8.28) i, j,k =(1,2,3) is taken in cyclic order. It is very clear that the method of symbolic
vector yields directly the operational expressions for the divergence and the curl as well as the
gradient. Morse and Feshbach's failure to find the divergence operator and the curl operator is
remedied in this analysis. The curl operator evolves just as readily as the divergence operator.

From the structure of (8.23) we see clearly that V f is not the scalar product between V and f.

an assumption made by Moon and Spencer for the orthogonal curvilinear system.
In regard to Heaviside's treatment the proper substitutes for his 'equation' (5.1) to (5.3) or (5.4) to
(5.6) are:
N-VxE=V(ExN)=E-(NxV) (8.30)
V(ExH)=E-(HxV)=H-(VxE) (8.31)
V{(ExH)=V (ExH)-V (HxE)
=H - (VpgxE)-E-(V_,xH) (8.32)
Equation (8.32) yields
V(ExH)=H-VE-E-VH (8.33)
Although our equations have the same form as Heaviside's except that his V has been replaced by

V, the symbolic vector, yet there is a vast difference in meaning of the two sets. For example, his

H -V xE in (5.2) is interpreted as H-Curl E but our H-VxE is the same as V(ExH)

because of Lemma 2 and it is equal to V(ExH).

Every term in (8.30) to (8.33) is well defined. Both Lemma 1 and Lemma 2 are used to obtain the

vector identity stated by (8.33).
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Return now to the problems posed by Borinsenko and Parapov we start with the symbolic

expression V (A-B) for V(A-B); then by applying Lemma 2 we have

V(4-B)=V (A4-B)+V ,(A4-B) (8.34)
Applying Lemma 1 we have
V (A4-B)=(B-V )A-Bx(AxY ) (8.35)
and
V. (A4-B)=(A-V )B-Ax(BxV,) (8.36)
hence,
V (4-B)=B-VA+BxV A (8.37)
and
V,(4-B)=A-VB+AxVB (8.38)
Thus,
V(A-B)=A-VB+B-VA+AxVB+BxV A (8.39)

Our dertvation of (8.39) appears to be similar to the derivation by Borisenko and Tarapov in
form, but the use of the FSP and FVP in their formulation and the treatment of (7.26) as an
algebraic identity is entirely unacceptable while each of our steps are supported by the basic

principle in the method of symbolic vector, particularly the two Lemmas therein.

The exercise posed by Panofsky and Phillips can be formulated correctly by our new method. The
steps are outlined below:

We start with V¥ x(A x B) which is the symbolic expression of V(A x B); then by means of
Lemma 2

Vx(AxB)=Y ,x(AxB)+V ,x(Ax B) (8.40)

By means of Lemma 1, we have
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V «(AxB)=(B-¥ )A-(V ;A)B

=B-VA-BV A
Similarly
V x(AxB)=(B-¥,)A-(A-Y ,)B
=AVB-A4-VB
hence,

V(AxB)=AVB-A-VB

-BVA+B-VA (8.41)

which is the same as (7.35) obtained previously in Sec. 7 by a more complicated analysis. The
convenience and the simplicity of the method of symbolic vector to derive vector identities
hopefully has been demonstrated very clearly in the last two examples. All commonly used vector
identities have been derived in this way as shown in [25, pp. 52 - 54]. The method of symbolic
vector has so far been applied only to orthogonal curvilinear systems. The method can be applied

equally well to general or non-orthogonal curvilinear systems. The formulation is shown in the

next section.
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9. General Curvilinear Coordinate Systems

Expressions for the three key functions in vector analysis have been derived previously by
Stratton [10, pp. 38 - 47] in the general curvilinear coordinate system or non-orthogonal
coordinate system. The expression for the gradient is obtained by means of the relation
d¢ =V ¢-dr using the contravarient components of the displacement vector dr. The expression
for the divergence is found by applying Gauss's theorem to an infinitesimal region and the
expression for the curl is obtained by applying Stokes' theorem to an infinitesimal contour. We
will derive these expressions by the method of symbolic vector by applying the basic definition of
T(V) to all three functions. To carry out the analysis it is necessary to reveal the concept of
unitary vectors and reciprocal vectors. However, we will not follow the usual treatment based on
tensor analysis and notations. Rather we will treat the subject entirely within the framework of
vector analysis except to share some technical nomenclature commonly used in tensor analysis.
Vector analysis in general curvilinear coordinate systems is not covered in [25]; the material to be

presented is new.

9.1  Unitary Vectors and Reciprocal Vectors

In the general curvilinear coordinate system, henceforth to be abbreviated as GCS, the total

differential of a displacement vector will be written in the form
dr=Za,.dv, (9.1)

where a,, with 7 =1,2,3, are called unitary vectors and v, the coordinate variables. The unitary

vectors are not necessarily of unit length, nor of the dimension of length. The three base vectors

define a differential volume given by
dV =a, -(a, x a,)dv,dv,av,

(9.2)
= Adv,dv.dv,
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where
A=a,-(a,xa)=a. (a,xa)=a, (a ~a.)
a,, a,, and a, are in general, not orthogonal to each other. Three reciprocal vectors. denoted by

b, with j=1,23, are defined by

1 1 1
:—Ka: Xll3, b2 :Xa3 xal, b3 = —Ka] X(l: (93)

b

1

They are called reciprocal vectors because

1, i=j
bj.a,_ = . . (94)
0,iz]j

The unitary vectors can be expressed in terms of the reciprocal vectors in the form:
a = A(bz x bs)’ a, = A(b3 x by )a a, = A(bl X bz) (9.4)
The total differential of the same displacement vector defined in (9.1) can be written in the form

dr=3 b,dw, 9.5)
J

where w,, with j =123, denote the coordinate variables measured along the reciprocal base

vectors, so
jw’j =b, | (9.6)
while
g—‘: =a, (9.7)
It can be readily shown that
bl-(bzxb3)=b2-(b3xb,)=b3-(blxb2)=71\— 9.8)

. . . . 1
Stratton [10, p. 39] had inadvertently written, in our notation, @, = —/((b2 X b3), etc.
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A vector function F can be expressed either in terms of the unitary vectors or their reciprocal

vectors. We write:

F=Yfa=Ygb (9.9)
‘ J

The notation F, will be reserved to denote the components of F in an orthogonal curvilinear
system. Our f; and g, correspond, respectively, to the contravariant and covariant components of
F designated by Stratton [26], two names commonly used in tensor analysis. We merely call g,
the components of F in the unitary (vector) system, or the unitary components, and f; the

components of F in the reciprocal (vector) system, or the reciprocal components.

If we denote

ca =0 (9.10)

and
ﬁijzbi'bj=ﬁji (911)

then the relations between f; and g, are:

fi =2/3ijgj (9.12)
J

8= 0f (9.13)
j

We have purposely avoided the superscript notations for g; and ,B,-j commonly used in tensor

analysis for these quantities, mainly to show that vector analysis can be treated properly without

the aid of tensor analysis.
On account of the orthogonal relations between g, and b; as stated by (9.4) the following relations
can be derived from (9.9):

fi=F-b, (9.14)

gl_ =F-a, (9'15)

J
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hence

=S (F-b)a,=S(F-a, )b (916)

In the language of dyadic analysis

Yba=>ab =1 (9.17)
! J

where 7 is called the idemfactor such that

NII

F-I=1-F=F (9.18)

We have now sufficient materials to apply the method of symbolic vector to the general

curvilinear system.

9.2 Gradient, Divefgence and Curl in a General Curvilinear System
In a GCS, the differential length along the coordinates v, in the direction of the unitary vector a,
1S:
ds,=adadv,i=123 (9.19)
hence

;= |ds; | =(a; a;) %dv

=(an’)

A differential area bounded by ds., and ds, is given by
ds, =ds, x ds,
=a, xa,dv,dv,

(9.20)

o~

dv

i

(9.21)

In general,
ds, =ds, xds,

= (aj X ak)dvjdvk ©-22)

where i, j, k are carried out in cyclic order of (1,2,3).
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Then

s, =[(a; xa)-(a, xa )] vt

]
1
= [(aj -aj)(ak -ak)—((zj- 'a,‘,)(a,\. -aj-)]: dv dv, (9.23)
1
= (ajjakk - Cl?k>2 dvjdvk
where the ¢, 's are defined in (9.10).

The differential volume is given by

d" - a] . ((l: X a3 )d\)]d\)z(j\)3 = Advldv:d\g (924)

As shown by Stratton, [10, p. 43]

A=la, a, a, (9.25)

Because our notations are different from Stratton's we have repeated some of his presentations
mainly for the readers to get accustomed to our notations. We must mention that much of the
basic works on unitary and reciprocal vectors are the original contributions of Gibbs found in his

first pamphlet [6, Vol. 1, Chapter 1].

In the subsequent analysis we need a theorem which states:

> (a,xa,)=0 (9.26)

i i

To prove this theorem we have, in view of (9.7),

Ja, da,

5_vj ov.

1

(9.27)

hence,
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-

c ca, ca,
Y —la, q)=a, «—+~—«qa,
.o oy
‘ ca, ca,
T, x—+—— xa, (9.28)
cv. Ov,
ca. cCa,
ta x—+—xda.
0"3 C\ ‘!“ - -

Since
cda, dJa, cJa. cCa cCa, Cua,

9 "
ov, Cvy, ov, v, v, COv,

the six terms in (9.28) cancel each other so (9.26) holds true. The geometrical interpretation of
this theorem is that the total vector area of a closed surface vanishes. The theorem for an
orthogonal curvilinear system was proved in [26, p. 15]. The proof therein appears more

complicated than the present proof using unitary vectors.

We consider the symbolic expression introduced previously by (8.1) but now write it in the form

> T(A)AS;
1(¥)= Lim-—— (9.29)
with
nAS; = AS,; = (aj- X ak)AvjAvk
with

AV = AAv,Av,Av,.

Because of the linearity of 7(i1,) with respect to n, we find that the differential expression for
7(V) in a general curvilinear coordinate system is given by

T(V):%Zﬁ—ﬁv-T(aJ <a,) (9.30)

where i, j, k = (1,2,3) taken in cyclic order.

To find the expression for the gradient, we let
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n(v)=vf=/,V

SO

T(a, Xak):(a, xa,)f

that yields

Vf:fV:%Z(aj xak)%:Vf:gradf

] !

page 64

(9.31)

where we have made use of (9.26) to eliminate the sum of the derivatives of the cross products. In

terms of the reciprocal vectors b,

a,xa, =Ab,;
hence
7
W:Za;é
The gradient operator in GCS is therefore represented by
74
V:Zhﬁa

To find the expression for the divergence, we let

T(V)=V-F=F-V

SO

I(a,xa,)=(a, xa,)-F=F-(a, xa,).

Substituting them into (9.30) we obtain

1 074
V'F:F.szzgv—i[(a’ xak)-F]
o
:—/{_ : [(ajxak)-—{:]
:Zbl —é’—g:VF=leF

(9.32)

(9.33)

(9.34)
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Equation (9.34) shows that the divergence operator in the general curvilinear system 1s represented

by

(9.35)

(S

0 .
V= 2 b -——  (divergence operator )
; a V['

Comparing it with (9.33). we see that the dot in the right term of (9.34) lies between b, and -i

ov

and ——"1s a compound operator which is now applied to a vector as the posterior operand. By
‘ v

changing a, x a, to Ab, in the first line of (9.34) we obtain

1 P! (9.36)
=—Y—(Ab,-F
F Agav‘_( ;"F)

v

Since
b;-F = f;

according to (9.14) where f, denotes the reciprocal components of F or the contravariant

components of F, (9.36) can be written in the form

\% (9.37)

_1s 9
F_A,Zav-(Afi)

i

which gives direcily, the differential form of VF without the need to evaluate the derivatives of

the unitary vectors or the reciprocal vectors.
By letting

T(V)=VXF =-FXxV (9.38)
we can obtain the operational form and the direct differential form of V F . They are given by

VF = zb,. X %—f}i— (operational form ) (9.39)

with

V= Z b, x a—av- (Curl operator) - (9.40)
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and

dg.
=—Z (ag" ——g—’) (differential form) (9.41)
dv, I,

where g, denotes the unitary components or the covariant components of F .

Equations (9.32), (9.37), and (9.41) are the same as Stratton's (49), (55), and (63). on pp. 44 -
47 of his book [10]. His formulation does not yield directly our equations (9.34) and (9.39)
although they can be obtained from (9.37) and (9.41), or Stratton's (55) and (63) by a proper
transformation of variables and with the aid of (9.26). However, it is a rather complicated exercise.
Presumably it is for this reason that the proper forms of the divergence operator and the curl
operator in general curvilinear coordinate systems are not treated in the literature, including

orthoginal curvilinear systems except the Cartesian system as found in Gibbs' classic.

In comparing the present method of deriving (9.37) and (9.42) with that of Stratton, we see that
Stratton applies the divergence theorem to obtain the differential expression for the divergence and
Stokes' theorem to obtain the differential expression for the curl while our method is based upon
one single expression, namely (9.30), from which the expressions for the three key functions can

be derived.

Before we apply (9.32), (9.36), and (9.41) to the orthogonal curvilinear systems as special cases,
it is desirable to show the invariance of the three operatorsin the general curvilinear system. We

consider first the gradient operator:

3
= E b, —— 42
; lavi (9 )

In a primed system with coordinate variables v; and reciprocal vectors bj'- the gradient operator will

be denoted by V' and given by

4
Zb’av (9.43)

We want to show that V=V".
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Let
h, —Zc,] J (9.44)

By taking the scalar product of (9.44) with a;, a typical unitary vector in the primed system, we

obtain
Cip = bi .all\'
or ¢y =b;-aj (9.45)
Thus
b= (b;-a')b, (9.46)
J

By definition, »

dr=>Y adr; = Za}dv} (9.47)

By taking the scalar product of (9.47) with b,, a typical reciprocal vectorin the unprimed system,

we obtain
dvk = Z(bk (l})dv}
J
or dv; = Z(b -a’ )dv (9.48)
J
ov;
Hence, v, =b;-a} (9.49)

Substituting (9.49) into (9.46), and in view of (9.42) we have

V= ZZb] ﬁv é’v
=> b
Z J 5‘,

(9.50)

Equation (9.50) describes the invariance property of the gradient operator in any two GCS's.

Similar proofs apply to the invariance of V and V.
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To obtain the formulas for the three key functions in an orthogonal curvilinear system which is a

special case of the GCS, we let

where the A's denote the metric coefficients, and

.. J0i=]
u;xu;=4. "
u,, iz jzk

with i, j, k =(1,2,3) in cyclic order. Then

A=Q=hhh,

In an orthogonal system the components of F have been denoted by F, i.e.,

F=Y Fi,

Thus, in view of (9.14), (9.15), (9.51), and (9.54) we have
fi = Fz 'bi = E/hi
g=F-q :vhiF;'

Equations (9.32) to (9.37) and (9.39) to (9.41) become

(9.51)

9.5

(9]
~

(9.53)

(9.54)

(9.55)

(9.56)

(9.57)

(9.58)

(9.59)

(9.60)

(9.61)

(9.62)

date: 95/05/23



An Historical Study of Vector Analysis page 69

u CF
VF=>) —+Lx -
—~h " Gv, (9.63)
u ¢
V= — x )
PR (9.64)

(9.65)

-

() _ 3],
ov, ov,

1 «

VF=— hu
le I l{
As shown before, these formulas can be derived by using Gibbs' formulas for the three key
functions in the Cartesian system and invoking the invariance of the three distinct differential
operators V, V, and V. We list these expressions at the end of the main body of this essay to
point -out that all these expressions are now derived from one single defining equation, namely the

symbolic expression 7( V) given by (8.1).
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10. Retrospect

In this work we have examined critically some practices of presenting vector analysis in several
early works and in a few contemporary writings. It should be pointed out emphatically that the
whole subject of vector analysis was formulated by the great American scientist J. Willard Gibbs
in a very precise and elegant fashion. Although his onginal works are confined to formulations in
a Cartesian coordinate system, they can be extended to curvilinear systems as a result of the

invariance of the differential operators, as reviewed in this paper, without the necessity of

resorting to the aid of tensor analysis.

In spite of the richness of Gibbs' theory of vector analysis, his notations for the divergence and the
curl, in the opinion of this author, have induced several later workers, including one of his
students, Wilson, to make some inappropriate interpretations. The adoption of these
interpretations is world-wide. We have selected a few examples from the works of several

seasoned scientists and engineers to illustrate the prevalence of the improper use of V.

Many authors in the past have considered Heaviside to be a co-founder with Gibbs of the modern
vector analysis. We do not share this view. In Heaviside's treatment of vector analysis, he spoke
freely of the scalar product and the vector product between V and a vector function F and he
used V as a vector in deriving algebraic vector identities which incorporate differential entities. In
view of these mathematically insupportable treatments, Heaviside's status as a pioneer in vector
analysis is not of the same level as Gibbs'. In the historical introduction of a 1950 edition of

Heaviside's book on Electromagnetic Theory [8], Ernst Weber stated:

Chap. III of the Electromagnetic Theory dealing with "The Elements of Vectorial
Algebra and Analysis" is practically the model of modern treatises on vector
analysis. Considerable moral assistance came from a pamphlet by J. W. Gibbs who

independently developed vector analysis during 1881-4 in Heaviside sense - but
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using the less attractive notation of Tait; however, Gibbs deferred publication until

1901.

The above statement contains, unfortunately, several misleading messages. In the first place. in
view of our detailed study of Heaviside's works, his treatment would be a poor model if it were
used to teach vector calculus. Secondly, if Heaviside truly received moral assistance from Gibbs'
pamphlet, he would not have committed himself to the improper use of V. and would have
restricted his use of it to the expression for the gradient. Most important of all, Gibbs did not
develop his theory in the Heaviside sense. His development is completely different from that of
Heaviside. Finally, the book published in 1901 was written by Wilson, not by Gibbs himself Even
though it was founded upon the lectures of Gibbs, it contained some of Wilson's own
interpretations which are not found in Gibbs' original pamphlets nor in his lecture notes reported
by Wilson. The two prefaces, one by Gibbs and another by Wilson, which we quote in Sec. 1, are
proofs of our assertion. We were reluctant to criticize a scientist of Heaviside's status and the
opinion expressed by Prof. Weber. After all, Heaviside had contributed very much to
electromagnetic theory and had been recognized as a rare genius. However, in the field of vector
analysis we must set the record straight and call attention to the outstanding contribution of Gibbs
who stood above all his contemporaries in the last century. For the sake of future generations of
students, we have the obligation to remove unsound arguments and arbitrary manipulations in an

otherwise precise branch of mathematical science.

The recently published symbolic method of treating vector analysis, which has been introduced
briefly in this paper, shows that some of the treatments can be remedied by using the technique in
this relatively new method. It also shows that the entire subject of vector calculus can be
conveniently developed based on one single defining expression that includes all the integral
theorems which are not mentioned in this paper, but can be found in [25]. As far as notations are
concerned, in addition to the long established notations of Gibbs and the linguistic notations, we

have presented new symbols for two distinct differential operators for the divergence and the curl
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to accompany the existing gradient operator. For a decision on whether these new notations will

be of interest and use to students, we leave the matter in the hands of future generations.

We have examined a history covering a period of over one century. It represents a very interesting
period in the development of the mathematical foundations of electromagnetic theory. However,
in view of the long-entrenched and widespread mis-use of the gradient operator, V, as a
component of the divergence and curl operators, the obligation of sharing the insight presented

here with many of our colleagues in this field has been a labour fraught with frustration.

We hope that this presentation is clear enough that the issue(s) will be understood by the serious
workers in this subject, and that future students will not have to ponder over contradictions and

misrepresentations.
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