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Abstract 

 

Many regulatory RNAs adaptively change their conformation on binding to 

cognate protein and ligand targets or therapeutic molecules but the mechanism by which 

these conformational changes occur still remains poorly understood. In this thesis we 

characterize the dynamic properties of two RNA drug targets; HIV-1 TAR RNA and 

ribosomal A-site rRNA using a battery of NMR experiments that provide information on 

motions occurring over picosecond to millisecond timescales. We have used residual 

dipolar couplings (RDCs) in concert with structure-based electrostatic calculations to 

characterize the dependence of local and inter-helical recognition motions in TAR 

containing a trinucleotide pyrimidine bulge on the concentration of Na+ and Mg2+. 

Results revealed that Na+ or Mg2+ induce a similar dynamic transition of TAR from an 

electrostatic relaxed bent and flexible state to a globally rigid coaxial state, which has a 

stronger negative charge density and association with counterions. The dynamic 

transition carries the TAR structure through several of the ligand bound conformations, 

indicating that metals and electrostatic interactions likely play an important role in 

adaptive recognition. 

 We used domain-elongation spin relaxation and relaxation dispersion NMR 

experiments to characterize base flipping and other local motions in the A-site rRNA in 

the absence and presence of the aminoglycoside antibiotic paromomycin. Our results 



 xii 

strongly suggest that A-site can dynamically access conformations in which the two 

adenines are flipped out at microsecond timescales and that binding to paromomycin is 

not necessary to induce this transition. These results were then compared to those 

obtained on a corresponding construct bearing an antibiotic resistance A1408G mutation. 

This single mutation leads to dramatic changes in the dynamics observed over picosecond 

to millisecond timescales. We propose that a G-A base-pair reduces the propensity to 

have both adenine residues looped out, thereby explaining in part the much lower 

antibiotic affinity for this RNA construct. Taken together, our results provide 

fundamental new insights into how internal motions occurring on different timescales can 

drive the conformational changes that accompany molecular recognition.  

 



 1 

Chapter 1 

 

Introduction 

 

1.1 Background 

1.1.1 RNA conformational dynamics and potential as a drug target 

Ribonucleic acids (RNA) are involved in a host of cellular functions including 

regulation of gene expression at the transcriptional and translational level, protein 

transport, and protein synthesis (1, 2). Many of these functions require changes in the 

RNA conformation that are either self-induced (3) during RNA synthesis or that arise in 

response to recognition of specific proteins, other RNAs, small metabolite molecules 

and/or divalent ions (4, 5). These adaptive changes in RNA conformation provide a basis 

for sensory activity and/or temporal regulation in various biochemical pathways. For 

instance, protein induced changes in RNA conformation allows subsequent protein 

binding events to take place and consequently induce the sequential assembly of 

ribonucleoprotein (RNP) complexes like the ribosome (2). 

Because many RNAs act as cellular switches, understating their function requires 

the characterization of both structural of dynamical properties. A key question is how do 

RNA structures manage to undergo changes in a specific fashion and in response to 

specific cellular signals? To understand the mechanism of structural changes, it becomes 



 2 

necessary to characterize the flexibility of the RNA and the thermally accessible internal 

motions. These include fast picoseconds librations of non-canonical residues that are not 

involved in stacking or hydrogen bonding interactions such as looped out bulges that 

feature base motions and sugar repuckering dynamics; diffusion limited collective helical 

motions occurring at nanosecond timescales that result in large changes in the RNA 

global structure; and slower transitions occurring at micro-to-millisecond timescales that 

involve disruption of hydrogen bonding and stacking interactions, and even slower 

motions occurring at millisecond to second timescales involving large changes in 

secondary structure. 

The growing importance of RNA in gene expression and regulation has been 

accompanied by a growing list of RNA drug targets, many of which act as flexible 

switches (1, 6-8). Indeed, RNA is already an established drug target since many 

antibiotics that target the ribosome do so by binding specifically to ribosomal RNA (9). 

Importantly, large changes in structure and disruption of RNA switching activity, often 

accompanies drug binding. Understanding the mechanism by which small molecules 

interact with RNA and the effects on structure and dynamics is therefore fundamentally 

important for biomedical applications and for targeting RNA in drug discovery efforts.  

In this thesis we will study the structure and dynamics characteristics of two 

major RNA drug targets; HIV-1 TAR is a viral drug target while the ribosomal A-site 

rRNA is a bacterial drug target.  
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1.1.2 HIV-1 TAR: A paradigm for studying RNA conformational dynamics 

The human immunodeficiency virus (HIV) is the causative lentivirus of the 

acquired immune deficiency syndrome (AIDS), and it is the deadliest pandemic up to 

date. According to a report published by the World Health Organization (WHO) and the 

Joint United Nations Programme on HIV/AIDS (UNAIDS), since the beginning of this 

epidemic in 1981, approximately 60 million people have been infected with HIV and 25 

million people have died of HIV related causes (10). In 2008 there were around 2.7 

million new cases of HIV with 430,000 being children under the age of 15 (11). HIV type 

1 (HIV-1) is one of the main strains of HIV infection in humans and it constitutes the 

main causative agent of global HIV infections (12). Although there is progress on anti-

retroviral treatments for AIDS/HIV, there is currently no vaccine or cure for this disease. 

The current available drug cocktails are very expensive and are continually being affected 

by the growth of drug-resistant mutations in the virus (13). As a result, the necessity to 

investigate and develop novel anti-HIV therapeutics has arise bringing much attention to 

the highly conserved structured RNA elements in the 5' non-coding region of the HIV-1 

genome (6, 8, 13). These RNA elements play essential roles in different steps of the HIV 

replication cycle making them potent anti-HIV drug targets that can significantly 

suppress viral functions (6, 8). 

One of these RNA elements is the trans-activation response element (TAR). TAR 

is a stem-bulge-loop RNA located at the 5'-end of the non-coding region of all HIV-1 

mRNAs (14, 15). It plays an essential role at different steps of the viral replication cycle, 

including transcription and translation (6, 14, 16). During transcription, after TAR is 

transcribed, the RNA polymerase II (RNAP II) pauses ~60 nucleotides downstream from 
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the promoter. Subsequently, TAR binds the viral protein Tat and the Positive 

Transcription Elongation Factor b complex (P-TEFb). The P-TEFb is composed of the 

proteins Cyclin T1 and the Cyclin-Dependent Kinase 9 (CDK9) (14). Tat is believed to 

bind TAR in the UCU trinucleotide bulge, while Cyclin T1 is believed to bind the apical 

loop of TAR (17). Following the formation of the TAR-Tat-P-TEFb complex, the Cyclin 

T-associate CDK9 kinase phosphorylates the carboxyl terminal domain of the RNAP II 

inducing efficient promoter clearance succeeded by viral transcription elongation (14, 

17). On the translational level, TAR participates on HIV-1 RNA translation regulation 

through binding of proteins PKR, TRBP and La (14, 18).  

These essential functions of TAR in the HIV-1 cycle and proliferation of this 

virus makes this RNA a candidate target for anti-HIV drugs (19, 20). For example, a 

compound that could bind TAR RNA preventing Tat binding will disrupt Tat-mediated 

transcription elongation of HIV-1 genes ultimately inhibiting viral replication (19-22). 

The quest to develop these inhibitors is to understand the molecular basis of HIV-1 TAR 

and Tat interactions. Different biochemical studies such as chemical probing, 

mutagenesis and peptide ligand binding showed that nucleotides 19-43 comprise the 

minimal region of TAR necessary for Tat-P-TEFb binding and that the Tat binding site 

surrounds the UCU bulge area by interacting with an arginine rich region in the protein 

(23-27).  Structures using this minimal binding region have been reported for HIV-1 TAR 

free (28) and bound to Tat peptide mimics (29, 30). These structures show that binding of 

Tat derived peptides results in a TAR conformational helix rearrangement from a bent 

(~45º) to a coaxial alignment as shown in Figure 2.1 (28) (29, 31). Moreover, structures 

have been solved for TAR bound to Ca2+ ions (32) and five distinct small molecules 
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designed to inhibit its interaction with Tat (20, 33-35). These structures reveal that TAR 

is able to bind chemically diverse targets by adopting significantly different global helical 

orientation (inter-helical angles spanning the range from ~5º up to ~45º) and local 

conformations around the binding pocket comprise of the bulge and neighboring residues 

(Figure 2.1).   

Electrostatic interactions can be one contributing factor driving these 

conformational changes accompanying HIV-1 TAR-ligand complex formation. For 

instance, the spatial arrangements of basic groups in Tat relative to the negative TAR 

surface is an important determinant of Tat binding and its induced TAR conformational 

changes (26). The conformation of Tat bound TAR can be stabilized by distinct small 

molecules that can satisfy two key electrostatic interactions (29, 30, 35). Moreover, 

aminoglycosides bind TAR with affinities that correlate with their total number of 

positive amines (36). In this thesis we used a combination of solution nuclear magnetic 

resonance (NMR) and structure-based electrostatic calculations to characterize the role of 

electrostatic interactions in HIV-1 TAR RNA conformational adaptation upon ligand 

binding. 

 

1.1.3 Ribosomal A-site RNA: An important site for translation fidelity and antibiotic 

therapy 

The bacterial ribosome is a 2.5 MDalton ribonucleoprotein complex that 

translates the mRNA information into protein by polymerizing amino acids in the order 

specified by the mRNA sequence. It is composed of two subunits (50S and 30S) 

containing over 50 proteins and 3 large RNAs (37).  The large 50S subunit harbors the 
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peptidyl transferase activity that is responsible for making the protein peptide bonds 

during elongation and hydrolyzing the peptidyl-tRNA during the termination step of 

protein synthesis (38). The small 30S subunit contains the decoding site where the 

selection of the correct aminoacyl-tRNA (aa-tRNA) takes place (38). There are three 

tRNA binding sites in the ribosome: the A, P and E sites. The ternary complex containing 

aa-tRNA, GTP and Elongation Factor Tu (EF-Tu) is delivered to the A-site at the 

initiation of the elongation cycle of protein synthesis (Figure 1.1). This is a reversible 

initial binding step that dissociates rapidly when the mRNA codon and tRNA anticodon 

is not correct (non-cognate). When the codon is recognized, the complex is stabilized and 

EF-Tu undergoes a conformational change towards the active site of GTP hydrolysis. 

Following GTP hydrolysis, the EF-Tu loses affinity for the aa-tRNA, releasing it from 

the complex. Subsequently, the tRNA accommodates in the A-site of the peptidyl 

transferase center and reacts with the peptidyl-tRNA located in the P-site.  This generates 

a peptidyl-tRNA and deacylated tRNA bound A-site and P-site respectively. 

Consequently, translocation occurs yielding the movement of peptidyl-tRNA and 

deacylated tRNA to the P-site and E-site respectively (38). The deacylated tRNA located 

in the E-site leaves the ribosome and a new mRNA codon is exposed in the A-site 

starting the elongation cycle one more time.  

Accurate selection of the cognate aa-tRNA during protein synthesis depends on 

the correct pairing of the mRNA codon with its aa-tRNA anticodon. This essential step 

takes place at the A-site decoding region. A-site is a ribosomal RNA located within helix 

44 of the 16S rRNA of the 30S ribosomal subunit. It contains an adenine internal loop 

that inspects the codon-anticodon mini-helix formed during the aa-tRNA initial selection 
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Figure 1.1: The aa-tRNA selection during protein synthesis 

 

pathway (39, 40). Proper formation of the codon-anticodon mini-helix results in a 

conformational change in the A-site rRNA, which is known as the “on” state. This state 

involves the looping out of the A1492 and A1493 bases that interact with and stabilize                                      

the first two base pairs in the mini-helix (40, 41).  For instance, A1493 monitors the 

geometry of the mini-helix first base pair by forming hydrogen bonds with the 2' 

hydroxyl groups of both the anticodon and codon bases (40, 42). Adenine 1492 together 

with G530 (from helix 18), spans the minor groove of the second base pair. The 

orientation of this base pair if further stabilized by hydrogen bonds to C518 (helix 18) 

and serine 50 (protein 12) (39, 40). These interactions are non-sequence specific but 

specific for Watson-Crick base pairs (40). Lastly, the third position of the mini-helix is 

monitored less stringently and thus is more prone to errors (40, 42).  The “off” state of A-

site is when there is no aminoacyl-tRNA anticodon to interact with the mRNA codon. 

During this state the two adenines (A1493, A1492) located in the internal loop are bulged 

in or one of them is dynamically flipping in and out from the helix. 
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In prokaryotes, the ribosome has been the target of many important antibacterial 

drugs. These antibiotics interfere with different essential steps in protein synthesis (43). 

The macrolides, lincosamides and streptogramin B antibiotics interact with the peptidyl 

transferase center in the 50S subunit (44). Aminoglycoside antibiotics can induce codon 

misreading and inhibit translocation. These antibiotics can be divided in two main 

classes: the ones containing streptamine and 2-deoxystreptamines aminoglycosides. The 

later class of aminoglycosides can be further divided into two different subclasses: 4,5- 

and 4,6-disubstitude antibiotics (45).  Aminoglycosides have different binding sites on 

the small subunit; specially most of these antibiotics have been shown to interact directly 

with the ribosomal RNA (rRNA). Structural and chemical protection studies have shown 

that aminoglycosides specifically bind A-site rRNA (6, 44, 46). Upon binding, 

aminoglycosides induce destacking of the A1493 and A1492 bases of the internal loop, 

stabilizing the mini-helix continuously even if an incorrect anticodon-codon is paired 

(39). This way, aminoglycosides can disrupt the fidelity of the anticodon-codon pairing, 

decrease the rate of protein production and consequently cause cell death.  

Nevertheless, clinical and biochemical studies have shown the increasing 

occurrence of antibiotic resistance due to mutations at different positions of the decoding 

site (44, 47, 48). The introduction of the A1408 to G mutation in particular confers the 

most significant resistance for aminoglycosides (48-50). Remarkably this substitution 

could be the basis of the antibiotic discrimination between the prokaryotic and eukaryotic 

A-site rRNAs. However, this mutation only caused an intermediate level of resistance for 

paromomycin and geneticin aminoglycosides in E.coli 16S rRNA (49, 51). Recent studies 

suggest that the specificity of aminoglycoside action lies not in their different binding 
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affinity to the prokaryotic and eukaryotic A-site rRNAs but rather in their distinct 

abilities to induce base destacking in the two RNAs (52). Despite the current knowledge 

of aminoglycoside binding to prokaryotic A-site rRNAs, the molecular basis for the 

mechanism of action remains poorly understood and it has been of great interest 

especially since bacteria is creating resistance against antibiotics.  

In this thesis we quantitatively characterize the conformational dynamics of the 

unbound and drug bound forms of the prokaryotic A-site rRNA from E.coli and compare 

the findings with results obtained on a corresponding construct bearing the A1408 to 

G1408 mutation. These results will give us more insight on the basis of decoding and 

aminoglycoside resistance.  

 

1.2 Characterizing nucleic acids using NMR 

1.2.1 Brief historical survey of NMR and its application to the study of nucleic acids 

 NMR spectroscopy is a powerful technique for characterizing biopolymers such 

as proteins and nucleic acids at atomic resolution. Besides being one of two techniques 

that can be used to determine three dimensional structures of macromolecules (53); NMR 

has the capabilities of characterizing biomolecular dynamics such as folding, enzyme 

catalysis, ligand binding, reaction kinetics and intra/intermolecular dynamics among 

others (54-59).  

This phenomenon started in 1937 when Rabi and coworkers made the first NMR 

observation using molecular beams. Almost a decade later, the groups led by Purcell (60) 

and Bloch (61) carried out the first NMR experiments of bulk materials, paraffin wax and 

water. In the years that followed, instrumental development and different basic theories 
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underlying NMR parameters were established. A major step forward in NMR occurred in 

1966 when Ernst and Anderson developed the Fourier Transform (FT) spectroscopy (62). 

This new technique offered shorter time to record a spectrum and improved sensitivity of 

the experiments by several fold.  The next break-through discovery that led to the 

advancement of new frontiers in nuclear magnetic resonance was the introduction of two 

dimensional (2D) NMR by Jeener in 1971 (63) and a third frequency dimension (3D) in 

late 1980s (64, 65). Subsequently, a vast variety of experimental schemes have been 

designed expanding the applicability of NMR in the characterization of complex 

macromolecules and biopolymers.   

The study of nucleic acid structure and dynamics using NMR started in 1964 with 

the first polynucleotide proton spectra acquired by the groups led by Penman (66) and 

Gibbs (67). The first applications of FT NMR on RNA were applied to tRNA samples 

(68-70). These early studies highlighted the difficulty of the RNA proton spectrum. The 

structural homogeneity of the RNA A-form helix composed only of four very similar 

nucleotides lead to a limited chemical shift dispersion and congested resonance spectra, 

especially in the ribose sugars. Chemical shift dispersion is only usually observed for 

non-canonical structural regions like bulges, loops and hairpins. Nevertheless, the advent 

of multidimensional FT NMR and the introduction of isotopically 13C/15N label RNA 

samples have paved the way for a broad distribution of applications of biomolecular 

NMR to study nucleic acids. To date, there has been a growth on the number of three-

dimensional structures of nucleic acids solved by NMR spectroscopy. In addition, 

experiments to quantitatively characterize biologically important local and global 

dynamics of RNA in solution within a variety of timescales have been developed (2, 71, 
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72). For instance, traditional 13C and 15N spin relaxation measurements can be used to 

detect diffusive picosecond to nanosecond motions (54), relaxation dispersion 

experiments can be use to measure microsecond to millisecond dynamics and 

characterize the “invisible” excited states (73-75). Residual dipolar couplings can be used 

to detect motions occurring at sub-millisecond timescales (76-78). Moreover, lineshape 

analysis and ZZ-exchange can be used to probe slower motions at the second timescale 

and provide kinetic information upon ligand binding (55, 79, 80). Finally, chemical shift 

mapping can be used to monitor metal, small molecules, other RNA and protein binding 

to nucleic acids.  

 

1.2.2 RNA resonance assignments 

 Identification of the RNA chemical shifts in the spectrum is a fundamental yet 

challenging requirement before any further NMR studies. The standard strategy for the 

resonance assignment of nucleic acids consists of sequential intra- and internucleotide 

base to ribose sugar connectivity using basic NOESY experiments (53). In an unlabeled 

RNA, a basic NOESY experiment can correlate all the protons within 5Å distance via 

through-space dipolar-dipolar interactions. Here, the aromatic protons H8 in purines (or 

H6 in pyrimidines) will show NOE cross-peaks to their own H1' and the H1' of the 

preceding nucleotide in the 5' direction. This gives rise to the “NOE-walk” which will 

ultimately connect the H2, H6, H8, and H1' from the 3' to 5' direction in the RNA A-form 

helix. The resonance assignment of exchangeable imino (H1/H3) and amino protons of 

bases within the helical regions of the RNA can also be established through intra-base or 

sequential NOEs (81). For isotopically labeled RNA samples, using 2D or 3D (13C or 15N 
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filtered) NOESY-HSQC and (13C or 15N filtered) HSQC-NOESY experiments can be 

beneficial to resolve unclear exchangeable or non-exchangeable NOEs assignments (81, 

82) (Figure 1.2A,C).  

Figure 1.2: Resonance assignments of A-site rRNA. A) On the left panel is the secondary structure of A-
site and highlighted in green is the sequential NOESY assignment. The right panel shows the 13C NOESY-
HSQC spectra. B) HCN spectra together with the correspondent C6/C8 and C1' HSQC spectra. C) On the 
left if the secondary structure of A-site. The right panel shows the 15N NOESY-HSQC strips with the 
sequential assignments highlighted in blue (helix I) and green (helix II). D) 2D strips of the 13C HCCH-
COSY     

Unstructured regions of the RNA such as loops and bulges are usually more 

difficult to assign using the conventional NOESY experiments since vague NOEs can 

occur from non-sequential spatial proximity. In this case, the combination of 

multidimensional NMR assignment experiments and uniformly 13C/15N labeled RNA can 

greatly facilitate the chemical shift assignments especially of these unstructured regions. 

These assignment experiments are mostly based on through-bond and direct coupling 
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connectivity, thus overcoming ambiguities from vague NOEs. In addition, many of these 

experiments can be implemented in a 2D or 3D fashion, depending on the difficulty and 

resonance overlap of the RNA spectra.  

 Intranucleotide assignments between a nucleobase and its corresponding ribose 

sugar can be achieved through the HCN triple resonance experiment in isotopically 

labeled samples (82, 83). This experiment directly correlates the C6-H6/C8-H8 in the 

base to C1'-H1' resonances in the sugar ring through the shared N1/9 atoms of the same 

residue (83) (Figure 1.2B). The HCN detects these correlations by stepwise coherence 

transfer from 1H to 13C to 15N and back through direct 1JCN, 1JCH coupling (83). The 

different chemical shift ranges for 15N9 C (150-156 ppm), 15N9 U (142-146 ppm) and 

15N1 A/G (166-172 ppm) are also very useful to clearly distinguish the nucleobases to 

ribose sugar connections by residue type (81). In adenines, the connection between C2-

H2 to C8-H8 can be attained through the HCCH-COSY experiment (82, 84) (Figure 

1.2D). Moreover, the correlation between exchangeable imino protons (H1/H3) by 

intranucleotide through-bond connectivity to its corresponding C8 (guanine) and C6 

(uridine) can be established with the HCCH-TOCSY experiment (82, 85, 86). An 

experiment that can be used to elucidate the base-pairing and more complex hydrogen 

bonding pattern within the RNA is the HNN-COSY experiment. Here hydrogen bond 

donor imino protons (H1/H3) and its nitrogen acceptor (N1/N3) can be correlated through 

sizable 1JNN couplings (87-89).  
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1.2.3 NMR methods to characterize RNA-ligand interactions 

 Nuclear magnetic resonance has emerged as a powerful technique for the 

characterization of RNA-ligand interactions with protein, metal ions, small molecules and 

other RNA molecules at the molecular level. Many NMR applications have been 

developed to monitor and characterize such molecular interactions like chemical shift 

mapping, intermolecular NOEs, line-shape analysis, dynamics and exchange 

perturbation, paramagnetic methods, and dipolar interactions among others (55, 59, 90). 

Using these experiments one can obtain information from site-specific binding up to 

ligand binding kinetic rates.  Of particular interest in our study is the ability to monitor 

RNA interactions with metals ions and small molecules. 

 NMR spectroscopic applications to study RNA-metal interactions are based on 

chemical shift mapping, paramagnetic resonance enhancement and intermolecular NOEs 

contacts (82). The chemical shift mapping upon small additions of metal ion is the most 

common used method. Chemical shifts are very sensitive to the chemical environment 

surrounding a particular spin and thus can be affected by diffusive or specific localization 

of metal ions or induced structural conformations. Here, apparent metal ion binding 

affinities can be obtain by plotting changes in the chemical shifts of traditionally 

measured 1H, 13C, 15N and 31P resonances of the RNA as a function of metal ions while 

assuming a two-state binding model (78, 91, 92). The chemical shift perturbations at high 

sodium (Na+), magnesium (Mg2+) and lead (Pb2+) ion concentrations have been used to 

identify site-specific metal binding in the lead-dependent ribozyme (93). Also, RNA 

chemical shift analysis in the presence of a combination of different metal ions such as 
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zinc (Zn2+), Mg2+ and cobalt hexamine (Co(NH3)6
2+) have been used to differentiate 

between diffusive and specific bindings to RNA (94, 95). One other technique used to 

study direct RNA-metal interactions is paramagnetic resonance enhancement (PRE). 

Here, the presence of a paramagnetic ion, like Mn2+, enhances the relaxation of spins that 

are in close proximity. This leads to line broadening and ultimately disappearance of the 

NMR signal. The strength of this effect is dependent on the degree of occupancy of the 

metal binding site and proportional to 

€ 

1
r 6

 where r is the distance between the 

paramagnetic ion and the spin of interest. Therefore, PRE can provide useful distance 

information that in the end can be used in RNA-metal structure calculations (82, 95). The 

use of intermolecular NOEs contacts is another technique that can provide a direct way to 

measure the distance between the metal ion and the RNA.  The ammonium groups of 

metal ions complexes such as Co(NH3)6
2+ and ammonium (NH4

+) can show NOE cross 

peaks with the nearby protons of the RNA that can be detected with a basic 2D NOESY 

experiment (96). The intensity of the cross peaks can be divided into different groups 

depending on the distances. Ultimately, this information can be used in RNA-metal 

complex structure determination. This approach was used in the structure determination 

of cobalt hexamine bound to the P5 helix of the group 1 intron ribozyme (97, 98), GAAA 

stable tetraloop (99) and P4 element of the RNase P ribozyme (100).  

 A variety of NMR experiments can be used to obtain insights into RNA-small 

molecules interactions in solution at atomic resolution. The most common way of 

monitoring binding of a small molecule is by following chemical shift perturbations of 

the isotopically labeled RNA with incremental additions of the unlabeled ligand. This 

method allows the detection of the RNA-ligand interface, estimation of the affinity, 
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specificity and kinetics of binding. Moreover, the kinetics of the reaction determine 

chemical shift perturbations during the ligand titration (59, 101). For example, if the 

dissociation process is fast there will always be a single set of resonances at the binding 

interface that will move continuously through out the titration. This single set of 

resonances is a fractionally weighted average of the unbound and bound species. This 

scenario is known as the fast exchange regime (59, 101). If on the opposite end, the 

dissociation process is slow then one will observe a set of resonances for the unbound 

species and another for the bound species. During the titration, the free species will 

slowly disappear while the bound one will appear. This scenario is known as the slow 

exchange regime (59, 101). Line shape analysis, ZZ-exchange and chemical exchange 

experiments can be used to elucidate the kinetic parameters and binding affinities 

governing the ligand binding reaction (55, 58, 80).  

 

1.3 Methods to characterize RNA conformational dynamics by NMR 

1.3.1 Residual Dipolar Couplings 

 The measurement of NMR residual dipolar couplings (RDCs) in partially aligned 

systems have opened the window of structural dynamics information that now can be 

obtained for biomolecules, including nucleic acids. RDCs are sensitive to motions 

occurring over a wide range of biologically important events and thus can provide new 

insights of the structural plasticity of RNA.   

 Dipole-dipole interactions between nuclear spins occur as a result of the modulation 

of the local field of a nucleus by the nuclear magnetic fluctuation from the neighboring 
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nucleus. The direct dipole-dipole interaction (Dij) between a pair of ½ spin nuclei (i and j) 

can be calculated using the following expression (102-104):   

 

€ 

Dij = −
µ 0γ iγ jh
8π 3 rij

3

(3cos2 θij −1
2

        (1.1) 

where γi and γj are the gyromagnetic ratios of spins i and j, h is Planck’s constant, µ0 is 

the magnetic permittivity of vacuum, rij is the internuclear distance between the spins (i 

and j) and θij is the angle between the internuclear vector i-j and the magnetic field axis. 

The angular term (3cos2θij-1) is the second rank Legendre function, P2(cosθij) modulated 

by the angle θij. The angular bracket (

€ 

) in Equation 1.1 denotes that the angular term 

is time-averaged over the molecular motions sampled by the internuclear vector that are 

faster than the inverse of the dipolar interaction. The molecular motions sample by the 

vector consists of overall molecular reorientation and internal motions. Motional 

averaging will generally reduce the value of the angular term and thus the magnitude of 

observed dipolar couplings.  

 In solution conditions, isotropic motions allow a given bond-vector to sample 

directions uniformly averaging the angular term to zero (Figure 1.3A). This explains why 

dipolar couplings are not usually observed in solution. However, if the solute of interest 

experiences a degree of alignment then the angular term will no longer average to zero 

(Figure 1.3A) (102). Even a small net orientation of 10-3 is sufficient to observe dipolar 

couplings in solution. In addition, the greater the degree of alignment in the solution, the 

larger the value of the angular term and magnitude dipolar couplings.  As in the case for 

scalar couplings (J), dipolar couplings (D) successfully increase and decrease the average 
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experienced magnetic field of a given nucleus. This fluctuation on the average magnetic 

field produces the splitting of resonances.  

Figure 1.3: Residual Dipolar coupling measurements in RNA. A) No RNA alignment in solution (left 
panel) and partial RNA alignment using Pf1 phage used to calcualte RDCs (right panel). A representative 
spectra of RDC measuremtns is shown on the bottom right panel.  B) RDCs measured in base and sugar of 
RNA. 

  

 There are different liquid crystalline solvent systems that are used for inducing 

molecular alignment in biomolecules (102, 104). Disc-shaped bicelles (102, 105, 106), 

polyacrylamide gels (107, 108), and rod-shape viruses like Pf1 phage and TMV (109-

111) are some examples of liquid crystalline solvent systems.  The type of alignment 
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media is chosen depending on the pH, temperature or ionic strength conditions of the 

system of interest (104). For the case of nucleic acids, the most common alignment media 

used is the filamentous bacteriophage Pf1 (109, 111). The molecules of Pf1 phage have a 

rod-like shape, its medium have a low nematic threshold concentration and its negative 

nature reduces the possibility of interacting with nucleic acids (110, 112). Consequently, 

Pf1 induces alignment in the RNA through steric and electrostatic mechanisms (112, 

113). The optimum level of alignment is in the order of 10-3, which means that at least 1 

from 1,000 RNA molecules is completely aligned. This optimum level of alignment can 

be obtained for small RNAs (< 30 nt) with concentrations of phage of 18 to 25 mg/ml. 

The concentration of phage can be calculated from its UV absorbance at 270nm and 

extinction coefficient of 2.25cm ml/mg (110). Another way is to divide the observed 

deuterium residual quadrupular splitting by a factor of 0.886 (110). 

 Dipolar couplings are often measured as new contributions to scalar couplings (J) 

that are observed under conditions of molecular alignment (J+D). In the case of nucleic 

acids, experimental RDCs are computed from the difference in the splitting of RNA 

resonances measured in the presence and absence of Pf1 phage (Figure 1.3A, bottom 

right panel). The most common measured RDCs in nucleic acids are the one bond C-H 

and N-H in both the ribose sugar and base moieties due to their favorable size (Figure 

1.3B).  These one-bond RDCs include the vectors C1'H1', C2H2, C5H5, C6H6, C8H8, 

N1H1, and N3H3 because they are the easiest to assign using basic NOESY and through-

bond correlation experiments (81, 114). Additional one, two and three bond RDCs can 

also be measured as shown on Figure 1.3B, but these are smaller and might be difficult to 

measure in large RNAs (>60 nt). Once the RDCs are measured, one can obtain structural 
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information through a simulated annealing approach or order tensor analysis. The 

simulated annealing approach incorporates RDC measurements into a penalty function 

along with NOEs and other restrains during the calculation of the lowest minimum 

energy structure for a particular biomolecule (115, 116). The order tensor analysis 

determines the relative orientation of fragments ultimately providing structural and 

dynamical information for a particular RNA target (117).  

 The RDC analysis in terms of structural and dynamical information for a particular 

target requires the specification of an order tensor that describes the overall alignment of 

the molecule relative to the applied magnetic field (118). This information is obtained by 

the interpretation of the angular term in Equation 1.1. This term can be expressed in 

terms of time independent orientation of an internuclear vector in the molecular frame (α) 

and five order tensor elements (Skl) (119), 
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3cos2 θ ij −1
2

= Skl cos(α k
ij )cos(α l

ij )
kl= xyz
∑  ,                     (1.2) 

where the αn is the angle between the internuclear vector and the nth axis of the arbitrary 

frame. The overall motion and orientation of the alignment frame are absorbed into the 

elements of Skl which forms a traceless 3 x 3 Cartesian matrix describing the order tensor 

(102, 119). Here, only five parameters are independent (119). Two of the principal order 

parameters define the asymmetry (η, Equation 1.3) and degree (ϑ, equation 1.4) of 

molecular tensor. 
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η =
| Syy − Sxx |

Szz

                                 (1.3) 
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ϑ =
2
3

(Sxx
2 + S yy

2 + S zz
2 ) ,      |Szz| ≥ |Syy| ≥ |Sxx|                          (1.4) 

 Two angular parameters define the average orientation of the magnetic field with 

respect to the molecular frame (Szz) and a third angular parameter defines the orientation 

of the orthogonal principal axis (Syy) which specifies the alignment of asymmetry. 

Experimentally, these five order tensor parameters can be elucidated provided the 

measurement of five or more independent RDCs for a fragment with known local helical 

structure.  

 Using the order tensor approach to interpret RDC data in terms of structure and 

dynamics requires that the alignment tensors be measured individually for each rigid sub-

structure of the biomolecule target. In this regard, RNA molecules prove to be suitable 

for this analysis since by nature they can be broken into different sub-structures 

consisting of locally stable A-form helixes (104). Here, order tensors are calculated for 

each helical domain. Consequently these order tensors are used to determine their relative 

structure orientation and dynamics.  

 The average orientation of helical domains can be obtained by superimposing their 

order tensor frames (77, 119, 120) (Figure 1.4A).  This step insists that the helical 

domains share a common view of the magnetic field direction when assembled into a 

proper structure.  However, RDCs are degenerate to 180° rotations around the principal 

directions of the order tensor (Sxx, Syy, and Szz). This results in 4n-1 fold degeneracy in 

orienting n fragments. This degeneracy problem can often be overcome in two different 

ways: (1) measuring RDCs under at least two different alignments (121, 122) and (2) 
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incorporating additional experimental and non-experimental restraints (117, 123). The 

latter method is the more typical solution for nucleic acids.  

Figure 1.4: Global structure and dynamics determination by RDC analysis. Domain Structural (A) and 
dynamical (B) characterization 

 To obtain relative helix motional information over sub-ms timescale, the two 

principal order tensor parameters (ϑ and η) for each helical domain are compared (119) 

(Figure 1.4B). Two helical domains that are rigid relative to each other will report 

identical parameters. However, inter-helical motions will lead to differences in the 

magnitude of the parameters. The degree of order for a given helix (ϑ) will be reduced 
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relative to the value observed for a helix that dominates total alignment. The internal 

generalized degree (ϑint) of order for a pair of helical domains (i and j) is the ratio of the 

degree of order between i and j and is calculated using the following equation: 

€ 

ϑ int =
ϑ i

ϑ j

 ,  where ϑi < ϑj            (1.5) 

This ratio provides a measure of motional amplitudes between helical domains where a 

ϑint = 1 corresponds to perfect rigidity and ϑint = 0 to maximum motions. The asymmetry 

parameter (η) provides information of the directionality of inter-helical motions with 

spatially isotropic motions having a smaller effect on the relative helix η values 

compared to anisotropic motions (119). 

1.3.2 Spin relaxation 

 The most common NMR applications to unravel RNA dynamics occurring at the 

ps-ns timescales is by NMR spin relaxation measurements.  Nuclear spin relaxation 

results from the time dependent stochastic modulation of spin Hamiltonians including the 

dipole-dipole, chemical shift anisotropy (CSA) and quadrupular Hamiltonians (124). A 

given nuclear spin relaxes back to thermal equilibrium due to fluctuation of the local 

magnetic field. This fluctuation is a time dependent phenomena related to the internal and 

overall thermal motions of the molecule. Therefore, the relaxation rates measured for a 

given nuclei contain dynamical information for that specific site. The most basic NMR 

application to study ps-ns dynamics is to measure the transverse relaxation rate (R2 = 

1/T2), longitudinal relaxation rate (R1= 1/T1) and steady state heteronuclear Overhausser 

effect (NOE). The R2 rate, also known as the spin-spin relaxation, describes the decay 
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rate of the transverse magnetization to zero or the loss of coherence in the XY plane. The 

R1 rate, also known as the spin-lattice relaxation rate, describes the recovery rate of the 

longitudinal (along Z axis) back to its thermal equilibrium state. These two relaxation 

rates are auto-relaxation rates of the nuclei.  In contrast, the NOE is the cross-relaxation 

rate of a dipolar couple spins like S-H. Here the resonance intensity of spin S will change 

once the population of spin H is perturbed due to the dipole-dipole cross-relaxation.  

 The expression of the relaxation rate constants for a given spin S (equal to 13C or 

15N) in an S-H system that is subject to chemical shift anisotropy (CSA) interactions of 

the S spin and dipole-dipole interactions with its bonded H spin are given by the 

following equations (54, 125) 
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                         (1.7) 

where, µ0 is the permeability of free space, h is Plank’s constant, γH and γS are the 

gyromagnetic ratios for spins 1H and S, ωH and ωS are the Larmor frequencies of 1H and 

S spins, rHS is the H-S bond length, Δσ is the CSA of the S spin and J(ω) is the spectral 

density function. Here the chemical shift tensor is assumed to be asymmetric. The dipole-
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dipole interactions of spin S with 1H results from the fluctuation interaction between the 

S-1H spin pair as the internuclear vector rotates relative to the magnetic field. The CSA 

interactions of spin S results from the shielding variations from the magnetic field as a 

consequence of the fluctuating magnetic field experienced by S spin.  

 The spectral density function is defined as twice of the Fourier transformation of 

the autocorrelation function C(t) and it plays a central role in relaxation theory. The 

autocorrelation function describes the rotational motions of a bond vector. It measures the 

probability that a bond vector has the same position relative to the magnetic field at an 

arbitrary time zero and t. Generally, the expression for the spectral density and 

autocorrelation functions are given by Equations 1.8 and 1.9 respectively (125) 
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€ 

C(t ) =
1
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where,     
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) µ LF  describes the laboratory frame orientation of a unit vector connecting two 

nuclei at time 0 and t, and P2(x) is the second rank Legendre polynomial given by (3x2-

1)/2. The shape of the autocorrelation function defines the likelihood of motions on 

different time scales. For instance, the correlation function of a rigid 15N-1H bond vector 

within an RNA that is rotating isotropically and has a single characteristic time scale 

defined as the rotational correlation time of the molecule (τm) is given by 
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C(t ) =
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5

e
− t
τm            (1.10) 

 In summary, the correlation functions can be related to simple models for rotational 

of bond vectors and also can be used to separate motions occurring at different time 
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scales. For example, it can be used to separate internal motions from overall tumbling of 

a molecule. A model function can be fit to the R1, R2 and NOE relaxation data using the 

model free formalism developed by Lipari and Szabo (126, 127). This analysis is widely 

used to characterize internal motions. Recently it has been successfully applied to 

characterize 13C and 15N motions in RNA (78, 128, 129). 

 

1.3.2.1 Experimental measurements of 15N relaxation  

 The imino nitrogens in RNA are perfect probes for spin relaxation measurements.  

Unlike carbon and proton spins, imino nitrogen spins do not possess large homonuclear 

interactions that could affect relaxation measurements. Unfortunately, imino nitrogens in 

RNA are only observed when they are protected from exchange with water, such as in 

canonical Watson-Crick base pairs. The typical NMR pulse sequences used to measure 

15N R1 and R2 relaxation rates are shown on Figure 1.5. The R1 and R2 pulse sequences 

start with a refocused Insensitive Nucleus Enhanced Polarization Transfer (INEPT), 

which prepares nitrogen Nx magnetization. In the R1 experiment, a 90° pulse converts Nx 

into Nz prior to the relaxation period. The water magnetization is positioned along +z 

axis. The events proceeding after the relaxation period are the t1 evolution period, inverse 

polarization transfer and final detection of imino proton magnetization (Figure 1.5). To 

suppress the effects of 1H–15N dipolar cross-relaxation and 15N CSA/1H –15N dipolar 

relaxation interference, selective 180° shaped pulses centered on the imino proton region 

are applied during the relaxation period. The Carr-Purcell-Meiboom-Gill (CPMG) train 

of 180° pulses is applied during the relaxation period to suppress the effects of chemical 

exchange (Rex) in the R2 experiment. Here the CPMG sequence contains a [0013]N phase 
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cycling to suppress artifacts arising from off-resonance effects (130). Low power train 

pulses are used to prevent the excitation of the 1H-15N1 (adenine), 1H-15N3 (cytosine) 

hydrogen bonds. A series of R1 and R2 experiments with different lengths of relaxation 

period are used to achieve the relaxation decay curves.  

 

 

Figure 1.5: Pulse sequence used to measured 15N spin relaxation measurements in RNA. 
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Figure 1.6: Pulse sequence used to measured 13C spin relaxation measurements in RNA  

 

1.3.2.2 Experimental measurements of 13C relaxation  

 Non-exchangeable carbons are abundant in RNA and thus can be a great source of 

site-specific dynamical information. Nevertheless, non-exchangeable carbons possess 

sizable CSA and C-C interactions that affect the relaxation measurements. For example, 

CC scalar couplings range from 8-12 Hz for 3-4 bond couplings in the aromatic ring and 

for directly bonded carbons the range is >80 Hz (131). The NMR pulse sequences used to 

measure 13C R1 and rotating-frame (R1ρ) relaxation rates are shown on Figure 1.6. The R1 

and R1ρ pulse sequences start with a refocused INEPT transfer, which prepares carbon Cx 

magnetization. Selective excitation during the INEPT step is necessary to prevent the 

buildup of contributions from unwanted neighboring protonated carbons. In addition, the 

destruction of the equilibrium carbon magnetization prior to the first 90° pulse suppresses 

any cross-relaxation to quaternary carbons in the aromatic ring. During the relaxation 

period, the spin of interest is allowed to decay for a time t while carefully preventing any 

unwanted cross-correlated relaxation mechanisms that could affect the relaxation rates. 
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To prevent unwanted proton cross-relaxation, 13C-1H dipolar and CSA interactions, a 

train of hard 180° pulses is applied on the proton dimension. Also, adiabatic half 

passages are used to accurately align the ±Cz magnetization to and from the effective tilt 

angle θ at the beginning and end of the relaxation period. Following the relaxation 

period, the indirect dimension is encoded with the chemical shift of the heteronuclear 

spin. Pulses to selectively refocus the 13C magnetization are then used to eliminate C-C 

scalar coupling evolution (these are denoted as b and c in the pulse sequence). Spin State 

Selective Coherence Transfer (S3CT) (132) is then applied to return the magnetization 

back to the directly bonded 1H before detection.  High power off-resonance spinlocks 

are used to minimize contributions from chemical exchange and to suppress any 

Hartmann Hahn type transfers to scalar coupled 13C spins in the R1ρ experiments. 

Hartman-Hahn (AHAHA) interactions between homonuclear scalar coupled spins can be 

reduced up to 1% by choosing offsets and spinlock powers that minimize these 

interactions (133). The expression to calculate AHAHA interactions is given by (133) 
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where JIS is the scalar coupling constant between spins S and I, ωeff,X=(ω1
2

 + ΩX
2)½ is the 

effective spinlock strength at spin X (I or S), θX = atan(ω1/ΩX) is the tip angle of the 

magnetization of spin X with respect to the static magnetic field. For spinlock powers 

higher than 1000 Hz, the effects of JCH evolution and CH-dipole/CSA cross-correlated 

relaxation are effectively suppressed by two 180° pulses placed at times T/4 and 3T/4 

during the spinlock period (134, 135). 
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 A series of R1 and R1ρ experiments with different lengths of relaxation period was 

used to achieve the relaxation decay curves. The R2 rates are calculated using the 

following equation: 
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R1ρ = R1 cos2 θ + R2 sin2 θ                      (1.12) 

where, θ = atan(ω1/Ω) is the effective tilt angle of the spinlock field, ω1 is the spinlock 

field power in Hz and Ω is resonance offset from the spinlock carrier frequency in Hz. 

1.3.3 Chemical exchange  

 A better understanding of nucleic acid biological function requires not 

only structural information but also knowledge of the dynamical properties at the fast (ps-

ns) and slow (µs-ms) timescales of the molecule of interest. NMR spin relaxation 

measurements, as discussed above, can be used to unravel RNA dynamics occurring at 

fast timescales. Alternate NMR techniques have been used to study nucleic acid 

dynamics occurring at slower time scales such as base pair opening (136), base flipping 

(137), ligand binding (80) and sugar pucker conformational averaging (138). Recently, 

two different classes of 13C relaxation dispersion experiments employing the same 

techniques used to measure transverse relaxation (discuss on section 1.3.2.2) have been 

applied to study conformational exchange dynamics in RNA (74, 139-142).   

 The first class of 13C relaxation dispersion experiments monitors the apparent 

transverse relaxation rate (R2,eff) as a function of the spacing between refocusing pulses 

using CPMG sequences. During the relaxation block of the CPMG experiment, as the 

spacing between the refocusing pulses becomes tighter, the magnetization of the spins 

refocuses faster than they can exchange consequently suppressing any chemical exchange 

process. If we define the CPMG train as (δ-180°-δ)N (where N is an integer number, δ is 
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the delay between 180° pulses of the CPMG train) and assume that the exchange is fast, 

we can describe R2,eff as follows (57, 143, 144):        

    

€ 

R2,eff =
1
2

R2, A + R2,B + kex −
1

2δ
arccos h(D+ coshη+ − D− coshη−

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                    

(1.13) 

where,  
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1
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η± = δ 2 ψ 2 + ζ 2 ±ψ

ψ = ( R2, A − R2,B − pAkex + pB kex )2 −Δω 2ω S
2 + 4pA pB kex

2

ζ = 2Δωω S ( R2, A − R2,B − pAkex + pB kex )

              (1.14) 

and Δω = ΩA-ΩB is the chemical shift difference between states A and B, R2,A and R2,B 

are the intrinsic relaxation rates, pA and pB are the populations, kex is the exchange rate, 

and ωs is the Larmor frequency for the heteronucleus. While this experiment is routinely 

applied in protein systems, is not well suited to study chemical exchange in nucleic acids 

due to the presence of abundant scalar coupling networks. For instance, even the scalar 

coupling size of nitrogen spins to their hydrogen bonded partners, which is ~7 Hz can 

cause significant artifacts (145). A way of suppressing this effect is to use low power 

refocusing pulses to prevent 1JNN coupling evolution during the relaxation delay. 

Nevertheless, this can lead to off-resonance effects (146). Different methods have been 

developed to suppress and correct these errors (130, 147) and this progress have been 

significant for probing 15N spin dynamics for large RNAs (78, 128, 148). Another method 

that has been implemented in order to use CPMG experiments to study chemical 

exchange in the RNA sugars is site-specific labeling (139, 149).  
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 The second class of 13C relaxation dispersion experiments used to study chemical 

exchange, monitors the rotating frame relaxation rate (R1ρ) as a function of the strength 

and/or offset of applied radio frequency fields (150). During the relaxation block, the 

higher the spinlock field applied, the more the chemical exchange is suppressed. This 

dependence of R1ρ on the spinlock field strength will give information on the lifetime of 

the chemical exchange, site populations and Larmor frequency of the spins affected by 

chemical kinetics. Recently, expressions have been developed to explain exchange 

outside the fast exchange regime (71, 151, 152). The lack of expressions for events 

occurring outside fast exchange was primarily due to the relatively strong spinlock field 

power (ω1/2π) lower limit of approximately 1-2 kHz that automatically almost 

completely suppressed exchange events lower than 300 µs. The suppression of cross-

correlation between dipole-dipole, chemical shift anisotropy interactions and the 

elimination of evolution of J couplings during spinlock powers were some of the 

difficulties that prevented using weaker radio frequency fields (153). However, 

significant advances on R1ρ relaxation dispersion experiments now permit the use of lower 

spinlock power up to 25 Hz without distortion of the relaxation decay (153-155). This has 

opened the window of events that could be studied outside the fast exchange limit.  

The effect of R1ρ in the fast exchange limit can be expressed by the following 

equation: 

    

€ 

R1ρ = R1ρ ,∞ + sin2 θ
Φex k ex

k ex
2 −ω eff

2
    ,                      (1.15) 

where Φex = pApB∆ω2, kex is the sum of the forward and reverse microscopic rate 

constants (kA + kB) for two-site exchange, R1ρ,∞ is the intrinsic relaxation rate given by 
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equation 1.12,     

€ 

ω eff = ω1
2 +Ω2  is the effective spinlock power of the nucleus at the 

population weighted average resonance offset from the spinlock frequency and Ω = ΩApA 

+ ΩBpB. A general formula for R1ρ that is valid for all timescales and is very accurate for a 

two state system where the populations are highly skewed (pA >>> pB) was generated 

from approximate solutions to the Bloch-McConnell (71). 
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ω eff
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2 +ω1

2 + kex
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                  (1.16) 

Here the exchange contribution depends on the effective field for the nuclear spin on the 

less populated site B. In addition when the spinlock is on resonance with the less 

populated state (ΩB = 0) we can get the most information on chemical exchange. 

An extension from the asymmetric population formula for R1ρ that is valid for all 

timescales can be generated from approximate solutions to the Bloch-McConnell or the 

stochastic Liouville equation for a two state system equation. The most accurate of these 

solutions uses the Laguerre’s method for polynomial root finding for a two-site exchange 

system (Equation 1.17) (71, 151). This equation has only three unknowns (kex, pB and 

Δω) and it also includes additional parameters for the effective spinlock strength for each 

state. 
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  Besides the aforementioned equations, there are expressions for R1ρ that have been 

generated for other different cases such as when the two populations are equal (pA = pB), 
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or more than two site exchange is present (this one is more complicated to solve due to 

the number of variables) 
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Chapter 2 

 

 

Probing HIV-1 TAR RNA global conformational dynamics induced by 
Na+ and Mg2+ using NMR Residual Dipolar Couplings 

 

 

2.1 Introduction 

Many regulatory ribonucleic acids (RNAs) undergo large changes in 

conformation upon binding to proteins and small ligand molecules but the mechanism by 

which this occurs remains poorly understood (1-4). Numerous studies have examined the 

extent to which molecules induce new RNA conformations versus capture conformations 

that are dynamically accessible in the unbound state (1, 5-11). In contrast, fewer studies 

have examined the potential role of monovalent and divalent cations in conformational 

adaptation and target recognition (12). 

The interaction between the transactivation response element (TAR) RNA (13) 

from the human immunodeficiency type I virus (HIV-1) and the viral transactivator 

protein (Tat) is a paradigm for understanding the rules of RNA adaptive recognition (1, 5, 

8, 14) and a primary target for developing anti-HIV therapeutics (15-17). Several high-

resolution structures have been reported for HIV-I TAR (Figure 2.1), including the free 

form (18), bound to divalent cations (19), peptide mimics of Tat (20, 21), and six distinct 
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small molecules containing a different number of cationic groups designed to inhibit its 

interaction with Tat (22-24). These TAR conformations differ dramatically both in the 

global orientation of helices (inter-helical bend angle ranging between ~5° and ~47°) as 

well as the local conformation of bulge and neighboring residues where molecules bind. 

Thus, by adopting different conformations, TAR is capable of binding chemically diverse 

targets (Figure 2.1). 

The molecular basis for TAR conformational adaptation is key for understanding 

its role in Tat-mediated transcription elongation of HIV-1 genes and for rationally 

designing inhibitors of its interaction with Tat (16, 17). Electrostatic interactions play 

important roles in both RNA folding and recognition (25-30) and thus can provide a basis 

for driving conformational changes accompanying complex formation. Previous studies 

have emphasized the importance of electrostatic interactions in TAR recognition. The 

spatial arrangements of basic groups in Tat relative to the negative TAR surface is an 

important determinant of Tat binding and its induced TAR conformational changes (31). 

The Tat bound TAR conformation (20, 21) can be stabilized by distinct small molecules 

that can satisfy two key electrostatic interactions (24). Aminoglycosides bind TAR with 

affinities that correlate with their total number of positive amines (32). Our NMR studies 

suggest that the changes in the TAR conformational dynamics induced by small 

molecules are also correlated to their total number of positive groups (33).  
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Figure 2.1: Conformation of HIV-1 TAR unbound and bound to distinct molecular targets. The inter-
helical angles are indicated next to each conformation. 

 

RNA electrostatic hot-spots, which would normally be stabilized by cationic 

groups on proteins and small molecules, are expected to be energetically unfavorable in 

the unbound RNA. One can therefore expect that these structural elements only become 

significantly stabilized during or following complex formation. However, metal cations 

can also stabilize such electrostatic hot-spots and thus pre-adapt the RNA conformation 

for target recognition. Several studies have shown that a variety of monovalent and 

divalent cations can associate with the TAR bulge (19, 34-36). Transient electric 

birefringence (37) and NMR (38) studies have shown that the addition of Mg2+ results in 

a significant reduction in the TAR inter-helical bend angle and dynamics (19). However, 

as is often the case, it remains unclear whether the Mg2+ induced transition is driven by 

non-specific electrostatic interactions with diffusive counterions, which could be 

recapitulated by cationic groups on small molecules, or by inner-sphere contacts with 
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specifically bound metals. Another unresolved question, which has also proven generally 

difficult to address, is whether the TAR conformations observed at various metal 

concentrations represent distinct conformations or a dynamical average of two or more 

states.  

A number of studies suggest that the metal-induced TAR structural transition is 

driven by specific inner sphere contacts. An X-ray structure of TAR shows four 

specifically bound Ca2+ ions that stabilize a unique UCU bulge conformation through 

several inner-sphere contacts with TAR ligands (19). Furthermore, transient electric 

birefringence studies have shown that Mg2+ induced transitions in bulge containing 

RNAs are not recapitulated by Na+ even when using up to 50-fold higher concentrations 

(37). On the other hand, EPR studies show that Na+ and Ca2+ induce similar TAR 

conformational changes but that other metals can induce distinct effects (34).  

Metal induced RNA conformational transitions have been studied using a variety 

of experimental biophysical techniques including EPR (34), fluorescence spectroscopy 

(39), hydroxyl radical footprinting (40), analytical ultracentrifugation (41), small angle x-

ray scattering (42), and small angle neutron scattering (43). Although it can uniquely 

provide information about both structure and dynamics at site-specific resolution, few 

studies have employed NMR to structurally characterize metal-induced RNA transitions. 

This is in part because conventional NOE derived distance restraints can be insensitive to 

global conformational changes (44) and because high-resolution structure determination 

remains time consuming which makes characterizing structures at multiple metal 

concentrations impractical (45, 46).  
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In this study, we exploit the exquisite conformational sensitivity of NMR residual 

dipolar couplings (RDCs) (47-50) to characterize how the structure and dynamics of TAR 

change as a function of increasing Na+ concentration and compare findings with changes 

induced by Mg2+ and small molecules. Aiding our study is an order tensor based analysis 

of RDCs, which permits studies of global conformational dynamics with high efficiency 

(14, 45, 46, 51, 52). The RDCs allowed us to detect Na+ induced changes in the TAR 

conformation which are indistinguishable from those induced by Mg2+ even though 

chemical shift mapping data suggest that the two metals may bind TAR using distinct 

modes. These results together with electrostatic calculations offer new insights into the 

possible role of electrostatic interactions and counterion condensation in TAR adaptive 

recognition. 

2.2 Materials and methods 

2.2.1 NMR sample preparation  

Samples of uniformly 13C/15N labeled TAR were prepared by in vitro 

transcription using synthetic double stranded DNA templates containing the T7 promoter 

and sequence of interest (Integrated DNA Technologies, Inc.), T7 RNA polymerase 

(Takara Mirus Bio, Inc.), and 13C/15N labeled nucleotide triphosphates (ISOTEC, Inc.). 

The RNA was purified by 20% (w/v) denaturing polyacrylamide gel electrophoresis 

containing 8M Urea and 1X TBE followed by electroelution in 20 mM Tris pH 8 buffer 

and ethanol precipitation. The RNA pellet was dissolved and exchanged into NMR buffer 

(15 mM sodium phosphate, 0.1 mM EDTA, and 25 mM NaCl at pH ~6.4,) using a 

centricon ultracel YM-3 concentrator (Millipore Corp.). The final RNA concentrations in 
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the aligned NMR samples were 0.3/0.5 mM for Na+/Mg2+ respectively. The aligned 

samples were prepared by adding Pf1 phage (50 mg/ml) (53, 54) in NMR buffer to a pre-

concentrated TAR RNA sample to yield a final Pf1 phage concentration of 17-20 mg/ml. 

The addition of phage did not affect the ‘effective’ Na+ or Mg2+ concentration as judged 

from careful comparison of the chemical shifts in the absence and presence of phage (see 

Figure A4.1).  

2.2.2 NMR Spectroscopy Measurements 

All NMR experiments were performed at 298 K on an Avance Bruker 600 MHz 

spectrometer equipped with a triple-resonance cryogenic (5mm) probe with the exception 

of the 320 mM Na+ RDCs which were measured on a Varian Inova 800 MHz 

spectrometer equipped with a triple resonance Z-gradient probe. NMR spectra were 

analyzed using NMR Draw (55) or Felix  (Accelrys Inc, 2002) and overlaid using Sparky 

3 (56).  

Chemical shift titrations were performed on HIV-1 TAR RNA by recording 2D 

13C-1H HSQC spectra following incremental additions in [Na+] (25, 40, 80, 160 and 

320mM against 0.2 mM TAR) or [Mg2+] (0, 0.2, 0.4, 0.8, 1.6, 3.2 and 6.4 mM against 

0.2mM TAR).  

RDC measurements were collected on three separate samples of HIV-1 TAR in 

the presence of 160 mM Na+, 320 mM Na+ and 25 mM Na+/4 mM Mg2+ respectively. 

One bond 1DC6H6, 1DC8H8, 1DC5H5, 1DC2H2, 1DC1'H1', and 1DN1/3H1/3 RDCs were measured 

using 2D 13C−1H (or 15N-1H) S3E HSQC experiments (33, 57) from the difference in 

splitting measured along the 13C (or 15N) dimension observed in the presence and absence 
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of Pf1 phage (53, 54). The same experiments and conditions were used to measure all the 

Na+ and Mg2+ RDCs. The measurements of TAR in the presence of Mg2+ (0.5 mM RNA 

and 25 mM Na+ /4 mM Mg2+) were consistent with previously reported values (38). The 

measurement error was estimated from duplicate measurements using experiments that 

yield splittings along the 1H and 13C/15N dimension (standard deviation between two 

RDC sets was 0.9 Hz, Figure A4.2). The RDCs of HIV-1 TAR in 25mM NaCl used in 

this study has been previously reported by Al-Hashimi et. al  (14). The measured RDCs 

are listed in Table 2.1. 

Table 2.1: HIV-1 TAR one bond 1DC-H and 1DN-H (in Hz) measured under different metal 
conditions. 

Residue (bond vector) 160mM NaCl 320mM NaCl 25mM NaCl/4mM 
MgCl2 

17(C8H8) -4.5 0.2 0.2 
18(C1'H1') NA -29.5 NA 
18(C8H8) 0.3 -1.6 -1.8 
18(N1H1) -7.3 NA -2.8 
19(C6H6) 9.6 10 8.4 
20(C1'H1') -6.6 -19.5 -26.4 
20(C8H8) 12.2 16.4 13.6 
20(C2H2) 7.9 4.4 6.1 
21(C1'H1') -6.6 -13 -19.9 
21(C8H8) 15.6 20.8 18.6 
21(N1H1) -6.2 NA -8.5 
22(C8H8) 11.7 17.2 16.4 
22(C2H2) 4.9 13.6 17.9 
40(C1'H1') -5.7 -8.7 NA 
40(C5H5) 14.2 14.7 11.6 
41(C6H6) 11.8 15.2 12.6 
41(C5H5) 11.1 11.2 13.8 
42(N3H3) -5.6 NA -7.8 
43(C1'H1') 14.6 7.4 NA 
43(C8H8) 13 15.5 11.9 
43(N1H1) -4.3 NA -2.7 
44(C6H6) 1.3 1.2 NA 
44(C5H5) 12 17.2 NA 
45(C1'H1') 2.9 -1.1 -16.9 
45(C6H6) -5 -4.3 -6.9 
45(C5H5) 9.9 11.3 NA 
23(C1'H1') 3.4 3.3 0.6 
23(C6H6) 8.4 8.3 5.3 
23(C5H5) -0.5 0.2 0.5 
24(C5H5) 1.1 -1.5 -1.7 
25(C5H5) 4.7 4.5 2.3 
26(C1'H1') -16.4 -17.8 5.7 
26(C8H8) 16.9 17.9 17.3 
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26(N1H1) -4 NA -8 
27(C1'H1') -14.5 -13.6 -12 
27(C8H8) 14.6 14.8 12.4 
27(C2H2) 16.9 13.7 16.3 
28(C1'H1') -8.9 -12.8 -11.5 
28(C8H8) 16.5 18.3 14.6 
28(N1H1) NA NA -8.4 
29(C6H6) 20.9 22.4 18.1 
29(C5H5) 8.3 7.1 12.8 
31(C1'H1') -1.8 -8.4 -8.3 
31(C6H6) 18.1 19.9 15.6 
31(C5H5) 16.6 19.1 15 
32(C1'H1') 8.1 13.1 11.7 
32(C6H6) 9.4 10 10.1 
32(C5H5) 6.4 12.4 10.3 
33(C1'H1') -10.5 -12.4 -10.3 
33(C6H6) 4.2 6.4 6.8 
33(C5H5) 0.6 0.8 0.8 
34(C1'H1') 6.6 9.9 9.9 
34(C8H8) 10 14.9 14.4 
34(N1H1) -5.6 NA -9.3 
36(C8H8) 22.9 25.3 22.5 
36(N1H1) -10.1 NA -8.9 
37(C5H5) 20.6 22.1 15.4 
38(C1'H1') NA NA -8.6 
38(C6H6) NA 16.8 15.6 
38(C5H5) 19.9 25.2 19.9 
38(N3H3) -6.5 NA -6.5 
39(C5H5) 19.6 23.6 16.4 

 

2.2.3 Data analysis 

The thermodynamic equilibrium for an RNA-ligand reaction can be characterized 

by the dissociation constant (Kd). For the simple case where there is a single ligand-

binding site in the RNA (1:1 complex), the Kd can be express as follows:  

 

€ 

Kd =
[RNA][Ligand]
[RNA − Ligand]

                        (2.1) 

where the [RNA], [Ligand] and [RNA-Ligand] are the equilibrium concentrations of all 

the three species present in the reaction. A Kd value in the mM range implies that a ratio 

of ~1:1000 free and bound states is present in an equimolar mixture of RNA and ligand. 

RNA Ligand RNA-Ligand+
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Conversely, a Kd in the µM range implies that a ratio of ~1:10,000 for these states are 

present forming a more stable RNA-Ligand complex than free species. To measure the 

dissociation constant we have to measure the free and bound species involved in the 

reaction. Thus the solution composition can be further defined as [RNA]total = [RNA]free + 

[RNA]bound and [Ligand]total = [RNA]free + [RNA]bound.  Experimentally, Kd measurements 

can be obtained by following NMR observables such as chemical shifts for a particular 

species involved in the RNA-Ligand reaction. These observables together with the known 

[RNA]total and [Ligand]total can be use to calculate the Kd.  

Apparent dissociation constants were obtained by fitting the observed changes in 

chemical shift to the equation (58):  

€ 

δobs = δFree +
(ΔδT ){([M ]T + [RNA]T + Kd ) − ([M ]T + [RNA]T + Kd )

2 + (4[M ]T [RNA]T )}
2[RNA]T

    (2.2)  

where [M]T is the total concentration of metal (Na+ or Mg2+), [RNA]T is the HIV-1 TAR 

concentration based on UV absorbance at 260 nm, TδΔ  is the difference in chemical 

shifts between the “free” and “metal associated” states (in ppm), obsδ  is the observed 

chemical shift (in ppm), and Freeδ  is the chemical shift in the “free” state (in ppm). The 

data was fitted using the Origin software (OriginLab Corporation) in which ΔδT and Kd 

(and δFree for Na+) were allowed to vary during the fit. The Kd errors obtained from the fit 

were in excellent agreement with values obtained independently using a Monte Carlo 

approach. For the latter; “residuals” corresponding to the difference between the 

measured and best-fitted chemical shifts in the titration curves were computed for all the 

fitted data. The resulting distribution of residuals was fitted to a Gaussian distribution. 
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Next, simulations were performed in which perfect chemical shift titration data points 

corresponding to experimental values were generated and each point perturbed by a value 

randomly chosen from the Gaussian distribution. The perturbed points were then fitted to 

Equation 1 and the calculations repeated a hundred times. The difference between the 

“true” Kds used in the simulation and values obtained from the curve fitting were then 

fitted to a Gaussian distribution and the resulting standard deviation assumed to be the Kd 

error. The fits that yielded chemical shift values that are outside the known chemical shift 

ranges for various nuclei were omitted from the analysis.  

The RDCs measured in the TAR helices were subjected to an order tensor 

analysis using idealized A-form helices as input coordinates (14) as implemented in the 

program AFORM-RDC (52). The helices were constructed using the Biopolymer module 

in Insight II (Molecular Simulations, Inc.) followed by correction of propeller twist 

angles from +15º to -15º (59). The measured RDCs were fitted to idealized A-form 

helices using singular value decomposition (60) implemented in the in-house written 

program RAMAH (61). RDCs from terminal residues (17, 45, 22 and 40), bulge residues 

(23-25), and hairpin loop residues (31-34) were excluded from the analysis. The order 

tensor errors due to parameterized “A-form structural noise” and RDC uncertainty were 

estimated using the program AFORM-RDC (52). For each metal condition, helices were 

rotated into the principal axis system (PAS) of their best-fitted order tensor and 

assembled using the program Insight II (Molecular Simulations, Inc) by linking U40 (P) 

to C39 (O3') (~1.59 Å). Due to the order tensor degeneracy (62), this yielded four 

possible inter-helical orientations, three of which could be discarded; two because they 

lead to anti-parallel helix alignments and one because it resulted in a distance between 
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A22 (O3') and G26 (P) (>30 Å) that cannot be satisfactorily linked using the trinucleotide 

bulge. Inter-helical angles for all TAR structures were calculated using an in-house 

program.  

Key statistics for the order tensor analysis of TAR under different metal 

conditions are on Table 2.2. For each helical stem of TAR, this table shows the number 

of RDCs (N), the condition number (CN) describing the orientational spread of the RDC 

targeted bond vectors (63), the root-mean-square deviation (RMSD), the correlation 

coefficient (R) between measured and back-predicted RDCs, the order tensor asymmetry 

(η = |Syy – Sxx|/Szz) and generalized degree of order (ϑ). The internal generalized degree 

of order (ϑint), inter-helical bend (θ) and twist (ξ) angles values for TAR at different 

metal conditions are also listed in this table (Table 2.2). Errors are estimated using the 

program AFORM-RDC (52) 

 
Table 2.2: Order tensor analysis of HIV-1 TAR RDCs measured under different metal 
conditions.  

Metal RMSD 
Condition 

Stem  N  CN 
(Hz) 

R  η  ϑ x 10-3  ϑint  θ (º) ξ (º) 

25 mM I 13 2.9 1.1 0.99 0.27±0.04 0.48±0.04 
NaCl II 11 3.1 1.1 0.99 0.11±0.07 0.88±0.04 

0.56±0.05  46±4 61±50 

160 mM I 15 2.9 1.3 0.99 0.15±0.03 0.57±0.03 
NaCl II 14 4.2 1.2 0.99 0.15±0.04 0.85±0.04 0.67±0.05 37±7  -1±50 

320 mM I 12 2.8 1.5 0.98 0.23±0.04 0.67±0.04 
NaCl II 12 4.0 1.1 0.99 0.20±0.04 0.90±0.08 0.74±0.08 22±7 -18±50 

4 mM I 13 2.9 1 0.99 0.26±0.04 0.80±0.03 

MgCl2 II 14 4.1 1 0.99 0.17±0.08 0.94±0.03 
0.85±0.04 17±7 -58±50 

Table 1: Shown for each helical stem are the number of RDCs (N), the condition number (CN) (63) 
describing the orientational spread of the RDC targeted bond vectors, the root-mean-square deviation 
(RMSD) and correlation coefficient (R) between measured and back-predicted RDCs, the order tensor 
asymmetry (η = |Syy-Sxx|/Szz), generalized degree of order (ϑ), internal generalized degree of order (ϑint), 
inter-helical bend (θ) and twist (ξ) angles. Errors are estimated using the in-house program AFORM-RDC 
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2.2.4 Electrostatic calculations 

  HIV-1 TAR RNA structures in free form (PDB ID#1ANR) and bound to 

argininamide (PDB ID#1ARJ), Ca2+ (PDB ID#397D), acetylpromazine (PDB ID#1LVJ), 

neomycin B (PDB ID#1QD3), Rbt158 (PDB ID#1UUI), Rbt203 (PDB ID#1UUD) and 

Rbt550 (PDB ID#UTS1) were obtained from the Protein Data Bank and used in the 

analysis. The electrostatic calculations were performed by solving the non-linear Poisson 

Boltzmann equation using the Delphi (64) module of Insight II (Molecular Simulations, 

Inc). No bound waters, ions or ligands were included in the calculation. The DNA-RNA 

AMBER force field (65) was used for the partial charges of atoms. An interior dielectric 

constant of 2 was used for the RNA molecule. The continuum dielectric constant for the 

solvent (water) was set to 80 with a 1:1 electrolyte distribution according to the 

Boltzmann weighted average of the mean potential. A 2.0 Å exclusion radius was added 

to the surface of the RNA to account for ion size and a 1.4 Å probe used to determine the 

RNA molecular surface. A monovalent salt concentration of 0.025 M was used in the 

calculations to mimic the low ionic strength NMR conditions. 3D structures were mapped 

onto a grid (65 x 65 x 65 grid points/side) and the boundary potential at each lattice 

calculated using the Debye-Huckel and full Columbic equations implemented in Delphi 

(64). The calculated electrostatic potential maps were displayed using the program 

GRASP provided by the Honig lab (66). Figures 2.5D and 2.6D show the calculated 

electrostatic surfaces for the unbound and bound (following removal of the ligands) TAR 

structures for all the models of the NMR ensemble. 
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2.3 Results 

2.3.1 Chemical shift mapping of Na+ and Mg2+ association with TAR RNA  

As shown in Figure 2.2A, large and specific changes in chemical shift were 

observed in 2D HSQC spectra of TAR (0.3 mM) upon incrementally increasing the NaCl 

concentration from 25 mM to 320 mM in a background buffer containing 15 mM sodium 

phosphate and 0.1 mM EDTA at pH ~6.4. The largest chemical shift changes were 

observed in and around the bulge. In contrast, little to no changes were observed for 

residues in the UUCG loop. For the majority of resonances, the directions of the chemical 

shift perturbations were similar to those induced by Mg2+ although the magnitude of the 

latter was uniformly larger (Figure 2.2A). This can be attributed to tighter association of 

Mg2+ with TAR. As shown in Figure 2.2B, fitting of the chemical shift titration data to a 

two-state model yields apparent Kds that are more than two orders of magnitude smaller 

for Mg2+ (Kd ~0.074 ± 0.002 – 0.10 ± 0.01 mM) compared to Na+ (Kd ~0.11 ± 0.01 -0.28 

± 0.09 M), as has been reported for other RNAs. No further changes in the TAR chemical 

shifts were apparent beyond 6.4 mM Mg2+, which is consistent with saturation kinetics 

and specific metal-induced transition. In the case of Na+, chemical shift data could not be 

recorded near saturation point since this would require salt concentrations (~1 M) outside 

the tuning capacity of our probe.  

Despite many similarities, subtle but detectable differences between the Mg2+ and 

Na+ chemical shift perturbations were observed for residues G26, U23, and A27 

(highlighted with a box, Figure 2.2A). Significantly, these are precisely the residues that 

are involved in inner sphere contacts with Ca2+ cations in the X-ray structure of TAR 
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(19). Thus, Na+ and Mg2+ either stabilize a different conformation for these residues 

and/or associate with them in a different manner.  

Figure 2.2: Chemical shift mapping of Na+ and Mg2+ association with TAR RNA. On the left panel is 
the secondary structure of HIV-1 TAR RNA. The wild type loop was replaced here with a UUCG loop. (A) 
2D HSQC spectra of TAR in the presence of Na+ (25, 160, and 320 mM) and Mg2+ (25 mM Na+/4 mM 
Mg2+). The residues undergoing in the largest chemical shift perturbations (top 20% for a given type of 
resonance) upon Na+ and Mg2+ are highlighted in blue and purple square boxes, respectively, on the TAR 
secondary structure. (B) Representative Na+ and Mg2+ titration curves with Kd values (in M for Na+ and in 
mM Mg2+) shown at the end of the curve. 

 

2.3.2 Structure and dynamics of TAR as a function of Na+ and Mg2+ using RDCs  

The interpretation of chemical shift perturbations is complicated by the fact that 

they are sensitive to changes in structure, dynamics, and metal localization. To 

specifically characterize the metal induced TAR conformational changes, we measured 

RDCs in TAR (0.3 mM) at Na+ concentration of 25 mM, 160 mM, and 320 mM. Based 

on the apparent Kds (Figure 2.2B), these correspond to 10%, 43%, and 60% of TAR 

being in the Na+ “bound” state. For comparison, RDCs in the presence of 25 mM Na+ /4 

mM Mg2+ (83% of TAR bound) were measured using the same NMR experiments and 
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sample conditions used to measure the Na+ RDCs. The Mg2+ RDCs were measured 

slightly below saturation, allowing insight into the dynamical nature of the metal-induced 

TAR transition under physiological Mg2+ concentrations. The Mg2+ RDCs were in very 

good agreement with values reported previously at slightly different Mg2+ concentrations 

(38).  

As shown in Figure 2.3A, continuous and significant changes in RDCs 

(normalized for differences in total degree of order, see Figure legend) were observed 

upon increasing the Na+ concentration, providing strong evidence for Na+ induced 

changes in the TAR conformation. The 320 mM Na+ RDCs are in better agreement with 

those measured at 25 mM Na+ in the presence rather than in the absence of 4 mM Mg2+ 

(Figure 2.3A), indicating that Na+ and Mg2+ induce similar TAR conformational changes. 

 

Figure 2.3: HIV-1 TAR RDCs as a function of Na+ and Mg2+. (A) Comparison of RDCs measured at 25, 
160 and 320 mM Na+ and Mg2+ (25 mM Na+/4 mM Mg2+). The RDCs were normalized (relative to 25 mM 
Na+) to account for differences in the degree of order. This was done by scaling the RDCs measured under 
salt condition “X” by the ratio of stem II degree of order measured at X and 25 mM (i.e., through 
multiplication by ϑNa-25mM /ϑX). Stem II was used because it dominated the total degree of alignment in all 
cases. (B) Order tensor fits against an idealized A-form geometry carried out independently for stems I and 
II using RDCs measured at 25, 160, and 320 mM Na+ and Mg2+ (25 mM Na+/4 mM Mg2+). Shown in each 
case is the root-mean-square deviation (RMSD) between the measured and back-predicted RDCs as well as 
the correlation coefficient (R).  
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To further characterize the metal induced transition, the RDCs were subjected to 

an order tensor analysis (60, 63, 67). Here, non-terminal Watson-Crick (WC) base pairs 

in individual helical stems were modeled assuming an idealized A-form geometry (45, 

51, 52). The RDCs and idealized A-form geometry were then used to determine order 

tensors for each helical stem (statistics summarized in Table 2.2). As shown in Figure 

2.3B, an excellent order tensor fit was obtained for RDCs measured under all metal 

conditions examined. In all cases, the root-mean-square-deviation (RMSD) between 

measured and back-predicted RDCs compared favorably with the RDC measurement 

uncertainty (0.9 Hz SD from comparison of 1H and 13C dimension RDCs, see Figure 

A4.2). Thus, the local conformation of the WC base pairs does not vary significantly 

from the ideal A-form geometry. The excellent RDC fits observed for residues G26 and 

A27 argue that the observed chemical shift differences with Na+ and Mg2+ (Figure 2.2A) 

are unlikely due to different metal-induced conformational changes at these sites but 

rather to differences in the modes of metal association with TAR. Likewise, both Na+ and 

Mg2+ yield slightly reduced values in the already attenuated bulge RDCs particularly for 

U23 (Figure A4.3). As mentioned previously (19), this is consistent with an increase in 

the local flexibility accompanying looped out bulge residues (19). The agreement for the 

flexible terminal A22-U40 base-pair RDCs (14, 38) (shown as open symbols, Figure 

2.3B) that were not included in the order tensor fit, improves with increasing metal 

concentration (rmsd = 6.9 Hz, 5.1 Hz, and 3.4 Hz at 160 mM, 320 mM Na+ and 25 mM 

Na+ /4 mM Mg2+ respectively). This stabilization is consistent with the observed increase 

in coaxial stacking between the two stems with increasing metal concentration.  



 61 

Figure 2.4: Probing the metal-induced TAR structure-dynamical transition using an order analysis 
of RDCs. Shown are (A) the inter-helical bend angle (θ), (B) inter-helical twist (ξ) (positive/negative 
values correspond to over/under twisting, respectively), and (C) inter-helical mobility (ϑint) as a function of 
Na+ concentration. Values in the presence of 25 mM Na+/4 mM Mg2+ are shown using a horizontal line.  

 

Given the excellent fit to the A-form geometry, the observed changes in RDCs 

with increasing Na+ concentration must be attributed to changes in the global orientation 

and/or dynamics of the two helices. To this end, we used the order tensors computed for 

each helix to determine their relative orientation and dynamics (60, 67) with estimated 

errors calculated using the program AFORM-RDC, which yields order tensor errors due 

to a combination of A-form structural noise and RDC uncertainty (52). In this analysis, 

the relative orientation of helices is obtained by superimposing their order tensor frames 

describing helix alignment relative to the applied magnetic field. The amplitude of inter-

helical motions is computed from the ratio of the generalized degree of order (ϑint = ϑi / 

ϑj; ϑi < ϑj) describing the degree of helix alignment relative to the applied magnetic field 

(45, 63). The ϑint value ranges between 1 for inter-helical rigidity and 0 for maximum 

inter-helical motions. Owing to possible correlations between helix motions and overall 

alignment, the ϑint value will generally underestimate the real motional amplitudes (45, 

68).  

As shown in Figure 2.4, increasing the Na+ concentration from 25 to 320 mM led 

to a gradual reduction in the inter-helical bend from θ = 46° ± 4° to 22° ± 7° (Figure 
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2.4A). This was accompanied by a reduction in the inter-helical twist angle from ξ = 66° 

± 50 to -18° ± 50 (Figure 2.4B) and amplitude of inter-helical motions from ϑint = 0.59 ± 

0.06 to 0.74 ± 0.08 (Figure 2.4C). The comparatively large error in the inter-helical twist 

angle reflects the larger uncertainty in the principal Sxx – Syy directions arising due to near 

axial symmetry (η ~ 0) of the helix order tensors (Table 2.2). Similar but significantly 

larger conformational changes were induced by 25 mM Na+ / 4 mM Mg2+ (θ = 17° ± 7°, 

ξ = -58 ± 50, and ϑint = 0.85 ± 0.04, shown as horizontal lines in Figure 2.4). This 

suggests that the similar Na+ and Mg2+ induced TAR chemical shift perturbations (Figure 

2.2A) likely reflect a similar TAR conformational change that is driven by non-specific 

electrostatic interactions with counterions.  

2.3.3 A two state non-specific electrostatic switch underlies the metal-induced TAR 

structure-dynamical transition  

The TAR conformations observed at 25 mM, 160 mM and 320 mM Na+ and 25 

mM Na+ /4 mM Mg2+ may either represent distinct conformations, or a population 

weighted average of two or more conformational states. Although these scenarios can be 

difficult to resolve (43), the latter can be tested for a simple two-state phenomenological 

model that is consistent with apparent good fit of chemical shift perturbations to a two 

state model (Figure 2.2B). Here, it is assumed that TAR consists of a population 

weighted average of two states; a metal “free” ensemble, characterized by inter-helical 

bend angle θ(free), and inter-helical flexibility ϑint(free), that is weakly associated with 

metals and which is favored at low ionic strength conditions (Figure 2.5A). The metal 

“bound” state, characterized by inter-helical bend angle θ(bound) and inter-helical 



 63 

flexibility ϑint(bound), is more strongly associated with metals and within our metal 

concentration range is favored at high ionic strength conditions (Figure 2.5A). Assuming 

that the dynamical inter-conversion between the “free” and “bound” states occurs at 

timescales faster than the inverse of the measured RDCs (i.e. faster than milliseconds), 

the observed RDCs will be a population weighted average over the two states. 

Simulations using the TAR helices (data not shown) show that to a good approximation, 

the observed  ϑint (ϑint(obs)) and inter-helical bend angle (θ(obs)) at a given Na+ (or 

Mg2+) will be given by a population weighted average of “free” and “bound” ensembles  

(69, 70): 

θ(obs) = (1-pbound) x θ(free) + pbound x θ(bound)                                   (2.3) 

ϑint(obs) = (1-pbound) x ϑint(free) + pbound x ϑint(bound)                (2.4) 

where the values of pbound can be computed from the apparent Kd values determined for 

Na+ and Mg2+ based on the chemical shift titrations (Figure 2.2B). Assuming that Mg2+ 

stabilizes a similar bound structure as Na+, which is supported by RDC measurements 

(Figure 2.3), the ϑint(obs) and θ(obs) measured under all four metal conditions (25 mM, 

160 mM, and 320 mM Na+ and 25 mM Na+ /4 mM Mg2+) can be fitted to Equation 2.3 to 

solve for the two unknowns in each case (ϑint(free), ϑint(bound) and θ(free), θ(bound) 

respectively). As shown in Figure 2.5, a good fit could be obtained for both the inter-

helical bend angle θ(obs) (Figure 2.5B) and flexibility ϑint(obs) (Figure 2.5C). The 

average Kd values obtained for the largest chemical perturbations (described in section 

2.2.3) were used in computing pbound with minor differences observed when using various 

Kd values from the range observed (Figure 2.2B). No attempts were made to fit the inter-
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helical twist angles given their much larger uncertainty. The fit yields parameters for the 

metal “bound” state (ϑint(bound) = 0.89 ± 0.02 and θ(bound) = 8° ± 4°) that is in very 

agreement with expectations based on the X-ray structure of TAR (θ(bound) = -11° and 

(ϑint(bound) = 1.0) which was determined in the presence of saturating amounts of 

divalent ions (100mM CaCl2) (19).  

Model conformations for the “free” and “bound” TAR states have been reported, 

namely an NOE-based NMR structure of unbound TAR under low ionic strength 

conditions in the absence of divalent ions (50 mM NaCl and 5 mM phosphate buffer) 

(18) and an X-ray structure of TAR determined in the presence of saturating Ca2+ 

concentrations (100 mM CaCl2, 50 mM Na-cacodylate and 200 mM NH4Cl) (19). To 

gain insight into the molecular basis for the metal-induced structural transition, we 

performed nonlinear Poisson-Boltzmann calculations (30, 64) and compared the surface 

electrostatic potential for these two TAR conformations.  
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Figure 2.5: (A) Two-state model for the metal-induced TAR structural transition. (B-C) Fitting of the 
observed (B) inter-helical bend angle (θ(obs)) and (C) amplitude of inter-helical motions (ϑint(obs) as a 
function of the fractional bound populations (pbound) using Equation 2.4. The “free” and “bound” θ and ϑint 
values obtained from the fit are shown together with the correlation coefficient (R). (D-E) Electrostatic 
surfaces for TAR (D) in “free” form (PDB ID #1ANR) (18) under moderate ionic strength conditions 
(50mM NaCl and 5mM phosphate buffer) with different views showing the weaker electrostatic potential 
and (E) bound to Ca2+ cations (PDB ID #397D) (19) with residues undergoing the largest metal-induced 
chemical shift perturbations highlighted 

 

For unbound TAR, no significant electrostatic potential was observed (Figure 

2.5D) for all models of the NMR ensemble. Rather, inter-helical bending allows the bulge 

to adopt an extended conformation that minimizes negative charge repulsion while 

allowing U23 to adopt a looped in stacked conformation (18) (Figure 2.5A). The looping 

in of this bulge residue accounts for the over-twisting observed at low ionic strength 

(positive ξ angles, Figure 2.4B) (18). In stark contrast, as shown in Figure 2.5E, a strong 

electrostatic potential was observed for the Ca2+ bound TAR structure in and around the 

bulge (G21-C24, and A27) precisely at residues that exhibit large metal-induced chemical 

shift perturbations (Figure 2.2A). This strong negative potential explains in part why 

coaxial TAR conformations are not favored at low ionic strength conditions despite the 

energetic benefits of helical stacking, metals are required to screen repulsive forces. The 
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metal bound TAR conformation is also likely disfavored by the looping out of U23 and 

loss of stacking interactions with A22 and U24 (Figure 2.5A).  

2.3.4 Comparison with small molecule binding  

We previously used RDCs to characterize the conformational dynamics of TAR 

bound to the small molecules argininamide (71), acetylpromazine, and neomycin B (33). 

We noted qualitatively that the small molecules induce a reduction in the TAR inter-

helical bend angle and dynamics by an amount that is apparently dependent on their total 

number of positive groups. These trends are shown more quantitatively in Figure 2.6 

using an expanded set of TAR structures. An inverse correlation is apparent between the 

TAR inter-helical bend angle (θ) (Figure 2.6A) and dynamics (ϑint) (Figure 2.6C) and the 

net positive charge delivered by the small molecule. This is analogous to the trend 

observed with increasing metal concentration (Figure 2.4). In contrast, no significant 

correlation is observed with the inter-helical twist (ξ) angle (Figure 2.6B), which as 

mentioned previously, is also influenced by the local bulge conformation. For the Tat 

mimic argininamide (ARG), a charge of both +2 and +6 is shown. The latter is based on 

surface plasmon resonance measurements indicating that up to three ARG molecules bind 

TAR under NMR conditions (24).  
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Figure 1.6: TAR conformational dynamics when bound to the small molecules argininamide (ARG), 
acetylpromazine (ACP), neomycin B (NeoB), Rbt 158, Rbt 203, and Rbt 550. Shown are the (A) inter-
helical bend angle (θ), (B) inter-helical twist angle (ξ), and (C) amplitude of inter-helical motions (ϑint) as a 
function of total positive charge delivered by the small molecules. The inter-helical bend angles for ARG, 
ACP, and NeoB were obtained from order tensor analysis of RDCs, as reported previously (33,71). For 
remaining structures, the angles were obtained from model 1 of the NOE-based NMR structure (Rbt 158, 
Rbt 203, and Rbt 550) (24) or the X-ray structure (Ca2+) (19). For ARG, which has a charge of +2, a total 
charge of +6 is also shown based on surface plasmon resonance measurements that indicate that up to three 
ARG molecules bind TAR (24). For Ca2+, a charge of +8 is assumed based on observation of 4 x Ca2+ ions 
in the X-ray structure (19). (D) Electrostatic surfaces for the bound TAR structures following removal of 
ligands. Highlighted in blue letters are the positions of cationic groups on small molecules relative to the 
TAR electrostatic surface. The TAR orientation in each case was chosen to illustrate proximity of cationic 
groups near the strong negative TAR charge potential 

 

The above results suggest that electrostatic interactions also dominate the TAR 

global conformational changes that are induced by small molecule recognition. To 

explore this further, we performed nonlinear Poisson-Boltzmann calculations on the TAR 

complexes following removal of bound ligands. Despite variations due to the structural 

uncertainty of the NMR ensemble, cationic groups from small molecules were frequently 

observed near TAR regions of strong electrostatic potential (Figure 2.6D), particularly for 

regions in and around the bulge, as previously noted for the Rbt family of ligands (24). 

Furthermore, as expected, linear TAR conformations (e.g. TAR-NeoB, TAR-Ca2+ and 
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TAR-ARG) generally have a stronger electrostatic potential compared to the more bent 

conformations (e.g. TAR-ACP) (Figure 2.6D). The electrostatic hot-spots in the linear 

conformations are primarily composed of backbone phosphates (O1P, O2P) which 

explains why for example Mg2+, NeoB, and ARG are effective at stabilizing the TAR 

global backbone conformation. In contrast, for the highly bent conformations (TAR-

ACP, TAR-Rbt158 and TAR-Rbt203), they are primarily composed of oxygen and 

nitrogen atoms in sugar (O2', O3', O5') and base (U(O4, O2), G(N7, O6), A(N7)) 

moieties. The lack of involvement of backbone phosphates helps rationalize why ACP is 

ineffective at stabilizing the TAR overall conformation. No dynamical data has been 

obtained for the Rbt family of small molecules. 

2.3.5 Possible role for counterions in TAR adaptive recognition  

In Figure 2.7, we show the inter-helical bend (θ) and twist angles (ξ) for TAR in 

different ligand bound states along with the conformational changes that are induced by 

metals ions. Many of the ligand bound TAR conformations fall along or near the 

predicted two-state metal induced conformational transition. This highlights the similar 

changes in the TAR conformation that are induced by small molecules and metals. The 

largest deviation from the pathway is observed for ACP, which among the bound TAR 

conformations has the weakest electrostatic potential composed of sugar and base 

moieties. Interestingly, at the extremity of our two state metal transition, we find the 

functionally relevant TAR conformation that is stabilized by the Tat mimic ARG (Figure 

2.7). Thus, metals may act to increase the probability of sampling productive 

conformations that mimic the functional protein bound state by screening unfavorable 

backbone repulsive forces. By also reducing the population of non-productive 



 69 

conformations, counterions may decrease the likelihood for non-specific adaptation and 

promiscuous recognition. In this context, metals may act to bias the specificity of internal 

motions towards functionally active conformations. 

Figure 2.7: Comparison of metal and small molecule induced changes in the TAR inter-helical 
conformation 

 

2.4 Conclusion 

Our results show that Na+ and Mg2+ ions induce a similar TAR structural and 

dynamical transition from a bent flexible to coaxial rigid state though the binding modes 

of the two metals may be different. This is in contrast to previous transient electric 

birefringence studies indicating that the Mg2+ induced transitions in model bulge 

containing RNAs are not reproduced by Na+ even when using up to 50-fold higher 

concentrations (72). It remains to be established if the observed effects of monovalent 

ions on the TAR conformation are a general feature of bulge containing RNAs. 

The similar structural and dynamical changes induced by Na+ and Mg2+ strongly 

suggests that non-specific electrostatic interactions with diffusive counterions, and not 
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specifically bound metals observed in the X-ray structure, drive the TAR global 

structure-dynamical transition. Our results do not however rule out the presence of inner 

sphere contact(s) particularly with Mg2+. Similar electrostatic interactions seem to 

dominate the TAR conformational transitions that are induced by Tat derived peptides 

and other small molecules. Many of these ligand bound TAR conformations fall near the 

pathway of the metal-induced conformational transition (Figure 2.7) suggesting that 

metals may be involved in adapting the TAR conformation for target recognition.  

Finally, our study underscores the intricate sensitivity of RNA structural 

dynamics to environmental conditions. The range of ionic strength (25 mM – 320 mM) 

over which significant changes in the TAR structural and dynamical changes could be 

detected falls within a range of buffer conditions that are often used interchangeably. This 

emphasizes the need to consider differences in buffer conditions as a potential cause for 

any observed differences in RNA conformations and dynamics. Our results also 

demonstrate the ability to use RDCs in quantitatively measuring subtle differences in 

RNA conformational dynamics.  

This work has been published in the journal of Biochemistry (73). The idea was conceived by Al-Hashimi, 

H. M. and Casiano-Negroni, A. The oligonucleotide TAR RNA was synthesized by Sun, X. The NMR data 

was recorded and analyzed by Casiano-Negroni, A. 
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Chapter 3 

 

Dynamics of A-site ribosomal RNA in the presence and absence of paromomycin 

 

3.1 Introduction 

A-site is a ribosomal RNA located in the small subunit of the ribosome. This 

ribosomal RNA is essential during protein synthesis because it provides a mechanism for 

maintaining the fidelity of translation (1, 2). Matching of the correct codon-anticodon 

forms a mini-helix that is directly monitored by the adenines of the internal loop in A-site 

rRNA. During decoding, a conformational change occurs in the internal loop of A-site 

involving the looping out of A1492 and A1493 (denoted here as A92 and A93) bases 

which interact with and stabilize the first two base pairs in the mini-helix (3, 4).  In 

prokaryotes, the decoding site has been a major site for natural aminoglycosides 

antibiotics (3, 5). Upon binding, aminoglycosides induce the transition of A92 and A93 to 

the extra-helical conformation resulting in the stabilization of the mini-helix even if an 

incorrect anticodon-codon is paired (6, 7). The activity of aminoglycosides has been 

linked to their specific ability to bind the decoding-site and stabilize a looped out 

conformation (8). Aminoglycosides disrupt the fidelity of the anticodon-codon pairing, 

decrease the rate of protein production, and thereby cause cell death.  
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A key component of the decoding mechanism is the conformational switch 

involving the 2:1 adenine internal loop consisting of residues A92, A93 and A08. X-ray 

and NMR structures reveal that A92 or A93 can interact with A08 to form non-canonical 

A-A base pair pairs. A statistical overview of different A-site structures in the ribosome 

context also reveals that A92 and A93 can adopt intra- or extra-helical conformations in 

the absence of antibiotics (9) suggesting that the internal loop is intrinsically flexible. 

This flexibility is consistent with high-density B factors seen for internal loop bases in the 

X-ray and NMR structures in the absence of drugs (6, 9, 10). In addition, molecular 

dynamics (MD) simulations on unbound A-site rRNA revealed base flipping events 

occurring at picosecond timescales that involve single or double base transitions with 

several intermediate conformations (11). The energy landscape of flipping events traced 

for A-site rRNA showed that in the absence of drugs there is a major basin for the flip in 

state compared to the flip out states (9, 11). A lower energy barrier was also calculated 

for the in/out switch of A93 (~1.38 kcal/mol) compared with A92 (~1.68 - 3.5 kcal/mol) 

(9, 11).  

In this study, we exploit the exquisite sensitivity of NMR carbon (13C) relaxation 

experiments to characterize the conformational dynamics of A-site rRNA in the absence 

and presence of the aminoglycoside paromomycin. In particular, we are interested in 

gaining insight of the dynamic behavior of the internal loop adenines A92 and A93 that 

are essential for decoding and antibiotic activity. Carbon spin relaxation measurements 

allow us to monitor local motions occurring at picoseconds – nanoseconds timescales 

while 13C relaxation dispersion measurements will provide information on slower 

motions occurring at microsecond – millisecond timescales. Our goal is to test the main 
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hypothesis that adenine residues can adopt the looped out conformation in the absence of 

the aminoglycoside or mini-helix.  

3.2 Material and Methods 

3.2.1 NMR sample preparation  

Uniformly 13C/15N labeled A-site rRNA samples were prepared by in vitro 

transcription using T7 RNA polymerase (Takara Mirus Bio, Inc.), 13C/15N labeled NTPs 

(Cambridge Isotopes, Inc. and ISOTEC, Inc.), synthetic double stranded DNA templates 

containing the sequence of interest (Integrated DNA Technologies, Inc.) and the T7 

promoter. The RNA was purified by 15% and 20% (w/v) denaturing polyacrylamide gel 

electrophoresis containing 1x TBE and 8M Urea for elongated (EAU-A-site and EGC-A-

site) and short (A-site rRNA) RNAs respectively. The RNA was then electroeluted from 

the gel in 20 mM Tris pH 8 buffer followed by ethanol precipitation. The RNA pellet was 

dissolved and exchanged into NMR buffer (15 mM sodium phosphate, 0.1 mM EDTA, 

and 25 mM NaCl at pH ~6.4) using a 0.22 µM filter (Millipore Corp.). For the non-

exchangeable NOE experiment, above prepared A-site rRNA sample was lyophilized in 

the presence of NMR buffer. The RNA pellet was then dissolved with 99.90% D2O 

(Cambridge Isotope Laboratories, Inc.). 

The A-site construct used in this study was derived from the E.coli ribosomal 

RNA sequence and it is the same model used in previous NMR studies (1, 12, 13). This 

sequence includes the universally conserved U-U base pair, adenine internal bulge 

(A1408, A1492, A1493), nucleotides important for aminoglycoside binding and the 

UUCG loop was used for stability of the RNA (1) (Figure 3.1A). A GC base pair was 

added to the second stem of this construct to have more measurements on the second 
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helix of this RNA as compared to helix one. This was very valuable during the analysis 

of relaxation data where the data from both helixes were compared. In addition, helix one 

was extended by two GC base pairs to optimize the RNA synthesis by in vitro 

transcription.  

The elongated A-site rRNA samples were prepared elongating helix I by 22 

NMR-invisible A-U or G-C Watson-Crick base pairs. In both constructs, two G-C base 

pairs were added at the end of the elongated helix to facilitate in vitro synthesis of the 

RNA. The constructs were uniformly 13C/15N AU (EGC-A-site rRNA) or GC (EAU-A-

site rRNA) labeled respectively to avoid spectral overlap due to the elongation residues 

(Figure 3.1A).  

3.2.2 NMR Spectroscopy Measurements 

All NMR experiments were carried out on an Avance Bruker 600 MHz NMR 

spectrometer equipped with a triple-resonance 5-mm cryogenic probe at 298K.  RNA 

samples of 250 to 300 uL in Shigemi tubes were used for all the experiments. NMR 

spectra were processed using NMRPipe/NMRDraw (14), analyzed using NMRDraw or 

NMRView (15) and overlaid using Sparky 3 (16).  

All non-exchangeable and exchangeable resonances were assigned using standard 

NMR experiments (17). The exchangeable resonances (N1/3-H1/3) were assigned using a 

combination of 2D and 3D exchangeable 1H-15N NOESY-HSQC experiments. The non-

exchangeable resonances (C1'/2/5/6/8-H1'/2/5/6/8) were assigned using a combination of 

3D non-exchangeable 1H-13C NOESY-HSQC, 2D IP COSY (correlated H5 to H6) (18, 

19), 2D HCN (20) and HCCH-COSY (correlates H2 to H8) experiments (17, 21). The 
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assignments were in good agreement with the ones previously reported by (12, 13), with 

the exception of A08C1' residue of the Asite rRNA – paromomycin complex.  

Paromomycin chemical shift titrations were performed on A-site rRNA by 

recording 2D 13C-1H HSQC spectra upon incremental additions of the drug. Spectra of A-

site rRNA (0.2 mM) were recorded with increments of 0, 0.05, 0.11, 0.20, 0.25, 0.30 and 

0.60 mM paromomycin solution. This yielded a 99% bound A-site rRNA. A second 

titration yielding a 95% bound A-site rRNA (0.4 mM) was performed by adding 0, 0.04, 

0.11, 0.20 and 0.39 mM paromomycin.  

15N spin relaxation was measured for guanine and uridine residues in both the 

non-elongated and elongated samples of A-site and mA-site rRNA. 15N longitudinal (R1) 

and transverse (R2,CPMG) relaxation rates were measured using a combination of 2D (A-

site, EAU-A-site) and 1D (EGC-A-site) experiments as described by (22). The R1 

experiments contained a heat compensation element to ensure constant heating during the 

different relaxation periods (23). The R2,CPMG experiment employed a [0013]N  phase 

cycle in the Carr-Purcell-Meiboom-Gill (CPMG) pulse train to suppress artifacts arising 

from off-resonance effects (24). Two separate sets of R1 and R2,CPMG experiments were 

run to get the guanine and uridine rates respectively. The delays used are summarized on 

Tables 3.1.  
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Table 3.1: Relaxation delays used in the carbon R1 and R2,CPMG experiments for A-site. 
Duplicate and quadruplicate measurements used to estimate error are indicated using 
“(x2)” and “(x4)” respectively.  

Delays (ms) for G experiments 
 R1 R2,CPMG

 

A-site rRNA 60, 720 (x2) 5.2, 130 (x2) 
EAU-A-site rRNA 60, 1600 (x4) 6.2, 55.8 (x4) 

Delays (ms) for U experiments 
 R1 R2,CPMG

 

A-site rRNA 60, 720 (x2) 5.2, 130 (x2) 
EGC-A-site rRNA 60, 900 (x2) 6.2, 37.2 (x2) 

 
 

Longitudinal (R1) and rotating-frame (R1ρ) relaxation rates were measured for A-

site (in the presence and absence of paromomycin), EAU-A-site and EGC-A-site 

samples. The 13C relaxation for the nucleobases C2, C5, C6 and C8 were measured using 

a TROSY-detected carbon relaxation experiment (25-28). A non-TROSY detected 

experiment was used to measure the relaxation data for the C1' (25). In the R1 

experiment, cross-relaxation to the neighboring carbons was suppressed by dephasing the 

carbon magnetization using gradients at the beginning of the pulse sequence followed by 

selective excitation of the carbon of interest using selective refocusing 13C 180° pulses 

during the INEPT period. (29) Hansen and Al-Hashimi calibrated the spinlock powers 

used in the experiments (25) as previously described by Palmer et.al (30). Spinlock 

powers of 4.1 kHz, 5.1 kHz, 2.0 kHz and offsets of 2.8 kHz, -2.0 kHz, 2.0 kHz were used 

for the C2/C6/C8, C5 and C1' R1ρ  experiments respectively. The high off-resonance 

spinlock powers were used to suppress the Hartman Hann transfers to scalar coupled 

carbon spins (vide infra) and minimize any chemical exchange contributions to the R1ρ 

measurements. Half Adiabatic passages were used to accurately align the ± Cz 

magnetization to and from the effective field tilt angle θ at the beginning as well as at the 

end of the relaxation period (31). A correction to the R1ρ rates was done to account for 
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off-resonance effects according to the R1ρ = R1 cos2 θ + R2 sin2 θ equation, in which 

θ = arctan(ωSL/Ω) is the effective tilt angle of the spinlock field, ωSL is the spinlock field 

power in Hz and Ω is the resonance offset from the spinlock carrier frequency in Hz. The 

delays (T) used in the relaxation experiments were chosen as described by (25) such that 

the first delay is at or very close to zero and the last two to four points are 1.3T (32). All 

the delays used in the R1 and R1ρ experiments are summarized in Table 3.2.  

The R1ρ data for the C2, C6 and C8 nucleobases of EGC-A-site RNA were 

measured using a 1D off-resonance R1ρ experiment. In this experiment the carbon of 

interest was selectively excited as described by (33). Four or five point relaxation profiles 

were recorded using a spinlock power of 3.0 kHz and offset of 3.7 kHz. The C5 and C1' 

carbon relaxation measurements for EGC-A-site RNA (0.2mM) were not collected due to 

the non-optimal sample concentration. The delays used in the 1D 13C Selective off-

resonance R1ρ experiments are summarized in Table 3.3. All the relaxation rates and 

errors were determined by fitting the intensities to a mono-exponential decay using 

Origin 7.0 (OriginLab Corporation) and RlxAnalysis an in-house software. All the carbon 

relaxation measurements are summarized in Appendix 1. 

Table 3.2: Relaxation delays used in the carbon R1 and R1ρ experiments. Duplicate, 
triplicate or quadruplicate measurements used to estimate error are indicated by using 
“(x2)”, “(x3)” and “(x4)” respectively.  

Delays (ms) for R1 experiment 
 C2, C6, and C8 C5 C1' 

A-site rRNA 20, 500 (x2) 20, 600 (x3) 20, 580 (x2) 
EAU-Asite rRNA 20, 600 (x4) 20, 500 (x4) 20, 600 (x3) 
EGC-Aiste rRNA 20, 540 (x2)   

A-site rRNA-paromomycin 20, 480 (x2) 20, 540 (x2) 20, 600 (x2) 
Delays (ms) for R1ρ experiment 

 C2, C6, and C8 C5 C1' 
A-site rRNA 4, 25, 50 (x2) 4, 44 (x3) 4, 58 (x3) 

EAU-Asite rRNA 4, 12, 20 (x2) 2, 12, 20 (x2) 2, 12, 26 (x2) 
A-site rRNA-paromomycin 4, 25, 50 (x2) 4, 25, 50 (x2) 4, 22, 44 (x2) 
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Table 3.3: Relaxation delays used in the carbon R1ρ experiments for EGC-A-site rRNA. 
Duplicate measurements used to estimate error are indicated using “(x2)”.  

Delays (ms) for R1ρ experiment 
 C2 C8 

A08 0, 4 (x2), 8  
A92 0, 5 (x2), 10 0, 5 (x2), 10 
A93 0, 4 (x2), 8, 12 0, 6 (x2), 12 
A10 0, 3 (x2), 6  

 

 A 1D selective 13C R1ρ relaxation dispersion experiment was used to measure 

motions in the µs-ms time scale for A-site rRNA in the absence and presence of 

paromomycin. This experiment selectively excites the carbon of interest as described 

previously by Hansen et. al (33). A heat compensation block was implemented after 

acquisition time to maintain a constant radiofrequency power was applied to the sample. 

Four to seven point (including duplicates for error estimation) profiles were recorded per 

spinlock power. The spinlock powers used were 100, 200, 300, 400, 600, 800, 900, 1000, 

1500, 2000, 2500, 3000, and 3500 Hz. These powers were calibrated as previously 

described (25). Duplicate R1ρ measurements at spinlock field strengths of 100, 400 and 

800 Hz were also collected to account for measurement errors. For on-resonance data the 

carbon spinlock carrier was placed at the desired 13C frequency of the resonance of 

interest. For off-resonance experiments the carbon spinlock carrier was placed at the 

desired offset (Ω) from the 13C frequency of the resonance of interest. The off-resonance 

experiments were run at spinlock field strengths of 100, 400 and 800 Hz for C2/C8; 100, 

500 and 1000 Hz for C1'. The offsets used in ± Hz are the following: {25, 50, 75, 100, 

150, 200, 250 and 300} for 100 Hz, {50, 100, 150, 200, 250, 400, 800, 1000 and 1200} 

for 400Hz, {50, 100, 150, 200, 400, 600, 800, 1000, 1600, 2000 and 2400} for 800 Hz, 
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{50, 100, 150, 200, 250, 400, 600, 800, 900, 1200 and 1500} for 500 Hz, and {100, 150, 

200, 250, 400, 600, 800, 1500, 1700, 2000, 2300, 2700, and 3000} for 1000 Hz spinlock 

powers. All the relaxation delays used in the experiments are summarized in tables 3.4 

and 3.5. The same delays were used for the on- and off-resonance experiments 

respectively. 

 
Table 3.4: Relaxation delays used in the 13C R1ρ dispersion experiments for unbound A-
site rRNA. Duplicate measurements used to estimate error are indicated using “(x2)”. 

Delays (ms) for R1ρ experiment 
 C2 C8 C1' 

A08 0, 4, 8, 16, 24 (x2)   

A92 0, 4, 12, 24, 32, 
42(x2) 

0, 4, 12, 24, 32, 
42(x2) 

0, 4, 8, 16, 
24(x2) 

A93 0, 4, 12, 24, 32, 
42(x2) 

0, 4, 12, 24, 32, 
42(x2) 

0, 2, 4, 6, 12(x2) 

A10 0, 4, 12, 24, 32, 
42(x2) 

  

G94 0, 4, 12, 24, 32(x2)   
 
 
 
Table 3.5: Relaxation delays used in the carbon R1ρ dispersion experiments for A-site 
rRNA 95% and 99% bound to paromomycin. Duplicate measurements used to estimate 
error are indicated using “(x2)”.   

Delays (ms) for R1ρ experiment  
 95% 99% 
 C2 C8 C1' C2 C8 C1' 

A08  0, 16, 32 
(x2) 

  0, 6, 18, 24, 
40 (x2) 

 

A92 0, 16, 38 
(x2) 

0, 16, 32 
(x2) 

 0, 6, 18, 24, 
40 (x2) 

0, 6, 18, 24, 
40 (x2) 

 

A93 0, 24, 42 
(x2) 

0, 24, 42 
(x2) 

0, 12, 26 
(x2) 

0, 6, 18, 24, 
40 (x2) 

0, 6, 18, 24, 
40 (x2) 

0, 6, 24, 40 
(x2) 

A10 0, 16, 32 
(x2) 

  0, 6, 18, 24, 
40 (x2) 
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3.2.3 Data Analysis 

All resonance intensities (peak heights) were measured using 2D TROSY-HSQC 

spectra (22). The resonance intensities for all the 13C-1H spins were divided into groups 

defined by base type (A, U, G and C) and spin pair (C2-H2, C5-H5, C6-H6, C8-H8 and 

C1'-H1') for normalization. The resonances were further normalized to a minimum value 

of 0.1. Peaks that had unusually small intensities, which could be attributed to exchange 

broadening, were not used for the normalization to 0.1. These intensities appear as less 

than 0.1 in the plots (Figure 3.2A). The normalization was carried out independently for 

A-site (absence and in the presence of paromomycin), EAU-A-site and EGC-A-site 

samples.  

 All the 13C/15N R1, 13C R1ρ and 
15N R2,CPMG values were obtained by non-linear 

least squares fitting the peak height to the mono-exponential function I(t) = I(0)e(-R
×
t)

 , based 

on the Levenberg-Marquardt (LM) algorithm. The data was fitted using the Origin 

software (OriginLab Corporation). The 2D 13C R1 and R1ρ data was fitted using in-house 

software (25). The final 13C/15N R2 values were corrected to account for the off-resonance 

effects (24). Uncertainties were also verified using duplicate, triplicate and quadruplicate 

relaxation measurements. The relative order parameter (S2
rel) values were estimated from 

the ratio of 2R2-R1 measured for each residue to that of the largest value in the well-

structured RNA helix (34). The 2R2-R1 values are, to a good approximation, proportional 

to S2 × J(0), where J(0) is the spectral density function at zero field and S2 is an order 

parameter used to describe motions occurring at time scales faster than the overall 

tumbling. In addition, 2R2-R1 values are independent of the time scale of the internal 

motions and the number of contributing relaxation mechanisms under the assumption that 
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all the relaxation mechanisms experience similar amplitude of isotropic motions (25, 34, 

35). All the R1, R2 and S2
rel data are listed in Appendix 1 (Tables A1.1 to A1.4). 

The maximum efficiency of Hartman-Hahn transfers between spins S and I were 

computed using the following equation (36) 
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             (3.1) 

where ωeff,X = (ω1
2

 + ΩX
2)½ is the effective spinlock strength at spin X, θX = atan(ω1/ΩX) 

is the tip angle of the magnetization of spin X with respect to the static magnetic field and 

JIS is the scalar coupling constant between spins S and I. The chemical shift of quaternary 

carbons in the purine bases were determined using a TROSY relayed HCCH-COSY 

experiment.(21) Data with AHAHA of >1% for the C2-C4 or C2-C6 couplings (JCC = -1 

Hz), C8-C5 couplings (JCC = 1 Hz) and >0.1% for C8-C4 or C8-C6 couplings (JCC = 10 

Hz), C2-C5 couplings (JCC = 11 Hz), C1'-C2' couplings (JCC = 40 Hz) were excluded 

from the analysis (Tables A1.4 to A1.6) (37, 38).  Mono-exponential decays were 

observed for all the offset/power combinations for the C2 spins of {A08, A10, A92, 

A93}, C8 spins of {A92, A93, G94}, and C1' spins of {A92, A93} (Figure A1.1). 

The chemical exchange data for A-site rRNA in the absence and presence of 

paromomycin were first analyzed by fitting the on-resonance dispersion data to the fast 

chemical exchange equation for a two site system (33, 39):  

    

€ 

R1ρ = R1 cos2 θ + R2,0 sin2 θ + sin2 θ
Φexk ex

kex
2 −ω eff

2                                                  (3.2) 
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where Φex= papb∆ωba2 was used as a single parameter and     

€ 

ω eff = ω 13 C
2 +Ω2 , Ω = 0 is 

the resonance offset from the spinlock carrier, ω13C is the spinlock field strength. The Φex, 

R2 and kex were allowed to vary during the fit. The chemical exchange parameters are not 

accurately measured using this equation due to the simplicity of this expression. For these 

reasons, the chemical exchange parameters were obtained by combining the on- and off-

resonance data followed by fitting it to a two-site asymmetric population chemical 

exchange equation (33, 39): 

 
    

€ 

R1ρ = R1 cos2 θ + R2,0 sin2 θ + sin2 θ
pa pbΔω ab

2 kex

(Ω+ Δω ab
2 ) + kex

2 +ω1
2

                              (3.3) 

where Ω ≈ Ωa is the resonance offset from the spinlock carrier, ω1 is the spinlock field 

strength, tan(θ) = ω1/Ωavg, , Ωavg =  paΩa + pbΩb, , pa is the population of state a, pb is the 

population of state b, ∆ωba = Ωb – Ωa is the change in chemical shift for states a and b. A 

more accurate two-site chemical exchange expression (equation 1.4, described in the 

introduction) using the Laguerre’s method for polynomial root finding was used to 

determine the chemical exchange parameters. (39, 40) 
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                                  (3.4) 

Each data set (A08C2, A10C2, A92C8, A92C1', A93C1' and G94C8) was fitted 

individually allowing pb, R1, R2, ∆ω, and kex to vary during the fit. A global fit using the 

A08C2, A92C1' and A93C1' data sets was done using equation 1.4. During this fit pb and 

kex were shared among all the residues. All the parameters were also allowed to vary. All 

the analysis was implemented using the Origin software (OriginLab Corporation). The 
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best-fit parameters, were finally determined from F-statistics at the 99% confidence level 

(Table 3.6).  

 The free Gibbs energy (ΔG) was calculated using the following equation (41): 
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o
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                (3.6) 

 

where K is the equilibrium constant (Kflipping out = kAB/kBA) and ΔGflipping out  is the free energy 

in kcal/mol for the flipping out event, T is the temperature in Kelvin (298.15 K) and R is 

the gas constant.   

Table 3.6: Parameters obtained from chemical exchange analysis. 
Base R2 R1 kex (s-1) pb Δω/2π (Hz) 

A93C1' 29 ± 1 1.3 ± 0.3 -774 ± 9 
A92C1' 23 ± 0.4 1.6 ± 0.1 328 ± 7 
A08C2 34 ± 0.1 1.4 ± 0.1 

4265 ± 127 (2.5 ± 0.1) x10-2 

-123 ± 4 
A10C1'  35 ± 0.1 2.02 ± 0.03    
G94C8 34 ± 0.1 2.4 ± 0.2    
A92C8 28 ± 0.1 2.7 ± 0.1       
 

3.3 Results 

3.3.1 Resonance assignments of A-site and E-A-site rRNAs  

The resonances of A-site rRNA were assigned using standard NMR experiments 

(17) using uniformly 13C/15N labeled RNA samples. The exchangeable NOE walk was 

continuously traced for both helixes respectively (from G03 to G94 and G91 to G17) 

(Figure 1.3). In addition, the non-exchangeable NOE connectivity was uninterrupted in 

both RNA strands indicating a continuous helical conformation of the RNA helixes. No 

or weak NOEs were found for the connection of G02 - G03 and C98 - C99 due to end 
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fraying effects of the RNA helix. A continuous inter-nucleotide NOE connectivity was 

observed for G94 – A92 – A93 – G91 suggesting that these adenines are stacked and 

bulged inside the helix. A weak NOE was also observed between H1' of A93 and H8 of 

A08 suggesting an inter-helical conformation for A08/A93 as well as a possible base pair 

interaction. These NOE connectivities were also observed by Fourmy et. al. when they 

solved the NMR structure of this oligonucleotide model of A-site rRNA (12). HCN, 

HNCCH-TOCSY and COSY experiments were also used to assign the base and sugar 

resonances. The 2D HCN experiment correlates the C6-H6/C8-H8 in the base to C1'-H1' 

resonances in the sugar ring through the N1/9 atoms of the same residue (20). The 

nitrogen (N1/N9) chemical shifts ranges for the HCN spectra are 15N1 A/G (168-172 

ppm), 15N9 C (150-154 ppm) and 15N9 U (144-148 ppm). The proton chemical shifts 

were then correlated to its corresponding carbon and nitrogen resonances using a 2D 

C8/C6-H8/H6 and C1'-H1' HSQC spectra (Figure 1.3). The HNCCH-TOCSY experiment 

was used to verify the imino and C8/C6 resonances of the guanine and uridine bases. The 

imino protons (H1/H3) were correlated to its corresponding carbon and nitrogen 

resonances using a 2D C8/C6-H8/H6 and N1/N3-H1/H3 HSQC spectra.  The C5 

chemical shifts were assigned using a 2D COSY experiment, which correlates the H5 and 

H6 protons (18, 19). Ultimately, the assignments were compared to those previously 

reported by Fourmy et. al. and they were found to be in good agreement (12, 13).  

To study more in detail any motions occurring in the ps-ns time scales, we used 

the domain elongation strategy developed in the Al-Hashimi laboratory (22). The 

elongation scheme required the preparation of two elongated A-site rRNA constructs to 

avoid spectral crowding due to elongated resonances: EGC-A-site rRNA and EAU-A-site 
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rRNA (described in section 3.2.1, Figure 3.1A). The resonances of the elongated A-site 

rRNA were assigned by comparing its spectra with the non-elongated A-site rRNA 

spectra as described here. Shown on figure 3.1B are the 2D HSQC spectra obtained for 

the GC and AU elongated RNA samples. The asterisks denote the resonances that 

correspond to the two GC base pairs added at the end of the elongation site. The EGC- 

and EAU-A-site spectra exhibited excellent agreement when overlapped with the non-

elongated A-site rRNA.  

 

Figure 3.1: Resonance assignments of A-site and E-A-site rRNA. A) Secondary structure of non-
elongated (top) and elongated (bottom) A-site rRNA. The purple (helix I), orange (internal loop), green 
(helix II), and gray (NMR invisible elongation site) represent different parts if the RNA. B) Overlay of 2D 
13C-1H HSQC of E-Asite rRNA (gray) and non-elongated A-site rRNA (orange). C) Normalized resonance 
intensities for A-site (left) and E-A-site (right) rRNA. Shown are values for C1' (diamonds), C2 (circles), 
C5 (squares), C6 (triangles) and C8 (upside down triangles) 
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Only minor differences in chemical shifts were observed for residues close to the 

elongation site (the terminal end of helix I of the non-elongated RNA) (Figure 3.1B). 

Chemical shifts are very sensitive to the chemical environment of a given nucleus and 

thus these differences reflect the changes in the chemical environment at the elongation 

site. The excellent spectral overlay shows that the elongated RNA adopts the proper 

secondary structure without affecting the short A-site rRNA. The effective preparation of 

these elongated samples shows the applicability of this strategy to study the ps to ns 

dynamics of the A-site ribosomal RNA. 

3.3.2 Picosecond-to-nanosecond motions of A-site rRNA by spin relaxation 

Unusual resonances for the C8 and C1' atoms of A92 and A93 within the internal 

loop were observed in the A-site rRNA spectra (Figure 3.1B). The C8 resonances were 

shown downfield from usual purine C8 chemical shift while the C1' resonances were 

slightly shifted upfield. In addition, the spectra showed resonances that were line 

broadened as well as resonances that were very sharp. The line broadening effects are 

seen for residues located in the internal loop and the UU base pair. A combination of 

these effects reflects interesting structural and motional features in the decoding center of 

unbound A-site rRNA. These effects were observed in previous NMR studies of A-site 

rRNA but they were not characterized further (12). Of interest is to understand the 

dynamic behavior of A92 and A93 that are essential for A-site rRNA function.  

To gain initial qualitative information of internal motions we examined the 13C-1H 

resonance intensities or peak heights of the non-elongated A-site rRNA. The non-

elongated RNA has optimal relaxation properties for detecting any chemical exchange 



 92 

contribution to a given site. The intensities were normalized to a minimum of 0.1 as 

described in section 3.2.3 In figure 3.2A, the resonances exhibit an array of intensities 

greater, equal and lower than 0.1.  Resonances corresponding to helical parts of the RNA 

have intensities very close or equal to 0.1. Using this as a reference, we can conclude that 

greater or lower intensities correspond to the presence of local internal motions or 

exchange broadening, respectively. One site on A-site rRNA that displays high intensities 

is the UUCG apical loop, which is located at the tip of helix II. High intensities at this 

region correspond to the presence of domain and local motions as has been previously 

observed for other elongated RNAs such as TAR and P4 (22, 42). The residue A1408 in 

the internal loop have intensities comparable to those in the helix, suggesting that this 

adenine is staked within the two helices. This agrees very well with the available crystal 

and NMR structures of A-site rRNA that show A1408 loop inside the helix and stacked 

between both domains (13, 43, 44). The other two adenines of the internal loop (A1492 

and A1493) display a combination of high and low intensities values. For example, 

A1493 has low intensities for the C1' spin while higher intensities are observed for the C2 

and C8 spins (Figure 3.1C).  
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Figure 3.2: A-site rRNA dynamics. A) Normalized resonance intensities for A-site. 13C qualitative order 
parameters (S2

rel) are shown for non-elongate (B) and elongated (D) A-site rRNAs. Shown are values for 
C1' (diamonds), C2 (circles), C5 (squares), C6 (triangles) and C8 (upside down triangles). C) 15N S2

rel 
measurements for the N1 (stars) nucleobase of E-A-site rRNA.  

 

These motions could be arising due to local fluctuations at the base and/or the 

base exchanging between a flipped “in” and “out” states. To shed light on this matter we 

collected carbon spin relaxation measurements to gain insight on the fast motions and 

carbon relaxation dispersion measurements for information on slow motions present in 

the internal loop.  

We measured R1 and R2 relaxation rate constants for the C2, C8, C5 nucleobases 

and C1' sugar in the non-elongated A-site rRNA. Order parameters (S2
rel) describing the 

amplitude of internal motions over picosecond-to-nanosecond timescales were then 

derived by normalizing the value of S2
rel= 2R2-R1 for various spin types (see section 

3.2.3) (25, 34, 35). The value of S2
rel ranges between 1 and 0 for minimum and maximum 

motions. As expected, the S2
rel values for helical regions are ~ 1 with deviations observed 

for terminal residues of helix I (Figure 3.2B and D) likely due to end fraying effects. The 
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adenine internal loop shows an array of S2
rel values. Residue A08 has large S2

rel ~ 1 

values consistent with a looped in rigid state. By contrast, lower S2
rel values consistent 

with great mobility is observed for A93 and A92, with greater mobility observed for A93 

(Figure 3.2B). Fluorescence data for unbound A-site rRNA have shown that A93 is 

solvent exposed while A92 is mostly stacked within the helix (8, 45). 

We also measured the corresponding carbon and nitrogen spin relaxation data for 

elongated RNA constructs. Here, the elongation decouples internal and overall motions, 

and makes it possible to probe collective motions between the helices which may evade 

detection in the non-elongated constructs (22). By slowing down the overall tumbling of 

the molecule, the elongation also broadens the timescale sensitivity of the spin relaxation 

data deep into the nanosecond timescales. Hence it could be possible that A93 has a 

greater degree of extra-helical conformation allowing greater amplitude of local motions 

at this site.  

Figure 3.2C shows the 15N S2
rel values for E-A-site rRNA. The uniformly smaller 

S2
rel values measured for helix II as compared to helix I indicates the existence of inter-

helical motions about the flexible adenine rich internal loop. Residue G91 shows an 

anomalously high 15N S2
rel values. This can be attributed to (i) presence of exchange 

broadening (see below) and  (ii) possibly to the unique of orientation of the 15N – 1H 

bond vector relative to the elongated axis (22, 25).  

The 13C S2
rel measurements for E-A-site rRNA (Figure 3.2D) follow the same 

trend seen for non-elongated A-site rRNA. The apical UUCG loop shows the lowest S2
rel 

values consistent with previous studies of other elongated RNAs (22, 42). Again 
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significant mobility is observed for A92 and A93 with greater flexibility observed for 

A93 (Figure 3.2D).  

3.3.3 Microsecond-to-millisecond motions of A-site rRNA by 13C relaxation dispersion 

To study slower micro-to-millisecond motions in A-site rRNA that might be 

important for decoding, we performed 13C relaxation dispersion measurements.  For a 

two-state dynamic transition between an A and B state, A ⇔ B, these experiments can 

provide the exchange rate (kex), change in chemical shift between both states (ΔωAB) and 

the population of both states (pA and pB). In particular, we used a 1D selective 13C R1ρ 

dispersion experiment (33) to measured data for C2, C8 and/or C1' in A08, A10, A92, 

A93, and G94 (Figure 3.3A-E). Key statistics for this analysis are summarized in Table 

3.6. As expected, we did not observed any evidence for exchange at C2 of A10 located in 

the canonical helix. Likewise, we did not observe any chemical exchange for the 

nucleobases of A92 and A93 in the internal loop as well as G94. However, we did 

observe chemical exchange for C2 in the nucleobase of A08 as well as in the sugar C1’ 

carbons of A92C1' and A93C1' (Figure 3.3A-C).  

Interestingly, F-statistics with 99% confidence revealed that these data could be 

fitted simultaneously to a single exchange process indicating that they all report on the 

same concerted molecular event. The fitting yielded a rate of 4265 ± 127 s-1 and a low 

populated “invisible state” of 2.5%. The sign and magnitude of the chemical shift 

difference (Δω) with the “invisible” state was obtained for these resonances. The 

Δω values are -0.81 ± 0.03 ppm, 2.17 ± 0.05 ppm and -5.13 ± 0.06 ppm for A08C2, 
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A92C1' and A93C1' respectively. This slow transition occurring on a timescale of 234 µs 

timescales may reflect the looping in and out of the adenines. 

Taken together, the carbon spin relaxation and relaxation dispersion data reveals a 

complex manifold of fast picosecond-to-nanosecond motions in the nucleobases that 

correlate with stacking interactions and slower microsecond motions in the sugar 

backbone that may reflect transitions between looped in and out states. 
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Figure 3.3: Characterization of slow motions in A-site rRNA. Relaxation dispersion profiles for: C2 in 
A08 (A), C1' in A93 (B), C1' in A92 (C), C8 in G94 (D), and C8 in A92 (E). The left panels show the 
offset (Ω/2π) and power (ω/2π) dependence of R2 at spinlock powers of 100 (orange), 400 or 500 (green), 
800 or 1000 (blue) Hz. The right panels show the on-resonance dependence of R2. 



 98 

3.3.4 Structural dynamics of A-site rRNA in the presence of the aminoglycoside 

paromomycin 

Previous studies have shown that upon binding aminoglycosides such as 

paromomycin, A92 and A93 adopt an extra-helical looped out conformation. If the 

motions observed in unbound A-site were somehow connected to the looping in and out 

dynamics, then we would expect changes in these dynamics upon paromomycin binding. 

Thus, to gain further insights into the motions observed in unbound A-site and also 

characterize the dynamical properties of the “inactive” drug bound states, we used the 

same NMR methodology to characterize the dynamics of A-site rRNA when bound to 

paromomycin. As shown in Figure 3.4A, incremental addition of paromomycin led to 

large and specific changes in 2D HSQC spectra of A-site rRNA. The largest chemical 

shift perturbations were observed in and around the adenine internal loop, which is the 

site of binding. In contrast, little to no changes were observed in the UUCG loop, which 

is remote from the binding site. These changes are consistent with previously reported 

NMR spectra of A-site – paromomycin complex (12). 
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Figure 3.4: Dynamics of A-site rRNA in the presence of paromomycin. A) 2D HSQC spectra of A-site 
rRNA in the presence of 0.6 mM paromomycin. B) Normalized resonance intensities. C) S2

rel 
measurements. Shown are values for C1' (diamonds), C2 (circles), C5 (squares), C6 (triangles) and C8 
(upside down triangles). D) Relaxation dispersion profiles for C2 in A10, A92 and A93. 

 

Addition of paromomycin also resulted in significant changes in the intensities of 

the internal loop resonances indicating that it induces changes in their intrinsic dynamic 

properties. In particular, a large increase in the resonance intensities of the nucleobases 

C2, C8 and C1' of A92 and A93 was observed on paromomycin binding indicating an 

increase in fast ps – ns motions and consistent the two bases adopting a flexible looped 

out conformation. Such an increase in the local mobility of A92 and A93 on binding 

aminoglycosides was also observed using fluorescence measurements (8, 45, 46). By 

contrast, paromomycin binding induced exchange broadening in internal loop residue 

A08 indicating that the complex is dynamic in nature. Finally, paromomycin binding 

resulted in little to no changes in the resonance intensities of residues in the helix and 

UUCG loop.  
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We measured 13C R1 and R2 relaxation measurements for the C2, C8, C5 and C1' 

nucleobases in the non-elongated A-site rRNA 95% bound to paromomycin. The S2
rel 

measurements were also determined based on the calculation of 2R2-R1. These values 

were then compared to values measured in unbound A-site rRNA. As shown on figure 

3.4C, the helical parts of the RNA exhibited S2
rel near or equal to 1. Again, deviations 

were seen at the terminal ends due to end fraying effects. Very little to no changes were 

observed for the UUCG apical loop S2
rel measurements going from unbound to bound A-

site rRNA. The residue A08 shows enhanced S2
rel measurements when compared to 

unbound A-site rRNA indicative of exchange broadening. The S2
rel values for A92 were 

significantly attenuated upon ligand binding. For A93, the changes were not as significant 

but it did become more flexible. Lower S2
rel values are observed for C2 and C8 

nucleobases of A93 as compared to A92, indicating that A93 remains more flexible than 

A92 even in the paromomycin-bound state. The only exception is A93C1' which exhibits 

exchange broadening in the 95% bound state.  

Next, we performed carbon relaxation dispersion experiments to characterize slow 

motions in A-site rRNA 95% and 99% bound to paromomycin (Figure 3.5). Binding of 

paromomycin quenched most of the exchange broadening observed at A92C1', A92C8, 

A93C1'. By contrast, paromomycin binding induced exchange broadening specifically at 

A08. Thus, in the 99% bound state, significant exchange could only be detected at 

residues A08 and to a much lesser degree in A93C1'.  Again, these data suggest that the 

complex remains dynamic in nature consistent with MD simulations which observe 

looping in and out transitions of A92 and A93 even when in complex with gentamicin 

(9).   
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Figure 3.5: Relaxation dispersion profiles for A-site rRNA bound to paromomycin. On-resonance 
dependence on R1ρ for: C2 in A92 (A), C8 in A92 (B), C2 in A10 (C), C2 in A93 (D), C8 in A93 (E) and 
C1' in A93 (F). Shown are the data for A-site rRNA unbound (black), 95% bound (orange) and 99% bound 
(green).  The insert in all the plots is the R2 and kex values for each fit. 

 

3.3.5 The “invisible” excited state of unbound A-site rRNA exhibits a drug bound-like 

conformation 

What is the excited state observed by relaxation dispersion measurements of 

unbound A-site? Several lines of evidence suggest that this corresponds to a 

conformation in which the adenines are flipped out as observed in the drug bound state. 

First, the sign of the Δωdisp  =  ω excited – ωground for A08C2, A92C1' and A93C1', as 

calculated by carbon relaxation dispersion measurements, is consistent with the 

corresponding chemical shift difference observed between unbound and bound A-site Δω 
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 =  ω bound – ωunbound. In other words, the chemical shifts of the excited state are similar to 

the chemical shifts observed for A-site when bound to paromomycin. While we do not 

expect perfect agreement with respect to the magnitude of the perturbations, this is not to 

be expected given that the presence of the drug itself, in addition to the conformational 

exchange, affects the chemical shifts observed in the drug bound state. We were able to 

support these data by performing DFT calculations of carbon chemical shifts on a variety 

of unbound A-site rRNA structures. This allowed us to compute ΔωDFT between a variety 

of states including ones in which both A92/A93 are completely looped in, looped out, or 

partially loop in and out in various combinations. The best agreement was observed for 

ΔωDFT = ω(partially loop out) – ω(loop in). 

 

Figure 3.6: Proposed model for A-site in the absence and presence of paromomycin. A) Proposed 
“ground” (left) and “invisible”  (right) states. B) Proposed bound state. Shown are: GC closing base pairs 
(gray), internal loop adenines (orange), stacking interactions (blue boxes), paromomycin (green).   
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Second, the free energy difference between the ground and excited states 

measured by relaxation dispersion (2.17 kcal/mol) is in good agreement with the values 

computed using replica exchange MD simulations (0.8 kcal/mol) (9).  

Figure 3.7: Carbon chemical shifts for unbound, bound to paromomycin and “invisible” state for A-site 
rRNA 

3.4 Conclusion 

Our results show that unbound A-site rRNA experiences fast and slow 

conformational dynamics and these motions might be important for decoding mechanism. 

The nitrogen spin relaxation data shows the presence of inter-helical motions about the 

flexible adenine rich internal loop. In addition, 13C S2
rel showed that A93 have higher 

amplitude motions than A92, while A08 always had values comparable to the helical 

regions. The carbon dispersion relaxation experiments showed that A08C2, A92C1' and 

A93C1' are experiencing a single exchange process with a rate of 234 µs and a population 

of the “invisible” state of 2.5%. 

First, we proposed that the “invisible” state is a bound-like state where A92 and 

A93 are flipped out of the helix as observed in the bound state (Figure 3.6A, right panel). 

The direction of the chemical shift agrees with the bound state (Figure 3.7) suggesting 
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that the adenines in the invisible state are adopting an extra-helical conformation like in 

the bound state. The free energy of flipping out also agrees with the one calculated by 

MD simulations of A-site rRNA. We proposed that the “ground” state of this process is 

when A92 and A93 adopt a more intra-helical state. Within this intra-helical state, our 

data suggest that A92 is more stacked within the helix and A93 adopts a more partially 

out dynamical conformation (Figure 3.6A, left panel). This is consistent with the 

chemical shift positions of the nucleobases C2/C8 for A92 and A93 respectively. The C2 

and C8 chemical shifts for A92 are more upfield compared to the resonances of A93. 

This upfield position is characteristic for residues in a helix or undergoing stacking 

(Figure 3.1B) (47).  Second, the carbon spin relaxation data shows that A93 is more 

flexible than A92. These results agree very well with the previously shown 2-

aminopurine fluorescence data for unbound A-site rRNA that shows that A93 is more 

solvent exposed and A92 stacked inside the helix 69% of the time (8, 45). Third, upon 

ligand binding the chemical shift and carbon spin relaxation values for A93 resonances 

barely change, suggesting that this adenine partially looped out the helix. In contrast, the 

direction of change in chemical shift upon ligand binding for A92 and the dramatically 

decreased S2
rel measurements in the presence of paromomycin indicate that A92 

undergoes a conformational change towards looping out. This conformational state has a 

population of 97.5% and it is more energetically favored when compared to the 

“invisible” state. In both states we propose that A08 is always in an intra-helical state. 

The chemical shift of A08 C8 is located at the same region as A10, in the canonical helix. 

The resonance intensities and S2
rel measurements for A08 were also observed to be 

comparable with the helical parts of the unbound A-site rRNA. Hence, the exchange 
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experienced by A08C2 represents the change in chemical environments produced by the 

flipping events in A92 and A93.  

In the presence of paromomycin, A92 and A93 flip outside the helix, stack with 

each other and become more flexible. Furthermore, the chemical exchange observed in 

unbound A-site rRNA dramatically gets attenuated once its ~99% bound to 

paromomycin. This shows that the tightly bound drug locks the adenine in the extra-

helical conformation (Figure 3.6B). Nevertheless, the fact that chemical exchange was 

not completely quenched for A93C1' suggests the possibility that this adenines might be 

experiencing different extra-helical states. To further characterize any possible 

conformational exchange in the bound state, more data acquisition and analysis are 

needed. For example, off-resonance data for the carbon relaxation dispersion experiments 

needs to be collected in order to obtain information of other possible states.  

Some of this work has been published on the Journal of the American Chemical Society (33). The idea was 
conceived by Casiano-Negroni, A. and Al-Hashimi, H. M. The undergraduate student Gulati, N synthesized 
the elongated RNA. Hansen, A. L. designed and implemented the 13C relaxation dispersion experiments. 
Nikolova, E. performed the DFT calculations and was involved with implementing the 13C relaxation 
dispersion experiment. Casiano-Negroni, A, collected and analyzed the NMR data. 
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Chapter 4 

 

 

Dynamics of a drug-resistant mutant A-site ribosomal RNA in the 
presence and absence of paromomycin 

 

 

4.1 Introduction 

Prokaryotic ribosomes carrying this A1408G mutation do not show change in 

ribosome function but do show significant resistance for 2-deoxystreptamine 

aminoglycosides (1)(2)(3)(4). Clinical studies have shown that patients infected with 

Mycobacterium abscessus carrying this mutation (A1408G) do not respond positively 

when treated with the aminoglycoside amikacin (5). The clinical isolates of this 

bacterium was also shown to be highly resistant to all the 2-deoxystreptamine 

aminoglycosides including neomycin, tobramycin, and paromomycin among others (5). 

Further, in vitro studies employing isolated A-site constructs revealed that the single 

A1408G mutation (mA-site rRNA) resulted in >100-fold reduction in the aminoglycoside 

binding affinity (4)(3)(6). The NMR solution structure of an oligonucleotide model of 

prokaryotic A-site rRNA carrying the A1408G mutation in the absence of 

aminoglycosides revealed differences relative to wild-type A-site specifically at the 
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internal loop; G08 is rotated towards the major groove (aminoglycoside binding pocket) 

and residues A92 and A93 are significantly more disordered (7). Yet the NMR structure 

of mA-site rRNA complexed with the aminoglycoside paromomycin (6) along with 2-

aminopurine fluorescence studies (8) showed that aminoglycoside binding does not lead 

to the flipping out of A1492 and A1493 as observed in wild-type A-site rRNA. The 

>100-fold reduction in binding affinity was therefore attributed to disruption of the 

binding pocket for ring I of paromomycin most likely resulting from the change in 

geometry of G1408 – A1493 base pair and the conformation of G1408 where its carbonyl 

group is projected towards the major grove of the RNA (6)(3). In addition, MD 

simulations of the mutant A-site complexed to paromomycin show that the flipping in 

and out events of A92/A93 were less frequent than in the wild-type A-site RNA (9).  

These observations suggest that conformational change in the internal loop of A-site 

rRNA upon drug binding might be a key factor in the specificity and mechanism of 

action.  

In this study, we characterize the dynamics of mutant A-site rRNA in the presence 

and absence of the aminoglycoside paromomycin using the same NMR scheme used to 

characterize the dynamics of wild-type A-site in Chapter 3. We are specifically interested 

in gaining insight into how the dynamic behavior of the internal loop adenines A92 and 

A93 is affected by the A08G mutation and how this in turn affects recognition of 

aminoglycosides. Comparison of these results with those obtained for the wild type A-

site rRNA in Chapter 3 should provide a comprehensive and fundamental view of this 

critical conformational switch.  
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4.2 Material and Methods 

4.2.1 NMR sample preparation  

The mA-site rRNA samples used in the NMR studies were prepared by in vitro 

transcription using synthetic double stranded DNA templates that contained the T7 

promoter and sequence of interest (Integrated DNA Technologies, Inc.), T7 RNA 

polymerase (Takara Mirus Bio, Inc.), and 13C/15N labeled NTPs (Silantes, Inc. and 

ISOTEC, Inc.). The RNA was purified by 20% (w/v) denaturing polyacrylamide gel 

electrophoresis containing 8M Urea and 1x TBE followed by electroelution in 20 mM 

Tris pH 8 buffer and ethanol precipitation. The RNA pellet was dissolved and exchanged 

into NMR buffer (15 mM sodium phosphate, 0.1 mM EDTA, and 25 mM NaCl at pH 

~6.4) using 0.2 µM filter (Millipore Corp.). The final RNA concentrations were between 

0.2 to 0.6 mM. Samples volumes of 250 to 300 µL were used for all the experiments. 

The mA-site rRNA construct used in this study was derived from the E.coli 

ribosomal RNA sequence (10). This sequence consists of the minimal aminoglycoside-

binding region that includes the conserved U-U base pair, internal loop adenines 

A92/A93 and the A08 to G substitution (Figure 4.1A, left). The second helix of this RNA 

was closed with a UUCG tetraloop (10). A GC base pair was added to helix II of this 

construct to add more measurements here as compared to helix I. In addition, helix I was 

extended by two GC base pairs to optimize the RNA synthesis by in vitro transcription.  

The elongated mA-site rRNA samples were uniformly 13C/15N AU (EGC-A-site 

rRNA) or GC (EAU-A-site rRNA) labeled respectively to avoid spectral overcrowding 

due to the elongation residues. The elongation was achieved by extending the size of 

helix I by 22 NMR invisible Watson-Crick base pairs (Figure 4.2A).  
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4.2.2 NMR Spectroscopy Measurements 

 All NMR experiments were carried out on an Avance Bruker 600 MHz NMR 

spectrometer equipped with a triple-resonance 5-mm cryogenic probe at 298K. NMR 

spectra were processed using NMRPipe/NMRDraw (11), analyzed using NMRDraw or 

NMRView (12) and overlaid using Sparky 3 (13).  

Paromomycin chemical shift titrations were performed on mA-site rRNA by 

recording 2D 13C-1H TROSY-HSQC spectra upon incremental additions of the drug. 

Spectra of mA-site rRNA (0.4 mM) were recorded with increments of 0.00, 0.10, 0.20, 

0.30, 0.40, 0.80, 1.60, 4.00 and 10.00 mM paromomycin solution.  

15N spin relaxation was measured for guanine and uridine residues in both the 

non-elongated and elongated samples of mA-site. 15N longitudinal (R1) and transverse 

(R2,CPMG) relaxation rates were measured using a combination of 2D (mA-site, EAU-mA-

site) and 1D (EGC-mA-site) as described in section 3.2.2. The delays used are 

summarized on Tables 4.1.  

Longitudinal (R1) and rotating-frame (R1ρ) relaxation rates were measured for mA-

site rRNA (in the presence and absence of paromomycin), EAU-mA-site and EGC-mA-

site rRNA samples as described in section 3.2.2. All the delays used in the R1 and R1ρ 

experiments are summarized in Table 4.2. A 1D 13C-Selective R1ρ experiment was used to 

collect R1ρ data for EGC-mA-site rRNA. This experiment was described in section 3.2.2. 

Four point relaxation profiles (including duplicates for error estimation) were collected 

for A92 (C2, C8), A93 (C2, C8), and A10 (C2). A spinlock power of 3.0 kHz and offset 

of 3.7 kHz were used for all the experiments. The delays used in the 1D 13C Selective off-

resonance R1ρ experiment are summarized in Table 4.3.  
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Table 4.1: Relaxation delays used in the carbon R1 and R2,CPMG experiments for mA-site 
rRNA. Duplicate and quadruplicate measurements used to estimate error are indicated 
using “(x2)” and “(x4)” respectively.  

Delays (ms) for G experiments 
 R1 R2,CPMG

 

mA-site rRNA  (x2)  (x2) 
EAU-mA-site rRNA  (x4)  (x4) 

Delays (ms) for U experiments 
 R1 R2,CPMG

 

mA-site rRNA  (x2)  (x2) 
EGC-mA-site rRNA (x2)  (x2) 

 

Table 4.2: Relaxation delays used in the 13C R1 and R1ρ experiments for mA-siterRNA. 
Duplicate, triplicate or quadruplicate measurements used to estimate error are indicated 
by using “(x2)”, “(x3)” and “(x4)” respectively.  

Delays (ms) for R1 experiment 
 C2, C6, and C8 C5 C1' 

mA-site rRNA  20, 500 (x2) 20, 660 (x3) 20, 600 (x4) 
EAU-mAsite rRNA 20, 600 (x4) 20, 600 (x4) 20, 1000 (x4) 
EGC-mAiste rRNA 20, 500 (x2)   

Delays (ms) for R1ρ experiment 
 C2, C6, and C8 C5 C1' 

mA-site rRNA 2, 25, 55 (x2) 4, 44 (x4) 4, 46 (x3) 
EAU-mAsite rRNA 2, 15, 30 (x2) 2, 12, 22 (x2) 4, 24 (x2), 32 (x2) 

 
 
Table 4.3: Relaxation delays used in the carbon R1ρ experiments for EGC-mA-site rRNA. 
Duplicate measurements used to estimate error are indicated using “(x2)”.  

Delays (ms) for R1ρ experiment 
 C2 C8 

A92 0, 6, 14 (x2), 20 0, 4 (x2), 6, 10 
A93 0, 4 (x2), 2, 6 0, 6, 14 (x2), 20 
A10 0, 6, 14 (x2), 20  

 

A 1D 13C-selective R1ρ relaxation experiment was used to measure slow motions 

(µs-ms) in mA-site rRNA in the absence and presence of paromomycin. This experiment 

was described in section 3.2.2. Four or seven point relaxation profiles (including 

duplicates for error estimation) were recorded per spinlock power. The spinlock powers 

used were 100, 200, 300, 400, 600, 800, 900, 1000, 1500, 2000, 2500, 3000, and 3500 
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Hz. The spinlock powers and offsets used for the off-resonance experiments were the 

same as the ones described before (section 3.2.2). The same delays were used for the on- 

and off-resonance experiments, respectively (tables 4.4 – 4.5).  

 

Table 4.4: Relaxation delays used in the carbon R1ρ dispersion experiments for unbound 
mA-site rRNA. Duplicate measurements used to estimate error are indicated using 
“(x2)”. 

Delays (ms) for R1ρ experiment 
 C2 C8 C1' 

G08  0, 4, 8, 12 (x2), 
16 (x2) 

 

A10 0, 2, 4, 12, 24, 36 
(x2) 

  

A92  0, 4, 8, 12 (x2), 16 
(x2) 

0, 2, 4, 8, 16, 24, 
30 (x2) 

0, 6, 12, 24, 32, 
40 (x2) 

A93 0, 4, 6 (x2), 10, 16 0, 6, 12, 24, 32, 
40 (x2) 

0, 6, 12, 24, 32, 
40 (x2) 

G94  0, 2, 4, 12, 24, 
36 (x2) 

0, 2, 4, 8, 12, 24 
(x2) 

 
 
Table 4.5: Relaxation delays used in the carbon R1ρ dispersion experiments for mA-site 
rRNA 95% bound to paromomycin. Duplicate measurements used to estimate error are 
indicated using “(x2)”.   

Delays (ms)  
 C2 C8 

G08   
A92 0, 9 (x2), 18  
A93 0, 8 (x2), 16 0, 3, 6, 18 (x2) 
A10 0, 10 (x2), 20   

 

4.2.3 Data Analysis 

Apparent dissociation constants (Kd) for mA-site bound to paromomycin were obtained 

by fitting the observed chemical shift changes to the equation (14):  

    

€ 

δobs = δFree +
(ΔδT ){([ M ]T + [RNA]T + Kd ) − ([ M ]T + [RNA]T + Kd )2 + (4[ M ]T [RNA]T )}

2[RNA]T

          (4.1) 
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where [M]T is the total concentration of paromomycin, [RNA]T is the mA-site rRNA 

concentration based on UV absorbance at 260 nm, TδΔ  is the difference in chemical 

shifts between the “unbound” and “drug-bound” states (in ppm), obsδ  is the observed 

chemical shift (in ppm), and Freeδ  is the chemical shift in the free state (in ppm). The data 

was fitted using the Origin software (OriginLab Corporation) in which ΔδT and Kd were 

allowed to vary during the fit. The calculated apparent Kd was in good agreement with 

previously reported Kd for mA-site rRNA bound to paromomycin (6). 

 Changes in chemical shift were calculated using the equation 

€ 

Δδ = (ΔδH )
2 + (αΔδX )

2 , where 

€ 

ΔδH  and 

€ 

ΔδX are the changes in for hydrogen and 

carbon chemical shift, 

€ 

α  is the ratio of 1H and 13C gyromagnetic ratio (15). All resonance 

intensities were measured using 2D TROSY-HSQC spectra as described in section 3.2.3. 

The normalization was carried out independently for mA-site (unbound and bound to 

paromomycin respectively), EAU-mA-site and EGC-mA-site rRNA samples.  

All the 13C and 15N R1 and R2 values were obtained by non-linear least squares 

fitting the peak intensities to the mono-exponential function 

€ 

I( t ) = I(0)e
(−R× t ) , based on 

the Levenberg-Marquardt (LM) algorithm. The data was fitted using the Origin software 

(OriginLab Corporation). The 2D 13C R1 and R1ρ data was fitted using in-house software 

(16). The final 13C and 15N R2 values were corrected to account for the off-resonance 

effects according to the R1ρ = R1 cos2 θ + R2 sin2 θ equation, in which θ = arctan (ωSL/Ω) 

is the effective tilt angle of the spinlock field, ωSL is the spinlock field power in Hz and 

Ω is the resonance offset from the spinlock carrier frequency in Hz. (17). Uncertainties 

were also obtained using duplicate, triplicate and quadruplicate relaxation measurements. 
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The relative order parameter (S2
rel) values were estimated from the ratio of 2R2-R1 

measured for each residue to that of the largest value in the well-structured RNA helix 

(18). The 2R2-R1 values are, to a good approximation, proportional to S2 × J(0), where 

J(0) is the spectral density function at zero field and S2 is an order parameter used to 

describe motions occurring at time scales faster than the overall tumbling. In addition, 

2R2-R1 values are independent of the time scale of the internal motions and the number of 

contributing relaxation mechanisms under the assumption that all the relaxation 

mechanisms experience similar amplitude of isotropic motions (19)(18)(16). The 13C and 

15N R1, R2 and S2
rel measurements for mA-site rRNA (in the absence and presence of 

paromomycin) and E-Asite rRNA are summarized in Appendix 2 (Tables A2.1 – A2.3).  

The maximum efficiency of Hartman-Hahn transfers between spins was 

computed as described in section 3.2.3. Data with AHAHA of  >1% for the C2-C4 or C2-

C6 couplings (JCC = -1 Hz), C8-C5 couplings (JCC = 1 Hz) and >0.1% for C8-C4 or C8-

C6 couplings (JCC = 10 Hz), C2-C5 couplings (JCC = 11 Hz), C1'-C2' couplings (JCC = 40 

Hz) were excluded from the analysis (Tables A2.4 to A2.6) (20)(21).  

The 13C-selective relaxation data for mA-site rRNA (absence and presence of 

paromomycin) was analyzed as described in section 3.2.3. Only on-resonance R1ρ 

dispersion measurements were collected for mA-site rRNA in the presence of the drug. 

Off-resonance data was collected for G08 (C8), A10 (C2), A92 (C2, C8, C1'), G94 (C1') 

and A93 (C2, C8, C1'). Mono-exponential decays were observed for all the measured 

offset/power combinations. The on- and off-resonance data was fitted using a two-site 

chemical exchange expression derived using the Laguerre’s method for polynomial root 

finding (Equation 1.3, described in section 3.2.3). 
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       (4.3) 

All the analysis was performed using the Origin program (OriginLab Corporation) 

as described in section 3.2.3. The best-fit parameters were determined after an F-test 

statistics with a 99% confidence level (Table 4.5). The activation energies barriers and 

flipping out free Gibbs energy (ΔGflipping out) for unbound mA-site rRNA were calculated 

using the results from the chemical exchange experiments as described in section 3.2.3.  

Table 4.6: Key statistics from chemical exchange for mA-site rRNA  
Base R2 R1 kex (s-1) pb Δω/2π (Hz) 

G08C8 41 ± 1 2.1 ± 0.1 522 ± 13 
A93C2 80 ± 2 1.6 ± 0.2 -944 ± 21 
A92C2 68 ± 2 1.7 ± 0.2 -654 ± 18 
A92C8 33 ± 1 2.4 ± 0.1 -299 ± 12 
G94C1' 25 ± 2 2.0 ± 0.1 

13494 ± 355 (5.0 ± 0.2) x10-2 

-503 ± 10 
A93C1' 28 ± 0.4 2.0 ± 0.1 5636 ± 607 (1.1 ± 0.3) x10-2 287 ± 51 
A93C8 24 ± 0.1 2.0 ± 0.03 967 ± 318 (1.1 ± 0.2) x10-3 -327 ± 57 
A10C2 35 ± 0.1   2.0 ± 0.03   

 

4.3 Results 

4.3.1 NMR resonance assignments of mA-site rRNA 

 The resonances of mA-site rRNA were assigned by comparing its spectra with 

those of wild-type A-site rRNA followed by conventional experiments to complete and 

conform assignments (Figure 4.1A). Our assignments were found to be in good 

agreement with previously reported assignments (7). The two constructs are identical 

except for substitution of internal loop A08 with G08. As expected, the spectra of mA-

site rRNA overlaid very well with those of wild-type A-site rRNA with differences 
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primarily localized in and around the mutation site (Figure 4.1B-C).  Interestingly, the 

mutation resulted in significant perturbations in the chemical shifts of residues A92 and 

A93. These perturbations are distinct from those observed with wild-type A-site upon 

binding to paromomycin for the C2/C8 base of A93/A92 and C1' sugar of A92. Small 

chemical shift perturbations are also observed for base pairs surrounding the internal loop 

and universally conserved UU base pair. These results suggest that A1408G mutation 

affects the structure-dynamic behavior of A92 and A93. 

 

Figure 4.1: Comparison between mA-site and A-site rRNA resonance assignments. A) Secondary 
structure of A-site and mA-site rRNA. B) Overlay of 2D 13C-1H HSQC spectra of mA-site (orange) and A-
site (black) rRNA. C) Change in chemical shift (Δδ) in ppm for mA-site and A-site rRNA. Shown are 
values for the C2 (circles), C5 (squares), C1' (diamonds), (C6 (triangle) and C8 (upside down triangle) 
resonances.   
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The resonances of the elongated constructs (EGC-mA-site rRNA and EAU-mA-

site) (Figure 4.2A) could readily be assigned by overlaying their spectra with those of 

non-elongated mA-site rRNA (Figure 4.2B). As expected, minor differences in chemical 

shifts were observed for residues close to the elongation site (Figure 4.2B). Thus, 

elongation does not affect the structural or dynamic integrity of the mA-site rRNA. The 

effective preparation of these elongated samples establishes the general applicability of 

this strategy to study ps – ns motions.  

Figure 4.2: Resonance assignments of E-mA-site rRNA. A) Secondary structure of non-elongated (top) 
and elongated (bottom) mA-site rRNA. The purple (helix I), orange (internal loop), green (helix II), and 
gray (NMR invisible elongation site) represent different parts of the RNA. B) Overlay of 2D 13C-1H HSQC 
of E-mAsite rRNA (gray) and non-elongated mA-site rRNA (orange). The asterisks denote the resonances 
that correspond to the two GC base pairs added at the end of the elongation site. 
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4.3.2 Dynamics of unbound mutant A-site rRNA at the ps-ns time scale by spin 

relaxation  

We used spin relaxation measurements to characterize the dynamic behavior of 

mA-site rRNA at fast ps – ns timescales. A simple way to directly compare the dynamic 

behavior of mA-site with that of wild-type A-site was to compare the normalized 

resonance intensities (22) measured in the elongated constructs; here, anomalously low 

intensities indicate presence of slow µs-ms motions whereas high intensities presence of 

fast ps – ns motions. This “dynamic fingerprinting” allowed us to establish the existence 

of differences in dynamics behavior before embarking on costly NMR experiments to 

completely characterize the dynamics of mA-site rRNA. This analysis revealed greater 

fast ps – ns motions in the sugars of A92 and A93 as well as in the base of A93 compared 

to A-site (Figure 4.3A). It is important to note that the sugar motions are not observed in 

short constructs likely because they occur at timescales comparable to overall tumbling. 

This together with the downfield chemical shift of A93C8 and A93C2 suggest that A93 

adopts a partially looped out conformation as also observed in wild-type A-site RNA. 

Next, we measured 15N S2
rel values for E-mA-site and compared them with those 

measured in E-A-site rRNA. Uniformly smaller 15N S2
rel values were measured for helix 

II as compared to the elongated helix I indicating the existence of inter-helical motions 

around the flexible internal loop as also observed in E-A-site RNA (Figure 4.3B). The 

magnitude of this attenuation is similar to that observed in wild-type E-A-site, indicating 

that both RNAs share similar inter-helical motional amplitudes. The anomalously high 

S2
rel values measured for G08 and G91 can be attributed to presence of exchange 
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broadening and possibly to the unique of orientation of the 15N – 1H bond vector relative 

to the elongated axis (16)(22).  

 

Figure 4.3:Picosecond-nanosecond dynamics in unbound mA-site rRNA. (A) Correlation plot of 
normalized intensities for elongated E-mA-site rRNA and E-A-site rRNA. Here, orange color values 
correspond to the internal loop. Qualitative order parameters (S2

rel) are shown for non-elongate (B) and 
elongated (C) mA-site rRNAs.  Shown are values for C1' (diamonds), C2 (circles), C5 (squares), C6 
(triangles), C8 (upside down triangles), and N1 (stars).  

 

 Next, we measured longitudinal (R1) and transverse (R2) relaxation rates for the 

C2, C8, C5 nucleobases and C1' sugar in non-elongated mA-site rRNA and computed 

order parameters S2
rel describing the amplitude of internal motions for each site (see 

section 4.2.3) (18)(16)(19). Comparison of the S2
rel values revealed large differences 

specifically for the base moieties of A92 and A93, which could be attributed to 
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unsuppressed exchange broadening at these sites in mutant but not wild-type A-site. In 

addition, a greater degree of fast motions is observed for A93C8 in m-A-site compared to 

A-site. It is interesting that the base of A93 in m-A-site contains two sites (C2 and C8) 

that report on dynamics occurring at very different timescales (ps-ns versus µs-ms).  

4.3.3 Microsecond-to-millisecond motions in mA-site rRNA by 13C relaxation dispersion 

We used R1ρ carbon dispersion relaxation experiments to characterize the dynamic 

behavior of mA-site at slow µs-ms timescales following the same procedure used to 

characterize the dynamic behavior of A-site in Chapter 3.  These experiments revealed 

significant chemical exchange for G08C8, A92C2, A92C8, A93C2, G94C1', A93C8 and 

A93C1' (Figure 4.4). This can be compared to A-site in which significant exchange is 

observed for A08C2, A92C1' and A93C1'. Key statistics for this analysis are summarized 

in table 4.5. Thus, many more sites experience exchange broadening in m-A-site 

compared to A-site. 
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Figure 4.4: Chemical Exchange profiles for mA-site rRNA. Relaxation dispersion profiles are shown 
for: G08-C8 (A), A93-C8 (B), A92-C8 (C), A93-C1' (D), A10-C2 (E), A93-C2 (F), A92-C2 (G) and G94-
C1' (H). The left panels show the offset (Ω/2π) and power (ω/2π) dependence of R2 at spinlock powers of 
100 (orange), 400 or 500 (green), 800 or 1000 (blue) Hz. The right panels show the on-resonance 
dependence of R2 

 

In both constructs, exchange is observed in the base of the 08 residues (G/A) and 

only in mA-site we observed significant exchange at G94C1'. Unlike A-site, the 

exchange observed in mA-site is not consistent with a single dynamic transition. Rather, 

the exchange rates measured for G08C8, A92C2, A92C8, A93C2, and G94C1' were 

significantly faster (65 – 100 µs) than those measured for either A93C8 (177 µs) and 

A93C1' (1 ms). This suggests three processes two of which are sensed by the base and 

sugar of A93.  The G08C8, A92C2, A92C8, A93C2, G94C1' data could be fitted 
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simultaneously to a single process as determined from F-statistics with 99% confidence 

level yielding an exchange rate (kex) of 13494.46 ± 358.71 s-1 and a low populated 

“invisible state” of 4.95 ± 0.23%. However, the A93C8 and A93C1' exhibited different 

exchange rates that could not be fitted simultaneously. The kex for A93C8 is 5635.88 ± 

606.65 s-1 and A93C1' is 966.57 ± 317.86 s-1. Taken together, these data suggest that the 

dynamic µs – ms behavior of the A-site and mA-site rRNA are very different.  

4.3.4 Conformational dynamics of mutant A-site bound to the aminoglycoside 

paromomycin 

Previous studies have shown that binding of paromomycin does not significantly 

affect the conformation of G08, A92 and A93 (8)(23)(6). If the conformation of the 

internal loop hardly changes we would expect that motions experienced by unbound mA-

site rRNA are scarcely affected upon drug binding. Here, we used NMR relaxation 

experiments to characterize the motions of mA-site rRNA bound to paromomycin.   

Shown in Figure 4.4A is the 2D HSQC spectra of mA-site rRNA in the presence 

of paromomycin. Compared to A-site, the perturbations are much smaller though they are 

also localized in and around the internal loop, consistent with previous NMR studies (7). 

The chemical shift titration data was fitted to a two-state model yielding an apparent Kd 

~0.76 ± 0.02 mM consistent with previously reported values (7). Based on this Kd, 95% 

of the RNA is bound to paromomycin. Furthermore, in stark contrast to A-site, addition 

of paromomycin had little to no effect on the internal loop resonance intensities, 

indicating that it does not affect motions at this site (Figure 4.5E).   
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Figure 4.5: Dynamics of mA-site rRNA in the presence of paromomycin. A) 2D HSQC spectra of A-
site rRNA in the presence of paromomycin. On-resonance dependence on R1ρ for: A93C2 (B), A92C2 (C) 
and A10C2 (D). E) Normalized resonance intensities for unbound and 95% bound mA-site rRNA. Shown 
are values for C1' (diamonds), C2 (circles), C5 (squares), C6 (triangles) and C8 (upside down triangles). D) 
Relaxation dispersion profiles for C2 in A10, A92 and A9 

 

We performed carbon relaxation dispersion experiments for A10C2, A92C2, and 

A93C2 of mA-site rRNA under conditions where it is estimated to be 95% bound to 

paromomycin (Figure 4.5B-D). While the exchange was attenuated for A92C2 and 

A93C2 upon addition of paromomycin, significant exchange was observed in the 95% 

bound state. In addition, fitting the on-resonance carbon relaxation dispersion data to the 

fast exchange equation (see section 3.2.3 Equation 3.2) yielded an intrinsic R2 value of 
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34.09 ± 0.57 Hz for A93C2 and 36.75 ± 1.83 Hz for A92C2. The lower intrinsic R2 for 

A93C2 is indicative of this site being more flexible than A92C2 in the bound state as was 

the case in the wild-type A-site – paromomycin complex. These data shows that binding 

of paromomycin does not dramatically affect the motions of the internal loop (G08, A92 

and A93). The complex is more dynamic in nature, which is consistent with MD 

simulations, that show flipping events for A92 and A93 in the presence of paromomycin 

(9).   

4.3.5 Proposed model for the excited “invisible” state of mA-site rRNA  

 Our data clearly show that a single base substitution cause the dynamic behavior 

of mA-site to differ significantly from that of A-site over a range of timescales spanning 

picoseconds to milliseconds. How do the internal motions differ at the atomic level and 

what forces drive these differences? What is the excited “invisible” state sampled by m-

A-site and how does it compare with the looped out state proposed for A-site? 

We first note similarities between A-site and mA-site. In both cases, A93 is more 

flexible than A92 at ps-ns timescales, with the data generally being consistent with A93 

adopting a partially looped out conformation and A92 adopting a more stacked looped in 

conformation. In general, we observe more extensive fast and slow motions in m-A-site, 

indicating that its internal loop structure is more disordered than A-site, consistent with 

previous NMR studies (7). The slower µs-ms motions also appear to be more highly 

complex for m-A-site rRNA. First, we observe exchange broadening for a larger number 

of sites, that include to residues outside the internal loop such as G94 C1'. Second, while 

a single concerted process can account for all the exchange observed in A-site, consistent 
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with a single concerted process, a total of three distinct processes with independent 

exchange rates are needed to account for the data measured in mA-site. In particular, we 

observe a concerted process for G08C8, A92C2, A92C8, A93C2, and G94C1' and two 

separate slower processes involving the base and sugar for A93. Thus, A93 alone reports 

on three distinct slow µs-ms processes while also undergoing fast motions in both it sugar 

and base moieties.  

Figure 4.6: Proposed model for mA-site rRNA 

 

The existence of three distinct processes and up to four distinct states clearly calls 

into question the validity of the exchange parameters obtained from our two-state 

analysis of the dispersion data. Unfortunately, fitting of the data to higher order models to 

accommodate four states is not presently feasible using state-of-the-art methods. In 

addition, the ability to fit a given site with a two-state process does not imply that the site 

does not sense other processes; rather, a good fit can be obtained when a given process 

dominates for example, because it leads to the largest chemical shift perturbations. Thus, 

we also cannot delineate all the residues that might be part of a given process. 

Notwithstanding the above limitations, the excited state chemical shifts of base carbons 
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C2 and C8 in A92 and A93 are upfield shifted relative to the ground state and is 

consistent with added stacking interactions. This suggests that in contrast to A-site, in 

which the excited state features looped out similar to the drug bound state, the excited 

state in m-A-site features greater stacking interactions.  

While the above makes it difficult to propose specific structures for the excited 

states, it is useful to innumerate some possibilities. Our data suggests that the ground 

state features internal loop conformations in which A93 is flexible and partially looped 

out while A92 is more ordered and looped in. While previous NMR structures show that 

A93 base pairs with G08, our data suggests that the dominant base-pair alignment is most 

likely to involve A92. This is also consistent with fluorescence data that shows A92 to be 

stacked for unbound mA-site rRNA (8). Indeed, MD simulations show that either of A92 

or A93 can base pair with G08 (9). Thus, other states likely include ones such as those 

observed in the NMR structure, in which A93 is base-paired with G08, and A92 is 

partially flipped out. Here the greater hydrogen bonding stability conferred by the G-A 

base pair compared to A-A base pairs serves to help equalize relative stabilities of these 

alternatives structures. Each of these two states can also potentially feature presences or 

absence of stacking interactions between A92 and A93 giving rise to a total of four states. 

We believe that the conformation in which both A92 and A93 are looped out is less likely 

considering the stability of the G-A base pair and the fact that such a state has not been 

observed for the mutant even when bound to drugs.  
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4.4 Conclusion 

 Our data shows that the single A08G substitution in the internal loop of A-site 

rRNA has a dramatic effect on the structural and motional features of the internal loop at 

timescales ranging from ps to ms. In A-site, the bases are floppy at ps-ns timescales, with 

A93 adopting a partially looped out conformation and A92 preferentially stacking on G91 

owing to more favorable 5'-3' GA versus AG stacking (24). A single process towards an 

excited state is observed with many lines of evidence suggesting the excited state features 

looped out conformations for A92/A93 as observed in the drug bound state. The picture 

is far more complex in m-Asite rRNA. Again, we observe fast ps-ns mobility in A92 and 

A93 with A93 adopting a partially looped out conformation and A92 a partially looped in 

conformation. However, this mobility is greater in m-Asite compared to A-site. In 

addition, we observe exchange corresponding to up to three distinct processes and 

spanning a much larger of sites in the internal loop. This heterogeneity suggests that 

involvement of many states that likely feature distinct G08-A92/A93 hydrogen bonding 

interactions and/or A92/A93 stacking.  

We attribute this greater heterogeneity observed in m-A-site to the greater 

stability conferred by the G-A base pair in comparison to the corresponding A-A base-

pair in A-site. This serves to equalize the stability of having either A92 or A93 in a 

looped in state and base pairing with G08. This is supported by MD simulations in which 

both types of hydrogen bond alignments are observed (9). Furthermore, it is very likely 

that looping out both As is more energetically costly in mutant versus wild-type A-site 

because it requires the disruption of the G-A hydrogen bond alignment. The greater cost 

associated with disrupting the G-A base-pair may be one of the reasons why the A-site 
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does not adopt the conformation in which both As are looped out and this in turn may 

also contribute to lower binding affinities to the distinct structure.  

Binding of paromomycin does not seem to affect the motions of mA-site rRNA. 

The fact that the intensities hardly changed, suggests that the internal loops dynamic 

behavior was not alter considerably. This is consistent with previous NMR studies and 2-

aminopurine fluorescence data showed no significant changes on the RDC measurements 

of A92/A93 and not difference on the stacking propertied of A92 upon paromomycin 

binding (8)(23). The slow motions were attenuated but at 95% bound were still present in 

the internal loop. Binding of paromomycin does not lock the adenines in an extra-helical 

conformation consistent with the NMR structure of the mA-site – paromomycin complex 

(6). Hence, in the presence of the drug, the internal loop is still able to flip in/out (Figure 

4.6B). 

The idea was conceived by Casiano-Negroni, A and Al-Hashimi, H. M. The undergraduate student Gulati, 
N. synthesized the RNA. Casiano-Negroni, A. collected and analyzed the NMR data.  
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Chapter 5 

 
 

Conclusion and future directions 
 

 

5.1 Conclusion 

 

 In this thesis we characterized the structural and dynamical properties of two 

major RNA drug targets using different NMR experiments spanning the entire range of 

picosecond to millisecond timescales. We characterized global dynamics of HIV-1 TAR 

RNA occurring at the sub-millisecond timescales by RDC measurements (1-3).  In 

addition, we used spin relaxation (4) and relaxation dispersion (5, 6) experiments to 

examine the local motions of A-site rRNA ranging from ps - ms timescales.  

The global dynamics of HIV-1 TAR RNA and the impact of electrostatic 

interactions were studied using a combination of RDCs, chemical shift mapping upon 

metal (Na+ and Mg2+) binding and electrostatic calculations. The RDC measurements 

allowed the characterization of the global conformational dynamics of TAR in the 
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presence of Mg2+ and different concentrations of Na+. Chemical shift mapping upon 

addition of metal ions provided information of the binding modes of these two metals. 

Our results showed a continuous reduction of inter-helical angle (from 46° to 22°), twist 

angle (from 66° to -18°) and RNA flexibility (measured by an increase in the internal 

generalized degree of order from 0.56 to 0.74) with increasing concentrations of Na+. 

These results were in agreement with those observed for TAR in the presence of Mg2+ 

despite the difference binding modes of these two metal ions.  These results suggested 

that Na+ and Mg2+ induces a similar structural and dynamical transition of TAR from a 

electrostatic relaxed bent and flexible state to a globally rigid coaxial state which has a 

stronger negative charge density and association with counterions. In addition, we found 

that the TAR inter-helical orientations that are stabilized by small molecules fall along 

the metal-induced conformational pathway.  

 The local dynamics of A-site rRNA and the impact of mutations in ligand binding 

were studied through a combination of spin relaxation, relaxation dispersion experiments 

and chemical shift mapping. Specifically, we were interested on understanding the 

motional modes governing the internal loop of A-site rRNA. Our results showed that a 

single mutation A08G has a dramatic effect on the motional modes of A-site rRNA and 

binding to paromomycin. In A-site rRNA we found that the internal loop bases A92/A93 

undergo fast motions at ps – ns time scales. In addition, our data suggests that the internal 

loop of A-site is constantly exchanging between a ground state, where A92 is loop in and 

A93 is partially out the helix; and an “invisible” state where both adenines are partially 

loop out. The addition of the paromomycin then locks the adenines conformation outside 

the helix. However, the picture is more complicated for a version of A-site carrying the 
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A08G mutation. In this case, we observed fast motions in A92/A93 as well as exchange 

motions corresponding to three distinct processes. Binding of paromomycin to the mA-

site rRNA do not seem to affect the motions present in the unbound form.  

 

5.2 Future directions 

 An important next step will be to integrate our NMR data with computational MD 

simulations. Only then will it be possible to obtain a comprehensive atomic and energetic 

view of RNA dynamics and role of electrostatic and other interactions. A major weakness 

of our study is that RNA elements have to be taken outside their global context to carry 

out the NMR experiments. The design of experiments, such as foot printing, to probe the 

dynamics in more native contexts and link data to those observed by NMR is an 

important future goal. Finally, our results reveal that even on binding small molecules, 

RNA structure remains highly flexible. An important future goal will be to characterize 

this bound flexibility and its potential relationship to activity and drug design.  
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Appendix 1 

 

Summary of 13C and 15N relaxation measurements for A-site rRNA  

 

1.1 Tables of 13C relaxation measurements for A-site rRNA free and 95% bound to 

paromomycin. In addition, the data for the elongated A-site rRNA samples (EAU-A-

site and EGC-A-site rRNA) is tabulated here.  

Table A1.1: 13C relaxation measurements (R1, R2 and S2
rel) calculated for A-site rRNA. 

Residue Carbon Spin R1 (Hz) R2 (Hz) S2
rel 

C8 1.85 ± 0.03 36.15 ± 0.32  0.960 ± 0.06 G02 
C1' 1.55 ± 0.10 36.63 ± 2.16 1.06 ± 0.016 

G03 C1' 1.55 ± 0.07 27.47 ± 1.24 1.06 ± 0.025 
C04 C5 2.16 ± 0.02 30.60± 0.05 0.989 ± 0.001 
G05 C8 1.86 ± 0.02 37.11 ± 0.30 0.985 ± 0.006 

C6 2.28 ± 0.03 47.20 ± 0.34 1.00 ± 0.006 U06 
C1' 1.46 ± 0.03 25.70 ± 0.61 0.994 ± 0.015 
C5 2.18 ± 0.05 30.70 ± 0.07 0.992 ± 0.002 
C6 2.25 ± 0.03 48.61 ± 0.37 1.032 ± 0.006 C07 

C1' 1.50 ± 0.03 27.46 ± 0.70 1.06 ± 0.016 
C2 1.91 ± 0.02 34.43 ± 0.10 0.977 ± 0.005 A08 
C1' 1.41 ± 0.03 30.23 ± 0.71 1.18 ± 0.015 
C5 2.13 ± 0.03 31.74 ± 0.06 1.03 ± 0.001 
C6 2.25 ± 0.03 48.59 ± 0.36 1.03 ± 0.006 C09 

C1' 1.79 ± 0.26 34.09 ± 4.89 1.32 ± 0.074 
A10 C2 1.82 ± 0.01 35.57 ± 0.12 1.00 ± 0.005 

C6 2.26 ± 0.02 47.11 ± 0.34 1.00 ± 0.006 C11 
C1' 1.51 ± 0.02 25.88 ± 0.48 1.00 ± 0.013 

G12 C8 1.87 ± 0.01 35.90 ± 0.28 0.952 ± 0.006 
C13 C6 2.31 ± 0.02 47.77 ± 0.35 1.14 ± 0.006 

C5 2.19 ± 0.02 29.38 ± 0.12 0.947 ± 0.002 
C6 2.25 ± 0.01 45.90 ± 0.32 0.973 ± 0.006 U14 

C1' 1.46 ± 0.02 23.55 ± 0.47 0.908 ± 0.014 
C5 1.84 ± 0.01 22.16 ± 0.09 0.711 ± 0.002 
C6 1.91 ± 0.02 29.28 ± 0.18 0.616 ± 0.006 U15 

C1' 1.61 ± 0.02 21.15 ± 0.43 0.810 ± 0.014 
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C5 1.99 ± 0.02 31.01 ± 0.06  1.00 ± 0.001 
C6 2.21 ± 0.02 40.60 ± 0.27 0.859 ± 0.006 C16 

C1' 1.42 ± 0.03 26.45 ± 0.71 1.02 ± 0.017 
C8 1.73 ± 0.01 30.51 ± 0.19 0.807 ± 0.005 G17 
C1' 1.57 ± 0.02 21.05 ± 0.39 0.807 ± 0.014 

G87 C8 1.84 ± 0.01 35.07 ± 0.25 0.93 ± 0.01 
C88 C5 2.23 ± 0.02 30.97 ± 0.05 1.00 ± 0.001 
G89 C8 1.85 ± 0.01 36.01 ± 0.28 0.960 ± 0.005 
U90 C5 2.14 ± 0.02 30.49 ± 0.10 0.985 ± 0.002 
G91 C1' 1.47 ± 0.03 26.38 ± 0.63 1.02 ± 0.016 

C2 2.06 ± 0.03 35.42 ± 0.22 0.992 ± 0.006 
C8 1.96 ± 0.01 31.63 ± 0.21 0.835 ± 0.005 A92 

C1' 1.73 ± 0.04 25.83 ± 0.72 0.994 ± 0.017 
C2 2.10 ± 0.01 25.30 ± 0.06 0.700 ± 0.005 
C8 2.05 ± 0.01 26.10 ± 0.17 0.683 ± 0.005 A93 

C1' 1.80 ± 0.11 25.19 ± 2.19 0.967 ± 0.046 
G94 C8 1.78 ± 0.02 40.05 ± 0.31 1.067 ± 0.006 
U95 C5 2.12 ± 0.02 30.88 ± 0.10 0.998 ± 0.002 

C5 2.14 ± 0.05 31.69 ± 0.08 1.03 ± 0.001 C96 
C6 2.19 ± 0.06 48.88 ± 0.47 1.039 ± 0.007 

G97 C8 1.80 ± 0.01 37.61 ± 0.29 1.00 ± 0.006 
C5 2.15 ± 0.03 31.11 ± 0.05 1.01 ± 0.001 
C6 2.27 ± 0.03 47.20 ± 0.37 1.00 ± 0.006 C98 

C1' 1.54 ± 0.07 20.76 ± 1.02 0.796 ± 0.027 
C5 2.27 ± 0.05 27.90 ± 0.09 0.896 ± 0.002 C99 
C6 2.30 ± 0.06 45.15 ± 0.44 0.960 ± 0.007 

 
 
Table A1.2: 13C relaxation measurements (R1, R2 and S2

rel) calculated for A-site rRNA 
95% bound to paromomycin. 

Residue Carbon Spin R1 (Hz) R2 (Hz) S2
rel 

C04 C5 2.38 ± 0.01 27.47 ± 0.20 0.881 ± 0.011 
C5 2.25 ± 0.04 27.63 ± 0.54 1.00 ± 0.015 U06 
C6 2.21 ± 0.06 48.62 ± 0.79 0.999 ± 0.046 
C5 2.33 ± 0.05 29.87 ± 0.67 0.962 ± 0.016 
C6 2.21 ± 0.05 48.77 ± 0.65 1.00 ± 0.042 C07 

C1' 1.19 ± 0.04 32.01 ± 2.76 1.00 ± 0.062 
C8 1.77 ± 0.04 40.30 ± 0.56 1.00 ± 0.030 A08 
C1' 1.12 ± 0.06 38.33 ± 4.58 1.20 ± 0.075 
C5 2.57 ± 0.04 30.58 ± 0.59 0.981 ± 0.014 
C6 2.27 ± 0.05 46.64 ± 0.63 0.931 ± 0.042 C09 

C1' 1.11 ± 0.05 38.58 ± 3.46 1.21 ± 0.063 
C2 1.75 ± 0.02 35.84 ± 0.24 1.00 ± 0.016 A10 
C8 1.69 ± 0.03 38.10 ± 0.39 1.00 ± 0.025 

C11 C1' 1.28 ± 0.03 28.65 ± 1.91 0.892 ± 0.056 
C13 C6 2.19 ± 0.02 45.72 ± 0.37 0.947 ± 0.034 

C5 2.28 ± 0.01 25.93 ± 0.21 0.935 ± 0.011 
C6 2.19 ± 0.02 44.35 ± 0.33 0.919 ± 0.034 U14 

C1' 1.25 ± 0.02 26.88 ± 0.98 0.836 ± 0.048 
C5 1.95 ± 0.01 19.24 ± 0.13 0.689 ± 0.011 
C6 1.80 ± 0.01 29.18 ± 0.19 0.736 ± 0.032 U15 

C1' 1.38 ± 0.01 25.92 ± 0.76 0.803 ± 0.046 
C5 2.15 ± 0.02 27.24 ± 0.25 0.877 ± 0.011 
C6 2.11 ± 0.02 39.89 ± 0.29 0.858 ± 0.033 C16 

C1' 1.24 ± 0.02 30.48 ± 1.11 0.951 ± 0.048 
C8 1.68 ± 0.01 30.25 ± 0.20 0.796 ± 0.021 G17 
C1' 1.36 ± 0.01 25.00 ± 0.82 0.774 ± 0.047 
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G87 C8 1.75 ± 0.01 34.09 ± 0.25 0.864 ± 0.022 
C88 C5 2.36 ± 0.01 25.99 ± 0.19 0.831 ± 0.011 
U90 C5 2.39 ± 0.04 27.49 ± 0.63 0.992 ± 0.016 
G91 C8 1.68 ± 0.03 39.25 ± 0.47 1.03 ± 0.027 

C2 1.93 ± 0.02 27.89 ± 0.14 0.707 ± 0.015 A92 
C8 1.85 ± 0.02 28.43 ± 0.26 0.680 ± 0.024 
C2 1.91 ± 0.02 25.35 ± 0.12 0.648 ± 0.015 
C8 1.98 ± 0.02 25.90 ± 0.25 0.580 ± 0.026 A93 

C1' 1.63 ± 0.04 35.34 ± 2.16 1.01 ± 0.054 
C5 2.32 ± 0.03 24.81 ± 0.37 0.893 ± 0.013 U95 
C6 2.19 ± 0.05 47.14 ± 0.55 0.975 ± 0.039 
C5 2.31 ± 0.04 31.00 ± 0.61 1.00 ± 0.015 C96 
C6 2.21 ± 0.05 47.85 ± 0.60 0.981 ± 0.040 
C5 2.32 ± 0.02 26.51 ± 0.27 0.849 ± 0.012 C98 
C1' 1.20 ± 0.06 18.89 ± 4.04 582 ± 0.119 
C5 2.33 ± 0.06 24.95 ± 0.72 0.977 ± 0.018 C99 
C6 2.26 ± 0.06 41.39 ± 0.62 0.832 ± 0.045 

 
 
Table A1.3: 13C relaxation measurements (R1, R2 and S2

rel) calculated for EAU-A-site 
rRNA and EGC-A-site rRNA samples. 

Residue Carbon Spin R1 (Hz) R2 (Hz) S2
rel 

G02 C8 1.31 ± 0.02 92.10 ± 2.18 0.794 ± 0.020 
G03 C8 0.97 ± 0.02 115.61 ± 3.67 1.00 ± 0.022 
C04 C5 1.95 ± 0.05 94.65 ± 1.68 0.816 ± 0.036 

 C6 2.02 ± 0.03 111.49 ± 4.36 0.779 ± 0.042 
G05 C8 0.98 ± 0.02 112.55 ± 3.02 0.973 ± 0.021 
C07 C5 1.83 ± 0.14 112.23 ± 5.94 0.970 ± 0.044 

 C6 1.58 ± 0.06 142.66 ± 10.51 1.00 ± 0.052 
A08 C2 1.81 ± 0.18 186.37 ± 13.43 0.954 ± 0.059 
C09 C5 1.78 ± 0.09 111.35 ± 4.19 0.962 ± 0.039 

 C6 1.78 ± 0.04 153.31 ± 7.47 1.07 ± 0.044 
A10 C2 1.32 ± 0.06 195.06 ± 18.01 1.00 ± 0.066 
C11 C5 1.74 ± 0.09 116.03 ± 3.81 1.00 ± 0.038 

 C6 1.75 ± 0.03 137.00 ± 5.14 0.960 ± 0.042 
 C1' 1.43 ± 0.06 67.38 ± 3.45 0.959 ± 0.033 

C13 C5 1.91 ± 0.07 102.46 ± 2.24 0.884 ± 0.036 
 C6 1.96 ± 0.03 128.11 ± 4.53 0.896 ± 0.041 

C16 C5 1.92 ± 0.94 97.75 ± 3.27 0.843 ± 0.038 
 C6 1.95 ± 0.04 92.71 ± 3.75 0.647 ± 0.042 
 C1' 1.29 ± 0.06 64.09 ± 4.41 0.912 ± 0.041 

G17 C8 1.34 ± 0.01 71.12 ± 1.07 0.612 ± 0.017 
 C1' 1.56 ± 0.04 55.16 ± 1.96 0.782 ± 0.028 

G87 C8 1.38 ± 0.01 83.18 ± 1.54 0.717 ± 0.018 
C88 C5 2.00 ± 0.054 99.76 ± 2.11 0.860 ± 0.036 
G91 C8 1.25 ± 0.19 91.36 ± 2.50 0.788 ± 0.021 

 C1' 1.48 ± 0.05 70.28 ± 2.89 1.00 ± 0.029 
A92 C2 1.52 ± 0.18 119.04 ± 12.47 0.608 ± 0.070 

 C8 1.24 ± 0.13 120.75 ± 6.46  
A93 C2 1.60 ± 0.05 100.92 ± 3.39 0.515 ± 0.049 

 C8 1.55 ± 0.10 99.80 ± 4.58  
G94 C8 1.09 ± 0.02 101.22 ± 2.96 0.874 ± 0.021 
C96 C5 1.85 ± 0.17 115.72 ± 7.89 1.00 ± 0.049 

 C6 1.71 ± 0.01 139.71 ± 17.22 0.979 ± 0.072 
C98 C5 1.74 ± 0.09 120.14 ± 3.99 1.04 ± 0.038 
C99 C6 1.93 ± 0.10 145.65 ± 15.50 1.02 ± 0.065 

 
 



 140 

1.2 Tables of the Hartmann Hahn efficiencies of bases A08, A92 and A93 for A-site 

rRNA.  

Table A1.4: Hartman Hahn efficiencies calculated for the C2 spins of A08 and A10. Data 
points in bold were excluded from the analysis.  
    A08 A10 
Offset (Hz) Power (Hz) AHAHA-C4 AHAHA-C5 AHAHA-C6 AHAHA-C4 AHAHA-C5 AHAHA-C6 

0 100 0.0001 0.0001 0.0004 0.0001 0.0001 0.0001 
0 200 0.0001 0.0001 0.0009 0.0002 0.0001 0.0002 
0 300 0.0001 0.0001 0.0017 0.0003 0.0002 0.0003 
0 400 0.0002 0.0002 0.0028 0.0004 0.0002 0.0005 
0 500 0.0002 0.0002 0.0043 0.0006 0.0002 0.0008 
0 600 0.0003 0.0002 0.0061 0.0008 0.0002 0.0011 
0 700 0.0004 0.0002 0.0083 0.0011 0.0002 0.0014 
0 800 0.0005 0.0002 0.0108 0.0014 0.0002 0.0018 
0 900 0.0006 0.0002 0.0137 0.0017 0.0002 0.0023 
0 1000 0.0007 0.0002 0.0168 0.0021 0.0003 0.0028 
0 1500 0.0016 0.0003 0.0378 0.0046 0.0004 0.0062 
0 2000 0.0029 0.0004 0.0672 0.0082 0.0005 0.0110 
0 2500 0.0045 0.0006 0.1049 0.0128 0.0007 0.0171 
0 3000 0.0064 0.0008 0.1510 0.0185 0.0009 0.0246 
0 3500 0.0087 0.0010 0.2054 0.0252 0.0011 0.0335 

300 100 0.0001 0.0004 0.0003 0.0002 0.0005 0.0029 
250 100 0.0001 0.0004 0.0006 0.0002 0.0005 0.0001 
200 100 0.0001 0.0004 0.1029 0.0002 0.0004 0.0000 
150 100 0.0001 0.0004 0.0007 0.0002 0.0004 0.0000 
100 100 0.0001 0.0003 0.0003 0.0002 0.0004 0.0000 
75 100 0.0001 0.0003 0.0003 0.0002 0.0003 0.0000 
50 100 0.0001 0.0002 0.0003 0.0002 0.0003 0.0001 
25 100 0.0001 0.0002 0.0003 0.0001 0.0002 0.0001 

-300 100 0.0000 0.0000 0.0007 0.0002 0.0000 0.0003 
-250 100 0.0000 0.0000 0.0007 0.0000 0.0000 0.0003 
-200 100 0.0000 0.0000 0.0007 0.0000 0.0000 0.0003 
-150 100 0.0000 0.0000 0.0007 0.0000 0.0000 0.0003 
-100 100 0.0000 0.0000 0.0006 0.0000 0.0000 0.0002 
-75 100 0.0000 0.0000 0.0006 0.0000 0.0000 0.0002 
-50 100 0.0000 0.0000 0.0006 0.0000 0.0000 0.0002 
-25 100 0.0000 0.0001 0.0005 0.0001 0.0001 0.0002 

1200 400 0.0001 0.0004 0.0007 0.0002 0.0005 0.0003 
1000 400 0.0001 0.0004 0.0008 0.0002 0.0005 0.0003 
800 400 0.0001 0.0004 0.0009 0.0003 0.0005 0.0004 
600 400 0.0001 0.0004 0.0012 0.0003 0.0004 0.0006 
400 400 0.0002 0.0004 0.0027 0.0003 0.0004 0.0034 
200 400 0.0002 0.0003 6.0573 0.0003 0.0003 0.0024 
150 400 0.0002 0.0003 0.0395 0.0003 0.0003 0.0013 
100 400 0.0002 0.0002 0.0097 0.0003 0.0002 0.0008 
50 400 0.0002 0.0002 0.0046 0.0004 0.0002 0.0006 

-1200 400 0.0002 0.0000 0.0007 0.0003 0.0000 0.0003 
-1000 400 0.0002 0.0000 0.0007 0.0003 0.0000 0.0003 
-800 400 0.0002 0.0000 0.0007 0.0003 0.0000 0.0003 
-600 400 0.0004 0.0000 0.0008 0.0005 0.0000 0.0003 
-400 400 0.0091 0.0000 0.0009 0.0048 0.0000 0.0003 
-200 400 0.0003 0.0001 0.0012 0.0014 0.0001 0.0004 
-150 400 0.0002 0.0001 0.0014 0.0008 0.0001 0.0004 
-100 400 0.0002 0.0001 0.0016 0.0006 0.0001 0.0004 
-50 400 0.0002 0.0001 0.0021 0.0005 0.0001 0.0005 
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2400 800 0.0001 0.0005 0.0007 0.0002 0.0005 0.0003 
2000 800 0.0001 0.0005 0.0008 0.0003 0.0005 0.0003 
1800 800 0.0001 0.0005 0.0008 0.0003 0.0005 0.0003 
1600 800 0.0002 0.0005 0.0009 0.0003 0.0005 0.0004 
1000 800 0.0002 0.0004 0.0013 0.0003 0.0005 0.0006 
800 800 0.0002 0.0004 0.0017 0.0003 0.0004 0.0009 
600 800 0.0002 0.0004 0.0031 0.0004 0.0004 0.0020 
400 800 0.0002 0.0003 0.0101 0.0005 0.0004 0.0179 
200 800 0.0003 0.0003 23.1877 0.0007 0.0003 0.0125 
250 800 0.0003 0.0003 0.1367 0.0006 0.0003 0.0418 
100 800 0.0004 0.0002 0.0428 0.0009 0.0003 0.0036 
50 800 0.0004 0.0002 0.0189 0.0011 0.0002 0.0024 

-2400 800 0.0002 0.0008 0.0007 0.0003 0.0033 0.0003 
-2000 800 0.0002 0.0001 0.0007 0.0003 0.0001 0.0003 
-1800 800 0.0002 0.0001 0.0008 0.0003 0.0001 0.0003 
-1600 800 0.0002 0.0000 0.0008 0.0003 0.0001 0.0003 
-1000 800 0.0003 0.0000 0.0009 0.0005 0.0000 0.0004 
-800 800 0.0006 0.0001 0.0011 0.0008 0.0001 0.0004 
-600 800 0.0025 0.0001 0.0013 0.0020 0.0001 0.0004 
-400 800 0.0609 0.0001 0.0018 0.0271 0.0001 0.0006 
-200 800 0.0014 0.0001 0.0032 0.0073 0.0002 0.0008 
-250 800 0.0021 0.0001 0.0026 0.0186 0.0001 0.0007 
-100 800 0.0007 0.0002 0.0051 0.0025 0.0002 0.0011 
-50 800 0.0006 0.0002 0.0071 0.0018 0.0002 0.0014 

 

Table A1.5: Hartman Hahn efficiencies calculated for the C8 spins of A92 and G94. Data 
points in bold were excluded from the analysis.  
    A92 G94 
Offset (Hz) Power 

(Hz) 
AHAHA-C4 AHAHA-C5 AHAHA-C6 AHAHA-C4 AHAHA-C5 AHAHA-C6 

0 100 0.0020 0.0000 0.0005 0.0000 0.0000 0.0002 
0 200 0.0026 0.0000 0.0006 0.0003 0.0000 0.0003 
0 300 0.0034 0.0000 0.0007 0.0000 0.0000 0.0003 
0 400 0.0044 0.0000 0.0008 0.0021 0.0000 0.0003 
0 500 0.0056 0.0000 0.0010 0.0006 0.0000 0.0003 
0 600 0.0071 0.0000 0.0011 0.0031 0.0000 0.0004 
0 700 0.0087 0.0000 0.0013 0.0033 0.0000 0.0004 
0 800 0.0107 0.0000 0.0015 0.0020 0.0000 0.0005 
0 900 0.0129 0.0000 0.0017 0.0028 0.0000 0.0005 
0 1000 0.0153 0.0000 0.0019 0.0006 0.0000 0.0006 
0 1500 0.0317 0.0000 0.0034 0.0025 0.0000 0.0009 
0 2000 0.0550 0.0000 0.0054 0.0130 0.0000 0.0013 
0 2500 0.0851 0.0000 0.0081 0.0180 0.0000 0.0019 
0 3000 0.1221 0.0000 0.0114 0.0056 0.0001 0.0026 
0 3500 0.1659 0.0001 0.0153 0.0088 0.0001 0.0034 

300 100 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 
250 100 0.0000 0.0000 0.0000 0.0031 0.0000 0.0000 
200 100 0.0001 0.0000 0.0000 0.0015 0.0000 0.0000 
150 100 0.0001 0.0000 0.0000 0.0032 0.0000 0.0000 
100 100 0.0003 0.0000 0.0001 0.0000 0.0000 0.0000 
75 100 0.0004 0.0000 0.0001 0.0004 0.0000 0.0000 
50 100 0.0007 0.0000 0.0002 0.0025 0.0000 0.0001 
25 100 0.0012 0.0000 0.0003 0.0018 0.0000 0.0001 

-300 100 0.0057 0.0000 0.0017 0.0023 0.0000 0.0008 
-250 100 0.0057 0.0000 0.0017 0.0004 0.0000 0.0008 
-200 100 0.0055 0.0000 0.0016 0.0009 0.0000 0.0007 
-150 100 0.0053 0.0000 0.0015 0.0002 0.0000 0.0007 
-100 100 0.0048 0.0000 0.0014 0.0005 0.0000 0.0006 
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-75 100 0.0043 0.0000 0.0012 0.0018 0.0000 0.0005 
-50 100 0.0036 0.0000 0.0010 0.0011 0.0000 0.0005 
-25 100 0.0028 0.0000 0.0008 0.0007 0.0000 0.0003 

1200 400 0.0038 0.0000 0.7476 0.0000 0.0000 0.0000 
1000 400 0.0040 0.0000 0.0008 0.5353 0.0000 0.0000 
800 400 0.0135 0.0000 0.0003 0.0001 0.0000 0.0000 
600 400 0.0830 0.0000 0.0002 0.0105 0.0000 0.0000 
400 400 0.0055 0.0000 0.0002 0.0074 0.0000 0.0001 
200 400 0.0036 0.0000 0.0004 0.0005 0.0000 0.0001 
150 400 0.0037 0.0000 0.0005 0.0005 0.0000 0.0002 
100 400 0.0039 0.0000 0.0006 0.0032 0.0000 0.0002 
50 400 0.0041 0.0000 0.0007 0.0000 0.0000 0.0003 

-1200 400 0.0060 0.0000 0.0018 0.0000 0.0000 0.0008 
-1000 400 0.0061 0.0000 0.0018 0.0023 0.0000 0.0008 
-800 400 0.0061 0.0000 0.0018 0.0013 0.0000 0.0008 
-600 400 0.0061 0.0000 0.0017 0.0000 0.0000 0.0008 
-400 400 0.0060 0.0000 0.0016 0.0000 0.0000 0.0007 
-200 400 0.0055 0.0000 0.0013 0.0010 0.0000 0.0005 
-150 400 0.0053 0.0000 0.0012 0.0030 0.0000 0.0005 
-100 400 0.0050 0.0000 0.0011 0.0001 0.0000 0.0004 
-50 400 0.0047 0.0000 0.0010 0.0017 0.0000 0.0004 

2400 800 0.0069 0.0000 0.0015 0.0006 0.0000 0.0003 
2000 800 0.0074 0.0000 0.0013 0.0022 0.0000 0.0016 
1800 800 0.0078 0.0000 0.0016 0.0011 0.0000 0.0504 
1600 800 0.0084 0.0000 0.0027 0.0017 0.0000 0.0036 
1000 800 0.0237 0.0000 0.0098 1.7564 0.0000 0.0003 
800 800 0.1113 0.0000 0.0028 0.0509 0.0000 0.0002 
600 800 0.7198 0.0000 0.0017 0.0163 0.0000 0.0002 
400 800 0.0388 0.0000 0.0014 0.0041 0.0000 0.0003 
200 800 0.0158 0.0000 0.0013 0.0024 0.0000 0.0004 
250 800 0.0185 0.0000 0.0013 0.0010 0.0000 0.0003 
100 800 0.0125 0.0000 0.0014 0.0045 0.0000 0.0004 
50 800 0.0115 0.0000 0.0014 0.0049 0.0000 0.0004 

-2400 800 0.0062 0.0000 0.0018 0.0000 0.0000 0.0008 
-2000 800 0.0063 0.0000 0.0018 0.0001 0.0000 0.0008 
-1800 800 0.0064 0.0000 0.0019 0.0024 0.0000 0.0008 
-1600 800 0.0065 0.0009 0.0019 0.0025 0.0001 0.0008 
-1000 800 0.0069 0.0000 0.0019 0.0008 0.0000 0.0008 
-800 800 0.0072 0.0000 0.0019 0.0013 0.0000 0.0008 
-600 800 0.0075 0.0000 0.0018 0.0008 0.0000 0.0007 
-400 800 0.0080 0.0000 0.0017 0.0001 0.0000 0.0007 
-200 800 0.0089 0.0000 0.0016 0.0000 0.0000 0.0006 
-250 800 0.0086 0.0000 0.0017 0.0013 0.0000 0.0006 
-100 800 0.0096 0.0000 0.0015 0.0044 0.0000 0.0005 
-50 800 0.0101 0.0000 0.0015 0.0002 0.0000 0.0005 

 

Table A1.6: Hartman Hahn efficiencies calculated for the C1' spins of A92 and A93. 
Data points in bold were excluded from the analysis.  
    A92 A93 

Offset (Hz) Power (Hz) AHAHA-C2' AHAHA-C2' 
0 100 0.0100 0.0113 
0 200 0.0119 0.0136 
0 300 0.0142 0.0163 
0 400 0.0167 0.0195 
0 500 0.0196 0.0230 
0 600 0.0230 0.0271 
0 700 0.0267 0.0317 
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0 800 0.0308 0.0369 
0 900 0.0355 0.0426 
0 1000 0.0406 0.0490 
0 1500 0.0737 0.0906 
0 2000 0.1205 0.1494 
0 2500 0.1814 0.2260 
0 3000 0.2564 0.3203 
0 3500 0.3455 0.4322 

300 100 0.0325 0.0365 
250 100 0.0320 0.0359 
200 100 0.0312 0.0350 
150 100 0.0295 0.0331 
100 100 0.0261 0.0294 
75 100 0.0233 0.0263 
50 100 0.0195 0.0220 
25 100 0.0148 0.0167 

-300 100 0.0001 0.0001 
-250 100 0.0001 0.0001 
-200 100 0.0002 0.0003 
-150 100 0.0004 0.0005 
-100 100 0.0011 0.0013 
-75 100 0.0019 0.0022 
-50 100 0.0034 0.0039 
-25 100 0.0061 0.0069 

1500 500 0.0343 0.0385 
1200 500 0.0344 0.0386 
900 500 0.0342 0.0385 
800 500 0.0340 0.0383 
600 500 0.0332 0.0376 
400 500 0.0312 0.0354 
250 500 0.0281 0.0322 
200 500 0.0267 0.0307 
100 500 0.0234 0.0271 
50 500 0.0215 0.0251 

-1500 500 0.0131 0.0145 
-1200 500 0.1319 0.0689 
-900 500 0.0420 0.1040 
-800 500 0.0206 0.0375 
-600 500 0.0108 0.0155 
-400 500 0.0100 0.0129 
-250 500 0.0120 0.0148 
-200 500 0.0131 0.0160 
-100 500 0.0161 0.0191 
-50 500 0.0178 0.0210 

3000 1000 0.0352 0.0396 
2700 1000 0.0355 0.0399 
2300 1000 0.0359 0.0404 
2000 1000 0.0364 0.0409 
1700 1000 0.0369 0.0416 
1500 1000 0.0373 0.0421 
800 1000 0.0387 0.0442 
600 1000 0.0390 0.0449 
400 1000 0.0392 0.0456 
250 1000 0.0394 0.0463 
200 1000 0.0395 0.0466 
100 1000 0.0399 0.0476 
50 1000 0.0401 0.0482 

-3000 1000 0.0387 0.0438 
-2700 1000 0.0391 0.0448 
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-2300 1000 0.0398 0.0464 
-2000 1000 0.0437 0.0505 
-1700 1000 0.0628 0.0675 
-1500 1000 0.1118 0.1076 
-800 1000 0.1946 0.3531 
-600 1000 0.0826 0.1203 
-400 1000 0.0540 0.0714 
-250 1000 0.0457 0.0578 
-200 1000 0.0441 0.0551 
-100 1000 0.0418 0.0514 
-50 1000 0.0411 0.0500 

1000 1000 0.0383 0.0436 

 

1.3 Mono-exponential decays of the 13C dispersion data for A-site rRNA. 

Figure A1.1: Typical mono-exponential decays for C1' spin of A92 at different offsets 
and spinlock powers. Indicated in the frames are the offsets (Ω/2π), spinlock powers 
(ω1/2π) and the maximum calculated AHAHA (%). 
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Figure A1.2: Typical mono-exponential decays for A10-C2, A93-C8 and A93-C1' of A-
site rRNA-paromomycin complex at different spinlock powers (ω1/2π).  

 
 

 

 

 

 

 

1.4 Tables of 15N relaxation measurements for non-elongated and elongated A-site  
 
Table A1.7: 15N relaxation measurements calculated EAU-A-site and EGC-A-site rRNA 
samples. 

EAU-A-site rRNA and EGC-A-site rRNA  
Residue Nitrogen R1 (Hz) R2 (Hz) S2

rel 
G02 N1 0.875 ± 0.012 24.86 ± 0.23 0.95±0.01 
G03 N1 0.845 ± 0.008 25.89 ± 0.50 0.99±0.02 
G05 N1 0.915 ± 0.018 26.22 ± 0.60 1.00±0.02 
G17 N1 1.118 ± 0.009 19.54 ± 0.11 0.74±0.01 
G87 N1 1.023 ± 0.023 19.50 ± 0.12 0.74±0.01 
U90 N3 0.795 ± 0.011 15.52 ± 1.08  
G91 N1 0.958 ± 0.014 24.49 ± 0.78 0.93±0.02 
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Appendix 2 

Summary of 13C and 15N relaxation measurements for mA-site rRNA  

1.1 Tables of 13C relaxation measurements for mA-site rRNA free and 95% bound to 

paromomycin. In addition, the data for the elongated mA-site rRNA samples (EAU-

mA-site and EGC-mA-site rRNA) is tabulated here.  

Table A2.1: 13C relaxation measurements (R1, R2 and S2
rel) calculated for mA-site rRNA. 

Residue Carbon Spins R1 (Hz) R2 (Hz) S2
rel 

G02 C8 1.71 ± 0.04 35 ± 0.32 0.90 ± 0.01 
 C1' 1.49 ± 0.10 49 ± 5 2.01 ± 0.05 

G03 C1' 1.43 ± 0.05 26 ± 2 1.08 ± 0.04 
C04 C5 2.14 ± 0.02 31 ± 0.2 0.91 ± 0.01 
G05 C8 1.72 ± 0.02 37 ± 0.3 0.96 ± 0.01 

  C1' 1.29 ± 0.02 28 ± 1 1.15 ± 0.02 
U06 C5 2.12 ± 0.02 31 ± 0.2 0.93 ± 0.01 

 C6 2.19 ± 0.03 48 ± 0.3 0.98 ± 0.01 
C07 C5 2.15 ± 0.03 33 ± 0.4 1.00 ± 0.01 

  C6 2.06 ± 0.03 48 ± 0.3 0.96 ± 0.01 
G08 C8 1.70 ± 0.03 51 ± 0.4 1.31 ± 0.01 
C09 C5 2.12 ± 0.02 32 ± 0.2 0.95 ± 0.01 
A10 C2 1.72 ± 0.02 36 ± 0.1 1.00 ± 0.002 

 C8 1.69 ± 0.02 36 ± 0.3 0.93 ± 0.01 
C11 C6 2.14 ± 0.03 49 ± 0.4 1.00 ± 0.01 

  C1' 1.44 ± 0.01 25 ± 0.7 1.00 ± 0.02 
G12  C8 1.76 ± 0.01 37 ± 0.3 0.94 ± 0.01 
C13 C6 2.19 ± 0.03 48 ± 0.3 0.97 ± 0.01 
U14 C5 2.20 ± 0.02 29 ± 0.2 0.88 ± 0.01 

 C6 2.11 ± 0.02 46 ± 0.3 0.93 ± 0.01 
 C1' 1.45 ± 0.02 24 ± 0.7 0.96 ± 0.02 

U15 C5 1.84 ± 0.01 22 ± 0.2 0.65 ± 0.01 
  C6 1.80 ± 0.02 30 ± 0.2 0.60 ± 0.004 
  C1' 1.57 ± 0.02 23 ± 0.7 0.92 ± 0.02 

C16 C5 1.99 ± 0.02 31 ± 0.2 0.92 ± 0.01 
 C6 2.03 ± 0.02 41 ± 0.3 0.83 ± 0.01 
 C1' 1.37 ± 0.03 26 ± 1 1.08 ± 0.03 

G17 C8 1.66 ± 0.01 31 ± 0.2 0.80 ± 0.01 
  C1' 1.53 ± 0.02 23 ± 0.7 0.91 ± 0.02 

G87 C8 1.73 ± 0.01 35 ± 0.2 0.89 ± 0.01 
C88 C5 2.20 ± 0.02 31 ± 0.2 0.92 ± 0.01 
G89 C8 1.74 ± 0.01 37 ± 0.3 0.94 ± 0.01 
U90  C5 2.16 ± 0.02 30 ± 0.2 0.91 ± 0.01 
A92 C2 1.78  ± 0.07 72 ± 1 2.02 ± 0.01 
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 C8 1.76 ± 0.02 39 ± 0.3 1.01 ± 0.01 
 C1' 1.68 ± 0.03 26 ± 0.9 1.06 ± 0.02 

A93 C2 1.88 ± 0.14 87 ± 3 2.47 ± 0.02 
  C8 1.95 ± 0.01 25 ± 0.2 0.63 ± 0.01 
  C1' 1.94 ± 0.02 28 ± 0.8 1.13 ± 0.02 

G94 C8 1.68 ± 0.02 42 ± 0.3 1.08 ± 0.01 
 C1' 1.49 ± 0.04 40 ± 2 1.66 ± 0.03 

U95 C5 2.08 ± 0.02 32 ± 0.2 0.94 ± 0.01 
  C6 2.14 ± 0.03 48 ± 0.3 0.98 ± 0.01 
  C1' 1.31 ± 0.02 26 ± 0.8 1.08 ± 0.02 

C96 C5 2.13 ± 0.02 32 ±0.3 0.96 ± 0.01 
 C6 2.11 ± 0.03 48 ± 0.4 0.97 ± 0.01 

G97 C8 1.71 ± 0.01 39 ± 0.3 1.00 ± 0.01 
C98 C5 2.13 ± 0.02 31 ± 0.2 0.93 ± 0.01 

 C6 2.14 ± 0.03 46 ± 0.4 0.93 ± 0.01 
 C1' 1.40 ± 0.04 25 ± 2 1.00 ± 0.04 

C99 C5 2.16 ± 0.06 29 ± 0.5 0.88 ± 0.01 
  C6 2.09 ± 0.06 42 ± 0.4 0.86 ± 0.01 

 
 
Table A2.2: 13C relaxation measurements (R1, R2 and S2

rel) calculated for mA-site rRNA 
95% bound to paromomycin. 

Residue Carbon Spins R1 (Hz) R2 (Hz) S2
rel 

U06 C6 1.62 ± 0.11 76 ± 2 0.93 ± 0.01 
A10 C2 1.26 ± 0.05 57 ± 1 1.00 ± 0.01 
C11 C6 1.93 ± 0.07 81 ± 1 1.00 ± 0.01 
U15 C6 1.71 ± 0.04 47 ± 0.5 0.57 ± 0.01 
G17 C8 0.68 ± 0.11 15 ± 1 0.26 ± 0.04 
G87 C8 1.40 ± 0.03 57 ± 1 1.00 ± 0.01 
G89 C8 1.29 ± 0.04 60 ± 1 1.04 ± 0.01 
A92 C2 1.49 ± 0.08 57 ± 1 0.99 ± 0.01 

  C8 1.31 ± 0.06 61 ± 1 1.07 ± 0.01 
A93 C2 1.47 ± 0.03 17 ± 0.2 0.29 ± 0.01 

 
 
Table A2.3: 13C relaxation measurements (R1, R2 and S2

rel) calculated for EAU-mA-site 
rRNA and EGC-mA-site rRNA samples. 

Residue Carbon Spins R1 (Hz) R2 (Hz) S2
rel 

G03 C8 0.97 ± 0.03 125 ± 2 1.00 ± 0.01 
C04 C5 2.06 ± 0.03 107 ± 1 0.77 ± 0.01 
G05 C8 1.01 ± 0.02 119 ± 2 0.94 ± 0.01 
C07 C5 1.87 ± 0.05 122 ± 2 0.89 ± 0.01 

 C6 1.63 ± 0.06 152 ± 5 1.00 ± 0.02 
G08 C8 1.08 ± 0.04 114 ± 3 0.90 ± 0.01 
C09 C5 1.95 ± 0.04 122 ± 2 0.88 ± 0.01 
A10 C2 1.17 ± 0.04 118 ± 4 1.00 ± 0.02 
C11 C5 1.91 ± 0.03 119 ± 2 0.86 ± 0.01 

 C6 1.71 ± 0.04 146 ± 3 0.96 ± 0.02 
 C1' 1.30 ± 0.07 69 ± 12 0.86 ± 0.15 

C13 C5 1.73 ± 0.05 129 ± 2 0.93 ± 0.01 
 C6 1.95 ± 0.04 125 ± 2 0.82 ± 0.02 

C16 C5 1.96 ± 0.05 104 ± 2 0.75 ± 0.01 
 C6 1.94 ± 0.05 106 ± 2 0.70 ± 0.02 
 C1' 1.27 ± 0.10 71 ± 18 0.89 ± 0.02 

G17 C8 1.34 ± 0.01 77 ± 1 0.61 ± 0.01 
 C1' 1.49 ± 0.07 55 ± 8 0.68 ± 0.14 
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G87 C8 1.38±0.01 94.04±1.16 0.75±0.01 
C88 C5 1.91±0.03 109.13±1.36 0.79±0.01 
G91 C8 1.24±0.02 103.33±1.45 0.82±0.01 
A92 C2 1.32±0.11 130.37±4.68 1.10±0.02 

 C8 1.40±0.05 92.10±2.38  
A93 C2 1.47±0.18 99.43±8.06 0.83±0.04 

 C8 1.65±0.02 64.00±1.32  
G94 C8 1.05±0.02 114.68±1.80 0.91±0.01 
C96 C5 1.91±0.05 128.24±2.29 0.93±0.01 

 C6 1.61±0.06 145.11±4.16 0.96±0.02 
C98 C5 1.69±0.05 137.79±2.44 1.00±0.01 
C99 C5 1.86±0.03 127.16±1.69 0.92±0.01 

 C6 2.08±0.10 145.24±6.08 0.5±0.03 
 
 
 
 
1.2 Tables of the Hartmann Hahn efficiencies of bases G08, A92, A93, A10 and G94 for 

mA-site rRNA.  

Table A2.4: Hartman Hahn efficiencies calculated for the C2 spins of A10, A92 and A93. 
Data points in bold were excluded from the analysis.  
    A10 A92 A93 
Offset 
(Hz) 

Power 
(Hz) 

AHAHA-
C4 

AHAHA-
C5 

AHAHA-
C6 

AHAHA-
C4 

AHAHA-
C5 

AHAHA-
C6 

AHAHA-
C4 

AHAHA-
C5 

AHAHA-
C6 

0 100 0.0093 0.0002 0.0000 0.0028 0.0002 0.0001 0.0011 0.0001 0.0001 
0 200 0.0321 0.0002 0.0000 0.0086 0.0002 0.0001 0.0028 0.0002 0.0001 
0 300 0.0708 0.0002 0.0001 0.0184 0.0002 0.0001 0.0056 0.0002 0.0001 
0 400 0.1252 0.0002 0.0001 0.0324 0.0002 0.0002 0.0097 0.0002 0.0002 
0 500 0.1953 0.0002 0.0001 0.0503 0.0002 0.0002 0.0149 0.0002 0.0003 
0 600 0.2809 0.0003 0.0001 0.0724 0.0002 0.0003 0.0214 0.0002 0.0004 
0 700 0.3818 0.0003 0.0001 0.0984 0.0002 0.0004 0.0291 0.0002 0.0005 
0 800 0.4981 0.0003 0.0002 0.1284 0.0003 0.0005 0.0379 0.0003 0.0007 
0 900 0.6295 0.0003 0.0002 0.1624 0.0003 0.0006 0.0480 0.0003 0.0008 
0 1000 0.7760 0.0003 0.0003 0.2004 0.0003 0.0007 0.0592 0.0003 0.0010 
0 1500 1.7292 0.0005 0.0006 0.4498 0.0004 0.0016 0.1330 0.0004 0.0022 
0 2000 3.0334 0.0007 0.0010 0.7968 0.0006 0.0027 0.2362 0.0006 0.0039 
0 2500 4.6601 0.0010 0.0015 1.2394 0.0008 0.0043 0.3686 0.0008 0.0061 
0 3000 6.5758 0.0013 0.0022 1.7751 0.0011 0.0061 0.5299 0.0011 0.0088 
0 3500 8.7427 0.0017 0.0030 2.4007 0.0014 0.0084 0.7199 0.0014 0.0120 

300 100 0.0047 0.0006 0.0000 0.0024 0.0005 0.0000 0.0013 0.0005 0.0000 
250 100 0.0048 0.0006 0.0000 0.0024 0.0005 0.0000 0.0013 0.0005 0.0000 
200 100 0.0050 0.0006 0.0000 0.0024 0.0005 0.0000 0.0013 0.0005 0.0000 
150 100 0.0052 0.0005 0.0000 0.0025 0.0005 0.0000 0.0013 0.0005 0.0000 
100 100 0.0056 0.0005 0.0000 0.0026 0.0004 0.0000 0.0013 0.0004 0.0000 
75 100 0.0059 0.0004 0.0000 0.0026 0.0004 0.0000 0.0013 0.0004 0.0000 
50 100 0.0064 0.0003 0.0000 0.0027 0.0003 0.0000 0.0012 0.0003 0.0000 
25 100 0.0073 0.0003 0.0000 0.0027 0.0002 0.0000 0.0012 0.0002 0.0000 

-300 100 0.0052 0.0000 0.0001 0.0026 0.0000 0.0001 0.0011 0.0000 0.0002 
-250 100 0.0056 0.0000 0.0001 0.0027 0.0000 0.0001 0.0010 0.0000 0.0002 
-200 100 0.0064 0.0000 0.0001 0.0030 0.0000 0.0001 0.0017 0.0000 0.0002 
-150 100 0.0093 0.0000 0.0001 0.0068 0.0000 0.0001 0.0905 0.0000 0.0001 
-100 100 0.0497 0.0000 0.0001 0.3340 0.0000 0.0001 0.0025 0.0000 0.0001 
-75 100 88.4102 0.0000 0.0001 0.0126 0.0000 0.0001 0.0013 0.0000 0.0001 
-50 100 0.0483 0.0001 0.0001 0.0049 0.0000 0.0001 0.0010 0.0000 0.0001 
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-25 100 0.0152 0.0001 0.0000 0.0033 0.0001 0.0001 0.0010 0.0001 0.0001 
1200 400 0.0049 0.0006 0.0001 0.0024 0.0005 0.0002 0.0013 0.0005 0.0002 
1000 400 0.0050 0.0006 0.0001 0.0025 0.0005 0.0002 0.0014 0.0005 0.0002 
800 400 0.0053 0.0006 0.0001 0.0027 0.0005 0.0002 0.0014 0.0005 0.0002 
600 400 0.0060 0.0006 0.0037 0.0029 0.0005 0.0004 0.0016 0.0005 0.0004 
400 400 0.0075 0.0005 0.0002 0.0036 0.0005 0.0068 0.0018 0.0005 91.7167 
200 400 0.0135 0.0004 0.0001 0.0059 0.0004 0.0003 0.0027 0.0003 0.0004 
150 400 0.0180 0.0003 0.0001 0.0075 0.0003 0.0002 0.0033 0.0003 0.0003 
100 400 0.0268 0.0003 0.0001 0.0103 0.0003 0.0002 0.0042 0.0003 0.0003 
50 400 0.0481 0.0003 0.0001 0.0162 0.0002 0.0002 0.0059 0.0002 0.0002 

-1200 400 0.0050 0.0000 0.0001 0.0025 0.0000 0.0001 0.0014 0.0000 0.0002 
-1000 400 0.0052 0.0000 0.0001 0.0027 0.0000 0.0001 0.0015 0.0000 0.0002 
-800 400 0.0058 0.0000 0.0001 0.0030 0.0000 0.0001 0.0017 0.0000 0.0002 
-600 400 0.0070 0.0000 0.0001 0.0037 0.0000 0.0001 0.0021 0.0000 0.0002 
-400 400 0.0110 0.0000 0.0001 0.0062 0.0000 0.0001 0.0039 0.0000 0.0002 
-200 400 0.0484 0.0001 0.0001 0.0400 0.0001 0.0002 0.0550 0.0001 0.0002 
-150 400 0.1265 0.0001 0.0001 0.1723 0.0001 0.0002 3.7606 0.0001 0.0002 
-100 400 1.1026 0.0001 0.0001 9.5574 0.0001 0.0002 0.0930 0.0001 0.0002 
-50 400 1.0697 0.0002 0.0001 0.1105 0.0002 0.0002 0.0211 0.0002 0.0002 

2400 800 0.0049 0.0006 0.0001 0.0025 0.0006 0.0002 0.0013 0.0006 0.0002 
2000 800 0.0051 0.0006 0.0001 0.0026 0.0006 0.0002 0.0014 0.0006 0.0002 
1800 800 0.0052 0.0006 0.0001 0.0026 0.0006 0.0002 0.0014 0.0006 0.0002 
1600 800 0.0054 0.0006 0.0001 0.0027 0.0006 0.0002 0.0015 0.0005 0.0002 
1000 800 0.0069 0.0006 0.0003 0.0034 0.0005 0.0003 0.0018 0.0005 0.0004 
800 800 0.0081 0.0006 0.0007 0.0040 0.0005 0.0006 0.0021 0.0005 0.0007 
600 800 0.0106 0.0005 0.0291 0.0051 0.0005 0.0026 0.0026 0.0005 0.0022 
400 800 0.0169 0.0005 0.0013 0.0078 0.0004 0.0456 0.0038 0.0004 98.6087 
200 800 0.0415 0.0004 0.0003 0.0174 0.0003 0.0013 0.0076 0.0003 0.0022 
250 800 0.0310 0.0004 0.0004 0.0134 0.0004 0.0020 0.0061 0.0004 0.0037 
100 800 0.0958 0.0003 0.0002 0.0356 0.0003 0.0007 0.0140 0.0003 0.0010 
50 800 0.1831 0.0003 0.0002 0.0604 0.0003 0.0006 0.0214 0.0003 0.0008 

-2400 800 0.0049 0.0017 0.0001 0.0025 0.0098 0.0001 0.0014 0.0161 0.0002 
-2000 800 0.0052 0.0008 0.0001 0.0026 0.0003 0.0001 0.0014 0.0003 0.0002 
-1800 800 0.0054 0.0003 0.0001 0.0027 0.0002 0.0001 0.0015 0.0001 0.0002 
-1600 800 0.0056 0.0001 0.0001 0.0029 0.0001 0.0001 0.0016 0.0001 0.0002 
-1000 800 0.0077 0.0001 0.0001 0.0040 0.0001 0.0002 0.0023 0.0001 0.0002 
-800 800 0.0098 0.0001 0.0001 0.0052 0.0001 0.0002 0.0030 0.0001 0.0002 
-600 800 0.0146 0.0001 0.0001 0.0080 0.0001 0.0002 0.0049 0.0001 0.0002 
-400 800 0.0310 0.0002 0.0001 0.0185 0.0001 0.0002 0.0127 0.0001 0.0003 
-200 800 0.1842 0.0002 0.0001 0.1603 0.0002 0.0003 0.2358 0.0002 0.0004 
-250 800 0.0962 0.0002 0.0001 0.0698 0.0002 0.0003 0.0675 0.0002 0.0004 
-100 800 4.3635 0.0003 0.0002 30.7647 0.0002 0.0004 0.4010 0.0002 0.0005 
-50 800 4.2369 0.0003 0.0002 0.4556 0.0002 0.0004 0.0877 0.0002 0.0006 

 

Table A2.5: Hartman Hahn efficiencies calculated for the C8 spins of G08, A92 and A93. 
Data points in bold were excluded from the analysis.  
    G08 A92 A93 

Offset 
(Hz) 

Power 
(Hz) 

AHAHA-
C4 

AHAHA-
C5 

AHAHA-
C6 

AHAHA-
C4 

AHAHA-
C5 

AHAHA-
C6 

AHAHA-
C4 

AHAHA-
C5 

AHAHA-
C6 

0 100 0.0004 0.0000 0.0002 0.0009 0.0000 0.0003 0.0012 0.0000 0.0004 
0 200 0.0005 0.0000 0.0002 0.0012 0.0000 0.0004 0.0015 0.0000 0.0004 
0 300 0.0006 0.0000 0.0002 0.0015 0.0000 0.0004 0.0018 0.0000 0.0005 
0 400 0.0007 0.0000 0.0002 0.0018 0.0000 0.0005 0.0022 0.0000 0.0006 
0 500 0.0008 0.0000 0.0002 0.0022 0.0000 0.0006 0.0027 0.0000 0.0007 
0 600 0.0009 0.0000 0.0003 0.0026 0.0000 0.0006 0.0033 0.0000 0.0008 
0 700 0.0010 0.0000 0.0003 0.0031 0.0000 0.0007 0.0040 0.0000 0.0009 
0 800 0.0011 0.0000 0.0003 0.0036 0.0000 0.0008 0.0048 0.0000 0.0010 
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0 900 0.0013 0.0000 0.0004 0.0043 0.0000 0.0009 0.0056 0.0000 0.0011 
0 1000 0.0014 0.0000 0.0004 0.0050 0.0000 0.0010 0.0066 0.0000 0.0012 
0 1500 0.0025 0.0000 0.0006 0.0096 0.0000 0.0017 0.0130 0.0000 0.0021 
0 2000 0.0040 0.0001 0.0008 0.0161 0.0000 0.0026 0.0220 0.0000 0.0032 
0 2500 0.0059 0.0001 0.0011 0.0246 0.0001 0.0038 0.0338 0.0000 0.0048 
0 3000 0.0082 0.0001 0.0015 0.0351 0.0001 0.0053 0.0483 0.0001 0.0067 
0 3500 0.0110 0.0002 0.0020 0.0475 0.0001 0.0070 0.0655 0.0001 0.0089 

300 100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
250 100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
200 100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
150 100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 
100 100 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 
75 100 0.0001 0.0000 0.0000 0.0002 0.0000 0.0001 0.0002 0.0000 0.0001 
50 100 0.0001 0.0000 0.0001 0.0003 0.0000 0.0001 0.0004 0.0000 0.0001 
25 100 0.0003 0.0000 0.0001 0.0006 0.0000 0.0002 0.0007 0.0000 0.0002 

-300 100 0.0014 0.0000 0.0006 0.0030 0.0000 0.0011 0.0036 0.0000 0.0013 
-250 100 0.0014 0.0000 0.0006 0.0030 0.0000 0.0011 0.0035 0.0000 0.0013 
-200 100 0.0014 0.0000 0.0006 0.0029 0.0000 0.0011 0.0034 0.0000 0.0012 
-150 100 0.0013 0.0000 0.0005 0.0028 0.0000 0.0010 0.0033 0.0000 0.0012 
-100 100 0.0011 0.0000 0.0005 0.0025 0.0000 0.0009 0.0029 0.0000 0.0010 
-75 100 0.0010 0.0000 0.0004 0.0022 0.0000 0.0008 0.0026 0.0000 0.0009 
-50 100 0.0008 0.0000 0.0003 0.0019 0.0000 0.0007 0.0022 0.0000 0.0008 
-25 100 0.0006 0.0000 0.0003 0.0014 0.0000 0.0005 0.0017 0.0000 0.0006 

1200 400 0.0021 0.0000 0.0000 0.0013 0.0000 0.0002 0.0014 0.0000 0.0006 
1000 400 0.0003 0.0000 0.0000 0.0081 0.0000 0.0001 0.0042 0.0000 0.0002 
800 400 0.0001 0.0000 0.0000 0.0090 0.0000 0.0001 0.1418 0.0000 0.0001 
600 400 0.0001 0.0000 0.0000 0.0013 0.0000 0.0001 0.0026 0.0000 0.0001 
400 400 0.0002 0.0000 0.0000 0.0008 0.0000 0.0001 0.0013 0.0000 0.0001 
200 400 0.0003 0.0000 0.0001 0.0011 0.0000 0.0002 0.0014 0.0000 0.0003 
150 400 0.0004 0.0000 0.0001 0.0012 0.0000 0.0003 0.0016 0.0000 0.0003 
100 400 0.0005 0.0000 0.0001 0.0014 0.0000 0.0003 0.0018 0.0000 0.0004 
50 400 0.0006 0.0000 0.0002 0.0016 0.0000 0.0004 0.0020 0.0000 0.0005 

-1200 400 0.0015 0.0010 0.0006 0.0032 0.0000 0.0012 0.0038 0.0000 0.0013 
-1000 400 0.0015 0.0000 0.0006 0.0032 0.0000 0.0012 0.0038 0.0000 0.0013 
-800 400 0.0015 0.0000 0.0006 0.0032 0.0000 0.0012 0.0038 0.0000 0.0013 
-600 400 0.0014 0.0000 0.0006 0.0031 0.0000 0.0011 0.0037 0.0000 0.0013 
-400 400 0.0013 0.0000 0.0005 0.0030 0.0000 0.0010 0.0036 0.0000 0.0012 
-200 400 0.0011 0.0000 0.0004 0.0026 0.0000 0.0008 0.0031 0.0000 0.0010 
-150 400 0.0010 0.0000 0.0004 0.0024 0.0000 0.0008 0.0030 0.0000 0.0009 
-100 400 0.0009 0.0000 0.0003 0.0022 0.0000 0.0007 0.0027 0.0000 0.0008 
-50 400 0.0008 0.0000 0.0003 0.0020 0.0000 0.0006 0.0025 0.0000 0.0007 

2400 800 0.0010 0.0000 0.0004 0.0036 0.0000 0.0006 0.0043 0.0000 0.0008 
2000 800 0.0010 0.0000 0.0916 0.0036 0.0000 0.0008 0.0044 0.0000 0.0009 
1800 800 0.0015 0.0000 0.0011 0.0036 0.0000 0.0017 0.0046 0.0000 0.0015 
1600 800 0.0033 0.0000 0.0003 0.0040 0.0000 0.0087 0.0049 0.0000 0.0044 
1000 800 0.0033 0.0000 0.0001 0.0850 0.0000 0.0011 0.0403 0.0000 0.0019 
800 800 0.0015 0.0000 0.0001 0.0946 0.0000 0.0007 1.4265 0.0000 0.0010 
600 800 0.0010 0.0000 0.0001 0.0117 0.0000 0.0006 0.0239 0.0000 0.0008 
400 800 0.0009 0.0000 0.0002 0.0055 0.0000 0.0006 0.0086 0.0000 0.0008 
200 800 0.0010 0.0000 0.0002 0.0040 0.0000 0.0007 0.0056 0.0000 0.0008 
250 800 0.0010 0.0000 0.0002 0.0042 0.0000 0.0006 0.0061 0.0000 0.0008 
100 800 0.0011 0.0000 0.0003 0.0038 0.0000 0.0007 0.0051 0.0000 0.0009 
50 800 0.0011 0.0000 0.0003 0.0037 0.0000 0.0008 0.0049 0.0000 0.0009 

-2400 800 0.0015 0.0000 0.0006 0.0033 0.0000 0.0012 0.0039 0.0000 0.0014 
-2000 800 0.0015 0.0000 0.0006 0.0033 0.0000 0.0012 0.0039 0.0000 0.0014 
-1800 800 0.0016 0.0000 0.0006 0.0033 0.0000 0.0012 0.0039 0.0000 0.0014 
-1600 800 0.0016 0.0000 0.0006 0.0034 0.0000 0.0012 0.0040 0.0000 0.0014 
-1000 800 0.0016 0.0001 0.0006 0.0035 0.0000 0.0012 0.0042 0.0000 0.0014 
-800 800 0.0015 0.0000 0.0006 0.0035 0.0000 0.0012 0.0042 0.0000 0.0014 
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-600 800 0.0015 0.0000 0.0005 0.0036 0.0000 0.0011 0.0043 0.0000 0.0013 
-400 800 0.0014 0.0000 0.0005 0.0036 0.0000 0.0011 0.0044 0.0000 0.0012 
-200 800 0.0013 0.0000 0.0004 0.0036 0.0000 0.0010 0.0045 0.0000 0.0011 
-250 800 0.0013 0.0000 0.0004 0.0036 0.0000 0.0010 0.0045 0.0000 0.0012 
-100 800 0.0012 0.0000 0.0004 0.0036 0.0000 0.0009 0.0046 0.0000 0.0010 
-50 800 0.0012 0.0000 0.0003 0.0036 0.0000 0.0008 0.0047 0.0000 0.0010 

 
 
Table A2.6: Hartman Hahn efficiencies calculated for the C1' spins of A92, A93 and 
G94. Data points in bold were excluded from the analysis.  

  A92 A93 G94 
Offset (Hz) Power (Hz) AHAHA-C2' AHAHA-C2' AHAHA-C2' 

0 100 0.0113 0.0145 0.0087 
0 200 0.0136 0.0161 0.0102 
0 300 0.0163 0.0179 0.0120 
0 400 0.0195 0.0198 0.0140 
0 500 0.0230 0.0220 0.0163 
0 600 0.0271 0.0243 0.0189 
0 700 0.0317 0.0269 0.0218 
0 800 0.0369 0.0297 0.0251 
0 900 0.0426 0.0327 0.0286 
0 1000 0.0490 0.0360 0.0326 
0 1500 0.0906 0.0559 0.0580 
0 2000 0.1494 0.0824 0.0937 
0 2500 0.2260 0.1158 0.1402 
0 3000 0.3203 0.1561 0.1975 
0 3500 0.4321 0.2034 0.2657 

300 100 0.0365 0.0001 0.0284 
250 100 0.0359 0.0001 0.0280 
200 100 0.0350 0.0002 0.0272 
150 100 0.0331 0.0005 0.0257 
100 100 0.0294 0.0013 0.0228 
75 100 0.0263 0.0024 0.0203 
50 100 0.0220 0.0045 0.0170 
25 100 0.0167 0.0083 0.0129 

-300 100 0.0001 0.1008 0.0001 
-250 100 0.0001 0.0852 0.0001 
-200 100 0.0003 0.0719 0.0002 
-150 100 0.0005 0.0597 0.0004 
-100 100 0.0013 0.0468 0.0010 
-75 100 0.0022 0.0395 0.0017 
-50 100 0.0039 0.0312 0.0030 
-25 100 0.0069 0.0225 0.0052 

1500 500 0.0385 0.0001 0.0299 
1200 500 0.0386 0.0001 0.0299 
900 500 0.0385 0.0003 0.0297 
800 500 0.0383 0.0004 0.0295 
600 500 0.0375 0.0010 0.0287 
400 500 0.0354 0.0025 0.0268 
250 500 0.0322 0.0056 0.0240 
200 500 0.0307 0.0074 0.0227 
100 500 0.0271 0.0129 0.0197 
50 500 0.0251 0.0169 0.0180 

-1500 500 0.0145 0.1628 0.0132 
-1200 500 0.0689 0.6487 1.2022 
-900 500 0.1039 42.5640 0.0183 
-800 500 0.0375 2.8238 0.0112 
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-600 500 0.0155 0.4031 0.0073 
-400 500 0.0129 0.1382 0.0075 
-250 500 0.0148 0.0712 0.0095 
-200 500 0.0160 0.0571 0.0105 
-100 500 0.0191 0.0361 0.0131 
-50 500 0.0210 0.0283 0.0147 

3000 1000 0.0396 0.0001 0.0308 
2700 1000 0.0399 0.0001 0.0310 
2300 1000 0.0404 0.0001 0.0313 
2000 1000 0.0409 0.0002 0.0316 
1700 1000 0.0416 0.0004 0.0320 
1500 1000 0.0421 0.0005 0.0323 
800 1000 0.0442 0.0028 0.0331 
600 1000 0.0449 0.0051 0.0331 
400 1000 0.0456 0.0094 0.0329 
250 1000 0.0463 0.0154 0.0326 
200 1000 0.0466 0.0182 0.0325 
100 1000 0.0476 0.0255 0.0325 
50 1000 0.0482 0.0302 0.0325 

-3000 1000 0.0438 0.0568 0.0331 
-2700 1000 0.0448 0.0615 0.0328 
-2300 1000 0.0464 0.0743 0.0327 
-2000 1000 0.0505 0.0967 0.0371 
-1700 1000 0.0675 0.1523 0.0601 
-1500 1000 0.1076 0.2472 0.1279 
-800 1000 0.3530 3.6833 0.1056 
-600 1000 0.1203 0.5067 0.0546 
-400 1000 0.0714 0.1700 0.0393 
-250 1000 0.0578 0.0902 0.0349 
-200 1000 0.0551 0.0743 0.0340 
-100 1000 0.0513 0.0513 0.0330 
-50 1000 0.0500 0.0429 0.0327 

1000 1000 0.0436 0.0017 0.0330 

 
 

1.3 Tables of 15N relaxation measurements for non-elongated and elongated mA-site  
 

Table A2.7: 15N relaxation measurements calculated for EAU-mA-site and EGC-mA-site 
rRNA samples. 

EAU-mA-site rRNA and EGC-mA-site rRNA    
Residue Nitrogen R1 (Hz) R2 (Hz) S2

rel 

G02 N1 0.742  ± 0.003 24.41 ± 0.42 0.93±0.018 
G03 N1 0.73  ± 0.01 26.14 ± 0.80 1.00±0.02 
G05 N1 0.82  ± 0.01 24.65 ± 0.58 0.94±0.02 
G08 N1 0.92  ± 0.07 25.25 ± 1.10 0.96±0.03 
G17 N1 1.03  ± 0.01 18.52 ± 0.23 0.70±0.02 
G87 N1 0.90  ± 0.02 19.52 ± 0.23 0.74±0.02 
U90 N3 0.84 ± 0.12 20.55 ± 0.08  
G91 N1 0.97  ± 0.01 22.10 ± 0.13 0.84±0.02 
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