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ABSTRACT

The content of this dissertation lies at the intersection of analysis and applications of
PDE to image processing and computer vision applications. In the first part of this the-
sis, we proposeficient and accurate algorithms for computing certain area preserving
geometric motions of curves in the plane, such as area preserving motion by curvature.
These schemes are based on a new clasdfokdin generated motion algorithms using
signed distance functions. In particular, they alternate two very simple and fast operations,
namely convolution with the Gaussian kernel and construction of the distance function,
to generate the desired geometric flow in an unconditionally stable manner. We present
applications of these area preserving flows to large scale simulations of coarsening, and
inverse problems.

In the second part of this dissertation, we study the discrete version of a family of ill-
posed, nonlinear éusion equations of ordem2 The fourth orderif = 2) version of these
equations constitutes our main motivation, as it appears prominently in image processing
and computer vision literature. It was proposed by You and Kaveh as a model for denoising
images while maintaining sharp object boundaries (edges). The second order equation
(n = 1) corresponds to another famous model from image processing, namely Perona and
Malik’s anisotropic dffusion, and was studied in earlier papers. The equations studied
in this paper are high order analogues of the Perona-Malik equation, and like the second
order model, their continuum versions violate parabolicity and hence lack well-posedness

theory. We follow a recent technique from Kohn and Otto, and prove a weak upper bound

Xii



on the coarsening rate of the discrete in space version of these high order equations in any
space dimension, for a large class dfkivities. Numerical experiments indicate that the

bounds are close to being optimal, and are typically observed.
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CHAPTER |

Introduction

Introduced in the eighteenth century, PartiaffBiential Equations (PDE) are an impor-
tant part of mathematical analysis that benefit from a strong and well established theory.
Originally descended from physics, they have been extensively developed in mathematics,
and later on in biology, finance and more recently in image processing. Other approaches
that are widely used in imaging science include stochastic modeling (mostly based on
Markov random field theory [44, 47, 61]) and wavelets (emerged from 1-D signal process-
ing theory [62, 21, 29, 30, 31, 32]). This dissertation focuses on some PDE-based methods
for image analysis.

One of the oldest concerns in image processing relates to image restoration (including
denoising) and image enhancement. It is well known that most real images are degraded
by the presence of noise aod blur. Such corruption is unavoidable and usually origi-
nates in the input device that creates, transmits or records images (e.g., scanner, digital
camera, sensor, etc.). These fluctuations in the pixel values of images render their analysis
or processing diicult to perform with good success. A preprocessing step to remove or
diminish the &ects of such degradation is therefore necessary. Even now, such prepro-

cessing is performed in most applications.



1.1 Image Restoration

In mathematics we define a grayscale imdge Q c RY +— [0,1] (d = 2,3) to
be a real, measurable and bounded function, defined on the image dantgpically a
rectangle (e.g., the computer screen). The value of the funéj{@ihrepresents the grey
level intensity or brightness of the image at locatikon Typically, an image represents
a scene containing a background and several objects. In addition, it is common that the
values of an image inside the background and inside each object are smoothly varying, but
are discontinuous or change abruptly across object boundadgs, thus creating large
image gradients at these locations. We define edges as the locations where the gradient
|V ]| is large due to a discontinuity or a sharp transition in the image intensity.

The usual presence of noise in an image introduces some random perturbation of the
image values, leading to a degraded image. We define the observed ifagegraded

version of the real imagé) to be the following:
(1.1) f(x) = fo + n(x),

wheren is an additive noise (typically modeled as Gaussian). To account for the blur that

may also corrupt the image, one may consider the more complicated model

(1.2) f(y) = (Afo)(y) + n(y),

whereA is a linear operator representing the blur (usually a convolution). Such models
lead to very interesting mathematics related to inverse problems as in the imaging section
of Chapter II. In the rest of this section however, we consider the simpler denoising model

(1.1) with associated problem: Givdnreconstructfy, knowing (1.1).



1.1.1 Gaussian Filtering

In the classical theory, denoising is performed using a low-pass filter. This theory
comes from Marr and Hildreth [63] and was later improved by Canny [14]. The low-pass
filtering is done by convolving the image with Gaussians of increasing varia(eg.,
time). Witkin [99] observed that convolving the image with a Gaussian kernel of variance
t was equivalent to solving the heat equation with the observed irhageen as initial

data

(1.3) U(X, t) = Au(x, t)
u(x, 0) = f(x),

the solution of which is given in one dimension by
u(x,t) = (Gy = f)(x) fort > 0,

whereG,(X) = ﬁe‘% is the one dimensional Gaussian kernel. Using this technique,
the detection of an edge is done in the following wayis determined to be an edge at
scale vt if Au(x,t) changes sign and jWu(x,t)| is “large”. The last condition relies on a
threshold defined initially and chosen a priori. In this context “large” means larger than
the assigned threshold. Depending on the choice of threshold, small edges may be omitted
if the threshold is too large, or some noise edges may still be kept if the threshold is too
small. This shows one of thefticulties of this technique. Another observed problem is

the location of the detected edges in low resolution images that is often shifted from their
true location. This is caused by the smoothirifget of the convolution with Gaussian

kernels, which blurs the edges and also moves their location. It is therefore necessary to

introduce some locally high-pass filter to avoid losing the edges.



1.1.2 Energy minimization

It turns out that problem (1.3) can be recast into a variational approach with’the

energy

(1.4) E(u) = f |Vul?dx

Q
In this case, the enerdy is minimized wheru is the steady state solution of (1.3) with
initial conditionu(x, 0) = f(x). In particular, the PDE described in (1.3) is gradient descent
for E in equation (1.4). If we rewrite this constrained minimization as an unconstrained

one, we obtain the following minimization problem

(1.5) rrl]in{F(u) ::flf—ulzdx+/1f|Vu|2dx}.

The first term inF measures the fidelity to the data while the second term forces the
solutionu to be regular (in this case smooth), thus accounting for the blurring. The param-
eterd is a Lagrange multiplier weighing the relative importance of the two terms in (1.5).
The L? regularization was first introduced in 1977 by Tikhonov and Arsenin [92], and is
sometimes referred to as Tikhonov regularization.

As noticed in the previous section, the solution to (1.3) and equivalently (1.5) intro-
duces an oversmoothing leading to blurry images. Such oversmoothing can be explained
by looking at the energy (1.5). THe® norm with p = 2 of the gradient allows us to re-
move noise but unfortunately penalizes too much the gradients corresponding to edges.
One should then decreageto preserve edges as much as possible. Some work in this
direction was done by Rudin, Osher and Fatemi [81] where they replacecd therm
by anL! norm of the gradient, also called total variation. They considered the following

minimization

(1.6) rrlljin{G(u) = flf —uPdx+ A

S—

|Vu|dx}.

Q



This minimization is solved in the space of bounded variations (BYhich allows for
discontinuous functions. Such space is very appropriate for computer vision applications
since most images have discontinuities across edges. In their implementation,eRudin
al. dynamically updated the Lagrange multiplit). Their result was quite satisfactory
since the solutiom approached a denoised version of the original image-asx, while

keeping the edges relatively sharp and removing any spurious oscillations.

1.1.3 Nonlinear Dffusion

A different approach consists in looking for a restored image as a version of the initial
image at a special scale. More precisely, the imagan be embedded in an evolution
processu(t, x). Attimet = 0, u(0,x) = f(x), wheref is the observed image. As an
attempt to restore an image while maintaining its edges sharp, Perona and Malik [76, 77]

proposed the following nonlinear evolution equation

w7 U = V.(g(IVul) Vu)

u(x, 0) = f(x),
whereg is a bounded, non-increasing positive function such thag lipg(x) = 0 and
g(0) = 1. Itis easy to understand how thdfdsion becomes spatially adaptive: if the im-
age gradient is smalgy will be close to one and the image willftlise at this location. On
the other hand, if the image gradient is large (e.qg., close to an eglgé)be close to zero,
and hence will almost stop thefflision and keep the edges sharp. The model (1.7) consti-
tutes the first instance of a nonlinear PDE arising in image processing and computer vision
applications. Perona and Malik’'s goal was to devise a method for gradually simplifying
(or coarsening an image by dfusing out its details, starting with the smallest scales. An
important point was to keep object boundaries (edge$in the image —where the image

intensity is expected to be discontinuous or rapidly changing — sharp duringiths@h,

until their abrupt disappearance at some point in the coarsening process. In their papers



[76, 77], Perona and Malik proposed and experimented with two choiags of

(1.8a) g = e,
(1.8b) andg(x) = %
1+(3)

whereb is a constant that acts like a contrast threshold to be chosen by the user. The
second choice af given in (1.8b) is the most commonly usedtdsivity in applications
of the model, and constitutes what is typically meant by the Perona-Malik model in the
literature.

The time evolution of the (discretized) PDE generates “cartoon-like” images that get
simpler with time, while maintaining sharp edges as was intended. An example of the
Perona-Malik evolution on an image is shown in Figure 1.1. Unfortunately, the Perona-

Malik model turns out to be ill-posed. To see this, consider (1.7) in one space dimension

U = (R(Ux)x),

whereR(x) = xg(|X), (R: R +— R), andgis as in (1.8). Expanding the right hand side we
obtain

U = R’(Ux)uxx’

which becomes backwards parabolic wH&u,) < 0. For the two choices aj given
in (1.8), R is non-increasing whenever the gradient is large. Thus, in the regions of the
image with large gradient, the process can be interpreted as a backward heat equation.
The situation is the same in higher space dimensions. The ill-posedness signifies that (1.7)
may not have a solution in general. A very practical implication of this ill-posedness is
that similar initial images may lead to completely divergent evolutions and hence very
dissimilar output images at the end of the processing.

Consequently, there is no complete well-posedness theory for (1.7) despite flioatsy e

towards establishing rigorous results [9, 45, 46, 49, 57]. Another active line of research
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Figure 1.1:Simplification (or coarsening) of the boat image when taken as initial condition for the Perona and Malik equation.
Figure 1.1(a) shows the original image, and Figures 1.1(b), 1.1(c) and 1.1(d) display the image at later times in the
evolution.

towards understanding (1.7) considers its discrete in-space version [33, 34, 37], while
others focus on studying its regularizations to obtain a well-posed equation [2, 7, 8, 18,
71]. Nevertheless, in practice, the Perona-Malik equation is much better behaved than
expected, however, this phenomenon is still unexplained. It is likely that the behavior of
the associated discrete problem does not reflect the ill-posedness of the continuous version,
but this should be investigated further.

The gradual simplification of an image resulting from its evolution according to (1.7)

can also be described by coarsening which produces at any tinea simplified version



(in this case piecewise constant) of the original imdgerhus in addition to denoising,
the Perona-Malik process may provide a segmentation of the original imapany scale
t, although in practice (1.7) is rarely used solely for this purpose. Nevertheless, this shows
that image denoising (and more generally image restoration) and segmentation are not
totally disconnected, even though the segmentation problem has its own objectives and its

own methodology.

1.2 Image Segmentation

Segmentation is typically used to locate objects or their boundaries (edges) in an image.
The goal of segmentation is therefore to partition an image into its constituent parts to
obtain a simplified image that is more meaningful and easier to analyze. Equivalently,
one would like to have a simplified version of the image made of homogeneous regions
that share certain visual characteristics. In particular, the image value should be smoothly
varying inside each region, and discontinuous across their boundaries.

There are two main approaches to segmentation: the first one aims at detecting the con-
tours of the objects lying in the original imade The principle behind these edge detection
techniques consists in matching deformable curves to the contours of objects by means of
an energy functional. Examples of edge detection models include geodesic active con-
tours [16, 17] and its precursor the Kass, Witkin and Terzopoulos model [55] (also known
as snakes). The second approach consists in constructing an approximation of the original
imagef made up of distinct homogeneous regions separated by sharp discontinuities.

The well-known Mumford and Shah functional follows the second approach and con-
stitutes one of the most studied segmentation models in the computer vision and image

processing literature.



1.2.1 Mumford-Shah Functional

In this section, we consid&® a bounded open set &, whered is the dimension
(either 2 or 3), and is the observed image to be segmented. In their pioneering work of
1989, Mumford and Shah [70] looked for a segmentation of a piecewise smooth image
into n smoothly varying region®, i = 1,--- ,n, n € N*, separated by a boundary(the
set of discontinuities). The image domais therefore the union of theregions and the
interfacerl:

Q=R URU---UR,UT.

Note that in this definition]" can contain open and closed curves. The Mumford-Shah
energy functional to be minimized measures the discrepancy between the givenfimage

and the current segmentation imagevith segmentation interfade It is given by

(1.9) E(u,T) := /lf(u— f)de+,uf IVul? dx + I,
Q O\l

where[I'| is the total length of the arcs making ipandA andu are positive constants.

The Mumford-Shah minimization problem becomes

(1.10) min{E(u,F) = /lf(u— f)zdx+/,¢f IVul? dx + |F|}.
ul Q Q\r

In other words, the minimization (1.10) searches for a paif’Y, whereI’ c Q is the

set of discontinuities anfl’| is the length of the curves making Wip The first term in

the Mumford-Shah energy (1.9) is the usual fidelity term which measures the misfit be-
tween the given imagé and the output imaga. By minimizing E this term looks for
imagesu that are close td. The second term is a regularization term which measures the
smoothness of the imageinside each regioR. By minimizing E, it ensures thati has

slow variation inside each region. The third term penalizes the length of the boundaries so

that the segmentation is achieved using the shortest interface. The presence of this term
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ensures that no trivial segmentation is obtained and also provides a way to select a scale
in the segmentation. Each of the three terms described in (1.9) is equally important, and
removing any one of them would lead to a trivial segmentation. Indeed if the first term is
removed, the minimizer is trivially’ = @ andu = 0. If only the second term is removed,

the minimizer isu = f andl’ = @. Now if E does not contain the length term, tdkéo be

a fine grid ofN horizontal and vertical lines and latbe constant on each of ti? grid
squares (the constant is the averagd oh each grid square). We can see that by letting

N — oo, we can maké as small as desired. Hence all three terms are necessary.

The lack of diferentiability of the Mumford and Shah functional (1.9) for a suitable
norm, does not allow the use of Euler-Lagrange equations. Moreover, the discretization
of the discontinuity sel’ is a complex problem. It is therefore common to approximate
the Mumford-Shah functional by a sequence of regular functioBgls, I') defined on
Sobolev spaces. As — 0, the sequence of functionals I'-converges to the origi-
nal Mumford-Shah functional, where the notionIétonvergence was introduced by De
Giorgi to give meaning to the convergence of a sequence of functionals [27, 26]. Several
ways of approximating the Mumford-Shah functional have been proposed in the litera-
ture, (see e.g. [10, 11, 19, 20, 48]) but the most commonly used in applications is the one

proposed by Ambrosio and Tortorelli [3].

1.2.2 Ambrosio and Tortorelli's Approximation of the Mumford-Shah Functional

Ambrosio and Tortorelli [3] showed that the Mumford-Shah functional can be approx-
imated by the following sequence of elliptic functionals

.
(1.11) Ee(z,u):/lf(f —u)zdx+f22|Vu|2dx+,uf((14€ )+e|Vz|2)dx,

whereu,z € W?(Q \ I') ande > 0. Intuitively, the image domai® and interfacd’

are replaced by the “interface-detection” functiowhich takes the value zero arouhd
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and one everywhere else. The small parameteescribes the thickness of the tubular

neighborhood of in which the functiore makes the transition between zero and one. The

fg [(1 ;:2) ¥ elVle) dx

approximates the length terff| in the I'-convergence sense. As— 0, the function

term

z becomes steeper arouiidand converges to a functiah which takes the value zero
onTI and one everywhere else. Ambrosio and Tortorelli [3] proved that the sequence of
functionals (1.11)-converges to the Mumford-Shah functionakas 0.

We observe that Ambrosio and Tortorelli’s approximation is an example of a phase-
field method which is a numerical technique for solving interfacial problems (see Sec-
tion 1.3.2). A natural method to numerically compute a solution of the Mumford and Shah
minimization problem is to consider one of its approximations (the most common being
the Ambrosio and Tortorelli’s approximation) and then discretize it using for example a
finite difference scheme. However, since the full model can be quiteudi to implement,
it is typical to consider simplified versions of the Mumford-Shah functional. One of the
most popular simplifications considers the restriction of the Mumford and Shah energy
(1.9) to piecewise constant functions. This simplified model was first introduced by Chan

and Vese [23].

1.2.3 The Chan-Vese Model

Chan and Vese [23] proposed to simplify the full Mumford and Shah functional by

restricting its minimization to piecewise constant functions of the form

(1.12) u(x) = c11s(x) + C21sc(X),
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wherec; andc; are constants, arlis the objects set. Note thatmay have several con-

nected components. In this setting, Chan and Vese looked at the following minimization

(1.13) min{E(cl, C, ) =11 f(f - c)%dx+ /lzf(f — C)%dX + plo%) + v|z|},
2,C1,C2 s s

where|X| denotes the area of the s&t|0Y| its perimeter, and, 1;, 1, andu are posi-
tive parameters. Note that this is more general than (1.9) restricted to piecewise constant
functions, since the piecewise constant Mumford-Shah model is a particular case of the
minimization (1.13) whew = 0, 4; = 1, = 1. An important advantage of this framework
over previous methods (e.g. snakes and active contours [16, 17, 55]) is that the stopping
criterion does not depend on the image gradient. This makes the model more robust. Be-
sides, it is observed that the numerical method used by Chan and Vese is able to find
features that are fficult to get, such as interior contours of objects, and seems to avoid
getting stuck in local minima.

Chan and Vese implemented (1.13) using the level set method (see Section 1.3.3),
however piecewise constant models such as (1.13) can also be treated via the phase-field

method. In this case, the functior&{c,, ¢,,I') in (1.13) is approximated by a sequence of

functionals
(1.14)
_ 2 2 2 W(2) 2
E(C1,C2) = A1 | |f —ci?Zdx+ A | |f — o’ (1 - 2)%dx+ u T+e|Vz| dx,
Q Q Q

whereW(z) = Z%(1 - 2)? is often called the double well potential. Intuitively, the double
well potential function forces the functiato be one irk and zero irE°. On the interface

0, zmakes a transition between zero and one oa-timck layer. The term

L(@ + e|Vz|2) dx

approximates the length terj#x| in the I'-convergence sense, as shown by Modica and
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Mortola in [68]. The sequence of functionals (1.14) therefoi@nverges to the original
energyE(cy, ¢, I') defined in equation (1.12).

Vese and Chan also generalized their piecewise constant model to a multiphase compo-
nent framework withn constants instead of two [96]. In their implementation, they used
only logn level set functions (which is the minimum needed). In addition, they extended
the model to piecewise smooth functions with spatially dependent constarits both
cases, their numerical implementation using the level set method, which was quite simple,

provided good results.

1.3 Numerical Methods for Curve Evolution

Computing the motion of interfaces, e.g., curves in the plane or surfaces in space, is
an essential component of many applications. For instance, in image processing and com-
puter vision, many popular variational models for segmentation and reconstruction involve
initializing a curve or surface and then evolving it towards features that are of interest (e.g.,
edges). Typically, the resulting motion is by a normal speed that includes geometric terms
such as curvature of the interface and its derivatives. Due to recent research in this direc-
tion, there is now a wide variety of numerical schemes for simulating geometric motions
of interfaces including front tracking, phase-field, level set affiision generated motion

algorithms.

1.3.1 Front Tracking

Front tracking methods [13] involve an explicit discretization of the interface and ap-
proximate its motion by moving marker particles representing the interface. The two main
benefits of front tracking methods are computational speed and high accuracy. In particu-
lar, these methods are very well suited for two dimensional motions of curves that do not

cross. However, they become venyfaiult to implement whenever topological changes
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occur, particularly in dimensions higher than two. Another problem with explicit methods

is that they become unstable as the points of the interface get close to each other, or inac-
curate as the points move away from each other. This makes it necessary to reparameterize
and redistribute the points regularly throughout the computations, which is a major draw-
back since every reparameterization slightly moves the location of the interface, hence

leading to algorithms that can often get stuck.

1.3.2 Phase-Field Method

The phase-field method uses an implicit representation of the interface through an aux-
iliary field variable (the “phase field”), which takedi@rent values in dierent phases. In
the simplest case, the phase field takes tWierint values (for example 0 and 1) in each
of the phases, with a smooth transition around the interface. The thickness of the transition
layer around the interface, usually denoteds a parameter in the scheme. Examples of
phase field methods include Ambrosio and Tortorelli’s approximation of the full Mumford-
Shah functional and the approximation of the piecewise constant Mumford-Shah model,
described by equation (1.11) and (1.14) respectively. Like the level set technique (see
Section 1.3.3), the implicit representation of the interface enables this method to natu-
rally handle topological changes. However, there are a févedities with the phase-field
technique: first, the small parametecontributes to the dtiness of the problem, namely
computations can take a very long time since the small parameagrears in a disadvan-
tageous way in the CFL condition. Second, thihick transition layer in the phase-field
function needs to be resolved for accurate results, leading to impracticable sizes since the
grid sizeAx needs to be small enough to resolve the transition. Thus in practice, accuracy

near the interface is often lost.
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1.3.3 Level Set Method

The level set method is an implicit scheme introduced by Osher and Sethian in [73] as
a simple way to compute and analyze the motion of an intefffaoeunding a regiorx.
Note that the regio® may have several connected components. Assuinimgves under
the velocity fieldV, the idea of the level set technique is to embed the inteffaase the

zero level set of a smooth (at least Lipschitz continuous) funet{eant) such that

I(t) = {x: ¢(x,1) = 0O},

whereg is positive insidd™ and negative outside:

2(t) = {x: ¢(x,t) > 0}.

The motion of the curve is obtained by convecting the valuesgoivith the velocity field

Vin the following way:

¢ B
ﬁ + VV(P = O,
or equivalently
(1.15) (z—f + W|Ve| =0,

wherevy is the normal component af defined asy = V- Iz_zl We observe that the
velocity fieldV is only defined on the interfadeand is arbitrary elsewhere. This brings
forth the first issue of the level set technique, namely the problem of velocity extension.
The velocity fieldV is a priori only known on the interface, but is needed further away
from the boundary to evolvg according to equation (1.15) at least in a neighborhood of
the interface. It is therefore necessary to extérid a smooth velocity field defined on

a neighborhood of. There are several ways to extend the velocity, one of the simplest

being the extension of the velocity as a constant in the direction normal to the interface.
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For more details on velocity extensions, we refer the reader to the book by Osher and
Fedkiw [72] and the work of Tsai and Osher [94]. The second important issue of the level
set method pertains to the reinitialization of the level set function. During the evolution,
¢ might either become too steep (in which case the algorithm can get stuck) or too flat (in
which case instabilities are created). It is therefore necessary to periodically reinitialize
the level set function to the signed distance function to the zero level get Diie zero

level set of course remains unchanged. More details about this technique can be found in
[72, 94].

Despite these issues, the level set technique remains very powerful. In particular, nu-
merical implementations of (1.15) are simple and convenient, especially considering the
fact that (1.15) can handle topological changes, which explicit methods (e.g. front track-
ing, etc.) cannot do easily. In the level set formulation, the curvature of the E({ivean

be written as

(1.16) KZV(%%)

Moreover, the characteristic function of the Eefls(x), can also be written using the level
set functionp as

1:(x) = H(g(x)),
where H is the one dimensional Heaviside function. The line or surface integral of a

guantityp can therefore be written as

(117) | px o HE@ax

and the surface or volume integralgbverX as

(1.18) f Pl OH(@)

whered is the dimension, either 2 or 3.
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1.3.4 Difusion Generated Motion

In this section, we describe two variants of a general class of algorithms caiied di
sion generated motion. The approach is based on alternatiigidg and resetting to its
original type, the initial level set describing the interface (e.g., characteristic function or

signed distance function).

The Merriman, Bence and Osher (MBO) scheme

The first difusion generated motion algorithm (also called MBO scheme) was intro-
duced by Merriman, Bence and Osher [65, 66, 67] asfAnoient way to generate the
motion of an interface by its mean curvature (or simply the curvature in 2D). The MBO al-
gorithm is obtained by time splitting the well-known Allen-Cahn phase-field equation for
motion by mean curvature. The resulting scheme alternates two steps, namely convolution
and thresholding. More precisely, consider a%at the domain2 c R?, with boundary
0X evolving with normal speedy = «, wherek(X) is the mean curvature of the interface
0X at the pointx € 9%. ThengX is the% level set of the characteristic functidg of the
setX:

0 =: {x: 1:(X) = %}
Given an initial sekq defined through its characteristic functipg:= 15, and a time step
sizedt > 0, the MBO scheme generates a discrete sequi)gey at subsequent times
j(dt) in the following way: from the seX;_;, obtain the sekE; by alternating between the

following two operations:

1. Diffusion step From the sek;_; defined through its characteristic functign, :=

15, , at (j — 1)dt, solve the following initial value problem for a length of tirie
U = Au

(%, 0) = xj-1(¥).
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which is equivalent to forming the function

L9 = (Gt * xj1) (%),

whereG; is thed-dimensional Gaussian kernel given by

1 e
(1.19) Gu(X) = a0 e,

2. Sharpening step

0 if £(X) <3,
Xj(X) =
1 else

The location of the interfac8X; is given by the level se{tx eQ:xi(¥) = %} The time
discretizationdX};cy has been proven to convergence to motion by mean curvature in the
limit 6t — 0* (see [6, 39, 64]). One of the main advantages of this algorithm is its uncon-
ditional stability. In fact, the scheme remains monotone (i.e., preserves the order of sets)
for all choices ofst, independent of the spatial resolution. In addition, its computational
complexity is low O(N log N) due to the FFT used in the convolution step), which makes
it computationally more attractive than standard level set techniques that involve the solu-
tion of a nonlinear and degenerate PDE [73]. Nevertheless, there exist some semi-implicit
schemes for level set methods introduced by Smereka in [91]. Several generalizations of
the basic MBO scheme have been proposed for generating more complicated interfacial
motions including anisotropic curvature motion, motion by curvature plus constant, and
motion of multiple junctions [36, 64, 83, 84, 85, 86, 87, 88].

Despite its computational advantages, the MBO scheme inherits a major drawback
from its construction using characteristic functions, namely inaccuracy of uniform grids.
Indeed, characteristic functions cannot resolve the location of the interface better than

the spatial grid size. Consequently, unless the grid size is refined concurrently with the
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time step size, the approximate motion generated by the scheme gets Istiscthere-
fore necessary to discretize the scheme with methods that can provide subgrid accuracy
in the location of the interface. This was done by Ruuth in [84] through fil@ent use
of an unequally spaced FFT. Such an adaptive strategy is especially needed for simulating
high-order motions.

To address this issue, Eseio, Ruuth and Tsai [35] proposed to represent the inter-
face using signed distance functions rather than characteristic functions. Their choice was
motivated by the fact that unlike characteristic functions, signed distance functions can be

represented on uniform grids at subgrid accuracies due to their Lipschitz continuity.

Diffusion Generated Motion using Signed Distance Functions

Esedaglu, Ruuth and Tsai [35] recently proposed a new class of algorithms that gener-
ates a variety of interfacial motions with high accuracy on uniform grids. These algorithms
are similar to the MBO scheme in flavor — they also alternate two steps withftiigidn
step being in character the same — but théfedby the fact that they use the signed dis-
tance function to the interface instead of the characteristic function of the region. The new
schemes thus simulate the motion of an interface by alternat@lsutig and redistancing
the signed distance function to the interface. THeudion step consists of convolving the
signed distance function with an appropriate kernel, usually chosen to be the Gaussian ker-
nel, and the redistancing step simply consists of constructing the signed distance function
to the interface from the previouslyftlised signed distance function (which at that point
is no longer a signed distance function to the interface). The redistancing step replaces in
essence the computationally verfi@ent thresholding step (i.e., sharpening step) of the
MBO scheme. However, ndi&iency is lost by having to construct the signed distance
function to the interface every two steps, since there exist fast algorithms for computing

signed distance functions (e.g., fast marching, fast sweeping, etc. [24, 82, 90, 93, 95]).
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This new class of diusion generated motion algorithms therefore providesfacient
and highly accurate technique for simulating a wide range of interfacial motions. Among

such motions are the ones with normal speed
VN =K+ S,

wherex is the mean curvature ar®l: RY — R a given function, for which we describe
the scheme. From an initial sE§ defined through its signed distance functayfx) and
a time step sizét > 0, generate a time discrete approximatioh;}«y at timesj (6t) by

alternating the following two operations:

1. Diffusion step From the sek;_, defined through its signed distance functaym, at

time (j — 1)6t, form the level set function
L(X) = (G * 1) (¥) + Sj-1(x) (1) .
whereG; is given in (1.19).

2. Redistancing stepConstruct;, the signed distance function to the zero level set of

L, defining the new sei; (and thus its boundar§Z;)
dj(X) = Redist(L(x)).
High order in time versions of these schemes may also be obtained by combining two
updates in time, with time steft and 2t respectively.
1.4 Contribution and Organization of this Dissertation
This dissertation provides both computational and theoretical results with applications
to image processing and computer vision.

In the realm of applications, we proposffigent and accurate algorithms for com-

puting certain area preserving geometric motions of curves in the plane, such as area
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preserving motion by curvature. Our schemes are based on the clagbusfodi gen-

erated motion using signed distance functions introduced by ghed@uuth and Tsai

[35], and thus generate the desired geometric flow in an unconditionally stable manner.
We check the numerical convergence of these algorithms and provide a few test prob-
lems that demonstrate their high accuracy. In addition, we present applications of these
area preserving flows to large scale simulations of area preserving motion by curvature
and inverse problems. The large scale computations of area preserving curvature motions
are made possible by the computationilceency of our schemes (which allows for very
large grid sizes) and their unconditional stability (which allows us to take adaptive time
steps). In the second application of our area preserving schemes, we investigate whether
certain commonly used regularizations in medical imaging inverse problems (e.g. tomog-
raphy) introduce significant bias in reconstructions. One such regularization (as used in
the Mumford-Shah functional [70]) takes the form of a penalty on the perimeter of recon-
structed objects. We propose a reconstruction algorithm based on area preserving flows,
and show that perimeter regularizations do indeed introduce some shrinkage. We compare
the performance of our area preserving flows with the performance of a Mumford-Shah
based model (using perimeter regularization) and show that our model provides improved
results over the Mumford-Shah based model.

The second topic of this dissertation relates to coarsening in high order analogues of
the Perona-Malik equation. These high order analogues include the You-Kaveh equation
[100] proposed as an improvement over the Perona-Malik model, especially regarding
the staircasing artifact introduced by the Perona-Malik evolution. In this dissertation, we
study the discrete version of a family of ill-posed, nonlinedfudion equations of order
2n. The fourth orderrf = 2) version of these equations constitutes our main motivation,

as it appears prominently in the image processing and computer vision literature. It was
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proposed by You and Kaveh as a model for denoising images while maintaining sharp
object boundaries. We follow a recent technique by Kohn and Otto, and prove a weak
upper bound on the coarsening rate of the discrete in space version of these equations in
any space dimension. Numerical experiments indicate that the bounds are close to being
optimal, and are typically observed. These bounds provide a first step towards understand-
ing the gradual simplification of an image occuring through a denoising process, with the
ultimate goal of automatically selecting the stopping time of the evolution for a given level

of image simplification.

The remaining chapters of this thesis are as follows. Chapter Il introduces new algo-
rithms for area preserving flows and provides applications to large scale simulations of
area preserving curvature motion and inverse problems, while Chapter Il focuses on the
rigorous result related to coarsening in high order ill-posed nonlingarsthn equations
for image processing. To conclude, we discuss the relevance of our results in Chapter IV,

and propose natural and new directions for future research.



CHAPTER I

Algorithms for Area Preserving Flows and Applications

2.1 Introduction

Motion by mean curvature has been extensively studied in the mathematics literature
[41, 43, 54] and in applications such as crystal growth and image processing [1, 69]. Under
this geometric flow each poimton a curvd™ moves with normal velocityy = «(X), where
k(X) is the mean curvature of the curvexate I'. It is also called the Euclidean curve
shortening flow since the Euclidean perimeter of a curve shrinks as quickly as possible
when evolving according to this motion. In addition, convex curves shrink to a point
in finite time [43, 54]. Several algorithms have been proposed to simulate this motion,
such as finite elements [97], level set methods [73, 91] affdsibn generated motion
techniques [65, 67, 84]. A variant of this motion is the geometric flow that decreases the
total perimeter of a collection of curves as quickly as possible while preserving the total
enclosed area: itis referred to as area (or volume) preserving mean curvature motion. This
motion finds applications in various fields including image processing [15, 42], and arises
physically as a limit of the nonlocal Allen-Cahn equation modeling the phase separation in
binary alloys [12, 50, 80]. The area preserving mean curvature motion is described by the
normal velocityvy = « — k, wherek denotes the average mean curvature of the collection

of curves. Several schemes based on the level set method [15, 75, 102] and threshold

23
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dynamics [89] have been proposed for approximating this motion.

We describe new schemes for area preserving flows based on a new class of algorithms
that generate the desired interfacial motion by alternating two simple féoket steps:
construction of the signed distance function, and convolution with a kernel (usually a
Gaussian kernel). The resulting schemes are unconditionally stable, and have low, namely
O(NlogN), per time step cost, whei¢ is the total number of grid points. In addition, we
present applications of thesffieient area preserving algorithms to large scale simulations
of area preserving curvature motion, and to image reconstruction from medical imaging

inverse problems.

2.2 Proposed schemes

In this section we introduce our area preserving schemes, and present systematic studies

of their numerical convergence and accuracy.

2.2.1 Algorithms for area preserving flows

Building on the distance function dynamics for curvature motions described in Chap-
ter I, we propose new andfeient algorithms for area preserving flows in two dimensions.

These algorithms generate interfacial motions with normal velocities

(2.1) Wy =Kk—K+S,

wherex denotes the curvature,the average curvature ai®l= S(x,t) is an additional
normal speed term that may depend on space and time. Such terms arise for example
in computer vision applications from data fitting terms in variational models (see Sec-
tion 2.4). The core of our algorithm is the scheme for area preserving curvature motion
which evolves interfaces with normal velociy = « — «. Under this motionm disjoint

curvesI; will evolve to decrease their total length while maintaining the total enclosed
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area constant. In our algorithms, we use the fact that baitd« can be calculated very
easily using the signed distance function to the interface.

Let us now recall a few well known properties of the signed distance function that hold
more generally irR" (see e.g. [28, 40]). Consider the et Q defined through its signed
distance functiord, and letdX be its boundary. The first property dfis based on the
fact that the normals to a smooth interface do not focus immediately, so that the signed
distance function is smooth in a tubular neighborhdoadf 0%, and linear with slope one

along the normals, namely
(2.2) |[Vd| = 1 for all x e T, with boundary conditiom|,.sz = O.

The second property is that the Laplacian of the signed distance furttadm pointx
gives, up to a multiplicative constant depending on the dimension, the mean curvature of

the isosurface ofl passing througix:
(2.3) Ad(X) = (n = 1)H(X),

whereH(x) denotes the mean curvature of the level{get d(¢) = d(X)}, andn is the
dimension. In two dimensions, we will denotéx) the curvature of the curveéx = {¢ :

d(¢) = 0}, so that equation (2.3) simplifies to
(2.4) Ad(X) = «(X).

Before moving on to the expression of the average curvatureterms of the signed
distance functiom, we need to recall some simple definitions and properties. The average

curvature of a curv€ is defined as

_ 1
(2.5) K= —fCKdS,
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where|C| denotes the length of the cur@ For a two dimensional connected &ebf

genusp, the average curvature of its boundé®/can be expressed as

27 (1-p)
x|~

K=
where|d%]| is the total length of the boundary Bf The genus numbey can be interpreted
as the number of “holes” in the sEt If the setX is made up oK connected components
Y= Uj-il %, with Z; being a surface of genys, then the average curvaturedd becomes
2 (K - 2%, py)

[ ’

(2.6) K=

From expression (2.6), we see that the only quantity left to compute is the perimeter of the

set,

ds

[

|0

|Vd[?ds (since by definition of the signed distance functipfd| = 1)
[

f Vd - v ds (wherev = |Vd| is the outward unit normal
ox

fAd dx (by the divergence Theorem

z

Thus we have

(2.7) 05| = fAd dx
z

which provides a simple relation between the length of the boundary of a set and its signed
distance function. In our computations, we use equations (2.6) and (2.7) to compute the
average curvature of a set. Notice that all the computations are done using only the signed
distance function to the interface. Note also that under area preserving curvature motion,
the boundaries of sets will evolve to decrease their total length while maintaining the total

surface area at its initial value. Consequently, the final state of the evolution is a disk with
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area equal to the initial total area. In particular, disks preserve their circular symmetry
under this motion (one disk is stationary).

The complete algorithm for the general motion with normal spged= « — x + S
builds on the area preserving curvature motion scheme by simply shifting the location of
the redistancing process by a constant determineslkyt). For clarity in the description

of the algorithms, we define

#{d > 0} := number of connected components{af: d(x) > 0} .

Algorithm 1. Given the initial se&, defined through its signed distance functigyx)i
and a time stept > 0, generate the sefs; via their signed distance functiong(d) at the

subsequent discrete times tj(6t) by alternating the following steps:

1. Using G in (1.19) form

2 (#dj_y > O} — #{dj_ < O} + 1)
fdj_l>0 Ad;_1(X)dx

£L(x) = (dj-1 % Gy) (%) - (6t) + S (3)(5t).

2. Construct the signed distance functiopusing

d;(x) = Redis{L(x)).

We also propose a second-order in time version of Algorithm 1 to achieve quadratic

convergence in time.
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Algorithm 2. Multi-step, second-order in time versionGiven the initial se&, defined
through its signed distance functiog(#) and a time ste@gt > 0, generate the sefs,
via their signed distance functiong(#) at the subsequent discrete times-t j(ot) by

alternating the following steps:

1. Using G in (1.19) form

2 (#dj-2 > O} — #d;_» < O} + 1)
LFPO Ad;_2(X)dx

2 (#{dj-1 > O} — #dj_1 < O} + 1)
fdj,po Ad;_3(x)dx

L1(X) = (dj—2 * Gas) (9) — (26t) + Sj_2(X)(261)

Lo(x) = (dj_g * Gar) (¥) - (61) + Sj_1(X)(6Y).

2. Construct the signed distance functiopusing

d(x) = Redist(% (A.Lo(X) — Ll(x))) .

The overall computational complexity of the general algorithi®(isl log N). Indeed,
counting connected components can be perform&(M) operations wherdl is the total
number of grid points. The convolution is done inNOOg N) operations using the FFT.
Also there exist algorithms, such as fast marching and fast sweeping, that construct the
signed distance function in Q(og N) operations [24, 82, 90, 93, 95]. All the other terms
used in the scheme, including the integral, can be doi@{MN) operations. Thus, we see
that the per time step cost of the complete algorith®@(l log N). In addition, due to its
unconditional stability, there is no restriction on the time step size.

In the case of area preserving curvature motion (i.e.Sfer 0), we propose slightly
modified versions of Algorithms 1 and 2 that consist in matching exactly, at each time
stepj (6t), the current area with the initial area. This strategy is similiar to the one used

by Ruuth and Wetton [89] in the case of threshold dynamics for area preserving curvature
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motion. For clarity of the exposition, we define the area operdtar C3(R?,R) — R

applied to a smooth functiopto be

ﬂ(¢)i=f dx=[{x: ¢(x) >0},
(x>0

which computes the area of the zero super level s¢t dow the idea behind the mod-
ification of Algorithms 1 and 2 is to use Newton’s method at each time step to find the
stationary pointl].‘ of the functiond; — a(4;) — ag, wheregy is the initial area, and(4;)

the current area at time stgulefined as
a(/lj) = ﬂ(dj_l % Ggt — /lj) .

The initial condition for the Newton iteration is taken to be

o 2 (#dj-y > O} — #(dj1 < O} + 1) .
: Joy 150 Adi-2(X)dx ’

which approximates the average curvature. Note that this expression is used in Algo-

rithms 1 and 2. The signed distance functehns then constructed using
dj = Redist(dj_y * Gy — 4}).

To modify Algorithm 2, we proceed in the same way, namely at each timej &) we
computed;, and4;, coming from the result of a Newton iteration usidg, with time

step 2t andd;_, with time stepst respectively. The final update in this case becomes
(1 .
(28) dj = Red'st(:—% (4 (dj—l * G(St - /112) - (dj_z * G(gt - /l]ﬁ’l))) .

The modified algorithm reads as follows
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Algorithm 3. Area Preserving Curvature MotionGiven the initial se&q with area g
defined through its signed distance functig(xg, a time ste@t > 0 and a constany > 0,
generate the sets; via their signed distance functiong(#) at the subsequent discre

times t= j(6t) by alternating the following steps:

1. Using Newton’s method with initial guess

2 (#dj-1 > O} — #(dj1 < O} + 1)

A0 = (6t),
J Lj-1>0 Adj_l(X)dX

find /1]‘ such that‘ﬂ (dj_l * Gsp — /l]f) - ao‘ < n, and form
L(x) = (dj-1 * Gor) (1) - 4j.

2. Construct the signed distance functiopusing

d(x) = RedistL(x)).

1)

—

e

The multi-step version of Algorithm 3 can be obtained by following the same pattern

as Algorithm 2 and using the update described in equation (2.8).
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Algorithm 4. Area Preserving Curvature Motion: second-order in time versio@iven
%o with area g having distance functiong(ix), 6t > 0 andn > 0, generateX; at times

t = j(6t) by alternating the following steps:

1. Using Newton’s method with initial guesses

o _ 2 (#(dj_2 > O} — #{dj_o < O} + 1)(&)
1 fdj,2>o Adj_o(x)dx

. 2 (#dia>0)-#di1 < 0} +1)
and A}, = (ot),
fd,-_1>o Ad;_1(x)dx

find A}, and4;, such that
|7 (d2 * Gy — A3,) — 80| < 17 and| A (d 1 Gy — A3,) — | <7,

and form

L1(X)

(dj_z * G(St) (X) - /lT,l

Lo(X) (dj—z * Gat) (X) = 42

2. Construct the signed distance functiopusing

di(x) = Redist(% (4L(X) — Ll(x))).

Note that although Algorithms 3 and 4 preserve area more accurately than Algorithms 1
and 2, they will be inapplicable in situations where the total area may change due to the
presence of a non-zero tei®) such as the imaging application described in Section 2.4.

A variant of area preserving curvature motion considers component-wise area preserv-
ing curvature motion. In this case, the area of each connected component is preserved
during the entire evolution rather than the total area. This variant is used in the imaging
application of Section 2.4, where each connected component represefiesentiobject

in the image. For simplicity in the description of the component-wise algorithm, we define
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the following function:

Lout = ComponentwiseAR(L, d, 6t)

1. Find the number of connected componentsf the setx defined through its signe

distance function

2. For each of the connected componEgtextract its signed distance functidh (k =

(a) Compute the local average curvature

Kk =

on (2 —#dk < 0})
Jieoo ADK()dX

(b) In ane-neighborhood ok, update

L% = L(%) — xi(ot),

for x¢ € N¢ (Zk), whereN, (Zy) =: {X: |X—-Y| < €,y € Xy, € > O}.

3. Lout= L; ReturnLout

The component-wise area preserving algorithm reads as follows:
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Algorithm 5. Component-wise Area Preserving FlowGiven the initial set, defined
through its signed distance functiop(s) and a time stept > 0, generate the sefs; via

their signed distance function(c) at the subsequent discrete times §(dt) by alternat-
ing:
1. Using G in (1.19) form

L(X) = dj_1 * Gg + Sj_1(6t).

2. Update £ using

L= ComponentwiseAl(DL, dj-1, 6t) .

3. Construct the signed distance functionusing

d(x) = RedistL(x)).

The second order in time version of Algorithm 5 is obtained by following the idea used

in Algorithms 2 and 4.

2.2.2 Numerical convergence study

In this section we describe some convergence studies done with the algorithms for
area preserving curvature motion introduced in the previous section. In the computa-
tions presented below, we used a second order accurate procedure to construct the signed
distance function in a tubular neighborhood of the interface. For details on more so-
phisticated algorithms for constructing signed distance functions, we refer the reader to
[22, 24, 82, 90, 93, 101].

We investigate the convergence of Algorithms 1 and 2So& O, i.e., for the area
preserving curvature motion algorithm. The results are displayed in Tables 2.1 and 2.2.

The convergence test is done on an ellipse and the evolution is computed over the time
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interval [Q 0.01]. The initial condition is an ellips& with major axisa = 0.45 and minor
axisb = 0.2 on the domain [01]2. The major and minor axes of the final curve (which

is no longer an ellipse) aredand 022 respectively. At the final tim@ = 0.01 we
measure the quantitégm(x2 + y2)dQ, whereX(t) € R? evolves under area preserving
curvature motion with initial conditiolE(0) = &. We compare this quantity with the
exact quantityfze(T)(x2 +y?)dQ, where the exact evolutiany(t) is computed using a front
tracking technique with a very fine discretization of the parameterized curve. We also

display the error in area and its associated convergence rate.

Resolution | # of Time Steps| Relative error infzm (x2 + y2) dQ (in %) | Order | Errorin area| Order
33x 33 20 0.0167 - 0.000921 -
65x 65 40 0.3218 -4.27 | 0.000561 | 0.72

129x 129 80 0.2046 0.65 0.000271 | 1.05

257x 257 160 0.1002 1.03 0.000120 | 1.18

513x 513 320 0.0487 1.04 0.000055 | 1.12

1025x 1025 640 0.0240 1.02 | 0.0000263 | 1.06
2049x 2049 1280 0.0119 1.01 | 0.0000128 | 1.03

Table 2.1:Convergence of Algorithm 1 fo8 = 0. The initial condition is an ellipse with major axas= 0.45 and minor axi® = 0.2
on [0, 1]%. The evolution was computed fok [0, 0.01].

Resolution | # of Time Steps| Relative error infzm (x2 + y2) dQ (in %) | Order | Errorin area| Order
33x33 20 0.8098 - 0.00164 -
65x 65 40 0.4919 0.72 0.000710 1.20

129x 129 80 0.0951 2.37 0.000150 2.24

257x 257 160 0.00738 3.69 0.0000210 | 2.84

513x 513 320 0.000928 299 | 0.00000434| 227

1025x 1025 640 0.000196 225 | 0.00000109| 1.99
2049x 2049 1280 0.00000915 4.42 | 0.000000265| 2.04

Table 2.2:Convergence of Algorithm 2 fd8 = 0. The initial condition is an ellipse with major axas= 0.45 and minor axi® = 0.2
on [0, 1]2. The evolution was computed foe [0, 0.01].

As can be seen in Table 2.1, Algorithm 1 settles into a clearly first order convergence
rate. Table 2.2 shows the convergence rate for Algorithm 2, which on this example turns
out to be significantly higher than second order, perhaps due to some cancellation of errors.
In any case, Algorithm 2 achieves very high accuracy even on very modest sized grids.

We now present the convergence of Algorithms 3 and 4 on the same ellipse test. The
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results are displayed in Tables 2.3 and 2.4 respectively. We stress that these last two
algorithms cannot be extended to the more general velocity (2.1) with no8ger. In
both convergence tests, the area was preserved up to an errortbbiless. Table 2.3

displays the convergence of Algorithm 3 and Table 2.4 the convergence of Algorithm 4.

Resolution | # of Time Steps| Relative error inf, (32 +y?)dQ (in %) | Order
33x 33 20 0.6256 -
65x 65 40 0.0588 341

129x 129 80 0.0213 1.47

257x 257 160 0.0194 0.13

513x 513 320 0.0117 0.73

1025x 1025 640 0.00631 0.89
2049x 2049 1280 0.00327 0.95

Table 2.3:Convergence of Algorithm 3. The initial condition is an ellipse with major axis0.45 and minor axi® = 0.2 on [Q 1]2.
The evolution was computed foe [0, 0.01].

Resolution | # of Time Steps| Relative error inf .. (X +y?)dQ (in %) | Order
33%x 33 20 0.3040 -
65x% 65 40 0.0112 476

129x 129 80 0.00735 0.61

257x 257 160 0.00689 0.09

513x 513 320 0.00197 181

1025x 1025 640 0.000488 201
2049x 2049 1280 0.000117 2.06

Table 2.4:Convergence of Algorithm 4. The initial condition is an ellipse with major axis0.45 and minor axi® = 0.2 on [Q 1]2.
The evolution was computed foe [0, 0.01].

In addition to the convergence studies described above, we tested our area preserving
curvature motion algorithm on an initial configuration containing three circles with radii
0.15, 02 and 022 on [Q 1]. Since circles remain circles under this motion, we monitored
the evolution of each of the three radii fore [0,0.1], and compared it with the exact
evolution obtained by numerical integration of the coupled ODEs for the radii. The circles
were placed far apart initially so that no collision occurred during the evolution. Figure 2.1
shows the three circles in the initial condition (thick line) and the final curves at time
t = 0.1 (fine line). The computed evolution of the three radii is compared to the exact one

in Figure 2.2.
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Evolution of three circles under area preserving curvature motion
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Figure 2.1:Evolution of three circles under area preserving curvature motionddo, 0.1]. The initial condition is shown by the
thick curves, and the final curvestat 0.1 are displayed by the thin curves. In this configuration, the largest circle grew

while the other two shrunk (the smallest one actually disappeared).
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Figure 2.2:Comparison between the evolutions of the exact and computed radii obtained from three initial circles taken as initial
condition and evolved under area preserving curvature motion. The initial three circles have the followingadii20
and 022. In each of the plots, we superimpose the exact evolution (in bold) and the evolution of the radii computed on
a 32, 12& and 512 grid. The top row shows the entire evolution, while the bottom row shows an enlarged view of the
plots where the graph is notftérentiable (corresponding to the disappearance of the smallest circle). This computation
was performed with Algorithm 4.
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2.3 Application: large scale simulations of area preserving curvature motion

In this section, we demonstrate the capacity of our proposed algorithms to handle large

scale simulations with very good accuracy.

2.3.1 Curve shortening at various area fractions

Geometrically in two dimensions, the area preserving curvature flow describes the
shortening of a curve (or interface) separating two phases, while maintaining the area
of each phase equal to their respective initial area. A natural question therefore arises: at
what rate does the total length of the curve decrease? Scaling arguments [25] suggest that

the total length. decreases as a power law in time according to
L(t) ~ t2.

Dai [25] also obtained a rigorous result for the rate of decreasdmthe case of a dilute
mixture. Specifically, he showed that for a collection of non-intersecting and convex plane
curves, the total length(t) cannot decrease faster them in a time average sense. In
the simplified case that Dai considered, there is no coalescence and the only singularity
is the disappearance of curves. In the general case however, collisions of curves will
occur causing singularities in the curvature to appear at the times of first intersections. In
fact, at the points of intersections, the curvature will be infinite, leading to an immediate
smoothing and a fast decay of the sum of the lengths pertaining to the merging curves.
Figure 2.3 illustrates this point on a simple example of two curves intersecting each other
during their evolution under area preserving curvature motion.

In this context, we refer to the phase enclosed by the curves as Phase 1. Phase 2 de-
notes its complement. As a demonstration of the proposed algorithms, we present some
simulations of area preserving curvature motion on very large collections of closed curves

(or droplets). We also measure certain statistics related to the configurations of droplets
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Figure 2.3:Coalescence of two curves during their evolution under area preserving curvature motion. Figure 2.3(a) shows the initial
condition and Figure 2.3(b) displays the new curve just as the two previous ones collided. The curvature of the new
curve is very large at the point of intersection. Figure 2.3(c) shows the new curve shortly after the collision occured
superimposed with the curve shown in Figure 2.3(b).

during their evolution. As Otto observed, there is no lower bound possible on the energy
(length) that would hold for any initial data. It should not béidult to construct con-
figurations of droplets that would coarsen faster. In this work, we are concentrating on
the area preserving curvature motion evolution of droplets starting from random initial
data. In particular, we are interested in thEeet of collisions that occur throughout the
evolution. Due to the high accuracy achieved by our algorithms, we were able to resolve
droplets with width and length as small as 15 pixels. As a result, our simulations evolved
configurations containing up to 25000 droplets on a 4@@il. Our computations con-
sidered various area fractions of Phase 1 ranging from 10% to 50%, which equivalently

considered area fractions of Phase 2 ranging from 50% to 90%.

2.3.2 Numerical results

In this section, we present the results of our simulations. We construct the initial data
by generating random sets of points from a uniform distribution, and placing a disk cen-
tered at each of the points with radius randomly chosen from a uniform distribution. The

droplets are obtained by taking the union of the disks. From such initial configurations
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(i.e., randomly generated droplet configurations), it would be reasonable to expect a cer-
tain collision rate during the evolution under area preserving curvature motion. Figure 2.4
illustrates the area preserving motion by curvature evolution on initial data with 10% and
40% area fraction. To avoid boundarffexts, the computations are done on a slightly
larger domain than []2. Additionally, to prevent premature mergings of nearby droplets,
we divide, at each time step of the computations, the sets of droplets into subsets contain-
ing droplets that are further apart, and update the signed distance function of each subset
separately. This allows individual grains to evolve independently. Last, since the average
size of the droplets increases during the evolution, we perform our computations using an
adaptive time step regulated by the value of the average size of the droplets. This adap-
tivity is made possible by the unconditional stability of our algorithms. In Figure 2.5,
we demonstrate that taking larger time steps does not significantly change the configura-
tions of droplets; indeed even with large time steps, the algorithm is able to resolve the
dynamics.

The first quantity that we study, is the rate of decrease of the total léndtilgure 2.6
compares the rate of decrease.dfwhich is also the energy dissipated by the evolution)
with the theoretical bountd z for various area fractions. Note that there are rigorous results
indicating this bound only in the case of convex curves that never collide. Nevertheless,
for these randomly generated initial conditions, the rate of decrealsgeatftained from
our computations, closely follows the theoretical bound.

Another quantity that we study is the number of connected compoiteimshe con-
figurations of droplets. Based on the rate of decay.,0nd using a simple heuristic
argument on a uniform configuration of disks, we can show that the number of connected
components should essentially decay%am Figure 2.7 we compare the numerically ob-

served rate of decreaseffor various area fractions with the boun%ldFor the randomly
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generated initial conditions chosen in our simulations, the plots show very good agree-
ment between the computed rate and the bd{undtuition also suggests that at any given
time, a certain population of droplets will be just about to collide, generating configura-
tions at which the energy decrease rate must be elevated (the proportion of droplets just
about to collide to all droplets would of course depend on the area fraction). However, it
appears that even if collisions between droplets cause a deviation in the coarsening rate,
our numerical experiments, despite their large size, are still not large enough to discern
such a diference — perhaps théfect is very small. Nevertheless, as one would expect,
we observe in our numerical simulations that at any time during the evolution (outside
of the transient initial period and the final stage where only a few droplets remain), there
is a constant proportion of eccentric droplets (i.e., droplets that are the result of a recent
collision). This observation agrees with the expectation that collisions occur at a definite
rate in proportion to the number of droplets. To exhibit this behavior, we measure the
isoperimetric ratio

2

(2.9) 1(C) := %

of each droplet to characterize their shape. In (9% a closed curveR is its perimeter
andA its area. Since the isoperimetric ratio is minimized by a circle, we have that for any
closed curve

| > 4r ~ 1257,

wherel = 47 whenC is a circle. For an ellipse with minor axisand major axisa = 3b,
the isoperimetric ratio is approximately~ 18.95. For a more ellongated ellipse with mi-
nor axisb and major axig = 4b the isoperimetric ratio is approximatdly~ 23.42. From
these references, we look at the proportion of droplets with isoperimetriclrati@0.

Figure 2.8 shows the distribution of isoperimetric ratios #iiedent times throughout the
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evolution for a configuration of droplets with 50% area fraction. Table 2.5 displays the

proportion of eccentric droplets for the various area fractions studied in our computations.
Figure 2.9 shows the proportion of eccentric droplets and the total number of droplets for
configurations with area fractions 30%, 40% and 50%. In each case, the proportion of
eccentric droplets decreases very quickly during the transient initial phase (as is the total
number of droplets) and then stabilizes itself around a constant value. The proportion of

eccentric droplets remains constant until the total number of droplets becomes too small.

Area fraction| Proportion of # of droplets at onset # of droplets at the end
eccentric droplets of constant proportior) of constant proportion
10% 0.12% 5054 193
20% 0.46% 2623 78
30% 1.18% 2932 91
40% 2.49% 2766 34
50% 3.81% 3885 49

Table 2.5:Proportion of eccentric droplets (the isoperimetric ratio of which satisfie0) for various area fractions. The propor-
tion of eccentric droplets increases with the area fraction, as one would expect.
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Figure 2.4:Evolution of two configurations of droplets under area preserving curvature motion. The left-hand column displays
the evolution of a configuration of droplets with 10% area fraction. The right-hand column shows the evolution for a
configuration with 40% area fraction. Because of the very large number of droplets in the early configurations, we only
show a subset of these configurations in the top two plots. These subsets have been enlarged for a better view.
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Final configuration at T = 0.00020027
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Figure 2.5:Comparison of two configurations of droplets obtained by computing their evolution with the standard tins)steg (
the adaptive onest. In this examplegt = 4.7710°. Figure 2.5(a) shows the initial configuration and Figure 2.5(b) dis-
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Figure 2.6:Loglog plot of the total lengtt. of the boundary of all droplets (also the energy being decreased by the evolution) versus

time for various area fractions. The thick line corresponds to the theoretical totingrom top to bottom, and left to
right, the plots correspond to area fractions ranging from 10% to 50%. The plots acknowledge good agreement between

the theoretical bount# and the numerically observed rates (fine line).
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Figure 2.7'Loglog plot of the number of connected componefitgersus time for various area fractions. From top to bottom, and
left to right, the plots correspond to area fractions ranging from 10% to 50%. The plots acknowledge good agreement
between the boun%l (thick line) and the numerically observed rates (fine line).
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Figure 2.8:Time evolution of the distribution of isoperimetric ratios computed from the evolution of an initial configuration of
droplets with 50% area fraction under area preserving curvature motion. During the evolution, the distribution of isoperi-
metric ratios remains quite wide. This width underlines the existence, at all times, of a certain proportion of droplets that
resulted from collisions.
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Figure 2.9:Proportions of eccentric droplets (i.e. with isoperimetric ratie 20) in the case of 30%, 40% and 50% area fraction.
Figures 2.9(d), 2.9(e) and 2.9(f) clearly show that after a transient initial time, the proportion of eccentric droplets seems
to stabilize around a constant value. Figures 2.9(a), 2.9(b) and 2.9(c) corroborate the fact that the proportion of eccentric
droplets remains constant from the time when the total number of droplets is on average 3000 until the time when it is
around 50.
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2.4 Application to inverse problems

In this section, we investigate the application of area preserving flows to certain inverse
problems that arise in medical imaging, such as tomographic inversion. In particular, we
study whether the common choice of perimeter penalty as a regularization term, for exam-
ple as in the Mumford-Shah functional [70], leads to significant bias in reconstructions,
and explore the use of area preserving curvature motion as a regularization that may abate

such artifacts.

2.4.1 Preliminaries

The well known Mumford and Shah model [70] has been extensively used as a regular-
izer in inverse problems (see e.g. [4, 5, 53, 79]). When the forward map (i.e., the observed

guantity) is modeled as

(2.10) a(y) = (Afo)(y) + n(y),

where fy is the unknown original image to be recover@ds an operator and is noise,

these models have the general form

(2.11) E(u,T) = /lf(g— Au)zdy+,uf IVul? dx + |I7,
Q o\r

whereT is the discontinuity set ofi and |I'| the total length of the arcs making up

The minimizeruy, of (2.11) gives an approximation to the original imaigeln a number

of applications, the original image can be assumed to be well approximated either by
a piecewise constant or a simpler piecewise smooth image. In those cases, simplified
versions such as piecewise constant Mumford-Shah (see for example the Chan-Vese model
in [23]) constitute popular alternatives to (2.11).

We consider image$, that can be accurately approximated by multi-phase piecewise
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smooth functionsl. In particular, we consider two-phase and four-phase approximations,

(2.12) u(x) = c1(X)1=(X) + C2(x)1s=(X),
and
(2.13) u(x) = c1(X) 1z, nsg NS (%) + C2(X) 15, (X) + Ca(X)1x,(X) + Ca(X)1xc(X),

whereX; € Q may be multiply connected, argl are smooth functions. The particular
choice of four-phase solution (2.13) is motivated by the specific characteristics of typical

images of CT scans (e.g., lungs) as illustrated in Figure 2.10. In the case where the func-

Figure 2.101llustration of the four-phase image model described in equation (2.13).

tions ¢; are constant, equations (2.12) and (2.13) represent piecewise constant solutions.
Note that there are several ways of writing a four-phase solution, one obvious way being
u(x) = c11s, A5,(X) + Cols, x5 + Calse x, + Calsexg which only uses two sefs; andX,.
This four-phase model was used for example in [38].

For simplicity in the next two sections, we restrict our exposition to two-phase solu-

tions. The generalization to four phases follows easily from the two-phase case.
2.4.2 Mumford-Shah based flows and their area preserving analogues
Within the setting introduced in the previous section, we now describe two related mod-

els. The first one is variational and a variant of the Mumford-Shah functional (thus using

perimeter regularization). The second one inspires itself from the first one but replaces
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the curvature motion term (obtained from perimeter regularization) by the area preserving

curvature motion.

Mumford-Shah based flows

We consider observed imaggss in (2.10), wherd\ is a linear operator (e.g., partial
Fourier or Radon transform). We will also look at the special dase |, which is the
denoising problem. In the general case, and using our model (2.12), we consider the

following minimization:

(2.14) E’rg’icrzl{E(Z, €1.C) 1= Per) + A f ()~ (ALex(¥1s + ©o(0)13<]) () dy

+ u( f Ve, Pdx + f |Vc2|2dx)},
Q Q

where the operatok maps functions defined dn to functions defined of’. In the limit

1 — oo, (2.14) reduces to the simpler minimization

(2.15) Zglicg{E(E, 1. C2) = PerE) + 2 f (90) - (Alerls + 1) (y))zdy},

wherec; are constant. We remark that the energy written in (2.14) is not the Mumford-Shah
model (2.11) restricted to two-phase, piecewise smooth solutions. Theeedice lies in

the regularization terms; in our case, the Dirichlet energy of the functjcare integrated

over the whole domai®, whereas in the Mumford-Shah model, the Dirichlet energy of
the functiong;; are integrated over the set of points Q on which the solutiom takes the
valuesci(x). The latter was considered by Vese and Chan with | as an improvement
over the piecewise constant Mumford-Shah model [96]. However, their piecewise smooth
Mumford-Shah model is not lower semi-continuous, and is thus likely to be ill-posed (see
Appendix A). To regain lower semi-continuity, it is necessary to consider the lower semi-
continuous envelope of their piecewise smooth model, which unfortunately turns out to

be like the full Mumford-Shah model. The simplification made in the piecewise smooth
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model is thus lost in its lower semi-continuous envelope. In contrast, our model (2.14)
is well-posed. Moreover, for computational purposes, (2.14) is much easier to deal with,
since unlike the Vese-Chan model, it avoids the complication of boundary conditions that
need to be imposed along the moving contour.

In the next paragraph, we briefly present how to compute the minimizer of (2.14) and
(2.15) using the level set method since the equations obtained from the level set formula-
tion of (2.14) and (2.15) using gradient descent serve as a starting point for our proposed
area preserving flows. We defifi€ to be the interface between the setsndX®, and em-
bedoX as the zero level set of a smooth functiggx, t), namelyl'(t) = {x € Q : ¢(x,t) =
0}, with 2(t) = {x € Q : ¢(x,t) > 0}. By rewriting (2.14) in terms ob, we obtain the
minimization
(2.16)

min{E<¢,c1,cz) = f [VH(g)ldx+ A f () — (A[CH(9) + ¢ (L= H@)]) ) dly

#,C1,C2 Q o
+ u( f Ve, Pdx + f |V02|2dx)},
Q Q

whereH is the one-dimensional Heaviside function. Using gradient descdafro(2.16),

we deduce the following evolutions fgrandc;:

(217) ¢ =1V4l(x+20A°(9 - A[ciH(9) + 2 (L - H(9))] ) (&1 - ©2).

and

(901
(2.182) - = pAci+AAg- A(CH() + (1~ H(@)) [H©).
(2.18b) % = e, + AR = A(CH($) + G- H(@#) | (L - H)).

wherex(x) = V - (V|€g|()) is the curvature of the interfadeat the pointx € T', and A" is

the adjoint operator oA. In the piecewise constant case, the optimality conditions for the
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constantg; become

Jo Al = Alca(1 - H(@)] |H(#)dx
Jo, A°| AH(g) |H(#)dx

Jo Al = AlciH(9)] |(1 - H(g))dx

o A[A@ = H@)] @ - Hg)dx

Equation (2.17) is still valid for piecewise constant solutions.

(219&) C =

(2.19b) C =

In the next section, we describe the area preserving segmentation flow and motivate its

use using the Mumford-Shah based model we just described.

Area Preserving flows

The minimization of the Mumford-Shah based functional (2.14) seeks a piecewise
smooth function approximating a given image by penalizing, among other things, the
length of the boundaries between each of the regions contained in the image. In particu-
lar, this penalization ensures that no trivial segmentation is obtained. However, the length
term penalty can sometimes lead to a shrinkage of the interface around the objects to be
detected. In fact, in the absence of fidelity, the level set evolution seeking the minimizer of
the Mumford-Shah based functional reduces to curvature motion. This is easy to see using
equation (2.17) describing the level set evolution. This equation describes the motion of

an interfacedZ with normal velocity
(2.20) VN =K+ 2/1A*(9 — AlciH(¢) + c2 (1 - H(¢))] ) (ci—¢y).

With no fidelity term (i.e. 2 = 0), the motion reduces to the evolution@¥ with normal
velocity vy = «, which is nothing else than motion by curvature. As noted in Chapter I,
this motion shrinks curves to a point. To remove this shrinkage, we replace the curvature

motion term by the area preserving curvature motion and propose the following flow:

(2.21) g = V9l (k — K+ 2AA°(g = AlctH(@) + G2 (1 - H(g))] ) (c1 - C2)).
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Equation (2.21) can be described as the area preserving curvature motion combined with
the flow obtained from the fidelity term in the Mumford-Shah based functional. Note that
this flow applies to both piecewise constant and piecewise smooth images. In the complete
area preserving update, the evolutions;afescribed in (2.18a) and (2.18b) for piecewise
smooth solutions and the optimality conditions for the constantsven by equations
(2.19a) and (2.19b) remain the same. An important point about these area preserving
flows is that contrary to (2.17), it is not clear whether (2.21) is variational, in other words
we do not know whether (2.21) is gradient descent for an energy in a specific metric.
Considering equation (2.21), we see that in absence of fidelity term, the evolution pro-
ceeds as a regular area preserving curvature motion. As described earlier, this motion
preserves the total area of all the connected components during the evolution. The ad-
vantage of this default motion (i.e. whan= 0) is that no shrinkage is induced by the
model. However, even though the total area is preserved, this default motion will eventu-
ally merge all connected components into one component (this is the coarsening behavior
observed in the previous application) with area equal to the initial total area. To remove
this property (undesirable in this particular image processing application), we replace the
usual area preserving flow by a component-wise area preserving flow that preserves the
area of each of the connected components rather than their total area. Note that unlike the
area preserving curvature motion of Section 2.3, we are not specifying the area of each

region. The areas may change due to the fidelity term.
2.4.3 Algorithms
In this section, we apply the ideas developed in Section 2.2 for rapid and accurate com-

putation of area preserving curvature flows for the Mumford-Shah based reconstruction

models discussed in the previous sections.
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Mumford-Shah based flows

We recall that in the general piecewise smooth case with operator, the Mumford-Shah

based flow for the level set functignsimulates the motion of an interface defined through
the level set functio with normal velocity given by equation (2.20). To simulate this
evolution using signed distance functions, we simply replace the level set fugchgn
the signed distance function to the interface (dendjedt each time step in the complete
algorithm, we alternate between the update of the functipg solving the PDEs (2.18a)
and (2.18b) for a length of timét, and the update of the signed distance functoifror

clarity in the exposition of the algorithm, we define the following update function:

[ClOLIt’ CZOUL] = Update—c (Cl9 CZa da g9 6t)1

1. Form the right-hand sides

RHS; = FFT{cy + AtA[g — A(ciH(d) + c2(1 — H())) [H(@)]

RHS, = FFT{c, + A6tA"[g — A(ciH(d) + co(1 - H(d))) | (1 - H(d))}.

2. Updatec; andc,

RHS,
=reallIFFT
Ciout ea( (I +,u§tA))’

RHS,
I +,u§tA)).

3. Returncygyt andcygy.

The algorithm for the Mumford-Shah based flow is given below.
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Algorithm 6. Mumford-Shah based flow.Given the initial se®, defined through it

2]

1%}

signed distance functiony(k), initial functions ¢ and a time step siz# > 0, generate the
setsY; via their signed distance function(a), and the functionsij(at subsequent discrete

times t= j(6t) by alternating the following three operations:

1. Update the functionsi@nd ¢
[c]. c}] = Updatec(ci™, )", dj_1.g.6t)

2. Form the function

L9 = (ot # di-1) (%) + (8)S_3 (%),

where
(2.22)  Sj; =21A"(g- Alci(WH(dj-0) + () (1= H(dj-a))] ) (c] - <)
3. Construct the distance function dsing

d(x) = RedistL(x)).

Area preserving flows

At each time step in the complete algorithm for the area preserving flows, we alternate
between the update of the functiongnd the update of the signed distance functioAs
discussed earlier, the functionsin the area preserving flows follow the same updates as
in the Mumford-Shah based flow. The complete algorithm for area preserving flow builds

on Algorithm 5 and uses the function ComponentwiseAP described in Section 2.2.
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Algorithm 7. Area Preserving flow.Given the initial se&q defined through its signed
distance function g(x), initial functions ¢ and a time step sizé > 0, generate the sef;
via their signed distance function(), and the functionsijcat subsequent discrete times

t = j(ot) by alternating

1. Update the functionsi@nd ¢
[c]. c}] = Updatec(ci™, )", dj_1.g.6t)

2. Form the functions

L9 = (Gar+dj) () + (305, 39
(2.23)

Lo(X) = ComponentwiseAl(’L d;, 5t)

where S-1 is given by equatio2.22)

3. Construct signed distance functionlay

d;(x) = Redis{L(X)).

Proposed implementation

In this section we describe a specific part of the implementation of Algorithms 6 and 7
that involves replacing step 2 with the solution of a linear parabolic PDE. This approach,
introduced by Esedyu and Tsai in [38], aims at alleviating numerical instabilities created
by the use of largét, or large fidelity constant (from the additional tern$). As described
in the two previous sections, the second step of Algorithms 6 and 7 involves convolving
the signed distance functiahy with a Gaussian kernel, and then translating the resulting
level set by (it)Sj_% (and—«j(st) in the area preserving case). Whiror A are large, this
translation can lead to numerical instabilities.

Following Esedo@ and Tsai’s idea [38], we replace thetdsion step of our algorithm
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by the solution of the following initial value problem

U = AU+ 22 (Tp — (Ta + Tp)U),
(2.24) 1

u(x, 0) = dg(X) + >
where the term3, andT, depend on the fidelity term; in particular, they only depend on
the functions;;, the given image and the parameté@ndu. In particular, T, andT, take
on different values, depending on which type of solution and which type of model we are
using, namely piecewise smooth versus piecewise constant, two-phase versus four-phase,
and operatorA # |) versus identity operator. Note that the initial condition of (2.24) is a
shifted signed distance function to the interféée The shift, and in particular the value
of the shifting constant will be made clear in the next calculations. This shift is necessary

to obtain the correct fidelity term. We present the PDE method for gehgeald T,

We first consider the one-dimensional version of (2.24)

Ut = Yxx + 21 (To— (Ta+ Tp)y) ONR X R*
(2.25)

VX.0) = X + 5 = G,

where &R(x) is the signed distance function to the interfd®¢ U {R} for R > 0, i.e.,
{0} U {R} is the zero level set ofix(x). Figure 2.11 shows the graph of the 1D signed

distance functiomig. The solution of (2.25) is given by

Figure 2.11:0ne dimensional signed distance functinto the interfacq0} U {R}.

w(xt) = —2/1(Ta+Tb)t {(Gt " dR) () + (GZ/I(Ta+Tb)t )}
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whereG; is the one dimensional Gausian kernel given in (1.19). The goal of the next
calculations is to determine the location of the interf@Eeafter a timest, whereét is
assumed to be small. In particular, starting from the interface-a0 at timet = 0, we
compute its new locatiofi(6t) at timedt. For this, we assume that sinéeis small, the
solutiony is a shifted signed distance function to the new interfadé. gt x = 0 we have

(Gt * dr) (0) = £ + (Gi * ) (0) + O(6t?) = § + O(6t?) (see [36] for expansions o + dg)

around 0). We therefore obtain

_ 2 2
w(0.6t) = (1-21(Ta+ To)ot+O(t?)) { 5+ T T (21 (Ta + To) ot) + O(t )}

= % 21Tt — A (T4 + Tp) 5t + O(6t?)

= % + A(Tp — Ta) 6t + O(6t2).
Thus

1 -
(2.26) (0, 6t) ~ 5+ A(Tp — Ty) 6t.
Now we look at the spatial derivative gfaroundx = 0
3(Gy * dr) (%)

xw(x 6t) —2/1(T3+Tb)5'[ ax ,

with
(Gt * dR) (X) f
ox o5t \/4715

Sincedg(y) = y + %O(étz) aroundy = 0, we conclude that

)Gixde)(0) 1
ax - 25t\/mf vehd Aot

1+ O(ot).

ey)? ~
(x—y)e 5 dr(y)dy.

\/_f ye 4(Stdy+0(6t)

=26t =0

Thus

(2.27) 8y(0, 5t) ~ e A TarToldt 1
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If we takedt small enough, the solutign of (2.25) with the shifted signed distance func-
tion 5R taken as initial condition should still be close to the same shifted signed distance
function. Thus, starting with an interface locatexat O, we want to measure the location

of the interface at timét. The location of the interface at tim# is noted{(6t), and by
definition satisfieg (¢(6t), 6t) = % (the interface abt is situated on thé level set of the

signed distance functian). We now expand (£(dt), 5t) aroundx = O to obtain
¥ (£(31), 6) = (0, 6t) + €ap(0, 6t) + O(I£I7).

Since{(st) is defined such thak (£(6t), 5t) = % the interface located at = 0 att = 0

moves to the location
(2.28) £(6t) ~ A(Ta— Tp) ot
att = ot.
In two dimensions, the initial value problem (2.25) becomes
U = Au+ 22 (Tp — (Ta + Tp)u) ONR x R*

(2.29) L
u(x, 0) = dx(x) + 5= dy (),

In the same way, we consider the solution of (2.29) for a short éitme a neighborhood

of a pointx € dX. Following [38], we consider the ansatz

(2.30) u(x, 1) = ¥ (dso(¥). 1)

as a candidate for the solution of (2.29). Using (2.30) we obtain

N A .
UI(X’ t) = lﬁx (dZ(t)(X)’ t) ( (.'):(X)) + WI (dz(t)(X), t)
(231) = yu(dwp(x). 1) (6d2§t)(x)) + e (G (). 1) + 2 (To = (Ta + To)(x, 1))

In addition, we have

(2.32) AU(X, 1) = ¥y (dZ(t)(X)a t) AaZ(t)(x) + Yxx (az(t)(x), t) |Vaz(t)(x)|2-
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Sinced is a signed distance function, it satisfi&lyq(x)[> = 1. Moreover, since is a
shifted signed distance function &, we know that on the curnéx, Adz(t)(x) Is equal to
the curvature. Combining (2.31) and (2.32), we obtain

(2.33)
(9&2(0 (X)

U (X, 1) = AU(X. 1) + 22 (Tp = (Ta + To)u(x, 1)) + ¥y (o (%). 1) ( - A&z(t)(x)) .

Hence, if the curvéX(t) evolves under curvature motion described by

ad((X)

(2.34) o

= Aaz(t)(X) = K(az(t))a

then ansatz (2.30) satisfies equation (2.299Bt). Now we consider the parameterized

curvel” evolving under the following motion

or@ _ |K(T(®) + A (To - Ta) | N(C (D)
(2.35) a
I'(0) = 9F(0),

where the curvéF(t) (the setF(t) is a subset oR?) evolves under curvature motion given

in (2.34). Note that the second term in the normal velocity under which the ¢uise
evolving, is the speed of the one-dimensional profile obtained in equation (2.28). Using
the fact thatF (t) moves under curvature motion, and using the result of equation (2.28)

for the one-dimensional profile, we obtain
2. 1
(2.36) X € R u(x, ot) = >~ I'(x, 6t).

Thus, for small enough timét, the half level set of the solution of the initial value
problem (2.29), evolves the interfad&(t) from a given initial interfac&X, with normal
velocity vy = « + A(T, — To). The half level set ofi becomes the zero level set wby
the shifti(x,t) = u(x,t) — 3. From equation (2.17) we can relate the parameigith the

fidelity parameten as
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with

(2.37)
To = A"[g - A[ciH(#) + C2 (1 - H(¢))]] (c1 - C2) .

If A= 1, we havel = 1 and

Ta = (Cl - g)29
(2.38)
Tp = (c2 - 9)°.
Note that (2.37) does not reduce to (2.38) wien |. The result obtained in (2.38) uses a
few simplifications that are not possible in the more general case with operator. The area

preserving algorithm using the PDE implementation is given below. The Mumford-Shah

based algorithm is obtained similarly.
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Algorithm 8. Area Preserving flow with PDE implementationGiven the initial setg
defined through its signed distance functie(d), initial functions ¢ and a time step size
ot > 0, generate the sets; via their signed distance functiong(s), and the functionsijc.

at subsequent discrete times tj(6t) by alternating the following steps:

1. Update the functionsi@nd ¢
[c]. c}] = Updatec(ci™, )", dj_1.g.6t)

2. Compute the solutiof(x, 6t) to the initial value probleng2.29})

Li=AL+21(Ty— (Ta+ Tp)L) onNR x R*

L(x,0) = ds(X) + 1 = ds (%),
with T, = 0and T, = A" |[g - A[c]H(dj_1) + ¢ (1= H(d;-0))|] (¢} - ¢}).

3. Form £, using

Lo(x) = ComponentwiseARL, d;, ot)
4. Construct signed distance functionlay

d;(x) = RedistLo(X)).

Using the same technique, we can obtain the expressidnsaoid T, for the four-phase

model.
2.4.4 Comparisons and applications
In this section, we compare the performance of the Mumford-Shah based model with

the performance of the area preserving flow on a simple theoretical example, and in nu-

merical experiments.
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A simple example

In this section we consider a very simple but illustrative example on which we compare
the performance of the two-phase, piecewise constant Mumford-Shah based flow, with the
performance of the two-phase, piecewise constant area preserving flow in the setting where
A =11in(2.21). In particular, the goal is to demonstrate that there exists a range of values
for the parameten for which the Mumford-Shah based flow will introduce a shrinkage.
On the other hand, on the same image, the area preserving flow will never introduce a
shrinkage, regardless of the choice of paramgteiVe consider a simple example on
which the area preserving flow is equivalent to the 2-means algorithm, namely we consider
an image with a circular object. It is easy to see that if the image contains a circular object,
then its boundary will be a circle and its curvature will be equal to its average curvature.
Thus if we start the area preserving flow with a circle as initial condition, the circle will
remain a circle during the entire evolution (by symmetry), and the termin the normal
velocity of the area preserving flow will therefore be zero. In this case, the normal velocity
reduces to

w=4((c2- 9 - (e - 9?),
and is nothing else than the 2-means algorithm, looking for 2 regions in the image, with
valuesc, in one andc, in the other. In this case, there is no geometric term. We can
see already that the sign @f will determine in which direction the contour will move,
regardless of the choice af(assumingt > 0). In this particular example, the sign of the
difference((c2 — g)° - (¢1 — g)°) for any.A > 0, will determine the direction of evolution.
If A =0, the radius of the final contour will be the radius of the circle with the same area
as the initial contour.

We consider the image domaia to be the ball of radiuRk centered at 0, denoted



63

B(0, R), andf, to be the image defined in polar coordinate<bas

1 ifOSI’<r1,
(2.39) fo(r.0) =4 a-t ifri<r<r,
0 ifro,<r<R

wherea = % b = {2, andry, ra, 15 and |, are constants to be adjusted. By
constructionfy is rotationally invariant and can be obtained by rotating the profile graphed
in Figure 2.12. Figure 2.13 shows the imafyefrom two different perspectives: as a

grayscale image and as a surface.

Profile fo(r)
35 T

251

051

Figure 2.12:Profile fo(r) = fo(r, 6) for any 0< 6 < 2.

The object we want to detect is the clear disk with external boundary being the circle of
radiusr, (largest circle) centered at zero. Thus we would like to have a model that finds this
clear disk without introducing a shrinkage. We will show that for a range of values of the
parameten, the minimizer of the Mumford-Shah based flow is a circle of radiys< r»,
thus demonstrating that the Mumford-Shah based flow does indeed introduce a shrinkage.
On the other-hand, for any choice of fidelity paramater 0, the area preserving flow will

not introduce a shrinkage.
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Simple example

Simple example in 3D

! W ‘
g

50 100 150 200 250 300 350 400 450 500

Figure 2.13:Left: gray scale display of imagk. Right: surface plot of imagé.

We now calculate the expression of the two-phase, piecewise constant Mumford-Shah

based energy functional, denotEgs,, in the case where the observed image is given by

fo in (2.39). By symmetry, (sinc#, is rotationally invariant), we know that the minimizer
¥ of Eyst Will be a disk of radius,i, centered at 0, (& rmin < R). Thus, to determine
I'min, W€ WOrk out the expression &ys in the case wherE is a disk of radiug centered
at 0, and minimizeEy s with respect ta. In the piecewise constant case wih= 1, the

optimal constants; andc; are given by

B J; gdx

CL =

. gdx
, andc, = = ,
] 27

which are a particular case of equations (2.19a) and (2.19b). In the casegwvhdgeand

¥ is a disk of radius centered at 0, we obtain the following optimal constantandc,:

(2.40) cu(r) = riz[llrf + 2(%‘ (r2-r3)- rgf)] ifro<r<ry

a2+ B 1+ 2) + 112+ 12)| ifra<R
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and
w[ll(rf—r2)+2(g(r§—rf)—rgg_gf)] ifO<r<ry,
@4 =1 i l2(3(3-r)- 5| ifry<r<r,
0 ifr, <R

With expressions (2.40) and (2.41) for the constantand c,, we calculate the exact

expression oEys(r), in the case wherg = B(0,r), and obtain

(2.42)
20 + A(Co(r) = 10)° (12 = r?) + 245(r2, 11) + Acy(r)? (R - 13) ifO<r<ry,

Evsdr) =1 2r + A(c(r) = 11)%r2 + 22 [ga(r, 1) + Ga(r2, 1)] + AC(r)? (R2 - rg) ifro<r<ry,
2r + ar2(cl, — 1% + 21 [r%;ﬁ + 2(cl(r)—;))(r§—rf) + 3 (car) —a)*(r3 - rf)] ifr, <R

wheregi(r, p) = & + 2<ci(r)-2)b(r3-p3) +3(ci(r) - a)*(r? - p?), fori = 1,2.

Minimizing (2.42) with respect to, gives usrmin, the optimal radius for the minimizing
disk. Since (2.42) was too complicated to minimize exactly, we graphed the elBgegy

for various choices of imageag namely diferent choices ofy, r,, I; andl,, and dtter-

ent choices of parametdr and found imageg on which the minimizer;, was strictly
smaller tharr, for a nontrivial range oft values. Figure 2.14 was obtained for the partic-
ular choices of; = 0.3,r, = 1,1; = 3.1 andl, = 1. The left-hand graph of Figure 2.14
shows the energ¥ys: for the following choice of parameter. 2 = 0,0.39,0.61, 0.99.

We see that for the first two choices afthe minimizer ., is equal to zero, which means
that the initial contour shrinks to zero and no object is detected. On the other hand, if
A1=0.39,rmin=071<r,=1andforl = 0.99,rm, = 0.84<r, =1, which in both cases
shows a shrinkage in the final contour. The right-hand side graph shows the evolution of
the minimizerm ., of the Mumford-Shah based energy functional, and the radius found by
the area preserving flow. Both graph are plotted far @ < 10. We see that in the area

preserving case, the minimizey;, is alwaysr, = 1 (except in the absence of fidelity, i.e.,
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A = 0 case). On the other hand, we clearly see that the minimizer of the Mumford-Shah
based energy grows towardsbefore reaching it for a certain value ofin this example,

the critical value oft is around 10). The advantage of the area preserving flow is that there
is no adjustement of the parametem order to avoid shrinkage, which makes it more

robust.

Energy for differentA and r2 = 1 rmin for different & and r2 = 1

T
- —%=0 1
72039 R

e - A=061 -
- - -%=099 o9r

351

25

rmin
o
o

15| e T R 04|

05F P

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1 0 1 2 3 4 5
Radius r IS

Figure 2.14:The left-hand graph shows the Mumford-Shah based erggyt for 2 = 0,0.39,0.61,0.99. Fora < 0.6, the min-
imizer rmin is just zero. Forl = 0.61, the minimizemr i is 0.71 < rp = 1 and ford = 0.99, the minimizen iy is
0.84 < rp = 1. The right-hand graph shows the evolutiomgf, as a function oft, (0 < A < 10), for the Mumford-Shah
based flow (dashed line) and the area preserving flow (solid line).

Figure 2.15 shows the simple imadgesuperimposed with the final contours obtained
from the Mumford-Shah based flow and the area preserving flow in theicas@.61.
The contours are graphed using the exact valueg;ibbtained above. These are not the

result of numerical experiments.

Numerical results

In this section, we focus on studying thffext of standard perimeter regularizations
on image reconstructions given from measurements. In particular, we compare the per-
formance of the Mumford-Shah based flow (using perimeter regularization) to the one of
our area preserving flow on simple scenarios inspired from medical imaging applications.

The results demonstrate that perimeter regularization does indeed introduce a shrinking
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Simple example with MS type and AP contours for A = 0.61

Figure 2.15:Simple imagefo with the final contours graphed for = 0.61. The yellow circle is the final contour for the area
preserving flow and the blue circle is the minimizer of the Mumford-Shah based energy functional. We see that for this
particular value oft, the Mumford-Shah based flow introduces quite a significant shrinkage.

bias. Figure 2.16 illustrates this point on a simple inverse problem. In this example, we re-
constructed the image using only 11% of the Fourieffibtdents and used noiseless data.

We repeated the test with noisy data and reconstructed the image with 35% of the noisy
Fourier codicients. The noisy example is illustrated in Figure 2.18. Figures 2.17 and
2.19 show the original image superimposed with the contours of the objects found by the
Mumford-Shah based flow and the area preserving flow. In these computations, we used

the four-phase, piecewise smooth model.
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Original image and initial contours Direct inversion, 11 % kept

@ (b)

Reconstruction using MStype flow, 11 % kept, fid is0.16842 Reconstruction using AP flow, 11 % kept, fid is0.16842

© (d)

Figure 2.16:Synthetic image reconstructions comparing the loss of small scale features due to regularizations. 2.16(a): original
image superimposed with the initial curves, 2.16(b): direct Fourier inversion of the observations (i.e. 11 % of the
Fourier codicients), 2.16(c): reconstruction obtained with the Mumford-Shah based flow (the boundaries of the small
feature shrunk to zero), 2.16(d): reconstruction obtained using the area preserving flow.



69

Original image and final contours using MStype flow Original image and final contours using AP flow

(@ (b)

Figure 2.17Contours found by the Mumford-Shah based flow and by the area preserving flow. Figure 2.17(a) shows the contours
obtained by the Mumford-Shah based model and Figure 2.17(b) displays the contours obtained by the area preserving
flow.
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Original image and initial contours Direct inversion

(a) (b)

Reconstruction using MStype flow, 35 % kept, fid is0.071429  Reconstruction using AP flow, 35 % kept, fid is0.064286

(c) (d)

Figure 2.18:Synthetic image reconstructions comparing the loss of small scale features due to regularizations. 2.18(a): original
image superimposed with the initial curves, 2.18(b): direct Fourier inversion of the observations (i.e. 35 % of the noisy
Fourier codicients), 2.18(c): reconstruction obtained with the Mumford-Shah based flow (the boundaries of the small
feature shrunk to zero), 2.18(d): reconstruction obtained using the area preserving flow. In this example, the SNR of
the observed datumis 3.88 dB.
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Original image and contours found by MStype flow Original image and contours found by AP flow

(@ (b)

Figure 2.19:Contours found by the Mumford-Shah based flow and by the area preserving flow. Figure 2.19(a) shows the contours
obtained by the Mumford-Shah based model and Figure 2.19(b) displays the contours obtained by the area preserving
flow.
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2.5 Conclusion

We described ficient and highly accurate algorithms for simulating general area pre-
serving flows in the plane, with normal velocities of the forg= « — k + S. Our schemes
are based on afilusion-generated motion approach using signed distance functions, thus
making them more accurate than the standard threshold dynamics based schemes. Addi-
tionally, we proposed both first-order and second-order in time version of our algorithms
and carried out tests to check their numerical convergence and accuracy. We presented two
different applications of our new schemes. The first application demonstrated the ability
of our algorithms to handle large scale computations due to its high accuracy and compu-
tational dficiency. In particular, our schemes were able to simulate the coarsening of large
configurations of droplets under area preserving curvature motion. In addition, the results
of our computations allowed us to perform some interesting statistical measurements on
the configurations of droplets. The second application investigatedttéwt ef perimeter
regularization used in inverse problems on reconstructed images. We showed that the area
preserving flow was able to detect small round objects with a lower fidelity constant than a
Mumford-Shah based flow (i.e., using perimeter regularization), thus finding small round
objects for a wider range of fidelity constants than the Mumford-Shah based model. This
indicates that area preserving flows might be less sensitive to parameters than Mumford-

Shah based flows.

The next chapter of this dissertation is the analytical part, and is devoted to a rigorous
analysis of the coarsening rate of some high-order PDE models used in image processing

applications.



CHAPTER IlI

Coarsening in High Order, Discrete, lll-Posed Dffusion Equations

3.1 Introduction

As discussed in the introduction, the well-known model of Perona-Malik [76, 77] con-
stitutes the first nonlinear equation proposed for image processing and computer vision
applications. Their idea was to create an improved scale-space analysis that would gradu-

ally smooth the image away from the edges. We recall their model (1.7)

U = V.(g(IVu)) Vu)
u(x, 0) = f(x),

whereg is a bounded, non-increasing positive function such thaglipg(x) = 0 and
g(0) = 1 allowing the spatial diusion to become spatially adaptive. It turns out that
such choice fog lead to an ill-posed model, which at the location of large gradients (i.e.,
edges) acts as a backwdrdat equation. Additionally, one significant practical caveat of
this model is thestaircasingartifact which produces “blocky” images, namely regions of
moderately large gradient in the image develop flat regions separated by spurious edges.
In fact, the staircasing instability of the Perona-Malik model is best explained in the one
dimensional case where the solutindevelops steps which merge together to create larger
steps as the solution evolves in time. The result is an image that looks “blocky”. The illus-

tration of the Perona-Malik evolution on an image was displayed in Chapter |, Figure 1.1.

73



74

You and Kaveh [100] introduced a nonlinear, fourth-order PDE as an improvement of
the Perona-Malik model, particularly with regard to the staircasing artifact. In their model,
the image gradually turns into a simpler and simpler piecelWigar image (as opposed
to piecewiseconstan), which greatly abates the staircasirteet. Their fourth order PDE

is
(3.1) e = —A (R(Au)) subject tou(x, 0) = f(x),

whereR(x) = xg(|x|) andg is the same nonlinear fliusivity as utilized in the Perona-
Malik model. Like the Perona-Malik evolution, (3.1) generates coarser resolution images
from a given one taken as initial condition, while preserving sharp contours and smoothing
everything else. Numerical simulations with this PDE give similar results to Perona and
Malik’s in terms of noise removal and edge preservation but the staircasing artifact is
almost completely absent. Figure 3.1 shows the evolution of the boat image according to
the You and Kaveh equation.

However, being the fourth order analogue of the Perona-Malik model, the You-Kaveh
model inherits the same ill-posedness issues as its progenitor. Some analysis of this PDE
has been carried out by Greer and Bertozzi in [52], where they show that smooth traveling
wave solutions of the one dimensional You-Kaveh PDE do not exist feicently large
jump heights. Their conclusion conjectures that the You-Kaveh equation has finite time
singularities inuyy, just as the Perona-Malik equation has finite time singularities in the
slopeuy [51, 56].

Motivated by You and Kaveh'’s fourth order analogue of the Perona-Malik model, we

consider the following family of 8-th order nonlinear diusion equationse N*):

(3.2) " ~AZ(R(AZu(x))) if nis even,

V- A™IR(VA"Z u(X)) if nis odd.
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50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450

@ (b)

100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450

(© (d)

Figure 3.1:Simplification (or coarsening) of an image according the You and Kaveh equation. Figure 3.1(a) shows the original
image, and Figures 3.1(b), 3.1(c) and 3.1(d) display the image at later times in the evolution.

Forn = 1 equation (3.2) becomes the well-known Perona-Malik model, ana fo2 we
recover the You-Kaveh model. We prove rigorous upper bounds on the coarsening rate of
(3.2) in any dimension € N*, for a large class of dliusivitiesR that include the original
choices of Perona-Malik and You-Kaveh.

Upper bounds on the coarsening rate of second order, discrete, ill-pd&esiooh equa-
tions (based on the Perona-Malik model) were obtained in [34] and improved in [37] for
a large class of dliusivities. In this thesis we consider the same class fbfigivities as
in [37] and prove analogous bounds for thetB order equation (3.2) in any space di-

mension. However, our results and argumenfiedirom [34, 37] in several ways. First
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of all, in the present thesis we work in the more generatiRorder setting. Secondly,
the rigorous bounds in [34, 37] are stated in terms of the decrease rateeoicfygof the
system (a somewhat abstract quantity), whereas the real quantity of interest in applications
is the edge density in the solutions (equivalently, the number of “spikes” in its derivative).
Indeed, the numerical experiments — unlike the rigorous results — presented in these pa-
pers are in terms of the spike density in the derivative of the solution, and even though the
spike density and the energy can be related to each other through a heuristic argument, it is
desirable to have a completely rigorous statement directly in terms of the spike density of
the solution. In the present thesis, we replace the heuristic step by a rigorous argument and
therefore obtain rigorous bounds for the spike density. Third, unlike in the second order
case, the high order models we consider lack a maximum principle, which requires certain
arguments to be modified. In particular, the construction of the test function needed to
estimate the bounds in the low dimensional caseftferint from the construction used in
[34, 37]. Our construction is simple and more general than the one proposed in these pre-
vious papers. Finally, it should be mentioned that the discrete PDEs considered in [34, 37]
are only related to the Perona-Malik scheme in one space dimension; in higher dimen-
sions, the correspondence between the image processing model and the PDEs considered
in the afore-mentioned papers is lost. In this thesis, the fourth order PDEs considered and
the theory developed for them corresponds to the relevant image processing model — the
You-Kaveh model — in all space dimensions. For the generdhdrder PDES, the corre-
spondence between the theory and the model exists in all space dimensions whesever
even.

As in the second order case, the high order discrete-in-space equations exhibit an insta-
bility that very rapidly leads to the formation of spikes or discontinuities of width exactly

one grid point, starting from generic initial data. These singular structures then interact
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without changing their location: small ones get absorbed by larger ones, leading to fewer
and larger structures and a corresponding increase in the length scale of the solution as
measured by e.g. the average distance between the structures. We call the rate of increase
of this quantity the coarsening rate.

In computer vision and image processing applications, the coarsening of the You-Kaveh
flow can be observed as the noisy image gradually simplifies into a piecewise linear ap-
proximation by merging neighboring regions and preserving their edges. The rate at which
this coarsening takes place is therefore crucial since it could provide a way to automati-
cally stop the evolution at a given level of simplification in the image. Moreover, such
an analysis would provide insight into th&ect of diferent ditusivities on the dynamics.

Our method is based on a recent technique developed by Kohn and Otto [58] for energy
driven systems. This method uses the end&gyf the system and a length scale quantity

L in two inequalities: a dissipation inequality that invol\%sand‘fj—'f, and an interpolation
inequality betweeh. andE. Combined with an ODE argument, these inequalities lead to

a lower bound on the time-average of the energy which is equivalent to an upper bound
on the coarsening rate. We present our results in any space dimension. For simplicity and
clarity purposes, we present a detailed study of the fourth order case (corresponding to

the You-Kaveh model from image processing), and then indicate how the results extend to

higher order analogues.

3.2 Analysis of the You-Kaveh model

3.2.1 The equations

We consider the fourth order ill-posed nonlinear PDE proposed by You and Kaveh

[100]

(3.3) U = —A(g(Au) Au),
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and letR(s) = s((s), so that equation (3.3) becomes
(3.4) W = -A(R(Au)).

If we letv = Au and take the Laplacian of equation (3.4), we obtain the following equation

for v:
(3.5) Vi = —A%(R(V)).

In the rest of this section, we will study the discrete version of equation (3.5), dilf [for

a large class of diusivitiesR, whered € N* is the spatial dimension.

3.2.2 The scheme

We work on a uniform discretization of the domain ' and lets = % denote
the grid size in each of the coordinate directions. Consider the unit-spaced lattice
{0,1,--- ,N—1}% and leti € L be the vectorig,--- ,ij,- - ,ig) € L corresponding to the
point (&, - - 'N‘ .-+, 4} in [0, 1]%. Define the discrete Laplacian operafgroperating on

the grid functionv at the point € LL to be

d
. E + -
A5V| = DJ,6D],5\/|’
=1

where
D v = Vi+e,- -V, 3 Vig, Jj+Leig — Vig, e oid
ot o o ’

and
D- v = Vi — Vi—ej 3 Vig, Jjoeeiid Vi1,~~-,ij—1,~~~ Jdd
ot o o ’

are forward and backwardftierence quotients respectively, in tjtk coordinate direction,

for 1 < j < d. The “fourth order” discrete system that we consider is the following natural
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spatial finite diference discretization of (3.5)

(3.6) % = -A2(R(v)), i e L.

This discrete in space, continuum in time version of (3.5) is equivalent to the discretization
of the You-Kaveh model used in practice in image processing applications.
We impose periodic boundary conditions on (3.6), which means that we identify the
lattice L with Z% on which for any integer & i; < N-1andkj € Z,0< j < N -1, the
point (i, + KyN, - -- ,ig + kgN) is identified with (1, - - ,1g). This periodicity ensures that
the dynamics of (3.6) leave the total mass
(37) pim s
el
unchanged. This system also has a non-increasing energy
39) £0) = 5 2 f),
ieL

where the density functioh is defined as

(3.9) f(x) = f RE)de.

for x € R. For smooth and strictly convex energy densitiesolutions generated by the
scheme (3.6) would be expected to convergeh(as 0*) to the solution of the parabolic
PDE (3.5) on [01]%, with periodic boundary conditions. In this thesis, however, we con-
sidernon-convexven energy densitigsthat satisfyf (x) > n|x|* for some constant > 0,

a € [0,1], and all|x| large enough. Moreover, for > 0, the functionsf will be assumed

to be strictly convex near 0, concave for largeand have only one inflection poihbt> 0.

By symmetry+b are the two inflection points of onR. Since (3.5) can be expanded as

Vi = —A’(R(V)) = —R(V)AV + F(v, Vv, V3, Vi) |
Lower Order Terms
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we see that equation (3.5) becomes backward parabolic wheRévek 0, which occurs
whenevely| is large enough. Consequently, there is no complete well-posedness theory

for equation (3.5). Furthermore, we make the following assumptiori& on
1. R: R — Ris smooth,
2. R(x) > 0on[-b,b[,
3. R(X) <0on]—oco0,—b[ | ]b, [, and

4. R(0) < limy_, .0 R(X).

In image processing applications, a common choice for thasivity R is

X
1+ (g)z

which corresponds to the choice@given in (1.8b). The corresponding density function

(3.10) R(X) =

f of (3.10) is the logarithmic density function

(3.11) foozgm(u(gfyb>o.

However, other choices &t leading to backwards parabolic behavior are regularly used
in applications. The practical implications of the choice of théudivity R on results has
often been raised in the engineering literature (see e.g. [78]) and is still a current topic of
research. As an illustration, Figure 3.2 shows the graph &andR’, where the density

function f is asin (3.11).
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Figure 3.2:Functionsf, RandR’ with R(X) = iz andf(x) = %In(1+ xz). The changes in concavity of the functiénwhich
occur atx1, are shown by the two dotted vertical lines.

3.2.3 Terminology and basic setup

The system (3.6) is gradient descent for the ené&rgiefined in (3.8) with respect to

the discretedH=2 norm. This norm can be expressed by duality as

(3.12) IMIn-2 = {S;;lp% Z(Vi — )i : % Z (As(¢))? < 1}.

ieL ieL
If the initial data of (3.6) satisfieg € ] — b, b[ so that it lies completely in the forward
parabolic regime, the evolution proceeds as a typical parabolic smoothing, at least for

small time. If on the other hand the initial data’s mean valisatisfies
lul > b,

then part of the mass of the data sits in the ill-posed regimed —b[ | ]b, oo[ for all
time, due to the conservation of mass. In this case, instabilities in the fospikés

rapidly develop from the initial data and start to interact, gradually decreasing in number
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but growing in size. These spikes are located at the grid points where the solution exceeds

the parabolicity threshold. We therefore use the following terminology:
There is aspikeat the j-th grid point if|vj| > b.

Each spike is supported by one grid-point and remains at that grid location during the entire
evolution of the equation. However, while the location of each spike is fixed, their height
varies. Each spike either grows, or shrinks, and may eventually disappear as its mass is
absorbed by others. Indeed, the concavityfain ] — co, —b[ |J ]b, o[ encourages the
accumulation of mass into fewer and higher spikes during the evolution. Smaller spikes
thus get absorbed into larger ones until, generically, only one spike containing most of
the mass remains; this is what we mean by coarsening of the system in this thesis. An
example of this coarsening is shown in Figure 3.3. During the evolution, the average
distance between spikes is observed to increase, and constitutes a natural length scale for
the system.

The length scald. should be inversely proportional to the number of spikeand

therefore should behave something like

(3.13) L~

wherep > 0 may depend on the spatial dimension. In addition, sincean increasing
function of |v| for v € R, most of the energy is initially contained in the spikes, which
suggests

K”
(3.14) E~ @

wherey > 0. Bothy andpg are parameters to be identified. The interpolation inequality

that we need relates the enefgyand the length scale in a one-sided version of

ELs ~ C(N),
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Figure 3.3:0ne dimensional evolution of (3.6) fo¢ = 150 and initial solution;(0) =  + 1072 sinrx) with x € [0, 1]. The solution
quickly forms spikes whose number decreases as some of them shrink and disappear, while others grow taller to preserve
the total mass.

whereC(N) is a constant depending only & So if we had a length scale that be-
haved as in equation (3.13), we could then use the relation (3.14) to immediately have the
interpolation inequality

y 1
ELs ~ W

A natural choice for the length scale quantitys thereforel. = K—lﬂ but the decay relation

would then be hard to prove since it reladésandSE, and thus would involve dierentiat-

ing L = & which is a discrete function of time. For these reasons, we choose
(3.15) L = IMlk-2,

which is motivated by the fact that the system (3.6) is gradient descent for the dhergy

defined in (3.8) with respect to the discréte? norm. This choice is also similar to length
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scales used in [34, 58, 59, 74]. In particulas given in (3.15) will imply the following

scaling between the length scalend the number of spikdé

L forl<d<3,
L~ K

1
7 ford > 4.

In the next section, we will study the stability of all the steady state solutions of the one
dimensional system in the case of the logarithmic density function (3.11). The results
show that solutions with more than two spikes, together with the constant solution equal
to b or —b (depending on the sign @f), are unstable. The single spike solution (obtained
when|u| > b) and the constant solution with values ir b, b[ (obtained wherju| < b)

are both stable. We note that these stability results can easily be generalized to the more

general density functionkthat are considered in this thesis.

3.2.4 Stability of stationary states

In the one dimensional case, the scheme becomes

(3.16) Y D RM). 0=iN-1.
where
+ Viyl — Vi
hVi = 5 s
and
Vi — Vi_
DHVi — i 6| 1’

are forward and backwardftirence quotients.

Steady states

To find the steady states of (3.16) we need to solve

%:O,Vie[O,---,N—l],
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(D;D;)*(R(w)) =0, ¥ie[0,--- ,N-1].
Using the periodic boundary conditions we obtain
(3.17) Rv)=C, Vie[0,--- ,N—-1],

whereC € R is a constant. Since the rangef R(s) = TS%Z onR is [—g, g] we see
b

that-2 < C < 2. We now consider three fierent cases:

1.

@

=0
Thenv; = 0Vi € [0,---,N — 1], which violates the conservation of mass (3.7) for

u # 0. Thus ifu # 0,v = 0 is not a feasible solution.

If u = 0 however, the solution = 0 is asymptotically stable.

(a) If C =2, thenv; = b, Vi€ [0,--- ,N - 1].
(b) If C = -2, thenv; = -b,¥iec[0,--- ,N-1].
3.0<C<%or-2<C<0.
(a) If 0 < C < 2, then (3.17) has two solutions that we callandv_, with
O<Vv_.<b<v, <o
Also the conditiorR(v_) = R(v,) gives
— b2

3.18 L=
(3.18) Vi = o

Now we defineK (1 < K < N - 1) to be the number of grid points that have the

valuev,. Conservation of mass (3.7) then implies

(3.19) Kv, + (N - K)v_ = Npu.
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We note that foilK = 0, the steady state solution is just the constant solution
with valuev_ = u, which happens when @ u < b. Similarly, whenK = N,

the steady state is the constant solution with value- u, which occurs when
u>b. For1< K < N -1, we use equations (3.18) and (3.19) to solvevfor

andv, and obtain the following result:

Under the conditio: > ucn With pn = 25 we have the existence of

two real solutions, andv_ with value

Npe+ V/(N)2—4K (N-K)b2

2K ?

V+ =

(3.20)

N V() 2—4K (N-K)b?

Vo= 2(N-K)
(b) If -2 < C < 0, (3.17) has two solutions that we callandv_, with —c0 < v, <
—b < v_ < 0. Using similar calculations we obtain the following:

For 1< K < N -1, and under the conditign< —ug N, we have the existence of

two real solutions, andv_ with value

N— V/(Np)2—4K (N-K)b?

V+ = 2K ’

(3.21)
Nyt V/(N)2—4K (N-K)b2

V- = 2(N-K)

For K = 0, the steady state solution is the constant solution with value u,
which happens in the casé < u < 0, and forK = N, the steady state is the

constant solution with value, = u, which occurs whep < —b.

So the steady states of equation (3.16) are veetwish K grid points with values,

and (N - K) grid points with values_, for 1 < K < N—-1. The condition o ensures
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the existence of, andv_ as real solutions. lfu| < uxn for 1 < K < N -1, there
are no real solutiong, andv_. The steady state solution wi = 0O is the constant
solutionv = u, which occurs whefju| < b. Similarly, the steady state solution with
K = N is the constant solution = g, in the caséu| > b. Note thatux y < b, for all

0 < K < N. ugn isonly needed for X K < N -1, butitis also defined foKk = 0

andK = N. In particularuon = unn = O.

Lemma lll.1. Supposéu| > uyn and let v be as in(3.20)or (3.21)for K = 1, namely

_Nu- VNP -AN-DF N (Ne? - AN - D

V- 2IN-1) Fyv-= 2N-1)
Then

(N - 1)V < b%

Proof: For eitherv_ above, we obtain after simplification

__2 g g AN-DRR L
(N-1\ = Al((l\’]‘;:)%) [1 \/1 N2 ] b2,

with 0 < 0= < . Now we consider the functiok(x) = %((1— V1-b?x) where

X €]0, é[. Since the range of the functidnis ]b—z, b?[, Vx €]O, b—lz[, we obtain

4(N - 1) _
Zk( (N2 )— b? = (N - V2 < b?,

which proves the lemmano

We note that ik = 1 andju| = 1N then N — 1)V = b?, leading to

(3.22) vV, =bVN-1landv_ =

Stability analysis

In this section, we study the stability of the steady states using energy based arguments

that easily generalize to higher dimensions. In [98], Witetskal. studied the stability
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of the steady states of a similar system using linearization. Their analysis was done in the

one dimensional case only.
Proposition I11.2. Equilibrium solutions with K> 2 are unstable.
For the proof, we refer to the one of Proposition 4 in Witekskal. [98].

Proposition 11.3. For |u| < b, the equilibrium solution with K= 0 (i.e., y = V_ = g,

Yiel0,---,N-1])is stable.
Proof:We prove this result by considering the energy functional (3.8)
l N-1
B0 = 2, T

wheref is as in (3.9), and checking whether any perturbation of the constant steady state

v_ can result in a decrease in energy. We thus consider the minimization problem

N-1 N-1
1
i 2 ‘ v )2 —y —
(3.23) mvlnE(v) suchthat » (v —v.)° <eand N éo Vi = V. =p,

i=0
for e > 0. Suppose the minimum of the energy is reached at a cartaivhich is not
constant, i.e.d iy andiz € [0,--- , N — 1] such that/" is the smallest valuey) the largest
value, and? # V.
Now definev™ as
vV Yie[0,--- ,N=1]\{ig, iz}

W=q v if i =iy

vir ifi=ip.
Trivially E(v™) = E(V™). Now we choose small enough so that none of the values/df

reside outside the intervaH b, b[, namely

MY <b,Viel0, - ,N-1].
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Sincef is strictly convex on } b, b[, we have

f(VP_;W):%(f(vp)+f(v%i)), Viel0, - N 1]\ fiial,

() = () < B )+ e o).

and similarly fori = i,. We therefore obtain

() < 3 €W+ B = 0
contradicting the assumption thdt achieves the minimum of the energy. The constant

solution is therefore the only one that minimizes the energy and thus is asymptotically

stable. o

Proposition 111.4. Assume N> 3. For u = b, the constant equilibrium solutionx b is

unstable. Similarly, fon = —b the constant equilibrium solution=v —b is unstable.

Proof: We prove the lemma for the constant solutos b. The proof forv = —bis
analogous. We choose an intedére [2, N — 1] and perturb the equilibrium solution in
the following way: we increase one grid point frdimo b + € and decreas® other grid
points fromb to b — ¢/M wheree > 0 will be determined later. The remaining grid points
have valueb. We define/® to be the constant solution equalld@nd byve the perturbed

. M+1
solution. We note thahv —V°||; = 4/ NJI:/I €.

Now we will show that decreases the energy, i.e.,

(3.24) V¥ M € [2,N —1],3 € > 0 such thaE(v) < E(\°).
Calculating the energy for botf andv¢ we obtain

E(V) = f(b),
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E(V) = %((N ~ M - 1)f(b) + Mf(b—%)+ f(b+e)).

Subtractingg(V°) from E(v) , we obtain

E(v) - E(P) = %((Mf(b— <)+ 1o+ e))— (M + 1)f (b)) = %

whereZ(e) = (Mf(b— ) + f(b+€)) — (M + 1)f (b).

We now show thafl € > 0 such that'(e) < 0. Replacingf by its expression we obtain

o= 3m(o-gi el ) (2050 36)))=5meCE))

X

M
whereg(X) = (1 vk %(ﬁ)z) 1+ x+ X—zz) for x > 0. ¢ satisfies the following properties

onR*:
¢(X) < 1forxe]O,M —1].

This therefore implies that

3 € €]0,b(M - 1)[, such that(g) <1,

and thus shows (3.24)z

Proposition I11.5. If |u| > uan, then the equilibrium solution with K 1is asymptotically

stable. Iflu| = u1x, then the equilibrium solution with K 1 is unstable.

Proof: We considey positive but the proof fon negative is completely similar.

Let u > uin. We defineV® to be the equilibrium solution ang the grid point at
which\° takes the valug,. Recall that since® is the equilibrium solution foK = 1 and

M= HIN, v,O =v_foralli # ip. Consider the minimization problem
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N-1 N-1
min E(v) such thatZ(vi -W)? < eand Z Vi = Np,
\
i=0 i=0

with € > 0.
We first consider all perturbations that onljesct the (N — 1) grid points with valuer_.

In this case, we can use the analysis don&fer 0 since the mass of th&l- 1) perturbed

grid points is preserved. We therefore know that the minimum of the energy is reached

when the N - 1) grid points have the same constant value

Now we consider all the perturbations that also perturb the grid poigt &fe define
%m # 0 to be the change of mass of the € 1) remaining grid points. The value of the
grid point atip is nowv, + 6,,. Since the value of this grid point is determined for each
om, We can look at all the perturbations that change the mass othel] remaining grid
points by%m. Here again, we can apply the analysis donefe O with the condition on

the mass in equation (3.23) replaced by

1 N-1 Om
N2V TR

i#ig
since we choose small enough so that the perturbed € 1) grid points stay strictly

between-b andb. We can therefore conclude that the energy is minimized if the ()

remaining grid points have a constant vale— ,f—[”l Consequently the solution that

minimizes the energy witk, = v, + o IS

V,+0m Ifi=ig
V_—m I # lg.

Now we consider the energy associated to the solwfon

E(V’) =

(f(v+ +6m) + (N = D)f (v_ _ _Om ))

1
N N-1
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Differentiating with respect i@, and evaluating af,, = 0 gives

dE(P)
dém om=0

1
= RV —R(v-)) =0,

sinceR(v_) = R(v,). Differentiating again with respect &, and evaluating ai,, = 0 we

obtain
d?E(vP)
déz,

1( 1 V2
om=0 N

N_1 b—é) RI(v-).

o NoOw suppose: > ujn-

Using Lemma I11.1 we know thagl; — kv)_zz > 0, which shows that

PE(WVP)
do2,

om=0

Thus the solution® is asymptotically stable.

e NOW SUPpOS@ = u1 .

In this case, as noted at the end of Lemma Ill.1, we have

(N -1V = P2
which leads to
d’E(vP) 1( 1 V2
ds2, lsw=0 N(N -1 E)R/(V‘) =0

Continuing to diferentiate, we look at the third derivative of the energy with respect
to 6, and obtain

PEWP)
do3,

1(_, 1,
50 = N (R, (V+) - mR, (V_)) .

Using the expressions for, andv_ in (3.22) we obtain

C2YNZIN-2  2(N-2)
om=0  bN® N-1 pN3VN-1

d*E(vP)
a2

which is strictly positive foN > 3. The steady stat# is therefore a saddle point in

the energy landscape and thus is unstahbie.
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Remark. The stability analysis carried out for the one dimensional system can easily
be generalized to thd dimensional system, for any € N*, since it is only based on

energy arguments which do not depend on the dimension.

3.3 Upper bounds on the coarsening rate of You-Kaveh type models

Following [37], we introduce the model density functions

0 fO<|x<b
(3.25) Fo(X) =

IXx—Dbl* if |x > b,
whereb > 0 anda € [0, 1[. Our results are obtained for general density functibasyF,,
for some constany > 0. Without loss of generality, we work with positive initial data,

i.e.,Vvi(0) >0, foralli e L.

For the statement of Theorem II1.6, we introduce the following functions:

4-d(1-a)
_ 4d(1-0) _ TEaid
2 wmdr o (4 “)+4)d(1 7ifl <d <3,

o= O—(d) _ 4-d(1-a)
_4-a) (o \2% i
= (T if d> 4,
and d(1-a)
4-d(1-o
di-0) (g(1-a)+4\ 2a)
22(1-a) (Z?Ta)m if d > 4.

Theorem 111.6. Let d € N* and f be the energy density function such that F, for
somen > 0, where F, is defined in(3.25) Let E be as in(3.8), where v is the solution of

(3.6). Assume: > b and

1 nE-b)y

E(O) < 12 lu2(1—a)

Then there exist universal constanis€Coo and G, < oo, such that, if we let Tbe as

4+d(1-a)

o Nd(l—a)L(o)T ifl<d< 3,

1-a
CI

(3.26) T.=T.(d) =
Cf—“ N4(1—(z)|_(0)2(2—(z) ifd >4,
h

we have
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e lfl<d<3,

T . )
% f Ezdtzcrcffél“-‘)” [(N“T)-d?ff%] ,
0

provided T> T..

o Ifd > 4,

1 (7 21-0) 2
= f E%dt> oC > [(N*T) 5],
T Jo

provided T> T..

The constants Gand G, are given by the interpolation inequaliti€3.28)and (3.29)re-
spectively.
3.3.1 Decay relation

In this section, we establish the first ingredient for applying Kohn and Otto’s technique

to our problem, namely the decay relation, also called the dissipation inequality.

NI

Lemma lll.7. |9 < (-9E)°.

Proof: Since the system (3.6) is gradient descent for the enérgjth respect to the
discreteH 2 norm, we can write

Vt = _VvE,

where the gradient is defined with respect to the disdfetenorm. Differentiatinge with

respect td, we get
dE

gt = VB VoR= = —IIvillf -

Now differentiatingL® = |vi|2,_, with respect td, we obtain

dL
'ZLE‘ = 21V Vort2l < 2Nl 2Vl = 2LIN 2,
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using the Cauchy-Schwartz inequality. We therefore obtain
5] < e = (-5 %
dt| =" T Tat )

thus proving the lemman
3.3.2 Interpolation inequality

In this section, we establish the second ingredient for applying Kohn and Otto’s tech-

nique to our problem: the interpolation inequality.

Lemmalll.8. Letthe length scale L be defined ag31l5)and letu > b. Assume & 5F,
for some constami > O anda € [0, 1]. Let the energy E be defined ag8$8), where v is

the solution of(3.6), and assume

1 nu—b)**
Then
e lfl1<d<3
(3.28) Eral? > %

for some ¢ > 0 depending only op, b anda.

o ifd>4

Ch

=12
(3.29) EreLl® > N&°

for some G > 0 depending only op, b anda.
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We write Eg_, the energy associated to the energy density funétjotefined in (3.25).
Note that it stfices to consider the case= F, since if an interpolation inequalie, L? >
6 > 0 holds, andf > 5F,, thenEL? > nd. Similarly, the conditionE < Cz implies
Er, < C. We therefore prove the interpolation inequality for the chseF,,. In the proof,
we write E for Eg,. Asin [37], we prove the interpolation inequality in two steps and start
by showing that the typicalositivespike height is greater tha®rs in Lemma 111.9. We
note that Lemma 111.9 is similar to Lemma 4 in [37], except that here we only consider
the largepositivespikes. If Lemma I11.9 was the direct extension of Lemma 4 in [37], we

would have considered all the large spikes (i.e., both negative and positive).

Lemma lll.9. Define the typical positive spike height h as
b\
(3.30) h:= (“;) =2=3

Define also the two sef, andS, consisting of the large positive spikes, and points where

the solution yis less than b (i.e. negative spikes and non spikes) respectively:

(3.31) Sip {fieL:vi—b>h},

andSy, = {ielL:vi<b}.
Then

u—-b
3 2

Y w-bs

i:b<vi<b+h

and thus

> bz b

ieSipU Sip
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Proof:

(Vi —b)

i:b<vi<b+h i:b<vi<b+h

. hyl-« AN
iibinvgt))grh(vl b) Z (Vi —b)

(v = B (v — )~

IA

izb<vi<b+h

IA

e Y v
i:b<vi<b+h
de,, —

Ndhl—aE — N (/; b)

IA

Thus using the conservation of mass

o> et > Mi-b=p-b

i€SipU Sip i;b<vi<b+h

we obtain

23 w-b)

& -ty > (u-b)

i€S|pU Sip i:b<vi<b+h

2
S -b).

\%

This finishes the proofo

In the proof of the interpolation inequality, we need to show that the proportion of large
positive spikes is bounded from above py For clarity purposes, we put this result in
Lemma [11.10. We note that in the second order case (see [37]), since theidgasitive
for all times, Lemma I11.10 is simply the Chebyshev inequality. For higher order cases
however, the result is slightly more complicated to prove due to the loss of positivity in the

data.
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Lemma 111.10. Let the typical positive spike height h be defined agiB80)and let the
set of large positive spikes, be defined as i(3.31) We defingS;,| to be the number of

large positive spikes. Then

Proof:

E = o >

i:lvil>b
1
> >
ivi>b+h
Sipl o ISl

Using the definition ofin (3.30), we obtain

1 - b ﬁ Nd 1?10
3 [Sipl

and thus

ISiplh < (‘%3) N < %Nd <N%. o

Proof of Lemma Il1.8:

To estimate. = ||V||y-2, we make use of its duality definition given in (3.12). In partic-

ular, recall from (3.12)

x iV — 1)
lleollnz

(3.32) L>

where||<,o||ﬁ|2 = % Yo (As@i)®. We also note that the smallness condition (3.27)Eon

implies

(3.33) h> 4t 2
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Caselletl<d<3.
In this case, we use a test functipradapted to the large positive spikes. To construct
this test function we consider a functioh € C?° (Rd,R+), with support contained in

d
[—%, %] andL! norm equal to 1, e.g.

Coe(%:'x'zj if x| < 1
F(X) =
0 if x| > 2,

where the constai@, is chosen such thzjj%d F(x)dx=1. We also let

d

b

(3.34) k:Kﬁ@fh+g

whereh is the typical positive spike height defined in (3.30). The intégerrelated to the
radius (in number of grid points) of the cube on which the rescaled version of the function
F will be supported.

Forp=(pw. -, Pa) € Sipandj € {1,2,---,d}, we define the s3] as

where|r — gy = min,y Ir — s+ ¢N] is the distance moduld between the integersands

in{0,1,---,N—1}. Now forme N* andpin S,, we define the cub@y(p) as
(3.35) Qm(p) :=S"x--- x S

In other words@n(p) is the cube of radius (in number of grid points) centered at the
large positive spike located pte S,. The cubaQm(p) thus contains @+ 1) grid points.
We now assumkis divisible by 4 (if not, the proof follows similarly witl§ and'g replaced
by |%] and 2 ¥| respectively), and define the two s&tsandz, as

X = U Q«(p),

p€S|p
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and

2= | y(p).

PeSip
¥, is the union of all the cubes of radilﬁscentered at the large positive spikes, ands

the union of all the cubes of radit%scentered at the large positive spik&s.is therefore
a dilated version of4, with dilation factor 2.

We now consider the restriction of the functignon its supporf-3, %]d and rescaleitby a
factor of &Y on [—% %]d The rescaled versioﬁ(%x) defined or{—%, %]d is then extended

to RY by periodicity with period 1. We defin%(%x) to be the extended function. We

now define the vectoF onZ® as

L d
The normalization fact((r%) ensures that

1
8 2T = Flnesy = 1

i€l

By construction, the support of the restricted vectoto the latticelL is contained in the

cubeQ%(O). Moreover since? is proportional toh, which is an increasing quantity, we

see that the size of the support of the vedtoalso increases as the system coarsens.
The test functiorp is now defined on the lattide, as the discrete circular convolution

between the vectof and the characteristic function of the 3gt

(3.36) %ﬂ%%%ﬁﬁ+mﬂdb
Je

Claim:
1 ifies,

(3.37) Gi=10 ifie(@)

a; else, where @ g < 1.
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For clarity purposes, the proof of the claim is provided at the end of the section. Figures

3.4 and 3.5 illustrate the construction of the test functon the one dimensional case.

Characteristic function of = 5 L .
1 Example of the construction of the test function in dimension 1
T = T B T = =

‘
0.8 08f
041 04r
0 H N N ‘ i . E 0 H Z, ‘ F— I
0 100 200 300 400 500 600 700 800 900 1000 [ 100 200 300 400 500 600 700 800 900 1000
X X

Figure 3.4:Characteristic function of the s&h. The dashed Figure 3.5:The dashed lines represent the locations of the large
lines represent the locations of the large positive positive spikes.
spikes.

Remark 1 As in [37], the test functiop is chosen to be as flat as possible, but localized
enough for the term (3.38) to dominate (3.39) in the estimation of the lengthlscale

We first bound the numerator of (3.32) from below and estimate

1 1
Nd Z Vigi 2 INE Z(Vi - Dby
el el
= G W=D T (= bgi+ g > - bl
(3.38) i€Sip i:b<vi<b+h i€Sip
1
> D, Mi-b
i€S|pU Sip

> %(/u —b) (using Lemma lll.9.

Remark 2 The properties op given in (3.37) show that the support of the test function

is a subset of, with ¢ vanishing at the boundaries Bf. We can therefore write

o = (s,)i % Z (=) Fizj | < (xs)is 1€ L

jeQ (i)
4
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We therefore estimate

5D < g ) ()

el i€l

5%221

peSip ieQ%(p)

2
(3.39) < “de (by Lemma I11.1Q

_ 2 _
< pob W (usingkd < 'u4—2bh + 1 from (3.34)
i

4 h
u—-b (1 = , L 7
<=t (4) (1 —b) (usmgh > 41 ) from (3.33))
b
2

which combined with (3.38) gives

(3.40) > s 2 M0

ieL

We now estimate thel?> norm ofy and first obtain a pointwise upper bound|agp;:

1
IAsil = |(rs,)i Ne Z (rs1)j AsFij

JeQ (1)
1
< (g D, 100m); AT
JeQ (1)
2N\ 1
o) e 2 [ A

jeQk (M)
4

2NV 1
< (ys)i ) Ne Z

jeQx (i)
S

1
2

jeQk (0)
4

= (XZz)i

A% i—j'

2

= (Xzz)i L

87

SHA?”LI(RUYR-F)

2N\?
< (=) (T) IAF 1 1(ra R +)-
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For clarity, we letCy = 4/|AF || 1zar+) and estimate thel2 norm ofp:

5 ()

i€l

{30 Lt

el

(%)4$ D [s,incez2 = Qg(p)]

peSip ieQ%(p) peSip

IA

2
2]

IA

IA
@)
Y

Thus

ISip|
Nd

IA

llllf e CIN*Kk™
2
Kt

- N** (by Lemma I11.10

IA

IA

h (u - b)h 4y
4/12 g_l N4
) i

C2 2 \al —
H 1N4( 4u ) (usingkd > K thfrom (3.34)since kd <4

IA

C2
M 1(/1—b

The final estimate is

N2
(3.41) etz <2

-
with 8 = C, w/N(;‘“T;)g‘l.

d
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Now using the definition ok, we have

L=Vl > :
Mly-2 > NdZ( u)M

|eIL,

> 6ﬂN2('u b) (using (3.41) and (3.40)
_2 2
Eai (u - bywtatt L
= 2 il 3 ¥ (using the definition ohin (3.30)
AET@
= N2 .
b atlzfaj*l . d . . .
wheread = %% Now, lettingC, = A2, we can write the above inequality as
3dT-a) g
(3.42) EfLd > %

which proves the first part of Lemma 111.8.

Remark 3 The particular profile of the test functigndoes not play much of a role in
the determination of the coarsening rate. What matters is how the support of the smooth
function ¥ scales withk, and througtk, h. In fact, any function in the space°(R9,R*)
will give the same coarsening rate. We also note that this constructifarsdirom the
constructions given in [34] and [37]. In particular, it makes more transparent how the
spatial dimensiom and the order of the equatiancompletely determine the coarsening
rate.

Case 2 Letd > 4.

In this case we define the test functigron the latticel. as the characteristic function
of the set of large positive spik€g,, namelyy = xs,,. We remark that contrary to the low

dimensional case (% d < 3), the test function is chosen to be supported on single spikes.
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We first estimate it$12 norm

8|S|pld
el < s
4
< SdEI K (using Lemma 111.10,
and obtain
(3.43) llelle < 2N2 %.
Now we estimate
1 1
Nd D Mi—pe = Nd D Wi—p)
ielL i€Sip
1 Sipl
2 o 0D —ae
i€Sip
1 u? .
> Nd Z (vi —b)— m (using Lemma 111.10
ieSipU Sip
2 w2 .
> é(,u - b) - m (using Lemma 1.9
_ 2
> %(]J - b) - ’l%fb (usingh > 475 (ﬂﬂ_ ) from (3.33))
5
> 1—2(,u -b).
Therefore
1 5
(3.44) g 2 =i = o= b).

ielL

Combining estimates (3.43) and (3.44), we obtain

1
m Z(Vi — )i

i€l

5(4 — b) \ﬁ
24+/2dN2 \

(i~ b ETD
~J

24\ /6duNz2

L = IMls-2

\%

v

(using the definition oh in (3.30)).
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3-2a
Letting Cy, = 242, we can write the above inequality as
1 Ch
(3.45) Eral? > N

which proves the second part of Lemma III.8.

Combining the decay relation with the interpolation inequality, and using Kohn and

Otto’s ODE argument [58], we obtain the result of Theorem III.6.

Proof of the claim

By construction, 0< ¢; < 1 for alli € L. We havey; > 0 because it is the sum of
positive quantities, ang; < 1 because the vectdr is normalized to sum up to 1. Also

we note thaty; can be written as

1
T D )i B

jeQi (i)
1
since the support of the restricted vecfoto the latticeL is contained in the cub®x (0).
e Now suppose € Sjp. SinceX; = Upeg, Q«(p), we know thaiQ«(i) c X, which

implies (ys,)j =1for j e Q%(i). Thusy; simplifies to

G=r O Fissn O Fi=sm Y, Fi=1
je

i@y jeay 0 (-4 41 )
e Now suppose € (202)0. Since; is a dilated version by 2 d,;, we have by construc-
tion
.o : o k
Foralli € (Z)°andj € Xy, lig— jgIn > 7 foralll1<qg<d.
Therefore, ifi € (202)‘3, we haan%(i) C (Z1)¢ which implies 5,); = 0 for j € Q% ().

Thus

1
¢ = \d D, s Fij=0. O

1€Qk ()
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3.3.3 Rigorous result in terms of the spike density

In this section, we establish the rigorous result of Theorem 1l1.6 in terms of the spike
density. In other words, we show that for a certain interval of time, namely until the spike
density gets low, the time-average of the spike density is bounded from below by a function
of time that decays with the rate indicated by the one obtained in Theorem l111.6.

We introduce the following notation. L&t(t) be the number of spikes at tiheand let

T. be as in (3.26). Define aldgT) to be

(3.46) I(T) = f (%)2(1_0) dt.

Corollary 1l11.11. Lety €]0, 1[. Assume there exists a constant 0 such that {x) < 9|x|*

for all |x| large enough, and assume also thaits large enough such that(f) < ou°. If

[(T.) > v, then define Tto be the first time at which | equajsi.e.,
T =minft> T, : I(t) = y}.

Then for T € [T, T*] and under the assumptions of Theorem I11.6, there exist constants

C, < o and G < oo, such that

I(T) 2 Gy [(N*Ty ]

o Ifd >4,

I(T) = G [Ty 2] 7.

Proof: Let S be the set of spikes and suppd$€.) > y, which by definition implies
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I(T) >y forT € [T., T*]. We define the energy of the spikEs to be

Es = = > f(w)

ieS

and the energy of the non-spikEgs to be

1
Ens = g 2 f():

ieL\S
wheref is the energy density function. Théh= Eys + Es. We also define the mass of
. 1 . 1
the spikes to bes = Nd Zvi and the mass of the non-spikes to/hg = N@ Z Vi.

ieS ieL\S
We easily see that

Ens = % D (W) < f(o).

i:lvil<b

1
Es < max{ES : WZV‘ :,us}.

ieS

For Es, we have

Using the concavity of the functioh for |x| > b, we can show that the maximum of the

energyEs is reached when all the spikes have the same hgigjlat Nl"s, assuming their

massus is fixed. Moreover, since the heights of the non-spikes is always greatertan

we can bound their maggs from below as
K
MNS = —(1— W)b’

and deduce that
Nd,us
K

d
SN?(/u+b)—b.

Therefore

IA

K . (Nd

f(b)+9%(N?d(y+b)—b)a (sinceN?d(p+b)—b>p).

IA

IA

f(b) + 0£ 2N—OI ' (sinceb + u < 2u)
1-a

= f(b)+ (2@“9(%)
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Squaring both sides, we obtain

E2 < Z(f(b)z + (2u)*6° (%)Z(m)’

whose time-average satisfies

T K 2(1-a) 1 T
I(T) = ]g (xs) dtz o (Jg Ezdt—2f(b)2),

where,(0) = 22+¢?, If T € [T,,T*], we have by assumption th&T) > y, which

implies

2
—fl(fe()b:z < LO)I(T),

with Ap(y) = yflf((;fm. Moreover, ifT € [T., T*], we can apply Theorem I11.6 and therefore

obtain )
oGt [(N“T)‘mr if1<d<3,
I(T) > (1+ﬂz(72f;1{529)u
e [(NT) BT ifd >4
This finishes the proofo

Remark. Sincel (T*) = v, we can bound * from below by

d(1-a)+4

8(1-a) 2d(1-a)
0 oc T ifl<d<3
= < <

1 TI 2Z4a/120927+f(b)25 I — —
T > —

~ N4 2(1-a) 2(21_12)
TO= | %o ifd> 4
h 2i4";12‘702y+f(b)2i =

20+d(1

Foru large,C, (3.42) scales likex ceon andCy, (3.45) scales Iikeﬁ%ﬁ, which implies

d(1-e)+4

dnrda-a) ) 2 P

Z+d(1-a)

TPN[%) andT? ’“(%) :
yu? + f(b) yu* + f(b)

Sincey is fixed, we can choosg> 0 such thayu? = O(1) and obtain

0 2(20+d(1-a))

2-a
To~p~ a andT? ~ uTe.

Since both exponenf2:e-2) andZ< are greater or equal to 2 for anye [0, 1[, we see

thatT? andT? can be very large. ThuB* can be very large, which implies that Corollary

[11.11 can be valid for a very long time.
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3.4 Upper bounds on coarsening for th&n-th order equations

3.4.1 Equations and scheme

More generally, we study the followinghzh order equation
(3.47) v = (1" ANRV)),
for n € N*. We note that fon even, equation (3.47) is closely related to equation (3.2)
U = —A2(R(A2U(X))).

Taking the Laplacian raised ®of both sides of equation (3.2) and setting: Azu, we
see thaw satisfies (3.47) it satisfies (3.2). Fon odd, the connection is only true in the

one dimensional case. To see that let’s recall the one dimensional equation (3.2)
(3.48) U = O5R(ZU(X)).

Taking n partial derivatives irx of both sides of equation (3.48) and setting dju, we
see thav satisfies the one dimensional equation (3.4 1)shtisfies (3.48).
We now discretize (3.47) on the same grid]{¥, and consider the systewnsatisfying

the system of ODEs
dV, n+1 n H
(3.49) gr = CUT(A) (Rw), TeL.

We recall that we use periodic boundary conditions. Like (3.6), the system (3.49) is gradi-

ent descent for the enerdydefined in (3.8) with respect to the discréte” norm

{SUp¢ e (V-0 s S (B0 ) < 1} if nis even,

Mo o= iy 2
{sup¢ i T — 06 1 i Tiee (Vo | ] < 1} f nis odd.

Like (3.6), if the initial data has some mass in the ill-posed regime, the evolution of (3.49)

gives rise to spikes whose coarsening behavior is very similar to the coarsening of (3.6).
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Thus we define our length scale quantitas
(350) L := | IVIl4-n.

When chosen this way, we see thascales with the number of spik&sas

. forl<d<2n-1,

ford > 2n.

s

3.4.2 Main result

We introduce the following functions

n-d(1-a)

_Ad0-a) - g(1-a)+2n W i
2™ Fhed(1-a) ( ) ifl<d<2n-1,

&= &(d) = e
4(1-a’ e 1
-5 (Z2)* if d>2n,
and d0-0) (d(1-a)+2n) 2]
d@-e) —a —a i
o 255 (Zn—d(l—a)) ifl<d<2n- 1,
p=p(d) =

2201-0) (22 )7 if d> 2n.

Theorem 111.12. Let d € N* and let f be the energy density function such that f#F,
for somen > 0, where F, is defined in(3.25) Let E be as in(3.8) where v is the solution
of (3.49) Assume: > b and

1 n(u—b)**
E(O) < 1—2 HZ(l—a)
Then there exist universal constafis< co andC;, < oo, such that, if we leT. be as

(3.51) . =T.(d) NI (O™ if1<d<2n-1,
=1, = |

£ _N2(-a)| (0)2@)  jfd > 2n,
Ch

we have

elfl<d<2n-1,

.
1 ~ 4n(-a) d1-a) 12
= | Btz 667 | (NAT) s |
T Jo =

provided T> T..
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e Ifd > 2n,
1 (M, . A N e
?fo E’dt> 5C, 2 [(N*'T) 2+ |,
provided T> T,.

The constant§, andC;, are given by the interpolation inequaliti€3.52) and (3.53) re-

spectively.

3.4.3 Decay relation and interpolation inequality

To prove Theorem II1.12, we use the same argument as in the fourth order case, and
establish a decay relation and an interpolation inequality. The decay relation remains the
same as in the fourth order case since it only relies on the gradient descent property of the

scheme. The dierence lies in the interpolation inequality.

Lemma 111.13. Let the length scale L be defined as(#150)and letuy > b. Assume
f > nF, for some constant > O anda € [0, 1]. Let the energy E be defined as($18)

where v is the solution 0f3.49) and assume

1 n—b)>
E(O) < 1—2 'uZ(l—a) .
Then
elfl<d<2n-1
1 .d él
(3.52) EmeLn > NG

for someC, > 0 depending only op, b, n anda.

e Ifd>2n
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n C
(3.53) Erel?> N—;

for someC,, > 0 depending only op, b, n ande.

Outline of the proof:This proof very closely follows the proof of Lemma Il.8. In

particular, we keep all the definitions introduced there, like the positive spike Height
and the number of grid points Lemmas 111.9 and 111.10 therefore remain true. We also
note that the only dierence between the general case and the fourth order case is in the
definition ofL. In particular, the choice of test functions remains the same as in the fourth

order case. Thus, estimates (3.40) and (3.44) still hold.

o letl<d<2n-1.

We define the test functiop as in (3.36) since the functiof is infinitely differen-
tiable, and estimate thid" norm of ¢ as in the fourth order case. In particul;y;|

is replaced b)KAE)goi‘ if nis even or'(V(;A?l)goi‘ if nis odd. The final estimate is

.
(3.54) Il < ﬁh—

d
whereh is defined in (3.30) ang is a constant depending only gnb, n and #.

Combining (3.54) with (3.40), we obtain

AE- s
L= M=
~ 27(1/ +1 - ~ ~ -
wherel = 147 _ ) etting €, = A7, we obtain
3d-a g
14 G
El—(r Ln 2 W'

e Letd > 2n.
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We consider the discrete functign= x5 as in the fourth order case. An estimate on

its H" norm gives

T(n)|Slp|d
llgllfn < TNo2

wherer(n) is a constant depending only on the order of derivatives. It can be worked
out exactly but its exact value does néfeat the bound on the coarsening rate. Using
the result of Lemma I11.10 we obtain

7(n)dN?"
(3.55) lplZn < %
Combining estimate (3.44) with (3.55) we show that
5(u — b)2@n E- 2@

12N" \/3rd

3-2¢
Letting G, = 242 we can write the above inequality as

L = Ml >

~

Erel2> 0
This finishes the proof of Lemma 111.132

We now establish the analogue of Corollary 111.11 andfiebe as in (3.51).

Corollary 111.14. Let I(T) be as in(3.46)and definel* as in Corollary 11.11, with T,
replaced byT,. Then under the assumptions of Theorem 111.12 and Corollary 111.11, for

T e [T., T+, there exist constants; < co andC, < co such that

elfl<d<2n-1,

1(T) > C; [(NZ”T)‘W]Z(H) :

e Ifd > 2n,

1(T) > G [Ny
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The proof is analogous to the one of Corollary I11.11.

3.5 Numerical evidence and discussion

In this section, we present numerical experiments for the fourth order (i.e., You-Kaveh)
and sixth order equation corroborating the rigorous statement of Corollary 111.14, and dis-

cuss some of the implications of this result in image processing applications.

3.5.1 Numerical results

We show the actual coarsening rate of (3.47) by discretizing the system of ODEs (3.49)
in time and solving it numerically as in [34, 37]. The graphs below show that the coars-
ening rate depends oN as our bounds indicate. We also note that our analysis does
not include the early time dynamics since our results only hold for later times. We let

G(V) = —AN(R(W)) and use the forward Euler method in time

VL
L - G(v).
ot

(3.56)
As in [37], we choose the following density functidn

(3.57) f(X) = (1+x9)2,

with a = % As an initial condition, we use a perturbationpf= 2. Using the result of
Corollary 111.11 and Corollary 111.14, we have

e In the fourth order case

d 2-2a
JCT( K )2—2ad c ((N“'T)m) forl<d<3
_— t>
d —2a
o \N ((T)=) ford > 4,
for some constar < oo.

e In the sixth order case

T K \2-20 ((NGT)«%%%)Z_ZQ fori<d<5
£ 1) e
0

N ((NeT)Z) ford > 6,
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for some constant < co.

In the figures below we show loglog plots of the spike denﬁ%twf the solution of
(3.56) versusN?"T, with f defined in (3.57), fon = 2 andn = 3, in support of the
rigorous result stated in Corollary I11.14. The rigorous bounds from Theorem IIl.12 and

Corollary 111.14 also lead to the following heuristic scalings for the length scale

(N2"T)™ if1 <d<2n-1,
N"L ~ 1
(N>T)™7ifd > 2n,
We provide plots for the length scaleto corroborate the above scalings. For the fourth
order equation, our numerical results are presented in dimensions two, three, four and
five to illustrate the fact that the coarsening rate does indeed become constant after di-

mension four. Figures 3.6, 3.8, 3.10, and 3.12 show the decay of the spike dénsity

_ d
) 42 0 dimen-

versusN?'T, superimposed with the theoretical coarsening fNF@T
sions two, three, four and five respectively. Figures 3.7, 3.9, 3.11, and 3.13 display similar
plots for the length scale. The last two figures illustrate our numerical results for the
sixth order equation in dimension two. Figure 3.14 shows the plot for the spike dﬁmsity
and Figure 3.15 the plot for the length schle

The computational results presented below show very good agreement with the theoret-
ical bounds of Sections 3.3 and 3.4 and their implications described above. In particular,
although the rigorous results presented in this thesis are one-sided bounds, as in previous
applications of the Kohn and Otto’s technique, they seem to reflect the typically observed
behavior of the dynamics. Indeed, after a brief initial period of rapid change, in our ex-
periments both the spike densii@ and the length scale quantitysettle into a rate that
is remarkably close to the one-sided bounds. Nevertheless, a slight deviation from the
bounds is present in the behavior%fat dimensionsl > 4 for the fourth order (i.e. You-

Kaveh) equation (see Figures 3.10 and 3.12), whereas no such deviation can be discerned
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in our experiments in the behavior bf(see Figures 3.11 and 3.13). A similar slight devi-
ation was observed in [34] for the second order (i.e. Perona-Malik) equation at dimension
d = 2. Based on these cases, it may be reasonable to suspect that in general, rieththe 2
order equation, the deviation appears at dimendier2n, which is when the interpolation

inequality of Lemma 111.13 switches from one form to the other.

Solid line: (N*T)™2°

10' L L L
10° 10 10% 10 10

N*T

Figure 3.6:Experiments done with the two-dimensional You-Kaveh equation (3.6) f{ith= (1 + x2)711. The spike density,ff—2 is

represented by the dashed linesbe 175 and\ = 200. The coarsening ratBI‘(T)‘% indicated by the bound obtained
in Theorem I1.6 is represented by the solid line. After an initial period, the spikes appear to coarsen at the predicted rate
indicating that the bound seems close to optimal.
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Solid line: (N*T)%®

by W L L L
10 10 10° 10 10

N*T

Figure 3.7:Experiments done with the two-dimensional You-Kaveh equation (3.6) ffth = (1 + x2)711. The rate (\I“T)% is
represented by the solid line. The quantifty?, represented by the dashed linesbe 175 andN = 200, appears to

coarsen at the rateN(‘T)% after an initial period of time. This shows that after a transient initial time, the lengthIscale
behaves likd. ~ % validating our choice (3.15) as a length scale measure.

Solid line: (N*T)78/"

Figure 3.8:Experiments done with the three-dimensional You-Kaveh equation (3.6)@ih= (1 + xz)%. The spike densit)f\‘f—3 is

represented by the dashed lineslfbe 20 andN = 25. The coarsening ratNtT)‘% indicated by the bound obtained
in Theorem 111.6 is represented by the solid line. After an initial period, the spikes appear to coarsen at the predicted rate
indicating that the bound seems close to optimal.
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Solid line: (N*T)®/"

L3/2N3
+*

Figure 3.9:Experiments done with the three-dimensional You-Kaveh equation (3.6)f@h= (1 + x2)%. The rate N*T)T is
represented by the solid line. The quanﬁl%N?’, represented by the dashed linesffbre= 20 andN = 25, appears to

coarsen at the ratéN(‘T)l% after an initial period of time. This shows that after a transient initial time, the length scale
L behaves likd. ~ iz validating our choice (3.15) as a length scale measure.

K3

Solid line: (N*T)™2°

10 n P R R | n P R R | n SR R | n PR
10 10 10' 10 10

NT

Figure 3.10Experiments done with the four-dimensional You-Kaveh equation (3.6) fith= (1 + )1 . The spike densit)')\f—4 is

represented by the dashed lineslfbe 10 andN = 15. The coarsening rat&l(’T)‘% indicated by the bound obtained
in Theorem lI1.6 is represented by the solid line. After an initial period, the spikes appear to coarsen at the predicted
rate indicating that the bound seems close to optimal.
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Solid line: (N*T)?®

L2N*
+*

—4 L L
10™ 10° 10’ 10 10°

NT

Figure 3.11Experiments done with the four-dimensional You-Kaveh equation (3.6) iith = (1 + x2)%. The rate K*T)3 is
represented by the solid line. The quanti§N*, represented by the dashed linesKbe 10 andN = 15, appears to

coarsen at the rath(‘T)% after an initial period of time. This shows that after a transient initial time, the length scale
L behaves likd. ~ AK validating the choice (3.15) as a length scale measure.

Solid line: (N*T)%3

N*T

Figure 3.12Experiments done with the five-dimensional You-Kaveh equation (3.6) figh = (1 + xz)%. The spike density
ﬁs is represented by the dashed linesfbr= 7. The coarsening rateN(‘T)‘g indicated by the bound obtained in

Theorem 111.6 is represented by the solid line. After an initial period, the spikes appear to coarsen at the predicted rate
indicating that the bound seems close to optimal and corroborating the fact that the coarsening rate becomes constant

after dimension four.
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Solid line: (N*T)%3

L2N*

N*T

Figure 3.13Experiments done with the five-dimensional You-Kaveh equation (3.6) #ith = (1 + 2. The rate K°T)3 is
represented by the solid line. The quantifN4, represented by the dashed lines¥be 7, appears to coarsen at the

rate Q\l“T)% after an initial period of time. This shows that after a transient initial time, the length lsdabaves like

L~ % as in the four dimensional case.

Solid line: (N6T)=27

NeT

Figure 3.14Experiments done with the two-dimensional sixth-order equation (3.49)fgith= (1 + xz)%. The spike densit;;\’f—2

2

is represented by the dashed linesfbe= 30, N = 50 andN = 75. The coarsening rat®&fT)~7 indicated by the
bound obtained in Theorem 111.12 is represented by the solid line. After an initial period, the spikes appear to coarsen
at the predicted rate indicating that the bound seems close to optimal.
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Solid line: (N°T)?”

+

Figure 3.15Experiments done with the two-dimensional sixth order equation (3.49) ffih= (1 + x2)3. The rate NeT)? is
represented by the solid line. The quaanIgyNZ, represented by the dashed linesfor= 30, N = 50 andN = 75,

appears to coarsen at the ra't@'()% after an initial period of time. This shows that after a transient initial time, the

length scald- behaves like. ~ % validating the choice (3.50) as a length scale measure.
K2

3.5.2 Discussion

In practical applications to image processing of the schemes considered in this thesis
(e.g., the You-Kaveh model (3.6)), a central question is the appropriate choice of param-
eters. In particular, given an image to be simplified (i.e., coarsened), it is often critical to
know when to stop the time evolution of the processing equation. Since the complexity of
an image is generally measured in terms of its “edge content”, Corollary 111.14 presented
in Section 3.4 may be interpreted to furnish a partial answer to this question. Although the
results of this thesis cannot provide a universal, absolute value for the time at which a de-
sired level of simplification in the image will be reached, they can be used to infer a scaling

between the evolution time and the level of simplification: indeed, inverting the rigorous



123

statement for the spike density given in Corollary I11.14, we arrive at the following

_d(-a)+2n

T~(&) ° ifls<ds<2n-1,

(3.58) -0 .
T~ (%) if d > 2n,
whereT is the time of evolution ang& the spike density. An interesting facet of formula
(3.58) is its dependence amnthe order of the equation up to a factor of two. We see that
in low dimensions, namely ¥ d < 2n—1 (two, three and four being the most common in
image processing), the coarsening rate (in terms of the exponent) slows down as the order
of the equation increases. In particular, we see that in dimensions one, two and three,
the fourth order You-Kaveh evolution leads to a slower simplification of the image than
the second order Perona-Malik equation, potentially requiring a longer integration time.
This observation concerns the continuous in time versions of the schemes, and is thus in-
dependent of the choice of time-stepping method used for the fully discrete system. It is
an additional factor that needs to be taken into account when assessing the computational
complexity of the various models, together with the usual stability restriction on the time
step size that occurs in explicit schemes (i.e., the CFL condition which gets worse as the
order of the equation increases). At this junction, it is worth mentioning the observation in
[34] that implicit schemes for these ill-posed evolutions do not seem to yield the expected
improvements in complexity: although implicit schemes can indeed be unconditionally
stable, thus allowing for larger time steps, decreasing the number of spikes by a certain
factor requires roughly the same number of time steps as an explicit scheme, regardless of
the step size. A reasonable explanation for this observation is that large time steps cannot
capture accurately enough the evolutions of spikes (a highly non smooth solution) and thus
introduce drastic errors that alter the discrete simulations. There is therefore no real gain
in processing speed by using implicit time-stepping methods for these equations. Never-

theless, despite their additional, inherent computational complexity, these You-Kaveh type
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models find use in image processing due to the improved quality of their results. There is
indeed a tradefbbetween computational time and quality of the processed image, but the
final choice of which element is more important (i.e., computational speed versus quality

of the results) is in the end up to the practitioner and dependent on the application.



CHAPTER IV

Conclusion and Future Directions

4.1 Conclusion

The results obtained in this dissertation describe computational and analytical research
work in partial diferential equations in image processing applications. In the algorithmic
part of this dissertation, we present new algorithms for general area preserving motions in
the plane. These algorithms provid@&@&@ent and highly accurate computational tools for
generating area preserving geometric motions and can be applied in many situations and
many applications, including (but not restricted to) image processing and material science.
The second part of this dissertation provides rigorous bounds on the coarsening rates of
nonlinear difusion equations used to simplify (also denoise) images in computer vision
applications. These bounds are crucial for understanding the coarsening rate of these
nonlinear equations, and are a step towards the automatic determination of the stopping
time of these evolutions, given a desired level of simplification in the resulting image.
In addition to its practical impact, this result provides a novel proof for the interpolation
inequality. The proof is modified from its precursor (second-order case in [34, 37]), and
involves a new construction of the test functions. This novel construction is more general
and provides insight on how the order of the equation and the dimension of the space come

into play in the coarsening rate.

125
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4.2 Future Directions

In this section, we discuss future directions of research that extend the work accom-

plished in this dissertation.

4.2.1 Volume preserving flows in higher dimensions

A natural extension of our area preserving algorithms described in Chapter Il is to
volume preserving flows in dimensions three and higher. This generalization should be
relatively straightforward and would providdfieient and accurate algorithms for area

preserving flows in high dimensions.

4.2.2 Fourth order flow for image segmentation and inverse problems

It would be interesting to investigate a variational alternative to the area preserving
flow, which might be preferred to remove any shrinking bias. For that purpose, consider
a Mumford-Shah based regularization model in which the usual perimeter term in the

Mumford-Shah energy functional is replaced by

(4.1) J= |x|do.

D)
Like the area preserving flow, this term removes the natural shrinking bias of the Mumford-
Shah model. In particula = 2r for any convex curve. The minimization of this new
energy functional leads to a fourth order evolution that can be easily computed using the

new difusion generated motion algorithms [35].

4.2.3 Second order flow for image segmentation and inverse problems

An alternative to replacing the perimeter term in the Mumford-Shah energy functional

by Jin (4.1) as discussed above, would be to modify the perimeter term in the two dimen-
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sional Mumford-shah functional as

Pelx
VArea(T)

In three dimensions, this term would become

_ Surfx
(Vol ()3

This regularization is an isoperimetric ratio for the 5etnd is therefore scaling invariant

and minimum for circles or spheres. Thus, like the area preserving flow, this term removes
the shrinking bias of the Mumford-Shah model. Gradient descent on the complete energy
functional leads to a second order evolution that can also be easily computed using the

new difusion generated motion algorithms with signed distance functions.

4.2.4 Generalizations to all images

Working with piecewise smooth images as described in Section 2.4 of Chapter Il is
actually quite restrictive. An extension to general images, considers an imaggh gray
level f(x) at locationx. If we assume a binary expansion of the gray level with 8 digits

(from O to 255), we can descrildeas

i
f9 = ) 215, (%),
j=0

whereZX; is the set of pointx, where the binary expansion ¢{x) has a 1 in thej-th
bit. Such generalization can be applied to our area preserving flows, as well as to the two

variational models discussed above.
4.2.5 Coarsening in ill-posed dfusion equations for asymptotically constant energy densities
In this dissertation, we have obtained rigorous upper bounds on the coarsening rate of

a family of discrete ill-posed éusion equations. These bounds are valid for a class of

energy densitied, that in essence grow like a power law- t*, with @ € [0,1[. One
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unsolved problem is the case of asymptotically constant energy densities that corresponds
to a very fast decay of the functiddin (3.2). It would be very interesting to investigate

this case on the Perona-Malik scheme studied in [34, 37]

(4.2) %:Aa(R(vi))ie]L,:{O,l,---,N—l}d,

wheres = ﬁ In this situation, the usual Kohn-Otto framework cannot be applied since the
dynamics is driven by the deviation of the energy from its asymptotic constant. However,
one of our ideas is to obtain a modified version of the Kohn-Otto argument using previous
results on energy densities with power law growth at infinity. The approach would be
to consider a modified energy densitywith power law growth at infinity, the energy of
which E is also decreased by (4.2). Using previous arguments (see [37]), we cartriate

the usual length scalein an interpolation inequality. The more interesting question is now

dE

o which combined

to prove a suitably modified dissipation inequality betw%érand
with the interpolation inequality previously obtained, would lead to upper bounds on the

coarsening rate of (4.2) for asymptotically constant energy densities. Once obtained for
the second order equation (4.2), this analysis should be relatively easy to extend to high

order difusion equations using the work described in Chapter Il (see also [60]).

4.2.6 Convergence of an algorithm for motions with normal velocities of the fornf («)

Here we consider the convergence of the neffiudion generated motion algorithms
introduced by Esedypu et al. [35], the extension of which to area preserving curvature
flow was described in Chapter Il. It would be interesting to look at the version of this

algorithm that generates motions gy = f(x), wheref is Lipschitz with constant ¢:
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Algorithm: Given the initial sekq through its distance functiaay(x) and a time
stepét > 0, generate the seX§ via their distance functiod;(x) at the subsequent

discrete times = j(6t) by alternating:

. 1
1. With anyM > Ly, form £(x) = d; + otf (M_ét {GM(St «dj — dj}),

2. Construct the distance functial,; usingd;,1(X) = Redist(£(X)).

A proof of convergence of a similar algorithm for just standard mean curvature motion
was recently given by Chambol&t al. in [22]. Since the algorithm described above is
monotone, we anticipate that an analogous approach may be applicable for these more
general motions.

The ultimate goal is to obtain a proof of convergence for our area presentiiog di
sion generated motion algorithms. However, due to the non monotonicity of these area
preserving schemes, we feel that a more immediate goal should be geared towards obtain-
ing a convergence proof for thefflision generated motion algorithms generating motions
with vy = f(x) described above. From this proof, we expect to acquire some insights

towards obtaining a convergence proof for our area preserving algorithms.
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APPENDIX A

A note on the piecewise smooth model of Vese and Chan

We consider the two phase piecewise smooth model of Vese and Chan [96]:

(A.1)

E (2, ¢, C) = Per(Z)+4 (f(g— c)’dx+ | (g- C2)2dX)+,u (fchllzdx+f |V02|2dx),
z ¢ z xc

wherec; andc, are smooth functions on the image domgir{e.g.,Q = [-5,5]%). We
show that (A.1) can remain uniformly bounded even as the segmentation converges to a
function that is not “piecewise smooth”, i.e., one that would have infinite energy under any
reasonable interpretation of (A.1). In particular, we exhibit that the lower semi-continuous
envelope of (A.1) would allow cracks, and thus presumably reduce to a model as general
as the original full Mumford-Shah, instead of providing a simplification.

We find an image, a set, functionsc; andc, and sequence, ck andck converging

respectively t&, ¢; andc, such that

E(Z, ¢1.Cp) > lim inf E(X. ck, k).
We consider the observed imag#o be
(A.2) 9@ = J(Vz-1vz+1),

wherez € C. The functiong is smooth everywhere except at the branch eut]1[ where

itis discontinuous, as shown in Figure A.1. Thus, its Dirichlet energy on the whole domain
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200

X

Figure A.1:Gray scale image af described by equation (A.2)

Q is infinite. We denote by the branch cut } 1, 1[ and consider the following sequence

of setsy,:
Yy = {x: IX -yl < %forallyeE}.

By construction, the sequen&g converges t& ask — oo in L. We now define the

sequences

c¥(x) = O forall x e X and c§(x) = g(x) for all x € ¢,
and form
(A.3) O(X) = (¥ 1x(X) + S5(X)Lse().

Note that botft} andck are smooth on their respective domain of definition. By construc-

tion we have
im [ (0 - g)dx=0.
— 00 Q

since in the limit,g andgx agree everywhere except on the Betf measure zero. The

sequencey thus converges tgin theL? sense. The energy (A.1) of the limiting functional
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gis thus

E(Z,0,9)

Per@)+/1fg(x)2dx +,uf|Vg|2dx
2 z

=0 Sinces has measure zero
2
u [ 1vgrax
)

Sinceg is discontinuous across the crack [L, 1], fz |Vgl2dx should be taken as infinite

and so should(Z, 0, g).

Now, let’s evaluate (A.1) on:

E(Zy, ¢, c5)

PerQ:k)+/1f g(X)de+,uf |Vgldx
2k Zﬁ

2+ 2{ + /lf 9(X)2dx+,uf IVgldx (by construction Pel) = 2 + 2?”)
Zk zﬁ

IA

2+2—7T+/lfg(x)2dx+pf IVgl2dx
Kk o sc

Sinceg is smooth onz® and bounded o162, we know that both term§Q g(x)?dx and

fzc |Vgl2dx are finite, namely there exists a const&nt oo such that
E(Zk. ¢, c§) < Cforallk e N,

Thus
Ilim inf E(Zy, 5, c5) < C < E(Z,0,0) = E(llim i, Ilim ck, Ilim cx),
which shows that (A.1), when relaxed, would assign finite energy to an image with an

open curve as its discontinuity set.
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