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CHAPTER 1

Introduction

Wireless communication technology has proved to be one of the most fundamental

modern technologies affecting our daily lives. This is amplified by a wide variety

of emerging applications. As we all know wireless spectrum is limited and with

growing need and applications of wireless communication systems, interference will

be one of the most serious challenges ahead if not the foremost hurdle in achieving

widespread applications of wireless systems. This includes wireless sensor networks

(WSN) and mobile ad hoc networks (MANETs). There have been several methods

proposed for overcoming spectrum limitations; one of the more recent development

is the idea of open access, whereby secondary users or unlicensed users are allowed

access to spectrum licensed to other, primary users when it is not in active use. This

leads to the notion of cognitive radio, a wireless transceiver that is highly agile and

spectrum aware and thus can take advantage of instantaneous spectrum availability

to dynamically access radio frequencies to perform data transmission. This has been

an area of extensive research in recent years.

The overarching theme of this thesis is the investigation of good opportunistic

spectrum access and sharing schemes within the above context using a resource

allocation framework. The two main analytical approaches taken in this thesis are a

1
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stochastic optimization based approach and a game theoretic approach.

Using the first approach we study an optimal channel sensing and access problem

from the point of view of a single (secondary) user. Activities of primary users and

possibly other secondary users are modeled as part of a channel of time-varying

availability perceived by this single user. With this assumption, the objective is for

the user to determine at each instance of time (under a discrete time model) which

(subset of) channel(s) to sense – the ones sensed available can subsequently be used

for data transmission – so as to maximize its total reward over a finite or infinite

horizon. A key assumption here is that the user is limited in its channel sensing

capability in that it can only sense a small number of channels at a time compared

to the total number of channels available. It must therefore make judicious decisions

on which channels to sense over time to maximize its transmission opportunity. This

problem is further separated into two cases, where the user is limited to sense one

channel at a time, and where the user can sense more than one channel at a time.

These constitute the first two technical chapters of this thesis.

Using the second, game theoretic approach we study a spectrum sharing problem

in the presence of a group of peer (secondary) users. This is formulated as a general-

ized form of the classical congestion game, referred to as a network congestion game

in this thesis: a group of wireless users share a set of common channels, each tries

to find the best channel for itself, and the utility of a channel depends not only on

the channel itself but also on how many interfering users are simultaneously using

it. This constitutes the third technical chapter of this thesis.

Below we describe each of these two problems in more detail along with our main

results and contributions.
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1.1 Problem 1: Opportunistic Spectrum Access as a Restless Bandit
Problem

This problem (referred to as optimal probing or OP) concerns the opportunistic

communication over multiple channels where the state (“good” or “bad”) of each

channel evolves as independent and identically distributed Markov processes. A

user, with limited channel sensing capability, chooses one channel to sense and sub-

sequently access (based on the sensing result) in each time slot. A reward is obtained

whenever the user senses and accesses a “good” channel. The objective is to design

a channel selection policy that maximizes the expected total (discounted or aver-

age) reward accrued over a finite or infinite horizon. This problem can be cast as a

Partially Observable Markov Decision Process (POMDP) or a restless multi-armed

bandit process, to which optimal solutions are often intractable.

This problem was first introduced by Zhao [1] where they established the optimal-

ity of a simple greedy policy – always sensing the channel that has the highest current

probability of being available – for the simple case of 2 channels. The approach they

used was based on proving the problem by proving optimality of greedy policy al-

most surely (path wise) for all possible consecutive outcomes of channel states. That

approach was not useful for the case of more than 2 channels as myopic policy is no

longer path wise optimal (almost surely), so a new approach had to be introduced.

The idea that we used was to define a function based on the order of channels played

(not necessarily depending on their ranking) and then use a coupling argument to

prove that this function achieves its maximum value if channels are played in the

order of their ranks. This proved the optimality of the myopic policy in the general

case of multiple channels.

Our main results and contributions are as follows: For the finite horizon dis-
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counted reward case, we show that the same myopic policy that maximizes the

immediate one-step reward is optimal when the channel state transitions are posi-

tively correlated over time. When the state transitions are negatively correlated, it

is shown that the same policy is optimal when the number of channels is limited

to 2 or 3, while presenting a counterexample for the case of 4 channels. The same

optimality result is then extended to the case of infinite horizon discounted reward

and average reward cases.

We further extended this problem to the case of allowing the users to sense a fixed

number (more than one) of channels at a time (referred to as multi-channel optimal

probing, or MC-OP). We proved the optimality of the same greedy policy under the

same bursty channel condition.

In both the single-play and multiple-play cases, the greedy policy depends only

on the ordering of the channel occupancy probabilities. Therefor it is fairly robust

to the knowledge of initial probabilities as long as the order of channel occupancies

are preserved .

1.2 Problem 2: Opportunistic Spectrum Sharing as a Congestion Game

In this problem we turned our attention to the case where multiple users wish

to efficiently share multiple channels. Each user may only use one channel at a

time, and each channel may present different value to different users. However, the

value of any channel to a user decreases as it is shared by more interfering users. The

interference relationship among users is represented by a graph. This is modeled as a

network congestion game (NCG), which is a generalization of the classical congestion

game (CG). In a classical congestion game [2], multiple users share the same set of

resources and a user’s payoff for using any resource is a function of the total number
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of users sharing it. This game enjoys some very appealing properties, including the

existence of a pure strategy Nash equilibrium (NE) and that every improvement path

is finite and leads to such a NE (also called the finite improvement property or FIP),

which is also a local optimum to a potential function. On the other hand, it does not

model well spectrum sharing and spatial reuse in a wireless network, where resources

(interpreted as channels) may be reused without increasing congestion provided that

users are located far away from each other. This motivates to study an extended

form of the congestion game where a user’s payoff for using a channel is a function

of the number of its interfering users sharing that channel, rather than the total

number of users using the channel. This naturally leads to a network congestion

game, whereby users are placed over a network (or a conflict graph).

Our main results and contributions are as follows. We study fundamental prop-

erties of the above network congestion game; in particular, we seek to answer under

what conditions on the underlying network this game possesses the FIP or a NE. In

case that number of channels is exactly two, we proved the problem has the finite

improvement property (FIP) property; as a result, a Nash equilibrium always exists

for any underlying graph, that any greedy updating strategy by the users will lead

to such an equilibrium. We then proved by a counter-example that when there exist

three or more channels, the problem does not have the finite improvement property

so the game will not be a potential game. We also proved that for certain special

types of graph, in the form of a tree or a loop, an NE exists. Finally, we showed that

when the channels are equally perceived by any user (need not be the same for all

users), this game has an exact potential function so that both the NE and the FIP

property exist.
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1.3 Organization of Dissertation

The remainder of this thesis is organized as follows. In Chapter 2 we study the first

problem, opportunistic spectrum access in the case of sensing one channel at a time.

The more general case, multiple channel sensing is studied in Chapter 3. Then in

Chapter 4 we study the network congestion game for opportunistic spectrum sharing.

We conclude the thesis in Chapter 5.



CHAPTER 2

Opportunistic Spectrum Access as a Restless Bandit
Problem

2.1 Introduction

We consider a communication system in which a sender has access to multiple

channels, but is limited to sensing and transmitting only on one at a given time. We

explore how a smart sender should exploit past observations and the knowledge of

the stochastic state evolution of these channels to maximize its transmission rate by

switching opportunistically across channels.

We model this problem in the following manner. As shown in Figure 1, there are

n channels, each of which evolves as an independent, identically-distributed, two-

state discrete-time Markov chain. The two states for each channel — “good” (or

state 1) and “bad” (or state 0) — indicate the desirability of transmitting over that

channel at a given time slot. The state transition probabilities are given by pij,

i, j = 0, 1. In each time slot the sender picks one of the channels to sense based

on its prior observations, and obtains some fixed reward if it is in the good state.

The basic objective of the sender is to maximize the reward that it can gain over a

given finite time horizon. This problem can be described as a partially observable

Markov decision process (POMDP) [3] since the states of the underlying Markov

chains are not fully observed. It can also be cast as a special case of the class of

7
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restless multi-armed bandit problems [4]; more discussion on this is given in Section

2.7.

B1

a

a1 b

b1

A B

A1

PSfrag replacements

0
1

(bad)
(good)

p01

p11

p00

p10

Figure 2.1: The Markov channel model.

This formulation is broadly applicable to several domains. It arises naturally in

opportunistic spectrum access (OSA) [5, 6], where the sender is a secondary user, and

the channel states describe the occupancy by primary users. In the OSA problem,

the secondary sender may send on a given channel only when there is no primary user

occupying it. It pertains to communication over parallel fading channels as well, if

a two-state Markovian fading model is employed. Another interesting application of

this formulation is in the domain of communication security, where it can be used to

develop bounds on the performance of resource-constrained jamming. A jammer that

has access to only one channel at a time could also use the same stochastic dynamic

decision making process to maximize the number of times that it can successfully

jam communications that occur on these channels. In this application, the “good”

state for the jammer is precisely when the channel is being utilized by other senders

(in contrast with the OSA problem).

In this chapter we examine the optimality of a simple myopic policy for the op-

portunistic access problem outlined above. Specifically, we show that the myopic

policy is optimal for arbitrary n when p11 ≥ p01. We also show that it is optimal

for n = 3 when p11 < p01, while presenting a finite horizon counter example showing

that it is in general not optimal for n ≥ 4. We also generalize these results to related
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formulations involving discounted and average rewards over an infinite horizon.

These results extend and complement those reported in prior work [7]. Specifi-

cally, it has been shown in [7] that for all n the myopic policy has an elegant and

robust structure that obviates the need to know the channel state transition proba-

bilities and reduces channel selection to a simple round robin procedure. Based on

this structure, the optimality of the myopic policy for n = 2 was established and the

performance of the myopic policy, in particular, the scaling property with respect

to n, analyzed in [7]. It was conjectured in [7] that the myopic policy is optimal

for any n. This conjecture was partially addressed in a preliminary conference ver-

sion [8], where the optimality was established under certain restrictive conditions on

the channel parameters and the discount factor. In the present chapter, we signifi-

cantly relax these conditions and formerly prove this conjecture under the condition

p11 ≥ p01. We also provide a counter example for p11 < p01.

We would like to emphasize that compared to earlier work [7, 8], the approach

used in this chapter relies on a coupling argument, which is the key to extending

the optimality result to the arbitrary n case. Earlier techniques were largely based

on exploiting the convex analytic properties of the value function, and were shown

to have difficulty in overcoming the n = 2 barrier without further conditions on the

discount factor or transition probabilities. This observation is somewhat reminis-

cent of the results reported in [9], where a coupling argument was also used to solve

an n-queue problem while earlier versions [10] using value function properties were

limited to a 2-queue case. We invite the interested reader to refer to [11], an impor-

tant manuscript on monotonicity in MDPs which explores the power as well as the

limitation of working with analytic properties of value functions and dynamic pro-

gramming operators as we had done in our earlier work. In particular, [11, Section
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9.5] explores the difficulty of using such techniques for multi-dimensional problems

where the number of queues is more than n = 2; [11, Chapter 12] contrasts this proof

technique with the stochastic coupling arguments, which our present work uses.

The remainder of this chapter is organized as follows. We formulate the problem

in Section 2.2 and illustrate the myopic policy in Section 2.3. In Section 2.4, we prove

that the myopic policy is optimal in the case of p11 ≥ p01, and show in Section 2.5 that

it is in general not optimal when this condition does not hold. Section 2.6 extends

the results from finite horizon to infinite horizon. We discuss our work within the

context of the class of restless bandit problems as well as some related work in this

area in Section 2.7. Section 2.8 concludes the chapter.

2.2 Problem Formulation

We consider the scenario where a user is trying to access the wireless spectrum

to maximize its throughput or data rate. The spectrum consists of n independent

and statistically identical channels. The state of a channel is given by a two-state

discrete time Markov chain shown in Figure 2.1.

The system operates in discrete time steps indexed by t, t = 1, 2, · · · , T , where

T is the time horizon of interest. At time t−, the channels (i.e., the Markov chains

representing them) go through state transitions, and at time t the user makes the

channel sensing and access decision. Specifically, at time t the user selects one of

the n channels to sense, say channel i. If the channel is sensed to be in the “good”

state (state 1), the user transmits and collects one unit of reward. Otherwise the

user does not transmit (or transmits at a lower rate), collects no reward, and waits

until t + 1 to make another choice. This process repeats sequentially until the time

horizon expires.
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As mentioned earlier, this abstraction is primarily motivated by the following

multi-channel access scenario where a secondary user seeks spectrum opportunity

in between a primary user’s activities. Specifically, time is divided into frames and

at the beginning of each frame there is a designated time slot for the primary user

to reserve that frame and for secondary users to perform channel sensing. If a

primary user intends to use a frame it will simply remain active in a channel (or

multiple channels) during that sensing time slot (i.e., reservation is by default for

a primary user in use of the channel), in which case a secondary user will find the

channel(s) busy and not attempt to use it for the duration of that frame. If the

primary user is inactive during this sensing time slot, then the remainder of the

frame is open to secondary users. Such a structure provides the necessary protection

for the primary user as channel sensing (in particular active channel sensing that

involves communication between a pair of users) conducted at arbitrary times can

cause undesirable interference.

Within such a structure, a secondary user has a limited amount of time and

capability to perform channel sensing, and may only be able to sense one or a subset

of the channels before the sensing time slot ends. And if all these channels are

unavailable then it will have to wait till the next sensing time slot. In this chapter

we will limit our attention to the special case where the secondary user only has

the resources to sense one channel within this slot. Conceptually our formulation is

easily extended to the case where the secondary user can sense multiple channels at

a time within this structure, although the corresponding results differ, see e.g., [12].

Note that in this formulation we do not explicitly model the cost of channel

sensing; it is implicit in the fact that the user is limited in how many channels it can

sense at a time. Alternative formulations have been studied where sensing costs are
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explicitly taken into consideration in a user’s sensing and access decision, see e.g.,

[13] and [14].

In this formulation we have assumed that sensing errors are negligible. Techniques

used in this chapter may be applicable in proving the optimality of the myopic policy

under imperfect sensing and for a general number of channels. The reason behind this

is that our proof exploits the simple structure of the myopic policy, which remains

when sensing is subject to errors as shown in [15].

Note that the system is not fully observable to the user, i.e., the user does not know

the exact state of the system when making the sensing decision. Specifically, channels

go through state transition at time t− (or anytime between (t− 1, t)), thus when the

user makes the channel sensing decision at time t, it does not have the true state of

the system at time t, which we denote by s(t) = [s1(t), s2(t), · · · , sn(t)] ∈ {0, 1}n.

Furthermore, even after its action (at time t+) it only gets to observe the true state

of one channel, which goes through another transition at or before time (t + 1)−.

The user’s action space at time t is given by the finite set {1, 2, · · · , n}, and we will

use a(t) = i to denote that the user selects channel i to sense at time t. For clarity,

we will denote the outcome/observation of channel sensing at time t following the

action a(t) by ha(t)(t), which is essentially the true state sa(t)(t) of channel a(t) at

time t since we assume channel sensing to be error-free.

It can be shown (see e.g., [3, 16, 17]) that a sufficient statistic of such a system

for optimal decision making, or the information state of the system [16, 17], is given

by the conditional probabilities of the state each channel is in given all past actions

and observations. Since each channel can be in one of two states, we denote this

information state or belief vector by ω̄(t) = [ω1(t), · · · , ωn(t)] ∈ [0, 1]n, where ωi(t) is

the conditional probability that channel i is in state 1 at time t given all past states,
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actions and observations 1. Throughout the chapter ωi(t) will be referred to as the

information state of channel i at time t, or simply the channel probability of i at

time t.

Due to the Markovian nature of the channel model, the future information state

is only a function of the current information state and the current action; i.e., it is

independent of past history given the current information state and action. It follows

that the information state of the system evolves as follows. Given that the state at

time t is ω̄(t) and action a(t) = i is taken, ωi(t + 1) can take on two values: (1) p11

if the observation is that channel i is in a “good” state (hi(t) = 1); this occurs with

probability P{hi(t) = 1|ω̄(t)} = ωi(t); (2) p01 if the observation is that channel i is

in a “bad” state (hi(t) = 0); this occurs with probability P{hi(t) = 0|ω̄(t)} = 1−ωi.

For any other channel j 6= i, the corresponding ωj(t + 1) can only take on one value

(i.e., with probability 1): ωj(t + 1) = τ(ωj(t)) where the operator τ : [0, 1] → [0, 1] is

defined as

(2.1) τ(ω) := ωp11 + (1− ω)p01, 0 ≤ ω ≤ 1.

These transition probabilities are summarized in the following equation for t =

1, 2, · · · , T − 1:

{ωi(t + 1)|ω̄(t), a(t)}

=





p11 with prob. ωi(t) if a(t) = i

p01 with prob. 1− ωi(t) if a(t) = i

τ(ωi(t)) with prob. 1 if a(t) 6= i

, i = 1, 2, · · · , n,(2.2)

Also note that ω̄(1) ∈ [0, 1]n denotes the initial condition (information state in the

form of conditional probabilities) of the system, which may be interpreted as the the

1Note that this is a standard way of turning a POMDP problem into a classic MDP (Markov decision process)
problem by means of information state, the main implication being that the state space is now uncountable.
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user’s initial belief about how likely each channel is in the good state before sensing

starts at time t = 1. For the purpose of the optimization problems formulated below,

this initial condition is considered given, which can be any probability vector 2.

It is important to note that although in general a POMDP problem has an un-

countable state space (information states are probability distributions), in our prob-

lem the state space is countable for any given initial condition ω̄(1). This is because

as shown above, the information state of any channel with an initial probability of ω

can only take on the values {ω, τ k(ω), p01, τ
k(ω), p11, τ

k(ω)}, where k = 1, 2, · · · and

τ k(ω) := τ(τ k−1(ω)), which is a countable set.

For compactness of presentation we will further use the operator τ to denote the

above probability distribution of the information state (the entire vector):

ω̄(t + 1) = τ(ω̄(t), a(t)),(2.3)

by noting that the operation given in (2.2) is applied to ω̄(t) element-by-element. We

will also use the following to denote the information state given observation outcome:

τ(ω̄(t), a(t)|ha(t)(t) = 1) =(2.4)

(τ(ω1(t)), · · · , τ(ωa(t)−1(t)), p11, τ(ωa(t)+1(t)), · · · , τ(ωn(t)))(2.5)

τ(ω̄(t), a(t)|ha(t)(t) = 0)(2.6)

= (τ(ω1(t)), · · · , τ(ωa(t)−1(t)), p01, τ(ωa(t)+1(t)), · · · , τ(ωn(t)))(2.7)

The objective of the user is to maximize its total (discounted or average) expected

reward over a finite (or infinite) horizon. Let Jπ
T (ω̄), Jπ

β (ω̄), and Jπ
∞(ω̄) denote,

respectively, these cost criteria (namely, finite horizon, infinite horizon with discount,

and infinite horizon average reward) under policy π starting in state ω̄ = [ω1, · · · , ωn].

2That is, the optimal solutions are functions of the initial condition. A reasonable choice, if the user has no special
information other than the transition probabilities of these channels, is to simply use the steady-state probabilities
of channels being in state “1” as an initial condition (i.e., setting ωi(1) = p10

p01+p10
).
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The associated optimization problems ((P1)-(P3)) are formally defined as follows.

(P1): max
π

Jπ
T (ω̄) = max

π
Eπ[

T∑
t=1

βt−1Rπt(ω̄(t))|ω̄(1) = ω̄]

(P2): max
π

Jπ
β (ω̄) = max

π
Eπ[

∞∑
t=1

βt−1Rπt(ω̄(t))|ω̄(1) = ω̄]

(P3): max
π

Jπ
∞(ω̄) = max

π
lim

T→∞
1

T
Eπ[

T∑
t=1

Rπt(ω̄(t))|ω̄(1) = ω̄]

where β (0 ≤ β ≤ 1 for (P1) and 0 ≤ β < 1 for (P2)) is the discount factor,

and Rπt(ω̄(t)) is the reward collected under state ω̄(t) when channel a(t) = πt(ω̄(t))

is selected and ha(t)(t) is observed. This reward is given by Rπt(ω̄(t)) = 1 with

probability ωa(t)(t) (when ha(t)(t) = 1), and 0 otherwise.

The maximization in (P1) is over the class of deterministic Markov policies.3. An

admissible policy π, given by the vector π = [π1, π2, · · · , πT ], is thus such that πt

specifies a mapping from the current information state ω̄(t) to a channel selection

action a(t) = πt(ω̄(t)) ∈ {1, 2, · · · , n}. This is done without loss of optimality due

to the Markovian nature of the underlying system, and due to known results on

POMDPs. Note that the class of Markov policies in terms of information state are

also known as seperated policies (see [17]). Due to finiteness of (unobservable) state

spaces and action space in problem (P1), it is known that an optimal policy (over all

random and deterministic, history-dependent and history-independent policies) may

be found within the class of separated (i.e. deterministic Markov) policies (see e.g.,

[17, Theorem 7.1, Chapter 6]), thus justifying the maximization and the admissible

policy space.

In Section 2.6 we establish the existence of a stationary separated policy π∗, under

which the supremum of the expected discounted reward as well as the supremum of

3A Markov policy is a policy that derives its action only depending on the current (information) state, rather
than the entire history of states, see e.g., [17].
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expected average cost are achieved, hence justifying our use of maximization in (P2)

and (P3). Furthermore, it is shown that under this policy the limit in (P3) exists

and is greater than the limsup of the average performance of any other policy (in

general history-dependent and randomized). This is a strong notion of optimality;

the interpretation is that the most “pessimistic” average performance under policy

π∗ (lim inf 1
T
Jπ∗

T (·) = lim 1
T
Jπ∗

T (·)) is greater than the most “optimistic” performance

under any other policy π (lim sup 1
T
Jπ

T (·)). In much of the literature on MDP, this is

referred to as the strong optimality for an expected average cost (reward) problem;

for a discussion on this, see [18, Page 344].

2.3 Optimal Policy and the Myopic Policy

2.3.1 Dynamic Programming Representations

Problems (P1)-(P3) defined in the previous section may be solved using their

respective dynamic programming (DP) representations. Specifically, for problem

(P1), we have the following recursive equations:

VT (ω̄) = max
a=1,2,··· ,n

E[Ra(ω̄)]

Vt(ω̄) = max
a=1,2,··· ,n

E[Ra(ω̄) + βVt+1(τ(ω̄, a))]

= max
a=1,··· ,n

(ωa + βωaVt+1 (τ (ω̄, a|1)) + β(1− ωa)Vt+1 (τ (ω̄, a|0))) ,(2.8)

for t = 1, 2, · · · , T − 1, where Vt(ω̄) is known as the value function, or the maximum

expected future reward that can be accrued starting from time t when the information

state is ω̄. In particular, we have V1(ω̄) = maxπ Jπ
T (ω̄), and an optimal deterministic

Markov policy exists such that a = π∗t (ω̄) achieves the maximum in (2.8) (see e.g.,

[18] (Chapter 4)). Note that since T is a conditional probability distribution (given

in (2.3)), Vt+1(T (ω̄, a)) is taken to be the expectation over this distribution when its

argument is T , with a slight abuse of notation, as expressed in (2.8).
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Similar dynamic programming representations hold for (P2) and (P3) as given

below. For problem (P2) there exists a unique function Vβ(·) satisfying the following

fixed point equation:

Vβ(ω̄) = max
a=1,··· ,n

E[Ra(ω̄) + βVβ(τ(ω̄, a))]

= max
a=1,··· ,n

(ωa + βωaVβ (τ (ω̄, a|1)) + β(1− ωa)Vβ (τ (ω̄, a|0))) .(2.9)

We have that Vβ(ω̄) = maxπ Jπ
β (ω̄), and that a stationary separated policy π∗ is

optimal if and only if a = π∗(ω̄) achieves the maximum in (2.9) [19, Theorem 7.1].

For problem (P3), we will show that there exist a bounded function h∞(·) and a

constant scalar J satisfying the following equation:

J + h∞(ω̄) = max
a=1,2,··· ,n

E[Ra(ω̄) + h∞(τ(ω̄, a))]

= max
a=1,··· ,n

(ωa + ωah∞ (τ (ω̄, a|1)) + (1− ωa)h∞ (τ (ω̄, a|0))).(2.10)

The boundedness of h∞ and the immediate reward implies that J = maxπ Jπ
∞(ω̄), and

that a stationary separated policy π∗ is optimal in the context of (P3) if a = π∗(ω̄)

achieves the maximum in (2.10) [19, Theorems 6.1-6.3].

Solving (P1)-(P3) using the above recursive equations is in general computation-

ally heavy. Therefore, instead of directly using the DP equations, the focus of this

chapter is on examining the optimality properties of a simple, greedy algorithm. We

define this algorithm next and show its simplicity in structure and implementation.

2.3.2 The Myopic Policy

A myopic or greedy policy ignores the impact of the current action on the future

reward, focusing solely on maximizing the expected immediate reward. Myopic poli-

cies are thus stationary. For (P1), the myopic policy under state ω̄ = [ω1, ω2, · · · , ωn]
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is given by

(2.11) a∗(ω̄) = arg max
a=1,··· ,n

E[Ra(ω̄)] = arg max
a=1,··· ,n

ωa.

In general, obtaining the myopic action in each time slot requires the succes-

sive update of the information state as given in (2.2), which explicitly relies on the

knowledge of the transition probabilities {pij} as well as the initial condition ω̄(1).

Interestingly, it has been shown in [7] that the implementation of the myopic policy

requires only the knowledge of the initial condition and the order of p11 and p01, but

not the precise values of these transition probabilities. To make the present chapter

self-contained, below we briefly describe how this policy works; more details may be

found in [7].

Specifically, when p11 ≥ p01 the conditional probability updating function τ(ω)

is a monotonically increasing function, i.e., τ(ω1) ≥ τ(ω2) for ω1 ≥ ω2. Therefore

the ordering of information states among channels is preserved when they are not

observed. If a channel has been observed to be in state “1” (respectively “0”), its

probability at the next step becomes p11 ≥ τ(ω) (respectively p01 ≤ τ(ω)) for any

ω ∈ [0, 1]. In other words, a channel observed to be in state “1” (respectively “0”) will

have the highest (respectively lowest) possible information state among all channels.

These observations lead to the following implementation of the myopic policy.

We take the initial information state ω̄(1), order the channels according to their

probabilities ωi(1), and probe the highest one (top of the ordered list) with ties

broken randomly. In subsequent steps we stay in the same channel if the channel

was sensed to be in state “1” (good) in the previous slot; otherwise, this channel

is moved to the bottom of the ordered list, and we probe the channel currently at

the top of the list. This in effect creates a round robin style of probing, where the

channels are cycled through in a fixed order. This circular structure is exploited in
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Section 2.4 to prove the optimality of the myopic policy in the case of p11 ≥ p01.

When p11 < p01, we have an analogous but opposite situation. The conditional

probability updating function τ(ω) is now a monotonically decreasing function, i.e.,

τ(ω1) ≤ τ(ω2) for ω1 ≥ ω2. Therefore the ordering of information states among

channels is reversed at each time step when they are not observed. If a channel

has been observed to be in state “1” (respectively “0”), its probability at the next

step becomes p11 ≤ τ(ω) (respectively p01 ≥ τ(ω)) for any ω ∈ [0, 1]. In other

words, a channel observed to be in state “1” (respectively “0”) will have the lowest

(respectively highest) possible information state among all channels.

As in the previous case, these similar observations lead to the following imple-

mentation. We take the initial information state ω̄(1), order the channels according

to their probabilities ωi(1), and probe the highest one (top of the ordered list) with

ties broken randomly. In each subsequent step, if the channel sensed in the previous

step was in state “0” (bad), we keep this channel at the top of the list but completely

reverse the order of the remaining list, and we probe this channel. If the channel

sensed in the previous step was in state “1” (good), then we completely reverse the

order of the entire list (including dropping this channel to the bottom of the list), and

probe the channel currently at the top of the list. This alternating circular structure

is exploited in Section 2.5 to examine the optimality of the myopic policy in the case

of p11 < p01.

2.4 Optimality of the Myopic Policy in the Case of p11 ≥ p01

In this section we show that the myopic policy, with a simple and robust structure,

is optimal when p11 ≥ p01. We will first show this for the finite horizon discounted cost

case, and then extend the result to the infinite horizon case under both discounted
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and average cost criteria in Section 2.6.

The main assumption is formally stated as follows.

Assumption 2.1. The transition probabilities p01 and p11 are such that

p11 − p01 ≥ 0.(2.12)

The main theorem of this section is as follows.

Theorem 2.2. Consider Problem (P1). Define Vt(ω̄; a) := E[Ra(ω̄)+βVt+1(T (ω̄, a))],

i.e., the value of the value function given in Eqn (2.8) when action a is taken at time

t followed by an optimal policy. Under Assumption 2.1, the myopic policy is optimal,

i.e. for ∀t, 1 ≤ t < T , and ∀ω̄ = [ω1, · · · , ωn] ∈ [0, 1]n,

(2.13) Vt(ω̄; a = j)− Vt(ω̄; a = i) ≥ 0,

if ωj ≥ ωi, for i = 1, · · · , n.

The proof of this theorem is based on backward induction on t: given the opti-

mality of the myopic policy at times t+1, t+2, · · · , T , we want to show that it is also

optimal at time t. This relies on a number of lemmas introduced below. The first

lemma introduces a notation that allows us to express the expected future reward

under the myopic policy.

Lemma 2.3. There exist T n-variable functions, denoted by Wt(), t = 1, 2, · · · , T ,

each of which is a polynomial of order 14 and can be represented recursively in the

following form:

(2.14)

Wt(ω̄) = ωn+ωnβWt+1(τ(ω1), . . . , τ(ωn−1), p11)+(1−ωn)βWt+1(p01, τ(ω1), . . . , τ(ωn−1)),

where ω̄ = [ω1, ω2, · · · , ωn] and WT (ω̄) = ωn.

4Each function Wt is affine in each variable, when all other variables are held constant.
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Proof. The proof is easily obtained using backward induction on t given the above

recursive equation and noting that WT () is one such polynomial and the mapping

τ() is a linear operation.

Corollary 1. When ω̄ represents the ordered list of information states [ω1, ω2, · · · , ωn]

with ω1 ≤ ω2 ≤ · · · ≤ ωn, then Wt(ω̄) is the expected total reward obtained by the

myopic policy from time t on.

Proof. This result follows directly from the description of the policy given in Section

2.3.2.

When ω̄ is the ordered list of information states, the recursive expression in (2.14)

gives the expected reward of the following policy: probe the n-th channel; for the

next step, if the current sensing outcome is “1”, then continue to probe the n-th

channel; if the current sensing outcome is “0”, then drop this channel to the bottom

of the list (it becomes the first channel) while moving the i-th channel to the (i+1)-

th position for all i = 1, · · · , n− 1; repeat this process. (This is essentially the same

description as given in Section 2.3 for the case of p11 ≥ p01.) To see that this is

the myopic policy, note that under the above policy, at any time the list of channel

probabilities are increasingly ordered. This is because for any 0 ≤ ω ≤ 1, we have

p01 ≤ τ(ω) ≤ p11 when p11 ≥ p01. Furthermore, under the assumption p11 ≥ p01, τ(ω)

is a monotonically increasing function. Therefore under this policy, when starting

out with increasingly ordered information states, this ordered is maintained in each

subsequent time step. As expressed in (2.14), at each step it’s always the n-th channel

that is probed. Since the n-th channel has the largest probability of being available,

this is the myopic policy.

Proposition 2.4. The fact that Wt is a polynomial of order 1 and affine in each of
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its elements implies that

Wt(ω1, · · · , ωn−2, y, x)−Wt(ω1, · · · , ωn−2, x, y)

= (x− y)[Wt(ω1, · · · , ωn−2, 0, 1)−Wt(ω1, · · · , ωn−2, 1, 0)] .(2.15)

Similar results hold when we change the positions of x and y.

To see this, consider Wt(ω1, · · · , ωn−2, x, y) and Wt(ω1, · · · , ωn−2, y, x), as func-

tions of x and y, each having an x term, a y term, an xy term and a constant term.

Since we are just swapping the positions of x and y in these two functions, the con-

stant term remains the same, and so does the xy term. Thus the only difference is

the x term and the y term, as given in the above equation. This linearity result will

be used later in our proofs.

The next lemma establishes a necessary and sufficient condition for the optimality

of the myopic policy.

Lemma 2.5. Consider Problem (P1) and Assumption 1. Given the optimality of

the myopic policy at times t + 1, t + 2, · · · , T , the optimality at time t is equivalent

to:

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωn, ωi) ≤ Wt(ω1, . . . , ωn),(2.16)

for all ω1 ≤ · · · ≤ ωi ≤ · · · ≤ ωn.

Proof. Since the myopic policy is optimal from t + 1 on, it is sufficient to show that

probing ωn followed by myopic probing is better than probing any other channel

followed by myopic probing. The former is precisely given by the RHS of the above

equation; the latter by the LHS, thus completing the proof.

Having established that Wt(ω̄) is the total expected reward of the myopic policy

for an increasingly-ordered vector ω̄ = [ω1, · · · , ωn], we next proceed to show that
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we do not decrease this total expected reward Wt(ω̄) by switching the order of two

neighboring elements ωi and ωi+1 if ωi ≥ ωi+1. This is done in two separate cases,

when i + 1 < n (given in Lemma 2.7) and when i + 1 = n (given in Lemma 2.8),

respectively. The first case is quite straightforward, while proving the second cased

turned out to be significantly more difficult. Our proof of the second case (Lemma

2.8) relies on a separate lemma (Lemma 2.6) that establishes a bound between the

greedy use of two identical vectors but with a different starting position. The proof

of Lemma 2.6 is based on a coupling argument and is quite instructive. Below we

present and prove Lemmas 2.6, 2.7 and 2.8.

Lemma 2.6. For 0 < ω1 ≤ ω2 ≤ . . . ≤ ωn < 1 , we have the following inequality for

all t = 1, 2, · · · , T :

1 + Wt(ω2, . . . , ωn, ω1) ≥ Wt(ω1, . . . , ωn).(2.17)

Proof. This lemma is the key to our main result and its proof is by using coupling

argument along any sample path. It is however also lengthy, and for this reason has

been relegated to the Appendix.

Lemma 2.7. For all j, 1 ≤ j ≤ n− 3, and all x ≥ y, we have

Wt(ω1, . . . , ωj, x, y, . . . , ωn) ≤ Wt(ω1, . . . , ωj, y, x, . . . , ωn)(2.18)

Proof. We prove this by induction over t. The claim is obviously true for t = T ,

since both sides will be equal to ωn, thereby establishing the induction basis. Now
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suppose the claim is true for all t + 1, · · · , T − 1. We have

Wt(ω1, · · · , ωj−1, x, y, · · · , ωn)

= ωn(1 + βWt+1(τ(ω1), · · · , τ(x), τ(y), · · · , τ(ωn−1), p11))

+ (1− ωn)βWt+1(p01, τ(ω1), · · · , τ(x), τ(y), · · · , τ(ωn−1))

≤ ωn(1 + βWt+1(τ(ω1), · · · , τ(y), τ(x), · · · , τ(ωn−1), p11))

+ (1− ωn)βWt+1(p01, τ(ω1), · · · , τ(y), τ(x), · · · , τ(ωn−1))

= Wt(ω1, · · · , ωj−1, y, x, · · · , ωn)(2.19)

where the inequality is due to the induction hypothesis, and noting that τ() is a

monotone increasing mapping in the case of p11 ≥ p01.

Lemma 2.8. For all x ≥ y, we have

Wt(ω1, . . . , ωj, . . . , ωn−2, x, y) ≤ Wt(ω1, . . . , ωj, . . . , ωn−2, y, x).(2.20)

Proof. This lemma is proved inductively. The claim is obviously true for t = T .

Assume it also holds for times t + 1, · · · , T − 1. We have by the definition of Wt()

and due to its linearity property:

Wt(ω1, . . . , ωn−2, y, x)−Wt(ω1, . . . , ωn−2, x, y)

= (x− y)(Wt(ω1, . . . , ωn−2, 0, 1)−Wt(ω1, . . . , ωn−2, 1, 0))

= (x− y) (1 + βWt+1(τ(ω1), . . . , τ(ωn−2), p01, p11)− βWt+1(p01, τ(ω1), . . . , τ(ωn−2), p11)) .

But from the induction hypothesis we know that

Wt+1(τ(ω1), . . . , τ(ωn−2), p01, p11) ≥ Wt+1(τ(ω1), . . . , τ(ωn−2), p11, p01)(2.21)

This means that

1 + βWt+1(τ(ω1), . . . , τ(ωn−2), p01, p11)− βWt+1(p01, τ(ω1), . . . , τ(ωn−2), p11)

≥ 1 + βWt+1(τ(ω1), . . . , τ(ωn−2), p11, p01)− βWt+1(p01, τ(ω1), . . . , τ(ωn−2), p11) ≥ 0 ,
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where the last inequality is due to Lemma 2.6 (note that in that lemma we proved

1 + A ≥ B, which obviously implies 1 + βA ≥ βB for 0 ≤ β ≤ 1 that is used above).

This, together with the condition x ≥ y, completes the proof.

We are now ready to prove the main theorem.

Proof of Theorem 2.2: The basic approach is by induction on t. The optimality

of the myopic policy at time t = T is obvious. So the induction basis is established.

Now assume that the myopic policy is optimal for all times t + 1, t + 2, · · · , T − 1,

and we will show that it is also optimal at time t. By Lemma 2.5 this is equivalent

to establishing the following

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωn, ωi) ≤ Wt(ω1, . . . , ωn).(2.22)

But we know from Lemmas 2.7 and 2.8 that,

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωn, ωi) ≤ Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωi, ωn)

≤ Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωi, ωn−1, ωn) ≤ . . . ≤ Wt(ω1, . . . , ωn) ,

where the first inequality is the result of Lemma 2.8, while the remaining inequalities

are repeated application of Lemma 2.7, completing the proof.

We would like to emphasize that from a technical point of view, Lemma 2.6 is

the key to the whole proof: it leads to Lemma 2.8, which in turn leads to Theorem

2.2. While Lemma 2.8 was easy to conceptualize as a sufficient condition to prove

the main theorem, Lemma 2.6 was much more elusive to construct and prove. This,

indeed, marks the main difference between the proof techniques used here vs. that

used in our earlier work [8]: Lemma 2.6 relies on a coupling argument instead of the

convex analytic properties of the value function.
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2.5 The Case of p11 < p01

In the previous section we showed that a myopic policy is optimal if p11 ≥ p01.

In this section we examine what happens when p11 < p01, which corresponds to the

case when the Markovian channel state process exhibits a negative auto-correlation

over a unit time. This is perhaps a case of less practical interest and relevance.

However, as we shall see this case presents a greater degree of technical complexity

and richness than the previous case. Specifically, we first show that when the number

of channels is three (n = 3) or when the discount factor β ≤ 1
2
, the myopic policy

remains optimal even for the case of p11 < p01 (the proof for two channels in this

case was given earlier in [7]). We thus conclude that the myopic policy is optimal

for n ≤ 3 or β ≤ 1/2 regardless of the transition probabilities. We then present a

counter example showing that the the myopic policy is not optimal in general when

n ≥ 4 and β > 1/2. In particular, our counter example is for a finite horizon with

n = 4 and β = 1.

2.5.1 n = 3 or β ≤ 1
2

We start by developing some results parallel to those presented in the previous

section for the case of p11 ≥ p01.

Lemma 2.9. There exist T n-variable polynomial functions of order 1, denoted by

Zt(), t = 1, 2, · · · , T , i.e., each function is linear in all the elements, and can be

represented recursively in the following form:

Zt(ω̄) := ωn(1 + βZt+1(p11, τ(ωn−1), . . . , τ(ω1)))

+(1− ωn)βZt+1(τ(ωn−1), . . . , τ(ω1), p01).(2.23)

where ZT (ω̄) = ωn.
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Corollary 2. Zt(ω̄) given in (2.23) represents the expected total reward of the myopic

policy when ω̄ is ordered in increasing order of ωi.

Similar to Corollary 1, the above result follows directly from the policy description

given in Section 2.3.2.

It follows that the function Zt also has the same linearity property presented

earlier, i.e.

Zt(ω1, · · · , ωn−2, y, x)− Zt(ω1, · · · , ωn−2, x, y)

= (x− y)(Zt(ω1, · · · , ωn−2, 0, 1)− Zt(ω1, · · · , ωn−2, 1, 0)) .(2.24)

Similar results hold when we change the positions of x and y.

In the next lemma and theorem we prove that the myopic policy is still optimal

when p11 < p01 if n = 3 or β ≤ 1/2 . In particular, Lemma 2.10 below is the analogy

of Lemmas 2.7 and 2.8 combined.

Lemma 2.10. At time t (t = 1, 2, · · · , T ), for all j ≤ n − 2, we have the following

inequality for ∀1 ≥ x ≥ y ≥ 0 if either n = 3 or β ≤ 1/2:

Zt(ω1, . . . , ωj, y, x, ωj+3, . . . , ωn) ≥ Zt(ω1, . . . , ωj, x, y, ωj+3, . . . , ωn).(2.25)

Proof. We prove this by induction on t. The claim is obviously true for t = T .

Now suppose it’s true for t + 1, · · · , T − 1. Due to the linearity property of Zt,

Zt(ω1, . . . , ωj, y, x, ωj+3, . . . , ωn)− Zt(ω1, . . . , ωj, x, y, ωj+3, . . . , ωn)

= (x− y) (Zt(ω1, . . . , ωj, 0, 1, ωj+3, . . . , ωn)− Zt(ω1, . . . , ωj, 1, 0, ωj+3, . . . , ωn))

Thus it suffices to show that

Zt(ω1, . . . , ωj, 0, 1, ωj+3, . . . , ωn) ≥ Zt(ω1, . . . , ωj, 1, 0, ωj+3, . . . , ωn).

We treat the case when j < n− 2 and j = n− 2 separately. Indeed, without loss

of generality, let j = n − 3 (the proof follows exactly for all j ≤ n − 3 with more
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lengthy notations). At time t we have

Zt(ω1, . . . , ωn−3, 0, 1, ωn)− Zt(ω1, . . . , ωn−3, 1, 0, ωn)

= ωβ(Zt+1(p11, p11, p01, τ(ωn−3), . . . , τ(ω1))− Zt+1(p11, p01, p11, τ(ωn−3), . . . , τ(ω1)))

+ (1− ω)β(Zt+1(p11, p01, τ(ωn−3), . . . , τ(ω1), p01)− Zt+1(p01, p11, τ(ωn−3), . . . , τ(ω1), p01))

≥ 0

where the last inequality is due to the induction hypothesis.

Now we will consider the case when j = n− 2.

Zt(ω1, . . . , ωn−2, 0, 1)− Zt(ω1, . . . , ωn−2, 1, 0) = 1 + βZt+1(p11, p01, τ(ωn−2), . . . , τ(ω1))−

βZt+1(p11, τ(ωn−2), . . . , τ(ω1), p01).

Next we show that if β ≤ 1/2 or n = 3 the right hand side of above equation is

non-negative.

If β ≤ 1/2, then

1 + βZt+1(p11, p01, τ(ωn−2), . . . , τ(ω1))− βZt+1(p11, τ(ωn−2), . . . , τ(ω1), p01)

≥ 1− β

1− β
≥ 0.

If n = 3, then

1 + βZt+1(p11, p01, τ(ω1))− βZt+1(p11, τ(ω1), p01)

= 1 + β(τ(ω1)− p01)(Zt+1(p11, 0, 1)− Zt+1(p11, 1, 0))

≥ 1− β(Zt+1(p11, 0, 1)− Zt+1(p11, 1, 0))

≥ 0

where the first inequality is due to the fact that −1 ≤ τ(ω1) − p01 ≤ 0 and the last

inequality is given by the induction hypothesis.
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Theorem 2.11. Consider Problem (P1). Assume that p11 < p01. The myopic policy

is optimal for the case of n = 3 and the case of β ≤ 1/2 with arbitrary n. More

precisely, for these two cases, ∀t, 1 ≤ t ≤ T , we have

(2.26) Vt(ω̄; a = j)− Vt(ω̄; a = i) ≥ 0,

if ωj ≥ ωi for i = 1, · · · , n.

Proof. We prove by induction on t. The optimality of the myopic policy at time

t = T is obvious. Now assume that the myopic policy is optimal for all times

t+1, t+2, · · · , T−1, and we want to show that it is also optimal at time t. Suppose at

time t the channel probabilities are such that ωn ≥ ωi for i = 1, · · · , n−1. The myopic

policy is optimal at time t if and only if probing ωn followed by myopic probing is

better than probing any other channel followed by myopic probing. Mathematically,

this means

Zt(ω1, . . . , ωi−1, ωi+1, . . . , ωn, ωi) ≤ Zt(ω1, . . . , ωn), for all ω1 ≤ ωi ≤ ωn.

But this is a direct consequence of Lemma 2.10, completing the proof.

2.5.2 A 4-channel Counter Example

The following example shows that the myopic policy is not, in general, optimal

for n ≥ 4 when p11 < p01.

Example 2.1. Consider an example with the following parameters: p01 = 0.9, p11 =

0.1, β = 1, and ω̄ = [.97, .97, .98, .99]. Now compare the following two policies at

time T − 3: play myopically (I), or play the .98 channel first, followed by the myopic

policy (II). Computation reveals that

V I
T−3(.97, .97, .98, .99) = 2.401863 < V II

T−3(.97, .97, .98, .99) = 2.402968

which shows that the myopic policy is not optimal in this case.
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It remains an interesting question as to whether such counter examples exist in

the case when the initial condition is such that all channel are in the good state with

the stationary probability.

2.6 Infinite Horizon

Now we consider extensions of results in Sections 2.4 and 2.5 to (P2) and (P3),

i.e., to show that the myopic policy is also optimal for (P2) and (P3) under the same

conditions. Intuitively, this holds due to the fact that the stationary optimal policy

of the finite horizon problem is independent of the horizon as well as the discount

factor. Theorems 2.12 and 2.13 below concretely establish this.

We point out that the proofs of Theorems 2.12 and 2.13 do not rely on any

additional assumptions other than the optimality of the myopic policy for (P1).

Indeed, if the optimality of the myopic policy for (P1) can be established under

weaker conditions, Theorems 3 and 4 can be readily invoked to establish its optimality

under the same weaker condition for (P2) and (P3), respectively.

Theorem 2.12. If myopic policy is optimal for (P1), it is also optimal for (P2) for

0 ≤ β < 1. Furthermore, its value function is the limiting value function of (P1) as

the time horizon goes to infinity, i.e., we have maxπ Jπ
β (ω̄) = limT→∞ maxπ Jπ

T (ω̄).

Proof. We first use the bounded convergence theorem (BCT) to establish the fact that

under any deterministic stationary Markov policy π, we have Jπ
β (ω̄) = limT→∞ Jπ

T (ω̄).

We prove this by noting that

Jπ
β (ω̄) = Eπ[ lim

T→∞

T∑
t=1

βt−1Rπ(t)(ω̄(t))|ω̄(1) = ω̄]

= lim
T→∞

Eπ[
T∑

t=1

βt−1Rπ(t)(ω̄(t))|ω̄(1) = ω̄] = lim
T→∞

Jπ
T (ω̄)
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where the second equality is due to BCT for
∑T

t=1 βt−1Rπ(t)(ω̄(t)) ≤ 1
1−β

. This

proves the second part of the theorem by noting that due to the finiteness of the

action space, we can interchange maximization and limit.

Let π∗ denote the myopic policy. We now establish the optimality of π∗ for (P2).

From Theorem 1, we know:

Jπ∗
T (ω̄) = max

a=i

{
ωi + βωiJ

π∗
T−1 (τ (ω̄, i|1)) β (1− ωi)J

π∗
T−1 (τ (ω̄, i|0))

}
.

Taking limit of both sides, we have

Jπ∗
β (ω̄) = max

a=i

{
ωi + βωiJ

π∗
β (τ (ω̄, i|1)) + β (1− ωi)J

π∗
β (τ (ω̄, i|0))

}
.

Note that (2.27) is nothing but the dynamic programming equation for the infi-

nite horizon discounted reward problem given in (2.9). From the uniqueness of the

dynamic programming solution, then, we have

Jπ∗
β (ω̄) = Vβ(ω̄) = max

π
Jπ

β (ω̄)

hence, the optimality of the myopic policy.

Theorem 2.13. Consider (P3) with the expected average reward and under the er-

godicity assumption |p11 − p00| < 1. Myopic policy is optimal for problem (P3) if it

is optimal for (P1).

Proof. We consider the infinite horizon discounted cost for β < 1 under the optimal

policy denoted by π∗:

Jπ∗
β (ω̄) = max

a=i

{
ωi + βωiJ

π∗
β (τ (ω̄, i|1)) + β(1− ωi)J

π∗
β (τ (ω̄, i|0))

}
.

This can be written as

(1− β)Jπ∗
β (ω̄)

= max
a=i

{
ωi + βωi

[
Jπ∗

β (τ (ω̄, i|1))− Jπ∗
β (ω̄)

]
+ β(1− ωi)

[
Jπ∗

β (τ (ω̄, i|0))− Jπ∗
β (ω̄)

]}
.
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Notice that the boundedness of the reward function and compactness of infor-

mation state implies that the sequence of {(1 − β)Jπ∗
β (ω̄)} is bounded, i.e. for all

0 ≤ β ≤ 1,

(2.27) (1− β)Jπ∗
β (ω̄) ≤ 1.

Also, applying Lemma 2 from [8] (which provides an upper bound on the difference in

value functions between taking two different actions followed by the optimal policy)

and noting that −1 < p11−p00 < 1, we have that there exists some positive constant

K := 1
1−|p11−p01| such that

(2.28)
∣∣Jπ∗

β (τ (ω̄, i|0))− Jπ∗
β (ω̄)

∣∣ ≤ K.

By Bolzano-Weierstrass theorem, (2.27) and (2.28) guarantee the existence of a

converging sequence βk → 1 such that

lim
k→∞

(1− βk)J
π∗
βk

(ω̄∗) := J∗,(2.29)

and lim
k→∞

[
Jπ∗

βk
(ω̄)− Jπ∗

βk
(ω̄∗)

]
:= hπ∗(ω̄) ,(2.30)

where ω∗i := p01

1−p11+p01
is the steady-state belief (the limiting belief when channel i is

not sensed for a long time).

As a result, (2.29) can be written as

J∗ = lim
k→∞

{
(1− βk)J

π∗
βk

(ω̄∗) + (1− βk)
[
Jπ∗

βk
(ω̄)− Jπ∗

βk
(ω̄∗)

]}
.

In other words,

J∗ = lim
k→∞

max
a=i

{
ωi + βkωi

[
Jπ∗

βk
(τ (ω̄, i|1))

−Jπ∗
βk

(ω̄)
]
+ βk (1− ωi)

[
Jπ∗

βk
(τ (ω̄, i|0))− Jπ∗

βk
(ω̄)

]}
.
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From (2.30), we can write this as

J∗ + hπ∗(ω̄) = max
a=i

{
ωi + ωih

π∗ (τ (ω̄, i|1)) +

(1− ωi)h
π∗ (τ (ω̄, i|0))

}
.(2.31)

Note that (2.31) is nothing but the DP equation as given by (2.10). In addi-

tion, we know that the immediate reward as well as function h are both bounded

by max(1, K). This implies that J∗ is the maximum average reward, i.e. J∗ =

maxπ Jπ
∞(ω̄(t)) (see [19, Theorems 6.1-6.3]).

On the other hand, we know from Theorem 2.12 that the myopic policy is optimal

for (P2) if it is for (P1), and thus we can take π∗ in (2.27) to be the myopic policy.

Rewriting (2.27) gives the following:

(2.32)

Jπ∗
β (ω̄) = ωπ∗(ω̄) + βωπ∗(ω̄)J

π∗
β (τ (ω̄, π∗(ω̄)|1)) + β(1− ωπ∗(ω̄))J

π∗
β (τ (ω̄, π∗(ω̄)|0)) .

Repeating steps (2.29)-(2.31) we arrive at the following:

(2.33)

J + hπ∗(ω̄) = ωπ∗(ω̄) + ωπ∗(ω̄)h
π∗ (τ (ω̄, π∗(ω̄)|1)) + (1− ωπ∗(ω̄))h

π∗ (τ (ω̄, π∗(ω̄)|0)) ,

which shows that (J∗, hπ∗ , π∗) is a canonical triplet [19, Theorems 6.2]. This, together

with boundedness of hπ∗ and immediate reward, implies that the myopic policy π∗

is optimal for (P3) [19, Theorems 6.3].

2.7 Discussion and Related Work

The problem studied in this chapter may be viewed as a special case of a class

of MDPs known as the restless bandit problems [4]. In this class of problems, N

controlled Markov chains (also called projects or machines) are activated (or played)

one at a time. A machine when activated generates a state dependent reward and
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transits to the next state according to a Markov rule. A machine not activated

transits to the next state according to a (potentially different) Markov rule. The

problem is to decide the sequence in which these machines are activated so as to

maximize the expected (discounted or average) reward over an infinite horizon. To

put our problem in this context, each channel corresponds to a machine, and a

channel is activated when it is probed, and its information state goes through a

transition depending on the observation and the underlying channel model. When

a channel is not probed, its information state goes through a transition solely based

on the underlying channel model 5.

In the case that a machine stays frozen in its current state when not played,

the problem reduces to the multi-armed bandit problem, a class of problems solved

by Gittins in his 1970 seminal work [20]. Gittins showed that there exists an index

associated with each machine that is solely a function of that individual machine and

its state, and that playing the machine currently with the highest index is optimal.

This index has since been referred to as the Gittins index due to Whittle [21]. The

remarkable nature of this result lies in the fact that it essentially decomposes the

N -dimensional problem into N 1-dimensional problems, as an index is defined for

a machine independent of others. The basic model of multi-armed bandit has been

used previously in the context of channel access and cognitive radio networks. For

example, in [22], Bayesian learning was used to estimate the probability of a channel

being available, and the Gittins indices, calculated based on such estimates (which

were only updated when a channel is observed and used, thus giving rise to a multi-

armed bandit formulation rather than a restless bandit formulation), were used for

channel selection.
5The standard definition of bandit problems typically assumes finite or countably infinite state spaces. While our

problem can potentially have an uncountable state space, it is nevertheless countable for a given initial state. This
view has been taken throughout the chapter.
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On the other hand, relatively little is known about the structure of the optimal

policies for the restless bandit problems in general. It has been shown that the

Gittins index policy is not in general optimal in this case [4], and that this class

of problems is PSPACE-hard in general [23]. Whittle, in [4], proposed a Gittins-

like index (referred to as the Whittle’s index policy), shown to be optimal under a

constraint on the average number of machines that can be played at a given time,

and asymptotically optimal under certain limiting regimes [24]. There has been a

large volume of literature in this area, including various approximation algorithms,

see for example [25] and [26] for near-optimal heuristics, as well as conditions for

certain policies to be optimal for special cases of the restless bandit problem, see

e.g., [27, 28]. The nature of the results derived in the present chapter is similar to

that of [27, 28] in spirit. That is, we have shown that for this special case of the

restless bandit problem an index policy is optimal under certain conditions. For the

indexability (as defined by Whittle [4]) of this problem, see [29].

Recently Guha and Munagala [30, 31] studied a class of problems referred to as the

feedback multi-armed bandit problems. This class is very similar to the restless bandit

problem studied in the present chapter, with the difference that channels may have

different transition probabilities (thus this is a slight generalization to the one studied

here). While we identified conditions under which a simple greedy index policy is

optimal in the present chapter, Guha and Munagala in [30, 31] looked for provably

good approximation algorithms. In particular, they derived a 2 + ε-approximate

policy using a duality-based technique.
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2.8 Conclusion

The general problem of opportunistic sensing and access arises in many multi-

channel communication contexts. For cases where the stochastic evolution of chan-

nels can be modelled as i.i.d. two-state Markov chains, we showed that a simple and

robust myopic policy is optimal for the finite and infinite horizon discounted reward

criteria as well as the infinite horizon average reward criterion, when the state tran-

sitions are positively correlated over time. When the state transitions are negatively

correlated, we showed that the same policy is optimal when the number of channels

is limited to 2 or 3, and presented a counterexample for the case of 4 channels.



CHAPTER 3

Opportunistic Spectrum Access as a Restless Bandit
Problem With Multiple Plays

3.1 Introduction

In this chapter we study a multiple-play extension to the problem defined in the

previous chapter, where the user can select more than one channel at a time to sense

their availability and can use all available channels among those selected. More

specifically, we consider the following stochastic control problem: As before, there

are n uncontrolled Markov chains, each an independent, identically-distributed, two-

state discrete-time Markov process. The two states will be denoted as state 1 and

state 0 and the transition probabilities are given by pij, i, j = 0, 1. The system

evolves in discrete time. In each time instance, a user selects exactly k ≥ 1 out of

the n processes and is allowed to observe their states. For each selected process that

happens to be in state 1 the user gets a reward; there is no penalty for selecting

a channel that turns out to be state 0 but each such occurrence represents a lost

opportunity because the user is limited to selecting only k of them. The ones that

the user does not select do not reveal their true states. The objective is to derive a

selection strategy whose total expected discounted rewarded over a finite or infinite

horizon is maximized.

This is again a partially observed MDP (or POMDP) problem [3] due to the fact

37
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that the states of the underlying Markov processes are not fully observed at all times.

This problem is also an instance of the restless bandit problem with multiple plays

[4, 32, 33]. More discussion on this literature is provided in section 3.5. The problem

studied in the previous chapter is a special case of the present one when k = 1.

The application of the above problem abstraction to multichannel opportunistic

access is as follows. Each Markov process represents a wireless channel, whose state

transitions reflect dynamic changes in channel conditions caused by fading, interfer-

ence, and so on. Specifically, we will consider state 1 as the “good” state, in which

a user (or transmitter) can successfully communicate with a receiver; state 0 is the

“bad” state, in which communication will fail. The channel state is assumed to re-

main constant within a single discrete time step. A multichannel system consists of n

distinct channels. A user who wishes to use a particular channel at the beginning of

a time step must first sense or probe the state of the channel, and can only transmit

in a channel probed to be in the “good” state in the same time step. The user cannot

sense and access more than k channels at a time due to hardware limitations. If all

k selected channels turn out to be in the “bad” state, the user has to wait till the

beginning of the next time step to repeat the selection process.

This model captures some of the essential features of multichannel opportunistic

access as outlined above. On the other hand, it has the following limitations: the

simplicity of the iid two-state channel model; the implicit assumption that channel

sensing is perfect and the lack of penalty if the user transmits in a bad channel due

to imperfect sensing; and the assumption that the user can select an arbitrary set of

k channels out of n (e.g., it may only be able to access a contiguous block of channels

due to physical layer limitations). Nevertheless this model does allow us to obtain

analytical insights into the problem, and more importantly, some insight into the
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more general problem of restless bandits with multiple plays.

As mentioned earlier, this model has been used and studied quite extensively

in the past few years, mostly within the context of opportunistic spectrum access

and cognitive radio networks, see for example [7, 34, 30, 31]. [7] studied the same

problem and proved the optimality of the greedy policy in the special case of k =

1, n = 2, [12] proved the optimality of the greedy policy in the case of k = n −

1, while [30, 31] looked for provably good approximation algorithms for a similar

problem. Furthermore, the indexability (in the context of Whittle’s heuristic index

and indexability definition [4]) of the underlying problem was studied in [29].

Our previous chapter (as well as [34]) established the optimality of the greedy

policy for the special case of k = 1 for arbitrary n and under the condition p11 ≥ p01,

i.e., when a channel’s state transitions are positively correlated. In this sense, the

results reported in the present chapter is a direct generalization of results in [34], as

we shall prove the optimality of the greedy policy under the same condition but for

any n ≥ k ≥ 1. The main thought process used to prove this more general result

derives from that used in [34]. However, there were considerable technical difficulties

we had to overcome to reach the conclusion.

In the remainder of this chapter we first formulate the problem in Section 3.2,

present preliminaries in Section 3.3, and then prove the optimality of the greedy

policy in Section 3.4. We discuss our work within the context of restless bandit

problems in Section 3.5. Section 3.6 concludes the chapter.

3.2 Problem Formulation

As outlined in the introduction, we consider a user trying to access the wireless

spectrum pre-divided into n independent and statistically identical channels, each
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given by a two-state Markov chain. The collection of n channels is denoted by N ,

each indexed by i = 1, 2, · · · , n.

The system operates in discrete time steps indexed by t, t = 1, 2, · · · , T , where T

is the time horizon of interest. At time t−, the channels go through state transitions,

and at time t the user makes the channel selection decision. Specifically, at time t

the user selects k of the n channels to sense, the set denoted by ak ⊂ N .

For channels sensed to be in the “good” state (state 1), the user transmits in those

channels and collects one unit of reward for each such channel. If none is sensed good,

the user does not transmit, collects no reward, and waits until t+1 to make another

choice. This process repeats sequentially until the time horizon expires.

The underlying system (i.e., the n channels) is not fully observable to the user.

Specifically, channels go through state transition at time t− (or anytime between

(t− 1, t)), thus when the user makes the channel sensing decision at time t, it does

not have the true state of any channel at time t. Furthermore, upon its action (at

time t+) only k channels reveal their true states. The user’s action space at time t

is given by the finite set ak(t) ⊂ N , where ak(t) = {i1, . . . , iK}.

We know (see e.g., [3, 16, 17]) that a sufficient statistic of such a system for

optimal decision making, or the information state of the system [16, 17], is given

by the conditional probabilities of the state each channel is in given all past actions

and observations. Since each channel can be in one of two states, we denote this

information state by ω̄(t) = [ω1(t), · · · , ωn(t)] ∈ [0, 1]n, where ωi(t) is the conditional

probability that channel i is in state 1 at time t given all past states, actions and

observations 1. Throughout the chapter ωi(t) will be referred to as the information

state of channel i at time t, or simply the channel probability of i at time t.

1Note that it is a standard way of turning a POMDP problem into a classic MDP problem by means of the
information state, the main implication being that the state space is now uncountable.



41

Due to the Markovian nature of the channel model, the future information state

is only a function of the current information state and the current action; i.e., it is

independent of past history given the current information state and action. It follows

that the information state of the system evolves as follows. Given that the state at

time t is ω̄(t) and action ak(t) is taken, ωi(t+1) for i ∈ ak(t) can take on two values:

(1) p11 if the observation is that channel i is in a “good” state; this occurs with

probability ωi(t); (2) p01 if the observation is that channel i is in a “bad” state; this

occurs with probability 1 − ωi. For any other channel j 6∈ ak(t), with probability 1

the corresponding ωj(t+1) = τ(ωj(t)) where the operator τ : [0, 1] → [0, 1] is defined

as

(3.1) τ(ω) := ωp11 + (1− ω)p01, 0 ≤ ω ≤ 1 .

The objective is to maximize its total discounted expected reward over a finite

horizon given in the following problem (P) (extension to infinite horizon is discussed

in Section 3.5):

(P): max
π

Jπ
T (ω̄) = max

π
Eπ[

T∑
t=1

βt−1Rπt(ω̄(t))|ω̄(1) = ω̄]

where 0 ≤ β ≤ 1 is the discount factor, and Rπt(ω̄(t)) is the reward collected under

state ω̄(t) when channels in the set ak(t) = πt(ω̄(t)) are selected.

The maximization in (P) is over the class of deterministic Markov policies 2. An

admissible policy π, given by the vector π = [π1, π2, · · · , πT ], is such that πt specifies

a mapping from the current information state ω̄(t) to a channel selection action

ak(t) = πt(ω̄(t)) ⊂ {1, 2, · · · , n}. This is done without loss of optimality due to the

Markovian nature of the underlying system, and due to known results on POMDPs

[17, Chapter 6].

2A Markov policy is a policy that derives its action only depending on the current (information) state, rather
than the entire history of states, see e.g., [17].
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3.3 Preliminaries

The dynamic programming (DP) representation of problem (P) is given as follows:

VT (ω̄) = max
ak∈N ,|ak|=k

E[Rak(ω̄)]

Vt(ω̄) = max
ak∈N ,|ak|=k

(
∑

i∈ak

ωi + β ·
∑

li∈{0,1},i∈ak

(∏

i∈ak

ωli
i (1− ωi)

1−li

)
·

Vt+1(p01, . . . , p01, τ(ωj), p11, . . . , p11)),(3.2)

t = 1, 2, · · · , T − 1.

In the last term, the channel state probability vector consists of three parts: a

sequence of p01’s that represent those channels sensed to be in state 0 at time t and

the length of this sequence is the number of li’s equaling zero; a sequence of values

τ(ωj) for all j 6∈ ak; and a sequence of p11’s that represent those channels sensed to

be in state 1 at time t and the length of this sequence is the number of li’s equaling

one. Note that the future expected reward is calculated by summing over all possible

realizations of the k selected channels.

The value function Vt(ω̄) represents the maximum expected future reward that

can be accrued starting from time t when the information state is ω̄. In particular,

we have V1(ω̄) = maxπ Jπ
T (ω̄), and an optimal deterministic Markov policy exists

such that a = π∗t (ω̄) achieves the maximum in (3.3) (see e.g., [18] (Chapter 4)).

For simplicity of representation, we introduce the following notations:

• p01[x]: this is the vector [p01, p01, · · · , p01] of length x;

• p11[x]: this is the vector [p11, p11, · · · , p11] of length x.

• We will use the notation:

q(l1, · · · , lk) :=
∏

1≤i≤k

(
ωli

i (1− ωi)
1−li

)
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for l1, · · · , lk ∈ {0, 1}. That is, given a vector of 0s and 1s (total of k elements),

q() is the probability that a set of k channels are in states given by the vector.

With the above notation, Eqn (3.3) can be written as

Vt(ω̄) = max
ak∈N ,|ak|=k

(
∑

i∈ak

ωi + β ·
∑

li∈{0,1},i∈ak

q(l1, · · · , lk) · Vt+1(p01[k −
∑

li], · · · , τ(ωj), p11[
∑

li]) .

Solving (P) using the above recursive equation can be computationally heavy,

especially considering the fact that ω̄ is a vector of probabilities. It is thus common

to consider suboptimal policies that are easier to compute and implement. One of

the simplest such heuristics is a greedy policy where at each time step we take an

action that maximizes the immediate one-step reward. Our focus is to examine the

optimality properties of such a simple greedy policy.

For problem (P), the greedy policy under state ω̄ = [ω1, ω2, · · · , ωn] is given by

(3.3) ak(ω̄) = arg max
ak⊂N ,|ak|=k

∑

i∈ak

ωi .

That is, the greedy policy seeks to maximize the reward as if there were only one

step remaining in the horizon. In the next section we investigate the optimality of

this policy. Specifically, we will show that it is optimal in the case of p11 ≥ p01. This

extends the earlier result in [34] that showed this to be true for the special case of

k = 1.

3.4 Optimality of the Greedy Policy

In this section we show that the greedy policy is optimal when p11 ≥ p01. The

main theorem of this section is as follows.
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Theorem 3.1. The greedy policy is optimal for Problem (P) under the assumption

that p11 ≥ p01. That is, for t = 1, 2, · · · , T , k ≤ n, and ∀ω̄ = [ω1, · · · , ωn] ∈ [0, 1]n,

we have

V k
t (ω̄; zk(ω̄)) ≥ V k

t (ω̄; ak), ∀ak ⊂ N ,(3.4)

where zk(ω̄) is the subset whose elements (indices) correspond to the k largest values

in ω̄, and V k
t (ω̄; ak) the expected value of action ak followed by behaving optimally.

Below we present a number of lemmas used in the proof of this theorem. The first

lemma introduces a notation that allows us to express the expected future reward

under the greedy policy.

Lemma 3.2. There exist T n-variable functions, denoted by W k
t (ω̄), t = 1, 2, · · · , T ,

each of which is a polynomial of order 13 and can be represented recursively in the

following form:

W k
T (ω̄) =

∑
n−1+1≤i≤n

ωi

W k
t (ω̄) =

∑
n−1+1≤i≤n

ωi + β ·
∑

ln,ln−1,··· ,ln+k−1∈{0,1}
q(ln, · · · , ln+k−1) ·

W k
t+1(p01[k −

∑
li], τ(ωi), · · · , τ(ωn−k), p11[

∑
li]) .

The proof is easily obtained using backward induction on t given the recursive

equation and noting that the mapping τ() is linear. The detailed proof is thus

omitted for brevity.

A few remarks are in order on this function W k
t (ω̄).

1. Firstly, when ω̄ is given by an ordered vector [ω1, ω2, · · · , ωn] with ω1 ≤ ω2 ≤

· · · ≤ ωn, W k
t (ω̄) is the expected total discounted future reward (from t to T )

by following the greedy policy.
3Each function Wt is affine in each variable, when all other variables are held constant.
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This follows from how the greedy policy works in the special case of p11 ≥ p01.

Note that in this case the conditional probability updating function τ(ω) is a

monotonically increasing function, i.e., τ(ω1) ≥ τ(ω2) for ω1 ≥ ω2. Therefore

the ordering of channel probabilities is preserved among those that are not

observed.

If a channel has been observed to be in state “1” (respectively “0”), its prob-

ability at the next step becomes p11 ≥ τ(ω) (respectively p01 ≤ τ(ω)) for any

ω ∈ [0, 1]. In other words, a channel observed to be in state “1” (respectively

“0”) will have the highest (respectively lowest) possible probability among all

channels.

Therefore if we take the initial information state ω̄(1), order the channels ac-

cording to their probabilities ωi(1), and sense the highest k channels (top k of

the ordered list) with ties broken randomly, then following the greedy policy

means that in subsequent steps we will keep a channel in its current position if

it was sensed to be in state 1 in the previous slot; otherwise, it was observed to

be in state 0 and gets thrown to the bottom of the ordered list. The policy then

selects the next top most (or rightmost) k channels on this new ordered list.

This procedure is essentially the same as that given in the recursive expression

of W ().

2. Secondly, when ω̄ is not ordered, W k
t () reflects a policy that simply goes down

the list of channels by the order fixed in ω̄, while each time tossing the ones

observed to be 0 to the end of the list and keeing those observed to be 1 at the

top of the list.

3. Thirdly, the fact that WK
t is a polynomial of order 1 and affine in each of its
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elements implies that

WK
t (ω1, · · · , ωn−2, y, x)−WK

t (ω1, · · · , ωn−2, x, y)

= (x− y)[WK
t (ω1, · · · , ωn−2, 0, 1)− WK

t (ω1, · · · , ωn−2, 1, 0)] .

Similar results hold when we change the positions of x and y. To see this,

consider the above as two functions of x and y, each having an x term, a y term,

an xy term and a constant term. Since we are only swapping the positions of x

and y in these two functions, the constant term remains the same, and so does

the xy term. Thus the only difference is the x term and the y term, as given in

the above equation. This linearity result is used later in our proof.

The next lemma establishes a sufficient condition for the optimality of the greedy

policy.

Lemma 3.3. Consider Problem (P) under the assumption that p11 ≥ p01. To show

that the greedy policy is optimal at time t given that it is optimal at t+1, t+2, · · · , T ,

it suffices to show that at time t we have

W k
t (ω1, · · · , ωj, x, y, · · · , ωn) ≤ W k

t (ω1, · · · , ωj, y, x, · · · , ωn),(3.5)

for all x ≥ y and all 0 ≤ j ≤ n − 2, with j = 0 implying W k
t (x, y, ω3, · · · , ωn) ≤

W k
t (y, x, ω3, · · · , ωn).

Proof. Since the greedy policy is optimal from t + 1 on, it is sufficient to show that

selecting the best k channels followed by the greedy policy is better than selecting

any other set of k channels followed by the greedy policy. If channels are ordered

ω1 ≤ · · · ≤ ωi ≤ · · · ≤ ωn then the reward of the former is precisely given by

WK
t (ω1, . . . , ωn). On the other hand, the reward of selecting an arbitrary set ak of k
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channels followed by acting greedily can be expressed as W k
t (ak, ak), where ak is the

(increasingly) ordered set of channels not included in ak. It remains to show that if

Eqn (3.5) is true then we have W k
t (ak, ak) ≤ WK

t (ω1, . . . , ωn). This is easily done

since the ordered list (ak, ak) may be converted to ω1, . . . , ωn through a sequence

of switchings between two neighboring elements that are not increasingly ordered.

Each such switch invokes (3.5), thereby maintaining the “≤” relationship.

Lemma 3.4. For 0 ≤ ω1 ≤ ω2 ≤ . . . ≤ ωn ≤ 1, we have the following two inequalities

for all t = 1, 2, · · · , T :

(A) : 1 + W k
t (ω2, · · · , ωn, ω1) ≥ W k

t (ω1, · · · , ωn)

(B) : W k
t (ω1, · · · , ωj, y, x, ωj+3, · · · , ωn) ≥

W k
t (ω1, · · · , x, y, ωj+3, · · · , ωn),

where x ≥ y, 0 ≤ j ≤ n−2, and j = 0 implies W k
t (y, x, ω3, · · · , ωn) ≥ W k

t (x, y, ω3, · · · , ωn).

This lemma is the key to our main result and its proof, which uses a sample path

argument, highly instructive. It is however also lengthy, and for this reason has been

relegated to the Appendix.

With the above lemmas, Theorem 1 is easily proven:

Proof of Theorem 1: We prove by induction on T . When t = T , the greedy policy

is obviously optimal. Suppose it is also optimal for all times t + 1, t + 2, · · · , T ,

under the assumption p11 ≥ p01. Then at time t, by Lemma 3.3, it suffices to show

that W k
t (ω1, · · · , ωj, x, y, · · · , ωn) ≤ W k

t (ω1, · · · , ωj, y, x, · · · , ωn) for all x ≥ y and

0 ≤ j ≤ n− 2. But this is proven in Lemma 3.4.
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3.5 Discussion

While the formulation (P) is a finite horizon problem, the same result applies to

the infinite horizon discounted reward case using standard techniques as we have

done in our previous work [8, 34].

In the case of infinite horizon, the problem studied in this chapter is closely

associated with the class of multi-armed bandit problems [20] and restless bandit

problems [4]. This is a class of problems where n controlled Markov chains (also

called machines or arms) are activated (or played) one at a time. A machine when

activated generates a state dependent reward and moves to the next state according

to a Markov rule. A machine not activated either stays frozen in its current state (a

rested bandit) or moves to the next state according to a possibly different Markov rule

(a restless bandit). The problem is to decide the sequence in which these machines

are activated so as to maximize the expected (discounted or average) reward over an

infinite horizon.

The multi-armed bandit problem was originally solved by Gittins (see [20]), who

showed that there exists an index associated with each machine that is solely a

function of that individual machine and its state, and that playing the machine

currently with the highest index is optimal. This index has since been referred to

as the Gittins index. The remarkable nature of this result lies in the fact that it

decomposes the n-dimensional problem into n 1-dimensional problems, as an index

is defined for a machine independent of others. The restless bandit problem on the

other hand was proven much more complex, and is PSPACE-hard in general [23].

Relatively little is known about the structure of its optimal policy in general. In

particular, the Gittins index policy is not in general optimal [4].
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When multiple machines are activated simultaneously, the resulting problem is

referred to as multi-armed bandits with multiple plays. Again optimal solutions to

this class of problems are not known in general. A natural extension to the Gittins

index policy in this case is to play the machines with the highest Gittins indices

(this will be referred to as the extended Gittins index policy below). This is not in

general optimal for multi-armed bandits with multiple plays and an infinite horizon

discounted reward criterion, see e.g., [35, 36]. However, it may be optimal in some

cases, see e.g., [36] for conditions on the reward function, and [37] for an undiscounted

case where the Gittins index is always achieved at time 1. Even less is known when

the bandits are restless, though asymptotic results for restless bandits with multiple

plays were provided in [4] and [24].

The problem studied in the present chapter is an instance of the restless bandits

with multiple plays (in the infinite horizon case). Therefore what we have shown in

this chapter is an instance of the restless bandits problem with multiple plays, for

which the extended Gittins index policy is optimal.

3.6 Conclusion

In this chapter we studied a stochastic control problem that arose in opportunistic

spectrum access. A user can sense and access k out of n channels at a time and must

select judiciously in order to maximize its reward. We extend a previous result

where a greedy policy was shown to be optimal in the special case of k = 1 under the

condition that the channel state transitions are positively correlated over time. In

this chapter we showed that under the same condition the greedy policy is optimal

for the general case of k ≥ 1. This result also contributes to the understanding of

the class of restless bandit problems with multiple plays.



CHAPTER 4

Opportunistic Spectrum Sharing as a Congestion Game

4.1 Introduction

In this chapter we present a generalized form of the class of non-coopertive strate-

gic games known as congestion games (CG) [38, 39], and study its properties as well

as its application to spectrum sharing in a cognitive radio network.

In a classical congestion game, multiple users share multiple resources. The payoff

1 for any user to use a particular resource depends on the number of users using that

resource concurrently. A detailed and formal description is provided in Section 4.2.

The congestion game framework is well suited to model resource competition where

the resulting payoff is a function of the level of congestion (number of active users).

It has been extensively studied within the context of network routing, see for instance

the congestion game studied in [40] 2, where source nodes seek minimum delay path

to a destination and the delay of a link depends on the number of flows going through

that link.

A congestion game enjoys many nice properties. For example, it always has a

pure strategy Nash Equilibrium (NE), and any asynchronous improvement path is

1Sometimes people consider the cost of using a resource instead of the payoff. If we define the cost as the inverse
of the payoff, then maximizing the payoff is equivalent to minimizing the cost. For simplicity of presentation, we will
focus on the maximization of payoff in this chapter.

2Note that while also called “network congestion game”, the game studied in [40] is essentially a classical congestion
game with resources being links in a network. By contrast, the network congestion game defined in this chapter is a
network game meaning that the relationship among players are given by a network.

50
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finite and will lead to a pure strategy NE (referred to as the finite improvement

property (FIP). In fact, while the system is decentralized and all players are selfish,

by seeking to optimize their individual objectives they end up optimizing a global

objective, also called the potential function, and doing so in a finite number of steps

regardless of the updating sequence.

For these reasons, it is tempting to model resource competition in a wireless com-

munication system as a congestion game. However, the standard congestion game

fails to capture a critical aspect of resource sharing in wireless communication: in-

terference. A key assumption underlying the congestion game model is that all users

have an equal impact on the congestion, and therefore all that matters is the total

number of users of a resource. This however is not true in wireless communication.

Specifically, if we consider bandwidth or channels as resources, then sharing the

same channel is complicated by interference; a user’s payoff (e.g., channel quality,

achievable rates, etc.) depends on who the other users are and how much interfer-

ence it receives from them. If all other simultaneous users are located sufficiently far

away, then sharing may not cause any performance degradation, a feature commonly

known as spatial reuse.

The above consideration poses significant challenge in using the congestion game

model depending on what type of user objectives we are interested in. In our recent

work [41], we addressed the user-specific interference issue within the congestion

game framework, by introducing a concept called resource expansion, where we define

virtual resources as certain spectral-spatial unit that allows us to capture pair-wise

interference. This approach was shown to be quite effective for user objectives like

interference minimization.

In this chapter, we take a different approach where we generalize the standard
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congestion games to directly account for the interference relationship and spatial

reuse in wireless networks. Specifically, under this generalization, users are placed

over a network representing an interference graph. An edge exists between two users

that interfere with each other. In using a resource (a wireless channel), a user’s payoff

is a function of the total number of users within its interference neighborhood using

it. Therefore, resources are reusable beyond a user’s interference set. This extension

is a generalization of the original congestion game definition, as the former reduces to

the latter if the underlying network is complete (i.e., every user interferes with every

other user). This class of generalized games will be referred to as network congestion

games (NCG).

The applicability of this class of games to a multi-channel, multi-user wireless

communication system can be easily understood. Specifically, we consider such a

system where a user can only access one channel at a time, but can switch between

channels. A user’s principal interest lies in optimizing its own performance objective

(i.e., its data rate) by selecting the best channel for itself. This and similar problems

have recently captured increasing interest from the research community, particularly

in the context of cognitive radio networks (CRN) and software defined ratio (SDR)

technologies, whereby devices are expected to have far greater flexibility in sensing

channel availability/condition and moving operating frequencies.

While directly motivated by resource sharing in a multi-channel, multi-user wire-

less communication system, the definition of a NCG is potentially more broadly

applicable. It simply reflects the notion that in some application scenarios resources

may be shared without conflict of interest. In subsequent sections we will examine

what properties this class of games possesses. Our main findings are summarized as

follows for undirected network graphs and non-increasing payoff functions:
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1. The FIP property is preserved in an NCG with only two resources/channels.

Counter examples exist for three or more resources.

2. A pure strategy NE exists in a NCG over a tree network and a loop.

3. A pure strategy NE exists when there is either a dominating resource (a channel

with much larger bandwidth than the rest) or when all resources are identical

(all channels are equal). Furthermore, in the latter case the FIP also exists.

In addition, we also show that an NE does not in general exist if the network graph

is directed (meaning that the interference relationship between users is asymmetric),

or that the user payoff functions are non-monotonic.

It has to be mentioned that game theoretic approaches have often been used to

devise effective decentralized solutions to a multi-agent system. Within the context

of wireless communication networks and interference modeling, different classes of

games have been studied. An example is the well-known Gaussian interference game

[42, 43]. In a Gaussian interference game, a player can spread a fixed amount of

power arbitrarily across a continuous bandwidth, and tries to maximize its total rate

in a Gaussian interference channel over all possible power allocation strategies. It has

been shown [42] that it has a pure strategy NE, but the NE can be quite inefficient;

playing a repeated game can improve the performance. In addition, previous work

[44] investigated a market based power control mechanism via supermodularity, while

previous work [45] studied the Bayesian form of the Gaussian interference game in

the case of incomplete information. By contrast, in our problem the total power of

a user is not divisible, and it can only use it in one channel at a time. This setup

is more appropriate for scenarios where the channels have been pre-defined, and the

users do not have the ability to access multiple channels simultaneously (which is
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the case with many existing devices).

The organization of the remainder of this chapter is as follows. In Section 4.2 we

present a brief review on the literature of congestion games, and formally define the

class of network congestion games in Section 4.3. We then derive conditions under

which this class of games possesses the finite improvement property (Section 4.4).

We further show a series of conditions, on the underlying network graph in Section

4.5 and on the user payoff function in Section 4.6, under which these games have a

pure strategy NE. We discuss extensions to our work and conclude the chapter in

4.7.

4.2 A Review of Congestion Games

In this section we provide a brief review on the definition of congestion games and

their known properties3. We then discuss why the standard congestion game does

not take into account spatial reuse and motivate our generalized network congestion

games.

4.2.1 Congestion Games

Congestion games [38, 39] are a class of strategic games given by the tuple

(I,R, (Σi)i∈I , (gr)r∈R), where I = {1, 2, · · · , N} denotes a set of users,R = {1, 2, · · · , R}

a set of resources, Σi ⊂ 2R the strategy space of player i, and gr : N→ Z a payoff (or

cost) function associated with resource r. The payoff (cost) gr is a function of the

total number of users using resource r and in general assumed to be non-increasing

(non-decreasing). A player in this game aims to maximize (minimize) its total payoff

(cost) which is the sum total of payoff (cost) over all resources its strategy involves.

If we denote by σ = (σ1, σ2, · · · , σN) the strategy profile, where σi ∈ Σi, then

3This review along with some of our notations are primarily based on references [38, 39, 46].
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user i’s total payoff (cost) is given by

qi(σ) =
∑
r∈σi

gr(nr(σ))(4.1)

where nr(σ) is the total number of users using resource r under the strategy profile

σ, with and r ∈ σi denoting that user i selects resource r under σ.

Rosenthal’s potential function φ : Σ1 × Σ2 × · · · × ΣN → Z is defined by

φ(σ) =
∑
r∈R

nr(σ)∑
i=1

gr(i) =
N∑

i=1

∑
r∈σi

gr(m
i
r(σ)) ,(4.2)

where the second equality comes from exchanging the two sums and mi
r(σ) denotes

the number of players who use resource r under strategy σ and whose corresponding

indices do not exceed i (i.e., in the set {1, 2, · · · , i}).

Next we show that the change in a user’s payoff as a results off its unilateral move

(i.e., all other users stay put) is exactly the same as the change in the potential, which

may be viewed as a global objective function. Consider player i, who unilaterally

moves from strategy σi (within the profile σ) to strategy σ
′
i (within the profile σ

′
).

The potential changes by

φ(σ′i, σ−i)− φ(σi, σ−i) =
∑

r∈σ
′
i ,r 6∈σi

gr(nr(σ) + 1)−
∑

r∈σi,r 6∈σ
′
i

gr(nr(σ))

=
∑

r∈σ
′
i

gr(nr(σ
′
))−

∑
r∈σi

gr(nr(σ)) = gi(σ−i, σ
′
i)− gi(σ−i, σi) ,(4.3)

where the second equality comes from the fact that for resources that are used by

both strategies σi and σ
′
i there is no change in their total number of users. To see why

the first equality is true, set i = N , in which case this equality is a direct consequence

of the change of sums equation (4.2). To see why this is true for any 1 ≤ i ≤ N ,

simply note that the ordering of users is arbitrary so any user making a change may

be viewed as the Nth user.
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Consider now a sequence of strategy changes made by users asynchronously in

which each change improves the user’s payoff (this is referred to as a sequence of im-

provement steps). The above result shows that upon each such change the potential

also improves. Since the potential of any strategy profile is finite, it follows that every

sequence of improvement steps is finite, and they converge to a pure strategy Nash

Equilibrium. This is known as the finite improvement property (FIP). Furthermore,

this NE is a local optimal point of the potential function φ, defined as a strategy

profile where changing one coordinate cannot result in a greater value of φ.

It is not difficult to see why the standard definition of a congestion game does

not capture the features of wireless communication. In particular, if we consider

channels as resources, then the payoff gr(n) for using channel r when there are n

simultaneous users does not reflect reality: the function gr(·) in general takes a user-

specific argument since different users experience different levels of interference even

when using the same resource. This user specificity is also different from that studied

in [2], where gr(·) is a user-specific function gi
r(·) but it takes the non-user specific

argument n. To analyze and understand the consequence of this difference, we would

need to extend and generalize the definition of the standard congestion game.

For the rest of this chapter, the term player or user specifically refers to a pair

of transmitter and receiver in the network. Interference in this context is between

one user’s transmitter and another user’s receiver. This is commonly done in the

literature, see for instance [42]. We will also assume that each player has a fixed

transmit power.
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4.3 Problem Formulation

In this section we formally definite our generalized congestion game, the network

congestion games (NCG). Specifically, a NCG is given by (I,R, (Σi)i∈I , {Ki}i∈I , {gi
r}r∈R,i∈I),

where Ki is the interference set of user i, excluding itself, while all other elements

maintain the same meaning as in a standard CG. The payoff user i receives for using

resource r is given by gi
r(n

i
r(σ) + 1) where ni

r(σ) = |{j : r ∈ σj, j ∈ Ki}|. That

is, user i’s payoff for using r is a (user-specific) function of the number of users in-

terfering with itself, plus itself. Here we have explicitly made the payoff functions

user-specific, as evidenced by the index i in gi
r(·). This is done in an attempt to

capture the fact that users with different coding/modulation schemes may obtain

different rates from using the same channel.

A user’s payoff is the sum of payoffs from all the resources it uses. Note that if a

user is allowed to simultaneously use all available resources, then its best strategy is

to simply use all of them regardless of other users, provided that gi
r is a non-negative

function. If all users are allowed such a strategy, then the existence of an NE is

trivially true.

In this chapter, we will limit our attention to the case where each user is allowed

only one channel at a time, i.e., its strategy space Σi ∈ R consists of R single channel

strategies. In this case the payoff user i receives for using a single channel r is given

by gi
r(n

i
r + 1) where ni

r(σ) = |{j : r = σj, j ∈ Ki}|. Our goal is to identify key

properties of this game.

It’s worth noting that due to this generalization, Rosenthal’s definition of a poten-

tial function as given in the previous section no longer applies. To slightly simplify

this problem, we make the extra assumption that i ∈ Kj if and only if j ∈ Ki. This
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has the intuitive meaning that if node i interferes with node j, the reverse is also

true. This symmetry does not always hold in reality, but is nonetheless a useful

one to help us obtain meaningful insight. It is easy to see that we can equivalently

represent a more general problem on the following directed graph, where a node

represents a user and a directed edge connects node i to node j if and only if i ∈ Kj.

The network congestion game can now be stated as a coloring problem, where each

node picks a color and receives a value depending on the conflict (number of same

colors neighboring to a node); the goal is to see whether an NE exists and whether

a decentralized selfish scheme leads to an NE. For the special case that we consider

in this chapter, the graph is undirected, where there is an undirected edge between

nodes i and j if and only if i ∈ Kj and j ∈ Ki.

For simplicity of exposition, in subsequent sections we will often present the prob-

lem in its coloring version, and will use the terms resource, channel, and color inter-

changeably.

4.4 Existence of the Finite Improvement Property

In this section we investigate whether the network congestion game as defined

in the previous section possesses the FIP property. Once a game has the FIP, it

immediately follows that it has an NE as we described in Section 4.2. Below we show

that in the case of two resources (colors) this game indeed has the FIP property, and

as a result an NE exists. We also show through a counter example that for the case

of 3 or more colors the FIP property does not hold. This also implies that in such

cases an exact potential function does not exist for this game, as the FIP is a direct

consequence of the existence of a potential function.
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4.4.1 The Finite Improvement Property for 2 resources

We shall establish this result by a contradiction argument. Suppose that we have

a sequence of asynchronous4 updates that starts and ends in the exact same color

assignment (or state) for all users. We denote such a sequence by

U = {u(1), u(2), · · ·u(T )},(4.4)

where u(t) ∈ {1, 2, · · · , N} denotes the user making the change at time t, and T is

the length of this sequence. The starting state (or the color choice) of the system is

given by

S(1) = {s1(1), s2(1), · · · , sN(1)},(4.5)

where si(1) ∈ {r, b}, i.e., the state of each user is either “r” for Red, or “b” for Blue.

A user’s state of color is defined for time t−, i.e., right before a color change is made

by some user at time t. In other words, si(t) denotes the color of user i at time t−.

Since there are only two colors, we use the notation s̄ to denote the opposite color

of a color s. The states after the last round of change at time T is denoted by S(T ).

Since this sequence of updates form a loop, i.e., S(1−) = S(T ), we can naturally

view these updates as being placed around a circle, starting at time 1− and ending

at T , when the system returns to its original state. This is shown in Figure 4.1. Note

that traversing the circle starting from any point results in an improvement path;

hence the notion of a starting point becomes inconsequential.

Since this sequence of updates is an improvement path, each change must increase

the payoff of the user making the change 5. For example, suppose user i changes from

4We will remove the word asynchronous in the following with the understanding that whenever we refer to
updates they are assumed to be asynchronous updates, i.e., there will not be two or more users changing their
strategies simultaneously at any time.

5Here we assume that a user only makes a change if there is strict increase in its payoff.
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red to blue at time t, and i has x red neighbors and y blue neighbors at t6. Then we

must have:

gi
b(y + 1) > gi

r(x + 1) .(4.6)

Similarly, we can obtain one inequality for each of the T changes. Our goal is to show

that these T inequalities cannot be consistent with each other. The challenge here

is that this contradiction has to hold for arbitrary non-increasing functions {gi
r, g

i
b}.

The way we address this challenge is to show that the above inequality leads to

another inequality that does not involve the payoff functions when we consider pairs

of reverse changes by the same user. This is shown in Lemma 4.2.

Definition 4.1 (Reverse-change pairs).

Consider an arbitrary user i’s two reverse strategy/color changes in an improvement

path, one from s to s̄ at time t and the other from s̄ to s at time t′. Let SS i
t,t′ denote

the set of i’s neighbors (not including i) who have the same color as i at both times

of change (i.e., at t− and t′−, respectively). Let OOi
t,t′ denote the set of i’s neighbors

(not including i) who have the opposite color as i at both times of change. Similarly,

we will denote by SOi
t,t′ (respectively OS i

t,t′) the number of i’s neighbors whose color

is the same as (opposite of, respectively) i’s at the first update and the opposite of

(same as, respectively ) i’s at the second update.

Lemma 4.2. (Reverse-change inequality) Consider the network congestion game

defined in the previous section with non-increasing payoff functions and two re-

sources/colors. Suppose an arbitrary user i makes two reverse strategy/color changes

in an improvement path, one from s to s̄ at time t and the other from s̄ to s at time

6Since the users update their strategies in an asynchronous fashion, x and y do not change between t− and t+.
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(i)(k)
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(i)
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(k)

Figure 4.1: Representing an improvement loop on a circle: times of updates t and the updating user
(u(t)) are illustrated along with their color right before a change. An arrow connects a
single user’s two consecutive color changes.

t′. Then we have

|SS i
t,t′| > |OOi

t,t′|, ∀i ∈ I .(4.7)

That is, among i’s neighbors, there are strictly more users that have the same color

as i at both times of change than those with the opposite color as i at both times of

change.

Proof. Since this is an improvement path, whenever i makes a change it is for higher

payoff. Thus we must have at the time of its first change and its second change,

respectively, the following inequalities:

gi
s̄(|OS i

t,t′|+ |OOi
t,t′|+ 1) > gi

s(|SOi
t,t′|+ |SS i

t,t′|+ 1) ;(4.8)

gi
s(|SOi

t,t′|+ |OOi
t,t′|+ 1) > gi

s̄(|OS i
t,t′|+ |SS i

t,t′|+ 1) .(4.9)

We now prove the lemma by contradiction. Suppose that the statement is not true

and that we have |SS i
t,t′| ≤ |OOi

t,t′|. Then due to the non-increasing assumption on
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the payoff functions we have

gi
s̄(|OS i

t,t′|+ |SS i
t,t′|+ 1) ≥ gi

s̄(|OS i
t,t′ |+ |OOi

t,t′|+ 1) > gi
s(|SOi

t,t′ |+ |SS i
t,t′ |+ 1)

(4.10)

≥ gi
s(|SOi

t,t′ |+ |OOi
t,t′|+ 1)(4.11)

where the second inequality is due to (4.8). However, this contradicts with (4.9),

completing the proof.

We point out that by the above lemma the payoff comparison is reduced to count-

ing different sets of users. This greatly simplifies the process of proving the main

theorem of this section. Below we show that it is impossible to have a finite sequence

of asynchronous improvement steps ending in the same color state as it started with.

At the heart of the proof is the repeated use of the above lemma to show that loops

cannot form in a sequence of asynchronous updates.

Theorem 4.3. Consider the network congestion game defined in the previous section

with non-increasing payoff functions. For the special case when there are only two

resources/colors to choose from and a user can only use one at a time, we have the

finite improvement property.

Proof. We prove this by contradiction. As illustrated by Figure 4.1, we consider a

sequence of improvement updates that results in the same state.

Consider every two successive color changes, along this circle clockwise starting

from time t = 1, that a user u(t) makes at time t and t′ from color s = su(t)(t) to

s̄, and then back to s, respectively. Note that this will include the two “successive”

changes formed by a user’s last change and its first change (successive on this circle

but not in terms of time). We have illustrated this in Figure 4.1 by connecting a pair
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of successive color changes using an arrow. It is easy to see that there are altogether

T such pairs (or arrows).

For each arrow in Figure 4.1, or equivalently each pair of successive color changes

by the same user, we consider the two sets SSu(t)
t,t′ and OOu(t)

t,t′ in Definition 4.1. Due

to the user association, we will also refer to these sets as perceived by user u(t). By

Lemma 1, given an updating sequence with the same starting and ending states, we

have for each pair of successive reverse changes by the same user, at time t and time

t′, respectively:

|SSu(t)
t,t′ | > |OOu(t)

t,t′ |, t = 1, 2, · · · , T .(4.12)

That is, the SS sets are strictly larger than the OO sets.

This gives us a total of T inequalities, one for each update in the sequence and

each containing two sets. Equivalently there is one inequality per arrow illustrated

in Figure 4.1. We next consider how many users are in each of these 2T sets (note

that by keeping the same “>” relationship, the SS sets are always on the LHS of

these inequalities and the OO sets are always on the RHS). To do this, we will

examine users by pairs – we will take a pair of users and see how many times they

appear in each other’s sets in these inequalities. In Claim 1 below, we show that

they collectively appear the same number of times in the LHS sets and in the RHS

sets. We then enumerate all user pairs. What this result says is that these users

collectively contribute to an equal number of times to the LHS and RHS of the set

of inequalities given in Eqn. (4.12). Adding up all these inequalities, this translates

to the fact that the total size of the sets on the LHS and those on the RHS must be

equal. This however contradicts the strict inequality, thus completing the proof.

Claim 1. Consider a pair of users A and B in an improvement updating loop, and
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consider how they are perceived in each other’s set. Then A and B collectively appear

the same number of times in the LHS sets (the SS sets) and in the RHS sets (the

OO sets).

Proof. First note that A and B have to be in each other’s interference set for them

to appear in each other’s SS and OO sets. Since we are only looking at two users

and how they appear in each other’s sets, without loss of generality we can limit our

attention to a subsequence of the original updating sequence involving only A and

B, given by

UAB = {u(t1), u(t2), · · · , u(tl)}(4.13)

where u(tj) ∈ {A,B}, tj ∈ {1, 2, · · · , T}, and l is the length of this subsequence, i.e.,

the total number of updates between A and B. As before, this subsequence can also

be represented clockwise along a circle.

It helps to consider an example of such a sequence, say, ABAABBABAA, also

shown in Figure 4.2. In what follows we will express an odd train as the odd number

of consecutive changes of one user sandwiched between the other user’s changes, e.g.,

the odd train ABA in the above subsequence. To avoid ambiguity, we will further

write this sequence as A1B2A3A4B5B6A7B8A9A10.

A few things to note about such a sequence:

1. Since the starting and ending states are the same, each user must appear an

even number of times in the sequence. Since each user appears an even number

of times, there must be an even number of odd trains along the circle for any

user.

2. A user (say A) only appears in the other’s (say B’s) SS or OO sets if it has

an odd train between the other user’s two successive appearances. This means
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that there is an even number of relevant inequalities where A appears in B’s

inequalities (either on the LHS or the RHS), and vice versa.

3. Consider the collection of all relevant inequalities discussed above, one for each

odd train, in the order of their appearance on the circle (all four such inequal-

ities are illustrated in Figure 4.2). Then A and B contribute to each other’s

inequalities on alternating sides along this updating sequence/circle. That is,

suppose the first inequality is A’s and B goes into its LHS, then in the next in-

equality (could be either A’s or B’s) the contribution (either A to B’s inequality

or B to A’s inequality) is on the RHS. Take our running example, for instance,

the first inequality is due to the odd train marked by the sequence A1B2A3, and

the second B6A7B8. Suppose A and B start with different colors, then in the

first inequality, B appears in the RHS; in the second, A appears in the LHS.

We now explain why the third point above is true. The reason is because for one

user (B) to appear in the other’s (A’s) LHS, they must start by having the same

color and again have the same color right before A’s second change (see e.g. the

subsequence A1B2A3 in the running example). Until the next odd train (B6A7B8),

both will make an even number of changes including A’s second change (A3A4B5B6).

The next inequality belongs to the user who makes the last change before the next

odd train (B) . As perceived by this user (B) right before this change, the two

must now have different colors. This is because as just stated A will have made an

even number of changes from the last time they are of the same color (by the end of

A1B2), while B is exactly one change away from an even number of changes (by the

end of A1B2A3A4B5). Therefore, the contribution from the other user (A) to this

inequality must be to the RHS.

To summarize, one can see that essentially the color relationship between A and
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B reverses upon each update, and there is an odd number of updates between the

starting points of two consecutive odd trains (e.g., 5 updates between A1 and B6,

or 1 update between B6 and A7) so the color relationship flips for each inequality in

sequence.

The above argument establishes that as we go down the list of inequalities and

count the size of the sets on the LHS vs. that on the RHS, we alternate between

the two sides. Since there are exactly even number of such inequalities, we have

established that A and B collectively appear the same number of times in the LHS

sets and in the RHS sets.

R
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Figure 4.2: Example of an updating sequence “A1B2A3A4B5B6A7B8A9A10” illustrated on a circle.
The color coding denotes the color of a user right before the indicated change. Each
arrow connecting two successive changes by the same user induces an inequality per-
ceived by this user. The labels “L” and “R” on an arrow indicate to which side of this
inequality (LHS and RHS respectively) the other user contributes to. As can be seen
the labels alternates in each subsequent inequality.

4.4.2 Counter-Example for 3 Resources

The above theorem establishes that when there are only two resources, the FIP

property holds, and consequently an NE exists. This holds for the general case

of user-specific payoff functions. Below we show a counter-example that the FIP

property does not necessarily hold for 3 resources/colors or more.
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time step A B C D
0 b p p b
1 b → r
2 p → r
3 b → r
4 p → r
5 r → p
6 r → b
7 r → b
8 r → b
9 p → b

10 b → p
11 b → p

Table 4.1: 3-color counter example.

Example 4.4. Suppose we have three colors to assign, denoted by r (red), p (purple),

and b (blue). Consider a network topology shown in Figure 4.3, where we will

primarily focus on nodes A, B, C and D. In addition to node C, node A is also

connected to Ar, Ap and Ab nodes of colors red, green and blue, respectively. Br,

Bp, Bb, Cr, Cp, Cb, and Dr, Dp, Db and similarly defined and illustrated in Figure

4.3. Note that these sets may not be disjoint, e.g., a single node may contribute to

both Ar and Br, and so on.

Consider now the following sequence of improvement updates involving only nodes

A, B, C, and D, i.e., within this sequence none of the other nodes change color (note

that this is possible in an asynchronous improvement path), where the notation

s1 → s2 denotes a color change from s1 to s2 and at time 0 the initial color assignment

is given.

We see that this sequence of color changes form a loop, i.e., all nodes return to

the same color they had when the loop started. For this to be an improvement loop

such that each color change results in improved payoff, it suffices for the following
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sets of conditions to hold (here we assume all users have the same payoff function

and have suppressed the superscript i in gi
r(), and the notation “>k” denotes that

the improvement occurs at time k):

gr(Ar + 1) >1 gb(Ab + 1) > gb(Ab + 2) >9 gp(Ap + 1) >5 gr(Ar + 2) ;

gr(Br + 1) >2 gp(Bp + 2) >11 gb(Bb + 1) >7 gr(Br + 2) ;

gb(Cb + 3) >8 gr(Cr + 1) > gr(Cr + 4) >4 gp(Cp + 1) >10 gb(Cb + 4) ;

gr(Dr + 1) >3 gb(Db + 1) >6 gr(Dr + 2)

It is straightforward to verify the sufficiency of these conditions by following a node’s

sequence of changes. To complete this counter example, it remains to show that the

above set of inequalities are feasible given appropriate choices of Ax, Bx, Cx and Dx,

x ∈ {r, p, b}. There are many such choices; one example is Ax = 5, Bx = 3, Cx =

7, Dx = 1, for all x ∈ {r, p, b}. With such a choice, and substituting them into

the earlier set of inequalities and through proper reordering, we obtain the following

single chain of inequalities:

gr(2) > gb(2) > gr(3) > gr(4) > gp(5) > gb(4) > gr(5) > gr(6)

> gb(6) > gb(7) > gp(6) > gr(7) > gb(10) > gr(8) > gr(11) > gp(8) > gb(11)

It should be obvious that this chain of inequalities can be easily satisfied by the right

choices of non-increasing payoff functions.

It is easy to see how if we have more than 3 colors, this loop will still be an

improving loop as long as the above inequalities hold. This means that for 3 colors

or more the FIP property does not hold in general. Note that the updates in this

example are not always best response updates.
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Figure 4.3: A counter example of 3 colors: nodes A, B, C, and D are connected as shown; in
addition, node W , W ∈ {A,B, C,D}, is connected to Wx other nodes of color x ∈
{r, p, b} as shown.

4.5 Existence of a Pure Strategy Nash Equilibrium

In this section we examine what graph properties will guarantee the existence of a

NE. Specifically, we show that for a network congestion game defined on graphs that

are (1) complete, (2) in the form of a tree, or (3) in the form of a loop, a pure strategy

NE always exists with user-specific payoff functions that are non-increasing in the

number of interfering users. Below we present these results in sequence. We will also

give counter examples to show that a pure strategy NE does not generally exist in

such a game when the network graph is directed or when the payoff functions are non-

monotonic. In addition to the results presented here, we believe a pure strategy NE

exists in a general undirected graph (i.e., Theorem 4.8 holds for a general undirected

graph, not just trees). Unfortunately, a formal proof remains elusive to this point.

We continue to pursue this in our on-going research.

4.5.1 Existence of pure strategy NE on an undirected graph

Theorem 4.5. When the graph is complete, a NE always exists for the network

congestion game defined on this graph.
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This theorem is trivially true. It is simply a direct consequence of known results

on the standard CG: in a complete graph every node is every other node’s neighbor,

therefore a NCG reduces to the original CG, thus this result. Furthermore, for the

same reason when the graph is complete the FIP property also holds.

We next show that a pure strategy NE exists when the underlying network graph

is given by a tree. Let ΓN denote a network congestion game with N players; GN

the underlying N -player network, where players are indexed by 1, 2, ..., N and the

payoff functions gi
r(n

i
r) are nonincreasing. Recall that ni

r(σ) denotes the number of

neighbors of user i (excluding i) playing strategy r.

Lemma 4.6. If every network congestion game with N players (ΓN) and user specific

non-increasing payoff functions has at least one pure strategy NE, then the (N + 1)-

player network congestion game (denoted as ΓN+1) formed by connecting a new player

with index N + 1 to a single player in the N-player network GN , has at least one

pure strategy NE.

Proof. By assumption ΓN has a pure strategy NE denoted by σ = {σ1, σ2, · · · , σN}.

Suppose ΓN is in such an NE. Now connect player N + 1 to a single player in GN .

Call this player j and the resulting network GN+1. This is illustrated in Figure 4.4.

Let player N + 1 select its best response strategy:

σN+1 = ro = argmaxr∈RgN+1
r (nN+1

r (σ) + 1),

where nN+1
r is defined on the extended network GN+1, and takes on the value of 1

or 0 depending on whether player j selects strategy r or not. We now consider three

cases depending on j’s strategy change in response to the change in network from

GN to GN+1.

Case 1: σj 6= ro. In this case N + 1 selected a resource different from j’s, so j
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has no incentive to change its strategy in response to the addition of player N + 1.

In turn player N + 1 will remain in ro as this is its best response, and no other

players are affected by this single-link network extension. Thus the strategy profile

(σ1, · · · , σN , ro) is a pure strategy NE for the game ΓN+1.

Case 2: σj = σN+1 = ro, and player j’s best response to the change from GN

to GN+1 with player N + 1 selecting ro remains σj = ro. That is, even with the

additional interfering neighbor N + 1, the best choice for j remains ro. In this case

again we reach a pure strategy NE for the game ΓN+1 with the same argument as in

Case 1.

Case 3: σj = σN+1 = ro, and player j’s best response to this change is to move

away from strategy ro. In this case more players may in turn change strategies.

Suppose we hold player (N + 1)’s strategy fixed at ro. Consider now a new network

congestion game Γ̄N , defined on the original network GN , but with the following

modified payoff functions for r ∈ R and i ∈ I:

ḡi
r(n

i
r + 1) =





gi
r(n

i
r + 2) if i = j, r = ro

gi
r(n

i
r + 1) otherwise

.

In words, the game Γ̄N is almost the same as the original game ΓN , the only difference

being that the addition of player (N + 1) and its strategy ro is built into player j’s

modified payoff function.

By assumption of the lemma, this game with N players has a pure strategy NE

and denote that by σ̄. Suppose σ̄ is reached in the network GN with player (N + 1)

fixed at σN+1 = ro. If we have σ̄j = ro, then obviously player (N + 1) has no

incentive to change its strategy because as far as it is concerned its environment has

not changed at all. In turn no player in GN will change its strategy because they

are already in an NE with (N + 1) held at ro. If σ̄j 6= ro, then player (N + 1) has
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even less incentive to change its strategy because its payoff for using ro is no worse

than before since j moved away with payoff functions being non-increasing, and at

the same time its payoff for using any other resource is no better. Again ro is player

(N + 1)’s best response.

In either case a new NE, the strategy profile (σ̄, ro), is reached for the game

ΓN+1.

Remark 4.7. Note that in the above lemma, the network GN itself does not have to

be a tree. The lemma states that as long as a NE exists for one network, then by

adding one more node through a single link, an NE exists in the new network.

Theorem 4.8. A network congestion game defined over a tree network with non-

increasing player-specific payoff functions has at least one pure strategy NE.

Proof. The proof is easily obtained by noting that any tree can be constructed by

starting from a single node and adding one node (connected through a single link)

at a time. Formally, we prove this by induction on N . Start with a single player

indexed by 1. This game has a pure strategy NE, in which the player selects σ1 =

argmaxr∈Rg1
r(1) for any payoff functions. Assume that any N -player game ΓN over a

tree GN with any set of non-increasing payoff functions has at least one pure strategy

NE. Any tree GN+1 may be constructed by adding one more leaf node to some other

tree GN by connecting it to only one of the players in GN . Lemma 1 guarantees that

such a formation will result in a game with at least one pure strategy NE.

Theorem 4.9. If the network is in the form of a loop and user payoff functions are

identical for a given resource, then there always exists a pure strategy Nash equilib-

rium, involving no more than 3 resources/colors.
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Figure 4.4: Adding one more player to the network GN with a single link.

Proof. We know from Theorem 4.3 that when there are only 2 colors an NE always

exists. Assume there are at least 3 colors to choose from. As payoff functions are

non-user specific, we will suppress the superscript i in the function gi
r(). Note that

there always exist three colors r, b, p that have the highest single-user occupancy

payoff values; suppose we have

gr(1) ≥ gb(1) ≥ gp(1)

If the loop has an even number of nodes then compare gr(3) with gb(1). If gr(3) ≥

gb(1), then assigning r to all nodes will result in an NE; if gb(1) ≥ gr(3) then assigning

r and b alternately will result in an NE.

Now consider the case where the loop has an odd number of nodes, labeled from

1 to 2n + 1, where node i is connected to node i + 1 and node 2n + 1 is connected

to node 1. Again we see that if gr(3) ≥ gb(1) then assigning r to all nodes results in

an NE.

Assume now gb(1) ≥ gr(3) and consider the following assignment. Assign r and

b alternately to nodes from 2 up to 2n, so that nodes 2 and 2n are both colored r.

It remains to determine the coloring of nodes 1 and 2n + 1. We have the following
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User 3 /User 1,2 (1, 1) (1, 2) (2, 1) (2, 2)
1 5, 5, 3 5, 4, 5 4, 5, 5 4, 4, 2
2 2, 2, 4 2, 6, 6 6, 2, 6 6, 6, 1

Table 4.2: 3-color counter example.

four cases (under the condition gb(1) ≥ gr(3)): (1) gb(2) ≥ gr(2) and gb(2) ≥ gp(1):

in this case (b, b) assignment to nodes 1 and 2n + 1 will result in an overall NE.

(2) gb(2) ≥ gr(2) and gb(2) < gp(1): in this case either (b, p) or (p, b) for nodes 1

and 2n + 1 will result in an overall NE. (3) gb(2) < gr(2) and gr(2) ≥ gp(1): in this

case either (b, r) or (r, b) for node 1 and 2n + 1 will result in an overall NE. (4)

gb(2) < gr(2) and gr(2) < gp(1): in this case either (b, p) or (p, b) for nodes 1 and

2n + 1 will result in an overall NE.

Therefore in all cases we have shown an NE exists.

4.5.2 Counter Example of Non-monotonic Payoff Functions

Below we show that a pure strategy NE may not exist when the network graph

is undirected but the payoff function is non-monotonic, even when they are non-user

specific.

Example 4.10. Consider a 3-user, 2-channel network given in Figure 4.5. The payoff

functions have the following property

g2(2) > g1(2) > g2(1) > g1(3) > g1(1) > g2(3) .

One example of this is when g1(1) = 2, g1(2) = 5, g1(3) = 3, g2(1) = 4, g2(2) =

6, g2(3) = 1. The game matrix corresponding to these payoff functions are given

below. It is easy to verify that there exists no pure strategy NE.
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3

1 2

Figure 4.5: Counter example of non-monotonic payoff functions

4.5.3 Counter Example of a Directed Graph

Below we show that a pure strategy NE may not exist when the network graph

is directed.

Example 4.11. Consider a 4-user, 3-channel network whose graph is given in Figure

4.6. It can be shown that a pure strategy NE does not exist when the payoff functions

are non-increasing and have the following property.

g3(1) > g2(1) > g2(2) > g3(2) > g1(1) > g1(2) > g2(3) > g1(3) > g2(4) > g1(4) > g3(3) > g3(4) .

We do not include an example game matrix for brevity. We invite an interested

reader to verify this example.

4

1

2 3

Figure 4.6: Counter-example for directed graphs

4.6 Sufficient Conditions on User Payoff Functions

In this section we examine what properties on the user payoff functions will guar-

antee the existence of an NE. Specifically, we show that for general network graphs,
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an NE always exists if (1) there is one resource with a dominating payoff function

(much larger than the others), or (2) different resources present the same type of

payoff for users. Moreover, in the case of (2) the game has the FIP property. We

note that case (2) is of particular practical interest and relevance, as this case in

the context of spectrum sharing translates to evenly dividing a spectrum band into

sub-bands, each providing users with the same bandwidth and data rate. Below we

present and prove these results.

Theorem 4.12. For a general network graph, if there exists a resource r and its pay-

off function is such that gi
r(Kd + 1) ≥ gi

s(1), where Kd = max{|Ki|, i = 1, 2, · · · , N},

for all s ∈ 1, 2, · · · , R and all i ∈ I, then a Nash Equilibrium exists.

Here Kd is the maximum node degree in the network, i.e., the maximum possible

number of users sharing the same resource. In words, this theorem says that if there

exists a resource whose payoff “dominates” all other resources, then an NE exists.

This is a rather trivial result; an obvious NE is when all users share the dominating

resource.

Theorem 4.13. For a general undirected network graph, if all resources have iden-

tical non-increasing payoff functions for any given user, i.e., for all r ∈ R and

i ∈ I, we have gi
r(n) = gi(n) for n = 1, 2, · · · , N and some non-increasing function

gi(·), then there exists a Nash Equilibrium, and the game has the finite improvement

property. Note that the payoffs can remain user-specific.

Proof. We prove this theorem by using a potential function argument.

Recall that user i’s total payoff under the strategy profile σ is given by (here we

have suppressed the subscript r since all resources are identical):

gi(σ) = g(ni(σ) + 1), ni(σ) = |{j : σj = σi, j ∈ Ki}|(4.14)
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where σi ∈ R since we have limited our attention to the case where each user can

select only one resource at a time.

Now consider the following function defined on the strategy profile space:

φ(σ) =
∑
i,j∈K

1(i ∈ Kj)1(σi = σj) =
1

2

∑
i∈K

ni(σ) ,(4.15)

where the indicator function 1(A) = 1 if A is true and 0 otherwise. For a particular

strategy profile σ this function φ is the sum of all pairs of users that are connected

(neighbors of each other) and have chosen the same resource under this strategy

profile. Viewed in a graph, this function is the total number of edges connecting

nodes with the same color.

We see that every time user i improves its payoff by switching from strategy σi to

σ
′
i, and reducing ni(σ−i, σi) to ni(σ−i, σ

′
i) (gi is a non-increasing function), the value

of φ() strictly decreases accordingly7. As this function is bounded from below, this

means that in this case the game has the FIP property so this process eventually

converges to a fixed point which is a Nash Equilibrium.

4.7 Conclusion

In this chapter we have considered an extension to the classical definition of con-

gestion games by allowing resources to be reused among non-interfering users. This

is a much more appropriate model to use in the context of wireless networks and

spectrum sharing where due to decay of wireless signals over a distance, spatial reuse

is frequently exploited to increase spectrum utilization.

The resulting game, congestion game with resource reuse, is a generalization to the

original congestion game. We have shown that when there are only two resources

7It’s easily seen that a non-increasing function G(
∑

i,j∈K 1(i ∈ Kj)1(σi = σj)) is an ordinal potential function of
this game as its value improves each time a user’s individual payoff is improved thereby decreasing the value of its
argument.
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and users can only use one at a time, then the game has the finite improvement

property; the same is shown to be false in general when there are three or more

resources. We further showed a number of conditions on the network graph as well

as the user payoff functions under which the game has an NE. Perhaps most relevant

to spectrum sharing is the result that when all resources present the same payoff to

users (e.g., all channels are of the same bandwidth and data rate for all users), then

the game has the finite improvement property and an NE exists.



CHAPTER 5

Conclusion and Future Work

5.1 Conclusion and Future Work

In this dissertation, we studied a few problems regarding resource allocation prob-

lems within the contexts of game theory and stochastic control. These problems were

motivated by applications within communication networks. We now summarize the

main results before providing some potential future research on these problems.

For problem (OP) analyzed in Chapter 2 , we considered the case that the prob-

ability of each channel being in an idle state is known a priori to the secondary

user. We formulated a dynamic programming problem and we searched for stochas-

tic control techniques which would help us to solve the problem. The goal was to

maximize expected reward during the horizon whether infinite or finite. Our strategy

was fairly robust in case that the a priori distribution is not exact. We proved that

in case that channels are independent , totally equal two-state Markov models with

transition probabilities independent of time and at the same time bursty, the optimal

policy for the secondary user is to probe the channels in a greedy way meaning at

each step picking the arm which has the highest probability of being idle (highest

instantaneous expected return). This result largely improves on the previous results

where results were established for the cases that either there are only two arms or

79
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if there is a tighter condition than arms being bursty imposed on the problem. We

also found a counter-example to show that in the case that arms are not bursty, the

greedy policy is not optimal effectively solving a problem which was open for a while.

In Chapter 3, we examined problem (MC-OP) which is a direct generalization to

the first problem. In this problem we assumed the controller can pick exactly a fixed

number of arms to play at every time moment. We studied finding optimal policy

and strategies which maximize expected reward in the specific horizon subject to the

constraint of selecting a specific number of arms at a time.

For the network congestion game problem in Chapter 4, we examined a problem

which was a generalization to congestions games where several players in a game

have to choose their resource in such a way that to maximize their reward. The

reward function is a utility function defined for each user , and is decreasing in the

number of users who have been using that same resource. Many problems can be

studied on such games, the most significant of them is to study whether or not there

always exists a Nash Equilibrium on these graphs. We proved in certain scenarios,

specially when the number of resources is only 2 , this game always has a Nash

Equilibrium point. For certain geometries and restrictions on the utility functions

we also succeeded in proving existence of Nash equilibrium points. The proof was

based on sequential change of colors in the nodes so that the graph will eventually

be colored in a Nash equilibrium state.

5.1.1 Future Work

Here we discuss some potential future work on the two main problems that were

examined in this thesis.

For problems (OP) and (MC-OP), some open problems include the following:



81

• Given that the optimality results were proven for the case that channels are

independent, equal and bursty, many important questions remain here. One

of the most important and natural questions to be addressed is how would the

optimal policy change when the channels are not bursty. This case is a very

realistic and important case which its study will pave the way for future progress

on the solution to the general case of multi-armed restless bandit problem, a

problem which has been proved to be PSPACE-hard while at the same time it

has always been a subject of attention to the stochastic control community.

• Another exciting possible line of research for future is a special case of imperfect

sensing for secondary user. Zhao and Krishnamachari consider the channels to

be simple gilbert-elliot channels and also study a more specific problem where

there are only 2 channels available to secondary user. In this problem which

we call it ”Sensing with Side Information” they consider absolutely no penalty

for transferring through a busy channel interfering with primary user so the

secondary user , would prefer to transfer through the channel he probes no

matter the outcome of the probation shows the channel to be busy or available.

In their work , they have proved subject to certain conditions on probability of

false alarm and also missed detection , one can prove greedy policy (myopic)

in choosing channels (with respect to probability of their availability) to be

optimal. It is an interesting research to see if in this scenario , when we have

multiple channels , myopic policy will still be optimal.

There will be two exciting problems to be targeted here. First one is that in

such case , what would be the optimal policy for probing and transmitting

for secondary user. The complication is that at each time slot , not only he

has to choose a channel to probe , but depending on the outcome of probing



82

and the current state of prob- ability vector (again it is a well-known fact that

probability of occupancy vector is sufficient statistic for the secondary user to

decide on which channel to probe), he has to choose between transmitting signal

and taking the risk of an interference penalty or rather skipping transmitting

through that slot and also giving up on the potential award he could have got

if the channel was available and he transmitted through it.

• the Other exciting problem is to assume secondary user selects one channel and

probes it in the beginning of each time slot and will transmit signal if and only

if the channel is sensed to be available. This assumption reduces complexity

of the problem as secondary user does not need to choose whether he needs

to transmit or not. We consider a certain cost according to interfering with

primary user

• Another exciting case is when secondary user tries to transmit a message while

his message arrival is bursty meaning arrival of information packets at each time

moment happens subject to a certain distribution. The main question here is

that in case that there is certain penalty/cost for probing, what would his

optimal policy for probing be. This means depending on the occupancy vector

of channels which represents the probability of each channel being available at

that time moment, what his optimal probing policy would be which consists of:

1)when to choose a channel to probe and 2)In case that he chooses to probe

a channel which channel should he select to probe in order to maximize his

expected long-run return. The idea for this problem is totally new and given

that there is no previous work on this problem we believe it poses a host of rich

properties to be explored. In reality , it would be naive to consider probing a
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channel being free. At the very least , every time a secondary user probes a

channel , there is a cost associated with tuning to that channel and also the

time wasted to make sure the channel is available or not. When the secondary

user does not have a message waiting he has the choice of choosing a channel

and probing it , which will provide him with further information regarding the

status of that channel in the future time slots as well as a cost associated with

this probing and also a choice of not probing any channel which would not cost

him anything at all and as well it provides him with no further information

regarding occupancy probability in any of the channels. On the other hand ,

even if he has a message waiting , he might opt not to probe any channel as

the channels might have such little occupancy probability that cost of probing

one of them would not be justified with the respective chance to transfer a

message and knowledge acquired regarding further probability of occupancy for

that probed channel.

Potential future work on the network congestion game problem follows:

• An exciting possibility is to find out existence of Nash equilibrium in more

general cases where there are more than two resources available for the users.

While our intelligent method for proving existence of Nash equilibrium was

creative , it is not applicable to the case that there are more than two channels

as FIP property does not hold without major change for the case of more than

two resources available.

• Another exciting possibility for research on this problem is to consider different

geometries which existence of Nash equilibrium could be proven and at the

same time , it’s existence is useful. While we focused on specific geometries like
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graphs in the form of a simple loop or a tree , there are more diverse geometries

to be studied which arise from real life situations. Rather than studying each

of them as a special and isolated case , creating a smart method that addresses

multiple scenarios simultaneously is of great importance.

• Another important question is to study quality of Nash equilibrium point and

how good it is indeed for the players of the game. While we worked on estab-

lishing results regarding existence of Nash equilibrium , finding a measure that

describes how good an equilibrium is and assessing different equilibrium points

with respect to this measure are of great importance for other applications of

this problem.
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APPENDIX A

Appendix for Chapter 2

Proof of Lemma 2.6:

The LHS of the inequality represents the expected reward of a policy (referred to

as L below) that probes in the sequence of channels 1 followed by n, n− 1, · · · , and

then 1 again, and so on, plus an extra reward of 1; the RHS represents the expected

reward of a policy (referred to as R below) that probes in the sequence of channels n

followed by n− 1, · · · , and 1 and then n again, and so on. It helps to imagine lining

up the n channels along a circle in the sequence of n, n − 1, · · · , 1, clock-wise, and

thus L’s starting position is 1, R’s starting position is n, exactly one spot ahead of

L clock-wise. Each will cycle around the circle till time T .

Now for any realization of the channel conditions (or any sample path of the

system), consider the sequence of “0”s and “1”s that these two policies see, and

consider the position they are on the circle. The reward a policy gets along a given

sample path is Rl =
∑T

j=t β
jIh(j)=1 for policy L, where Ihl(j)=1 = 1 if L sees a “1”

at time j, and 0 otherwise; the reward for R is Rr =
∑T

j=t β
jIhr(j)=1 with Ihr(j)=1

similarly defined. There are two cases.

Case (1): the two eventually catch up with each other at some time K ≤ T ,

i.e., at some point they start probing exactly the same channel. From this point on

the two policies behave exactly the same way along the same sample path, and the
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reward they obtain from this point on is exactly the same. Therefore in this case we

only need to compare the rewards (L has an extra 1) leading up to this point.

Case (2): The two never manage to meet within the horizon T . In this case we

need to compare the rewards for the entire horizon (from t to T ).

We will consider Case (1) first. There are only two possibilities for the two policies

to meet: (Case 1.a) either L has seen exactly one more “0” than R in its sequence, or

(Case 1.b) R has seen exactly n− 1 more “0”s than L. This is because the moment

we see a “0” we will move to the next channel on the circle. L is only one position

behind R, so one more “0” will put it at exactly the same position as R. The same

with R moving n− 1 more positions ahead to catch up with L.

Case (1.a): L sees exactly one more “0” than R in its sequence. The extra “0”

necessarily occurs at exactly time K, t ≤ K ≤ T , meaning that at K, L sees a “0”

and R sees a “1”. From t to K, if we write the sequence of rewards (zeros and ones)

under L and R, we observe the following: between t and K both L and R have equal

number of zeros, while for ∀t′ = t, t + 1, . . . , K − 1, the number of zeros up to time t′

is less (or no more) for L than for R. In other words, L and R see the same number

of “0”s, but L’s is always lagging behind (or no earlier). That is, for every “0” R

sees, L has a matching “0” that occurs no earlier than R’s “0.” This means that if we

denote by Rl(t1, t2) the rewards accumulated between t1 and t2, then for the rewards

in [t,K − 1], we have Rl(t, t
′) ≥ Rr(t, t

′), for ∀t′ ≤ K − 1, while Rl(K,K) = βK and

Rr(K, K) = 0. Finally by definition we have Rl(K +1, T ) = Rr(K +1, T ). Therefore

overall we have 1 + Rl(t, T ) ≥ Rr(t, T ), proving the above inequality.

Case (1.b): R sees n − 1 more “0”s than L does. The comparison is simpler.

We only need to note that R’s “0”s must again precedes (or be no later than) L’s

since otherwise we will return to Case (1.a). Therefore we have Rl ≥ Rr, and thus
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1 + Rl ≥ Rr is also true.

We now consider Case (2). The argument is essentially the same. In this case the

two don’t get to meet, but they are on their way, meaning that either L has exactly

the same “0”s as R and their positions are no earlier (corresponding to Case (1.a)),

or R has more “0”s than L (but not up to n − 1) and their positions are no later

than L’s (corresponding to Case (1.b)). So either way we have 1 + Rl ≥ Rr.

The proof is thus complete.
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APPENDIX B

Appendix for Chapter 3

Proof of Lemma 3: We would like to show

(A) : 1 + W k
t (ω2, · · · , ωn, ω1) ≥ W k

t (ω1, · · · , ωn)

(B) : W k
t (ω1, · · · , ωj, y, x, ωj+3, · · · , ωn) ≥

W k
t (ω1, · · · , x, y, ωj+3, · · · , ωn),

where x ≥ y, 0 ≤ j ≤ n−2, and j = 0 implies W k
t (y, x, ω3, · · · , ωn) ≥ W k

t (x, y, ω3, · · · , ωn).

The two inequalities (A) and (B) will be shown together using an induction on

t. For t = T , part (A) is true because LHS = 1 + ω1 +
∑n

i=n−k+2 ωi ≥ ωn−k+1 +

∑n
i=n−k+2 ωi = RHS. Part (B) is obviously true for t = T since x ≥ y.

Suppose (A) and (B) are both true for t + 1, · · · , T . Consider time t, and we will

prove (A) first. Note that in the next step, channel 1 is selected by the action on the

LHS of (A) but not by the RHS, while channel n− k + 1 is selected by the RHS of

(A) but not by the LHS. Other than this difference both sides select the same set of

channels indexed n− k + 2, · · · , n. We now consider four possible cases in terms of

the realizations of channels 1 and n− k + 1.

Case (A.1): channels 1 and n − k + 1 have the state realizations “0” and “1”,

respectively.
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We will use a sample-path argument. Note that while these two channels are not

both observed by either side, the realizations hold for the underlying sample path

regardless. In particular, even though the LHS does not select channel n−k +1 and

therefore does not get to actually observe the realization of “1”, the fact remains

that channel n − k + 1 is indeed in state 1 under this realization, and therefore

its future expected reward must reflect this. It follows that under this realization

channel n−k +1 will have probability p11 for the next time step even though we did

not get to observe the state 1. The same is true for the RHS. This argument applies

to the other three cases and is thus not repeated.

Conditioned on this realization, the LHS and RHS are evaluated as follows (de-

noted as {LHS|(0,1)} and {RHS|(0,1)}, respectively):

{LHS|(0,1)} = 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li], τ(ω2), · · · , τ(ωn−k+1) = p11, p11[

∑
li]) ;

{RHS|(0,1)} = 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li − 1], τ(ω1) = p00, τ(ω2), · · · , τ(ωn−k), p11[

∑
li + 1])

= {LHS|(0,1)}

Case (A.2): channels 1 and n − 1 + 1 have the state realizations “1” and “1”,

respectively.

{LHS|(1,1)} = 1 + 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li − 1], τ(ω2), · · · , τ(ωn−k+1) = p11, p11[

∑
li + 1]) ;
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{RHS|(1,1)} = 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li − 1], τ(ω1) = p11, τ(ω2), · · · , τ(ωn−k), p11[

∑
li + 1])

≤ 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li − 1], τ(ω2), · · · , τ(ωn−k), p11, p11[

∑
li + 1])

= {LHS|(1,1)} − 1 ≤ {LHS|(1,1)}

where the first inequality is due to the induction hypothesis of (B).

Case (A.3): channels 1 and n − 1 + 1 have the state realizations “0” and “0”,

respectively.

{RHS|(0,0)} =
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li], τ(ω1) = p01, τ(ω2), · · · , τ(ωn−k), p11[

∑
li]) ;

{LHS|(0,0)} = 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li], τ(ω2), · · · , τ(ωn−k), τ(ωn−k+1) = p01, p11[

∑
li])

≥ 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li], τ(ω2), · · · , τ(ωn−k), p11[

∑
li], p01)

≥
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

(
1 + W k

t+1(p01[k −
∑

li], τ(ω2), · · · , τ(ωn−k), p11[
∑

li], p01)
)

≥
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01, p01[k −

∑
li], τ(ω2), · · · , τ(ωn−k), p11[

∑
li]) = {RHS|(0,0)}
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where the first inequality is due to the induction hypothesis of (B), the last inequality

due to the induction hypothesis of (A). Also, the second inequality utilizes the total

probability over the distribution q(ln−k+2, · · · , ln) and the fact that β ≤ 1.

Case (A.4): channels 1 and n − 1 + 1 have the state realizations “1” and “0”,

respectively.

{RHS|(1,0)} =
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li], τ(ω1) = p11, τ(ω2), · · · , τ(ωn−k), p11[

∑
li])

{LHS|(1,0)} = 1 + 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li − 1], τ(ω2), · · · , τ(ωn−k), τ(ωn−k+1) = p01, p11[

∑
li + 1])

≥ 1 + 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li − 1], τ(ω2), · · · , τ(ωn−k), p11[

∑
li + 1], p01)

≥ 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

(
1 + W k

t+1(p01[k −
∑

li − 1], τ(ω2), · · · , τ(ωn−k), p11[
∑

li + 1], p01)
)

≥ 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li], τ(ω2), · · · , τ(ωn−k), p11[

∑
li + 1])

≥ 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li], p11, τ(ω2), · · · , τ(ωn−k), p11[

∑
li])

= 1 + {RHS|(1,0)} ≥ {RHS|(1,0)}

where the first and last inequalities are due to the induction hypothesis of (B), the

third due to the induction hypothesis of (A).
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With these four cases, we conclude the induction step of proving (A). We next

prove the induction step of (B). We consider three cases in terms of whether x and

y are among the top k channels to be selected in the next step.

Case (B.1): both x and y belong to the top k positions on both sides. In this case

there is no difference between the LHS and RHS along each sample path, since both

channels will be selected and the result will be the same.

Case (B.2): neither x nor y is among the top k positions on either side. This

implies that j ≤ n− k − 2. We have:

LHS =
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li], τ(ω1), · · · , τ(ωj), τ(y), τ(x), τ(ωj+3), · · · , p11[

∑
li]) ;

RHS =
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li], τ(ω1), · · · , τ(ωj), τ(x), τ(y), τ(ωj+3), · · · , p11[

∑
li]) ≥ LHS

where the last inequality is due to the monotonicity of τ() and the induction hypoth-

esis of (B).

Case (B.3): exactly one of the two belongs to the the top k channels on each side.

This implies that j = n − k − 1. By the linearity of the function W k
t we have the

following:

W k
t (ω1, · · · , ωn−k−1, y, x, ωn−k+2, · · · , ωn)−W k

t (ω1, · · · , ωn−k−1, x, y, ωn−k+2, · · · , ωn)

= (x− y)(W k
t (ω1, · · · , ωn−k−1, 0, 1, ωn−k+2, · · · , ωn)

−W k
t (ω1, · · · , ωn−k−1, 1, 0, ωn−k+2, · · · , ωn))
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However, we have

W k
t (ω1, · · · , ωn−k−1, 1, 0, ωn−k+2, · · · , ωn)

=
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li], τ(ω1), · · · , τ(ωn−k−1), p11, p11[

∑
li]) ≤

∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) · (1 + W k

t+1(p01[k −
∑

li − 1], τ(ω1), · · · ,

τ(ωn−k−1), p11[
∑

li + 1], p01))

≤
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

(
1 + W k

t+1(p01[k −
∑

li − 1], τ(ω1), · · · , τ(ωn−k−1), p01, p11[
∑

li + 1])
)

≤ 1 +
∑

n−k+2≤i≤n

ωi + β ·
∑

ln−k+2,··· ,ln∈{0,1}
q(ln−k+2, · · · , ln) ·

W k
t+1(p01[k −

∑
li − 1], τ(ω1), · · · , τ(ωn−k−1), p01, p11[

∑
li + 1])

= W k
t (ω1, · · · , ωn−k−1, 0, 1, ωn−k+2, · · · , ωn)

Since x ≥ y, we have LHS ≥ RHS in the first equation. This concludes the

induction step of (B).
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