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Abstract 
 
 

DEVELOPMENT OF SMALL MOLECULE RGS INHIBITORS AS A 
MECHANISM TO MODULATE G-PROTEIN SIGNALING 

 
by 
 

Levi L. Blazer 
 
 
 

Chair: Richard R. Neubig 
 
 

Regulator of G-protein Signaling (RGS) proteins are important regulatory 

molecules in the transduction of G-Protein Coupled Receptor (GPCR) 

signaling. They function by directly binding to G alpha subunits and 

accelerating GTP hydrolysis, thus potently inhibiting GPCR signaling. We and 

others have proposed that small molecule inhibitors of RGS proteins may 

provide a novel mechanism for therapeutic intervention in diseases stemming 

from deficiencies in GPCR signaling. This thesis details the identification and 

characterization of two novel classes of small molecule RGS inhibitors with 

unique properties. These compounds were identified from a series of high 

throughput screens performed by myself and others in our laboratory. The 

CCG-63802 class of molecules includes the first examples of reversible 

inhibitors of RGS4. These compounds can inhibit the in vitro binding and 

activity of several RGS proteins with IC50 values in the 3-100 micromolar 



 

xxii 

range. They function by binding to RGS4 near a site thought to be important 

for allosteric regulation by endogenous acidic phospholipids. The second 

class of molecules, typified by CCG-50014, includes the most potent RGS4 

inhibitors identified to date. This compound irreversibly inhibits RGS4 with 

nanomolar potency (IC50 30±6 nM) by covalently interacting with at least one 

cysteine on the RGS. In spite of the thiol dependence of these compounds, 

several members of this class can inhibit RGS binding and activity on G 

protein alpha subunits in living cells. Future work with these compounds is 

focused upon testing their activity in a variety of isolated organ and whole-

animal studies. It is hoped that these compounds will provide a foundation for 

the development of new, more active RGS inhibitors with potential clinical 

and/or research utility.  
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CHAPTER I: 
 Introduction 

 

The crux of this thesis is based upon the development of two classes of 

small molecules that inhibit a therapeutically interesting and academically 

intriguing family of protein-protein interactions (PPI). Generally speaking, PPIs 

are a particularly challenging class of drug targets that have the potential for 

great therapeutic benefit in a number of different diseases. While this thesis 

focuses primarily upon one specific PPI, the work contained herein provides 

technical insight and warnings of potential pitfalls that can be expected when 

performing high-throughput screening for small molecule inhibitors of any PPI. 

Because of the immense potential of small molecule PPI modulators as 

therapeutic agents and as research tools, it is hoped that this work will accelerate 

the development of this important class of compounds. It should be noted that 

parts of this chapter were compiled into a review article published in 

Neuropsychopharmacology [1].  

 

Protein-Protein Interactions: What are they & why target them?   

Protein-protein interactions are essential components of virtually all 

cellular processes. The binding of two or more proteins in a cell can have a wide 

array of effects, including modulating or initiating signal transduction, regulating 

patterns of gene transcription, providing cytoskeletal stability, and promoting 
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cellular replication or death. Because the cellular network of PPIs is vast and 

essential, in theory it should contain many potential sites at which a drug may be 

targeted. In the past several years, there has been much effort focused towards 

identifying specific inhibitors of PPIs. Currently, there are a number of clinically 

relevant therapies that target PPI interfaces. Most currently used PPI inhibitors 

(PPIIs) in the clinic are based upon humanized monoclonal antibodies. While this 

class of therapeutics possesses some very desirable drug properties (e.g. high 

specificity, low toxicity) it also has several drawbacks that make the approach 

less applicable to the widespread development of PPIIs (e.g. lack of cell/blood-

brain barrier permeability, poor oral bioavailability, high cost of manufacture).  

While all organ systems contain PPIs that are potential drug targets, the 

central nervous system (CNS) is, in particular, ripe for targeting of protein-protein 

interactions. This is due, in part, to the fact that the highly organized nature of 

CNS signal transduction relies heavily on localization and compartmentalization 

of signaling functions. Blocking the protein-protein interactions underlying this 

compartmentalization (e.g. PSD95/Dlg/Z0-1 domain, (PDZ)) domain targets) 

could provide more subtle tissue-specific therapeutic actions than would blocking 

the signal pathway itself. Furthermore, highly specific neural transcriptional 

patterns of regulatory molecules (e.g. Regulator of G Protein Signaling (RGS) 

proteins, see below) provide great opportunities for cell-type selective modulation 

of signaling. This burgeoning field is only starting to be developed and entails a 

large number of unexplored potential drug targets of which some of the best-

developed examples will be discussed. 
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Inhibiting Protein-Protein Interactions outside of the CNS: 

Directly targeting PPIs with small molecules has only recently become a 

feasible approach to drug development. Over the last two decades, significant 

progress has been made in the development of small, drug-like molecules that 

are capable of inhibiting the interaction between two proteins. However, this 

progress has not come easily - PPI interfaces have proven to be particularly 

difficult drug targets and had been deemed intractable in many instances [2, 3]. 

The difficulties encountered in targeting a PPI are substantial and it takes a great 

deal of work to develop useful lead compounds. The most obvious obstacle is the 

sheer size and geometry of the standard protein interaction interface. These 

regions are often relatively featureless expanses of protein surface that cover 

750-1500 Ǻ2[4] and are devoid of traditional ‘pockets’ into which a small molecule 

can dock in an energetically favorable manner. While developing a cell-

permeant, bioavailable small molecule that is capable of occluding such a large 

interaction surface was considered exceedingly difficult by many, recent 

advances in the field have shown that this conclusion was premature. Numerous 

families of small molecule protein-protein inhibitors have been developed for a 

number of targets, the majority of which are directed towards potential application 

for cancer therapy. For example, much progress has been made in the 

development of inhibitors of the p53/MDM2 interaction, the Bak/Bcl2 interaction, 

or the Myc/Max interaction [4, 5]. While the development of these inhibitors is of 

great academic and clinical interest, they are beyond the scope of this thesis and 
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as such will not be discussed further. Several good reviews have been published 

on small molecule PPIIs that function as cancer therapeutics [4-8], so I will focus 

here on CNS-related targets. 

 A major breakthrough in the development of small molecule PPIIs was the 

discovery of ‘hot spots’ on protein interaction surfaces (Fig. 1.1). These small 

regions of the interaction interface, often identified by alanine scanning 

mutagenesis [9, 10], are responsible for a disproportionate contribution to the 

binding energy of the two proteins. An extensive database of single alanine 

mutations has shown that these hot spots are often enriched in aromatic and 

positively charged residues [9]. The discovery that many PPIs are primarily 

governed by a relatively small section of the dimer interface has given renewed 

life to the idea that large, relatively flat protein interaction interfaces could bind 

small molecules in a way that occludes protein dimerization. By identifying and 

targeting these sites, a small molecule has a much greater chance of directly 

disrupting a PPI. To this end, at least two independent web servers have been 

developed that analyze PPIs or predict interaction “hot spots [11, 12].” One of 

these servers, the Knowledge–based Fade and Contacts (KFC) server, has been 

developed to predict protein interaction “hot spots” based upon the three 

dimensional structure of the PPI (Fig. 1.1). This prediction software functions 

primarily upon a structure of the PPI complex, but can also capable incorporate 

information from Robetta’s alanine scanning [13], ConSurf sequence 

conservation [14, 15], the alanine scanning energetics database [16] or the 

binding interface database [17]. While clearly still just a prediction requiring 
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experimental confirmation, algorithms such as these may provide a rapid 

mechanism to determine if a particular PPI contains a well-defined “hot spot” that 

may be amenable to small molecule targeting. 

 

Figure 1.1 Predicted “hot spots” on the Regulator of G protein signaling 4 (RGS4)/Gαi1 protein-
protein interaction interface. The highlighted residues on both surfaces (spacefill) are predicted by 
the KFC Server to be energetically important for the protein-protein interaction [11]. Structure 
from  PDB ID 1AGR [18]. 
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Rationale for targeting Protein-Protein Interactions in the CNS: 

The importance of PPIs in proper cellular function is particularly striking in 

the nervous system. In the CNS, a host of PPIs is required for virtually all cellular 

processes, including neurite outgrowth, synapse formation and modulation, 

neurotransmission, signal transduction, and the induction of apoptosis [19-22]. 

Indeed, the highly specialized structures and discrete localization of signaling 

molecules in the synapse are dependent on a large network of PPIs. Targeting 

specific PPIs in the CNS may provide novel mechanisms to modulate neural 

function downstream of receptor activation or to disrupt localization signals that 

contribute to the efficiency or specificity of signaling. Furthermore, by targeting 

these processes, it may be possible to more subtly and specifically tune neural 

functioning than can be achieved by administering a receptor agonist/antagonist. 

Most receptor-targeted drugs do not have the ability to selectively act upon 

receptors in a particular region of the body. For example, µ-opioid receptor (µ) 

agonists (e.g. morphine, fentanyl) commonly cause constipation due to their 

effects on µ receptors in the intestine. The benefit of targeting localization signals 

or downstream members of a signaling pathway is that, in many instances, those 

factors are expressed in a much more tissue specific manner than are the 

receptors themselves. By using this approach, it may be possible to provide a 

measure of tissue specificity in the intrinsic mechanism of a drug. This benefit 

could be particularly important in the development of centrally acting drugs, as 

many broadly acting drugs in the CNS tend to have serious side effects limiting 

their use [23]. Theoretically, this selectivity could be achieved at various points in 



 

7 

the signaling cascade, as there are often several steps in a signal transduction 

pathway that are dependent on PPIs. Another mechanism that targeting PPIs 

affords is the potential ability to localize two important signaling molecules with a 

bifunctional molecule that facilitates the interaction [24]. Such a molecule is 

comprised of two protein binding moieties joined by a short linker region and 

functions to localize the two potential binding partners by non-covalently tethering 

them together. While these bifunctional molecules are more of a PPI facilitator (or 

agonist) than an inhibitor, they may also provide a mechanism to specifically 

modulate neural signaling. Overall, targeting a downstream signaling modulator 

is likely to provide an increase in tissue specificity of the therapeutic effect and 

may also provide a mechanism to subtly modulate neural firing downstream of 

natural neurotransmission.  

 

Inhibiting protein aggregation in the CNS: 

 
Amyloid Beta Aggregation: 

Alzheimer’s disease (AD), Parkinson’s disease (PD), and other 

‘plaqueopathies’ are becoming increasingly prevalent in our society and there is 

growing interest in the mechanism, prevention, and treatment of these protein 

aggregation diseases. Therapies for these diseases, typified by accumulation of 

aggregated protein plaques, have largely dealt solely with the symptoms of the 

disease (i.e. dyskinesias, decline of cognitive abilities). While these treatments 

can offer some benefit, they offer no real chance of disease reversal nor can they 

halt its progression. There has been great interest, however, in understanding 
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the biochemistry and pathophysiology of the plaque development and in 

discovering methods to inhibit or reverse plaque formation. Emphasis recently 

has shifted to finding compounds that inhibit the development of the small 

oligomeric species that both lead to the macroscopic plaques and are believed to 

be the pathogenic factor in these diseases [25]. Several of these methods rely 

upon directly inhibiting the aggregation of the protein, while a subset are focused 

upon modulating the expression levels of the plaque-forming protein or the 

chaperones that assist it into its native conformation. I will focus on the former.  

Identifying compounds that selectively disrupt protein aggregates or that 

prevent plaque formation by inhibiting protein aggregation could be a viable 

approach to the treatment of protein aggregation diseases. As such, there has 

been a push for the discovery and development of compounds that selectively 

inhibit protein aggregation. Compounds have been identified that inhibit the 

aggregation of a variety of proteins including, huntingtin [26, 27], amyloid beta 

[25, 28-31], and tau [32]. Particular attention has been paid to the proteins that 

form the basis of plaque formation in AD, namely amyloid beta and tau. It has 

long been known that a variety of dyes bind to and can destabilize or inhibit 

plaque formation (for an extensive list, see [33]). Histopathological evaluation of 

brains from AD patients has shown at least two distinct types of plaques form 

during this disease. In the brain of an AD patient, aggregates of amyloid beta 

form in the extracellular matrix and neurofilbrillary tangles of aggregated tau 

protein form intracellularly. Both of these aggregates are correlated with AD, but 

it has yet to be conclusively shown that these plaques cause the observed 
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neurodegeneration and are not merely coincident with it or even a result of it. In 

fact, significant plaque development has been observed in a population of 

cognitively normal 70-year olds [34]. A current hypothesis states that it is not the 

mature plaques that are the triggering factor for neurodegeration, but rather the 

protofibrils – small oligermeric complexes of the protein – that are the basis of (or 

are at least correlated with) disease progression [35]. Due to the lack of in vivo 

imaging methods for visualizing protofibril formation, this hypothesis has yet to be 

tested in living human patients. This suggests that by inhibiting the development 

of protofibrils it might be possible to slow the disease progression. Indeed, 

several drugs that inhibit amyloid beta fibril formation via distinct mechanisms are 

currently in or have been tested in clinical trials [25, 28, 36]. One of these drugs, 

Alzhemed (Fig. 1.2A, tramiprosate) is a PPII that functions by sequestering 

monomeric amyloid beta protein [25, 28, 36]. This drug passed through phase II 

clinical trials, but failed in phase III clinical trials [37]. While tramiprosate 

ultimately failed in the clinical trials, it provides a proof of concept that small 

molecule inhibitors of amyloid beta protofibril formation are capable of reaching 

late stage development and that analogs with better 

pharmacokinetic/pharmacodynamic properties may still provide a viable 

approach to AD treatment.  
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Figure 1.2 Examples of amyloid beta aggregation inhibitors. A) Alzhemed (Tramiprosate, 
homotaurine) [28]. B) Memoquin, a multifactorial compound for the treatment of Alzheimer’s 
disease [38-41]. C) SLF-CR, a bifunctional molecule that recruits the FKBP family of chaperones 
to aggregating amyloid beta [31]. 

 

Another recent development in amyloid beta aggregation inhibitors was 

the development of the multifunctional compound memoquin (Fig. 1.2B) [38-41]. 

This compound was rationally designed by incorporating a radical scavenging 

moiety (the benzoquinone fragment of coenzyme Q10) into a series of 

cholinesterase inhibitor derivatives [29]. Along with possessing antioxidant 

activity, coenzyme Q10 and other benzoquinones have been shown to directly 

inhibit amyloid beta aggregation [42, 43]. It was therefore expected that this 

compound would be a multifactorial therapy for the treatment of AD, acting as an 

acetylcholine esterase (AchE) inhibitor, a free-radical scavenger, and an inhibitor 

of amyloid beta aggregation. Indeed, it was found that memoquin is a potent 

AchE inhibitor (2.6 nM Ki) and is capable of inhibiting both the AchE-induced and 

intrinsic aggregation of amyloid beta [29, 30].  This compound is orally 

bioavailable, crosses the blood brain barrier, and reduces amyloid plaque 
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accumulation in a mouse model overexpressing human APP (TG2576). It was 

also shown to prevent AD-like neurodegeneration in anti-NGF transgenic mice 

(AD11), another model of AD [29, 44, 45]. As of June 2010, there were no clinical 

data readily available on the efficacy of the compound in human subjects. 

While the previous small molecule inhibitors discussed have directly 

inhibited amyloid beta aggregation, a different approach was taken by Gestwicki, 

et al. [31]. They developed a bifunctional molecule that recruits the FK506 

binding protein (FKBP) family of chaperones to a developing amyloid beta 

aggregate (Fig. 1.2C). This series of molecules was created by using various 

linkers to join Congo red – a dye known to bind to amyloid beta – and SLF, a 

synthetic ligand for FKBPs. By recruiting the chaperone, the molecule 

dramatically increases its steric bulk and becomes capable of inhibiting the 

aggregation of amyloid beta. The recruitment of FKBP by this molecule is 

essential for its activity, suggesting that Congo red on its own does not disrupt 

the amyloid beta interaction energy as much as some of the previously 

mentioned compounds. Tethering large molecules together with selective 

bifunctional small molecules may be an important and powerful mechanism to 

modulate PPIs in the CNS, as many of the current small molecule inhibitors are 

bulky and may not have good permeability across the blood-brain barrier.  

Furthermore, this approach allows for the development of not just PPIIs, but also 

for the development of PPI facilitators. There are instances where it would clearly 

be desirable to promote PPIs in a cell rather than inhibit them and through this 
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general schema it may be possible to selectively colocalize different molecules in 

a single cell by varying one component of the bifunctional molecule.  

 While the pathophysiological mechanism behind the development of AD 

has yet to be fully understood, it seems reasonable to hypothesize that amyloid 

beta protofibril formation plays a significant role in the progression of the disease. 

Several small molecules have been developed that inhibit the oligomerization of 

amyloid beta either in vitro or in vivo. While inhibiting amyloid beta aggregation 

may provide therapeutic benefit on its own, the development of multifactorial 

agents such as memoquin has the potential to be much more efficacious in terms 

of treating the underlying disease.  

 

Alpha Synuclein Aggregation: 

Parkinson’s disease is the second most common neurodegenerative 

disorder in most Western countries [46, 47]. This disease is characterized by the 

loss of dopaminergic neurons in several brain regions, including the substantia 

nigra pars compacta and other regions important for higher order functioning 

[48]. Histopathological evaluation of the postmortem brains of Parkinson’s 

patients has revealed the presence of large intraneuronal aggregates termed 

“Lewy bodies.” These aggregates are primarily composed of a 140 amino acid 

protein, α-synuclein, although they are generally not as homogenous as amyloid 

beta plaques [48]. It has been shown that overexpression of alpha-synuclein in 

several model organisms causes the development of Parkinsonian-like 

symptoms [49-51]. Further study of α-synuclein has shown that the protein 
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contains a highly amyloidogenic domain that, when misfolded, oligomerizes and 

forms a series of self-associating β-pleated sheets that spontaneously form Lewy 

bodies [52, 53]. Like amyloid beta oligomers in AD, it is believed that it is the α-

synuclein oligomers and not the fully formed Lewy bodies that are the 

pathological factor in PD. The current hypothesis states that α-synuclein 

oligomers are capable of forming membrane pores that disrupt organelle 

function, leading to cell dysfunction and death. [48] 

 Several inhibitors of α-synuclein aggregation have been identified [54-58] 

(Fig. 1.3). An intriguing finding is that catecholamines can inhibit α-synuclein 

aggregation [54, 55]. This has also been shown in a mouse model of α-synuclein 

aggregation, where Lewy bodies were dissolved in brain slices by the addition of 

l-dopa [59]. The oxidation state of the catecholamines are important for this 

activity, whereby the several oxidation products of dopamine are more potent at 

inhibiting α-synuclein aggregation than is the parent neurotransmitter [59] (Fig. 

1.3). The link, if any, between dopaminergic neuron loss and the ability of 

catecholamines to inhibit α-synuclein aggregation has yet to be fully understood, 

but remains an intriguing concept in the pathophysiology of Parkinson’s disease.  

A series of peptide inhibitors of α-synuclein aggregation were identified by 

developing a library of overlapping heptapeptides that span the α-synuclein 

sequence. The active peptides were centered around residues 69-72 of α-

synuclein, suggesting that this region of the molecule was important for self-

association [60, 61]. It appears that short peptide fragments of α-synuclein also 

occur naturally, as the serine protease neurosin degrades α-synuclein into 
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fragments that can inhibit α-synuclein polymerization [62]. Current work is 

focused upon developing peptidomimetics and identifying small molecule 

inhibitors of α-synuclein using both high-throughput screening (HTS) and rational 

design from the information obtained in the peptide library study [63].  

Other small molecule inhibitors of α-synuclein have been identified. 

Rifampicin and several of its derivatives can inhibit both α-synuclein [64]and 

amyloid beta [65, 66] aggregation in a concentration-dependent manner with 

reasonable potency (< 10 µM IC50). A conclusive mechanism of rifampicin action 

has not been fully elucidated, but it has been suggested that it could act by 

binding directly to the developing plaque [65] and/or by acting as a free radical 

scavenger [66]. Panacea Pharmaceuticals had also developed a pair of α-

synuclein inhibitors, PAN-408 and PAN-527, that had progressed to preclinical 

trials. However, there have been no recent reports of compounds with these 

names [67, 68].  

Polyphenolic compounds, like flavonoids or Congo red, have been 

proposed to be α-synuclein aggregation inhibitors [69]. Many of these 

compounds are derived from natural sources and have low micromolar IC50 

values for protein aggregation inhibition. Baicalein (Fig. 1.3), a flavonoid isolated 

from the Chinese Skullcap plant (Scutellaraia baicalensis), can directly bind to a 

single site on α-synuclein with submicromolar affinity and inhibit oligomerization 

[70]. It is likely that a quinone oxidation product of this compound is responsible 

for the observed inhibitory activity (Fig. 1.3) [70]. Interestingly, this compound 

can inhibit α-synuclein aggregate nucleation but does not affect fibril elongation 
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or dissolve aggregates, suggesting that the molecule may act by stabilizing the 

monomeric α-synuclein [70]. This mechanism could be beneficial, as plaque 

disruption could generate free protofibrils and lead to increased cellular damage. 

Circular dichroism studies confirmed that binding of baicalein stabilized the semi-

folded state of α-synuclein [70]. Unfortunately, baicalein also stabilized an 

oligomeric species of α-synuclein as well as the monomer [70]. It is not known 

whether the oligomeric species stabilized by baicalein has neurodegenerative 

properties, however this finding does not bode well for this family of polyphenoic 

compounds as inhibitors of α-synuclein function. Unfortunately, it is possible that 

these molecules could stabilize the formation of the protofibrils that, as the 

current hypothesis states, are the pathogenic factor in protein aggregation 

diseases.  
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Figure 1.3 Examples of small molecule α-synuclein aggregation inhibitors. A) One member of a 
series of catechols known to inhibit α-synuclein aggregation [54]. B) A non-catechol inhibitor from 
the same series [54]. C) Baicalein, a natural product from the Chinese skullcap (Scutellaraia 
baicalensis) [68]. D) The presumed active oxidation product of baicalein that inhibits α-synuclein 
aggregation [68]. E) Dopamine, a known inhibitor of α-synuclein aggregation [54, 59] and F) 
dopaminochrome, one of the oxidation products of dopamine that has anti-aggregation properties 
[59]. 
 

Protein aggregation diseases are a major cause of morbidity in the elderly 

population of first world countries. While there are a number of therapeutics 

currently in use to treat the symptoms of these diseases [23, 67, 68, 70], there 

are very few if any actual treatments that stop or reverse disease progression. If 

the hypothesis that protein oligomers are the primary pathogenic factor in these 

diseases is correct, then small molecules that prevent or reverse protein 
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oligomerization may provide a mechanism to target the actual cause of the 

disease. There has been substantial work put forth to develop inhibitors of 

protein oligomerization and significant progress has been made. There is, 

however, much more work that needs to be done in this field before a clinically 

useful agent will be available for general use.  

 

Modulating Signal Transduction through inhibiting protein-protein 

interactions: 

Signal transduction cascades are required for nearly all biological 

functions. The importance of these systems is further illustrated by the fact that a 

large proportion of all clinically used therapeutics modulate signaling [23]. The 

most common method to modulate information processing through a signal 

transduction pathway is to alter activity of the most upstream molecule in the 

system: the receptor. These receptors come in many forms including G-protein 

coupled receptors, intracellular steroid/glucocorticoid receptors, and tyrosine 

kinase linked receptors. Currently ~30-50% of all clinically used drugs target 

GPCRs and a substantial portion of the remaining drugs target other receptor 

systems [23]. While many of these drugs are effective therapeutics, targeting 

regulation systems or molecules further downstream in the signaling pathway 

may provide advantages not readily available when solely modulating receptor 

activity.  

Targeting downstream signaling molecules in a signal transduction 

pathway requires overcoming several significant hurdles in drug development, 
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including cell permeability of the compound, achieving pathway specificity, and 

avoiding unwanted or unexpected side effects. There are currently several 

examples of clinically used drugs or drug candidates that target downstream 

signaling molecules in a pathway. The majority of these are kinase inhibitors, 

exemplified by Gleevec, that inhibit an enzymatic step in a signal transduction 

cascade [71]. As compared to a standard PPIs, enzymes are much more 

amenable to small molecule targeting due to their well-defined active site binding 

pocket. Furthermore, kinases represent a critical step in the signal transduction 

pathway that can be selectively inhibited. With all of these qualities, it is easy to 

understand why a kinase inhibitor could be a useful therapeutic.  

Many signal transduction steps do not rely upon an enzymatic process but 

rather use PPIs to relay information, often in the context of a signalosome that is 

tightly regulated by scaffolding components in the cell (e.g. lipid rafts, scaffold 

proteins). Targeting these steps requires the development of small molecules 

that inhibit the PPIs required for signal transduction. One of the more obvious 

drug targets in this case would be the scaffolding proteins that pull these 

signalosomes together.  

 

Inhibition of PDZ interactions: 

 PDZ domains are important scaffolding components in many signaling 

systems, with an extensive role in the development and maintenance of both pre- 

and post-synaptic structures [72, 73]. Development of reversible small molecule 

inhibitors that target PDZ domains would provide useful tools to probe the many 
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functions of these important scaffolds [74]. Of all canonical PPIs, PDZ domains 

are possibly the most similar to a traditional ligand-receptor interaction, as the 

interaction interface is comprised of a groove on the PDZ domain binding to the 

last few (3-5) amino acid residues in its partner (Fig. 1.4A) [73]. The small 

interaction interface requires that the few amino acids compromising the PDZ 

ligand contribute a great deal to the energetics of binding. Having such a small 

PPI interface might suggest that these interactions would be amenable to small 

molecule disruption. To this end, there have been a few PDZ inhibitors described 

based either upon rational design or from random high-throughput screening 

(Fig. 1.4B) [75-82]. Rational design of PDZ inhibitors would appear to be 

relatively straightforward, as the PDZ ligand is comprised of so few residues and 

the binding pockets of many PDZ domains have been characterized structurally 

by NMR or crystallographically. Indeed, several peptidomimetic scaffolds have 

been developed that inhibit PDZ interactions (Fig. 1.4B) [76, 77, 80, 81] 

. 
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Figure 1.4 Crystal structure of the first PDZ domain from MAGI bound to the PDZ ligand of HPV18 E6. A) MAGI shown in surface with HPV18 E6 
shown as sticks and balls. Note how in this protein-protein interaction, only a few (generally 3-5) residues play a predominant role in the binding 
energetics. Structure from PDB ID 2I04. [83] B) Examples of small molecule PDZ inhibitors. 1. General scaffold for a wide array of PDZ domains 
[77-79]. Analogs of this structure have been shown to inhibit the second PDZ domain of NHERF1 [78]. 2. Beta-hairpin peptidomimetic developed 
to inhibit the α1-syntrophin PDZ domain [80]. 3. Peptidomimetic developed to inhibit the NHERF1 PDZ domains [81]. 
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Cell permeant small molecule inhibitors of PDZ domains will provide a 

mechanism with which to probe the complex functions of these scaffolding 

proteins. For example, the Na+/H+ exchanger regulatory factor 1 (NHERF1) 

contains two PDZ domains and has been shown to have altered expression in 

many cancers [84-88]. The role of NHERF1 in cancer is complicated and 

appears to be dependent upon cellular context. Outside the realm of oncology, 

NHERF1 has been shown to be a multifunctional scaffolding protein that is 

capable of regulating the trafficking and localization of many membrane 

associated proteins [89]. Clearly, a tool which would allow for the acute and 

reversible inhibition of NHERF1 PDZ function could provide a powerful 

mechanism with which to determine the physiological role of this protein in 

different cellular contexts. 

 Currently, the best defined PDZ inhibitors are directed against the 

dishevelled and NHERF1 PDZ domains. These compounds were originally 

designed as a treatment for beta-catenin dependent tumor growth or to study the 

controversial role of NHERF1 in cancer progression, respectively. While these 

compounds have limited utility as centrally acting agents, they provide a clear 

example of how a PDZ inhibitor could be developed for one of the many PDZ 

domains that are important in neural functioning (see for reviews [19, 72, 73, 90-

94]).  

 The first cell permeable PDZ inhibitor was developed by Fujii, et al [77]. 

This irreversible inhibitor was rationally designed to bind to the second PDZ 
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domain of MAGI [77]. The compound dose-dependently (IC50 ~10-30 µM) 

inhibited the binding of a peptide corresponding to the PDZ ligand of the lipid 

phosphatase PTEN to the membrane-associated MAGI protein in a fluorescence 

polarization assay. It also increased the activity of PKB (or Akt) in cells, 

consistent with increased phosphatidyl inositol 3,4,5 trisphosphate levels due to 

reduced PTEN recruitment to the membrane [77]. Eventually, this indole scaffold 

was developed into a reversible, albeit weak (IC50 ~1 mM), inhibitor of the second 

PDZ domain of MAGI [76]. A similar indole scaffold was used to develop an 

inhibitor of the disheveled PDZ domain, an important scaffold in the Wnt/β-

catenin pathway [79]. This compound, named FJ9, blocked the interaction 

between the PDZ ligand at the C-terminus of the 7TM receptor Frizzled 7 with the 

disheveled PDZ domain both in vitro and in cells (In vitro IC50 30-60 µM). It also 

suppressed the growth of tumor cells in a β-catenin dependent manner [79]. 

Another inhibitor of the disheveled PDZ domain has been described. This 

relatively weak (~200 µM IC50) inhibitor was identified in a virtual screen against 

the disheveled PDZ domain and it inhibited Wnt signaling in a zebrafish embryo 

model of Wnt signaling [82]. Inhibition of PDZ domains has the potential to 

provide very useful pharmacologic tools for the study of protein trafficking, 

synaptic function, and other scaffolding-dependent processes. While current 

compounds still have only modest affinities, a selective inhibitor of some 

particular PDZ domains may also provide useful therapeutic agents, although this 

hypothesis needs to be tested.  
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Targeting elements of the G-protein signaling pathway: 

Another class of PPIs for which drug targeting is attractive is the multitude 

of PPIs formed by heterotrimeric G protein subunits. These trimeric proteins are 

formed of α and βγ subunits which, when activated (and thus dissociated into 

free α and βγ subunits), interact via PPIs with a large number of downstream 

effectors, including adenylate cyclase, phosphoinosotide-3 kinase, 

phospholipase Cβ, voltage gated Ca2+ channels, G protein coupled inwardly-

rectifying potassium channels, and others. G-proteins, especially Gα subunits, 

also bind to regulatory proteins that can alter the temporal and spatial signaling 

pattern.  Developing specific inhibitors of various G-protein/effector or G-

protein/regulator interactions could provide a mechanism to selectively modulate 

GPCR signaling pathways. It is not difficult to imagine several scenarios whereby 

modulating GPCR signaling could provide significant therapeutic benefit, either 

by potentiating positive actions of a drug or by inhibiting undesirable side effects. 

The progress in this field will be discussed throughout the rest of this thesis, 

including the contributions that I have made during the course of my Ph.D work.  
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Figure 1.5 Canonical G-protein signaling mechanism. See text for explanation. Note that the 
hydrolysis of GTP by Gα is accelerated by members of the RGS family. Reproduced with 
permission from Nature Publishing Group from [1]. 

 

Selective Gβγ Inhibitors: 

 Due to the prevalence of clinically important drugs that target GPCRs, 

there has been great interest in the therapeutic modulation of signaling 

downstream of these receptors. Canonical signaling through GPCRs (Fig. 1.5) 

progresses through the activation of a receptor by ligand binding, which 

stimulates the exchange of GDP for GTP on the Gα subunit of a heterotrimeric G 

protein. The GTP-bound Gα subunit and Gβγ subunit of the G protein then 

dissociate or at least undergo a conformational change to expose interaction 

surfaces to act upon downstream effectors in the signaling pathway. Since the 

first signaling molecule downstream of a GPCR is the G protein heterotrimer, it 

has become an interesting target for small molecule inhibition. While there have 

been no published reports of a small molecule inhibitor of Gα/effector PPIs, there 

have been a family of compounds identified by Smrcka and colleagues that bind 
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to Gβγ and selectively inhibit its interaction with downstream effectors [95-97]. 

The strategy used to identify these inhibitors provides a clear example of a 

protocol being used to identify small molecule PPIIs. The first step that the 

investigators took was to screen a random-peptide phage display library to 

identify binding sites on Gβγ [98]. A series of peptides was identified and one 

inhibited the Gβγ regulation of PI3K and PLCβ. It did not however, inhibit 

regulation of type I adenylate cyclase or N-type Ca2+ channels, suggesting that 

effector selectivity may be possible with small molecule modulators of Gβγ 

activity. By analyzing the crystal structure of Gβ1γ2 bound to this selective 

peptide inhibitor, it was possible to define the binding pocket for the peptide. 

Using this site as a binding pocket in virtual screening, the investigators identified 

85 small molecules (top 1% in the screen) that were predicted to bind to the Gβγ 

‘hotspot [95]. Analysis of these compounds using an ELISA assay based upon 

displacement of the peptide ligand identified 9 compounds with reasonable IC50 

values (100 nM – 60 µM). One of these compounds, M119 (Fig. 1.6A), inhibited 

the Gβγ stimulation of PLCβ and PI3Kγ activity in vitro and it also inhibited the 

Gβγ-dependent calcium release from activation of the Gi-linked N-formyl peptide 

receptor in differentiated HL-60 cells. The compound had no inhibitory activity 

upon the calcium mobilization initiated by carbachol in HEK cells stably 

expressing the Gq-linked M3 muscarinic receptor, showing that M119 is selective 

for Gβγ-dependent calcium mobilization. M119 also showed in vivo activity when 

tested in a morphine antinociception assay in mice. PLCβ3-/- mice have been 

shown to be ten times more sensitive to the antinociceptive effects of morphine 
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and an intracerebroventricular injection of M119 recapitulated this augmentation 

of morphine activity in wild type animals [95, 99]. Since opioid receptors have 

many Gβγ-dependent functions, the fact that M119 potentiates morphine-induced 

antinociception instead of inhibiting it provides evidence that this compound is 

not globally inhibiting Gβγ activity. Another structurally distinct compound 

identified by this approach, M201, also showed an interesting selectivity profile in 

its ability to inhibit Gβγ-effector interactions. This compound showed no ability to 

inhibit PLCβ2 activity, potentiated PLCβ3 and PI3K activity, and inhibited GRK2 

binding. The discovery of effector-selective modulators of Gβγ signaling M119 & 

M201, has thus provided a clear example of how targeting downstream signaling 

molecules can be a viable approach to modulating the pharmacological 

properties of a common drug (e.g. morphine). 
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Figure 1.6 Structure of M119, a pathway selective inhibitor of Gβγ signaling A) Chemical 
structure of M119 [95]. B) Crystal structure of Gβγ bound to peptide SIGK. This peptide, identified 
by phage display, binds to the identified “hot spot” on Gβγ [100].  Structure from PDB ID 1XHM. 
 
 

RGS Proteins: 

 Another approach to modulating GPCR signaling is to alter the activity of 

key proteins that regulate signal transduction. The G protein pathways are 

regulated by a number of proteins including scaffolding proteins such as the PDZ 

domains discussed previously, RGS proteins, G protein coupled receptor kinases 

(GRKs), and arrestins. These molecules are critical for the proper temporal and 

spatial regulation of GPCR signaling. By selectively modulating the actions of 
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these molecules it might be possible to more finely tune GPCR signaling for 

therapeutic purposes.  

A particularly interesting approach to modulating GPCR signaling is to 

target RGS proteins. These molecules function as GTPase accelerating proteins 

(GAP), by binding directly to Gα subunits and accelerating the intrinsic hydrolysis 

rate of GTP (Fig. 1.1, 1.5) [18, 101, 102]. The discovery of these proteins 

provided a solution to the paradox of how rapid regulation of GPCR signaling 

could occur given the slow intrinsic rate of GTP hydrolysis by purified Gα 

subunits. They explain the subsecond regulation of G protein signals observed in 

excitable cells [18, 101, 103, 104] and RGS proteins can strongly inhibit cellular 

responses [105-107]. There are over twenty identified RGS proteins that interact 

with limited selectivity for most Gα subtypes (Table 1.1, [101, 103, 108-110]). 

The only exception to this is Gαs, for which no RGS interaction has been 

confirmed. There are increasing reports of RGS selectivity for signaling by 

specific GPCRs, suggesting that targeting an RGS may provide a mechanism to 

selectively augment signaling through a particular GPCR [111, 112]. It is also 

increasingly appreciated that RGS proteins are heterogeneously expressed 

throughout the body, including in individual neuron types in specific brain regions 

[113-115]. The distinct expression patterns, presumed GPCR selectivity, and the 

dependence on an active signaling pathway for function all suggest that small 

molecules that modulate RGS activity could potentially be useful therapeutics. 

Indeed, mice expressing a mutated (G184S) form of Gαi2 or Gαo that render 

these G proteins insensitive to RGS effects exhibit markedly enhanced potency 
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of agonists and substantial physiological phenotypes [116-119].  Specifically, 

mice with the Gαi2 G184S mutation show reduced fat mass and resistance to 

high fat diet, possibly due to CNS actions [119]. They also show behaviors 

consistent with enhanced 5-HT1A signaling and a spontaneously antidepressant-

like state as well as 10-fold increased potency of 5HT-based antidepressant 

drugs [120]. Mice with the RGS-insensitive mutant Gαo show increased 

antiepileptiform activity in hippocampal slices by α2a agonists [121]. Strikingly, the 

effects are quite specific where the 5-HT1A potentiation is only seen for 

antidepressant-like and not for hypothermia effects [120]. This exquisite 

specificity suggests that RGS proteins may play a targeted role in the regulation 

of different physiological effects that are elicited through the same receptor. 

Since there are a number of thorough reviews of RGS structure and function 

(e.g. [1, 101-103, 108, 115, 122-129]), I will focus primarily upon RGS4 and its 

potential as a drug target. 
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RGS 

Family 

Notable 

Accessory 

Domains RGS name Suranames 

Gα 

Selectivity Ref. 
R

4 

N
-te

rm
in

al
 a

m
ph

ip
at

hi
c 

he
lix

 

RGS1 BL34 Gi/o/q [130] 

RGS2 GOS8 Gq 
[131, 

132] 

RGS3  Gi/q/11 [133] 

RGS4  Gi/q [134] 

RGS5  Gi/o/q [135] 

RGS8  Gi/o/q [136] 

RGS13  Gi/q [137] 

RGS16  Gi/o/q/13* 
[135, 

138] 

RGS18  Gi/q [139] 

RGS21  Gi/q [140] 

R
7 

D
E

P
, G

G
L 

RGS6  Go [141] 

RGS7  Go/i [142] 

RGS9 RGS-r  Go/Gt 
[142, 

143] 

RGS11  Go/i [142] 

Table 1.1 Current list of mammalian RGS proteins that are known to bind to Gα subunits. DEP: 
Dishevelled/EGL10/Plextrin homology domain; GGl: Gγ-like domain; PDZ: PSD95/Dlg/Z0-1/2 
domain; PTB: phosphotyrosine binding domain; RBD: Ras binding domain; GoLoco: guanine 
nucleotide-dissocation inhibitor domain; DH: Dbl homologous domain; PH: Plextrin homology 
domain; DAX: Domain present in Dishevelled and Axin; S/T kinase: serine/threonine kinase 
domain; RhoGEF: Rho guanine nucleotide exchange factor; GRK: G-protein coupled receptor 
kinase.  *RGS16 inhibits signaling through G13, but not via GAP activity. **No GAP activity, data 
remain to be independently confirmed. *** Weak or no GAP activity, physiological importance in 
question.  
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RGS 

Family 

Notable 

Accessory 

Domains RGS name Suranames 

Gα 

Selectivity Ref. 

R
12

 

P
D

Z,
 P

TB
, R

B
D

, 
G

oL
oc

o 

RGS10  Gi/o/z 
[144, 

145] 

RGS12  Gi/o (not q) [146] 

RGS14  Gi/o 
[147, 

148] 

R
Z 

C
ys

te
in

e 
S

tri
ng

, 
P

D
Z 

lig
an

d 
(R

G
S

19
) 

RGS17 RGSZ2 Gi/q [115] 

RGS19 GAIP Gi1/3 > Gi2 [149] 

RGS20 RGSZ1 Gz  [150] 

A
xi

n 

β-
C

at
en

in
in

 B
in

di
ng

, 
G

S
K

-3
β 

bi
nd

in
g,

 
D

AX
  

 

Axin 1 
 G12** [151] 

Axin 2 Conductin G12** [151] 
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RGS 

Family 

Notable 

Accessory 

Domains RGS name Suranames 

Gα 

Selectivity Ref. 
R

ho
G

E
Fs

 

D
H

/P
H

 

LARG  G12/13/q** 
[152, 

153] 

P115 

RhoGEF 
 G12/13 [154] 

PDZ 

RhoGEF 
 G12/13 [155] 

G
R

K
 

S
/T

 K
in

as
e,

 P
H

 (P
H

 o
n 

G
R

K
2/

3 
on

ly
) 

GRK1 
Rhodopsin 

Kinase 

None 

Known 
[124] 

GRK2 βARK1 Gq*** 
[156, 

157] 

GRK3 βARK2 Gq*** [156] 

GRK4 IT-11 kinase G13, Gs*** [158] 

GRK5  
None 

Known 

[124, 

156] 

GRK6  
None 

known 

[124, 

156] 

GRK7  
None 

Known 
[124] 
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The RGS Homology Domain: 
The RGS Homology (RH) domain is comprised of nine helices that form a 

bi-lobed structure (Fig 1.7). This fold, originally identified for RGS4 in complex 

with Gαi1, has been observed in at least 22 other proteins and bears little to no 

homology with the folds of small G-protein GAPs. The α4-α7 helices 

predominantly provide the structural components and stability required for 

interaction with Gα subunits, but the loop regions between helices α3-α4, α5-α6, 

and α7-α8 form the primary interaction interface with the G protein. These loops 

bind to the three ‘switch’ regions of Gα. The GAP activity of RGS is believed to 

stem from the stabilization of these ‘switch regions into the transition state 

conformation. As such, the RGS protein actually does not provide any residues 

that are crucial for catalytic activity, as is seen with some GAPs for small 

GTPases. [124] 
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Figure 1.7 The RGS homology (RH) domain fold of RGS4. That the loop regions between α3-α4, 
α5-α6, and α7-α8 provide the surface required for Gα binding. Structure from PDB ID 1AGR [18].  
 

A particularly promising feature of the RH domain of RGS4 as a target for 

small molecule inhibitors is that it contains an endogenous small molecule 

allosteric regulatory site. Kurachi and colleagues showed that (3,4,5)P3-

phosphotidyl inositol (PIP3) and lysophosphatidic acid – but not other 

phosphoinositides - directly bind to an allosteric site on the RGS and inhibit its 

activity [159]. This binding inhibits RGS4 GAP activity in vitro and also inhibits the 

effects of RGS4 upon the muscarinic control of GIRK currents in a reconstituted 

Xenopus oocyte system [159].  
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While there is no direct structural information (e.g x-ray crystal structure) 

of the phospholipid interactions with the RGS, there is significant evidence that 

the binding of PIP3 occurs at a site that is independent of the G-protein binding 

interaction interface. There are four conserved lysine residues in the α4/α5 

helices (K99, K100, K112, K113) of RGS4 that have been shown to be important 

for PIP3 binding (Fig. 1.8). Charge-swapping mutation of these lysines (e.g. 

K99E/K100E) renders RGS4 unable to bind activated Gαi1 as well as inhibiting 

RGS modulation of the M2-activation of G-protein inwardly rectifying potassium 

(GIRK) channels [159].  

Two of these lysine residues (K99/K100) lie in a site analogous to the site 

of binding of adenomatous polyposis coli protein to the RH domain of Axin, 

suggesting that this site might be a more generalized accessory site for 

protein/small molecule binding to RH domains. On RGS4, this site has also been 

shown to bind calmodulin in a Ca2+-dependent manner [159, 160]. Mutation of 

K99/K100 to glutamate in this system inhibited the interaction with calmodulin, 

suggesting that the binding sites of acidic phospholipids and calmodulin overlap 

[161]. Further strengthening this notion, binding of Ca2+-calmodulin reverses the 

PIP3–induced RGS4 inhibition [160]. Since RGS4 has been shown to be efficient 

at inhibiting calcium release induced by Gq-coupled receptors ([162], Chapter IV) 

this calcium-dependent activation of RGS4 is likely to be a physiological 

feedback mechanism for dampening overactive Gq signaling [160, 163].  
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Figure 1.8 Conserved lysine residues in RGS4 that have been implicated in calmodulin and 
acidic phospholipid binding. The “B” site region of RGS4 contains K100 and K99. Mutating these 
residues to glutamate dramatically reduces calmodulin binding, Gαi1 binding and GAP activity 
[159].  Residues K112 and K113 are also implicated in mediating the effects of (3,4,5)P3-
phosphotidyl inositol and calmodulin on RGS4. 
 

RGS4 as a Drug Target: 

There is substantial interest in developing small molecule or peptide 

modulators of RGS proteins [101, 103, 122, 123, 129, 164]. An RGS inhibitor 

given alone would be expected to accentuate signaling initiated by endogenous 

ligands, a treatment that could be useful in a variety of neurological conditions 

such as depression (via enhancement of serotonin signaling), early stage 

Alzheimer’s or Parkinson’s diseases (via enhancement of cholinergic or 

dopaminergic signaling, respectively). They could also be used as an adjunct 

with a GPCR agonist by increasing the potency or selectivity of the drug by 

accentuating signal transduction through the receptor. One could imagine that an 
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RGS9 inhibitor that accentuated dopaminergic signaling selectively in the 

striatum where RGS9 is expressed could be a useful adjunctive therapy with L-

dopa or synthetic dopamine agonists in Parkinson’s disease (Fig. 1.9). 

Furthermore, an RGS inhibitor that selectively accentuated opioid signaling in 

neurons in the pain pathway may provide a mechanism to selectively increase 

the analgesic properties of opioids but might leave alone the undesirable actions 

of these drugs (i.e. constipation, abuse liability) which might be regulated by 

different RGS proteins. Thus, RGS inhibitors could serve as GPCR agonist 

potentiators but would also enhance agonist specificity in a cell-type or pathway-

specific manner. 

 

Figure 1.9 RGS-inhibitors increase the tissue specificity of an agonist.  Left Panel: Graphical 
representation of the RGS4 & RGS9 protein expression patterns in the brain [151]. The 
Red/Green color denotes regions of high expression, specifically cortex and thalamic regions for 
RGS4, and basal ganglia for RGS9. Center Panel: Upon addition of a low or high concentration of 
agonist, a response would be seen across all brain regions that express the receptor. Left Panel: 
In the presence of an RGS inhibitor, there would be tissue-specific enhancement of agonist effect 
in the tissues where the RGS is expressed. Reproduced with permission from Nature Publishing 
Group from [1]. 
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RGS4 is a prototypical RGS protein that is widely expressed throughout 

the CNS with limited expression in peripheral tissues. It controls a variety of 

signaling systems, and has been implicated as a risk factor for schizophrenia 

[165-188]. RGS4, like other RGS proteins, interacts strongly with several 

members of the Gαi/o and Gαq families and shows limited selectivity between 

these proteins in in vitro binding and functional studies [18, 189-191]. The 

interaction interface between RGS4 and Gαi1 was revealed by the crystal 

structure by Tesmer et al [18]. This relatively flat interface includes the three 

switch regions in Gαi1 (residues 179-185 in switch 1, 204-213 in switch 2, and 

235-237 in switch 3) and several of the loops in the RH domain of RGS4 [18]. 

The interaction interface covers approximately 1100Å2 and utilizes primarily van 

der Waals and hydrogen bond interactions (Fig. 1.10). The binding affinity of the 

Gα/RGS complex is dependent upon the conformational state of the Gα. There is 

very little to no interaction when Gα is in the GDP-bound state, some moderate 

affinity when bound with GTP, and a strong interaction (Kd ~1-5nM) when the Gα 

is bound to GDP-aluminum fluoride, a state believed to serve as a mimic for the 

transition state of GTP hydrolysis [189, 192]. 

The physiological effects of RGS4 have been studied in a number of 

systems. Two lines of RGS4 knockout mice have been developed [193, 194]. 

The original whole body knockout of RGS4 had a subtle phenotype [193], which 

was attributed in part to compensation by other RGS proteins. Recently, whole-

body or brain-region specific inducible RGS4 knockout strains of mice have been 
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developed [194]. The whole-body knockout displayed reduced sensitivity to 

fentanyl and methadone but wild-type sensitivity to morphine, presumably 

through complex neurological interactions that are as of yet misunderstood. 

Interestingly, these animals displayed worsened withdrawal effects to morphine 

as compared to their littermate wild-type controls, suggesting that RGS4 plays a 

role at distinct sites in the reward and withdrawal pathways.  

 

Figure 1.10 Crystal structure of RGS4 in complex with Gαi1 A) RGS4 (Blue ribbon) binding to 
Gαi1 (red surface). This stereotypical protein-protein interaction buries approximately 1100Å 2 and 
is relatively featureless in terms of readily identifiable small molecule binding sites. B) Structure of 
RGS4 that has been rotated to display the regions of the surface (red) that lie within 5Å of Gαi1. 
Note the large diffuse contact interface. Structures from PDB ID 1AGR [18].  
 

 

The brain-region specific RGS4 knockout animals are particularly useful 

for probing the physiological role of RGS4 in pain processing and opiate reward 

mechanisms [194]. When RGS4 was depleted from the nucleus accumbens, the 

animals showed decreased sensitivity to fentanyl antinociception. Deletion of 
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RGS4 from the accumbens also had no effect upon stereotypical withdrawal 

behavior. This is in clear contradiction with the whole body knockout animals, 

suggesting a complex role of RGS4 in vivo. Because of the redundancy of RGS 

proteins, future studies utilizing tissue- or cell-type specific deletions of RGS 

proteins are likely to provide much more compelling information regarding the 

true physiological roles of RGS proteins.  

RGS proteins also play a role in glucose homeostasis. Mice expressing an 

RGS-insensitive (G148S) mutation in Gαi2 display improved insulin sensitivity as 

compared to wild-type controls [119]. Another recent study showed that RGS4 

plays a role in regulating the muscarinic control of glucose-stimulated insulin 

release (GSIS) from the pancreatic β cells [162]. Activation of the M3 muscarinic 

receptor potentiates insulin release in response to high glucose both in vitro and 

in vivo [195, 196]. Using siRNA knockdown of RGS4 in the MIN6 insulinoma cell 

line, Wess and colleagues were able to cause a left-shift the dose-response 

curve for oxotremorine-M potentiated GSIS [162]. Islets isolated from RGS4 

knockout animals also displayed increased sensitivity to oxotremorine-M 

potentiation of GSIS. Furthermore, those authors showed that the RGS4 

knockout animals had a potentiated insulin release response to the muscarinic 

agonist bethanecol as compared to wildtype littermate controls. Taken together, 

these data strongly suggest a role of RGS4 in the regulation of parasympathetic 

control of pancreatic β cell function. In this setting, an RGS4 inhibitor could 

function to potentiate insulin release.  
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Importance of selectivity in RGS inhibition: 

 From a research standpoint, an exquisitely selective RGS inhibitor would 

be of great value in elucidating the physiological role of RGS proteins in vivo. 

However, from a clinical standpoint an RGS inhibitor that targeted a small select 

group of RGS proteins might be more valuable. Most diseases (e.g. cardiac 

failure, depression) coincide with changes in a complex set of signaling pathways 

that are regulated by several different RGS proteins. While still hypothetical, it is 

possible to imagine that an RGS inhibitor with a specific activity profile against 

several different RGS proteins might have very different physiological effects 

than an inhibitor specific for one RGS protein. Furthermore, one could imagine 

that the activity profile that would provide the most prominent effect for one 

disease may not be the best for another disease. Therefore, it is possible that an 

RGS inhibitor with a specific set of activity against several different RGS proteins 

might be very valuable in the treatment of certain diseases. However, which RGS 

proteins to target and in what combination for a given disease are questions that 

remain to be fully answered.  

 

Current RGS Inhibitors: 

 Two groups have published independent series of peptide inhibitors of 

RGS4 function. One series from our lab was rationally designed to mimic the 

switch I region of Gαi and expanded by screening of a constrained peptide library 

[190, 197]. The other peptide inhibitor series was developed by a random yeast-

two hybrid screening campaign [198]. The lead peptide from this latter campaign 



 

42 

bears no resemblance to the sequence of any known RGS4 interacting protein 

and its mechanism of action is unclear. Both of these series produced lead 

peptides with modest (mid-low micromolar) activity in both binding and functional 

assays, suggesting that small molecule inhibition of RGS function may be more 

tractable than previously thought [190, 198]. The first small molecule inhibitor of 

RGS4 was published in 2007 [189]. This compound, CCG-4986 (4-chloro-N-[N-

(4-nitrophenyl)methoxysulfanyl]benzene-1-sulfonamide), was identified through a 

flow-cytometry protein interaction assay (FCPIA)-based high throughput screen 

on a diverse compound library. This compound has a 4 micromolar IC50 value for 

the inhibition of RGS4 binding to Gαo and shows significant selectivity for RGS4 

over RGS8, its closest relative based upon sequence homology. The activity of 

the compound was confirmed by single turnover GTP hydrolysis assay, in which 

CCG-4986 blocked the GTPase accelerating protein (GAP) activity of the RGS. 

The compound bound directly to RGS4 as determined by changes in intrinsic 

fluorescence of the RGS upon compound addition. Further study of the 

mechanism of CCG-4986 action showed that it did not function in a cellular 

environment. Subsequent mechanistic studies determined that the compound 

irreversibly forms a covalent adduct with the RGS in both orthosteric (i.e. at the 

site of Gα binding) [199],[200] and allosteric interaction sites [200]. While this lack 

of cellular activity limits the utility of the compound as a pharmacological tool, the 

development of CCG-4986 was nonetheless exciting, as it clearly shows that 

RGS proteins are susceptible to small molecule inhibition and also to allosteric 

modulation which may provide greater specificity among RGS proteins.  Current 
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efforts toward developing small molecule RGS inhibitors using high-throughput 

screening and rational design approaches are ongoing and are the main focus of 

this thesis.  

 While RGS inhibitors have the potential to accentuate signaling through 

GPCRs, it is also possible to imagine a scenario where augmenting RGS activity 

with “RGS agonists” could be therapeutically beneficial. As mentioned above, 

RGS4 has been shown to be reciprocally regulated by acidic phospholipids and 

calmodulin [159-161]. A small molecule that inhibits the interaction of RGS4 with 

acidic phospholipids or calmodulin could provide a mechanism to ‘activate’ 

RGS4. By activating RGS4, it may be possible to attenuate signaling from 

aberrant or overactive GPCR neurotransmitter receptors. Phosphodiesterase γ 

(PDEγ) can also positively modulate RGS activity.  PDEγ has been shown to 

selectively potentiate the GAP activity of RGS9 but not RGS4, 16, or 19. It does 

this in part by forming a ternary complex with Gα and the RGS9/Gβγ complex 

[201-204]. It may be possible to develop compounds that mimic PDEγ or alter its 

ability to bind to the Gα-RGS complex providing a novel mechanism to enhance 

RGS activity.  

Whether the goal is to produce RGS inhibitors or RGS activators, there 

are clear challenges as most actions do require modulation of PPIs. However, 

small molecules that regulate RGS function would provide a novel approach to 

the treatment of diseases stemming from or benefited by changes in GPCR 

signaling.  
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Overview of the Thesis: 

 My work focused upon identifying small molecule inhibitors of the RGS-Gα 

interaction. The compounds generated from this work should provide 

pharmacological probes to better understand the physiological role of RGS 

proteins both in vitro and in vivo. Furthermore, these compounds may serve as 

leads for the development of therapeutics for a number of different disease states 

(e.g. depression [120], diabetes [119, 162] ). 

Chapter II describes results from a high-throughput screen that I 

developed using a time-resolved fluorescence resonance energy transfer (TR-

FRET) assay to monitor the interaction between RGS4 and Gαo. From this 

screen of approximately 40,000 small molecules, the first series of reversible 

inhibitors of an RGS protein were identified. The prototype compound from this 

family, CCG-63802, selectively inhibits RGS4 in both the TR-FRET (IC50 1 µM) 

and FCPIA (IC50 10 µM) assays. Furthermore, CCG-63802 inhibits the GAP 

activity RGS4 upon Gαo. Using biophysical studies, I have shown that the 

compound binds to the RGS  domain and mutagenesis studies have narrowed 

down the potential binding sites on this protein to two interfaces that are known 

to play a role in the regulation of the RGS-Gα interaction. Structure-Activity 

studies in this family of compounds have determined a number of important 

factors regarding the mechanism of action of these compounds, including: 1) a 

reversible Michael addition of the compound via the vinyl cyanide moiety is 

crucial for activity, 2) all three heterocycles are important for full activity, and 3) 

optimization of the phenyl ring substituents can provide ½ Log improvement in 
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potency. The future development of this class of compounds is focused upon 

increasing potency, improving the cellular activity of these compounds, and 

increasing solubility.  

 In Chapter III, I characterize the most potent in vitro family of RGS4 

inhibitors identified to date. The prototype compound from this family, CCG-

50014 was originally discovered in a high throughput screen performed by a 

postdoctoral fellow in our laboratory [205]. I undertook the detailed 

characterization of the biochemical mechanism of action, structure-activity 

relationships, and cellular activity of this compound. CCG-50014 potently inhibits 

the RGS4-Gαo interaction in vitro (IC50 30 nM). Like the compounds in Chapter II, 

this family of inhibitors blocks the RGS-Gα PPI in a variety of biochemical assays 

including single turnover GAP and FCPIA. The binding mechanism of CCG-

50014 to RGS8 is studied in detail with thermal stability measurements, 

mutagenesis, and mass spectrometry. This mechanism of action is further 

examined through the synthesis and analysis of a number of analogs of CCG-

50014. These analogs also allowed for the generation of structure-activity 

knowledge leading to the identification of more potent, more soluble compounds 

that possess less non-specific effects on other non-RGS functions.  

 In Chapter IV, I detail the ability of CCG-50014 and related analogs to 

function in a cellular environment. While it was known from the functional studies 

that CCG-50014 loses activity under reducing conditions that mimic the 

intracellular environment, the remarkable potency of this family of compounds 

prompted us to study the cellular action of these compounds. RGS4 is a cytosolic 
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protein that translocates to the plasma membrane in the presence of activated 

Gα subunits [206]. Using this information, I expressed a GFP-tagged form of 

RGS4 in HEK293T cells and induced membrane translocation by coexpression 

of Gαo. The massive overexpression of the Gα pulled the RGS to the membrane 

in the absence of receptor stimulation. This interaction was blocked by several of 

the compounds tested, with observable activity down to 1 micromolar. While 

these data proved that we could inhibit the RGS4-Gα PPI in cells, it did not 

discern whether or not this effect altered a GPCR signaling pathway. To 

determine this, we tested CCG-50014 for its ability to block the RGS4 effect on 

the δ-opioid receptor (δ) using endogenous protein in SH-SY5Y neuroblastoma 

cells. It was previously shown that in these cells, endogenous RGS4 inhibits the 

δ signaling, but not µ. In this assay, CCG-50014 enhanced the response through 

δ but not µ, consistent with inhibition of RGS4. To further study the cellular 

activity of these compounds, I tested several analogs for their ability to 

accentuate signaling through the M3 muscarinic receptor after suppression of the 

receptor response by co-expression of RGS4. Surprisingly, many of these 

compounds produced a significant calcium transient on their own, suggesting an 

off-target effect. Of the analogs that did not have this effect, several partially 

reversed the RGS4-mediated suppression of M3 signaling. The ability of these 

compounds to function in a cellular system has prompted us to pursue future 

work with this class of compounds in isolated organ systems and in whole 

animals.  
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 The work from this thesis significantly advanced the field by producing the 

first reversible small molecule RGS inhibitor, by characterizing the most potent 

RGS inhibitor identified to date, and by providing a fundamental framework for 

the development of future inhibitors with improved cellular and animal activity. It 

is possible that a promising lead compound for preclinical and clinical trials may 

be developed with further development of these two classes of RGS inhibitors.  
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CHAPTER II: 
Reversible, allosteric, small-molecule  

inhibitors of RGS proteins  
Introduction: 

. There has been significant interest in developing small molecule 

inhibitors of specific protein-protein interactions (SMPPIIs) for use as research 

probes and potential therapeutic agents [1-5]. The development of SMPPIIs has 

been difficult. One challenge has been the lack of clearly identifiable small 

molecule binding sites on the relatively featureless protein-protein interaction 

interface. A promising approach is the use of allosteric pockets on the protein 

target to bypass this problem and – as outlined in Chapter I - there has been 

solid progress in SMPPII development [1-4, 6-8]. The compounds described in 

this chapter appear to be acting in an allosteric manner to inhibit the RGS/Gαo 

PPI.. 

There is substantial interest in the therapeutic potential of small molecule 

modulators of RGS proteins [4, 9-12]. In brief, RGS inhibitors may potentiate 

signaling though GPCRs in a tissue-specific manner due to the localized 

expression patterns of many RGS proteins. This effect could be used to reduce 

side effects of clinically used GPCR agonists that stem from non-target tissue 

receptor activation (e.g. µ-opioid receptor dependent constipation during post-

operative analgesia [13]). Due to the wealth of information on the structure and 
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function of the prototypical RGS, RGS4, we chose this protein as our primary 

target for validating the druggability of RGS proteins.   

There have been several reported peptide inhibitors of RGS4 and related 

family members [14-16] and one disclosed small molecule inhibitor [17]. Due to 

the physical properties of the peptides, none of them function in a cellular 

environment unless they are introduced intracellularly (e.g. by dialysis via a patch 

pipette [15]). The small molecule compound CCG-4986 irreversibly inhibits RGS4 

by reacting with one or more cysteine residues [18, 19]) and is inactive in a 

cellular setting Consequently, we undertook this study to identify novel RGS 

inhibitors that retain activity under reducing conditions and ones that have a 

reversible mechanism of action.  

This chapter describes the identification and characterization of the first 

class of reversible small molecule inhibitors of an RGS protein, typified by CCG-

63802 and CCG-63808. They were identified in a biochemical high-throughput 

screen that I developed based upon time-resolved fluorescence resonance 

energy transfer between fluorescently labeled RGS4 and Gαo. The RGS-

inhibitory activity of the compounds identified in this screen was confirmed using 

three different biochemical assays (TR-FRET, FCPIA, Single Turnover GTPase). 

FCPIA reversibility studies revealed that these compounds inhibit the binding 

RGS4 to Gαo in a reversible manner.  

RGS and Gα thermal stability measurements showed that the compounds 

bind solely to the RGS. To identify the compound binding site on RGS4, I 

performed a series of mutagenesis studies. An initial finding was that compound 
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activity required the presence of at least one cysteine residue on the RGS. More 

detailed analysis showed that these compounds require the presence of at least 

two cysteines on the RGS for full activity. These two cysteine residues (Cys 148 

and Cys 95) are located in an allosteric site on the RGS, suggesting that these 

compounds may be binding to the RGS at a site far from the Gα interaction 

interface. 

A series of analogs of CCG-63802 were tested using FCPIA to determine 

the structure-activity relationships of this novel compound class. CCG-63802 

contains three heterocycles with a vinyl cyanide linker. It was found that for full 

activity, all three heterocycles were necessary. The effects of modifying each of 

the heterocycles are described in detail. The vinyl cyanide group, a known 

Michael acceptor, is also required for activity of the compounds. This fact, in 

conjunction with the compounds dependence on cysteine residues for function, 

suggests that CCG-63802 acts by reversibly reacting with one or more cysteine 

residues on the RGS. These compounds represent an important step towards 

the development of tools for the study of RGS functions in physiological and 

pathophysiological situations.  

The work in this chapter was performed by me with the following 

exceptions: 1) Dr. Stephen Husbands and Dr. Benjamin Greedy synthesized all 

of the compounds; 2) The thermal stability experiments were performed by Alfred 

Chung under my direct guidance. I also independently replicated these 

experiments using a different thermal stability system and obtained similar 

results; 3) High throughput screening was performed in conjunction with Martha 
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Larsen; 4) Analysis of the screening data was performed in conjunction with Rez 

Halze, Paul Kirchhoff, and Dave Roman; 5) Thermal stability experiments on 

RGS4c were performed under my guidance by Andrew Storaska. Parts of this 

chapter have been compiled into a publication in Molecular Pharmacology [20].  

 

Materials & Methods: 

Reagents:  

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO) or Fisher 

Scientific (Hampton, NH) and were reagent grade or better. AlexaFluor™-488 

succinimidyl ester and LanthaScreen™ Thiol reactive Tb chelate were obtained 

from Invitrogen (Carlsbad, CA). γ[32P]GTP (10 mCi/mL) and [35S]GTPγS (12.5 

mCi/mL) were obtained from Perkin Elmer Life and Analytical Sciences, (Boston, 

MA) and were isotopically diluted with unlabeled nucleotide before use. Amylose 

resin was purchased from New England Biolabs (Ipswich, MA). Ni-NTA resin was 

purchased from Qiagen (Valencia, CA). Avidin-coated microspheres were 

purchased from Luminex (Austin, TX). The screening library was comprised of a 

commercially available subset of compounds from Chem Div (San Diego, CA) 

provided through a collaboration between the University of Michigan Center for 

Chemical Genomics and the Novartis Institute for Biomedical Research. CCG-

63802 (((2E)-2-(1,3-benzothiazol-2-yl)-3-[9-methyl-2-(3-methylphenoxy)-4-oxo-

4H-pyrido[1,2-a]pyrimidin-3-yl]prop-2-enenitrile)) and CCG-63808 (((2E)-2-(1,3-

benzothiazol-2-yl)-3-[9-methyl-2-(4-fluorolphenoxy)-4-oxo-4H-pyrido[1,2-

a]pyrimidin-3-yl]prop-2-enenitrile)) (see structures in Fig. 2.1) were purchased 
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from ChemDiv (San Diego, CA) and compound identity was verified by NMR via 

ChemDiv and by independent complete synthesis in the laboratory of Dr. Steven 

Husbands (University of Bath). Some analogs of CCG-63802 were purchased 

from Chem-Div and the rest (as identified by the BUXXXXX ID number) were 

synthesized in the laboratory of Dr. Stephen Husbands.  

 

 

Figure 2.1 Characterization of the RGS4 TR-FRET high-throughput Assay. A) Schematic of 
RGS4-Gαo TR-FRET assay. Gαo is labeled with the LanthaScreen Tb-chelate donor fluorophore 
and RGS4 is labeled with an AlexaFluor-488 acceptor fluorophore. Excitation and emission 
maxima are listed for each fluorophore. B) Representative data showing the AlF4

-/GDP 
dependence of the interaction between AF-488RGS4 and 10 nM of Tb-Gαo. This saturable 
interaction has a Kd of 35±4 nM. Data are presented as mean±SEM C) Two compounds identified 
in the high throughput screen, CCG-63802 and CCG-63808, dose-dependently inhibit the TR-
FRET signal between RGS4-AF488 and Tb-Gαo with IC50 values of 1.4 (0.76; 2.6 µM) and 1.9 µM 
(1.02; 3.5 µM), respectively. Data are presented as mean (95% CI) D) The chemical structures of 
CCG-63802 and CCG-63808. n=3 for all data. 
 

 

 



 

63 

Compound synthesis:   

Briefly, 2-Hydroxy-9-methyl-4H-pyrido[1,2-α]pyrimidin-4-one  was 

prepared by the reaction of 2-amino-3-methylpyridine with diethyl malonate 

according to literature methods [21]. This material was firstly converted to 2-

chloro-9-methyl-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde via Vilsmeier 

formylation, and this product was then heated with 4-fluorophenol to afford 2-(4-

fluorophenoxy)-9-methyl-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde. 

Condensation of this compound with 2-benzothiazole acetonitrile using catalytic 

triethylamine in dichloromethane provided CCG-63808 as an orange crystalline 

solid (Fig. 2.2). CCG-63802 was prepared in a similar manner, except 4-

fluorophenol was replaced with 3-methylphenol. Synthesized compounds were 

verified by 1H and 13C NMR using Jeol Delta-270-MHz instrument: 1H at 270 

MHz, and Varian Mercury-400-MHz instrument: 1H at 400 MHz, 13C at 100 MHz; 

d in ppm, J in Hz with TMS as an internal standard, by electrospray mass 

spectrometry using micrOTOF (Bruker, Billerica, MA), and by microanalysis using 

a Perkin-Elmer 240C analyzer (Perkin-Elmer, Boston, MA). 

Analogs lacking the vinyl nitrile moiety were synthesised depending on 

their functional group. Typically, analogs of the alkene were synthesised using a 

Horner-Wadsworth-Emmons reaction between the relevant aldehyde and a pre-

prepared phosphonate.  In several examples, reduction of the olefin was carried 

out, by hydrogenation using Pd/C under an atmospheric pressure of hydrogen. 

Further analogs, containing the amide functionality, were prepared using 

common amide coupling methodology.  
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Figure 2.2 Reaction scheme for the synthesis of CCG-63802. Other analogs were synthesized 
using variations of this general scheme and will be described elsewhere.  
 

Protein expression & purification:   

Human RGS4 was expressed either from the pQE80RGS4 vector, which 

encodes 6x histidine tagged and N-terminally truncated form of RGS4 that lacks 

the first 18 residues (ΔN19RGS4) or from the pKMRGS4 vector, which encodes 

a maltose-binding protein-ΔN19RGS4 fusion protein.  The ΔN form of RGS4 was 

selected because it provides better protein yield in prokaryotic expression 

systems. MBP-His6-RGS19ΔC11 (human), MBP-His6-RGS7 (human), MBP-

His6-RGS8 (human) and MBP-His6-RGS16 (human) were expressed from 

constructs made with the pMALC2H10 vector as previously described [22]. For 

the mutagenesis studies, ΔN51RGS4 (rat) wild type and cysteine  alanine 
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mutants were expressed from the pMALC2H10 vector. Mutagenesis was 

performed as described [19] using the QuickChange Multi Site Directed 

Mutagenesis kit (Agilent, La Jolla CA) where one or more of the cysteine 

residues in the RGS domain of RGS4 were mutated to alanine.  

All proteins were expressed in and harvested from BL21-DE3 E. coli via 

standard transformation, growth, and lysis protocols [16, 17, 23-25].  Histidine-

tagged RGS4 was purified over a Nickel NTA affinity column (Qiagen, Valenica, 

CA) followed by cation exchange chromatography and size exclusion 

chromatography. MBP-tagged RGS proteins were purified with an amylose 

affinity column followed by size exclusion chromatography. Hexahistidine-tagged 

rat Gαo was expressed and purified as previously described [25]. G protein 

activity was determined by [35S]GTPγS binding [26]. In all cases, proteins were 

purified to >90% homogeneity before use.  

 

Chemical labeling of purified Gαo & RGS:  

AlexaFluor-488 labeling of RGS4:  ΔN19RGS4 was labeled with 

AlexaFluor-488 succinimidyl ester (Invitrogen, Carlsbad CA) at a 5:1 

(label:protein) stoichiometry in a total volume of 2.0 mL of 50 mM HEPES pH 8.2 

at 4˚C, 100 mM NaCl, 1 mM DTT.  The reaction was performed while rotating 

samples in the dark for 1.5 hr at 4˚C.  The reaction was quenched by the addition 

of 1 mM glycine for 10 minutes at 4˚C.  Labeled RGS4 was resolved from the 

reaction mixture by size exclusion chromatography using a 20 mL Sephadex G-
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25 desalting column (GE Biosciences, Piscataway NJ).  Degree of labeling was 

determined spectroscopically to be approximately 1:1.    

Tb chelate labeling of Gαo:  Gαo was labeled with the LanthaScreen™ Tb 

thiol reactive reagent (Invitrogen, Carlsbad CA) at a 5:1 (label:protein) 

stoichiometry in a total volume of 1.0 mL of 50 mM HEPES pH 7.25 at 4˚C, 100 

mM NaCl, supplemented with 10 μM GDP and 0.8 mM TCEP.  The reaction was 

allowed to proceed at 4˚C for 1.5 hr while rotating in the dark.  The reaction was 

quenched by the addition 1 mM DTT for 20 minutes at 4˚C.  Labeled protein was 

purified from the reaction mixture by size exclusion chromatography using a 

Sephadex G-25 desalting column (GE Biosciences, Piscataway NJ).  Degree of 

labeling was determined spectroscopically to be approximately 1:1. The activity 

and effective concentration of the labeled G protein was determined by 

[35S]GTPγS binding as described  [26].  

Biotinylation of RGS proteins: RGS protein was mixed at a 3:1 

(label:protein) molar ratio with biotinamidohexanoic acid N-hydroxysuccinimide 

ester (Sigma, St. Louis, MO) in a buffer of 50 mM HEPES pH 8.5 at 4°C, 100 mM 

NaCl, & 1 mM DTT. The reaction was allowed to proceed at 4°C while rotating for 

2 hours and then was quenched by the addition of a large molar excess of 

glycine for 10 minutes. Labeled protein was purified from the reaction mixture by 

size exclusion chromatography using a Sephadex G-25 desalting column (GE 

Biosciences, Piscataway NJ). 

AlexaFluor-532 labeling of Gαo: Gαo labeling was performed as previously 

described [17]. Labeled protein was purified from the reaction mixture by size 
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exclusion chromatography using a Sephadex G-25 desalting column (GE 

Biosciences, Piscataway NJ). 

 

Time Resolved FRET:   

TR-FRET experiments were performed on a PHERAstar multipurpose 

microplate reader (BMG Labtech, Offenberg, Germany) using the LanthaScreen 

filter set.  These experiments were based on the method of Leifert et al [27]. For 

the saturation experiments, Tb-Gαo was diluted to 20 nM in 50 mM HEPES pH 

8.0, 100 mM NaCl, 0.1% lubrol, 30 µM GDP, 5 mM NaF, 5 mM MgCl2, 5 μM AlCl3 

and allowed to activate for 10 minutes on ice before use.  RGS4-AF488 was 

serially diluted in 50 mM HEPES pH 8.0 at room temperature, 100 mM NaCl, 

0.1% lubrol (TR-FRET buffer).  Ten microliters of the RGS4 dilution was added to 

a black non-stick low-volume 384 well plate (Corning 3676) with a minimum of 

duplicate measurements.  Ten microliters of the Tb-Gαo was added (10 nM final) 

and the mixture was allowed to incubate at room temperature for 15 minutes in 

the dark.  The non-specific TR-FRET signal was determined by excluding the 

AlCl3, MgCl2 and NaF from a set of samples.  The fluorescence emission at both 

490 and 520 nm was measured from 50 flashes of 340 nm excitation light per 

well. The data were collected in 10 μs bins and the delayed emission signal was 

integrated from 100 to 500 μs after each flash.  TR-FRET data was analyzed as 

the ratio of emission at 520 nm/490 nm.   

 

 



 

68 

High Throughput Screening:  

High throughput screening was performed with the University of Michigan 

Center for Chemical Genomics.  The ca. 40,000 compound screening collection 

was provided by the Novartis Institute for Biomedical Research (East Hanover 

NJ) and was comprised of compounds selected from the ChemDiv screening 

library. Five microliters of 50 mM HEPES pH 8.0 at room temperature, 100 mM 

NaCl, 0.1% lubrol, 1 mM DTT (TR-FRET buffer) was dispensed with a 

Multidrop™ (Thermo Fisher Scientific, Waltham MA) into every well of a black, 

non-stick, low-volume 384-well plate.  Two hundred nanoliters of each compound 

(2 mM stock, 20 µM final assay concentration) or DMSO control was added to 

the plate with a pin tool using a Beckman BioMek FX liquid handler (Beckman 

Coulter, Fullerton, CA). To this compound dilution, 5 microliters of 200 nM 

AlexFluor 488 labeled RGS4 was added and incubated for 15 minutes at room 

temperature in the dark. Then, 10 microliters of 20 nM Tb labeled Gαo was added 

to the mixture. For this assay, the positive inhibition control (i.e. no RGS4/Gαo 

binding) was Tb-labeled Gαo in the inactive GDP-bound state and the negative 

control (i.e. full RGS4/Gαo binding) utilized Gαo in the GDP/AlF4 bound state.  

This mixture was incubated at room temperature in the dark for 15 minutes 

before analysis with the PHERAstar plate reader. Data were compiled and 

analyzed using the M-Screen database, an in-house chemoinformatics suite 

developed by the Center for Chemical Genomics at the University of Michigan.  

Compounds that inhibited the TR-FRET signal >2SD from the negative control 
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were considered “actives” and were chosen for dose response follow-up 

experiments.      

 

 

TR-FRET Dose Response Experiments:   

Actives from the primary screen were evaluated for concentration-

dependent activity in the TR-FRET assay. Compound dilutions were performed in 

DMSO and 200 nL of diluted compound was spotted into the wells of a non-stick, 

low volume black 384-well plate that contained 5 µL of TR-FRET buffer. To the 

well, 5 µL of 200 nM AlexFluor 488 labeled RGS4 was added and incubated at 

room temperature in the dark for 15 minutes. Then, 10 µL of 20 nM Tb labeled 

Gαo GDP/AlF4 was added to the mixture and incubated at room temperature in 

the dark for 30 minutes before analysis on the PHERAstar plate reader. 

Compound dilutions covered a final concentration range from 200 µM to 1.6 µM. 

Positive and negative controls were performed as in the primary screening 

assay. Compounds whose dose response curves were not fully defined by these 

concentrations were repeated using a more appropriate dilution scheme. 

Nonlinear least-squares regression fitting of the data was performed using the 

data analysis component of the MScreen database. 
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Flow Cytometry Protein Interaction Assay Concentration Dependence 

Experiments:   

Compounds that confirmed in the follow up TR-FRET dose response 

assay were tested as described [17] in the Flow Cytometry Protein Interaction 

Assay (FCPIA). This was done in part to provide a complementary set of 

biochemical data to filter out any compounds that might produce spectroscopic 

artifacts in the TR-FRET assay. Briefly, biotinylated RGS proteins (5nM, final 

assay concentration) were immobilized on Luminex LumAvidin beads and 

incubated with diluted compound in 50 mM HEPES pH 8.0 at room temperature, 

100 mM NaCl, 0.1% lubrol, 1 mM DTT, supplemented with 1% BSA.  To each 

well of a 96-well PCR plate (Axygen, Union City, CA) was added AlexaFluor 532 

labeled Gαo to a final concentration of 30nM.  This mixture was incubated for 30 

minutes at room temperature in the dark and then it was analyzed on a Luminex 

200 flow cytometer for the bead associated fluorescence (median value). 

Nonlinear regression analysis of inhibition curves was performed with Prism 5.0 

(Graphpad Software, San Diego CA).  

 

FCPIA Reversibility Experiments:  

RGS-coated beads were prepared as above and were treated with 50 µM 

compound or vehicle (DMSO) for 15 minutes at room temperature. The RGS-

containing beads were then washed by resuspension in 1mL of phosphate 

buffered saline, pH 7.4 supplemented with 1% BSA, vortexing briefly, then 

pelleting the beads by centrifugation. This procedure was repeated a total of 
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three times before 1,000 beads were added to each quadruplicate well of a 96-

well PCR plate that contained AlexaFluor-532-labeled Gαo at a final 

concentration of 20 nM in the presence or absence of 50µM test compound. The 

mixture was incubated for 30 minutes at room temperature and then analyzed on 

a Luminex 200 flow cytometer for bead-associated fluorescence.  Data analysis 

was performed with Prism 5.0 (Graphpad Software, San Diego CA).  

 

Single Turnover GTPase Measurements:  

Compounds were tested for the ability to inhibit the RGS4-stimulated 

increase in GTP hydrolysis by Gαo as described previously [15, 17]. 

 

Thermal Stability Measurements:  

Untagged ΔN19RGS4 or His6-Gαo was added to the well of a 96-well ABI 

Prism optical reaction plate (Applied Biosystems, Foster City CA) to a final 

concentration of 5 or 2.5 µM, respectively in 50-60 µL of 50 mM HEPES pH 8.0 

with 150 mM NaCl. Test compounds were added to the protein at the desired 

concentration and allowed to interact for 15 minutes at room temperature. To 

each well, Sypro Orange dye (Invitrogen, Carlsbad, CA) was added to a 5X final 

concentration (as described by the supplier) and the plate was sealed with an 

optically clear adhesive film. Sypro Orange fluorescence was measured 

continuously in an ABI HT7900 real-time PCR system during a stepwise gradient 

from ambient temperature to 90°C in 1°C steps lasting 30 seconds each. Data 

are analyzed by fitting the obtained curves to a Boltzmann model: 
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Where I = Fluorescence Intensity (AU), L = the lower limit of the curve (°C), U = 

the upper limit of the curve (°C), T = temperature (°C), and a = is a slope factor. 

Values obtained after the fluorescence maximum occurred were excluded from 

the analysis.  

 

Results: 

Development of a High-Throughput TR-FRET RGS4-Gαo interaction screen:  

I developed a biochemical TR-FRET assay using purified human RGS4 

labeled with the AlexaFluor-488 acceptor fluorophore and purified Gαo labeled 

with the LanthaScreen Tb probe donor fluorophore (Fig. 2.1A). Using this 

system, I observed a saturable, aluminum fluoride-dependent interaction 

between RGS4 and Gαo that has an affinity consistent with other reports of this 

PPI in the literature (Fig. 2.1B) [17]. In collaboration with the Center for Chemical 

Genomics at the University of Michigan, this assay was scaled to 384-well format 

and used to screen ~44,000 small molecules for inhibition of RGS4/Gαo binding 

in the presence of a thiol reducing agent (Table 2.1). Compounds from this 

screen were re-tested in the primary screening assay to confirm the initial result 

and to assess the concentration dependence of the inhibition using the original 

TR-FRET assay. Of the 162 compounds that met the 2 standard deviation 

selection criteria for inhibition, 48 were either unavailable or predicted to be 
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chemically reactive and were not followed-up. The 114 selected compounds 

were retested in TR-FRET DRC and 11 were confirmed as inhibitors with IC50 

values <400 µM and Hill Slopes <2.  

  

Assay 
Compounds 
tested Active* Hit Rate (%) 

ChemDiv Library Subset 43878 162 0.37 
TR-FRET DRC 114 11 0.025 
FCPIA DRC 11 2 0.0046 
Table 2.2 RGS4/Gαo TR-FRET high-throughput screening results. Actives were determined as 
follows: primary screen, >2SD from the negative control; TR-FRET Dose-response curve (DRC), 
IC50 value <400 µM; FCPIA DRC:  IC50 value <500 µM. 
 
 

The confirmed, active compounds were obtained from the supplier as 

fresh powders and tested using the Flow Cytometry Protein Interaction Assay 

(FCPIA), a method that measures the binding of fluorescently tagged Gαo to an 

RGS protein on beads [17]. Of the 11 compounds tested, 2 showed similar 

activity on RGS4 in both the TR-FRET dose response and FCPIA experiments 

(Fig. 2.1C). The 9 compounds that did not show activity in this secondary assay 

are presumed to have been spectral artifacts or small molecule aggregators that 

are likely to lose function in the relatively stringent conditions of the FCPIA assay 

buffer (50 mM HEPES, 100 mM NaCl, 1% BSA and 0.1% lubrol, pH 8.0).  

The two active compounds that were identified from this primary screen 

were the closely related compounds, CCG-63808 and CCG-63802 (Fig. 2.1D). 

These compounds differ solely by the substituents on the phenyl moiety and 

have similar IC50 values in TR-FRET (RGS4 IC50 1.4 and 1.9 µM for CCG-63802 

and CCG-63808) and FCPIA (RGS4 IC50 9 and 10 µM for CCG-63802 and CCG-
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63808). The compounds also contain a vinyl cyanide moiety that may function as 

a Michael acceptor.   

 

 

CCG-63802 & CCG-63808 selectively inhibit Gαo-RGS interactions:  

Using TR-FRET to assess the RGS4-Gαo interaction, CCG-63802 and 

CCG-63808 had IC50 values of 1.4 and 1.9 µM, respectively (Fig. 2.1C). To 

determine the selectivity of these compounds for different RGS proteins, they 

were tested in an FCPIA competition experiment against a panel of 5 different 

RGS proteins (Fig. 2.3, Table 2.2). The compounds are 6- to 7-fold less potent in 

blocking Gαo/RGS4 interactions when tested using FCPIA (IC50 9 or 10 µM for 

CCG-62802 or CCG-63808) than with the TR-FRET method. This is probably 

due to the high level of BSA (1%) in the FCPIA buffer sequestering compound 

and decreasing its apparent concentration in the assay. These compounds did 

not inhibit Gα binding to RGS7, which is distantly related to RGS4, and they are 

two- to ten-fold more potent at RGS4 than on the other closely related R4 family 

members, RGS8 and RGS16 (Table 2.2). They are also active (IC50 20-50 µM) 

on the one RZ family member tested, RGS19.  



 

75 

 

Figure 2.3 RGS specificity of CCG-63802 and CCG-63808 determined by multiplex FCPIA 
analysis (n≥3). RGS coated beads were treated with the indicated concentration of A) CCG-
63802 or B) CCG-63808 for 15 minutes at room temperature, after which GDP/AlF4 bound Gαo-
AF532 was added and allowed to incubate with the RGS/compound mixture for 30 minutes prior 
to analysis. See table 2.2 for IC50 values. All data was calculated using nonlinear least squares 
regression with the bottom of the curves constrained to 0% binding. Data are presented as mean 
± SEM from 3 separate experiments.  
 
 

 CCG-63802 CCG-63808 
RGS Protein IC50 (µM) Hill Slope IC50 (µM) Hill Slope 
RGS4  9 -0.9 10 -1.4 
RGS4c >400 -0.4 >400 -0.8 
RGS8 112 -0.6 74 -1.1 
RGS16 42 -1.4 21 -2.1 
RGS19 20 -0.6 46 -0.8 
RGS7 NI NI NI NI 

Table 2.3 RGS specificity of CCG-63802 and CCG-63808 determined by multiplex FCPIA 
analysis (n≥3). All data was calculated from at least three independent experiments using 
nonlinear least squares regression with the bottom of the curves constrained to 0% binding. NI: 
No inhibition observed at highest concentration tested (100 µM). 
 
 
CCG-63802 & CCG-63808 inhibit RGS4 GAP activity:  

For RGS inhibitors to be functionally relevant, they need to inhibit the 

catalytic activity of the RGS in addition to blocking Gα/RGS binding. The two 

compounds inhibit the GAP activity of RGS4 as shown by measurements using 

the [32P]GTP single turnover GAP assay (Fig. 2.4). Under these conditions, GTP 

hydrolysis by Gαo is accelerated ~10-fold by the addition of wtRGS4 and this 

effect can be inhibited by the previously described [17] RGS4 inhibitor CCG-
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4986. At a concentration of 100 µM, CCG-63802 and CCG-63808 fully inhibit the 

RGS activity without affecting basal Gαo GTPase activity.  
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Figure 2.4 Single Turnover GAP analysis of small molecule RGS inhibitors with RGS4. A) RGS4 
treated with 100 µM of CCG-4986, CCG-63808, or CCG-63802 lacks the ability to increase the 
intrinsic hydrolysis rate of Gαo. Representative GAP data shown, however all experiments were 
performed a minimum of 3 times. B) Rate constants of GTP hydrolysis. Rate constants are 
presented as mean ± SEM from at least 3 independent experiments. ***p<0.001 vs. the DMSO 
treated RGS control. 
 
 

CCG-63802 & CCG-63808 bind to RGS4 but not to Gαo:  

Because the studies presented so far assessed the binary interaction 

between two purified proteins, it was necessary to determine to which protein the 

compounds bound. The specificity for RGS4 over RGS7, 8, and 19 suggested, 

but did not prove that the compounds bound to the RGS rather than to the Gαo. 

To directly identify the site of action of these compounds, we developed a 

thermal denaturation assay to assess compound binding. This methodology is 

based on the principle that the stability of a protein is often altered upon ligand 

binding [28, 29]. For proteins that have endogenous small molecule or peptide 
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ligands (e.g. enzymes or receptors), binding of the ligand often increases the 

thermal stability. Upon binding GDP, Gαo experiences a >5°C increase in melting 

temperature (Tm) when compared to nucleotide-free protein (Fig 2.5). This 

increases to a >20°C increase in Tm for Gαo binding the exceptionally high affinity 

nucleotide GTPγS. Using this assay, we observed a concentration-dependent 

10°C reduction (See Discussion) in the melting temperature of RGS4 in the 

presence of CCG-63802  (Fig. 2.6A). The concentration dependence of this 

effect corresponds with the IC50 values obtained in the FCPIA assay. Even at a 

maximal concentration of CCG-63802 (100 µM), there was no change in the 

melting temperature of Gαo (Fig. 2.6B). 

20
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C
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Figure 2.5 Gαo is thermally stabilized in presence of nucleotide. Purified Gαo was stripped of 
nucleotide by gel filtration in a buffer containing EDTA. Lack of nucleotide was confirmed by 
spectroscopic analysis. The melting temperature (Tm) of Gαo (2.5 µM) was determined by the 
thermal stability assay as described (see Methods) in the presence or absence of 50 µM GDP or 
GTPγS. Nucleotide free (no nt) Gαo has a Tm of  38.9±0.7°C. The protein is stabilized in the 
presence of 50 µM GDP by 6°C (Tm: 45.0±0.3C°) and is stabilized by 23°C in the presence of 50 
µM GTPγS (Tm 62.7±0.5°C).  Data are presented as mean ± SEM from 3 separate experiments. 
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Figure 2.6 CCG-63802 specifically binds to RGS4 and not to Gαo. A) Purified RGS4 shows a 
dose dependent change in melting temperature in the presence of CCG-63802 (EC50 26 µM). B) 
A saturating concentration of CCG-63802 (100 µM) does not affect the melting temperature of 
Gαo. Data are presented as mean±SEM of 3 separate experiments. 
 
 

CCG-63802 and CCG-63808 are reversible inhibitors of the Gαo-RGS 

interaction:  

The effects of CCG-4986, our previously described RGS4 inhibitor [17], 

could not be reversed by dilution and washing away the compound, showing that 

it acts irreversibly to inhibit the function of RGS4 [18, 19], and Fig. 2.7). Also, its 

activity was blocked in the presence of reducing agents. These effects are likely 

due to the formation of a covalent adduct of the compound with a cysteine 

residue in the RGS [18, 19]. Since our new compounds were identified through 

screens in the presence of DTT, we tested the reversibility of their inhibition. 

RGS-coated microspheres were treated with 50 µM compound or vehicle 

(DMSO), extensively washed (see Methods for details), and then assayed for 

Gαo binding (Fig 2.7). In contrast to the effects of CCG-4986, full binding was 

restored to compound-treated RGS-beads after washing (Fig 2.7), showing that 
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CCG-63802 and CCG-63808 are reversible on the 10-minute time scale required 

for the washing procedure. Consequently, these new compounds represent the 

first examples of reversible small molecule inhibitors of an RGS protein. 
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Figure 2.7 CCG-63802 and CCG-63808 are reversible inhibitors of A) RGS4 and B) RGS19. 
CCG-4986 is an irreversible inhibitor of RGS4 and RGS19. In all cases, RGS coated FCPIA 
beads were treated with 50 µM of compound (or vehicle, DMSO) and then extensively washed. 
The beads were then split into two groups and tested for the ability to interact with Gαo-AF532 in 
the presence or absence of 50 µM Compound. Data shown are the mean±SEM of three separate 
experiments. 
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Cysteine Dependence of CCG-63802 and CCG-63808:  

To further explore the mechanism of these compounds and the role of 

cysteines in their action, they were tested on a mutant of RGS4 where all 

cysteines in the RGS domain were mutated to alanine (RGS4c). In FCPIA 

measures of Gα binding to RGS4c, CCG-63802 and CCG-63808 show only 

modest activity, indicating a role for RGS cysteines in the actions of these 

compounds (Fig 2.8, Table 2.3). Consequently, we tested CCG-63808 and 

CCG-63802 with a panel of RGS4 RGS domain cysteine mutants using FCPIA 

(Table 2.3). The G protein binding affinity of these RGS mutants has been 

previously described [30] and the Kd values ranged from 3-12 nM, not drastically 

different from that of wild type RGS4. No single cysteine could fully account for 

the effects of these compounds, but it appears that three cysteines, Cys 148, Cys 

132, and Cys 95 are important for full sensitivity to CCG-63808 and CCG-63802. 

Cysteine 95 and Cys 148 are located close to each other on RGS4, however 

they are at a site distinct from the Gα interaction interface. It appears that Cys 95 

plays a more significant role than Cys 148, possibly suggesting that the 

compound docks onto the RGS at a site that is either closer to this cysteine or 

that requires this residue for proper formation of the compound binding pocket.  
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RGS4 Mutant 

 
IC50 (µM) 

 
pIC50 Log(M) 

 
Hill Slope 

Inhibition 
at 100µM (%) 

 
n 

WT 9 5.02 ± 0.07 -0.86 ± 0.11 87 9 
C148A 43 4.37 ± 0.07 -0.95 ± 0.16 63 3 
C132A 41 4.39 ± 0.07 -0.97 ± 0.18 66 3 
C95A/C132A 32 4.50 ± 0.13 -0.78 ± 0.20 70 3 
C148A/C132A 92 4.04 ± 0.07 -0.75 ± 0.11 57 3 
C148A/C132A/C95A ~3000 2.55 ± 0.64 -0.33 ± 0.12 16 3 
RGS4c ~8000 2.10 ± 1.50 -0.36 ± 0.30 13 6 
A148C ~390 3.41 ± 0.17 -0.62 ± 0.14 30 3 
A132C 174 3.76 ± 0.19 -0.80 ± 0.29 31 3 
A95C 170 3.77 ± 0.23 -1.20 ± 0.82 30 3 
A148C/A132C 33 4.47 ± 0.05 -1.48 ± 0.23 92 3 
A148C/A95C 17 4.77±0.12 -1.06±0.28 100 3 
A95C/A148C/A132C 16 4.79 ± 0.12 -0.63 ± 0.12 64 3 

Table 2.4 RGS4 cysteine mutant sensitivity to CCG-63802. IC50 values calculated from FCPIA 
concentration-response experiments. Data are presented as mean ±SEM. 
 

 

Figure 2.8 CCG-63802 and CCG-63808 are much less potent on a mutant form of RGS4 that 
lacks cysteine residues in the RH domain. FCPIA dose-response curves for A) CCCG-63802 and 
B) CCG-63808. Data are presented as mean ± SEM from 3 separate FCPIA experiments.  
 
 

Since thiol-reactive compounds may have difficulty functioning in the 

reducing environment of a cell, it is important to assess the activity of any such 

leads under conditions mimicking the intracellular environment. Therefore, CCG-

63802, CCG-63808, and CCG-4986 were tested for activity using FCPIA in the 

presence of 2 mM reduced glutathione (Fig. 2.9). This concentration of 
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glutathione was selected because it is similar to intracellular concentrations. 

CCG-63802 and CCG-63808 lose approximately 0.5-1 Log of potency (IC50 6 µM 

 40 µM for CCG-63802; 4 µM  21 µM for CCG-63808) in the presence of 2 

mM glutathione, but still retain the ability to fully inhibit the interaction between 

RGS4 and Gαo. In contrast, CCG-4986 loses over 2-Logs in potency (IC50 

from1.4 µM  215 µM) in the presence of 2 mM glutathione and it is not capable 

of fully inhibiting the RGS-Gαo interaction up to concentrations nearing its 

aqueous solubility (Fig. 2.9). 
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Figure 2.9 CCG-63802 is less sensitive to glutathione than other RGS4 inhibitors. A) CCG-63802  
and B) CCG-63808 retain full inhibitory activity in the presence of 2 mM glutathione, the potency 
is right shifted by approximately 0.5-1 Log  (CCG-63802: pIC50 5.25±0.07 to 4.39±0.07; CCG-
63808: pIC50 5.39±0.06 to 4.68±0.03).  In contrast, C) CCG-4986 loses over two logs of potency 
(IC50 5.87±0.03 to 3.66±0.15) in the presence of glutathione. n=2; n=3 for CCG-4986. Data 
presented as mean±SEM.  
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I originally found that CCG-63802 and CCG-63808 inhibit the single 

turnover GAP activity of RGS4c (Fig. 2.10) mutant despite their much lower 

potency to inhibit Gαo/RGS4c binding in FCPIA (Fig 2.8). These data suggested 

that this class of compounds can inhibit the functional activity of the cysteine-null 

RGS4 mutant, while having much less effect on the high-affinity binding to GDP-

AMF bound Gαo (see Discussion). This inhibitory effect does not appear to be 

due to compound aggregation, as is not reversed in the presence of 0.01% Triton 

X-100 (data not shown), which generally blocks the activity of promiscuous small 

molecule aggregators [31]. Unfortunately, the compounds did not have an effect 

on RGS4c in steady state GTPase assays and thermal stability experiments 

(data not shown, experiments performed by Andrew Storaska).  While it is 

possible that the single turnover data are correct, the lack of consistency with 

other biochemical assays raises questions regarding the validity of the single 

turnover data. As such, it is believed that while these data are solid, their 

physiological significance is likely to be limited. Although disappointing, this result 

is in line with the observed cysteine dependence in FCPIA.  
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Figure 2.10 CCG-63802 and CCG-63808 inhibit the GAP activity of a cysteine-null RGS4 mutant. 
A) CCG-63802 or CCG-63808 (100 µM) inhibits the ability of RGS4c to accelerate the rate of 
GTP hydrolysis by Gαo. Representative data shown, however all experiments were performed a 
minimum of 3 times.  B) Rate constants of GTP hydrolysis. Rate constants are presented as 
mean ± SEM from at least 3 independent experiments. **p<0.01 vs. the DMSO treated RGS 
control. 
 
 
Structure-Activity Studies of the CCG-63802 class of compounds:  

In order to understand the structure-activity landscape surrounding the 

CCG-63802 class of compounds, we developed a series of analogs to test 

specific hypotheses about the mechanism of action of this compound family. In 

general 4 main questions were asked: 1) Are any of the heterocycles 

unnecessary? 2) Is the vinyl cyanide moiety (a known Michael Acceptor) critical 

for activity? 3) Is the benzothiazole (a suspected thiol reactive moiety) necessary 

for activity? 4) Can significantly improved potency be achieved by optimizing the 

substituents on the phenyl moiety?  

To answer these questions, I tested  a total of 74 analogs of CCG-

63802/CCG-63808 for their ability to inhibit the RGS4-Gαo PPI using FCPIA. To 

first determine the smallest functional unit of the compound, a series of analogs 

of the parent compounds were studied (Table 2.4). In general, these compounds 

lacked one or more of the three heterocycles present in the parent compound. 



 

86 

Compounds CCG-203673-5 contain primarily the pyridopyrimidone ring structure 

and did not inhibit RGS4- or RGS8-Gαo interaction at any concentration below 

100µM. Compounds  CCG-203676-80 contain the pyridopyrimidone ring with the 

fluorophenoxy moiety present in CCG-63808. These likewise did not show 

inhibitory activity against the RGS4/RGS8-Gαo PPI in FCPIA or GAP (Fig. 2.11). 

The compounds CCG-203686 and CCG-203687 contain the 

pyridopyrimidone/fluorphenoxy rings and the vinyl cyanide moiety (CCG-203686) 

or the cyano group lacking the vinyl (CCG-203687). Neither of these compounds 

have activity, suggesting that the benzothiazole is important in the mechanism of 

action of this compound. 

The presence of the vinyl cyanide is important for the Michael-style 

reactivity of this group. To determine the importance of this reactivity in the 

mechanism of action of CCG-63802, I tested three analogs (CCG-203683-5) that 

do not contain a vinyl cyanide group (Table 2.4). In place of this group, these 

compounds contain an alkyl chain (CCG-203685), a alkene (CCG-203684) or an 

alkyl chain with a cyano group (CCG-203683) It was found that none of these 

compounds have activity towards RGS4, suggesting that the vinyl cyanide moiety 

is a major driving force between the compound-RGS interaction. 
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Figure 2.11 CCG-203687 and CCG-203680 (100 µM) are incapable of inhibiting the ability of 
RGS4 to accelerate the rate of GTP hydrolysis by Gαo. Rate constants are presented as mean ± 
SEM from 2 independent experiments.  
 
 
 

Because it is known that there is some cysteine dependence of the 

compound for full activity and since the vinyl cyanide is a Michael acceptor 

whose reactivity may be potentiated by the benzothiazole, it could be 

hypothesized that this portion of the molecule would be disproportionately 

important in driving the energetics of the compound-RGS interaction. To test this 

hypothesis, a series of compounds (CCG-203697,CCG-203703-18) were 

synthesized (Table 2.4). These compounds contain the benzothiazole and vinyl 

cyanide portions of CCG-63802 and have an increasingly bulky series of ring 

structures opposite the benzothiazole (i.e. in place of the 

pyridopyrimidone/methylphenoxy component of CCG-63802). Of these 



 

88 

compounds, only CCG-203714 showed any activity, although this activity was 

weak (>200 µM IC50) and inconsistent. Thus, these data suggest that the vinyl 

cyanide/benzothiazole groups on this class of compound are necessary, but not 

sufficient for RGS inhibitory activity. It will be shown below, however, that with the 

appropriate ring structure, the benzothiazole can be replaced. When taken in 

conjunction with the pyridopyrimidone analog data, these data suggest that all 

three rings and the vinyl cyanide are required for full activity of this class of 

compounds. In certain instances (e.g. CCG-203687 and CCG-203680, Fig. 2.11) 

compounds from these groups of compounds were tested at a high concentration 

(100 µM) in a single turnover RGS4 GAP assay to confirm the observations that 

were made using FCPIA. In all cases, there was direct correlation between lack 

of activity in FCPIA and lack of activity in the single turnover GAP assay.  
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CCG 
Number Structure ID Number Molecular 

Weight 
RGS4 

IC50 (µM) 
RGS4c 

IC50 (µM) 
RGS8 

IC50 (µM) 

203673 

O

N

NCl
 

BU08057 194.62 NA NT NA 

203674 

 

BU08058 176.17 NA NT NA 

203675 
 

BU08059 222.63 NA NT NA 

203676 

 

BU08060 270.26 NA NT NA 

203677 

O

N

NO

H
O

 

BU08061 294.3 NA NT NA 

203678 

O

N

NO

F

H
O

 

BU08062 298.27 NA NT NA 

203679 

O

N

NO

F

OH

O

 

BU08063 314.27 NA NT NA 

203680 

O

N

NO

F

HO

 

BU08064 300.28 NA NT NA 

Table2.5 Inactive analogs of CCG-63802. Compounds were tested in FCPIA against RGS4 and 
RGS8.  All compounds were synthesized in the laboratory of Dr. Stephen Husbands. n=2 
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CCG 

Number Structure ID Number Molecular 
Weight 

RGS4 
IC50 (µM) 

RGS4c 
IC50 (µM) 

RGS8 
IC50 (µM) 

203681 

 

BU09003 372.39 NA NT NA 

203682 

 

BU09004 390.41 NA NT NA 

203683 

 

BU09005 456.49 NA NT NA 

203684 

 

BU09006 429.47 >100 NT NA 

203685 

 

BU09007 431.48 NA NT NA 

203691 

 

BU09015 413.44 >100 NT NA 

203692 

 

BU09016 398.46 NA NT NA 

203693 

 

BU09017 387.41 NA NT NA 

203694 

 

BU09018 354.4 >100 NT NA 
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CCG 

Number Structure ID Number Molecular 
Weight 

RGS4 
IC50 (µM) 

RGS4c 
IC50 (µM) 

RGS8 
IC50 (µM) 

203697 

N

N
S

 

BU09025 262.33 N/A NT NT 

203703 

N

N
S

 

BU09033 312.39 NA NT NT 

203704 

 

BU09034 313.38 NA NT NT 

203705 

 

BU09035 354.42 NA NT NT 

203706 

 

BU09038 252.29 NA NT NT 

203707 

 

BU09039 288.07 NA NT NT 

43223 BU09040 296.77 NA NT NT 

203708 
N

N

S
 

BU09041 276.36 NA NT NT 

203709 
 

BU09042 292.35 NA NT NT 
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CCG Number Structure ID Number Molecular 
Weight 

RGS4 
IC50 (µM) 

RGS4c 
IC50 (µM) 

RGS8 
IC50 (µM) 

203710 

 

BU09043 293.34 NA NT NT 

203711 
 

BU09044 331.22 NA NT NT 

203712 

 

BU09045 265.33 NA NT NT 

203713 

 

BU09046 252.29 NA NT NT 

203714 

 

BU09047 252.29 >100 NT NT 

203715 

 

BU09048 301.37 NA NT NT 

203716 
 

BU09049 313.38 NA NT NT 

203717 

 

BU09050 313.38 NA NT NT 

203718 
 

BU09051 330.36 NA NT NT 

203719 

 

BU09052 372.42 NA NT NT 

203720 

 

BU09053 388.44 >100 NT NT 

N/A 
Mixture of 
63802 
degradation 
products 

BU09019 N/A 3.4 NT NA 
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To further probe the necessity of the benzothiazole/vinyl cyanide groups in 

the action of this class of compounds, two more sets of analogs were created: 

one set where the benzothiazole was replaced with a series of different ring 

structures; and a set of compounds lacking various components of the vinyl 

cyanide group. These sets of analogs were tested using FCPIA and, when 

appropriate, verified with single turnover GAP.  

In the first series of compounds, the benzothiazole moiety was replaced 

with a hydrogen (CCG-203686), a napthyl (CCG-203695), or a benzodioxole 

(CCG-203696) (Table 2.4; Fig. 2.12). Of these compounds, the napthyl and 

benzodioxole analogs showed significant, yet reduced, potency on inhibiting 

RGS4 in the FCPIA and GAP assays (Fig. 2.12). The fact that these two 

compounds show activity does suggest that a large hydrophobic ring structure is 

important at this position, with preference towards the benzothiazole.   
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Figure 2.12 CCG-203695 and CCG-203696 dose-dependently inhibit the RGS4-Gαo interaction 
in FCPIA with IC50 values of 270 and 61µM, respectively (n=2). A) FCPIA Dose response curves. 
B) CCG-203695 and CCG-203696 (100µM) inhibit the ability of RGS4 to accelerate the rate of 
GTP hydrolysis by Gαo. Rate constants are presented as mean ± SEM from 2 independent 
experiments. C) Structures of CCG-203695 and CCG-203696.  
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The second series of these compounds were designed to test the 

importance of the sulfur atom in the benzothiazole group.  These compounds 

were of particular interest because of the potential importance of cysteine 

reactivity in the mechanism of action of the compound. In this series, several 

benzothiazole analogs with different substituents on the phenyl moiety (the 

importance of which is discussed below) were compared to the benzimidazole 

analogs thereof.  Five such parings of these analogs were tested using FCPIA 

(Table 2.5). In the majority of cases, the benzimidazole compounds were not 

able to inhibit the RGS4-Gαo interaction, due at least in part to solubility 

limitations. In the one instance where there was appreciable activity (CCG-

63798), compound solubility was less of an issue and therefore it is believed that 

it is possible that a benzimidazole is an acceptable group at this position, as long 

as solubility can be maintained.  

 

 

CCG ID R1 
R2: S 

(Benzothiazole) 
IC50 (µM) 

R2: N 
(Benzimidazole)

IC50 (µM) 
63804, 63806 pEt 4 >100 

203669, 203670 H 7 >100 
63826, 63828 mBis-Me 8 >100 
63742, 63776 ptBu 10 >100 
203673, 63798 pOMe 28 31 

Table 2.6 Benzothiazole vs. Benzimidazole analogs of the CCG-63802 class of compounds. IC50 
values are presented as the mean from at least 2 FCPIA experiments measuring the inhibition of 
Gαo binding to RGS4.   
 

This class of compounds requires at least two of the three heterocycles for 

full activity – the benzothiazole (or some other bulky substituent) and the 

pyridopyrimidone.  To better understand the chemical space around the phenyl 
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moiety we developed a series of compounds with varying substituents on or in 

place of the phenyl group (Table 2.6). It was found that replacing this group with 

an alkyl chain (e.g. CCG203719-20) results in compounds with weak, if any, 

activity. If however, the phenyl ring is maintained but the substituents thereon are 

varied, limited variation (3 to 30 µM IC50) in the structure-activity landscape can 

be observed. While the increase in potency achieved is small, it can be 

concluded that the optimal moiety on this phenyl ring is a small, hydrophobic 

substituent in the para position. Furthermore, this site can accommodate larger 

hydrophobic substituents (up to t-butyl); however, it is at the cost of reduced 

potency and compound solubility.  
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CCG ID R1 R2 R3 RGS4 IC50 (µM) RGS8 IC50 (µM) 
63804 S pEt CH3 4 53 
63794 S pBr CH3 4 50 
63770 S m,oMe H 5 57 
203671 S pMe CH3 5 67 
63766 S mMe, pCl H 7 >100 
203701 S pBu CH3 7 >100 
203669 S H CH3 7 57 
63826 S mBis-Me CH3 8 41 
63764 S pF H 8 65 
63772 S o,pMe H 8 80 
63762 S pBr H 9 >100 
63768 S mBis-Me H 9 >100 
63742 S ptBu H 10 >100 
203666 S pEt H 11 >100 
203665 S H H 14 >100 
203700 S pIsopropyl CH3 23 NT 
203675 S pIsopropyl H 23 >100 
203672 S pCl H 24 81 
203677 S ppropyl H 25 >100 
203702 S ppropyl CH3 25 NT 
203699 S p,mCl CH3 27 NT 
203698 S pOMe CH3 27 NT 
203674 S p,mCl H 27 >100 
203673 S pOMe H 28 >100 
63798 N pOMe H 31 >100 
203668 N mMe, pCl H >100 >100 
203667 N oCl H >100 >100 
63806 N pEt CH3 >100 >100 
63776 N ptBu CH3 >100 >100 
96665 N mMe CH3 >100 >100 
63828 N mBis-Me CH3 >100 >100 
63830 N oOMe CH3 >100 >100 
203670 N H CH3 >100 >100 

Table 2.7 Substituents on the phenyl moiety contribute to the potency of CCG-63802 analogs on 
RGS4. All compounds were tested using FCPIA. Data are presented as the mean of at least two 
independent experiments.   
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Discussion:  

RGS proteins play a strong modulatory role in GPCR signaling leading to 

substantial interest in small molecule inhibitors targeting this class of proteins [9-

12, 32]. The localized expression of RGS proteins [33] suggested that RGS 

inhibitors could provide enhanced tissue specificity for GPCR agonist actions [9, 

10, 32]. Furthermore, up-regulation of RGS proteins in various disease states, for 

example RGS4 in neuropathic pain models [34], also provides an important 

rationale for targeting RGS proteins. In this study, we report the second family of 

RGS SMPPIIs. Unlike the our previously reported RGS inhibitor, CCG-4986 [17] 

which is irreversible and loses function in the presence of reducing agents ([18, 

19]), the new compounds identified here, act reversibly and retain substantial 

function in the presence of glutathione, a predominant intracellular reductant. 

These compounds, with their reversibility and activity in glutathione, therefore 

represent a significant step forward in the development RGS SMPPIIs. 

Unfortunately, these compounds do not appear to possess significant cellular 

activity, likely due permeability issues stemming from the large polar surface area 

of the most potent members of this family.  

Similar to CCG-4986, CCG-63802 and CCG-63808 are relatively selective 

for RGS4 over other R4 family members, including the closely related RGS8 and 

RGS16. They have no detectable activity for the more distantly related RGS7. 

They also have dependence on cysteine residues because they very weakly 

inhibit the cysteine-null (C A) mutant of RGS4 (RGS4c) in the FCPIA assay. 

However, both compounds at 100 µM fully inhibit the GAP activity of RGS4c. 



 

99 

There are a few potential explanations for this discrepancy. First, the 

compounds, which are of modest affinity (10 µM) in the FCPIA studies, may have 

a very short RGS-bound lifetime and therefore have difficulty competing with the 

constitutive binding of AlF4
-/GDP-bound Gαo to the RGS.  In the GTPase assay 

they may be more efficient at inhibiting the transient interaction between GTP-

bound Gαo and RGS4 during the catalytic cycle. Also, since the compounds 

appear to act via an allosteric site (see below), the induced conformational 

change in RGS4 may have a more dramatic impact on binding to or GAP activity 

at the Gα-GTP than for the GDP-AlF4
- conformation of the Gα subunits. While 

this explanation is tempting, subsequent studies using a steady state GTPase 

assay and a thermal stability assay with RGS4c failed to reproduce the effects 

observed in the single turnover assay, lessening the strength of the single 

turnover data (Data not shown, experiments performed by Andrew Storaska). 

The limited and inconsistent activity of CCG-63802 and CCG-63808 on RGS4c 

corresponds with the cysteine reactivity that is believed to play a role in the 

mechanism of action of this family of compounds.  

The partial cysteine-dependence of the actions of these compounds 

suggests a tethering model in which a reactive group binds to an RGS cysteine 

residue. This is supported by the cysteine mutagenesis studies and also by the 

presence of the potential Michael acceptor functionality (vinyl cyanide) in both of 

the compounds. Tethered ligands can provide enhanced potency for small 

molecules acting on difficult targets [35, 36]. Our ability to detect these 

compounds in the original screen may have derived from potency enhancement 
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from a slow off-rate due to tethering. The reaction, however, is clearly reversible 

on the 10-minute time scale and attempts to demonstrate covalent binding by 

mass spectroscopy have been unsuccessful. While uncommon, there are other 

well-described examples of reversible Michael acceptor reactions with thiols [37, 

38]. While most drug molecules are designed to avoid such reactive groups, 

there are a number of examples of clinically used drugs (e.g. omeprazole) or 

drug candidates (CI-1033) that are thiol reactive [39, 40]. The clear margin of 

safety and commercial success of these drugs suggests that irreversible 

inhibitors may not be as intractable as therapeutic agents as previously thought. 

Furthermore, tethered ligands have been used to develop SAR in the context of 

the higher affinity starting structure that is then transferred to analogs without the 

reactive group [41].  

I have shown that wild type RGS4 is inhibited at 10 μM by CCG-63802 

(Table 2.2, Table 2.3). Mutation of all four cysteines in the RH domain to alanine 

completely desensitizes the RGS to this family of compounds. By using this 

discrepancy, I was able to determine the cysteines that are important for the 

modulation of RGS function by CCG-63802 and related analogs. The compounds 

described here require two cysteines for full potency of RGS4 inhibition: Cys 95 

and Cys 148. These residues are positioned in the “B site” of RGS proteins [10] 

which is proposed to participate in the allosteric modulation of RGS4 by acidic 

phospholipids and calmodulin [42, 43]. The presence of either Cys 95 or Cys 148 

alone provided only modest sensitivity to CCG-63802, however, a mutant that 
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contains both Cys 95 and Cys 148 displays nearly wild-type levels of sensitivity 

to this family of compounds (Table 2.3).   

Cysteine 132 is located on the outer edge of the Gα interaction interface. It 

is tempting to hypothesize that labeling this cysteine with CCG-63802 would 

provide significant steric occlusion of the RGS-Gαo PPI. However, that contained 

only Cys 132 displayed modest (IC50: 174 µM, Table 2.3) sensitivity to CCG-

63802. Furthermore, addition of the Cys 132 to the double-add back mutant that 

contains Cys 95 and Cys 148 was unable to further potentiate the effects of 

CCG-63802 (Table 2.3). These data strongly suggest that, while Cys 132 may 

play a minor role in the action of these compounds, the primary driving force 

behind CCG-63802 inhibition is through the interactions with Cys 95 and Cys 

148.  

The binding of CCG-63802 induces a destabilizing effect on RGS4 in the 

thermal stability studies. This reduced stability of the RGS4 may be related to 

conformational perturbation induced upon compound binding to the cysteines in 

the allosteric site.  In most instances, proteins with endogenous small molecule 

ligands (e.g. Gα proteins) are stabilized by the presence of their ligand [44, 45]. 

This notion was recently borne out by the crystallization of several GPCRs [46-

50]. In all cases (the notable exception being opsin), crystals were only obtained 

in the presence of a small molecule antagonist. This strongly suggests that these 

ligands are important for the structural stability of this class receptor in solution. 

Furthermore, our data (Fig. 2.5) and others [51, 52] also confirm that binding of 

natural or artificial ligands to sites that have evolved the capacity for small 
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molecule binding causes a stabilization of the protein. This stabilizing effect may 

be due to the decrease in free energy derived from the binding event and also 

the conformational restriction required for high-affinity ligand-protein interaction.  

On the surface, it would appear that this paradigm is contradicted by the 

compounds CCG-63802 and CCG-63808 which potently destabilize RGS4 even 

though they appear to bind close to the site on RGS4 that binds native acidic 

phospholipids (See Introduction for more details). It is possible that these 

compounds bind to a site near, yet independent of, the acidic lipid site on the 

RGS and binding to this non-natural site might not be expected to produce the 

same stabilization effect as binding of small molecules to sites that have evolved 

the capacity for such small molecule-protein interactions. Also, insertion of the 

compounds into the 4-helix bundle, stabilized by the reversible Michael addition 

to a cysteine thiol, could unfold the RGS4 structure leading to destabilization. 

When a chemical entity is discovered to have a particularly interesting 

biological activity, it is wise to explore the chemical space surrounding the 

molecule in search of higher potency compounds or for compounds with better 

physicochemical properties (e.g. improved solubility). To characterize the 

structure activity landscape surrounding the CCG-63802 class of compounds, we 

synthesized (or purchased, if available) a series of analogs to test specific 

hypotheses about the mechanism of action of CCG-63802. These compounds 

were tested using FCPIA and those compounds of particular interest were further 

studied in follow up experiments using a single turnover GAP assay. In total, 74 

analogs were tested for their RGS inhibitory activity. Analysis of the IC50 vales of 
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the compounds using FCPIA (Tables 2.4-2.6) reveals the following: 1) the 

compound can accommodate a series of substituents on the phenyl ring while 

maintaining an IC50 value within ½ Log of the parent compound (4-30 µM); 2) the 

benzothiazole is generally required for full activity, yet measurable activity is 

retained when the benzothiazole is replaced with a benzodioxole (IC50 61 µM), 

napthyl (IC50 270 µM), or in one instance, a benzimidazole (IC50 31 µM); 3) the 

minimal structural unit of the compound class includes all three heterocycles and 

the vinyl cyanide. The GAP data available correlate well with the FCPIA data, 

suggesting that the PPI-inhibitory effects we observe are correlated to functional 

inhibition of RGS activity – at least in vitro.  

Overall, the SAR landscape surrounding the CCG-63802 class of 

molecules is particularly steep when altering any of the moieties that are believed 

to relate to its reactivity. Outside of that, the SAR is rather shallow. The primary 

observation from the analogs that retain full reactivity (e.g. that contain the vinyl 

cyanide and benzothiazole moieties) is that a small hydrophobic substituent on 

the phenyl moiety, preferably in the para position provides the greatest increase 

in potency. The dependence upon reactivity suggests that a large part of this 

compound’s mechanism of action is through a reversible adduct formation with a 

cysteine residue in RGS4, most likely at the 95/148 positions in the molecule. 

While this is discouraging from a compound development standpoint, this class 

of compounds does show that RGS proteins are capable of being reversibly 

inhibited – an important proof of concept. It is likely that future work focusing up 

on this family of compounds, especially the elucidation of the structural contacts 
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of CCG-63802 with RGS4, should provide valuable insight into the development 

of future generations of small molecule RGS inhibitors.  

 

Conclusions: 

 In this study we have identified the first examples of reversible SMPPIIs 

that disrupt RGS protein function. CCG-63808 and CCG-63802 are selective 

inhibitors of the RGS-Gα interaction and R4 family GAP activity. Their 

mechanism appears to, at least in part, involve an allosteric action at the “B” site 

on the RGS [10], which has been implicated in the physiological allosteric 

modulation of RGS proteins by acidic phospholipids and calmodulin [43, 53]. 

While these compounds have yet to show any cellular activity, it is possible that 

future generations of the CCG-63802 family of compounds that have better 

physicochemical properties (e.g. improved solubility and lower polar surface 

area), and improved potency will provide more tractable lead compounds for 

cellular and whole-animal studies.  
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Chapter III: 
Biochemical Evaluation of Class of  

Small Molecule RGS inhibitors with Cellular Activity 
 
Introduction:  

In the prior chapter I characterized the mechanism of action of the first 

family of reversible RGS inhibitors. While the CCG-63802 class of compounds 

serves as a useful proof-of-concept, the structure-activity relationship studies 

thus far have not yielded compounds with significant cellular activity. In this 

chapter I characterize the biochemical mechanism of action of the first example 

of an RGS inhibitor that can potentiate G protein signaling in a number of living-

cell systems. Like the previously identified RGS inhibitor, CCG-4986, this 

compound is an irreversible modifier of cysteine residues.  

The development of cysteine-reactive small molecule inhibitors into useful 

research probes and therapeutic agents is particularly challenging. A major 

difficulty is obtaining sufficient target specificity. Overly reactive compounds are 

often capable of non-specifically reacting with most solvent accessible thiols, 

leading to deleterious off-target effects in a physiological setting. Strikingly, 

covalent interactions of certain compounds (e.g. sulfonamide metabolites) with 

plasma proteins can lead to potentially life-threatening immune responses [1].  

The reducing intracellular environment of the cell is also biased against cysteine-

reactive compounds. The major intracellular reductant is glutathione - a cysteine-

containing tripeptide present in the cell at a concentration of ~2 mM. Thiol-
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reactive compounds also are likely to have poor pharmacokinetic profiles due to 

the number of metabolic enzymes that act upon cysteine residues. These issues 

constitute the major challenges to the development of the compound class 

described in this chapter. 

There are, however, a few successful therapeutics that function by 

covalently binding to cysteine. For example, the acid-reflux drug omeprazole 

operates in the stomach by covalently modifying a proton exchanger [2]. In this 

case, the compound does not reach the systemic circulation to any great extent, 

so side effects are minimized. There is also a class of cysteine-reactive 

irreversible tyrosine kinase inhibitors, typified by CI-1033, that are currently in 

clinical trials [3]. Cysteine reactive compounds thus have a place in modern 

pharmacology. To be truly useful however, these compounds require significantly 

more development than their non-reactive counterparts.  

The compound discussed in this chapter, CCG-50014, was discovered in 

a high throughput biochemical screen designed to identify inhibitors of 5 different 

RGS proteins. This screen was performed by a postdoctoral fellow in our 

laboratory and has been previously described in the literature [4]. CCG-50014 

was identified as the most potent inhibitor from this screen with an IC50 value 

<300 nM. In this chapter I characterize the biochemical mechanism of action of 

this compound. The information obtained from these studies allowed for the 

development of novel analogs of CCG-50014 (see Chapter IV) that have cellular 

activity.  
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 All work in this chapter was performed by myself, with the following 

exceptions: 1) The computational modeling of CCG-50014 docking to RGS8 was 

performed by Haoming Zhang in the laboratory of Dr. Paul Hollenberg; 2) LC-MS 

analysis of CCG-50014 or vehicle-treated RGS proteins was performed by 

Haoming Zhang in the laboratory of Dr. Paul Hollenberg and myself; 3) CCG-

50014 and analogs were synthesized by Dr. Benjamin Greedy and/or Dr. Emma 

Casey in the laboratory of Dr. Stephen Husbands. 

 
Methods: 

Reagents:  

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO) or Fisher 

Scientific (Hampton, NH) and were reagent grade or better. γ[32P]GTP (10 

mCi/mL) and [35S]GTPγS (12.5 mCi/mL) was obtained from Perkin Elmer Life 

and Analytical Sciences, (Boston, MA) and was isotopically diluted before use. 

Amylose resin was purchased from New England Biolabs (Ipswich, MA). Ni-NTA 

resin was purchased from Qiagen (Valencia, CA). Avidin-coated microspheres 

were purchased from Luminex (Austin, TX). CCG-50014 (4-[(4-

fluorophenyl)methyl]-2-(4-methylphenyl)-1,2,4-thiadiazolidine-3,5-dione) and 

analogs were purchased from Fisher Scientific (Waltham, MA) from the 

Maybridge compound collection or were synthesized in the laboratory of Dr. 

Stephen Husbands. 
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Protein expression and purification:  

With the exception of RGS8 mutants, all RGS and G proteins were 

prepared as previously described [5]. For the RGS8 cysteine  serine mutants, 

site directed mutagenesis was performed using the following primers for 107C 

(C160S) (Sense: 5’-GCAGGAGCCATCCCTGACTAGCTTTGACCAAG-3’; 

Antisense: 5’-CGTCCTCGGTAGGGACTGATCGAAACTGGTTC-3’), and 160C 

(C107S) (Sense: 5’-TGGAATTCTGGTTGGCCAGTGAGGAGTTCAAGAAG-3’; 

Antisense: 5’-ACCTTAAGACCAACCGGTCACTCCTCAAGTTCTTC-3’). 

Mutagenesis was performed using the QuickChange Multi-site Directed 

Mutagenesis kit (Agilent, La Jolla CA). G protein activity was determined by 

[35S]GTPγS binding [6]. In all cases, proteins were purified to >90% homogeneity 

before use.  

 
Chemical labeling of purified Gαo and RGS proteins:  

RGS proteins were biotinylated and Gαo was labeled with AlexaFluor-532 

as previously described [7]. 

 

FCPIA Dose Response and Reversibility experiments:  

FCPIA was performed as previously described using chemically 

biotinylated RGS proteins and AlexaFluor-532 labeled Gαo. ([4, 8]) 

 

Single Turnover GTPase Measurements:  

Compounds were tested for the ability to inhibit the RGS4 and RGS8-

stimulated increase in GTP hydrolysis by Gαo as described previously [9, 10]. 
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Thermal Stability Measurements:  

The thermal denaturation of RGS8 and Gαo was measured using a 

ThermoFluor Instrument (Johnson & Johnson, Langhorne, PA). Protein (5 µM 

RGS8 or Gαo) was incubated with CCG-50014 or vehicle control for 15 minutes 

at room temperature in 50 mM HEPES pH 8.2, 500 mM NaCl, 5% glycerol in a 

volume of 15 µL in a black 384-well PCR microtiter plate (ThermoFisher Cat # 

TF-0384/K). To this mixture was added 1-anilinonapthalene-8-sulfonic acid to a 

final concentration of 200 µM. The samples were overlaid with 5 µL of silicone oil 

and subjected to a temperature ramp using the following parameters: ramp 

temperature range: 30-90°C; temperature increment: 1°C; image collection 

temperature: 25°C; temperature holds: 30 seconds for ramp temperature, 15 

seconds for image collection temperature. The samples were cooled to 25˚C 

between temperature increments for image capture to maximize signal:noise. 

Melting temperatures (Tm) were calculated from the data using the sigmoidal 

fitting procedure in the ThermoFluor++ software package (version 1.3.7).  

 

 Analyses of the protein adduct of RGS by ESI-LC/MS:   

The molecular mass of the RGS protein was analyzed by ESI-LC/MS 

using a LCQ ion-trap mass spectrometer (ThermoScientific, Waltham, MA).  

RGS8 wild-type or mutant proteins were diluted to 2 µM in 50 mM potassium 

phosphate buffer, pH 7.4 and CCG-50014 or an equivalent volume of DMSO was 

added to the sample.  Following treatment with CCG-50014, an aliquot (~50 μL) 
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of the protein solution was applied to a reverse-phase Zorbax 300-SB C3 column 

(2×150 mm, 5 µm) (Agilent Technologies, CA). The RGS protein was subjected 

to high performance liquid chromatography with a binary solvent system 

consisting of 0.1% TFA in water (Solvent A) and 0.1% TFA in acetonitrile 

(Solvent B) using the following gradient: 30% B for 5 min., linearly increased to 

90% B in 20 min., and held at 90% B for 30 min.  The flow rate was 0.25 mL/min.  

The mass spectrometer was tuned with horse heart cytochrome c and the 

instrumental settings for the mass spectrometer were: spray voltage, 3.5 kV; 

capillary temperature, 220oC; sheath gas flow, 80 (arbitrary units); auxiliary gas 

flow, 20 (arbitrary units).  The molecular masses of the unmodified and inhibitor-

modified RGS proteins were determined by deconvolution of the apoprotein 

charge envelopes using the Bio-works software (Thermo Scientific, Waltham, 

MA).   

 

Papain Activity Assay:  

Papain (Sigma-Aldrich, St. Louis, MO) activity was monitored by the 

increase in fluorescence caused by the liberation of fluorescein from auto-

quenched fluorescein-conjugated casein (AnaSpec, San Jose, CA). Papain 

(0.625 U) was diluted into 20 mM sodium acetate pH 6.5, 2 mM EDTA. The 

enzyme was treated with iodoacetamide, N-ethyl maleimide, CCG-50014, or 

vehicle control for 30 minutes at room temperature.  To this, FITC-casein was 

added to a final concentration of 250 nM. The reaction was allowed to proceed at 

room temperature in the dark. At time various points along the reaction, the 
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fluorescence intensity (ex. 485nm, em. 520 nm) was measured using a Victor II 

plate reader (Perkin Elmer, Boston, MA). As a control, CCG-50014 was tested at 

pH 6.5 and it retains full inhibitory activity against the RGS4-Gαo PPI in FCPIA. 

 

Docking of CCG-50014 to RGS8:  

The energy-based docking software Autodock (ver. 4.0) was used to 

explore the potential binding sites of CCG-50014 on RGS8.  The coordinates of 

RGS8 were obtained from the Protein Data Bank (PDB ID 2IHD).  Water and 

other hetero atoms were removed from the structure prior to docking.  The 

coordinates of the CCG-50014 ligand were built using the ChemBioOffice 2008 

software suite (CambridgeSoft, Cambridge, MA) and the geometry of CCG-

50014 was optimized using the semi-empirical quantum PM3 method included in 

the ChemBioOffice 2008 software suite. For unbiased docking, the grid box of 

the RGS was set at 60×60×60 Å3 to encompass the entire RGS protein. The 

flexible CCG-50014 ligand was docked to the rigid RGS using a Lamarckian 

Genetic Algorithm (LGA) with the following parameters: mutation rate, 0.02; 

cross-over rate, 0.8; maximal number of generations, 2.7×104. 

 
 
Results: 

FCPIA characterization of RGS inhibitory activity:  

CCG-50014 (Fig. 3.1) was originally identified as a potential inhibitor of 

RGS8 and RGS16 in a polyplex high throughput screen to identify inhibitors of 

the RGS-Gα interaction [4]. This activity was confirmed by analyzing the effect of 
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CCG-50014 on several different RGS proteins with freshly reordered compound 

using multiplexed FCPIA. CCG-50014 fully inhibited several different RGS 

proteins including RGS4, 8, 16, and 19, but did not have activity on RGS7 or a 

mutated form of RGS4 that lacks cysteine residues (Fig. 3.2A, Table 3.1). The 

30 nM IC50 value observed for the inhibition of RGS4 makes CCG-50014 the 

most potent small molecule RGS inhibitor discovered to date.  

 

N
N

FO
S

O  
Figure 3.1 The chemical structure of CCG-50014 (4-[(4-fluorophenyl)methyl]-2-(4-methylphenyl)-
1,2,4-thiadiazolidine-3,5-dione). 
 
RGS IC50 (µM) ± SEM Hill Slope 
RGS4 wild Type 0.030 ± 0.006 -1.53 
RGS4 Cys-null Mutant N/A N/A 
RGS8 11 ± 2 -0.57 
RGS16 3.5 ± 2.4 -1.33 
RGS19 0.12 ± 0.02  -0.61 
RGS7 N/A N/A 
Table 3.1: CCG-50014 shows >100 fold specificity for RGS4 over other RGS proteins in the 
FCPIA assay. Data are presented as:  mean IC50 values ± SEM from at least three independent 
experiments (for RGS4 and RGS8, n >28). N/A: No inhibition below the aqueous solubility limit of 
the compound. 
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Figure 3.2 CCG-50014 inhibits RGS4 and RGS8 binding and function. A) CCG-50014 dose-
dependently inhibits the binding between aluminum fluoride-activated Gαo and RGS4 or RGS8.  
Data shown are an average of three independent experiments. This experiment has been 
independently repeated 28 times, producing average IC50 values of 30 nM against RGS4 and 1.1 
µM against RGS8. B,C) CCG-50014 also inhibits the GAP activity of RGS4 and D,E) RGS8. 
Using a single-turnover GAP assay, CCG-50014 dose-dependently inhibits the GAP activity of 
both RGS4 and RGS8. * P <0.05, *** P <0.0001. All experiments were independently repeated a 
minimum of three times.  
 
 



 

117 

CCG-50014 inhibits the catalytic GTPase accelerating activity of RGS8 and 

RGS4:   

In a single turnover GAP assay, CCG-50014 inhibited the GAP activity of 

RGS8 and RGS4 on Gαo (Fig. 3.2B). Under these assay conditions, RGS8 and 

RGS4 accelerate the rate of GTP hydrolysis by approximately 5 and 10 fold, 

respectively. CCG-50014 inhibited that activity of both RGS proteins. At a 

saturating concentration (100 µM), CCG-50014 did not alter the intrinsic rate of 

GTP hydrolysis by Gαo, proving that the compound does not act by altering the 

enzymatic activity of the G protein, at least under single-turnover conditions (Fig. 

3.3).  
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Figure 3.3 CCG-50014 does not affect the intrinsic rate of GTP hydrolysis by Gαo. The rate of 
GTP hydrolysis as measured using the single turnover GTPase assay was not significantly 
different in the absence or presence of 100 µM CCG-50014. Data are presented as the average 
of four independently replicated experiments.  
 
CCG-50014 irreversibly inhibits RGS proteins:  

FCPIA-based reversibility experiments were performed to probe the 

mechanism of action of the compound (Fig. 3.4). RGS-coated polystyrene beads 
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were incubated with a saturating concentration (100 µM) of CCG-50014 for 15 

minutes before being thoroughly washed by repeated centrifugation and 

resuspension (theoretical dilution of ~78,000 fold). These beads were then 

analyzed for Gαo binding by FCPIA. Washing of the beads did not restore Gαo 

binding activity by the RGS proteins, suggesting that the compound was 

irreversibly bound to the protein. This inhibition was partially reversed by washing 

the beads with buffer containing 1 mM dithiothreitol (DTT), suggesting the 

mechanism of reactivity could be through sulfhydryl modification, a mechanism in 

common with the previously described RGS inhibitor, CCG-4986 [9]. 
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Figure 3.4 CCG-50014 is an irreversible inhibitor of RGS4 and RGS8 and its effects are partially 
reversed the thiol reductant DTT. A) RGS4 and B) RGS8 were treated for 15 minutes with 100 
µM CCG-50014 prior to vigorous washing to remove any unbound compound. To determine if the 
compound was reacting in a thiol-sensitive manner, washing was performed in the absence or 
presence of 1 mM DTT. Data are presented as the mean±SEM from at least three independent 
experiments. 
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CCG-50014 Binds to RGS Proteins but not to Gαo:  

The melting temperature of a protein is often influenced by the binding of 

small molecules [11-13]. Using a ThermoFluor® instrument (Johnson & Johnson, 

Langhorne, PA), I characterized the thermal denaturation of RGS8 and Gαo in 

the presence and absence of CCG-50014 (Fig. 3.5). Using this technique, I 

observed a large, dose-dependent destabilization of RGS8 but no effect on Gαo. 

This suggests that the compound is interacting exclusively with the RGS protein. 

This result was further confirmed by Liquid Chromatography-Mass Spectral (LC-

MS) analysis as described below.  
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Figure 3.5 CCG-50014 thermally destabilizes RGS8 in a dose-dependent manner, but has no 
effect on the thermal stability of Gαo.  Representative melting traces of A) RGS8 and B) Gαo in 
the absence (black trace) and presence (red trace) of a saturating concentration of CCG-50014. 
Dose-response curves showing the thermal destabilization effects of CCG-50014 on C) RGS8 
and D) Gαo. Data are presented as the mean±SEM of three independent experiments.  
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CCG-50014 depends on cysteine residues to inhibit the AlF4-Gαo/RGS 

interaction:   

To identify the potential cysteine targets of CCG-50014, we studied the 

compound’s effects on RGS8. This protein only contains two cysteines in the 

RGS homology domain, making it a simpler model system to study than other 

RGS proteins. Each cysteine from the RGS8 RGS homology (RH) domain was 

individually mutated to serine and the activity of the compound was analyzed via 

FCPIA (Fig. 3.6). These mutants have been named according to the cysteine 

residue that they maintain (e.g. 107C contains Cys 107 and a serine at position 

160). Neither cysteine was fully necessary for function of the compound, but 

mutating both cysteines reduced the potency of CCG-50014 by >100 fold. An 

interesting trend was noticed whereby the Hill coefficients for the inhibition of 

each individual mutant was significantly shallower than that of the wild-type 

protein, possibly suggesting some form of cooperativity between the two cysteine 

residues. However, this interpretation is dependent upon the assumptions of the 

Hill equation, including that the binding has reached equilibrium. In the case of an 

irreversible inhibitor, clearly this is not the case. Therefore, these data could also 

be explained by differences in the rate of compound reaction with these two 

mutants. The insensitivity of the RGS8 cysteine null mutant corresponds well with 

the insensitivity of the RGS4 cysteine null mutant (Table 3.1), suggesting a 

similar mechanism of action across the two proteins. 
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Figure 3.6 CCG-50014 requires at least one cysteine residue on RGS8 for full activity. Mutating 
both cysteines to serine (RGS8c) produced a protein that was completely insensitive to the effect 
of CCG-50014. The presence of either Cys 107 (107C) or Cys 160 (160C) provided sensitivity to 
CCG-50014. The inhibition parameters (IC50 (µM), Hill Coefficient) for CCG-50014 on these 
proteins were as follows: wildtype RGS8 (wt): 6.1 µM, -0.79; 107C: 46.5 µM, -0.54; 160C: 0.71 
µM, -0.36; Cysteine-null RGS8 (RGS8c): >100 µM. Data are presented as the mean±SEM of 
three independent experiments.   
 
 
CCG-50014 is a covalent sulfhydryl modifier of RGS8:  

The data thus far suggest that CCG-50014 covalently modifies RGS 

proteins. To test this hypothesis, we performed high performance liquid 

chromatography–mass spectral analysis on RGS8 samples treated with CCG-

50014 (Fig. 3.7). After compound treatment, there was a peak shift in RGS8 

corresponding to a full mass adduct of CCG-50014. At high concentrations of 

CCG-50014 (100 µM) with wild-type RGS8, a second minor peak corresponding 

to two full adducts was also observed, suggesting that CCG-50014 at this 

concentration can react with both cysteine residues in the protein. To confirm that 

this action was via cysteine reactivity, the mutant RGS8 where the two cysteines 

in the RH domain were mutated to serine was also analyzed and no adduct was 
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observed (Fig 3.7B). RGS8 individual cysteine mutants (107C, 160C) were also 

tested for covalent adduct formation in MS. A single adduct was observed on 

107C, while no adduct was observed on 160C under the conditions tested. The 

lack of an observable adduct on 160C was of particular interest since this mutant 

was also irreversibly modified by CCG-50014. Indeed, it was inhibited more 

potently than the 107C mutant. To further probe this observation, WT RGS8 and 

the two cysteine mutant proteins were treated with a saturating concentration 

(100 µM) of CCG-50014 before removal of the compound via gel filtration 

chromatography (Fig. 3.8). CCG-50014-treated wild-type RGS8 showed a minor 

mobility shift compared to vehicle-treated WT RGS8 and showed a 14-fold 

decrease in its ability to compete for Gαo binding to RGS8 beads. The CCG-

50014- and vehicle-treated 107C mutant protein migrated through the column in 

an identical manner and no discernable difference in Gαo binding was observed. 

The 160C mutant, however, formed aggregates upon treatment with a saturating 

concentration of CCG-50014 and no monomeric, soluble protein was recovered 

from the experiment. This suggests that labeling at Cys 160 causes a dramatic 

decrease in protein stability. It is likely that this aggregation accounts for the lack 

of an observable adduct in the mass spectral experiments, as these aggregates 

would not migrate on the HPLC as a standard protein peak for MS analysis.  
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Figure 3.7 CCG-50014 forms a covalent adduct on RGS8. A) Protein was treated with CCG-
50014 before analysis via LC-MS. After treatment with compound a predominant peak appeared 
with a mass shift of 317 as compared to the vehicle-treated protein, correlating to the addition of a 
full compound adduct (CCG-50014 MW: 316.4). A second minor peak with an additional mass 
shift of 315 was observed, which correlates to the addition of two full MW adducts of CCG-50014. 
B) No adducts are observed on the cysteine-null (C S) form of RGS8 (RGS8c).  
 

To further probe the mechanism of action of this compound, we studied 

the development of irreversible inhibition of the RGS8 mutants. Using a standard 

reversibility experiment (Fig. 3.9), the effect of CCG-50014 on 160C is 

completely irreversible, while the effect on 107C can be partially reversed by 

washing away the compound. These data, along with the gel filtration data add 

credence to the hypothesis that labeling at Cys 160 causes dramatic 

destabilization of the protein while labeling at Cys 107 produces inhibition that 

can be reversed.  
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Figure 3.8 CCG-50014-induced protein aggregation is dependent on the presence of 160C. A,B) 
Wild type, C,D) 107C, or E) 160C RGS8 was treated with a 5-fold excess of CCG-50014 before 
removal of the compound via gel filtration. Shown are representative UV chromatogram traces 
and data from the corresponding competition experiments to test the activity of the recovered 
protein. The wild-type RGS8 chromatogram shows a slightly left shifted and suppressed peak 
after CCG-50014 treatment, which coincides with a 14-fold decrease in protein activity. The 107C 
mutant protein is completely insensitive to the effects of CCG-50014, while the 160C mutant 
protein completely (and visually) aggregates upon compound treatment and is removed by the 
prefiltration of the samples. 
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Because Cys 160 is buried in the core of RGS8 and Cys 107 is closer to 

the surface of the protein, I hypothesized that the compound might interact more 

rapidly with Cys 107 than Cys 160. Due to the fact that there are differential 

effects by CCG-50014 (reversible inhibition vs protein aggregation) depending on 

which cysteine is labeled, this hypothesis was tested using FCPIA reversibility 

experiments. The experiment was designed to monitor the development of 

irreversible inhibition on wild-type RGS8 and the two RGS8 mutants by CCG-

50014 as a function of time (Fig 3.10). Wild-type, 107C, or 160C RGS8 were 

immobilized on beads and treated for varying periods of time with 20 µM CCG-

50014 before extensive washing. The beads were then probed for Gαo binding 

using FCPIA and compared to RGS-coated beads that had been treated with 

DMSO alone. At this concentration of CCG-50014, the 107C RGS8 was ~20% 

irreversibly inhibited and 160C was ~50% irreversibly inhibited at all time points 

tested, suggesting that the compound rapidly exerted it’s effect on the RGS 

protein. The wild-type protein showed a delayed development of irreversible 

inhibition, whereby at early time points, the inhibition was ~20% and increased to, 

but did not exceed, ~50% over 30 minutes. This suggests that there is a 

differential mechanism of action of the compound on the two individual mutants 

that is combined in the wild type protein. Furthermore, it suggests that reaction 

with Cys 107 is kinetically preferred in the wild type protein. 
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Figure 3.9 Irreversible inhibition of RGS8 is predominantly mediated by Cys 160. Mutant proteins 
were exposed to 20 µM CCG-50014 and reversibility experiments were performed as in Fig. 3.4. 
Data are presented as the mean±SEM from three independent experiments. ***P<0.0001 using 
an unpaired t test.  
 

A potential confounding factor in this analysis is that there is a significant 

difference in basal melting temperatures between 107C RGS8 (Tm 53.2±0.2) 

and 160C RGS8 (Tm 42.5±0.1), whereby 160C is dramatically less stable 

overall. It is possible that labeling of the 160C mutant may have a more 

exacerbated sensitivity to CCG-50014 than that of the 107C mutant, solely due to 
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the intrinsic instability of this protein. One could therefore imagine that labeling of 

the 160C mutant with smaller, less disruptive, analogs CCG-50014 may not 

always force protein unfolding in the wild-type protein. 

0 5 10 15 20 25 30 35
0

20

40

60

80

100 WT
160C
107C

CCG-50014 Exposure (min)

%
 In

hi
bi

tio
n

re
ta

in
ed

 
Figure 3.10 Development of irreversible inhibition after exposure to CCG-50014 differs between 
the individual cysteine mutants and provides a means to understand the compound’s mechanism 
of action. Wild-type, 160C or 107C RGS8 was treated with 20 µM CCG-50014 for the desired 
amount of time before compound removal by extensive washing. The developed amount of 
irreversible inhibition was quantified by comparing the G-protein binding of CCG-50014 treated 
beads to DMSO treated beads. Data are presented as the mean±SEM from three independent 
experiments.  
 
CCG-50014 is not a general cysteine alkylator:  

Cysteine reactive compounds might be expected to have more off-target 

effects than non-reactive compounds. To determine if this compound could bind 

to and inhibit any reactive cysteine, we tested the ability of CCG-50014 and a 

known general cysteine alkylator (iodoacetamide) to inhibit a standard cysteine 

protease (Fig. 3.11). Iodoacetamide inhibited the proteolytic activity of papain in 

a dose-dependent manner. However, even at high concentrations (100 µM), 

CCG-50014 had no effect on papain. This suggests that there is at least a basal 

level of selectivity of this class of compounds for cysteines in the RGS over other 
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reactive cysteines. It is also possible that the compound cannot enter the active 

site of papain and therefore it would be prudent to extend these studies to a 

panel of physiologically relevant thiol-dependent processes.  
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Figure 3.11 CCG-50014 does not inhibit the general cysteine protease, papain. A) Papain (0.625 
U) was mixed with self-quenching FITC-conjugated casein and the liberated fluorescence that 
results from casein-dependent proteolysis was observed as a function of time in the presence of 
different cysteine alkylators. Even 100 µM CCG-50014 is incapable of inhibiting casein 
proteolysis by papain. B) The effect of the cysteine alkylator iodoacetamide on inhibiting papain 
activity is dose-dependent. Once again, CCG-50014 is incapable of inhibiting papain activity. 
Data are presented as the mean±SEM from three independent experiments. 
 
General cysteine alkylators do not inhibit RGS proteins:   

The RGS selectivity of CCG-50014 could be explained by RGS proteins 

being particularly sensitive to thiol modification. To test for this, I analyzed the 

RGS inhibitory activity of two general cysteine alkylators, N-ethyl maleimide and 

iodoacetamide (Fig. 3.12). Iodoacetamide had no effect on Gαo binding to any of 

the RGS proteins tested. At high concentrations (IC50: 30 µM), N-ethyl maleimide 

inhibited RGS4, however it had no effect on RGS8 or papain (data not shown). 

These data show that CCG-50014 is more than 3.5 orders of magnitude more 

potent on RGS4 than either of the general cysteine alkylators tested. This 

strongly suggests that RGS proteins are not particularly sensitive to cysteine 
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modification and the effect observed by CCG-50014 is more than just random 

thiol alkylation.  
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Figure 3.12 CCG-50014 is a much more potent RGS inhibitor than two general cysteine 
alkylators N-ethyl maleimide (NEM) and iodoacetamide (IA). Dose response curves for A) NEM 
and B) IA. The only protein that displayed any sensitivity to the alkylators tested was RGS4, 
which was inhibited by NEM with an IC50 value >3.5 Log higher than that of CCG-50014. Data are 
presented as the mean±SEM from three independent experiments. 
 
Computational modeling of the CCG-50014-RGS8 interaction:  

To identify potential binding sites for CCG-50014 on RGS8, I in 

collaboration with Haoming Zhang performed an unbiased molecular docking 

simulation. CCG-50014 docked preferentially to a site on the RGS that is located 

near the region of the surface of RGS8 that corresponds to the “B”-site of RGS4 

(Fig. 3.13). The compound docked at this site with a calculated free energy of     

-6.4 kCal/mol, which translates to an estimated Ki of 18 µM. This affinity is 

approximately in line with experimentally derived Ki value of 0.3µM (Table 1). 

This binding site places the compound a considerable distance from the two 

cysteine residues known to play a role in the compound’s inhibitory activity (Fig. 



 

131 

3.13B). It would require a substantial change in the conformation of the protein 

for the compound to dock at this site and react with a cysteine residue.  

 

 
Figure 3.13 Hypothesized binding site of CCG-50014 on RGS8. A) This binding site was 
determined to be the most energetically favorable site for docking of CCG-50014 to RSG8, with 
an estimated Ki of 18 µM. This site is near the analogous “B” site on RGS4, which is important for 
RGS regulation by calmodulin and acidic phospholipids.  B) Assuming a static protein, this 
binding site places the compound close to the two cysteine residues in RGS8, but not close 
enough for a covalent reaction to occur at any reasonable rate. A conformational change must 
occur in the RGS to allow compound intercalation into the helix bundle. Distances are shown in 
angstroms.  
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Limiting the reactivity of CCG-50014 diminishes potency: 

To probe the chemical space around CCG-50014, Dr. Stephen Husbands, 

Dr. Benjamin Greedy and Dr. Emma Casey synthesized a series of 76 analogs of 

the lead compound and we analyzed them in an attempt to identify compounds 

with optimized physicochemical and pharmacological properties (see Chapter 

IV).  While the detailed activity of these compounds is described in the next 

chapter, there are a few interesting findings that contribute to the understanding 

of the mechanism of action of this compound class. The first and most prominent 

trend is that the center heterocycle (the thiadiazolidine dione) is absolutely 

required for function. This is not particularly surprising, because it is likely to be 

the site of cysteine thiol reactivity. I hypothesized that the extremely potent IC50 

value on RGS4 meant that the compound interacted with the protein in a way 

that was governed by more than simple covalent reactivity. To determine if there 

was significant non-covalent affinity of this compound, non-reactive, or less-

reactive analogs of CCG-50014 were synthesized and tested for activity (Table 

3.2). These compounds showed limited, if any, activity in the FCPIA assay, 

suggesting that the main mechanism of action of CCG-50014 is through covalent 

reactivity with one or more cysteine residues on the RGS. However, since this 

compound is dramatically more potent than two other general cysteine alkylators, 

it is likely that there is a non-covalent docking mechanism at play that drives the 

affinity of CCG-50014 and analogs for the RGS.  
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Compound ID Structure Putative 
Reactivity

RGS4 
IC50 
(µM) 

RGS8 
IC50 
(µM) 

CCG-50014 
N

S
N

O

O

F

Reactive 0.030 1.1 

CCG-203778 
 N N

O

O

Non-
reactive >100 >100 

CCG-203779 
 N

O

O

Less 
reactive 93 >100 

CCG-203780 
 N

Br
O

O

Less 
Reactive 32 >100 

Table 3.2. CCG-50014 analogs with limited reactivity. Data are presented as the mean of two 
independent FCPIA experiments.  
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Discussion: 

 Molecules disrupting the RGS/Gα interaction are likely to have significant 

physiological effects by increasing the magnitude and/or duration of Gα signaling 

responses. Inhibition of RGS protein activity genetically produces dramatic 

physiological phenotypes (see Chapter I), suggesting that a small molecule RGS 

inhibitor might provide similar actions in vivo.  

CCG-50014 is the most potent small molecule RGS inhibitor identified to 

date. It inhibits the in vitro interaction between RGS4 and Gαo with a low 

nanomolar IC50 value. It is nearly 3 orders of magnitude selective for RGS4 over 

two closely related RGS proteins, RGS8 and RGS16 (Fig. 3.2, Table 3.1). I also 

show that CCG-50014 is a covalent modifier of cysteine residues (Fig. 3.4, 3.6, 

3.7), raising concerns about the therapeutic potential of this class of compounds. 

Even so, studying this compound has provided significant insight into the 

mechanism of allosteric RGS inhibition and as shown in Chapter IV, it is active in 

a series of cellular assays, suggesting that we may be close to the physiological 

modulation of RGS activity by small molecules.  

 CCG-50014 does not inhibit a mutant RGS4 where all cysteine residues in 

the RH domain were mutated to alanine (Table 3.1 and [4]). Furthermore, the 

compound was inactive on RGS7, an RGS protein that naturally has no cysteine 

residues in its RH domain (Table 3.1). These two pieces of information 

suggested that the mechanism of action of CCG-50014 requires at least one 

cysteine residue – a hallmark of a sulfhydryl-reactive irreversible inhibitor. This 
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hypothesis was confirmed by the FCPIA reversibility experiments (Fig. 3.4) and 

subsequent mass spectral analysis of CCG-50014 treated RGS8 (Fig. 3.7). 

Based on the chemical structure of the compound and the full molecular weight 

adduct observed in the LC-MS experiments, it is likely that the mechanism of 

reaction of CCG-50014 with a cysteine residue on an RGS protein is by 

nucleophilic  attack of the cysteine thiol onto the sulfur atom of the central 

heterocycle causing a ring opening event. Consistent with the DTT-induced 

reversibility of CCG-50014 inhibition (Fig. 3.4), this newly formed disulfide is 

likely to be sensitive to reductants. 

Interestingly, CCG-50014 interacts with cysteine residues in RGS8 that 

are not near the Gα interaction interface (Fig 3.13), suggesting an allosteric 

mechanism of action. Unbiased computational modeling predicts that CCG-

50014 could non-covalently bind to a site on RGS8 that is near to the acidic 

phospholipid binding site on RGS4. Binding in this site would place the reactive 

group of CCG-50014 within 8-13 Å of the two cysteines in the RGS8 RH domain. 

While at this distance it is unlikely that a covalent bond could be formed, I 

propose that the compound may initially bind to this pocket and a subsequent 

conformational change in the protein provides access to the cysteine thiol. This 

conformational change is likely to be the fundamental mechanism by which the 

allosteric modulation of G protein binding activity is conferred.  

The differential sensitivities of the cysteine mutants to CCG-50014 are 

also explained by this binding modality. The decreased activity and increased 

reversibility of CCG-50014 on 107C RGS8 (Fig 3.6, 3.8, 3.9) is in accord with the 
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fact that Cys 107 is more solvent accessible and is closer to the hypothesized 

binding site of the compound. Compound reacting with Cys 160 causes drastic 

protein unfolding (Fig. 3.9), which also fits with this model.  

The data accumulated in this chapter allow for the development of a 

reasonable mechanism of action for RGS inhibition by CCG-50014. I propose 

that the compound originally binds to a surface equivalent to the “B” site on 

RGS4 in a manner that does not produce an inhibitory effect. This interaction 

may provide enough interaction energy to keep the compound in close proximity 

to the protein long enough for the RGS to enter a cysteine-exposed 

conformation. Assuming that the compound binding site is as modeled (Fig 

3.13), the first cysteine to become exposed to the compound is likely to be Cys 

107. Upon reacting with this cysteine, CCG-50014 can trap the RGS in a 

conformation that is incapable of binding to Gα. Reversal of this reaction is 

possible, leading to reactivation of the RGS. If the compound interacts with the 

more deeply buried cysteine, Cys 160, it causes a dramatic disruption of the 

hydrophobic core of the protein, leading to protein denaturation. This is shown 

primarily by the gel filtration data (Fig. 3.8). My data also suggest that Cys 107 is 

labeled more rapidly than Cys 160 in the wild type protein (Fig. 3.10). These data 

are consistent with the hypothesis that the compound initially interacts with Cys 

107 to form a weak, DTT- or time/dilution-reversible inhibition of RGS activity. 

Then, either the Cys 107-bound compound transfers to Cys 160 or a second 

CCG-50014 molecule binds to Cys 160 to produce the completely irreversible 

reaction observed the gel filtration experiments (Fig. 3.8). The mechanism 
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behind the irreversible inhibition after labeling of Cys 160 is likely due to a 

massive destabilization of the hydrophobic core of the RH domain that would 

occur by the intercalation of CCG-50014.  

 Selectivity is a significant issue when studying reactive compounds. I 

undertook a series of experiments to determine if CCG-50014 is a just a general, 

non-specific cysteine alkylator, or if it has some intrinsic selectivity for RGS 

proteins. While a comprehensive analysis of CCG-50014 effects upon all 

cysteine-dependent processes in a cell is clearly intractable, I showed that CCG-

50014 does not inhibit the activity of the cysteine protease papain at 

concentrations over 3000 times higher than that required for RGS inhibition (Fig. 

3.11). In contrast, the cysteine alkylator iodoacetamide dose-dependently 

inhibited the activity of this protease but had no effect on RGS4. Furthermore, the 

cellular activity observed (see Chapter IV), also suggests that these compounds 

do not dramatically affect a large number of cellular processes.   

 In this chapter I have characterized the mechanism of action of the most 

potent RGS inhibitor identified to date. This compound irreversibly inhibits RGS4 

with nanomolar potency and the mechanism of this inhibition is predominantly 

through reacting with cysteine residues at an allosteric site on the RGS. As will 

be shown in the next chapter, this compound and related analogs are also the 

first examples of RGS inhibitors that are active in living cells.  
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Chapter IV:  
Cellular and Structure-Activity Studies  

of the CCG-50014 Compound Class 
 
Introduction: 

The work presented thus far focuses solely upon the biochemical 

mechanism of action of either novel or previously identified small molecule 

inhibitors of the RGS-Gαo PPI. While this knowledge is academically useful, 

pharmacologically important chemical entities need to have activity in a 

physiological (preferably clinical) setting. Prior to the work described in this 

chapter, there were no examples of RGS inhibitors that functioned in a living, 

whole-cell system. I present here work performed by myself and collaborators 

that shows for the first time a class of irreversible small molecule inhibitors that 

produce substantial RGS-inhibitory effects in several cell-based systems.  

There are a number of issues involved with the use of covalent, 

irreversible inhibitors for research or clinical applications. A major problem is 

target specificity. If the compound is too reactive, it will bind many different 

proteins and will likely cause a barrage of undesired side effects However, there 

are a number of clinically useful irreversible inhibitors (e.g. lactams, 

cyclophosphamide), some of which function by reacting with thiols (e.g. 

omeprazole) [1]. A final issue that pertains primarily with the clinical utility of 

irreversible inhibitors is that their effects are often difficult to quickly reverse. 

Medicine, like all human endeavors, is prone to mistake. Having a mechanism to 
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compensate for or to correct dosing errors can play a critical role in patient 

outcome. The challenging nature of reversing the physiological effects of 

irreversible inhibitors is likely to diminish their clinical utility.  

Irreversible inhibition can however be a benefit in the research setting. 

With this, I present the following data showing the effects of CCG-50014 and 

selected analogs in a series of cellular assays. It is shown here that CCG-50014 

and related analogs are able to inhibit the RGS4/Gαo PPI in living cells and to 

potentiate signaling through the δ opioid receptor and the M3 muscarinic 

receptor. The success of this work required a substantial amount of structure-

activity data, both at the biochemical and cellular levels, to minimize off target 

effects and to improve aqueous solubility. These compounds and the information 

presented in this chapter should accelerate the development of small molecule 

modulators of RGS function by providing a fundamental groundwork from which 

to design future analogs and to judge future novel scaffolds.  

The work in this chapter was performed by me with the following 

exceptions: 1) All compound synthesis was performed by Dr. Benjamin Greedy 

and/or Dr. Emma Casey in the laboratory of Dr. Stephen Husbands; 2) cAMP 

experiments with SH-SY5Y cells were performed by Dr. Qin Wang in the 

laboratory of Dr. John Traynor. 

 
Materials and Methods: 

Reagents and Compounds:  

Reagents were purchased from Sigma-Aldrich (St. Louis, MO) or Fisher 

Scientific (Hampton, NH) and were reagent grade or better.  Avidin-coated 
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microspheres were purchased from Luminex (Austin, TX). CCG-50014 (4-[(4-

fluorophenyl)methyl]-2-(4-methylphenyl)-1,2,4-thiadiazolidine-3,5-dione) and 

analogs were purchased from Thermo-Fisher (Waltham, MA) from the Maybridge 

compound collection or were provided from complete synthesis in the laboratory 

of Dr. Stephen Husbands. 

 

Protein expression, purification, and labeling:  

All RGS and G proteins were prepared as previously described [2]. G 

protein activity was determined by [35S]GTPγS binding [3]. In all cases, proteins 

were purified to >90% homogeneity before use. RGS proteins were biotinylated 

and Gαo was labeled with AlexaFluor-532 as previously described [4]. 

 

FCPIA Dose Response experiments:  

FCPIA was performed as previously described using chemically 

biotinylated RGS proteins and AlexaFluor-532 labeled Gαo. ([5, 6]) 

 

Single Turnover GTPase Measurements:  

Compounds were tested for the ability to inhibit the RGS4 and RGS8-

stimulated increase in GTP hydrolysis by Gαo as previously described [7, 8]. 

 

Solubility experiments:  

Compounds were diluted to 100 mM in DMSO and the further diluted to 

500 µM in H2O, vortexed and centrifuged for 10 minutes at 13,000 x g at ambient 
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temperature. Solubility was quantified by visual inspection of pellet formation on 

a scale from 0 – 5, with 0 being no pellet and 5 being a pellet of the same size as 

that of CCG-50014. Since the key metric was improved solubility, in the rare 

instance that a compound was deemed to be more insoluble than CCG-50014, it 

was given a value of 5.  

 

WST-1 Cell Viability Studies:  

HEK-293 cells were plated to a density of 30,000/well in 96-well plates 

and grown for 48 hours in Dulbecco’s Modified Eagle Medium (DMEM) 

containing 10% fetal bovine serum and Penicillin (100 units/ml)-Streptomycin 

(100 µg/ml) under 5% CO2 at 37oC. Compound treatment was performed 

overnight in DMEM containing 0.1% bovine serum albumin under 5% CO2 at 

37oC. After compound incubation ten microliters of the WST-1 reagent 

(Hoffmann-La Roche, Switzerland) was added to every well and the cells were 

incubated for 1 hour under 5% CO2 at 37oC. Absorbance was measured at 450 

nm using a Victor II plate reader (Perkin-Elmer, Picastaway, NJ).  

 

Cellular Localization Studies:   

HEK-293T cells grown to 80-90% confluency in 6-well dishes in DMEM 

supplemented with 10% fetal bovine serum and Penicillin (100 units/ml)-

Streptomycin (100 µg/ml) under 5% CO2 at 37 oC. RGS and Gαo expression was 

induced by transient co-transfection with either 250 ng of full-length human 

RGS4 with an N-terminal GFP tag (RGS4pEGFP-C1) or a C-terminal RGS4-GFP 
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(RGS4pDEST47) and 250 ng of pcDNA3.1 or pcDNA with wildtype human Gαo.  

Cells were split onto poly-D-lysine coated glass coverslips and cultured for 24-48 

hours after transfection before live cell imaging. Images were acquired on an 

Olympus Fluoview 500 confocal microscope with a 60 x 1.40 numerical aperture 

(N.A) oil objective. Images were obtained by taking a series of stacks every 0.5 

µm through the cell and combining the images into a composite stack. The light 

source for the fluorescent studies was a 488 nm laser with a 505-525 nm 

bandpass filter. Images were quantified using NIH ImageJ software version 

1.43r.  

 

Calcium Mobilization Experiments:  

A stable cell line was developed based upon the HEK-293 Flp-In TREx 

cell line (Invitrogen, Carlsbad, CA) that stably express the muscarinic M3 

receptor and have human RGS4 expression under doxycycline control. Cells 

were maintained in DMEM supplemented with 10% fetal bovine serum and 

Penicillin (100 units/ml)-Streptomycin (100 µg/ml) under 5% CO2 at 37°C. For 

experiments, cells were split into 96-well black, clear bottom, poly-D-lysine 

coated microtiter plates (Nunc, Cat. # 152037) at a density of 20,000 cells/well in 

DMEM containing 10% fetal bovine serum and Penicillin (100 units/ml)-

Streptomycin (100 µg/ml). RGS4 expression was induced by supplementing the 

medium with 1 µg/mL doxycycline for 24-48 hours before experimentation. Cells 

were loaded with Fluo-4 No Wash dye in buffer for 30 minutes at 37°C.  

Compounds and/or carbachol were added to the wells and the fluorescence 
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intensity was measured using a FlexStation (Molecular Devices, Sunnyvale, CA) 

plate reader. Data analysis was performed by calculating the area under the 

curve or maximal fluorescence intensity from a 120 second kinetic measurement.  

cAMP Accumulation:  

SH-SY5Y cells were grown in DMEM containing 10% fetal bovine serum 

and Penicillin (100 units/ml)-Streptomycin (100 µg/ml) under 5% CO2 at 37oC. 

Cells were plated into 24-well plates to reach ~ 90% confluency on the day of 

assay and washed once with fresh serum-free medium, then the medium was 

replaced with 1 mM IBMX (3-isobutyl-1-methylxanthine) in serum-free medium 

for 15 min at 37°C, and changed to the medium containing 1 mM IBMX, 30 µM 

forskolin, and 100 nM of either morphine or SNC80 with or without compound 

CCG-50014 for 5 min at 37 °C. Reactions were stopped by replacing the medium 

with ice-cold 3% perchloric acid and samples were kept at 4 °C for at least 30 

min. An aliquot (0.4 ml) from each sample was removed, neutralized with 0.08 ml 

of 2.5 M KHCO3, vortexed, and centrifuged at 15,000 x g for 1 min to pellet the 

precipitates. Accumulated cAMP was measured by radioimmunoassay in a 10-15 

µl aliquot of the supernatant from each sample following the manufacturer’s 

instructions (cAMP radioimmunoassay kit from GE Healthcare, Piscataway, NJ). 

Data are from four separate experiments, each carried out in duplicates and 

calculated as percent inhibition. The basal cAMP accumulation with forskolin 

alone with or without compound CCG-50014 did not differ.  
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Results: 

Structure Activity Relationship Studies of the CCG-50014 Family of 

Compounds: 

Biochemical Optimization: 
 
 To explore the chemical space around the thiadiazolidine scaffold, we 

analyzed a series of 76 analogs of CCG-50014 using a variety of cellular and 

biochemical experiments (Table 4.1). As a primary screening methodology, a 

RGS4/RGS8 duplex FCPIA assay was performed to obtain biochemical IC50 

values for the inhibition of Gαo binding to both proteins. Secondary screening 

was performed to assess compound solubility and the ability to induce a calcium 

transient in HEK cells, an off-target effect that was originally observed with the 

lead compound CCG-50014. The primary goals of the SAR studies were to 

optimize compound solubility and potency and to minimize off target effects. A 

secondary goal of this study was to determine if it was possible to remove or 

minimize the reactivity of this scaffold and still retain RGS inhibitory activity.  

 

Figure 4.14 The chemical structure of CCG-50014, (4-[(4-fluorophenyl)methyl]-2-(4-
methylphenyl)-1,2,4-thiadiazolidine-3,5-dione) 
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 The majority of the analogs of CCG-50014 that were tested contain the 

thiadiazolidinedione core structure with varied substituents at the 2 and 4 

positions. Because CCG-50014 is only modestly soluble in aqueous solutions, 

we wanted to identify active compounds with improved solubility for use in 

cellular and whole-animal studies. Compound solubility was assessed on a 0-5 

scale with 5 being as insoluble as the lead compound, CCG-50014 (solubility 

~100 µM in aqueous) and 0 being completely soluble at 500 µM in double-

distilled H2O. As expected, it was found that the key determinant of compound 

solubility was size, whereby large hydrophobic substituents lead to more 

insoluble compounds.  While this was not particularly surprising, I did identify a 

number of compounds that were much more soluble than CCG-50014 that 

retained similar potency for RGS4 inhibition (e.g. CCG-203759, CCG-203769).  

To attempt to identify a pharmacophore for the CCG-50014 class of 

compounds, I ranked all of the compounds in order of potency on RGS4 (Table 

4.1). Unfortunately, no clear trends emerge. I then probed this data for 

compounds that possessed increased selectivity for RGS4 over RGS8 (Table 

4.2). This analysis shows that small alkyl groups at the R1/R2 positions provide 

the greatest RGS4/RGS8 selectivity. However, there are several compounds with 

phenyl-containing sidechains that show >1000 fold selectivity (e.g. CCG-

203742). These compounds all contain a -CH3-Ph-p-Me (or in one instance a -

CH3-Ph-p-OMe, CCG-203705) at the R2 position, a moiety that appears to confer 

selectivity regardless of group at the R1 position. This suggests that this region of 
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the molecule is important for discriminating between RGS proteins. The most 

significant result from the SAR analysis was the dependence of the 

thiadiazolidinedione for activity (see Chapter III, Table 3.2), whereby compounds 

that did not contain this reactive center lost substantial (>1000 fold) potency 

against RGS4.  
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R1 N

O

S

N

R2O

CCG # R1 R2 
Solubility 

Scale 
(1-5) 

Stock 
Form 

Calcium 
transient 
(% 50014) 

RGS4 
IC50 (µM) 

RGS4 
Hill 

Slope 
RGS8 

IC50 (µM) 
RGS8 

Hill 
Slope 

Fold 
Selectivity 

(R8/R4) 
203731 CH3-Ph-p-Cl Ph-p-Me 5 Solid -2.6 0.005 -0.70 11.8 -1.50 2360 
203734 CH3-Ph CH3-Ph-p-Me 5 Solid 591.3 0.007 -0.84 20.4 -0.66 2914 
203732 CH3-Ph-p-Me Ph 3 Solid 12.2 0.009 -1.50 8.3 -0.87 922 
203736 CH3-Ph-p-Me Ph-p-Me 4 Solid 4.9 0.009 -1.35 11.6 -1.45 1289 
203735 CH3-Ph-p-F Ph-p-OMe 4 Solid 6.2 0.011 -1.33 11.4 -1.27 1036 
203741 CH3-Ph-p,m-Cl Ph-p-OMe 3 Solid 202.4 0.013 -0.86 5.9 -0.64 454 
203742 CH3-Ph-p-F CH3-Ph-p-Me 5 Solid 108.5 0.013 -1.19 39.8 -0.22 3062 
203724 CH3-Ph Ph-p-Me 5 Solid 176.8 0.014 -3.63 7.5 -0.94 536 
203727 CH3-Ph-p-F Ph-p-Cl 5 Solid 158.5 0.014 -1.66 7.6 -1.06 543 
203761 iBu Ph-p-Me 4 Solid 98.9 0.014 -1.47 7.7 -0.92 550 
203769 Bu Et 0 Oil 2.7 0.014 -0.71 83.5 -0.56 5964 
203781 CH3-Ph-m-Me Ph 3 Solid 242.8 0.015 -1.65 8.4 -1.17 560 
203726 CH3-Ph-p-F Ph 2 Solid 20.9 0.016 -1.42 6.2 -0.82 388 
203765 CH3-Ph-p-F Bu 3 Solid 183.8 0.016 -0.81 31.6 -0.59 1975 
203733 CH3-Ph-p-Me Ph-p-Cl 5 Solid 20.0 0.017 -1.59 12.8 -1.17 753 
203777 CH3-Ph-m-Cl Ph-p-Me 1 Solid 179.0 0.017 -0.96 17.5 -1.00 1029 
203759 Me Ph-p-Me 0 Solid 238.0 0.019 -1.56 8.4 -1.06 442 
203767 Bu Ph-p-Me 1 Solid 123.0 0.020 -1.46 9.5 -0.96 475 
203757 Bu Me 0 Oil 138.3 0.023 -1.01 28.4 -1.10 1235 
203722 CH3-Ph Ph 1 Solid 3.8 0.024 -1.89 5.6 -0.80 233 
Table 4.8 Structure Activity Relationships of CCG-50014 family. All FCPIA IC50 and calcium transient values presented are an average from two 
independent experiments. The calcium transient data are presented as the effect observed by 10 µM compound expressesed as a percentange of 
the effect observed by 10 µM CCG-50014. All compounds were synthesized in the laboratory of Dr. Stephen Husbands 
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CCG # R1 R2 
Solubility 

Scale 
(1-5) 

Stock 
Form 

Calcium 
transient 
(% 50014) 

RGS4 
IC50 (µM) 

RGS4 
Hill 

Slope 
RGS8 

IC50 (µM) 
RGS8 

Hill 
Slope 

Fold 
Selectivity 

(R8/R4) 
203739 CH3-Ph-p,m-Cl Ph 3 Solid 47.6 0.024 -0.96 7.5 -0.80 313 
203746 CH3-Ph Ph-p-OMe 3 Solid 74.6 0.024 -1.45 12.3 -1.00 513 
203730 CH3-Ph-p-Cl Ph-p-Cl 5 Solid 141.3 0.026 -1.48 12.7 -1.36 488 
203762 iBu Et 0 Oil 38.3 0.026 -0.87 70.6 -0.78 2715 
203760 Me tBu 0 Solid 47.2 0.028 -0.99 56.0 -0.89 2000 
203723 CH3-Ph Ph-p-Cl 3 Solid 119.8 0.029 -1.99 5.2 -0.80 179 
203763 iBu tBu 0 Oil 73.5 0.029 -0.85 193.7 -0.52 6679 
203770 Bu Bu 0 Oil 188.2 0.030 -0.83 122.3 -0.53 4077 
203783 CH3-Ph-m-Cl Ph 5 Solid 57.7 0.031 -1.41 9.4 -1.47 303 
203773 CH3-Ph Ph-m-Cl 4 Solid 198.9 0.033 -1.25 10.9 -0.87 330 
203738 CH3-Ph-p-Me CH3-Ph-p-Me 5 Solid 251.4 0.033 -0.92 94.7 -0.51 2870 
203745 CH3-Ph-p-OMe Ph 4 Solid 18.6 0.034 -1.78 7.2 -0.77 212 
203743 CH3-Ph-m,p-Cl Ph-p-Me 3 Solid 45.6 0.034 -1.43 15.7 -0.65 462 
203755 CH3-Ph-p-OMe Ph-p-OMe 2 Solid 54.9 0.035 -1.27 17.6 -0.81 503 
203728 CH3-Ph-p-F Ph-m,p-Cl 5 Solid 127.6 0.036 -1.15 17.2 -1.78 478 
203785 CH3-Ph Ph-m-Me 2 Solid 144.6 0.038 -1.13 21.3 -0.73 561 
203764 iBu Bu 1 Oil 141.6 0.039 -0.87 98.0 -0.44 2513 
203771 CH3-Ph Ph-p-tBu 4 Solid 123.1 0.044 -1.79 17.4 -0.78 395 
203794 CH3-Ph-m –Me Ph-m-Me 3 Solid 63.3 0.046 -1.79 10.4 -0.82 226 
203776 CH3-Ph-p-F Ph-m-Cl 4 Solid 222.9 0.052 -1.08 12.8 -1.07 246 
203768 Bu tBu 0 Oil 91.7 0.054 -3.18 119.0 -0.70 2204 
203772 CH3-Ph Ph-m-MeF3 3 Solid 164.8 0.057 -1.43 16.4 -1.15 288 
203786 CH3-Ph-m-Cl Ph-m-Me 3 Solid 141.6 0.064 -1.52 10.1 -0.95 158 
203740 CH3-Ph-m,p-Cl Ph-p-Cl 3 Solid -0.1 0.068 -1.31 16.7 -0.76 246 
203750 CH3-Ph-p-OMe Ph-p-Cl 3 Solid 84.6 0.069 -3.26 9.9 -0.73 143 
203747 CH3-Ph-p-Cl CH3-Ph-p-Me 5 Solid 11.4 0.073 -1.23 336.6 -0.60 4611 
203775 CH3-Ph-p-F Ph-m-MeF3 2 Solid 170.1 0.079 -0.88 16.2 -1.14 205 
203748 CH3-Ph-p-OMe Ph-m,p-Cl 2 Solid 63.4 0.087 -1.04 36.0 -1.50 414 
203725 CH3-Ph Ph-m,p-Cl 2 Solid 64.2 0.089 -2.06 13.2 -1.62 148 
203756 CH3-Ph-p-OMe CH3-Ph-p-Me 4 Solid 169.0 0.103 -2.42 92.9 -0.64 902 
203753 CH3-Ph-m,p-Cl CH3-Ph-p-Me 2 Solid 51.7 0.113 -1.33 109.1 -0.71 965 
203788 CH3-Ph-p-Me Ph-m-Me 4 Solid 134.0 0.121 -1.91 7.1 -1.09 59 
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CCG # R1 R2 
Solubility 

Scale 
(1-5) 

Stock 
Form 

Calcium 
transient 
(% 50014) 

RGS4 
IC50 (µM) 

RGS4 
Hill 

Slope 
RGS8 

IC50 (µM) 
RGS8 

Hill 
Slope 

Fold 
Selectivity 

(R8/R4) 
203797 
203749 
203752 

CH3-Ph-p-F 
CH3-Ph-m,p-Cl 
CH3-Ph- p-Cl 

Ph-p-N(CH3)2 
Ph-m,p-Cl 
Ph-p-OMe 

5 
5 
4 

Oil 
Solid 
Solid 

111.2 
49.6 

104.1 

0.146 
0.155 
0.166 

-1.65 
-0.87 
-1.73 

10.3 
125.0 
40.2 

-1.28 
-0.85 
-0.91 

71 
806 
242 

203790 CH3-Ph-p-tBu Ph-p-Me 5 Solid 18.9 0.178 -1.36 >100 N/A N/A 
203784 Ph-p-tBu Ph-m-Cl 2 Solid 31.8 0.224 -2.03 32.2 -0.58 144 
203791 CH3-Ph-p-tBu Ph 5 Solid 14.4 0.245 -1.72 >100 N/A N/A 
203796 CH3-Ph-p-tBu Ph-p-tBu 5 Solid 14.8 0.351 -1.70 >100 N/A N/A 
203787 CH3-Ph-o-Me Ph-m-Cl 4 Solid 78.2 0.381 -2.01 31.0 -1.10 81 
203792 CH3-Ph-m-Cl Ph-m-Cl 4 Solid 67.8 0.419 -1.55 21.1 -1.66 50 
203793 CH3-Ph-m-Me Ph-m-MeF3 5 Solid 65.2 N/A N/A 15.9 -1.03 N/A 
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CCG Number R1 R2 
Fold Selectivity 

(RGS8 IC50 
/RGS4 IC50 ) 

203763 iBu tBu 6679 
203769 Bu Et 5964 
203770 Bu Bu 4077 
203742 CH3-Ph-p-F CH3-Ph-p-Me 3062 
203734 CH3-Ph CH3-Ph-p-Me 2914 
203738 CH3-Ph-p-Me CH3-Ph-p-Me 2870 
203762 iBu Et 2715 
203764 iBu Bu 2513 
203731 CH3-Ph-p-Cl Ph-p-Me 2360 
203760 Me tBu 2000 
203765 CH3-Ph-p-F Bu 1975 
203736 CH3-Ph-p-Me Ph-p-Me 1289 
203757 Bu Me 1235 
203735 CH3-Ph-p-F Ph-p-OMe 1036 
203777 CH3-Ph-m-Cl Ph-p-Me 1029 
203732 CH3-Ph-p-Me Ph 922 
203733 CH3-Ph-p-Me Ph-p-Cl 753 
203785 CH3-Ph Ph-m-Me 561 
203781 CH3-Ph-m-Me Ph 560 
203761 iBu Ph-p-Me 550 
203727 CH3-Ph-p-F Ph-p-Cl 543 
203724 CH3-Ph Ph-p-Me 536 
203746 CH3-Ph Ph-p-OMe 513 
203755 CH3-Ph-p-OMe Ph-p-OMe 503 
203730 CH3-Ph-p-Cl Ph-p-Cl 488 
203728 CH3-Ph-p-F Ph-m,p-Cl 478 
203767 Bu Ph-p-Me 475 
203743 CH3-Ph-m,p-Cl Ph-p-Me 462 
203741 CH3-Ph-p,m-Cl Ph-p-OMe 454 
203759 Me Ph-p-Me 442 
203771 CH3-Ph Ph-p-tBu 395 
203726 CH3-Ph-p-F Ph 388 
203773 CH3-Ph Ph-m-Cl 330 
203739 CH3-Ph-p,m-Cl Ph 313 
203783 CH3-Ph-m-Cl Ph 303 
203722 CH3-Ph Ph 233 
203794 CH3-Ph-m –Me Ph-m-Me 226 
203745 CH3-Ph-p-OMe Ph 212 
203723 CH3-Ph Ph-p-Cl 179 

Table 4.9 Selectivity of CCG-50014 analogs for RGS4 over RGS8. For clarity, only compounds 
with IC50 values on RGS4 <50 nM are included in this table. Selectivity was determined by 
comparing the IC50 values from duplex FCPIA assays. n≥2. 
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Identification of compounds with minimized off-target effects: 
   
 I initially attempted to test CCG-50014 in a Ca2+ mobilization assay using 

a cell line stably expressing the M3 muscarinic receptor and expressing RGS4 

under control of a doxycycline promoter. A 30-minute pretreatment of these cells 

with CCG-50014 completely inhibited the Ca2+ response to carbachol. To probe 

the mechanism of this effect, I reduced the compound preoccupation time so that 

I could monitor intracellular calcium levels directly after compound addition (Fig. 

4.2A). I found that CCG-50014 induced a marked calcium transient in these cells 

that after prolonged treatment would be expected to deplete calcium stores. 

Since proper calcium handling is crucial for cellular functioning, I tested all of the 

available CCG-50014 analogs for their ability to induce calcium mobilization at a 

concentration of 10 µM. As shown in Table 4.1 and Fig 4.2B, there were a 

number of analogs that did not produce a significant calcium effect in this cell 

system, several of which still potently inhibit RGS4.  
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Figure 4.15 A) CCG-50014 induces a calcium transient in HEK293 cells. Fluo4-loaded cells were 
exposed to 10 µM CCG-50014 (red traces) or DMSO control (black traces) before an injection of 
1 nM carbachol. CCG-50014 induced a calcium mobilization event on its own, suggesting that 
this compound has an as-of-yet unidentified off-target effect. Representative data shown from 
three wells for each condition. B) Chemical structures of the 3 compounds that did not show 
calcium mobilization effects and were more potent and soluble than CCG-50014.   
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The SAR analysis identified three compounds that have no ability to 

induce calcium mobilization that also have improved solubility and potency as 

compared to CCG-50014. These three compounds are CCG-203760, CCG-

203762, and CCG-203769. Of these compounds, CCG-203769 displays most of 

the desired properties of an RGS inhibitor. The compound is highly soluble 

(>5mM, aqueous), potently inhibits RGS4 (IC50 14 nM), displays greater 

selectivity for RGS4 vs RGS8 than did other compounds, and did not induce a 

calcium transient in HEK-293 cells.  

From these SAR studies, we have identified compounds that are more 

potent and selective than the parent compound (e.g. CCG-203731, CCG-

203769) and have identified potential regions of the molecule (R2) that are 

important in driving RGS selectivity. It appears that an alkyl chain or a phenyl ring 

with a small substituent at the para position provide compounds with selectivity 

for RGS4. Also, we have identified compounds (e.g. CCG-203769) that have 

improved physicochemical properties, and minimal off-target calcium effects, 

thus facilitating future in vivo experiments which would have been hampered by 

solubility and off-target issues of CCG-50014.  

 
CCG-50014 does not affect cell viability: 

 CCG-50014 is no more toxic than the vehicle (DMSO) control (Fig. 4.3). 

HEK293 cells were treated with CCG-50014 or vehicle controls in DMEM + 0.1% 

bovine serum albumin. After an overnight incubation at 37°C cells were analyzed 

for viability using the WST-1 reagent.  At concentrations up to 100 µM, CCG-

50014 did not reduce cell viability below control levels.    
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Figure 4.16 CCG-50014 does not affect HEK-293 viability. Cells were treated with CCG-50014 or 
vehicle control overnight and assayed for viability using WST-1. Data are presented as the 
mean±SEM from three independent experiments.  
 
CCG-50014 and related analogs inhibit the RGS4/Gαo interaction in living 

cells: 

The members of the CCG-50014 class of compounds are potent inhibitors 

of the RGS4/Gαo PPI with IC50 values in the 3-200 nM range in vitro. To 

determine if these compounds can also inhibit this PPI in living cells, I performed 

a series of experiments designed to monitor the subcellular localization of a 

green fluorescent protein (GFP)-tagged RGS4 that was transiently 

overexpressed in HEK-293T cells (Fig. 4.4). GFP-RGS4 is primarily expressed 

as a diffuse cytosolic protein (Fig. 4.4A). Upon co-transfection with either wild-

type Gαo or the constitutively active Gαo (QL) mutant, GFP-RGS4 relocates to 

the plasma membrane. Co-expression with the RGS insensitive mutant Gαo 

(G184S) did not cause membrane localization of GFP-RGS4. At this level of 

overexpression, the RGS4/Gαo PPI is constitutive probably due to the rapid GDP 

exchange rate of Gαo [9]. If cells expressing Gαo and GFP-RGS4 are exposed to 
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CCG-50014, the membrane localization of GFP-RGS4 is reversed and the RGS 

protein translocates back into a cytosolic expression pattern (Fig. 4.4D/E). I also 

tested several analogs of CCG-50014 in this assay (including CCG-203769 and 

CCG-203757) and found similar results (Appendix I). To ensure that the N-

terminal GFP tag was not affecting the assay, I repeated these experiments with 

a C-terminal GFP fusion of RGS4 and obtained similar results (Appendix II). 

This effect was observed for concentrations down to 1 µM CCG-50014. At high 

concentrations (100 µM), the effect was observed essentially instantaneously (<1 

minute) and occurred within 10 minutes for lower concentrations (e.g. 10  µM). 

These results show that CCG-50014, CCG-203769, and other analogs can inhibit 

the RGS4/Gαo interaction in living cells.  
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Figure 4.17 RGS4 is recruited to the plasma membrane by coexpression of Gαo and this 
recruitment is inhibited by CCG-50014. A) RGS4-GFP is expressed in a diffuse cytosolic pattern. 
B) When coexpressed with Gαo, the RGS translocates to the plasma membrane. C) 
Coexpression with the RGS-insensitive Gαo mutant (G184S) does not induce this translocation. 
D/E/H) Cells coexpressing RGS4-GFP and Gαo show no change in the membrane localization of 
RGS4 after treatment with vehicle control (DMSO). F/G/I) CCG-50014 (100 µM) is able to reverse 
the Gαo- induced RGS membrane translocation. Representative data shown from at least three 
independent experiments with 5-10 cells imaged per experiment. Line scans shown in H and I 
were quantified by drawing a line perpendicular to the long axis of the cell at identical sites in both 
pre/post treatment images and calculating pixel intensity using ImageJ.   
 
 
CCG-50014 potentiates signaling through the δ-opioid receptor:  

Wang et al. [10] previously showed that in the SH-SY5Y neuroblastoma 

cell line, siRNA knockdown of RGS4 selectively potentiates signaling through the 

δ-opioid receptor over the µ-opioid receptor. Since both receptors couple to the 

same G-proteins, the RGS4 selectivity observed in this system is particularly 
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useful in dissecting the compound’s action. A low concentration (100 nM) of 

either the µ-opioid receptor agonist morphine or the δ-opioid receptor agonist 

SNC-80 produced a small (10-20%) inhibition of forskolin-stimulated adenylate 

cyclase activity. CCG-50014 (100 µM) significantly potentiated the effect of the δ-

opioid agonist (44% inhibition vs 22% inhibition without the compound, p<0.001), 

as would be expected of an RGS4 inhibitor in this system (Fig. 4.5), with only a 

modest effect upon the µ-receptor signaling. The observed receptor selectivity of 

compound action is consistent with CCG-50014 acting by inhibiting RGS4.  

The non-significant increase in µ-opioid signaling in response to 

compound should be addressed. It is possible that this effect is due to inhibition 

of other RGS proteins in the cell or because there is some low-level control of µ-

opioid receptor signaling by RGS4. Regardless, there is significant potentiation of 

the δ-opioid signaling as would be expected of an RGS inhibitor.  
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Figure 4.18 CCG-50014 potentiates the activity of the δ-opioid receptor ligand SNC-80 in SH-
SY5Y cells. Inhibition of forskolin-activated adenylate cyclase activity by either the µ-opioid 
receptor or the δ-opioid receptor was measured in the absence and presence of 100 µM CCG-
50014. Data are presented as the mean±SEM from three independent experiments. ** P<0.001 
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CCG-203769 potentiates the M3 muscarinic receptor activity via inhibition 

of RGS4: 

To further probe the ability of the CCG-50014 class of compounds to 

inhibit RGS actions in a cellular setting, I performed a series of experiments 

using the engineered cell system expressing the M3 muscarinic receptor with 

RGS4 under doxycycline control. Upon addition of carbachol to these cells, a 

Gαq-dependent intracellular calcium mobilization is initiated by the activation of 

phospholipase C. After induction of RGS4 expression, calcium signaling is 

suppressed by ~80%. A compound that inhibited RGS4 should relieve this 

suppression.  

As noted above, when these experiments were performed with CCG-

50014 it was found that the compound itself induced a sizable calcium transient. 

This off-target effect clearly makes it difficult to interpret data from these 

experiments. To circumvent this issue, I identified CCG-50014 analogs that were 

unable to induce a calcium flux in HEK-293 cells. One of these compounds, 

CCG-203769, is more potent at inhibiting RGS4 than CCG-50014 and is more 

soluble and was therefore chosen for study in this system.   

Incubation with CCG-203769 for 15 minutes prior to carbachol stimulation 

resulted in a partial reversal of the RGS4-mediated inhibition (Fig. 4.6) without 

affecting M3-mediated calcium signal in the absence of RGS4 expression. This 

result further confirms this class of compounds is acting as an RGS4 inhibitor in 

living cells. Furthermore, the response occurs at micromolar concentrations, 

which is more in concordance with what is observed in vitro. This assay also 
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measures Gq signaling (as opposed to Gi/o in the opioid studies), proving that the 

effect of this compound is not G-protein dependent.   

The enhanced Ca++ signaling induced by CCG-203769 occurs at 

concentrations as low as 1 µM. While this compound was chosen for study 

because of its inability to stimulate calcium mobilization by itself, it is possible 

that a weak effect on calcium handling is starting to play a significant role over 

the time course of the experiment. It is also possible that at high concentrations 

of compound other, as of yet unknown off-target effects are occurring that disrupt 

calcium handling. Regardless, it does appear that CCG-203769 can inhibit RGS4 

in living cells at concentrations that do not cause any measurable off-target 

effects.  
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Figure 4.19 CCG-203769 partially reverses the RGS4-mediated suppression of carbachol 
responsiveness in HEK293 cells expressing the M3 muscarinic receptor. A) Representative 
traces of cells responding to 3 nM carbachol. Doxycycline (+Dox) treated cells express RGS4 and 
show a significant suppression of Ca2+ mobilization. Pretreatment of these cells for 15 minutes 
with 1 µM CCG-302769 (CCG-203769 +Dox) partially rescues the Ca2+ response. Data are 
presented as the mean±SEM of 12 wells per condition from a single experiment. B) 
Concentration dependence of the effect observed in A. Data are presented as the mean±SEM 
from three independent experiments. * P< 0.05; ** P < 0.01.  
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Discussion: 

The development of RGS inhibitors has till now been dominated by 

compounds that lacked efficacy in a cellular environment. The reasons for this 

lack of cellular activity stem from: permeability issues (e.g. peptides and possibly 

the CCG-638x family), weak in vitro activity (e.g. CCG-638x family and CCG-

4986), and inactivation in the presence of reductants (e.g. CCG-4986 and the 

CCG-50014 family). In this chapter I have presented the first evidence for a 

family of RGS inhibitors that functions in a cellular environment.  

Early biochemical studies of this compound class suggested that it would 

likely lack cellular activity. As noted in Chapter III, this family of compounds is 

inactivated by reductants, including physiologically relevant concentrations of the 

intracellular reductant glutathione. Furthermore, the cysteine-dependent reactivity 

of the compounds raised concerns about target specificity and potential off-target 

effects. It was with these issues in mind that we attempted cellular studies with 

CCG-50014 and some selected analogs.  

I developed a method to directly measure the Gαo/RGS4 PPI in living 

cells. This approach allowed me to determine if my compounds can inhibit this 

PPI in living cells like they do in vitro (Fig. 4.4A). In this system, the RGS is 

expressed as a diffuse cytosolic protein until co-expression with Gαo, which 

drives membrane association of RGS4. This co-localization is not induced by the 

co-expression of a mutant Gαo (G184S) that is insensitive to RGS GAP activity. 

The lack of interaction between the G184S Gαo mutant and RGS4 confirms the 

findings in cell and whole animal knock-in models [11-17]. CCG-50014 and CCG-
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203769 are both able to inhibit the membrane localization of RGS4 in this assay, 

strongly suggesting that these compounds can inhibit the Gαo/RGS4 interaction 

in living cells. These data lend considerable credence to the notion that the 

functional effects observed in the subsequent studies stem from an inhibition of 

one (or more) RGS proteins.   

To further confirm that the compounds could function in a cellular setting, 

we performed a series of cellular studies to test the ability of these compounds to 

block the negative regulation of GPCR signaling by RGS proteins. Dr. Qin Wang, 

working in the laboratory of Dr. John Traynor, was able to show that CCG-50014 

could potentiate the signaling through the δ-opioid receptor selectively over the 

µ-opioid receptor in SH-SY5Y cells. The signaling pathways used in this study 

are all endogenously expressed in SH-SY5Y cells and this result correlates well 

with their previous work showing RGS4 selectively inhibits the δ-opioid receptor 

[10]. These data are important because they show for the first time a small 

molecule RGS inhibitor having a functional effect on an endogenous signaling 

pathway. 

While it is important to show that the compound can function on 

endogenous signaling pathways, I wanted to also probe the actions of this 

compound in a more controlled manner. I tested several compounds using cells 

stably expressing the muscarinic M3 receptor with RGS4 expression under 

doxycycline control. By measuring the Gq-dependent calcium mobilization 

induced by the M3 receptor, I was able to show that CCG-230769 partially 

inhibits the effects of RGS4. CCG-50014, however, induced a calcium transient 
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on its own (Fig 4.2A). These studies were important for two reasons: 1) it 

showed that the compound inhibits RGS4 under more controlled conditions than 

the SH-SY5Y experiments; and 2) these experiments revealed a previously 

unknown off-target effect elicited by some members of the CCG-50014 family. 

I undertook a series of experiments to probe the chemical space around 

the CCG-50014 scaffold. By analyzing ~80 analogs of CCG-50014 for a variety 

of parameters including potency, RGS selectivity, and solubility, I was able to 

identify a number of structure-activity relationships around this scaffold. Potency 

against RGS proteins can be improved by shortening the side chains (R1/R2 in 

Table 4.1) to small alkyl chains. This also corresponded to an increase in RGS4 

selectivity, although some analogs with  phenyl rings at the R1/R2 position that 

have a small substituent in the para position on the R2 phenyl ring (e.g. CCG-

203702) also display prominent selectivity for RGS4 over RGS8. Modification of 

the thiadiazolidine ring to a less reactive center drastically reduces activity. 

This SAR analysis also provided a means to identify compounds that did 

not produce the Ca2+ mobilization off-target effect noted for CCG-50014. I 

identified three compounds (Fig. 4.2B) that potently inhibit RGS4 yet lack the 

ability to induce a Ca2+ mobilization. Study of the SAR landscape surrounding 

CCG-50014 has yielded several compounds with improved properties and in vitro 

activity. These compounds, including CCG-203769, are currently being used in 

isolated organ and whole animal studies to determine their physiological effects 

on RGS activity and GPCR signaling. 
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There are at least two advantages that the CCG-50014 class of molecules 

has over previous generations of RGS inhibitors. The first – and presumably 

most important – is potency. CCG-50014 is nearly 3 orders of magnitude more 

potent at inhibiting RGS4 than any of the other small molecule RGS inhibitors 

described to date.  Therefore, even if a substantial fraction of the compound is 

rapidly metabolized or reacts with glutathione (or other non-target thiols), an 

active concentration of compound is likely to be present. Another set of 

advantages this compound has over prior generations of RGS inhibitors 

(especially CCG-63802) is improved cellular permeability and aqueous solubility. 

While solubility is variant across this family of compounds, we have identified 

several that have aqueous solubility >5 mM yet still retain cellular activity. These 

factors allow us generate pharmacologically relevant concentrations of 

compound in our assay systems without interfering artifacts such as compound 

precipitation.  

The CCG-50014 class of compounds contains the most potent RGS 

inhibitors identified to date and the first examples of small molecules that can 

inhibit the cellular activity of an RGS protein. While this is a significant step 

forward in the development of small molecule RGS inhibitors, the true value of 

this compound has yet to be fully elucidated. One major concern that has not 

been addressed is the pharmacokinetic parameters of these compounds. 

Furthermore, we have yet to fully determine the physiological effects of systemic 

administration of CCG-50014 or related analogs. Preliminary data has shown no 

gross physiological/toxicological effects to low doses of CCG-203769, however, 
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the appropriate full-scale studies have yet to be performed. Also, the RGS 

specificity of CCG-203769 has yet to be determined in a cellular setting. 

Regardless, this family of compounds provides a foothold for development of 

new RGS inhibitors.  



 

166 

References: 
 
1. Brunton, L.L., J.S. Lazo, and K.L. Parker, eds. Goodman & Gilman's: The 

Pharmacological Basis of Therapeutics. 11 ed. 2006, McGraw-Hill Companies, Inc.: New 
York. 

2. Roman, D., et al., Allosteric Inhibition of the RGS-G{alpha} Protein-Protein Interaction by 
CCG-4986. Mol Pharmacol. 

3. Sternweis, P.C. and J.D. Robishaw, Isolation of two proteins with high affinity for guanine 
nucleotides from membranes of bovine brain. J Biol Chem, 1984. 259(22): p. 13806-13. 

4. Blazer, L.L., et al., Use of flow cytometric methods to quantify protein-protein interactions. 
Curr Protoc Cytom. Chapter 13: p. Unit 13 11 1-15. 

5. Blazer, L.L., et al., Reversible, allosteric, small-molecule inhibitors of RGS proteins. Mol 
Pharmacol. 

6. Roman, D.L., S. Ota, and R.R. Neubig, Polyplexed Flow Cytometry Protein Interaction 
Assay: A Novel High-Throughput Screening Paradigm for RGS Protein Inhibitors. J 
Biomol Screen, 2009. 

7. Roman, D.L., et al., Identification of small-molecule inhibitors of RGS4 using a high-
throughput flow cytometry protein interaction assay. Mol Pharmacol, 2007. 71(1): p. 169-
75. 

8. Roof, R.A., et al., Mechanism of action and structural requirements of constrained 
peptide inhibitors of RGS proteins. Chem Biol Drug Des, 2006. 67(4): p. 266-74. 

9. Remmers, A.E., et al., Interdomain interactions regulate GDP release from heterotrimeric 
G proteins. Biochemistry, 1999. 38(42): p. 13795-800. 

10. Wang, Q., L.Y. Liu-Chen, and J.R. Traynor, Differential modulation of mu- and delta-
opioid receptor agonists by endogenous RGS4 protein in SH-SY5Y cells. J Biol Chem, 
2009. 284(27): p. 18357-67. 

11. Fu, Y., et al., RGS-insensitive G-protein mutations to study the role of endogenous RGS 
proteins. Methods Enzymol, 2004. 389: p. 229-43. 

12. Huang, X., et al., Pleiotropic phenotype of a genomic knock-in of an RGS-insensitive 
G184S Gnai2 allele. Mol Cell Biol, 2006. 26(18): p. 6870-9. 

13. Lan, K.L., et al., A point mutation in Galphao and Galphai1 blocks interaction with 
regulator of G protein signaling proteins. J Biol Chem, 1998. 273(21): p. 12794-7. 

14. Goldenstein, B.L., et al., Regulator of G protein signaling protein suppression of Galphao 
protein-mediated alpha2A adrenergic receptor inhibition of mouse hippocampal CA3 
epileptiform activity. Mol Pharmacol, 2009. 75(5): p. 1222-30. 

15. Goldenstein, B.L., et al., RGS Protein Suppression of G{alpha}o Protein-Mediated 
{alpha}2A Adrenergic Receptor Inhibition of Mouse Hippocampal CA3 Epileptiform 
Activity. Mol Pharmacol, 2009. 

16. Huang, X., et al., Resistance to diet-induced obesity and improved insulin sensitivity in 
mice with a regulator of G protein signaling-insensitive G184S Gnai2 allele. Diabetes, 
2008. 57(1): p. 77-85. 

17. Talbot, J.N., et al., RGS inhibition at G(alpha)i2 selectively potentiates 5-HT1A-mediated 
antidepressant effects. Proc Natl Acad Sci U S A. 107(24): p. 11086-91. 

 
 
 
 
 
 



 

167 

Chapter V: 
 Conclusions 

 
Summary of Results: 

The work presented in this thesis has significantly advanced our 

understanding of how to target RGS proteins with small molecules. The major 

advances that are described in this thesis are 1) the first examples of reversible 

small molecule RGS inhibitors; 2) characterization of the most potent RGS 

inhibitors identified to date; and 3) the first example of small molecule RGS 

inhibitors with cellular activity. The information in this thesis provides both novel 

methodology and direction for the development of future RGS inhibitors.  

In Chapter I, I describe the first set of compounds that can reversibly 

inhibit RGS4. The prototypical compound from this class, CCG-63802, inhibits 

RGS4 with an in vitro IC50 value of 10 micromolar in the FCPIA assay. This family 

of compounds provided the first proof-of-concept that RGS proteins can be 

inhibited by small molecules in a reversible fashion. While CCG-63802 may not 

be the optimal lead for cellular/animal studies, it is nonetheless an important step 

forward in the development of small molecules targeting RGS proteins.  

Chapter II detailed the molecular mechanism of the most potent small 

molecule RGS inhibitor, CCG-50014. This compound irreversibly inhibits RGS4 

with a 30 nM IC50 value and has significant selectivity for RGS4 over RGS 

proteins including RGS7, RGS8, RGS16 and RGS19. While irreversible, this 
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compound provides several advantages for studying the molecular mechanism of 

RGS allosteric inhibition.  

In Chapter IV I further develop the CCG-50014 class of compounds to 

show, for the first time, small molecules that can inhibit both the RGS/Gα PPI and 

RGS activity in a living cell. To our knowledge, this is the first time that a small 

molecule RGS inhibitor has been shown to directly inhibit the RGS/Gα interaction 

in a cellular setting. Second generation members from this family, including 

CCG-203769, are also described. These compounds retain the RGS inhibitory of 

CCG-50014, but have improved aqueous solubility and were selected for the 

inability to invoke a calcium transient. The data presented in Chapter IV clearly 

show that this class of small molecules can inhibit the RGS/Gα PPI in a manner 

that has a measurable effect upon GPCR signaling. This is a dramatic step 

forward in the development of small molecule RGS inhibitors and it is hoped that, 

with continued development, descendents from this class of compounds will 

become useful research tools and potentially even clinically relevant 

therapeutics.   

 
Future Research Directions: 

The work presented in this thesis opens many potential avenues for 

further research and development of small molecule RGS inhibitors. The novel 

methodology described throughout this thesis (TR-FRET high throughput 

screening, RGS/Gα thermal stability assays, RGS membrane translocation, etc.) 

provides a framework against which novel RGS inhibitor scaffolds can be tested. 

Furthermore, the compound classes that have been expounded upon in this 
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thesis provide the opportunity to both learn more about small molecule binding 

sites on RGS and also two novel scaffolds for the development of future 

generations of RGS inhibitors.  

The CCG-63802 class of molecules may be able to provide structural 

information regarding the non-covalent binding of small molecules to RGS. It is 

possible that many of the small fragments of CCG-63802 that lack RGS inhibitory 

activity might weakly bind to the protein in a manner that does not produce a 

functional effect. By performing nuclear magnetic resonance experiments with 

isotopically labeled RGS4, we should be able to map the binding sites of these 

fragments on the RGS. Similar studies have been performed before using a 

variety of different proteins [19-24]. Indeed, experiments along these lines are 

already in progress by a graduate student in our lab, Andrew Storaska.  

Based upon mutagenesis data, it is expected that the mechanism of action 

of CCG-63802 will primarily be through a conformational change induced by 

compound binding to the allosteric “B” site on RGS4. The B site is the location on 

RGS4 that is important for the binding of calmodulin and acidic phospholipids. 

Previous work by Ishii and colleagues has shown that these two molecules can 

reciprocally regulate RGS GAP activity, whereby phospholipid binding inhibit the 

RGS function and this effect can be displaced by calmodulin binding [25, 26]. It is 

possible that CCG-638002 mimics the effects of acidic phospholipids on RGS4 

GAP activity. While technically challenging, it would be very interesting to test 

this hypothesis by using a series of protection or displacement studies to 

determine if calmodulin or acidic phospholipids can affect CCG-63802 binding.  
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Similar experiments could test any RGS inhibitors that are expected to bind via 

that “B” site (e.g. CCG-50014).  

One of the main motivations for the development of small molecule 

modulators of RGS activity is so that we can better understand the molecular 

mechanisms behind RGS activity and regulation. While the “B” site hypothesis 

has been studied from a variety of functional angles, to date there are no data 

that specifically address how this allosteric binding results in altered GAP activity.  

This is likely due in part to the challenging nature of performing biophysical 

studies on proteins in the presence of phospholipids.  It is possible that a small 

molecule that binds to the “B” site to inhibit RGS function could provide insights 

into the conformational changes that occur during this allosteric regulation.  

While initial studies have not been particularly promising, it might also be 

useful to test selected analogs of CCG-63802 in cellular assays. For these 

compounds to have significant cellular activity, it is likely that a new analog with 

the following properties will have to be generated. First, the compound needs to 

have a greater potency at RGS4. Most compounds identified in this class 

possess micromolar IC50 values in vitro, which is likely not potent enough for in 

vivo studies. Ideally, the candidate compound would be >2 Log more potent than 

the CCG-63802. It would also be beneficial if the compound possessed a smaller 

polar surface area than CCG-63802 to improve membrane permeability. If we 

can identify a soluble, stable compound that meets these two conditions, it is 

likely that it would have cellular activity.  
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The CCG-50014 class of compounds has already progressed to the point 

of containing members with documented cellular activity. For this class of 

compounds, it is most important to focus upon transitioning from 

biochemical/cellular assays to isolated organ/whole animal experimentation. 

Several of these studies are currently underway. Through collaboration, we have 

started testing CCG50014 and CCG-203769 in the langendorff isolated heart 

model to determine if the compounds can potentiate carbachol-stimulated 

bradycardia. It is known that RGS4 is expressed in sinoatrial nodal cells, where 

parasympathetic M2 muscarinic receptor activation slows the heart. We are also 

approaching this same system in a whole-rat model. Sprague-Dawley rats are 

implanted with indwelling venous catheters and telemetry probes that monitor 

heart rate, blood pressure and body temperature. After recovery, these animals 

are infused with a dose of CCG-203769 and then given a small dose of 

carbachol to induce a transient bradycardia. It is expected that if the compounds 

inhibit RGS in the SA node, the carbachol effect will be potentiated. Currently, we 

have not observed any significant physiological effects with CCG-203769, but the 

studies are not complete and due to solubilization issues, we have not been able 

to inject the animals with as large of doses as we would like. Currently, Dr. 

Stephen Husbands is producing analogs of CCG-50014 that will likely be much 

more soluble in aqueous environments.  

Also through collaboration, we are testing the ability of these compounds 

to potentiate the activity of the M3 muscarinic receptor in pancreatic islet β cells. 

In β cells, M3 activation potentiates glucose-stimulated insulin release [27]. Wess 
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and colleagues showed that RGS4 potently regulates the M3 activity in β cells 

[28]. Using isolated mouse islets, we have been attempting to determine if CCG-

50014 or CCG-203769 can accentuate the M3 activity on glucose-stimulated 

insulin release. Preliminary data from these experiments have been promising 

and we are in the process of developing protocols to test the glucose tolerance of 

animals that were treated with CCG-50014 analogs.  

 While important, the animal studies need to be accompanied by a full 

pharmacokinetic profile of the compound before any conclusions regarding its 

usefulness as a potential therapeutic may be drawn. We, in collaboration, are 

currently in the process of developing a method to detect the CCG-50014 

analogs in whole blood and isolated tissues. With this methodology in hand, we 

will be able to perform single dose pharmacokinetic profiles of important CCG-

50014 analogs. These data will be critical for the animal studies to ensure that 

we are reaching and maintaining appropriate blood and tissue concentrations. 

 The CCG-63802 and CCG-50014 classes of molecules have provided 

significant advances to the field of RGS inhibitors. Both of these families also 

have the potential to provide further knowledge into the location and geometry of 

small molecule binding sites on RGS4. Furthermore, they may function as 

pharmacological tools to study the effects of RGS proteins in vivo. It is 

anticipated that these molecules will provide many new discoveries in the fields 

of RGS biology and small molecule protein-protein interaction inhibitors.  
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Therapeutic applications of RGS modulation: 

 Modulating RGS activity could have a variety of potential therapeutic 

applications. While clearly much work needs to be done to generate a drug 

candidate targeting an RGS protein, the potential benefit of such a drug in 

several disease states could be significant.   

Recent work has shown that RGS4 negatively modulates the 

parasympathetic stimulation of insulin release [28]. The cholinergic stimulation of 

β cells does not directly cause a release of insulin, but it does potentiate the 

responsiveness of these cells to high blood glucose. In this setting, a selective 

RGS4 inhibitor would be expected to potentiate the autonomic stimulation of 

insulin release in a glucose-dependent manner. This could be a very beneficial 

mechanism for treatment of early-stage type II diabetes and could require much 

less monitoring than conventional insulin replacement therapies.    

Another potential application for an RGS inhibitor is in the treatment of 

depression. Traynor and colleagues have shown that the pan-inhibition of RGS 

activity on Gαi2 produces a striking antidepressant-like effect [18]. While we still 

do not know which RGS protein(s) to target for antidepression therapy, these 

results suggest that subtle modulation of endogenous neurotransmitter signaling 

might provide an effective treatment for depression and potentially other 

neurological disorders. I find this approach to be particularly elegant, especially 

when compared to the commonly used drugs to treat neurological disorders – 

many of which affect many different signaling systems in ways that we still do not 

fully understand [29-31].   
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Another potential target is RGS9-2, the brain specific isoform of RGS9. 

This molecule, is strongly and specifically expressed in certain parts of the brain, 

including the striatum and nucleus accumbens [32]. Knockout of RGS9 increases 

supra-spinal and spinal cord mediated analgesia and delays the development of 

tolerance to morphine [33]. Small molecules specifically targeting RGS9 may 

provide a mechanism to potentiate morphine analgesia under conditions that 

may slow the development of tolerance.  

Unfortunately, the application of RGS9 inhibitors might be expected to 

have a variety of undesired side effects. An isoform of RGS9, RGS9-1, is the 

major RGS controlling phototransduction [34]. Unless the compound is 

pharmacokinetically excluded from the eyes or is exquisitely specific for RGS9-2 

over RGS9-1, vision problems (likely trailing images) may occur. Furthermore, 

RGS9-2 knockout mice are sensitized to the dyskinesias associated with 

activation of D2 dopamine receptor after prolonged pharmacological dopamine 

receptor antagonism [35].  These potential issues will have to be addressed 

before inhibitors of RGS9 will be adopted as viable drug candidates.  

While the work in this thesis has focused upon developing inhibitors of 

RGS function, there are several situations in which an activator of RGS activity 

could provide significant therapeutic benefit. Gold and colleagues have shown 

that overexpression of RGS9-2 in the striatum of non-human primates can 

suppress the dyskinesias associated with chronic L-dopa treatment [36]. These 

data suggest that potentiating RGS9-2 expression in the striatum or 
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pharmacological activation of RGS9-2 in patients with Parkinson’s disease may 

provide a level of relief from the side effects of L-dopa treatment.  

 Modulating RGS proteins with small molecules could provide significant 

therapeutic benefit. RGS modulation could provide a mechanism to increase the 

efficacy of endogenous signaling in the body, something that current GPCR-

targeted approaches often cannot attain. Furthermore, the unique expression 

patterns of RGS proteins may provide a level of tissue specificity not achievable 

with GPCR agonists/antagonists. It is hoped that future generations of RGS 

inhibitors will provide therapeutic benefit to mankind.  

 
The Future of Small Molecule Protein-Protein Interaction Inhibitors: 

 
It is clear that substantial challenges lie ahead in the development of PPI 

modulators. Continued progress is being made in the cancer arena where the 

requirements of oral absorption and/or blood-brain-barrier penetration are less 

critical. Indeed, the affinity of PPIIs in the cancer field has increased (to IC50 

values <10 nM in vitro and 10s-100s of nM in cells) and the molecular weight of 

these PPIIs has decreased over the last 10 years [37, 38]. That work and 

continued academic efforts to develop tool compounds blocking PPIs should 

advance this field substantially. The need to maintain small size and appropriate 

physicochemical properties of compounds may require novel approaches. Rather 

than targeting the immediate PPI site, the identifying and targeting of allosteric 

sites on the target protein may permit the use of more suitable chemical 

structures. In the cancer drug design arena, fragment-based design of PPI 
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inhibitors has proven useful so applications to other targets should be pursued. 

Also, identifying compounds that could make use of cellular uptake mechanisms 

could permit compounds to achieve higher intracellular concentrations and result 

in additional cell-type specificity of action.  

There are a large number of potential PPI targets that could provide subtle 

modulation of cellular processes if a successful drug could be developed. As with 

the history of protein kinase inhibitors, overcoming initial reluctance to embrace 

the concept will likely require a success story. At present, it is hard to predict a 

major breakthrough in this field but continued refinement of existing approaches 

and further development of existing targets is likely to reach a threshold of 

success in the not too distant future. In the meantime, substantial genetic and 

biological studies will continue to define novel PPI targets. With the rapid 

advances in target identification, an increased pace of chemical discovery related 

to PPIs will be critical to exploit the potential of this novel field. 
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Appendix I: 
CCG-50014 Analogs Inhibit The RGS4-Gαo  
Protein-Protein Interaction in Living Cells 
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Figure A.1 CCG-203769 and CCG-203757 can inhibit the Gαo-dependent RGS4 membrane 
translocation. A) A representative image of an HEK293T cell expressing RGS4-GFP and Gαo. B) 
The same cell, after addition of 100 µM of CCG-203769. C) A representative image of HEK293T 
cells expressing RGS4-GFP and Gαo. D) The same cells, after incubation with CCG-203757. E) 
Quantification (line scans) of the images in A/B. F) Quantification (line scans) of the images in 
C/D. 
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Appendix II: 
Tag Localization on RGS4 Does Not  

Effect Translocation or Sensitivity to CCG-203769 
 
 
 

A) B)

 
Figure A.2 Location of the GFP tag on RGS4 does not affect its sensitivity to CCG-203769. A) 
RGS4 was expressed with a C-terminal GFP tag and is membrane localized when co-expressed 
with Gαo. B) After incubation with 100 µM CCG-203769, RGS4-GFP translocates to the cytosol. 
Images here are of poorer quality than the other confocal experiments shown because this 
particular construct was weakly expressed in HEK-293T cells. Representative data shown.  
 
 
 
 


