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CHAPTER I

Introduction

1.1 Scope and Aims

Functional data arise frequently in many fields of biomedical research as sequen-

tial observations over time. The observations are generated by an unknown dynamic

mechanism. This dynamic process has unspecified mean function, and the observa-

tions can be considered as arising from this mean function plus noise. The goal is

typically estimation and inference for the unknown mean function and its derivatives

as well as other parameters involved in the underlying dynamic system. Methods

from nonparametric and semiparametric regression are typically used to achieve this

goal.

1.1.1 Smoothing methods

Two widely used methods to estimate the unknown mean function are kernel

smoothing (Wand and Jones, 1995; Fan and Gijbels, 1996) and spline smoothing

(Wahba, 1990; Green and Silverman, 1994; Ramsay and Silverman, 2005). Suppose

we have observations Y (tj) at design points tj, j = 1, 2, . . . , J . The observations are

assumed to follow the model

Y (tj) = U(tj) + ε(tj), ε(tj)
i.i.d∼ N (0, σ2

ε). (1.1)
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The kernel smoothing estimator at a target point t is defined as a weighted average:

Û(t) =
J∑

j=1

Wj,h(t)Y (tj),

where Wj,h(t) is the weight function centered at t with bandwidth h. A popular choice

of weight function is to use a kernel Kh(·), and the Wj,h(t) is given by

Wj,h(t) =
Kh(tj − t)∑J
j=1 Kh(tj − t)

.

This is called the Nadaraya−Watson local average kernel smoothing. Very often the

kernel function Kh(·) is chosen to be a density function with mean zero.

Spline smoothing is achieved by minimizing an objective function, namely the

penalized sum-of-squares

Sλ(U) =
J∑

j=1

[Y (tj)− U(tj)]
2 + λ

∫
L(U)2(t)dt,

where L is linear differential operator and λ is the smoothing parameter. The first

term of Sλ(U) measures the goodness-of-fit of U(·) to the data, while the second term

penalizes the roughness of U(·). The smoothing spline estimator of U(·) is obtained by

minimizing Sλ(U), where λ is determined typically through cross-validation. When

L(U) = D2(U) = U ′′, the minimizer corresponds to a natural cubic smoothing spline,

which is in fact a piecewise cubic polynomial.

The above two smoothing methods essentially regard the mean function U(t) as

a deterministic function and mainly focus on estimation of U(t). In this dissertation,

we take a different perspective , and treat U(t) as the realization or sample path of a

stochastic process. This will enable us to study dynamics of the underlying process,

including how the stochastic process and its derivatives evolve over time, both within

the observation time(through estimation and inference) and also afterwards(through

2



forecasting).

1.1.2 Stochastic dynamic model

A stochastic dynamic model(SDM) refers to a class of hierarchical models, where

observations are sampled from distributions, which depend on an function determined

by some diffusion processes that evolve continuously and stochastically over time. The

SDM consists of two hierarchies: A d-dimensional discrete-time observation process

{Y t}t∈To with To := {tj : t1 < t2 < · · · < tJ} and m-dimensional continuous-time

latent state process {θt}t∈Ts with Ts := {t : t0 ≤ t ≤ tJ}, detailed as follows:

Po : The observation process {Y t}t∈To defined on state space (Rd,B(Rd)) gives

a collection of observations; given latent process θt, Y t is conditionally inde-

pendent of {Y s}s6=t and {θs}s6=t with the conditional distribution

Y t | θt ∼ ft(y | θt, Xo,φo),Y t ∈ Rd (1.2)

where Xo and φo are respectively the covariates and the parameter vector

involved.

Ps : The state process {θt}t∈Ts defined on state space (Rm,B(Rm)) is a latent

diffusion process, which is a Markov process with almost surely continuous

sample paths, governed by a stochastic differential equation(SDE),

dθ(t) = a{θ(t); Xs,φs, t}dt + b{θ(t); Xs,φs, t}dW (t), (1.3)
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where

θ(t) =

[
θ1(t), · · · , θm(t)

]T

,

a{θ(t); Xs, φs, t} =

[
a1{θ(t); Xs,φs, t}, · · · , am{θ(t); Xs, φs, t}

]T

,

b{θ(t); Xs, φs, t} =




b11{θ(t); Xs,φs, t} . . . b1n{θ(t); Xs,φs, t}
...

...

bm1{θ(t); Xs,φs, t} . . . bmn{θ(t); Xs,φs, t}




,

is a n-dimensional independent Wiener process W (t) = [W1(t), · · · ,Wn(t)]T , Xs and

φs are the covariates and parameter vector involved. The elements of θ(t) usually

include a process U(t) and its first to qth order derivatives besides other covariate

processes. The vector of drift terms a{θ(t); Xs,φs, t} and the matrix of diffusion

terms b{θ(t); Xs,φs, t} are assumed to satisfy regularity conditions; see Grimmett

and Stirzaker (2001, Chap. 13) and Feller (1970, Chap. 10).

The SDM can be regarded as the generalization of the continuous-discrete state

space model (Jazwinski, 1970, Chap. 6) by allowing continuous and discrete observa-

tions as well as by including possible covariates. SDM has some similarity to other

modeling approaches, such as state space models (Jones, 1993; Durbin and Koopman,

2001), linear dynamic models (West and Harrison, 1997) and many other diffusion

type models in finance, e.g. the stochastic volatility model (Hull and White, 1987),

but are not identical to them. In the linear dynamic models, both the observations

and states exist at discrete time and the states are specified by conditional densi-

ties. The diffusion type models in finance have both continuous time observation and

states, and the states are usually directly or partially observed.

Estimation and inference for {θt}t∈Ts , φs and φo in SDM is very challenging, due

to the lack of closed form expression for the likelihood function, which involves high-

dimensional integrals, and to the requirement of inferring continuous unknown func-
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tions. To overcome those challenges, we develop Markov Chain Monte Carlo(MCMC)

based Bayesian inference utilizing the Euler approximation and data augmentation.

The estimation methods are described in chapter II.

The advantages of SDM as a modeling approach for functional data analysis in-

clude: i) SDM treats the unknown function as a realization of a stochastic diffu-

sion processes, governed by stochastic differential equations. In this way, we can

investigate not only the mean function nonparametrically but also its dynamics(or

derivatives), that may be of great interest in many applications; ii) Because it is a

fully specified probability model, inference and forecasting can be achieved using an

MCMC approach. In contrast, smoothing techniques are essentially point estimation

methods; iii) SDM is able to model not only smooth functions, but also non-smooth

functions, such as those with structural changes or breakpoints; iv), Covariates can

be incorporated into both the distribution of the observations, and the drift and dif-

fusion terms of the SDE in equation (1.3). Thus, covariate effects can be assessed in

the observation and/or state processes simultaneously.

In this dissertation, we mainly focus on the situation when the observations

{Y t}t∈To are continuous and explore various specific forms of SDEs in (1.3) for dif-

ferent purposes.

1.2 Organization of Dissertation

1.2.1 Organization

Chapter II introduces a new modeling strategy for time series functional data.

We consider the problem of estimating an unknown smooth function. The model

consists of an observation equation for the observation process, an ordinary differen-

tial equation(ODE) and a stochastic differential equation(SDE) for the state process.

The method of smoothing spline, introduced in section 1.1.1, is connected to a spe-
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cial case of this approach. The resulting models offer great flexibility to capture the

dynamic features of functional data, and allows straightforward and meaningful in-

terpretation. The likelihood of the models is derived with Euler approximation and

data augmentation. A unified Bayesian inference method for those models is carried

out via a MCMC algorithm with simulation smoother. The proposed models and

methods are illustrated on some prostate specific antigen(PSA) data, where we use

an Ornstein-Uhlenbeck process to model the rate of changes of PSA and achieve more

precise forecasting.

Chapter III presents a novel semiparametric stochastic approach to model the

rate functions for functional data in a multi-subject setting. The rate functions,

one for each subject, characterize the rate of change of individual profiles, and are

assumed to follow covariate-dependent Gaussian processes, which obey stochastic

differential equations. Consequently, each rate function is expected to be centered on

a parametric function, which may be dependent on the covariates, and nonparametric

departure is allowed from the parametric functional expectation. The profiles for

different subjects are linked to each other, because some parameters in the SDE are

common whereas others are unique and assumed to arise from a mixing distribution.

The proposed approach is flexible to capture the patterns of subject-specific rate of

change, convenient to study the covariate effects on the rate function, and easy for

interpretation of the results. The proposed methods are illustrated by analyzing a

prostate-specific antigen dataset with many subjects and through simulation studies.

Chapter IV proposes a time-varying stochastic position model with an observation

equation and an SDE, where the diffusion term is time-varying. In this way, the model

can approximate the breakpoints in a function. The discretized version of this model

assumes a t-distribution for both the measurement errors and the signal differences.

The discretized model is applied to array comparative genomic hybridization(CGH)

data analysis. The CGH profiles are regarded as functional unknown signals estimated

6



by a MCMC algorithm. Both breakpoints and outliers are identified by a backward

selection procedure. Glioblastoma Multiforme(GBM) data are used to demonstrate

the characteristics of the proposed method. Compared to three other popular meth-

ods, our approach has superior detection ability, which is illustrated on a simulated

dataset and a breast tumor dataset.

Chapter V summarize the results in this dissertation and discusses some future

work.
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CHAPTER II

Stochastic Functional Data Analysis:

A Diffusion Model-based Approach

2.1 Introduction

Conventional nonparametric regression theory concerns primarily the estimation

of a population mean function through kernel smoothing (Fan and Gijbels, 1996)

and spline smoothing techniques (Green and Silverman, 1994). In many practical

settings, not only the mean function but also its derivatives (in general referred to

as dynamics) offer useful insights regarding the underlying mechanism of a physi-

cal or biological process. With the advent of many high-throughput technologies,

functional data analysis has received much attention in the recent statistical liter-

ature(Ramsay and Silverman, 2005), where tremendous challenges have emerged in

statistical methodology development.

This paper presents a new modeling strategy in functional data analysis. Our pri-

mary focus in modeling lies on a system of stochastic differential equations connected

in a hierarchical fashion, in the hope that it not only models the mechanism of the

population mean function but also captures various features of the dynamics of the

mean function. Consequently, we can make statistical inference on both means and

dynamics of the underlying process.
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For example, in the study of prostate specific antigen (PSA), an important biomarker

of prostate cancer, we are not only interested in the PSA level but also the dy-

namics of PSA. Figure 2.1 displays raw data of one patient’s PSA level (panel (a))

and the scaled difference (panel (b)) over time (Proust-Lima et al., 2008b), where

Y (t) = log(PSA(t) + 0.1) and scaled difference is ∆Y
∆t

. It is easy to observe that the

PSA level is largely driven by the behavior of the scaled difference that itself provides

meaningful clinical interpretation. Hence, modeling the process of the scaled differ-

ence properly will facilitate the modeling of the PSA level. However, the connection

between the PSA level and the scale difference cannot be established simply by as-

sociation, but instead by hierarchical models of dynamics, as the scaled difference

may be regarded as the first order derivative of the PSA level. While panel (a) and

panel (b) show the data, by using the model(to be described in section 4.1), we can

make probability statements about features of the curves. For example, in Figure 2.1

panel (c) we show the posterior probability of the time when PSA level reaches its

minimum.

Consider a regression model for functional data of the form:

Y (t) = U(t, ω) + ε(t), ω ∈ Ω, t ∈ To (2.1)

where Ω is the sample space, To is the index set of observation times, defined as

To := {tj : t1 < t2 < · · · < tJ}, and U(· , ω) is an unknown function of interest to be

estimated and ε(t) ∼ N (0, σ2
ε) at each time t. The goal is to estimate the function

U(· , ω) given time series observations, Y o = [Y (t1), Y (t2), . . . , Y (tJ)]T. In this paper,

we develop methods based on diffusion type models for estimation of U(· , ω) and its

derivatives U (p)(· , ω), p = 1, . . . ,m − 1. Here, U(· , ω) is regarded as a sample path

realization of an underlying stochastic process U := U(· , · ) and the observed data is

thus process plus measurement error.

Model (2.1) is useful to model the PSA level of prostate cancer nonparametrically,

9
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Figure 2.1: PSA plots: (a) the raw data; (b) the scaled difference; (c) posterior prob-
ability of minimum of PSA level at interval [tj, tj+1] in SVM-OU
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where U(t, ω) describes the population mean PSA process. In addition, to understand

the dynamics profiles concerning the evolution of the biomarker process, we incorpo-

rate models of rate(or velocity) and/or higher order derivatives into model (2.1). To

proceed, we begin by treating U(t, ω) in model (2.1) as a realization of U(t) := U(t, · ),
which enables us to express U(t) in the form of a stochastic diffusion model. That is,

the stochastic process U satisfies the following ordinary differential equation(ODE),

dm−1U(t)

dtm−1
= V (t), (2.2)

and its (m− 1)th order derivative V (t) is governed by a stochastic differential equa-

tion(SDE), given as follows:

dV (t) = a{V (t),φs}dt + b{V (t),φs}dW (t), t ∈ Ts, (2.3)

where W (t) is the standard Wiener process, φs is the parameter vector and Ts :=

{t : t0 ≤ t ≤ tJ} is a continuous index set. In addition, the initial condition at time

t0 is assumed to be θ(t0) := [U(t0), U
(1)(t0), . . . , U

(m−2)(t0), V (t0)]
T ∼ Nm(0, σ2

0Im).

In this paper, we use continuous time stochastic processes U and V to model the

underlying dynamics of interest. Let V := {V (t, ω) : t ∈ Ts, ω ∈ Ω}, defined on a

probability space (Ω,F ,P). We limit V to a one-dimensional continuous state space

and a continuous index set Ts. Similar definition and limitation hold for U . The

SDE in (2.3) defines a stochastic diffusion process V , which is a Markov process with

almost surely continuous sample paths. The existence and uniqueness of the process

can be shown rigorously; see Grimmett and Stirzaker (2001, Chap. 13) and Feller

(1970, Chap. 10).

The state equations (2.2) and (2.3), along with the observation equation (2.1),

make up a continuous-discrete state space model (CDSSM) (Jazwinski, 1970, Chap. 6).

Although inference methods will be demonstrated for the stochastic velocity model(SVM),
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namely the CDSSM with m = 2, they are applicable to any higher order of m. For

example, m = 3 corresponding to a stochastic acceleration model(SAM). For SVM,

the latent process U(t) represents position, and its first derivative V (t) is the velocity

of U(t). Similarly, in the SAM, the processes θ(t) := [U(t), U (1)(t), V (t)]T repre-

sent the position, velocity and acceleration respectively. Coefficients a{V (t),φs} and

b{V (t), φs} in (2.3) are typically specified according to the objectives of a given study.

The drift term a{V (t),φs} can be interpreted as the instantaneous mean of velocity;

it represents the expected conditional acceleration when V (t) denotes velocity. Like-

wise, b2{V (t),φs} measures the instantaneous variance or volatility of velocity. Two

special cases are considered in this paper. They are, (i) SVM and SAM with Wiener

process V (t), denoted SVM-W and SAM-W, where a{V (t),φs} = 0, b{V (t),φs} = σξ

and φs = σ2
ξ ; (ii) SVM and SAM with Ornstein-Uhlenbeck(OU) process V (t), denoted

SVM-OU and SAM-OU, where a{V (t),φs} = −ρ{V (t) − ν̄}, b{V (t),φs} = σξ and

φs = [ρ, ν̄, σ2
ξ ]

T. These two processes will be discussed in detail in Section 2.

When V (t) follows a Wiener process, as shown in the literature, there exists

an interesting “equivalence” between smoothing splines and Bayesian estimation of

SVM-W(Kimeldorf and Wahba, 1970; Wahba, 1978; Weinert and Sidhu, 1980). By

equivalence, we mean that the two methods give the same estimate of U(t). To

elaborate, let Û(t; σ2
0) := E{U(t) | Y o; σε, σξ, σ

2
0} be the posterior mean of U(t) in

SVM-W . Wahba (1978) showed that Û(t) := lim
σ2
0→∞

Û(t; σ2
0) exists and is the same

as the estimate obtained by the smoothing spline with degree 2m − 1 and 2m − 2

continuous derivatives. Wahba’s estimation method minimizes the penalized sum-of-

squares,
J∑

j=1

[y(tj)− U(tj)]
2 + λPm(U), (2.4)
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where λ = σ2
ε

σ2
ξ

and the roughness penalty Pm(U) is given by

Pm(U) =

∫

Ts

[U (m)(t, ω)]2dt, m = 2, 3, . . . , (2.5)

Kimeldorf and Wahba (1970) and Wahba (1978) have shown the “equivalence” by

treating penalized sum-of-squares (2.4) as the minimal norm optimization problem

in a Reproducing Kernel Hilbert Space, where the kernel is regarded as the variance

covariance function of the stochastic process U in SVM-W ; see also Ansley and Kohn

(1986) for a detailed discussion. In short, the posterior mean of U(t) in SVM-W can

be equivalently obtained by the smoothing spline. Diggle and Hutchinson (1989) and

Kohn and Ansley (1988) found that the equivalence results can hold for more general

covariance matrices than the diagonal matrix of independent measurement errors ε(t).

For the PSA data example in figure 2.1 it is obvious that the scaled difference

is varying around a certain level after about 3 years, which is more consistent with

the behavior of an OU process than a Wiener process, suggesting that the SVM-OU

may fit better. In other applications, the data may demonstrate different patterns,

for example, periodic patterns, which require more flexible models to address those

complicated dynamic features. The diffusion model and the consideration of higher

derivative in (2.2) allow considerable flexibility and the incorporation of various dy-

namic features into the two coefficients a{V (t),φs} ∈ R and b{V (t),φs} ∈ R+. By

this model-based approach, various stochastic processes can be specified for V (t), the

model fitting can be evaluated by likelihood-based model assessment, and forecasting

can also be easily carried out, which is very useful in biomedical and other research.

Note that in this paper we treat the function U(t, ω) in model (2.1) as a sample

path of the stochastic process U . This treatment is different from kernel smoothing

and spline smoothing, where U(t, ω) is regarded as a deterministic unknown func-

tion. We also note that our treatment of U(t, ω) is similar to that considered in
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the Gaussian process models for nonparametric Bayesian data analysis, where the

nonparametric function U(t, ω) is governed by a prior Gaussian process with a mean

function M(t; φ) and a covariance function C(t, t′; φ) with hyperparameters φ (Muller

and Quintana, 2004; Rasmussen and Williams, 2006). In term of statistical estima-

tion and inference, our method offers the estimation and inference for parameters of

the stochastic differential equation from noisy data. We note that this differs from

the approaches to parameters estimation for models based on ordinary differential

equations as recently developed by, for example, Ramsay et al. (2007) and Liang and

Wu (2008).

The rest of the paper is organized as follows. Section 2.2 concerns two special

cases of the proposed stochastic velocity model, one with the Wiener process V (t)

and the other with the OU process V (t). For each cases, we give model interpretations

and discuss several interesting relationships. Section 2.3 develops Bayesian inference

for stochastic functional data analysis models, illustrated by the SVM, where the

likelihood is derived using Euler approximation and data augmentation. In Section

2.4, the proposed models and methods are applied to estimate the PSA profile from

prostate cancer data. Concluding remarks are given in Section 2.5. Technical details

are included in the Appendix.

2.2 Examples of stochastic velocity model

We focus on two SVMs, where velocities are modelled by specific forms for the

SDE. The first is the SVM-W, for which we will point out its connections to the

problem of model adequacy. The second is the SVM-OU, in which we examine its

relationship to the Wiener process and AR(1) model. For both special cases, we also

give the interpretation of the parameters φs. Similar interpretations can be applied

to the SAM, substituting the acceleration for the velocity.
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2.2.1 Wiener process for velocity

In SVM-W, V (t) follows the Wiener process, the instantaneous variance σ2
ξ mea-

sures the disturbance of velocity and influences the smoothness of U(t). With the

smaller the σ2
ξ , V (t) will appear less wiggly and hence U(t) will be smoother. If

σξ = 0, the velocity V (t) is constant over time, so U(t) becomes a straight line.

Integrating (2.2) and (2.3) for m = 2, a{V (t),φs} = 0 and b{V (t), φs} = σξ, we

have

U(t) = U(t0) +

t∫

t0

V (s) ds = U(t0) + V (t0)(t− t0) + σξ

t∫

t0

W (s) ds, (2.6)

V (t) = V (t0) + σξW (t). (2.7)

The velocity V (t) follows the Wiener process starting at V (t0). The position U(t)

follows a linear trend with deviation governed by the integrated Wiener process,

σξ

∫ t

0
W (s) ds.

2.2.2 Ornstein-Uhlenbeck process for velocity

The OU process originated as a model for the velocity of a particle suspended in

fluid (Uhlenbeck and Ornstein, 1930). The velocity V (t) takes the form:

dV (t) = −ρ{V (t)− ν̄}dt + σξdW (t), t ∈ Ts, (2.8)

where ρ ∈ R+, ν̄ ∈ R, and σξ ∈ R+. In contrast to the Wiener process, OU process

is a stationary Gaussian process with stationary mean ν̄ and variance σ2
ξ/2ρ. σ2

ξ has

the same interpretation as that of the Wiener process. The instantaneous mean or

the expected conditional acceleration −ρ{V (t) − ν̄} describes how fast the process

moves. The larger the ρ, the more rapidly the process evolves toward ν̄. The farther

V (t) departs from ν̄, the faster the process moves back towards ν̄.
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If the data are equally spaced, namely δj := tj − tj−1 = δ, V (t) coincides with the

first order autogreession(AR(1)) process with autocorrelation exp(−ρδ). The converse

also holds; AR(1) converges weakly to the OU process if δj → 0 (Cumberland and

Sykes, 1982).

2.3 Estimation and Inference

Statistical inference for CDSSM is challenging because we consider a vector of

stochastic processes θ(t) := [U(t), U (1)(t), . . . , U (m−2)(t), V (t)]T simultaneously. This

leads to a complex likelihood function, which may not even exist in closed form.

Since an analytical solution of the SDE is rarely available, the resulting conditional

distribution of θ(t) given θ(t′), for t′ < t, which we call the exact transition density,

does not have a simple closed form expression. Thus exact inference for the latent

processes and its parameters is not generally possible. Hence, a numerical approx-

imation will usually be needed. We will use the Euler approximation of the SDE

to approximate the transition density, which enables us to obtain a simple closed

form of the likelihood. To alleviate the errors associated with this approximation, it

may be helpful to augment the observed data by adding virtual data at extra time

points (Tanner and Wong, 1987), so that the interval between adjacent time points

is shorter and a preciser approximation is achieved. Even when the exact transition

density exists, using the approximated one will significantly simplify the estimation

of parameters φs. A case in the point is the SVM-OU.

The resulting likelihood with this approximate method involves high-dimensional

integrals, and we adopt a Bayesian approach in which we use Markov Chain Monte

Carlo (MCMC, Geman and Geman 1987, Gelfand and Smith 1990, Gilks et al. 1996)

to estimate U(t), V (t) and the parameters (σ2
ε , φs) , with the assistance of the simu-

lation smoother(Durbin and Koopman, 2002b).

Different approaches for inference for discretely observed diffusions are reviewed
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by Beskos et al. (2006). These includes numerical approximations to obtain likelihood

functions (Aı̈t-Sahalia, 2002) and methods based on iterated filtering (Ionides et al.,

2006). The idea of Euler approximation has been applied to the stochastic volatility

model in the finance literature. Pedersen (1995) applied the approximation and data

augmentation to facilitate Monte Carlo integration and it was further developed by

Durham and Gallant (2002). Bayesian analysis of the diffusion model, especially the

stochastic volatility model, has been developed by many authors, including Elerian

et al. (2001), Eraker (2001), and Roberts and Stramer (2001). Sorensen (2004) gave

a survey on inference methods for stochastic diffusion models in finance. Distinctions

between the models considered in financial statistics and the models considered in

this paper are that we specify an observation equation to address the measurement

errors. Most methods of inference for diffusion process do not extend easily when

there is measurement errors (Beskos et al., 2006). However, MCMC methods can be

extended. A further distinction is that we consider the case m > 1 for the ODE, and

that we apply the ODE and SDE to model various biomedical phenomena via U(t)

and V (t). Thus, the SVM is focused on estimating the unknown sample paths of

the latent stochastic process U(t) and V (t), whereas the diffusion models commonly

used in the finance literature do not include an observation equation for measurement

errors and typically focus on estimating volatility or variance of the process of interest,

for example, derivative securities.

2.3.1 Likelihood and Euler approximation

To develop Bayesian inference with an MCMC algorithm, we begin with the like-

lihood of the SVM:

[yo | φo, φs, θ0] =

∫ ∫
[yo | U o,V o,φo][U o,V o | θ0,φs]dU odV o,
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where U o := [U(t1), U(t2), . . . , U(tJ)]T, V o := [V (t1), V (t2), . . . , V (tJ)]T, and yo :=

[y(t1), y(t2), . . . , y(tJ)]T are vectors of the latent states and observations at t ∈ To.

θ0 = [U(t0), V (t0)]
T is the unknown initial vector of the latent states, and [· | ·]

denote conditional density. The conditional density of the observations is given by

[yo | U o,V o,φo] =
J∏

j=1

φ(y(tj) | U(tj), σ
2
ε),

since the observations are mutually independent given the latent states and follow

the normal distribution according to model (2.1), where φ(· | UG, σ2
G) is the normal

density function with mean UG and variance σ2
G. In principle, the density of latent

states U o and V o can be written as:

[U o,V o | θ0,φs] =
J∏

j=1

[ U(tj), V (tj) | U(tj−1), V (tj−1),φs],

due to the Markov property. The exact transition density [U(tj), V (tj) | U(tj−1), V (tj−1),φs)

exists in a closed form only for few models with simple SDEs. Even in those cases,

the exact transition density may have complex form. For SVM-OU,

[U(tj), V (tj) | U(tj−1), V (tj−1),φs] = N2(mOU , V OU)

with

mOU =

[
U(tj−1) + ν̄δj + {V (tj−1)− ν̄}

{
1− exp(−ρδj)

ρ

}
, ν̄ + {V (tj−1)− ν̄} exp(−ρδj)

]T

,

V OU = σ2
ξ




δj

ρ2 + 1
2ρ3{−3 + 4 exp(−ρδj)− exp(−2ρδj)} 1

2ρ2{1− 2 exp(−ρδj) + exp(−2ρδj)}
1

2ρ2{1− 2 exp(−ρδj) + exp(−2ρδj)} 1
2ρ
{1− exp(−2ρδj)}


 ,

the proof of which is in Appendix C. When using data augmentation, we may take

the component wise first-order Taylor approximation of mOU , V OU with respected to
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δj and get

m̃OU = [U(tj) + V (tj)δj, V (tj)− ρ{V (tj)− ν̄}δj]
T, (2.9)

Ṽ OU = σ2
ξ




0 0

0 δj


 . (2.10)

We note that these are the same expressions as those obtained by applying Euler

approximation to SVM-OU. Thus although m̃OU and Ṽ OU as given in (2.9) and

(2.10) are not strictly necessary for calculating [U o,V o | θ0, φs] when mOU and V OU

are available, they however lead to a simpler form for parameter ρ, which is much

easier to be updated and converges much faster in the following MCMC algorithm.

For a general SDE, e.g. (2.3), the forms for U(t) and V (t) are:

U(t) = U(t0) +

t∫

t0

V (s)ds,

V (t) = V (t0) +

t∫

t0

a{V (s),φs}ds +

t∫

t0

b{V (s),φs}dW (s), t ∈ T,s

where [U(tj), V (tj) | U(tj−1), V (tj−1), φs] is implicitly defined but in general is not

available analytically. To deal with this difficulty, we use the Euler approximation to

obtain a numerical approximation of the transition density in the general SDE case.

The Euler approximation is a discretization method for the SDE through the

first-order strong Taylor approximation (Kloeden and Platen, 1992). The resulting

discretized versions of the ODE and the SDE in (2.2) and (2.3) are given by, respec-

tively,

U (J)(tj) = U (J)(tj−1) + V (J)(tj−1)δj, (2.11)

V (J)(tj) = V (J)(tj−1) + a{V (J)(tj−1), φs}δj + b{V (J)(tj−1),φs}ηj, tj ∈ To (2.12)
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where δj := tj − tj−1 and ηj := W (tj)−W (tj−1) ∼ N (0, δj). For t ∈ [tj−1, tj], a linear

interpolation takes the form

Ṽ (J)(t) = V (J)(tj−1) +
t− tj−1

tj − tj−1

(V (J)(tj)− V (J)(tj−1)), t ∈ Ts.

A similar linear interpolation is applied to Ũ (J)(t). Bouleau and Lepingle (1992)

showed that under some regularity conditions, with constant C, the Lp-norm of the

discretization error is bounded and given by:

|| sup
t∈Ts

| V (t)− Ṽ (J)(t) | ||p≤ C

(
1 + log J

J

)1/2

.

This indicates that if J is sufficiently large, which can be achieved when the maximum

of δj is sufficiently small for fixed interval [t1, tJ ], then Ṽ (J)(t) will be close to its

continuous counterpart V (t) with arbitrary precision.

In the rest of this paper, we assume the δj is sufficiently small and the approxima-

tion is well achieved. To simplify notation. we replace Ṽ (J)(t) with V (t) and Ũ (J)(t)

with U(t), for t ∈ Ts. Under those assumptions, the exact transition density, if it

exists, is well approximated by the approximate transition density, as shown in the

SVM-OU. Note that equations (2.11) and (2.12) imply the approximate transition

densities of U(t) and V (t) are Gaussian for t ∈ To, because they are linear combi-

nations of ηj, U(t0) and V (t0), which are all Gaussian random variables. Under the

Euler approximation, [U o,V o | θ0,φs] degenerates to ≺ V o | V (t0),φs Â because of

equation (2.11), where ≺ · | · Â denotes the approximate conditional density. Conse-

quently, the likelihood based on the approximated processes U(t) and V (t) for t ∈ To

is given by

≺ yo | φo,φs, V (t0) Â=

∫
[yo | V o,φo] ≺ V o | V (t0),φs Â dV o,
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where

[yo | V o,φo] =
J∏

j=1

φ(y(tj) | U(tj), σ
2
ε),

≺ V o | V (t0), φs Â =
J∏

j=1

≺ V (tj) | V (tj−1),φs Â,

and

V (tj) | V (tj−1), φs ∼ N (
V (tj−1) + a{V (tj−1),φs}δj, b2{V (tj−1),φs}δj

)
.

In a real data analysis, the Euler approximation may not always achieve the desired

precision, simply because max(δj) for the observations is not sufficiently small. A

solution to this is data augmentation as described in the next subsection.

2.3.2 Data augmentation

If observational time intervals are not short enough, the Euler approximation will

not work well, because linear interpolation of V (t) and U(t) for t ∈ To is not accurate

enough. A solution to reduce the approximation error is simply to add sufficiently

dense virtual data in each time interval and consider the latent states at these times

in addition to those at t ∈ To. The corresponding values of Y (·) at added times can

be regarded as missing data. They will be sampled as part of the MCMC scheme in

the Bayesian analysis.

To carry out data augmentation, we add Mj equally spaced data at times tj−1,1,

. . . , tj−1,Mj
over a time interval (tj−1, tj]. Denote δMj

:=
δj

Mj+1
. The resulting aug-

mented index set is Tao = {tj,m : j = 0, 1, . . . , J,m = 0, 1, 2, . . . , Mj,MJ = 0}. Note

that Tao = To, if Mj = 0 for all j. The observed data and the augmented data are de-

noted by yo := [y(t1,0), y(t2,0), . . . , y(tJ,0)]
T and ya := [yT

a,0,y
T
a,1, . . . , y

T
a,J−1]

T, respec-

tively, where ya,j := [y(tj,1), y(tj,2), . . . , y(tj,Mj
)]T. We also denote V := [V T

1 , V T
2 , . . . , V T

J ]T
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where

V j := [V (tj,0), V (tj,1), . . . , V (tj,Mj
)]T. Similar notation is applied to U and U j. For

ease of exposition, we let yj,m := y(tj,m), and similarly for other variables.

If the exact transition densities exist, the augmented likelihood is

[yo | φo,φs,θ0] =

∫ ∫ ∫
[yo,ya | U , V ,φo][U ,V | θ0,φs] dya dU dV ,

where

[yo,ya | U ,V , φo] =
J∏

j=0

Mj∏
m=0

φ(yj,m | Uj,m, σ2
ε),

[U ,V | θ0,φs] =
J∏

j=1

Mj+1∏
m=1

[ Uj−1,m, Vj−1,m | Uj−1,m−1, Vj−1,m−1,φs].

If the exact transition densities do not exist, the discretized versions of the ODE and

the SDE are modified from t ∈ To to t ∈ Tao given as follows:

Uj−1,m = Uj−1,m−1 + Vj−1,m−1δMj
,

Vj−1,m = Vj−1,m−1 + a{Vj−1,m−1,φs}δMj
+ b{Vj−1,m−1,φs}ηj−1,m,

where t0,0 := t0, tj−1,Mj+1 := tj,0, and ηj−1,m := W (tj−1,m)−W (tj−1,m−1) ∼ N (0, δMj
).

The approximate transition density and the corresponding likelihood are given in

Section 2.3.3.

2.3.3 Bayesian inference

MCMC enables us to draw samples from the joint posterior [θ0,V ,φo,φs | yo],

or in the case of data augmentation, [θ0, V ,φo,φs,ya | yo]. We use the approximate

transition density to obtain the likelihood and apply the data augmentation technique

whenever necessary.
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MCMC draws samples from [θ0,V ,φo, φs,ya | yo] by iteratively simulating from

each full conditional density of θ0,V , φo,φs, and ya. The joint posterior density is

proportional to the product of the likelihood and prior densities:

[θ0,V ,φo, φs,ya | yo] ∝ [yo | θ0,V ,φo,φs][ya | θ0,V ,φo, φs] ≺ V | θ0, φs Â

× [θ0][φs][φo],

where

[yo | θ0,V , φo, φs] =
J∏

j=1

φ(yj,0 | Uj,0(θ0,V ),φo),

[ya | θ0,V , φo, φs] =
J−1∏
j=0

Mj∏
m=1

φ(yj,m | Uj,m(θ0,V ),φo),

≺ V | θ0,φs Â =
J∏

j=1

Mj+1∏
m=1

≺ Vj−1,m | Vj−1,m−1,φs Â,

and Vj−1,Mj+1 = Vj,0 . The approximate transition density ≺ Vj−1,m | Vj−1,m−1, φs Â
with augmented data is given by,

≺ Vj−1,m | Vj−1,m−1,φs Â:=

φ(Vj−1,m | Vj−1,m−1 + a{Vj−1,m−1,φs}δMj
, b2{Vj−1,m−1,φs}δMj

),

and [θ0], [φs], [φo] are non-informative prior densities. See the Appendix A for spec-

ification of the prior distributions and details of MCMC algorithm. Note that we use

the simulation smoother(Durbin and Koopman, 2002b) to achieve an efficient MCMC

algorithm. In the simulation smoother, the latent states are recursively backward

sampled in blocks instead of one state at a time. This leads to low autocorrelation

between successive draws, and hence faster convergence.

A desirable property of this approach is the ease of deriving forecasts of states at
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future times, which is of great interest in some studies.

2.3.4 Posterior forecasting with SVM

To forecast the k-step future latent state θf
J+k given the observations yo, we

simulate θf
J+k from the following posterior forecasting distribution,

[θf
J+k | yo] =

∫ ∫ ∫
[θf

J+k | ya,yo,φs,φo][ya,φs, φo | yo] dya dφs dφo,

where ya,φs and φo are drawn from [ya,φs,φo | yo] by the MCMC algorithm. Given

ya, φs and φo, we first discretize the SVM. For SVM-OU, this will lead to equations

(A.1) and (A.2) in Appendix A. Let θJ denote the latent state of the last observation.

Then, E(θJ) = aJ and Var(θJ) = RJ are obtained via the Kalman filter. Moreover,

it follows from (A.2) that the mean and variance of θf
J+k can be recursively obtained

as follows:

aJ+k = GJ+k−1aJ+k−1

RJ+k = GJ+k−1RJ+k−1G
T
J+k−1 + ΣωJ+k−1

, k = 1, 2, . . . ,

where GJ+k−1 and ΣωJ+k−1
are specified in Appendix A for the SVM-OU and SVM-

Ws, respectively. Finally, we draw θf
J+k from θf

J+k | ya,yo,φs,φo ∼ N (aJ+k, RJ+k).

By this way, the forecasts of states at future times take the variation of parameter

draws into consideration.

2.4 Application

We now demonstrate an application where the diffusion models are used to inves-

tigate dynamic features of the PSA profile for a prostate cancer patient. We fit the

SVM and SAM with the Wiener process and the OU process V (t), respectively. We
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also forecast the future profile of PSA for both models. The models are evaluated by

the DIC model selection criterion(Speigelhalter et al., 2003). DIC = D̄ + PD, where

D̄ is posterior mean of the deviance and PD is the effective number of parameters.

DIC has been shown asymptotically to be a generalization of Akaikes information

criterion. The smaller the DIC value indicates better model-fitting. For each appli-

cation, the posterior draws are from a 400, 000 iteration chain with 200, 000 burn-in,

and every 100th draw is selected. Convergence was assessed by examination of trace

plots and autocorrelation plots.

2.4.1 Prostate specific antigen

PSA is a biomarker used to monitor recurrence of prostate cancer after treatment

with radiation therapy. When PSA remains low and its rate varying around zero with

low volatility, the tumor is stable and the patient may be cured. If PSA increases

dramatically with high rate, it is a strong sign of the tumor re-growing and that the

treatment did not cure the patient. Therefore, PSA has strong prognostic significant

and is important for making clinical decisions. We want to estimate dynamics of

the PSA marker, including PSA level, rate and the volatility of rate. Yu et al.

(2008) applied a joint longitudinal survival-cure model to make individual prediction

of cancer recurrence, where the “true” PSA trajectory is specified by a nonlinear

exponential decay and growth model(Zagars and Pollack, 1993),

PSA(t) = r1 exp(−r2t) + r3 exp(r4t),

where r1,r2,r3 and r4 are parameters. We analyzed the PSA profile of one patient

using the SVM and SAM model to estimate PSA(t) nonparametrically. For these data

illustrated in the introduction, the average time interval between two observations was

0.4 years with minimum 0.016 and maximum 0.731 years. we added 32 virtual data
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points to reduce the time span between any pairs of consecutive time points to less

than 0.25 year.

Table 2.1 and 2.2 shows the means and quantiles of the SVM and SAM parameters

from the Wiener and the OU process V (t), respectively. Figure 2.2 and 2.3 shows

the posterior means and the corresponding 95% credible intervals of the latent states

for SVM and SAMs. Here, the four models demonstrate similar trends of the PSA

level. However, the rates in the SVMs fluctuates with higher volatility, compare

to the SAMs. In addition, there are the non-zero instantaneous mean terms in the

SVM-OU and SAM-OUs, whose rates evolve more stably than those in the models

with Wiener process. The SVM-OU gives the smallest DIC, which indicates the best

model fitting. In this model, the posterior mean of ν̄ is 0.385 with 95% credible

interval [0.143, 0.626]. This stable and clearly positive rate after year 2.2 is a strong

indicator of prostate cancer recurrence.

Figure 2.4 illustrates the forecasting of the PSA latent states for the next 3 years,

starting from year 11.2, by SVM-W and SVM-OU. The future states are sampled

every 0.25 years and then linearly interpolated, from the posterior forecasting distri-

bution given in Section 3.4. The SVM-OU gives a forecast with narrower credible

intervals than the SVM-W. This result seems clinically more sensible, because several

studies, including ours presented in Section 4.2, have found that the rate of PSA fol-

lows a stationary process. In contrast, Wiener process corresponds to a nonstationary

process for the rate of PSA, resulting in an unbounded variance of the forecast over

time. This lacks relevant clinical interpretation. The comparison in the forecasts

indicates that specification of the latent process is crucial for adequate forecasting,

even though their estimates of the mean function are quite similar. A similar phe-

nomenon has been reported by Taylor and Law (1998) in the linear mixed model of

CD4 counts, where the covariance structure matters for individual level predictions,

although it affects little the estimation of fixed effects.
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Figure 2.2: PSA: Plots of data points(◦), posterior means(—) and 95% credible inter-
vals(gray shades) for the SVM with the Wiener process and OU process,
respectively. In the graph the upper panels show the rate, V (t), and the
lower panels show the level, U(t).
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Figure 2.3: PSA: Plots of data points(◦), posterior means(—) and 95% credible inter-
vals(gray shades) for the SAM with the Wiener process and OU process,
respectively. In the graph, the upper panels show the acceleration V (t),
the middle panels show the rate U̇(t), and the lower panels show the level,
U(t).
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Table 2.1: PSA data:Posterior mean and quantiles for the SVMs.
Wiener Process OU Process

D̄ = −45.1757, PD = 12.303, DIC = −32.873 D̄ = −45.935, PD = 10.658, DIC = −35.277
Mean SD 2.5% 50% 97.5% Mean SD 2.5% 50% 97.5%

σ2
ε 0.014 0.009 0.003 0.012 0.036 0.012 0.005 0.005 0.012 0.024

σ2
ξ 0.961 0.589 0.297 0.809 2.548 0.177 0.181 0.037 0.122 0.682

ν̄ 0.385 0.124 0.143 0.382 0.626
ρ 1.150 0.271 0.756 1.106 1.798

Table 2.2: PSA data:Posterior mean and quantiles for the SAMs.
Wiener Process OU Process

D̄ = −34.812, PD = 8.985, DIC = −25.827 D̄ = −38.867, PD = 6.213, DIC = −32.654
Mean SD 2.5% 50% 97.5% Mean SD 2.5% 50% 97.5%

σ2
ε 0.018 0.007 0.009 0.017 0.036 0.015 0.005 0.008 0.015 0.028

σ2
ξ 0.386 0.408 0.074 0.275 1.327 0.011 0.095 0.000 0.002 0.043

ν̄ −0.119 0.048 −0.193 −0.122 −0.004
ρ 0.741 0.170 0.573 0.723 0.990

2.5 Discussion

Diffusion type models are widely applied in areas such as finance, physics and

ecology. However, other than through the connection with the smoothing spline, they

have not played a major role in functional data analysis or nonparametric regression.

In this paper we develop a framework that sheds light on more general diffusion models

to be used in functional data analysis. Unlike in some applications where the form of

the diffusion model is determined by the context, we specify a general form based on

an ODE, a SDE and measurement error. The key advantage of the proposed diffusion

model is that is addresses not only the mean function nonparametrically but also its

dynamics, which are also of great interest in many application. Based on this model

we adapt and develop existing ideas for estimation and inference for diffusion models.

An additional attractive feature of this stochastic model approach to functional data

analysis is that forecasting can be easily implemented.

As noted above, the SVM with the Wiener process corresponds to the smoothing

spline with m = 2. If no augmented data are involved, the model can be rewritten as a

linear mixed model for both situations of exact and approximate transition densities.
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As shown in the Appendix B, when data are equally spaced, the latter case is identical

to a linear spline model with truncated line function basis (Ruppert et al., 2003). In

this sense, the linear spline model can be regarded as a numerical approximation of

the smoothing spline. In addition, with no data augmentation, one can easily fit the

SVM with the Wiener process using existing software for the linear mixed model.

A number of extensions of the SVM and SAM are possible. Generalizing SVM

and SAM to analyze discrete-valued outcomes is of interest. For the SVM, we have

an explicit expression for the observation equation given by:

Y (tj) = U(tj) + ε(tj)

=




1

0




T 


U(tj)

V (tj)


 + ε(tj)

= F Tθ(tj) + ε(tj), j = 1, 2, . . . , J.

The observation equation can be expressed as,

d Φ{Y (t) | F Tθ(t), σε}, t ∈ To, (2.13)

where Φ(· | UG, σG) is the normal CDF with mean UG and standard deviation σG.

Then, (2.13) can be extended to,

d F{Y (t) | θ(t), φo},

where one specifies the corresponding observation distribution F in the exponential

family, with state equations (2.2) and (2.3) unchanged.
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CHAPTER III

Semiparametric Stochastic Modeling of

the Rate Function in Longitudinal Studies

3.1 Introduction

This chapter focuses on semiparametric stochastic modeling of rate functions for

functional data in a multi-subject setting, where the data consists of a set of subjects,

and for each subject, the observations are discrete samples from a curve with added

measurement errors. The rate function describes the functional rate of change or

slope with respect to time, a quantity which has been recently of great interest in

longitudinal biomedical studies (Mungas et al., 2005; Lloyd-Jones et al., 2007; Strasak

et al., 2008; Kariyanna et al., 2009). For example, from subject-matter knowledge it

may be the rate of change, rather than the level of some biomarker, that can explain

and predict the disease outcomes. A challenge in this research is to model the rate

function without making a strong parametric assumption. Further challenges include

modeling the rate functions across subjects as well as a function of the covariates of

interest.

Our development has been largely motivated by a longitudinal study in prostate

cancer patients (Proust-Lima et al., 2008a), where prostate-specific antigen(PSA) pro-

files were collected for patients who received external beam radiation therapy(EBRT).
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PSA is roughly proportional to the prostate tumor size, and its rate of change has

been shown to be associated with the recurrence of prostate cancer (Sartor et al.,

1997). Figure 3.1(a) shows the log-transformed PSA level over time after EBRT

treatment for 50 selected patients, and Figure 3.1(b) illustrates individual empiri-

cal rates of change, one for each subject. Figure 3.1(b) suggests that the individual

rate of change in PSA follows roughly a common pattern. That is, it begins with

a negative value caused by the EBRT, decreases over time in magnitude when the

rate of tumor shrinkage gets lower, and eventually reaches a certain stable level. It is

also apparent that rates of change vary considerably from this common pattern. For

example, for the subject highlighted in black, his empirical rate of change fluctuates

around zero and his PSA level appears very different from the others. Hence it is

desirable to model the rate of change semiparametrically by incorporating empirical

evidence or prior knowledge through a parametric function of time while accounting

for deviation from the common pattern nonparametrically. Additionally, it is clear

that for some subjects the long term stable rates of change are near zero, while for

others they are positive. It is thus appealing not only to model a common stable

rate of change across subjects but also to let it follow a distribution, say a normal

distribution with its mean depending on some baseline covariates. This flexibility will

benefit the forecasts of future observations.

A number of methods have been used to study the rate of change in longitudinal

studies. A popular approach is through a parametric linear mixed model (Laird

and Ware, 1982; Diggle et al., 2002; Verbeke and Molenberghs, 2009), for example

the random intercept and slope mixed model for disease progression (Zhang et al.,

2008). This model assumes the subject’s mean function follows a straight line with

constant rate of change, which in turn is dependent on the covariates. In contrast to

parametric models, the mean function have be modeled nonparametrically (Rice and

Silverman, 1991; Wang and Taylor, 1995; Zeger and Diggle, 1994; Zhang et al., 1998;
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Figure 3.1: PSA plots of (a) the raw data, (b) the empirical rate of change, which is

defined as
∆Yij

∆tij
=

Yij−Yi,j−1

tij−ti,j−1
, for the give subject i with observation Yij at

time tij. All profiles are plotted as the gray solid lines, except one profile
highlighted in black color.

Verbyla et al., 1999). Consequently, the resulting rate function, as the first order

derivative of the mean function, does not have any parametric form, and usually

it is not dependent on covariates. Additionally, in a time-varying coefficient model

(Hastie and Tibshirani, 1993; Hoover et al., 1998) or functional mixed model (Guo,

2002; Morris and Carroll, 2006), the mean function Ui(t) of the ith subject is specified

as Ui(t) =
∑K

k=0 Xikβk(t) and Ui(t) = Xi0β0(t) + Xi1βi1(t), respectively. Hence, Ui(t)

is a linear combination of several arbitrary smooth functions βk(t) or the summation

of smooth functions β0(t) and βi1(t), with covariates Xik as the weights. As the

result, the rate function depends on covariates through linear combinations. Thus

there seems to be a need for a model that allows flexible relationships between the

rate function and covariates. Moreover, note that except for a few approaches (Qin

and Guo, 2006; Welham et al., 2006), nonparametric approaches seldom incorporate

any prior knowledge from the subject-matter science, if available, in the modeling of
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the shape of the rate function.

Our goal is to develop a semiparametric stochastic model for the analysis of

the rate function, which is called in this paper a semiparametric stochastic velocity

model(SSVM). A key feature of SSVM is to utilize a stochastic process as a prior for

the rate function, in a similar spirit to the work of Wahba (1978). Formally, for each

rate function Vxi
(t) ∈ R with subject i ∈ N = {1, 2, . . . , n} and time t ∈ Ts = [0,∞),

its prior is assumed to be a Gaussian process, conditional on xi = (xi0, xi1, . . . , xip)
T,

the vector of covariates for the ith subject. As an important special case of the pro-

posed SSVM, we consider Vxi
(t) = fxi

(t)+σξWi(t), with fxi
(t) having a pre-specified

parametric functional form dependent on covariates xi, and σξWi(t) a scaled stan-

dard Wiener process. Hence, E{Vxi
(t)} = fxi

(t) implies that Vxi
(t), the rate function

of the ith subject, is expected to be centered about fxi
(t), while the second term

σξWi(t) allows deviations from the parametric functional expectation fxi
(t).

The remainder of the chapter is organized as follows. Section 3.2 presents first the

model and then is devoted to an important special case with the Ornstein-Uhlenbeck

process as the prior for the rate function. Section 3.3 develops MCMC based methods

for posterior inference and forecasting. Section 3.4 applies the methods to analyze the

data of PSA profiles. Section 3.5 presents simulation results to evaluate and compare

the performance of the proposed method with other existing methods. The chapter

concludes with a discussion in Section 3.6.
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3.2 Semiparametric Stochastic Velocity Model

3.2.1 Model Specification

Suppose that Yi(tij), j = 1, 2, . . . ,mi, i = 1, 2, . . . , n, is the response of the ith

subject at time tij and satisfies the following hierarchical model, SSVM:

Yi(t) = Uxi
(t) + εi(t), t ∈ Tio = {tij : ti1 < ti2 < · · · < timi

}, (3.1)

dUxi
(t) = Vxi

(t)dt, t ∈ Ts = [t0,∞), (3.2)

dVxi
(t) = a{Vxi

(t); xi,φi}dt + b{Vxi
(t); xi,φi}dWi(t), t ∈ Ts, (3.3)

where Uxi
(t) is the mean function for the ith subject’s outcome curve , Vxi

(t) is the

corresponding rate function and Wi(t) denotes the standard Wiener process. Note

that in this specification, although the mean function is defined at continuous times

Ts, it is observed at discrete times Tio only and is subject to measurement error.

Equation (3.3) may be regarded as a prior for the rate function Vxi
(t), in which the

behavior of Vxi
(t) is governed by the stochastic differential equation(SDE), with drift

term a{Vxi
(t); xi,φi} and diffusion term b{Vxi

(t); xi, φi}, where xi and φi are the

covariate vector and subject-specific parameter vector. We assume that the initial

values [Uxi
(t0), Vxi

(t0)]
T iid∼ N2(0, σ

2
0I2) with large value of variance σ2

0 to make it

non-informative, and that the measurement error εi(t)
iid∼ N (0, σ2

ε). Here Ik is the

k × k identity matrix and Nk(m,Σ) denotes the k-dimensional normal distribution

with mean vector m and covariance matrix Σ. Furthermore, [Uxi
(t0), Vxi

(t0)]
T, εi(t)

and Wi(t) are assumed mutually independent.

The SDE in equation (3.3) gives rise to a general class of Markovian Gaussian

processes (Feller, 1970; Grimmett and Stirzaker, 2001). In our model, this stochastic

process is considered as the prior for the rate function Vxi
(t). According to the specific

research interests or contexts of a given study, we can choose different forms for
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a{Vxi
(t); xi,φi}, which measures the instantaneous mean or the expected conditional

acceleration, and for b2{Vxi
(t); xi,φi}, which reflects the instantaneous variance of

the rate process. In particular, we have the SSVM-W, with a{Vxi
(t); xi,φi} = 0

and b{Vxi
(t); xi,φi} = σξ, and the prior for Vxi

(t) is the Wiener process. Thus the

resulting mean function takes the form Uxi
(t) = Uxi

(t0)+Vxi
(t0)(t−t0)+σξ

∫ t

t0
W (s)ds,

which is the partially integrated Wiener process leading to a smoothing spline (Wahba,

1978; Wecker and Ansley, 1983; Ansley and Kohn, 1986) for a given subject. Note

that this prior is independent of covariates.

For the PSA data analysis given in Section 3.4, we specify a{Vxi
(t); xi,φi} =

−ρ{Vxi
(t) − ν̄i(xi, β)} and b{Vxi

(t); xi,φi} = σξ. This specification corresponds to

an Ornstein-Uhlenbeck(OU) process for Vxi
(t), and the resulting rate function is given

by Vxi
(t) = fxi

(t) + σξWi(t) = Vxi
(t0)−

∫ t

t0
ρ{Vxi

(s)− ν̄i(xi,β)} ds + σξWi(t). More

details and properties of the OU process can be found in Section 3.2.2 below. We

refer to this specification as SSVM-OU. For the PSA data analysis, it is of interest to

estimate the stable rate ν̄i(xi, β), since Vxi
(t) will eventually stabilize and fluctuate

around the level given by ν̄i(xi, β), which describes the long term rate of tumor

growth after radiation treatment. In addition, to address the relationship between

the long term tumor growth rate ν̄i(xi, β) and the patients’ baseline characteristics,

we propose a linear model ν̄i(xi,β) = νi + xT
i β, where β = (β0, β1, . . . , βp)

T is the

vector of fixed effects parameters and νi
iid∼ N (0, σ2

ν) are random effects. This subject-

specific SSVM-OU is very useful to understand the dynamics of tumor growth, to

assess the effect of coefficients, and to predict a patient’s future PSA values using the

baseline covariate information.

3.2.2 The OU and IOU Processes

The OU process was first proposed as a physical model for the velocity of a particle

suspended in a fluid (Uhlenbeck and Ornstein, 1930). It describes a homeostasis sys-
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tem that fluctuates around some stable level and has been applied in biology (Trostab

et al., 2009), finance (Nicolato and Venardos, 2003) and engineering (Kulkarni and

Rolski, 2009), among many others. In the statistics literature, Aalen and Gjessing

(2004) studied the first-passage time of an OU process, and Taylor and Law (1998)

modeled the serial correlation in a linear mixed model by an integrated OU(IOU)

process with mean zero. This process is particularly suitable for the PSA profiles

considered in this paper, where the rate function of tumor growth reaches the stable

level that may depend on baseline covariates.

Now we present some properties for both the OU and IOU processes. For ease of

exposition, we suppress the subject index i in the discussion. Let Uj := U(tj) and

Vj := V (tj). The OU and IOU processes are given by, respectively,

dU(t) = V (t)dt, (3.4)

dV (t) = −ρ{V (t)− ν̄}dt + σξdW (t). (3.5)

Theorem 1. For IOU and OU processes at time tj, conditioned on the values at time

tj−1 and parameters ν̄, ρ, σξ. We have

Uj, Vj | Uj−1, Vj−1, ν̄, ρ, σξ ∼ N2(mj,Σj),

δj = tj − tj−1, with conditional mean and covariance matrix given, respectively, by,

mj =

[
Uj−1 + ν̄δj + {Vj−1 − ν̄}

{
1− exp(−ρδj)

ρ

}
, ν̄ + {Vj−1 − ν̄} exp(−ρδj)

]T

,

Σj = σ2
ξ




δj

ρ2 + 1
2ρ3{−3 + 4 exp(−ρδj)− exp(−2ρδj)} 1

2ρ2{1− 2 exp(−ρδj) + exp(−2ρδj)}
1

2ρ2{1− 2 exp(−ρδj) + exp(−2ρδj)} 1
2ρ
{1− exp(−2ρδj)}


 .

The proof is in Appendix C.

Corollary 1. For δj → ∞ and fixed ρ > 0, such that exp(−ρδj) = o
(
1
)
, then the
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conditional mean and variance from in Theorem 1 can be approximated by,

mj = [Uj−1 + ν̄δj, ν̄]T + Rmj
(1),

Σj = σ2
ξ




δj

ρ2 − 3
2ρ3

1
2ρ2

1
2ρ2

1
2ρ


 + RΣj

(1),

where the errors in the approximation Rmj
(1) = [o

(
1
)
, o

(
1
)
]T and RΣj

(1) =




o
(
1
)

o
(
1
)

o
(
1
)

o
(
1
)


.

The proof is straightforward by noting that ρδj →∞ as δj satisfies exp(−ρδj) =

o
(
1
)
.

Corollary 2. For OU and IOU processes with ρ > 0 and δj = o
(
1
)
, the approximate

transition density denoted by ≺ Uj, Vj | Uj−1, Vj−1, ν̄, ρ, σξ Â is given by,

≺ Uj, Vj | Uj−1, Vj−1, ν̄, ρ, σξ Â =≺ Vj | Vj−1, ν̄, ρ, σξ Â δ(Uj − Uj−1 − Vj−1δj)

= φ(m̃j, Σ̃j)δ(Uj − Uj−1 − Vj−1δj)

where φ(m̃j, Σ̃j) is the normal density with mean m̃j = Vj−1 − ρ{Vj−1 − ν̄}δj and

variance Σ̃j = σ2
ξδj, and δ(·) is the Dirac Delta function.

This corollary can be proved by taking the component-wise first-order Taylor

approximation of mj and Σj in Theorem 1 with respected to δj.

3.3 Inference and Forecasting

3.3.1 Inference

In this section, we present Bayesian estimation for the mean function Uxi
(t), the

rate function Vxi
(t) and parameters φi and σε with i = 1, 2, . . . , n and t ∈ Ts1 = [t :

t0 ≤ t ≤ tm]. Let [· | ·] denote the exact conditional density, ≺ · | · Â the approximate
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conditional density and U = [UT
1 ,UT

2 , . . . , UT
n ]T with U i = [Ui1, Ui2, . . . , Uimi

]T.

Similar notation is used for V ,Y and x. For the model specified by equations (3.1),

(3.2) and (3.3), we first consider the posterior density [φ | U ,V , Y , x] for φ, where

φ = [φT
1 ,φT

2 , . . . , φT
n ]T. The posterior distribution is given by

[φ | U ,V , Y , x] ∝
n∏

i=1

mi∏
j=1

[Uij, Vij | Ui,j−1, Vi,j−1, φi, xi][U0, V0][φi], t ∈ Tio (3.6)

where [Uij, Vij | Ui,j−1, Vi,j−1,φi,xi] is the exact transition density derived from the

SDE in equation (3.3) and [U0, V0] and [φi] are non-informative prior densities. Un-

fortunately, except for a very few specific forms for the drift and diffusion terms in

equation (3.3), [Uij, Vij | Ui,j−1, Vi,j−1,φi,xi] is usually analytically intractable. Even

when the exact transition density does have a closed form, as is the case for the OU

and IOU processes, where the exact transition density is given in Theorem 1, the

posterior density for φ still does not have an explicit form. Hence, we will use the

Euler approximation to approximate the exact transition density, while applying the

method of data augmentation (Tanner and Wong, 1987) to minimize the error in this

approximation.

The strategy of combining data augmentation and Euler approximation to ap-

proximate the exact transition density has been discussed by Elerian et al. (2001),

Eraker (2001), Roberts and Stramer (2001) and Durham and Gallant (2002), in the

context of estimating parameters in the SDE for a single diffusion process observed

at discrete times with no measurement errors. Our approach is related to theirs,

but with an important distinction that instead of being partially observed, both pro-

cesses Vxi
(t) and Uxi

(t) are completely unobserved, and will be sampled as part of

an MCMC algorithm. In this manner, we will be estimating the processes Vxi
(t) and

Uxi
(t), as well as estimating the parameters φ.

To carry out the data augmentation and the Euler approximation, we first specify
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time points at which data would be augmented. Let Tia = [t : t = tij + kτij, τij =

ti,j+1−tij

Mij
< τc, t ∈ (tij, ti,j+1), k = 1, 2, . . . ,Mij, j = 1, 2, . . . , mi − 1] denote the set of

augmentation times for the ith subject. Consequently, the time interval τij between

adjacent data points, either observed or augmented, is less than τc. In addition, let

T = ∪n
i=1 (Tio ∪ Tia) = [t : tj, j = 1, 2, . . . , m] denote the set of all possible time

points of the observed and augmented data across all subjects. With further data

augmentation at times t ∈ Tim = [t : t ∈ T , t /∈ Tio, t /∈ Tia], each subject would

have either observed or augmented data Ỹ i = [Yi1, Yi2, . . . , Yim]T at the common time

set T . The Euler approximation to equations (3.2) and (3.3) for t ∈ T leads to the

following difference equations:

Uij = Ui,j−1 − Vi,j−1δj, (3.7)

Vij = Vi,j−1 + a{Vi,j−1; xi, φi}δj + b{Vi,j−1; xi,φi}(Wj −Wj−1), (3.8)

where Wj − Wj−1 ∼ N1(0, δj) and j = 1, 2, . . . , m. Thus, the conditional posterior

density for φ is approximated by,

≺ φ | Ũ , Ṽ , Ỹ ,x Â∝
n∏

i=1

m∏
j=1

≺ Uij, Vij | Ui,j−1, Vi,j−1, φi,xi Â [U0, V0][φi], (3.9)

where Ũ = [Ũ
T

1 , Ũ
T

2 , . . . , Ũ
T

n ]T with Ũ i = [Ui1, Ui2, . . . , Uim]T and similarly for Ṽ and

Ỹ . Note that the approximate transition density ≺ Uij, Vij | Ui,j−1, Vi,j−1, φi, xi Â in

equation (3.9) is given by,

≺ Uij, Vij | Ui,j−1, Vi,j−1, φi, xi Â = N1

(
Vi,j−1 + a{Vi,j−1; xi,φi}δj, b

2{Vi,j−1; xi,φi}δj

)

× δ(Uij − Ui,j−1 − Vi,j−1δj), (3.10)

which is derived from equations (3.7) and (3.8). This implies that it is feasible to

directly sample from the posterior distribution of φ, if the conjugate priors for φ are
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chosen.

With regard to the posterior samples of Uxi
(t) and Vxi

(t) for t ∈ Ts1 , we follow

equations (3.7) and (3.8) to come up with their approximations, denoted by U
(m)
xi (t)

and V
(m)
xi (t), with linear interpolation for t between tj−1 and tj for j = 1, 2, . . . , m.

Bouleau and Lepingle (1992) showed that under some regularity conditions, with

constant Ci, the Lp-norm of the approximation error for Vxi
(t) is bounded at the rate

of
√

log m
m

; that is,

|| sup
t∈Ts1

| Vxi
(t)− V (m)

xi
(t) | ||p≤ Ci

(
1 + log m

m

)1/2

.

This indicates that if m is sufficiently large, then V
(m)
xi (t) will approach to its contin-

uous counterpart Vxi
(t) with arbitrary precision. Similar arguments hold for U

(m)
xi (t).

Note that we will sample m instead of mi data points for U
(m)
xi (t) and V

(m)
xi (t) with

possibly m À mi. Hence, the benefit of introducing augmented data is two fold: (i)

it reduces the error of approximation, when U
(m)
xi (t) or V

(m)
xi (t), instead of U

(mi)
xi (t) or

V
(mi)
xi (t), is used to replace Uxi

(t) or Vxi
(t); (ii) it gives a more accurate approxima-

tion for the exact transition density, as suggested by Pedersen (1995), which benefits

estimation of model parameters φ. Under the assumption that m is large enough such

that the approximation error is small, for the ease of exposition, we still use Vxi
(t)

instead of V
(m)
xi (t) throughout the rest of the chapter. Uxi

(t) is treated similarly.

In the MCMC algorithm to update the values of Uxi
(t) and Vxi

(t) for t ∈ t0
⋃ T ,

we draw samples from

≺ U0, V0, Ũ , Ṽ | Ỹ ,x,φ, σ2
ε Â∝

n∏
i=1

m∏
j=1

[Ỹij | Uij, σ
2
ε ] ≺ Uij, Vij | Ui,j−1, Vi,j−1,φi,xi Â

× [U0, V0], (3.11)

where [Ỹij | Uij, σ
2
ε ] = φ(Uij, σ

2
ε), ≺ Uij, Vij | Ui,j−1, Vi,j−1,φi,xi Â is given in equation
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(3.10) and [U0, V0] is non-informative prior. Equivalently, the posterior density (3.11)

may be derived from a state space model representation(Durbin and Koopman, 2001),

which is a useful reformulation of the SSVM in equations (3.1), (3.2) and (3.3) when

it is discretized using the Euler approximation and data augmentation.

Consider an example where Vxi
(t) follows the OU process and

≺ Uij, Vij | Ui,j−1, Vi,j−1, φi, xi Â is given in Corollary 2. Let Ỹ j = [Ỹ1j, Ỹ2j, . . . , Ỹnj]
T

denote the observed or augmented data for n subjects at time tj, and let θj =

[θT
1j,θ

T
2j, . . . , θ

T
nj]

T be the latent states with θij = [Uxi
(tj), Vxi

(tj), ν̄i(xi,β)]T. The

corresponding SSVM can be expressed as a state space model, given as follows:

Ỹ j = F T
j θj + εj, εj ∼ Nn(0, σ2

εIn)

θj = Gjθj−1 + ξj, ξj ∼ N3n(0, σ2
ξIn ⊗Σj)

where F j = In ⊗ F ij, Gj = In ⊗Gij, F ij = [1, 0, 0]T with

Gij =




1 δj 0

0 1− ρδj ρδj

0 0 1




, Σj =




0 0 0

0 δj 0

0 0 0




.

Likewise, when Vxi
(t) follows a Wiener process, the corresponding reformulation as a

state space model can be obtained in a similar manner.

3.3.2 MCMC Algorithm

Under this state space model reformulation, both latent states Uxi
(t) and Vxi

(t)

at times t ∈ to
⋃ T could be sampled by using the simulation smoother(de Jong

and Shephard, 1995; Durbin and Koopman, 2002b), an efficient MCMC algorithm to

sample the latent states simultaneously in blocks instead of one variable at a time,

43



and thus the convergence of the algorithm is fast.

The proposed MCMC algorithm iterates through the following steps.

1. Draw augmented data according to Yi(t) ∼ N (Uxi
(t), σ2

ε) at times t ∈ Tia

⋃ Tim

for the ith subject, i = 1, 2, . . . , n.

2. Update latent states Uxi
(t) and Vxi

(t) for t ∈ t0
⋃ T from the posterior density

(3.11) by using the simulation smoother.

3. Update φ by sampling from the posterior density (3.9). In particular, when

Vxi
(t) follows an OU process and is discretized through the Euler approximation,

the collection of equations (3.8) could be equivalently reformulated as a linear

mixed model,

Y ∗
j = X∗

jβ
∗ + Z∗

jb
∗ + ξ∗j ,

where Y ∗
j =

V j−V j−1√
δj

, X∗
j = [X

√
δj, V j−1

√
δj], Z∗

j = −√
δjIn with

V j = [V1j, V2j, . . . , Vnj]
T and X = [xT

1 , xT
2 , . . . , xT

n ]T. Further, β∗ = [ρβT,−ρ]T,

b∗ = ρν, ν = [ν1, ν2, . . . , νn]T, ξ∗j ∼ Nn(0, σ2
ξIn), b∗ ∼ Nn(0, ρ2σ2

νIn). As a

result, the set of model parameters is φ∗ = [β∗, b∗, σ2
ξ , ρ

2σ2
ν ]

T, which can be

sampled straightforwardly by using the standard Gibbs sampler in the linear

mixed model (Ruppert et al., 2003, Chap. 16) with non-informative conjugate

priors, β∗ ∼ Np+2(0, σ
2
β∗Ip+2), σ2

ξ ∼ IG(Aξ, Bξ), and ρ2σ2
ν ∼ IG(Ab∗ , Bb∗). Here

IG(A,B) denotes the inverse gamma distribution with shape parameter A and

scale parameter B.

4. Update σ2
ε by sampling from the following posterior density

[σ2
ε | Ũ , Ṽ , Ỹ , x] ∼ IG(Aε +

1

2
mn,Bε +

1

2

n∑
i=1

m∑
j=1

(Yi(tj)− Uxi
(tj))

2),

where the prior distribution for σ2
ε is IG(Aε, Bε).
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3.3.3 Bayesian Posterior Forecasting

The proposed model is useful to forecast processes of interest, including Uxi
(t),

Vxi
(t) and Yi(t), for t ∈ Ts2 = [t : t > tm]. With the availability of posterior samples

for Uxi
(t), Vxi

(t), φi and σε with i = 1, 2, . . . , n and t ∈ Ts1 = [t : t1 ≤ t ≤ tm], it

is straightforward to derive Bayesian posterior forecasting. Note that the posterior

forecasting distributions are,

[Uxi
(t), Vxi

(t) | Y ,x] =

∫ ∫ ∫
[Uxi

(t), Vxi
(t) | Uxi

(tm), Vxi
(tm),φi,x]×

[Uxi
(tm), Vxi

(tm),φi | Y ,x]dUxi
(tm)dVxi

(tm)dφi,

and

[Yi(t) | Y ,x] =

∫ ∫ ∫
[Yi(t) | Uxi

(t), σ2
ε ][Uxi

(t), Vxi
(t) | Y ,x]×

[σ2
ε | Y ,x]dUxi

(t)dVxi
(t)dσ2

ε ,

Thus, we draw U r
xi

(t), V r
xi

(t) and Y r
i (t) from [U r

xi
(t), V r

xi
(t) | U r

xi
(tm), V r

xi
(tm),φr

is,x]

and [Y r
i (t) | U r

xi
(t), σ2 r

ε ] for r = 1, 2, . . . , R, where [U r
xi

(tm), V r
xi

(tm)]T,φr
is and σ2 r

ε

are the rth posterior samples from the MCMC algorithm. When [Uxi
(t), Vxi

(t) |
Uxi

(tm), Vxi
(tm),φi,x] does not have a closed form, the approximate transition den-

sity ≺ Uxi
(t), Vxi

(t) | Uxi
(tm), Vxi

(tm),φi,x Â could be used instead along with data

augmentation.

3.4 Application to the PSA Data

We apply the proposed SSVM-OU to analyze the PSA data discussed in Section

3.1. The prior of the rate function Vxi
(t) is assumed to be the OU process with

a{Vxi
(t); xi,φi} = −ρ{Vxi

(t)− ν̄i(xi,β)} and b{Vxi
(t); xi,φi} = σξ in equation (3.3).
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A total of 739 observations are obtained for 50 subjects. The number of observations

for each subject varies from 13 to 24. The initial observation after EBRT treatment

is obtained at the first month or 0.083 year, and the time for the last observation

ranges from 3.833 to 8.083 years, with the average of 6.050 years. To reduce the

approximation error discussed in Section 3.3.1, we further augment the data to let

the time interval between adjacent data points, either observed or augmented, be less

than 0.0208 years. The appropriateness of this choice of time interval is confirmed

using the simulation studies in Section 3.5. We investigate the association of the

pretreatment covariates baseline PSA, Gleason score and T stage with the stable

PSA rate via the model ν̄i(xi,β) = νi + β0 + β1XPi + β2XT i + β3XGi, where the

random effect νi ∼ N (0, σ2
ν); XPi denotes the log-transformed baseline PSA for the

ith subject, centered around the mean of 2.3; XGi is equal to 1 if Gleason score is

above or equal to level 7, 0 otherwise ; XTi takes the value of 1 if T stage is at level

2 or higher, 0 otherwise. We leave out the last observation for each subject as well

as the observations after year 5 as validation data to assess the forecasting ability of

the model.

The posterior draws are obtained from the proposed MCMC algorithm with 20,000

iterations, discarding the first 10,000 as the burn-in stage and subsequently saving

every 10th draws. The trace plots suggest the algorithm converges fast and mixes well.

Table 3.1 presents the posterior summary statistics for the parameters. Baseline PSA

and T stage are found to have significant effect on the PSA stable rate. This result

suggests that Baseline PSA and T stage are predictive of the long term rate of change

for PSA, which is in agreement with the finding by Lieberfarb et al. (2002). Figure

3.2 displays E[Vxi
(t) | Y ], the posterior means of the rate function for each subject

(shown as dashed lines), and E[V (t) | Y ] = E[E[Vxi
(t) | Y ]], the posterior mean of

the rate function in the population(shown as solid line). It is clear that although the

rate function in the population level is smooth and may be specified by a parametric
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form, the individual rate functions are much more wiggly, vary significantly across

subjects and would be difficult to model parametrically. Figure 3.3 shows the posterior

means and credible intervals of Uxi
(t) for six randomly selected subjects, including

the forecasted Uxi
(t) after year 5. Note that the width of the forecasted credible

intervals is comparable to the theoretical results given in Corollary 1.

Table 3.1: PSA data: Posterior mean and quantiles of parameters for the SSVM-OU
and LMM.

Model Parameter Mean SD 2.5% 50% 97.5%
SSVM-OU σ2

ε 0.044 0.004 0.037 0.044 0.053
σ2

ξ 1.365 0.297 0.921 1.320 2.108
ρ 3.721 0.360 3.101 3.690 4.464
σ2

ν 0.054 0.015 0.031 0.051 0.089
β0 -0.171 0.085 -0.335 -0.169 -0.004
β1 0.139 0.072 0.001 0.139 0.277
β2 0.242 0.095 0.060 0.237 0.438
β3 0.061 0.103 -0.157 0.064 0.269

LMM β20 0.061 0.066 -0.072 0.058 0.200
β21 0.116 0.056 0.008 0.117 0.225
β22 0.260 0.076 0.116 0.260 0.411
β23 0.046 0.078 -0.105 0.046 0.193

For comparison, we also analyze the PSA data using smoothing splines and a

parametric linear mixed model(LMM). The model fits are evaluated by the Deviance

Information Criterion(DIC, Speigelhalter et al., 2003). We further compare the fore-

casting ability of these three models on the validation data points. For the smoothing

spline approach, we obtain the estimates of Vxi
(t) from the SSVM-W with Wiener

process as the prior for Vxi
(t), where a{Vxi

(t); xi,φi} = 0 and b{Vxi
(t); xi,φi} = σξ

in equation (3.3). As mentioned in Section 3.2.1, the estimation of Vxi
(t) from this

model, is equivalent to the estimation by a smoothing spline with a common smooth-

ing parameter λ =
σ2

ξ

σ2
ε
. The exact transition density in this SSVM-W, is given by
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Wecker and Ansley (1983) as

[Uj, Vj | Uj−1, Vj−1, σξ] ∼ N2(mj, V j)

with

mj = [Uj−1 + Vj−1δj, Vj−1]
T,

V j = σ2
ξ




δ3
j

3

δ2
j

2

δ2
j

2
δj


 ,

and will be used in the proposed MCMC algorithm. The forecasting of future obser-

vations is outlined in Section 3.3.3 for the SSVM-OU and SSVM-Ws. The paramet-

ric linear mixed model is specified similarly to the one given by Proust-Lima et al.

(2008a),

Yi(tij) = Uxi
(tij) + εi(tij)

= U0
xi

(tij) + U1
xi

(tij) + U2
xi

(tij) + εi(tij)

= (β00 + ν0i + β01XPi) + (β10 + ν1i + β11XPi + β12XTi)f1(tij)

+ (β20 + ν2i + β21XPi + β22XTi + β23XGi)f2(tij) + εi(tij), (3.12)

where the mean function Uxi
(t) consists of three parts: (i) post-therapy level U0

xi
(t),

(ii) short-term evolution U1
xi

(t), and (iii) long-term evolution U2
xi

(t). In addition,

f1(t) = (1 + t)−1.5 − 1 and f2(t) = t; the fixed effects βlmm = [β00, β01, β10, β11,

β12, β20, β21, β22, β23]
T ∼ N9(0, σ2

β,lmmI9) a non-informative prior with large value of

σ2
β,lmm; the random effects [ν0i, ν1i, ν2i]

T ∼ N3(0, Σν,lmm) with Σν,lmm a diagonal ma-

trix with its main diagonal entries ν lmm = [σ2
0ν,lmm, σ2

1ν,lmm, σ2
2ν,lmm]T; measurement

error εi(tij) ∼ N1(0, σ
2
ε,lmm). We further assume noninformative prior distributions

IG(A,B) with small values of A and B for σ2
β,lmm, σ2

0ν,lmm, σ2
1ν,lmm, σ2

2ν,lmm and σ2
ε,lmm,
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respectively. The MCMC algorithm for the linear mixed model (Ruppert et al., 2003,

Chap. 16) is conducted to draw the posterior samples with the same burn-in stage

and thinning scheme as for the MCMC algorithm for the SVC-OU model. Table 3.1

presents the posterior summary of the parameters β20, β21, β22, and β23, which are

involved in the long-term evolution U2
xi

(t) in equation (3.12). Note that for those

parameters in LMM, they are aimed to measure the association between the long

term stable level and the covariates of the interest, similar to the parameter β0, β1,β2,

and β3 in the SSVM-OU. Given the rth samples βr
lmm, νr

lmm and σ2 r
ε,lmm, the forecasts

of PSA at time t for the ith subject can be drawn from Y r
i (t) ∼ N (U r

xi
(t), σ2 r

ε,lmm),

where U r
xi

(t) = (βr
00 + νr

0i +βr
01XPi)+ (βr

10 + νr
1i +βr

11XPi +βr
12XTi)f1(t)+ (βr

20 + νr
2i +

βr
21XPi + βr

22XT i + βr
23XGi)f2(t).

Among these three models, the SSVM-OU fits the data best, with DIC equal to

71.809, which is less than 119.400 and 151.048, the DICs of the SSVM-W and the

linear mixed model, respectively. Next, we predict the 164 validation data points and

evaluate the posterior predictive ability of the three models. Table 3.2 presents the

magnitude of biases and mean squared errors(MSE) of the point forecasts, for which

we use the posterior means, and the coverage rate and averaged length of credible

intervals. For the 69 validation data points within 1 year distance from the last

training data points, the SSVM-OU performs best, in term of smaller Bias and MSE,

higher coverage rate and narrower interval length. For the later time validation data

points, the SSVM-W outperforms the other two in terms of bias and MSE. Overall

the coverage rates of the SSVM-OU intervals are closest to the nominal 95% level.

Note that the interval lengths from the SSVM-W are significantly wider than those

of SSVM-OU and LMM.

Besides evaluation of the point forecasts and the corresponding credible intervals,

we further use the probability integral transform (PIT, Dawid, 1984; Gneiting et al.,

2007) value to assess the predictive performance of the probabilistic forecasts. This

51



forecast can be expressed as the posterior predictive cumulative distribution functions

(CDFs) Fij(Y ), where Y is the forecasted validation data point at time tij for the

ith subject and is assumed to be generated from the true unknown CDF Gij(Y ).

For the observed validation data point Yij, the PIT value pij = Fij(Yij) should has a

uniform distribution, if Fij(Y ) = Gij(Y ) for every i and j. We estimate Fij(t) by the

empirical CDF F̃ij(Y ), which is based on the Bayesian posterior forecasting draws

of the three models. The corresponding smoothed density plots of p̃ij are displayed

in Figure 3.4. The density of p̃ij for the SSVM-OU is left skewed, indicating the

forecasts are slightly under predicted, while the density for the linear mixed model is

right skewed and the forecasts are slightly over predicted. The density for the SSVM-

W is hump-shaped, implying the posterior predictive distribution is over dispersed

and the credible intervals are too wide on average. While none of the models gives

the ideal PIT plots, the plots of SSVM-OU and the LMM are reasonably close to a

uniform density.

Table 3.2: PSA data: Posterior forecasting of the validation data points.

Method Type Bias MSE Coverage Interval
Rate Length

SSVM-OU ≤ 1 year 0.225 0.085 1 1.404
> 1 year 0.537 0.489 0.905 2.378

All 0.406 0.319 0.945 1.968
SSVM-W ≤ 1 year 0.250 0.098 1 2.383

> 1 year 0.479 0.403 1 8.426
All 0.383 0.275 1 5.883

LMM ≤ 1 year 0.246 0.110 0.899 1.240
> 1 year 0.520 0.476 0.726 1.626

All 0.405 0.322 0.799 1.464

3.5 A Simulation Study

We carry out a simulation study to (i) assess the performance of the proposed

MCMC algorithm in estimating the model parameters and stable rates ν̄i(xi, β); (ii)
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Figure 3.4: PIT density plots for (a) tij ≤ 1 year, (b) tij > 1 year of SSVM-OU (—),
SSVM-W (−−−), LMM (· · ·)

compare the performance of the proposed SSVM-OU with the other two methods

for forecasting future observations. We generate 100 replicated datasets from the

SSVM-OU with the model parameter set close to those estimated from the analysis

of the PSA data. Each dataset include 20 subjects with 14 equidistant observations

and three validation data points per subject. The three validation data points are

0.08, 0.5 and 1 years after the last observation, respectively. To investigate the

influence of data augmentation on the estimation of the model parameters and stable

rates, we analyze the same dataset using the proposed MCMC algorithm without data

augmentation, and with one and three augmented data points between the consecutive

observed data points. The corresponding time interval between the adjacent data

points, either observed or augmented, decreases from 0.08 in the original datasets to

0.04 and 0.02 for the MCMC algorithm with one and three augmented data points

between neighboring observations.

Table 3.3 presents simulation results of model parameters and stable rates, as-

sessed by the magnitude of biases and mean squared errors of the posterior means
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and the coverage rate and average length of credible intervals. Those results indi-

cate that the data augmentation is critical to estimation of the parameter ρ. With

data augmentation, the bias of ρ reduces from 0.394 to 0.014 and the coverage rate

increases from 0.12 to 0.90. The data augmentation also moderately improves the

estimation of σ2
ξ and σ2

ν but has little effect on the estimation of other parameters.

Note that when we augment three data points between the adjacent observations,

the estimates of the parameters of interest, β1,β2 and β3 are virtually unbiased with

satisfactory coverage rates.

For the data simulated from the SSVM-OU, we further forecast the validation

data points by the SSVM-OU. Those data points are also predicted by the SSVM-W

and LMM (3.12). Table 3.4 compares the forecasting ability of posterior mean and

credible intervals for those three models, evaluated by Bias, MSE, coverage rate and

interval length. As we expected, the posterior means of the forecasting draws from

the SSVM-OU are smaller than those from the other models and the corresponding

interval lengths are narrower. Furthermore, it is of interest to study the robustness

or sensitivity of the forecasting ability of the SSVM-OU. We simulate another 100

datasets from the LMM specified as equation (3.12) in which the parameters are the

same as those estimated from the analysis of real PSA data. The simulation design,

including the number of subjects and observation and the position of validation data

points, are identical to those of the dataset generated from the SSVM-OU. The fore-

casting results are given in the second part of Table 3.4. We find that SSVM-OU

forecasts relatively well. Especially, when the time distance is 0.08, the forecasts of

SSVM-OU shows the same bias, smaller MSE, slightly lower coverage rate and ob-

viously shorter interval length, compared to the forecasts from the true LMM. The

forecasts from the SSVM-W are inferior to those by the SSVM-OU and the LMM.

54



3.6 Discussion

This chapter considers modeling and inference for the rate function in longitudinal

studies with an application in the analysis of PSA biomarker profiles. For a given

subject, the rate of change is described by a rate function whose prior is assumed to

follow a Gaussian process conditional on the covariates. A key feature of this approach

is that the Gaussian stochastic process is specified by an SDE and is expected to be

centered on a pre-specified parametric function, while allowing significant deviation

from this functional expectation nonparametrically. We have focused on the case

where the rate function follows an OU process, motivated by analyzing PSA profiles.

The same modeling strategy and inference method should be widely useful in the

setting when we aim to model the rate function semiparametrically.

We propose an MCMC algorithm to estimate the posterior distribution of the

model parameters and rate functions. We apply the Euler approximation to facilitate

the sampling of the model parameters and use data augmentation of reduce the

approximation error. The accuracy of this approximation is supported by the results

from the simulation studies. We demonstrate that our proposed model has superior

forecasting ability, as least for the case when the rate function will evolve to some

stable level in the long term.

One can extend our model to discrete outcomes and to include the covariates in

equation (3.1). Moreover, a similar modeling and inference approach can be applied

to analyze the acceleration function, which is the third-order derivative of the mean

function. In addition, for simplicity, we assume the stable rates depend on the co-

variates through a parametric distribution, which could potentially be replaced by a

nonparametric distribution with a stick-breaking process as its prior. In future re-

search, it will also be interesting to consider alternative efficient algorithms to sample

the parameters and rate functions without relying on the Euler approximation.
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Table 3.3: Simulation results on the estimation of SSVM-OU parameters and stable
rates.

Data Parameter Truth Bias MSE Coverage Interval
Augmented ×10−2 Rate Length

0 σ2
ε 0.05 0.001 0.003 0.93 0.019

σ2
ξ 1.5 0.394 17.845 0.95 1.545

ρ 4 0.469 24.971 0.12 0.574
σ2

ν 0.05 0.042 0.192 0.99 0.172
β0 -0.2 0.128 14.615 0.98 1.481
β1 0.15 0.021 5.747 0.95 0.914
β2 0.25 0.065 11.267 0.96 1.277
β3 0.05 0.006 9.934 0.97 1.325
ν̄i XT

i βa+ νi 0.197 18.618 0.96 1.747
1 σ2

ε 0.05 0.001 0.003 0.94 0.019
σ2

ξ 1.5 0.357 17.930 0.96 1.585
ρ 4 0.173 7.302 0.80 0.687
σ2

ν 0.05 0.030 0.111 1.00 0.142
β0 -0.2 0.127 15.221 0.94 1.366
β1 0.15 0.025 5.699 0.95 0.859
β2 0.25 0.065 11.671 0.94 1.168
β3 0.05 0.008 9.832 0.98 1.259
ν̄i XT

i βa+ νi 0.202 19.237 0.95 1.675
3 σ2

ε 0.05 0.001 0.003 0.93 0.019
σ2

ξ 1.5 0.294 14.862 0.93 1.585
ρ 4 0.014 4.294 0.90 0.687
σ2

ν 0.05 0.025 0.079 1.00 0.142
β0 -0.2 0.217 16.706 0.88 1.366
β1 0.15 0.022 4.808 0.96 0.859
β2 0.25 0.005 9.336 0.93 1.168
β3 0.05 0.003 8.735 0.98 1.259
ν̄i XT

i βa+ νi 0.215 19.803 0.93 1.643
a XT

i β = β0 + β1XPi + β2XT i + β3XGi
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Table 3.4: Simulation results on forecasting of three models

Simulation Fitted Year Bias MSE Coverage Interval
Model Model Distance Rate Length

SSVM-OU SSVM-OU 0.08 0.028 0.068 0.947 1.026
0.5 0.091 0.138 0.948 1.427

1 0.202 0.335 0.920 2.081
SSVM-W 0.08 0.040 0.142 0.993 1.986

0.5 0.240 1.491 1 14.954
1 0.595 5.533 1 39.040

LMM 0.08 0.283 0.342 0.920 2.028
0.5 1.456 2.444 0.235 2.174

1 3.494 12.679 0.008 2.500
LMM SSVM-OU 0.08 0.015 0.016 0.919 0.438

0.5 0.049 0.023 0.995 0.826
1 0.105 0.040 0.998 1.360

SSVM-W 0.08 0.062 0.038 0.988 0.952
0.5 0.386 0.699 1 7.073

1 0.759 2.654 1 18.446
LMM 0.08 0.014 0.055 0.957 0.948

0.5 0.012 0.055 0.957 0.959
1 0.014 0.057 0.956 0.975
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CHAPTER IV

Signal extraction and breakpoint identification for

array CGH data using robust state space model

4.1 Introduction

Almost all types of cancer share one common characteristic, genetic instability,

including DNA copy number variation(CNV). During cancer progression some genes

will lose one of the two copies or are completely deleted, while others may gain one

copy, or become amplified up to hundreds of copies. These chromosomal alterations

can lead to abnormal cell proliferation, DNA repair, senescence and apoptotic mech-

anisms and can provide a selective advantage for cells and result in cancer. Identifica-

tion of CNV not only enhances the understanding of oncogenesis but also facilitates

the treatment of cancer. For example, Trastuzumab is a monoclonal antibody in-

terfering with ERBB2 receptor and is used for the treatment of breast cancers with

amplified, and multiple copies of the ERBB2 gene (Vogel et al., 2002).

Array comparative genomic hybridization (CGH) is a technique that is used to

detect differences in DNA copy number (Solinas-Toldo et al., 1997; Pinkel et al.,

1998). The isolated DNA from tumor and the normal tissue from each patient are

labeled with different fluorescent dyes and then cohybridized to the microarray. The

log2 fluorescent intensity ratios are measured at different chromosomal positions to
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define each CGH profile. This CGH profile is supposed to be proportional to the

copy number ratio for tumor and normal cells across the chromosome. See Pinkel

and Albertson (2005) and Davies et al. (2005) for detail reviews. Array CGH data

exhibit three challenging characteristics. First, the data displays abrupt changes at

the positions where DNA copy number is possibly altered. Second, the data usu-

ally contain biological variations and experimental errors, which hinder the accurate

identification of breakpoints where copy number changes. Biological variations refer

to heterogeneity of copy number within tumor cells and experimental errors include

contamination of the tumor cells with normal cells, measurement errors and errors

caused by processing tissue samples. Third, the data are spatially dependent. That

is, neighboring genes are more likely to share the same copy number than remote

ones. The primary aim of array CGH data analysis is to estimate the CGH profiles

and to identify breakpoints from available noisy observations.

A number of statistical methods have been proposed for array CGH data analysis.

Most of the methods postulate that the observed log2 intensity ratio Y (tj) is governed

by the following model,

Y (tj) = U(tj) + ε(tj), j = 1, 2, . . . , J (4.1)

where signal U(tj) is the unobserved log2 intensity ratio at jth probe, ε(tj) is the

noise or measurement error and tj denotes the physical position of jth probe on a

chromosome. Different assumptions and interpretations of U(tj) and ε(tj) lead to

various estimation approaches, which may be categorized into three types. The first

type is based on the segmentation method. It assumes that the CGH profile U(t),

is piecewise constant, i.e. U(tj) =
∑M

m=1 UmI[tj ∈ Tm], where Tm is segment m

with level Um and I(·) is the indicator function. Also ε(tj) follows independent and

identically distributed (i.i.d.) N (0, σ2
ε). To detect breakpoints that enable us to
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classify chromosome into blocks, Olshen et al. (2004) and Venkatraman and Olshen

(2007) proposed the method of circular binary segmentation(CBS); Hupe et al. (2004)

developed the adaptive weighted smoothing procedure; and Erdman and Emerson

(2008) implemented a Bayesian change point model.The second type is the method of

hidden Markov models (HMM), which restricts U(t) to take a finite number of values

and uses a Markov chain to model probabilities: Pr(U(tj+1) = Um′ | U(tj) = Um),

Um, Um′ ∈ U , with state space U = {Um; m = 1, 2, . . . , M}. Note that M is a

prespecified number of states. The HMM method was first applied to array CGH data

analysis by Fridlyand et al. (2004). Shah et al. (2006) modified the HMM method

to achieve robustness against outliers. A continuous-index HMM was developed by

Stjernqvist et al. (2007). Guha et al. (2008) derived a Bayesian approach to the HMM

with objective decision rules. A segmental maximum posteriori approach(SMAP) by

Andersson et al. (2008) has incorporated both genomic distance and overlap between

clones into the HMM. Finally, the third type is built upon penalization methods,

which essentially relax the piecewise constant assumption by imposing a roughness

penalty on CGH profile U(t). In a penalization method, we consider minimizing an

objective function of the form Q = Qgf + Qsp, where the first term Qgf measures the

goodness of fit for profile U(t) to the observed process Y (t) at observed probes t′js,

and the second term Qsp regularizes the smoothness of U(t). Various forms of Qgf

and Qsp have been proposed in the literature, including quantile smoothing (Eilers

and De Menezes, 2005), LASSO (Huang et al., 2005), fused quantile regression(Li

and Zhu, 2007) and fused LASSO (FLASSO) by Tibshirani and Wang (2008).

Besides the three types of methods, there are other approaches; for example, clus-

tering algorithm (Wang et al., 2005; Liu et al., 2006), wavelet transform (Hsu et al.,

2005) and ridge regression (van de Wiel et al., 2009), among many others. Compre-

hensive comparisons among some of aforementioned methods were given by Lai et al.

(2005) and Willenbrock and Fridlyand (2005). Some of the methods only estimate
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the profiles but do not directly call the breakpoints. Further, most methods do not

control the false positive rate for breakpoint identification, and their performances

are significantly effected by the experimental errors, such as outliers.

In this paper, we propose a new method based on robust state space models

for array CGH data to estimate the CGH profile and to identify breakpoints under

controlled false positive rates. In addition, this new method has a number of desirable

properties: (1) it is robust against outliers; (2) it incorporates physical distance

between probes into CNV identification; (3) it enables us to quantify estimation

uncertainties of signals via posterior credible intervals; (4) all the parameters are

estimated as part of the MCMC algorithm and thus are highly data-adaptive; (5) the

computational efficiency of the MCMC algorithm for profile estimation is proportional

to the number of probes, which helps the computation speed for high-throughput

array CGH data analysis.

The rest of the paper is organized as follows. In Section 2, we first present the

robust state space model, then describe an MCMC algorithm to draw samples of both

profiles and parameters, and also outline a novel procedure of calling the breakpoints

and outliers using MCMC samples. In Section 3, the proposed model and method

are applied to both simulated and real datasets for illustration, where we compare

our new method to three popular existing methods. We finally give conclusions and

discussion in Section 4.

4.2 Methods

4.2.1 Model

For the ease of exposition, we denote Yj = Y (tj), Uj = U(tj) and εj = ε(tj). The

proposed robust state space model(RSSM) comprises two equations: an observation

equation and a state equation. The observation equation is given in equation (4.1),
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where measurement error εj is assumed to be i.i.d and follow t-distribution, Tυε , with

degree of freedom(d.f.) υε. Note that t-distribution is a scale-mixture of normal

distribution and gamma distribution. Thus, we rewrite εj ∼ N (0, σ2
ε,j) a normal dis-

tribution with mean 0 and variance σ2
ε,j, and let σ−2

ε,j = λε,jτε and λε,j ∼ G(υε/2, υε/2)

a gamma distribution with shape parameter υε/2 and rate parameter υε/2. The non-

informative priors are specified as υε ∼ G(10−3, 10−3)I(2, 10) and τε ∼ G(10−3, 10−3)

throughout the paper.

We regard the signal U(tj) as a continuous quantity which measures the log2 of

average copy number of heterogeneous tumor cells versus homogeneous normal cells.

The state equation is:

Uj+1 = Uj + ξj, (4.2)

where the evolution error or signal difference ξj follows an i.i.d t-distribution with d.f

υξ. Similar to the specification of εj, we let ξj ∼ N (0, σ2
ξ,jδj), δj = tj+1 − tj, σ−2

ξ,j =

λξ,jτξ and λξ,j ∼ G(υξ/2, υξ/2), with the priors υξ ∼ G(10−3, 10−3)I(0.01, 2) and

τξ ∼ G(10−3, 10−3). As a result, εj ∼ Tυε(0, τ
−1
ε ) and ξj ∼ Tυξ

(0, δjτ
−1
ξ ) marginally.

Unlike other robust state space models (West, 1984; Fahrmeir and Künstler, 1999),

our model incorporates the physical distance δj between two probes to address the

feature that the farther two probes are apart, the larger the signal difference ξj is

likely to be. Note that degree of freedom υξ is limited below 2. In this way, we hope

that the distribution Tυξ
can accommodate extremely large values of signal difference

probably caused by breakpoints. A similar strategy was suggest by Kitagawa (1987),

where differences of signals are modeled by a distribution in the Pearson system with

no finite second moments. As shown in his paper, the Pearson system distribution

facilitates the detection of mean structure changes.
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4.2.2 Signal extraction by MCMC

With the model formulation given in Section 2.1, we now outline an MCMC

algorithm to sample from the posterior distribution for signals U = [U1, U2, . . . , UJ ]>,

parameters φo = [λε,j, υε, τε] and φs = [λξ,j, υξ, τξ] for j = 1, 2, . . . , J , given the data

Y = [Y1, Y2, . . . , YJ ].

• Given Y , φo and φs, update the U by the simulation smoother (Durbin and

Koopman, 2002a), a multi-state Gibbs sampler which very efficiently draws

samples from the posterior distribution of signals U .

• Given Y and U , update φo according to the following steps:

[λε,j |· ] ∼ G(υε

2
+ 1

2
, υε

2
+

(Yj−Uj)
2τε

2
);

[υε |· ] =
∏J

j=1 G(λεj | υε

2
, υε

2
)G(υε | 10−3, 10−3)I(2, 10), by Adaptive Metropolis

Rejection Sampling (ARMS; Gilks et al., 1995);

τε ∼ G(J
2

+ 10−3,
∑J

j=1
(Yj−Uj)

2λεj

2
+ 10−3).

• Given U , update φs through the following steps:

[λξ,j |· ] ∼ G(
υξ

2
+ 1

2
,

υξ

2
+

(Uj+1−Uj)
2τξ

2δj
);

[υξ |· ] =
∏J

j=1 G(λξj | υξ

2
,

υξ

2
)G(υξ | 10−3, 10−3)I(0.01, 2), by the ARMS;

τξ ∼ G(J
2

+ 10−3,
∑J

j=1
(Uj+1−Uj)

2λξj

2δj
+ 10−3).

According to the definition of errors εj = Yj − Uj and ξj = Uj+1 − Uj, we obtain

the posterior draws of the errors ε = [ε1, ε2, . . . , εJ ]> and the signal differences ξ =

[ξ2, ξ3, . . . , ξJ ]>. Samples of ε and ξ are essential to identify outliers and breakpoints

through a novel backward selection procedure detailed in Section 2.3 below.

4.2.3 Breakpoints and outliers calling

Breakpoints are called by our backward selection procedure outlined in Algorithm

1 given in the Appendix D. The input to the algorithm is the posterior draws of
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signal differences ξ, in an m×n matrix, with m denoting the number of draws and n

equal to the number of probes minus one, as well as an input of a threshold qα. The

specification of qα is discussed in detail below. At line 6 in Algorithm 1, we calculate

P̃j, which is an estimate of the posterior probability P [|ξj| > |ξ−j| | Y ]. This is the

probability of the absolute value of signal difference at position j is larger than those

at any other positions, given the data. The quantity P [|ξj| > |ξ−j| | Y ] represents

the area under the ROC curve or AUC (Pepe, 2004, Ch.4). It is known that AUC

measures the separation between the posterior distribution of |ξj| and that of the

remaining |ξ−j|, namely all |ξi| with i 6= j. Under the null hypothesis that probe j

is not a breakpoint, we expect P̃j to be near 0.5. The decision of rejection of the

null hypothesis will be based on the comparison of P̃j with the threshold qα. In the

first iteration of procedure, several P̃ ′
js may be larger than qα; we take the largest one

and call it a breakpoint. This called position will be excluded from the subsequent

iterations. We repeat his calling procedure for the remaining ξj until none of the

remaining P̃j is above the threshold qα or all n − 1 breakpoints are selected. The

output of the algorithm is a list of identified breakpoints. Likewise, we utilize this

backward selection procedure to call outliers, based on the posterior draws of errors

ε.

In the above backward selection procedure for the calling of breakpoints, the qα is

determined such that under the null hypothesis that probe i is not a breakpoint, it will

be chosen with probability α(i.e. α is false positive rate). When a normal reference

array is available, we can measure log2 intensity ratio of normal versus normal tissue.

Fitting the proposed state space model to the normal reference array, we obtain

the posterior draws of signal differences ξo, where we can obtain P̃ o′
j s according to

Algorithm 1. These P̃ o
j , j = 1, 2, . . . , Jo, can be regarded as a random sample from

a distribution under the null hypothesis. Then, the qα is obtained as the (1 − α)

quantile of all P̃ o′
j s. This quantile qα implies that under the null hypothesis, the rate
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of false positive is α. In some real experiments, normal reference arrays however

may not be available. In this case, we can generate a pseudo normal reference array

Y o = [Y o
1 , Y o

2 , . . . , Y o
Jo ] by sampling with replacement from the data Y . In this case,

if some Y ′
j s in the aberration region are sampled, they will be dispersed and scattered

randomly within the set Y o. Thus, they appear most likely as outliers rather than a

contiguous pattern of changes. Since the proposed state space model is robust against

outliers, the qα under the null hypothesis can be reasonably determined. Given the

pseudo normal array, the steps to obtain the qα are the same as those given in the

scenario of the normal reference array being available. Note that for calling the

outliers, the qα can only been obtained when normal reference array is available.

Sampling with replacement from the data Y will resulting in a similar set of outliers

probes.

4.3 Applications

4.3.1 Simulation study

We first evaluate our proposed method and compare it with three other popular

methods, FLASSO, CBS and SMAP, using well known artificial chromosomes simu-

lated by Lai et al. (2005)(multi-subject functional data for download at

http://www.chip.org/~ppark/ Supplements/Bioinformatics05b.html. Lai et al.’s

data consist of 100 chromosomes, each with length 100. In the center of each chromo-

some is added an aberration of copy number gain, which has one of the four different

width (5,10,20 and 40). The signal-to-noise ratio(SNR) is 1, and the noise follows a

normal distribution with standard deviation 0.25.

We use the Receiver Operating Characteristic(ROC) curve to compare the perfor-

mance of the four methods in each width case. To obtain ROC curves, we compare

the estimated signal Ûj at each location with a cutoff varying from the minimum to
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the maximum of Y , and regard the location i where Ûi is above the cutoff as the

detected aberration region. The true positive rate(TPR) is defined as the proportion

of the true aberration region detected as an aberration region, while the false positive

rate(FPR) is defined as the proportion of the normal region declared as an aberration

region. The TPRs and FPRs are plotted as ROC curves in Figure 4.1. For the Lai et

al.’s data, the plots at the first row in Figure 4.1 indicate that our approach performs

clearly better than CBS and SMAP methods, in terms of higher TPR and lower FPR,

not as well as FLASSO for the narrow regions but comparably to FLASSO for the

wide aberrations(20 and 40).

The simulated data in Lai et al. (2005) is idealized, and does not contain any

of the complex features that occur in real data. Outliers are commonly seen in real

datasets for various reasons, including single probe amplification/deletion or experi-

mental errors. To investigate the effect of outliers, in Lai et al.’s simulated dataset,

we add five percent of outliers in each chromosome at randomly selected positions

with magnitudes uniformly distributed over interval (3, 6). The ROC curves given

at the second row in Figure 4.1 clearly show the advantage of the proposed method.

Comparing to the corresponding cases in the first row, the ROC curves of FLASSO,

CBS and SMAP are considerably closer to the diagonal line, demonstrating a signifi-

cant loss of prediction power for the detection of CNVs. In contrast, the ROC curves

of the proposed approach are affected very little, indicating clearly that our method

is robust to outliers.

Another feature of the real data is the possibility of more than one region of

aberration with different magnitudes. To evaluate the performance of the methods,

we explore cases when two aberration regions are present in the simulated chromosome

simultaneously. For each Lai et al.’s simulated chromosome, a randomly selected

normal region of width five is replaced by an aberration block with SNR 4. Based

on the ROC curves plotted in the third row of Figure 4.1, the proposed approach
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Figure 4.1: ROC curves of four methods at SNR 1. — Our model,−−− FLASSO,
− ·− CBS, · · · SMAP.

outperforms the three other approaches.

An important task in array CGH analysis is to correctly identify breakpoints. We

investigate the number of breakpoints identified by the four methods for each chro-

mosome in the above simulated data. In addition, we simulate normal chromosomes

without any aberration regions. For these we generate 100 normal chromosomes, each

with 100 probes simulated from N (0, 0.252). In addition, another 100 chromosomes

are generated by adding outliers to the 100 normal chromosomes, in the same way

described above. For FLASSO, CBS and SMAP, a breakpoint is defined as a position
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j, if the difference is non-zero, that is, ∆Ûj = Ûj+1 − Ûj 6= 0. For the proposed

method, a breakpoint is called by the backward selection procedure as described in

Algorithm 1. To determine the qα, we simulate a normal reference array with each

probe as N (0, 0.252) with length Jo = 1000 and generate the pseudo normal reference

arrays with length Jo = 1000 through sampling with replacement from the artificial

chromosomes. The false positive rate α is set at 0.001, which means that for ev-

ery 1000 probes in the normal reference array, one probe is expected to be falsely

called as a breakpoint. Figure 4.2 shows the side-by-side boxplots of the number of

breakpoints identified by each of four method respectively, where the qα is determined

with simulated normal reference arrays and pseudo normal reference arrays, respec-

tively, for RSSM0 and RSSM1 corresponding to the first two boxplots in each panel.

From a comparison of these boxplots, it is clear that the number of breakpoints is

over-estimated substantially by FLASSO in all the three scenarios although the mag-

nitude of the signal difference at some of these breakpoints may by quite small. The

true number of breakpoints, on average, is more likely to be correctly achieved by

the proposed method, in scenario of two pieces of aberration regions or in the cases

where the aberration widths are as wide as 20 and 40. For the normal chromosomes

with or without outliers, both CBS and our method correctly conclude that there are

no breakpoints, while FLASSO identifies a few number of false breakpoints. Note

that our method identifies a total of 6 and 13 breakpoints for 10,000 probes in 100

normal chromosomes by using, respectively, simulated and pseudo normal reference

arrays. These number of false discoveries numbers are close to the expected number

10, given the false positive rate 0.001. We also notice that the numbers of breakpoints

identified in the simulated and pseudo normal reference arrays are very close to each

other, which validates the utility of pseudo normal reference arrays when the normal

reference arrays are not available.
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4.3.2 Glioblastoma Multiforme(GBM) data

GBM data by Bredel et al. (2005) include 26 samples representing primary GBMs,

the most malignant type of brain tumor. In sample GBM31, a large region of loss

is demonstrated on chromosome 13, which is also observed by Koschny et al. (2002)

in a meta-analysis of 509 cases. Besides losses, the GBM data also contain a num-

ber of amplifications, one of which is shown on chromosome 7 in sample GBM29.

Lai et al. (2005) compared the performance of various methods based on these two

chromosomes 13 and 7 with challenging features. They represent wider, low level

region of loss, and narrower, high level region of amplification, respectively. To assess

our proposed method, we re-analyze these two chromosomes using our method. The

analysis is based on 1000 MCMC draws from a single chain of 75, 000 iterations with

25, 000 burn-in period and every 50th being recorded. As shown in Figure 4.3 , our

method successfully detects both the loss region and amplification region as well as

some outliers. Both breakpoints and outliers are called using the proposed backward

selection procedure. The threshold for breakpoints is obtained through the pseudo

normal reference arrays with qξ
0.001 = 0.911 for chomosome 7 and qξ

0.001 = 0.882 for

chomosome 13. The threshold for outliers is chosen as qε = 0.98. The panels in

Figure 4.3 also illustrate posterior means and 95% credible intervals for signal Uj,

error εj and signal differences ξj across the chromosomes. At a given position, the

wider interval indicates higher uncertainty. Note that 95% credible intervals of sig-

nal difference illustrate the corresponding posterior distributions. The further the

credible interval departs from the others along with the narrower width, the stronger

it indicates the corresponding position is a breakpoint. We also analyze the GBM

data using the methods of FLASSO, CBS and SMAP. As Figure 4.4 shown, all three

methods can identify the two aberration regions, except SMAP method that fails to

detect any aberration region for chromosome 13.

Table 4.1 lists the number of breakpoints identified by each of the four methods.
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Figure 4.3: GBM panel plots for the posterior distributions of measurement error,
signal, and signal difference by state space model. In the top and bottom
panels, the • denotes the posterior mean and | stands for the 95% credible
intervals. In the middle panel, gray • is the data point and —is posterior
mean and 95% credible intervals are the shaded areas. vdenotes the
selected outliers and breakpoints.
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Our method and CBS reach the same numbers on both chromosomes, which are much

less than the those found by FLASSO.

4.3.3 Breast tumor data

Fridlyand et al. (2006) considered array CGH data from across 2464 genomic clones

in 62 sporadic ductal invasive breast tumors and 5 BRCA1 mutant tumors. We apply

our method as well as other three methods to analyze four chromosomes(8,11,17 and

20) of tumor “S1539”, in which there are a number of low level gains and losses

as well as high level amplifications. The results of our method are based on 1000

MCMC draws from a single chain of 75, 000 iterations with 25, 000 burn-in period

and every 50th being recorded. The backward selection procedure has been applied

to identify a number of breakpoints and outliers/amplifications. The qε is specified

as 0.98, and qξ
0.001 is determined using the pseudo normal reference arrays, resulting

in values of 0.795, 0.789, 0.808 and 0.807 for chromosome 8,11,17 and 20 respectively.

Figure 4.5 displays the posterior means and 95% credible intervals of signal Uj, error

εj and signal differences ξj across the chromosomes, as well as a number of called

outliers and breakpoints. These breakpoints define the edges of aberration regions

which include several well-known oncogenes, that play key roles in the pathogenesis of

breast tumor. The detected regions cover gene FGFR I between 36.4Mb and 39.7Mb

on chromosome 8, gene CCND I between 68.5Mb and 77.0Mb on chromosome 11, and

gene ZNF217 between 44.4Mb and 62.7Mb on chromosome 20. Gene ERBB2 between

34.1Mb and 38.7Mb on chromosome 17 is a well known gene that can be amplified in

Table 4.1: The number of breakpoints identified in GBM and Breast Tumor data
GBM data Breast Tumor data

CH7 CH13 CH8 CH11 CH17 CH20
RSSM(ours) 6 1 9 5 3 4
FLASSO 15 15 30 19 29 12
CBS 6 1 3 6 0 2
SMAP 4 0 6 11 8 9
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breast cancer. There are very few probes close to ERBB2, and the method detected

a probe as an outlier in this region.

We also analyze the same breast tumor data by FLASSO, CBS and SMAP meth-

ods. The results are shown in Figure 4.6. We can see that the SMAP method

appears to be very sensitive to outliers(e.g. in chromosome 11) and local features(e.g.

in chromosome 20), which has obscured the estimate of the global trend. The CBS

method failed to capture the single probe amplification in the chromosome 17 and

the weak gain in chromosome 20. The FLASSO method is also sensitive to outliers,

e.g. at the beginning of chromosome 8 and in the middle of chromosome 11. The

number of breakpoints identified by each of the methods is summarized in Table 4.1.

FLASSO identifies a large number of breakpoints, our method identifies slightly more

breakpoints than CBS and slightly fewer than SMAP.

4.4 Discussion

In this paper, we have proposed a powerful new method based on a robust state

space model to detect CNVs from array CGH data. A key feature of the proposed

method is the use of heavy tail t-distributions, which facilitates the robustness in

the calling of breakpoints and outliers. Through an MCMC algorithm, our approach

presents an appealing method for CGH profile estimation and detection of break-

points. Our method is based on a probability model that gives not only point estima-

tion, but also uncertainty intervals for the signal, signal difference and measurement

error magnitudes, as illustrated in Figure 4.3 and 4.5. Such displays are very useful

for visualizing the data and the degree of confidence in any conclusion. We devel-

oped a novel backward selection procedure to effectively utilize the MCMC samples

in the identification of breakpoints and outliers/amplifications. Importantly, we con-

trol the false positive rate of feature detection at a prespecified level by using real or

pseudo normal reference arrays. As illustrated by both simulated and real datasets,
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Figure 4.5: Breast tumor panel plots for the posterior distributions of measurement
error, signal, and signal difference by state space model. In the top and
bottom panels, the • denotes the posterior mean and | stands for the
95% credible intervals. In the middle panel, gray • is the data point
and —is posterior mean and 95% credible intervals are the shaded areas.
vdenotes the selected outliers and breakpoints.
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Scaled position
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Figure 4.6: Panel plots of signal(—) estimated for breast tumor data by FLASSO,
CBS and SMAP, where gray • denotes the data point.
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our approach has demonstrated superior detection power for aberration regions and

breakpoints, and outperforms other existing methods in most of cases, especially for

noisy data with outliers.
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CHAPTER V

Conclusions and Future Work

5.1 Conclusions

In this thesis, we propose the stochastic dynamic model(SDM) for functional data

analysis. Distinct from the classic smoothing and kernel methods, we treat the un-

known function as a realization of a stochastic process, whose distribution is deter-

mined by a stochastic different equation(SDE). In this way, the proposed model is

very flexible to address various research questions with different applications. Chap-

ter II introduce a special case of SDM, the stochastic velocity and acceleration models

to analyze the prostate specific antigen(PSA) profile for time series functional data.

Chapter III extend the stochastic velocity model for the multi-subject functional data,

where we not only analyze multiple profiles simultaneously, but also consider the effect

of covariates on the shape of profiles. Chapter IV considers the time-varying stochas-

tic position model, where the diffusion term in the SDE varies over time. Hence,

the model can approximate the breakpoints in the function and is applied to array

comparative genomic hybridization(CGH) data.

To estimate the parameters and functions, we apply Euler approximation to dis-

cretize the SDE and use data augmentation to reduce the approximation errors.

Markov Chain Monte Carlo(MCMC) algorithms are developed for each model, where

the simulation smoother can be used to sample the values of the functions simulta-
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neously in blocks instead of one value at a time, and thus the convergence of the

algorithm is fast. From the MCMC output, the forecasting of future observations can

also be easily obtained.

5.2 Future Work

For future work, we will propose another new model, namely a stochastic func-

tional mixed model(SFMM) for multi-subject functional data. We also plan to gen-

eralize the Wiener process W (t) to the Lévy Process Z(t).

5.2.1 Model

First, to analyze the data for one subject in a longitudinal study, i.e. time series

functional data, we modify the SVM-W proposed in the chapter II by generalizing a

zero drift function with a Weiner process. The resulting model, tentatively named as

adaptive SVM-W, is more flexible to study the drift function nonparametrically and

it is easily extended to the longitudinal study. The model is defined by a hierarchical

structure:

Y (t) = µ(t) + ε(t), t ∈ To = {t : t1, t2, . . . , tJ}

dµ(t) = ν(t)dt, t ∈ Ts = {t : t0 ≤ t ≤ tJ}

dν(t) = α(t)dt + σξdW ξ(t),

dα(t) = σζdW ζ(t),

where W ξ(t) and W ζ(t) are two independent standard Wiener processes and ε(t) ∼
N (0, σ2

ε). In this model, the drift term will be data driven, which leads to potentially

better model fitting and interpretation.
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After some stochastic integrations, we get,

µ(t) = µ(t0) + ν(t0)t +
1

2
α(t0)t

2 + σζ

t∫

s=t0

s∫

x=t0

W ζ(x)dxds + σξ

t∫

s=t0

W ξ(s)ds,

where µ(t0), ν(t0) and α(t0) are the parameters at initial time t0, which are assumed

[µ(t0), ν(t0), α(t0)]
> ∼ N3(0, σ

2
0I3). In addition, we can show that the estimation

from this model is equivalent to minimizing a penalized sum-of-squares with nested

penalty functions,

J∑
j=1

[y(tj)− µ(tj)]
2 + λξ

tJ∫

t0

[D2µ(s)− α(s)]2ds + λζ

tJ∫

t0

[Dα(s)]2ds,

where λξ = σ2
ε

σ2
ξ

and λζ = σ2
ε

σ2
ζ

are two smoothing parameters, which control the smooth-

ness of µ(t) and α(t), respectively.

Second, to analyze multi-subject functional data, we extend the above hierarchical

model as follows. As an example of including covariates, we assume subjects are

divided into k groups. For subject i in group k, we impose a stochastic functional

mixed model(SFMM):

Yi,k(t) = µi,k(t) + εi,k(t), t ∈ To = {t : t1, t2, . . . , tJ} (5.1)

dµi,k(t) = νi,k(t)dt, t ∈ Ts = {t : t0 ≤ t ≤ tJ} (5.2)

dνi,k(t) = αk(t)dt + σξdW ξ
i,k(t), (5.3)

dαk(t) = σζdW ζ
k (t), (5.4)

Let fi,k(t) = µi,k(t0)+νi,k(t0)t+σξ

∫ t

s=t0
W ξ

i,k(s)ds, and let gk(t) = µk(t0)+νk(t0)t+

1
2
αk(t0)t

2+σζ
k

∫ t

s=t0

∫ s

x=t0
W ζ

k (x)dxds. Assume [µi,k(t0), νi,k(t0), αk(t0)]
> ∼ N3(0, σ

2
0I3).
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Then, µi,k(t) can be rewritten as

µi,k(t) = gk(t) + fi,k(t),

where gk(t) represents the kth group population-average curve and fi,k(t) as the

subject-specific curve deviation from the population-average profile. Note that SFMM

can be regarded as an extension of the random intercept and random slope mixed

effects model, with now additional stochastic terms derived from the two Wiener

processes. We will investigate whether the SFMM includes other existing models as

special cases.

For estimation and inference, we will first develop Bayesian methods using MCMC.

Then, we will establish subject-specific forecasting. We will apply SFMM to analyze

simulated and real world data. Results will be compared to those obtained by existing

models. We will consider adding covariates into equations (5.1) to (5.4), besides the

group stratification.

5.3 Some preliminary results

We present two examples to demonstrate the potential of the two proposed models.

The adaptive SVM-W is fit to two datasets using MCMC.

The first example is the analysis of melanoma incidence data reported by Houghton

et al. (1980). 37 incidences of malignant melanomas were recorded yearly for males

in Connecticut between 1936 and 1972, shown in Figure 5.1. The incidences display

an increasing trend plus some periodic pattern, which may be associated with sun

radiation fluctuation due to sunspot activity. We fit both the SVM-W described in

the chapter II and the adaptive SVM-W in this chapter. The results are shown in

Figure 5.1. It can be seen that the adaptive SVM-W fit the data better, which cap-

ture both the linear trend and periodic pattern. This conclusion is supported by a
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smaller deviance information criteria(DIC). Hence, adaptive SVM-W is more flexible

to capture the various pattern of function without subject matter prior knowledge.

The second example is analysis of data concerned with protein contents in milk

samples taken from Diggle (1990). Protein contents of milk samples were repeat-

edly measured for 79 cows weekly up to week 19. The cows were assigned to three

treatment groups: diet 1(barley), diet 2(mixed, barley and lupins) and diet 3(lupins).

We carry out a two-stage analysis for SFMM. We first fit the adaptive SVM-W for

each cow and estimate subject-specific curves. The MCMC samples from the same

group are then averaged to estimate the group-average curves. The estimated pro-

files for each cow in diet 1 group are given in Figure 5.2. It can be seen that the

subject-specific curves vary from each other significantly. The group-average profiles

are shown in Figure 5.3. Three groups have separable group-average curves. These

two figures display subject-specific curve deviations and group-average curves that

could be captured by the proposed SFMM.
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Figure 5.1: Melanoma incidences from year 1936 to 1972. Plots of data points(•),
posterior means(—) and 95% credible intervals(shades) for the SVM-W
and adaptive SVM-W, respectively.
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84



2 4 6 8 10 12 14

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Week

P
ro

te
in

Diet 1
Diet 2
Diet 3
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APPENDIX A

Efficient MCMC scheme for SVM-OU

Here we outline an efficient MCMC scheme for the SVM-OU. The efficiency takes

root in the Markov property of the latent process and is achieved by the simulation

smoother.

When V (t) follows an OU process, the Euler approximation gives the following

discretized forms:

Ui = Ui−1 + Vi−1δi,

Vi = Vi−1 − ρVi−1δi + ρν̄δi + ξi

= (1− ρδi)Vi−1 + ρδiν̄ + ξi, ti ∈ Tao,

where Tao := {ti : i = 1, 2, . . . , J +
∑J−1

j=0 Mj} and ξi ∼ N (0, σ2
ξδi).

With the observation equation (2.1), we rewrite the above discretized forms as a
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standard discrete-discrete state space model:

Yi = Ui + εi, =




1

0

0




> 


Ui

Vi

ν̄




= F T θi + εi (A.1)

θi =




Ui

Vi

ν̄




=




1 δi 0

0 1− ρδi ρδi

0 0 1







Ui−1

Vi−1

ν̄




+ ωi = Giθi−1 + ωi, (A.2)

where εi
i.i.d.∼ N (0, σ2

ε) and ωi ∼ N (0, Σωi
) with Σωi

=




0 0 0

0 σ2
ξδi 0

0 0 0




. The initial

value satisfies

θ0 ∼ N3







0

0

ν̄




,




106 0 0

0 106 0

0 0 0







.

Given σ2
ε , φs, yo and ya, we apply the simulation smoother (Durbin and Koopman,

2002b) to update the latent state θi.

Given latent state θi, yo and ya, the above state space model can be reformulated

as two linear regression models in which parameters σ2
ε and φs will be sampled by

the standard Gibbs sampling methods.

Yi = Ui + εi,

∆V ′
i =

Vi − Vi−1√
δi

= ρν̄
√

δi − ρVi−1

√
δi + ξ′i

= β0

√
δi + β1Vi−1

√
δi + ξ′i,
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where ξ′i
i.i.d∼ N (0, σ2

ξ ) and prior [β0, β1]
> ∼ N2(0, σ

2
βI2) with σ2

β = 106 and β1 ∈ R−;

the prior σ2
ε ∼ IG(a, b) and σ2

ξ ∼ IG(a, b) with a = b = 0.001. Finally, given both θi

and σ2
ε , the element of ya are sampled from φ(yi | Ui, σ

2
ε).

When V (t) follows a Wiener process, the above MCMC scheme can modified to

the setting θi =




Ui

Vi


, ρ = 0, ν̄ = 0, and Σωi

=




0 0

0 σ2
ξδi


 with little effort. The

MCMC scheme of the SAM-W and SAM-OU can be formulated in the same way.
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APPENDIX B

Link to linear mixed model for SVM-W

The SVM with the Wiener process V (t) and approximated transition density can

be written as a linear mixed model(LMM). It will be identical or similar to the linear

spline model with the truncated line function basis, depending on whether or not

data are equally spaced.

When a{V (t),φs} = 0 and b{V (t),φs} = σξ, we discretize (2.2) and (2.3) for

m = 2 by Euler approximation without data augmentation, and get,

∆U(tj) = U(tj)− U(tj−1) = V (tj−1)δj,

∆V (tj) = V (tj)− V (tj−1) = σξηj,

where δj = tj − tj−1, ηj = W (tj)−W (tj−1) ∼ N (0, δj), j = 1, 2, . . . , J with t0 = 0. It

is easy to see that

U(tj) = U(t0) + V (t0)tj + σξ

J−1∑

k=1

(tj − tk)+ηk,

V (tj) = V (t0) + σξ

j∑

k=1

ηk,

where f(x)+ is the positive part of function f(x). Plugging U(tj) into equation (2.1),
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we obtain

Yj = U(tj) + εj

= U(t0) + V (t0)tj + σξ

J−1∑

k=1

(tj − tk)+ηk + εj

= x>j θ0 + z>j γ + εj,

where xj = [1, tj]
>, θ0 = [U(t0), V (t0)]

>,

zj = [
√

δ1(tj − t1),
√

δ2(tj − t2), . . . ,
√

δj−2(tj−1 − tj−2), 0, . . . , 0]>, and

γ = σξ[
η1√
δ1

, η2√
δ2

, . . . , ηJ−1√
δJ−1

]> ∼ NJ−1(0, σ
2
ξIJ−1).Thus,

Y = Xθ0 + Zγ + ε,

where X = [x1 | x2 | · · · | xJ ]> and Z = [z1 | z2 | · · · | zJ ]>. This is a linear mixed

model with J random effects, and parameters U(t0), V (t0), σ2
ξ and σ2

ε . If δj = δj′ for

any pair of j and j′, then this LMM is sometimes called a linear spline model with

truncated line function basis (Ruppert et al., 2003).
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APPENDIX C

Proof of theorem 1

C1: The solution for OU SDE:

Let Z(t) = V (t)− ν̄. We have

dZ(t) = dV (t) = −ρZ(t)dt + σξdW (t).

Due the fact that for any two continuous functions g(t) and f(t),

t2∫

t1

g(s)df(s) = g(t2)f(t2)− g(t1)f(t1)−
t2∫

t1

f(s)dg(s) ,

we obtain

g(t2)f(t2) = g(t1)f(t1) +

t2∫

t1

g(s)df(s) +

t2∫

t1

f(s)dg(s) .
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Thus, for t1 = tj−1, t2 = tj, g(s) = Z(s) and f(s) = exp(ρs),

Z(tj) exp(ρtj) = Z(tj−1) exp(ρtj−1) +

tj∫

tj−1

Z(s)d exp(ρs) +

tj∫

tj−1

exp(ρs)dZ(s)

= Z(tj−1) exp(ρtj−1) +

tj∫

tj−1

exp(ρs) {ρZ(s)ds + dZ(s)}

= Z(tj−1) exp(ρtj−1) +

tj∫

tj−1

exp(ρs) σξdW (s).

It follows that with δj = tj − tj−1, then we get

Z(tj) = Z(tj−1) exp(−ρδj) + σξζj ,

where ζj = exp(−ρtj)
∫ tj

tj−1
exp(ρs)dW (s). It is easy to show that E(ζj) = 0, and

E(ζ2
j ) = exp(−2ρtj)E[

tj∫

tj−1

exp(ρs1)dW (s1)

tj∫

tj−1

exp(ρs2)dW (s2)]

= exp(−2ρtj)

tj∫

tj−1

exp(2ρs)ds

=
1

2ρ
{1− exp(−2ρδj)},

and

V ar(ζj) = E(ζ2
j ) =

1

2ρ
{1− exp(−2ρδj)} .

Thus,

V (tj) = ν̄ + {V (tj−1)− ν̄} exp(−ρδj) + σξζj, (C.1)
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with E {V (tj) | U(tj−1), V (tj−1), ν̄, ρ, σξ} and V ar {V (tj) | U(tj−1), V (tj−1), ν̄, ρ, σξ)}
equal to those given in Theorem 1.

C2: The solution for IOU SDE

From equation (C.1), We have

U(tj) = U(tj−1) +

tj∫

tj−1

V (t)dt

= U(tj−1) + ν̄δj +

tj∫

tj−1

{V (tj−1)− ν̄} exp{−ρ(t− tj−1)}dt +

σε

tj∫

tj−1

t∫

tj−1

exp{−ρ(t− s)}dW (s)dt

= U(tj−1) + ν̄δj + {V (tj−1)− ν̄}
{

1− exp(−ρδj)

ρ

}
+

σε

tj∫

tj−1

t∫

tj−1

exp{−ρ(t− s)}dW (s)dt.

This imply that

U(tj) = U(tj−1) + ν̄δj + {V (tj−1)− ν̄}
{

1− exp(−ρδj)

ρ

}
+ σεξj,

where

ξj =

tj∫

tj−1

t∫

tj−1

exp{−ρ(t− s)}dW (s)dt

=

tj∫

tj−1

tj∫

s

exp{−ρ(t− s)}dtdW (s)

=
1

ρ

tj∫

tj−1

[1− exp{−ρ(tj − s)}] dW (s).
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Moreover, we can show that E[ξj] = 0, and

V ar(ξj) = E(ξ2
j ) =

1

ρ2

tj∫

tj−1

[exp{−2ρ(tj − s)} − 2 exp{−ρ(tj − s)}+ 1] ds

=
δj

ρ2
+

1

2ρ3
{−3 + 4 exp(−ρδj)− exp(−2ρδj)} ,

E(ξjζj) = E


1

ρ

tj∫

tj−1

[1− exp{−ρ(tj − s1)}dW (s1)

tj∫

tj−1

exp{−ρ(tj − s2)}dW (s2)




=
1

ρ

tj∫

tj−1

[exp{−ρ(tj − s)} − exp{−2ρ(tj − s)}] ds

=
1

2ρ2
{1− 2 exp(−ρδj) + exp(−2ρδj)}.

Thus,

Cov(ξj, ζj) =
1

2ρ2
{1− 2 exp(−ρδj) + exp(−2ρδj)}.

Finally, it is trivial to show that E{U(tj) | U(tj−1), V (tj−1), ν̄, ρ, σξ}, V ar{U(tj) |
U(tj−1), V (tj−1), ν̄, ρ, σξ} and Cov{U(tj), V (tj) | U(tj−1), V (tj−1), ν̄, ρ, σξ} are those

given in Theorem 1.
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APPENDIX D

Backward selection procedure for the breakpoints

Input: Mm×n, qα

1: J ← ∅ and flag ← true
2: repeat
3: for j = 1 to n and j /∈ J do
4: V−j ← m samples without replacement from columns I of M , I = {i : i 6=

j and i /∈ J }
5: Vj ← column j of M
6: P̃j = 1

m2

∑m
k=1

∑m
k′=1 I(|Vj[k]| > |V−j[k

′]|)
7: end for
8: if ∃j ∈ {1, 2, . . . , n} and j /∈ J : P̃j > qα then
9: j ← j : P̃j > P̃j′ all j′ 6= j

10: J ← J ∪ {j}
11: else
12: flag ← false
13: end if
14: until flag = false or number of elements in J = n− 1
15: if number of elements in J = n− 1 then
16: J ← {1, 2, . . . , n}
17: end if
Output: J
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