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CHAPTER I

Introduction

1.1 Motivation

The four methods that comprise this thesis are an attempt to identify and solve

fundamental components necessary for Predictive Health and Disease (PHD). The

idea of PHD was originally motivated in a Defense Advanced Research Projects

Agency (DARPA) grant where the goal is to develop a socio-molecular inference

engine. Such an inference engine would be designed for a cohort of individuals in

which an infectious disease can propagate across this population with interactions

defined by their social network. Partial molecular and categorial information of in-

dividuals disease states and social network topology would be used to update ones

posterior probability of all individuals’ hidden disease states in the network and

select the next measurements which would elicit the largest gain in information re-

garding these states. The fusion of data from individual high-dimensional biomedical

measurements with knowledge of social interactions and the epidemiological of the

infectious agent are necessary to develop such an engine. Figure 1.1 summarizes

different components within such a PHD socio-molecular inference engine. The in-

terdisciplinary scope of developing a PHD inference engine bridges domains from

public health, mathematical epidemiology, bioinformatics, clinical decision making,

1
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and machine learning.

Figure 1.1: Overview of Predictive Health and Disease Socio-Molecular Inference Engine

Figure 1.1 decomposes into modules that are historically addressed in isolation

from the others by a traditional field of research, such as epidemiology of bioin-

formatics. Epidemiologist have studied the propagation and evolution of infectious

diseases across a population of individuals. Bioinformaticians aim at elucidating pre-

dictive patterns of high-dimensional molecular activity, e.g., gene expression, capable

of discriminating between multiple phenotypes. Operations researchers in the public

health domain aim at developing control and intervention developing strategies for

partitioning individuals in a social network and strategically employing vaccinations

to minimize the expected spread of disease. The ultimate goal of PHD, and the
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four methods developed within this thesis, is to fuse these concepts into a singular

decision support tool with an improvement in disease state detection over any one

of these tools in isolation.

The methods presented in this dissertation are formulated as fundamental ma-

chine learning and statistical problems which are, in addition to PHD, applicable

to a variety of problems in clinical medicine, quantitative finance, social-networking,

statistical signal processing, and operations research.

1.2 Survey of Topics

The structure of this dissertation decomposes into four core chapters addressing a

few fundamental methodological development necessary for a PHD inference engine.

Chapter 2, titled Information Theoretic Adaptive Tracking in Complex Networks,

discusses the problem of sequentially identifying subsets of nodes in a complex net-

work, e.g., social network, which elicit the largest expected gain in information re-

garding all observed and unobserved node states, e.g., phenotypes, in a network.

Such resource allocation in the context of PHD would be the optimal distribution of

few socio-molecular diagnostic devices to select individuals which will provide mea-

surements which best minimize the expected information entropy of all hidden states

in a large social network. The problem is formulated as a partially observed Markov

decision process (POMDP) where the expected Kullback-Leibler (KL) divergence

between a posterior distribution conditioned on a candidate set of measurements

and a predicted posterior distribution devoid of any candidate measurements is used

to select the best subset of nodes to sample. As updating the posterior distribution

is a computationally difficult task, methods of approximate inference in Bayesian

filtering are employed to tractably update the expected KL-divergence. Theoretical
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analysis of the decay dynamics of the posterior posterior distribution under the sus-

ceptible, infected, recovered (SIR) graphical model of mathematical epidemiology are

presented. An epidemic threshold is retrieved which depends on sensor likelihoods,

the principle eigenvalue of the graph adjacency matrix, and the epidemiological pa-

rameters of transmission and recovery rates. Such a threshold indicates conditions

when an epidemic is likely to affect the entire network. The chapter concludes with

detection performance under the proposed adaptive sampling method on two syn-

thetic complex networks.

The methodology in chapter 2 requires an estimate of the topology of the network

of interest for the adaptive sampling algorithm. Chapter 3, titled High Dimen-

sional Spatio-Temporal Graphical Model Selection, presents a tractable solution for

estimating the structure of an SIR spatio-temporal graphical model using convex op-

timization when presented with historical observations of all node states in a network

over time. Since the presence of an edge (connection) between two nodes is either

present or absent, the problem of maximum likelihood estimation of the structure of

the network is NP hard due to the combinatorial nature of enumerating through the

space of possible networks. We propose relaxing the combinatorial variables in the

log-likelihood distribution of an observed disease trajectory under the SIR model to a

continuum where methods of convex optimization can be employed to tractably solve

this problem. The likelihood of the observed disease trajectory is penalized with an

!1-norm on the topological parameter vector which tends to promote a “sparse” es-

timate of the network structure, i.e., many edges are estimated as 0. Such spareness

is a property of many complex networks, and !1-penalized likelihoods are commonly

used to estimate the structure of sparse graphical models. The detection performance

of the proposed method outperforms other state of the art discrete state graphical
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model selection algorithms when detecting the topology of an SIR graphical model.

The spatio-temporal grapihcal model selection procedure would allows a point-wise

estimate of a network topology or a population of topologies (if a Bayesian viewpoint

is desired), to be inserted into the adaptive sampling procedure detailed in chapter

2.

In the context of PHD, chapters 2 and 3 present solutions to the issue of reason-

ing under uncertainty about the paths and dynamics of transmission of an infectious

agent on a social network and then how to optimally select individuals to sample.

The latter two chapters involve discriminating between different phenotypes given

the high-dimensional biomedical measurements resulting from sampling an individ-

ual. Specifically, chapter 4, titled Robust Logistic Regression with Bounded Data

Uncertainties, extends the logistic regression classifier to be robust to bounded mea-

surement error. As many biomedical measurements contain substantial measure-

ment error, e.g., gene expression microarrays, one may wish to sacrifice optimality

under “best-case” perturbations of the data and desire robustness to “worst-case”

perturbations. Such robustness is desired in risk sensitive domains such as diag-

nosing patients. Block-sparsity promoting regularization penalties are added to loss

function to accommodate the group sparse high-dimensional biomedical signals. The

resulting thresholding conditions of both robustness and block-sparsity are presented

and the relationship between group lasso regularization and group structured uncer-

tainty is established. A block-coordinate gradient decent algorithm with iterative

group thresholding is presented to solve this regularized robust logistic regression

problem. In the limit of weakly separable data, the theoretical relationship between

ridge logistic regression and robust logistic regression with spherical uncertainty is

established. Under these asymptotic assumptions, the convergence rates of robust
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vs. ridge are obtained and conditions when robust achieves convergence faster than

ridge are extracted. The value added of using a robust logistic classifier is established

by reporting smaller “worst-case” probability of error rates on gene expression data

of patients inoculated with Human Rhino Virus (HRV) data set with !1-robust lo-

gistic regression over standard !1-logistic regression. In risk sensitive domains, such

as clinical decision making, the improvement in “worst-case” detection performance

of the proposed robust logistic regression classifier is desired in PHD when assigning

a phenotype to a potential patient and any resulting actions that are conditioned on

such labeling.

In PHD, and clinical medicine, one may be presented with a sequence of biomed-

ical observations resulting from a series of patient visits to a clinic, thus producing

a high-dimensional time-series. Often times the goal is discriminating between dif-

ferent phenotypes, e.g., symptomatic vs. asymptomatic, and one needs to identify

the appropriate basis functions which summarize the high-dimensional, potentially

mis-alligned, time-series. Chapter 5, titled Functional Discriminants for Classifica-

tion of High-Dimensional Time-Series, models each time-series as a random function

drawn from a phenotype dependent Gaussian Process (GPs). The log-odds ratio cor-

responding to each trajectory, e.g., gene observations over time, and each sample’s

time-series is then formed. The collection of these log-odds ratios from all variables

and samples comprise the basis functions which are then used in forming a single

linear classifier using !1-logistic regression. If the time-stamps corresponding to each

observation in the time-series are unknown, one can place a prior distribution on

these time-stamps and remove the dependence of time, thus providing additional

flexibility of the resulting classifier in discriminating between phenotypes. The per-

formance of this method is applied to a human data set involving patients inoculated
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with Influenza A (H3N2), Respiratory syncytial virus (RSV), and HRV where the

goal is discriminating between symptomatic (the patient developed symptoms after

inoculation) or asymptomatic (the patient did not develop symptoms after inocu-

lation). The !1-regularization paths exhibit the effect of “early predictive” genes

vs. “late predictive” genes when trained on early or full subsets of the time-series

upon perturbation with these viruses. The classification performance of the pro-

posed method is presented using linear discriminant and quadratic discriminant GP

basis functions and establish that one can discriminate between symptomatic and

asymptomatic individuals prior to developing symptoms.

1.3 Contributions

The following journal publications, conference publications, and presentations rep-

resent the work detailed within this thesis.

Harrington Jr., P.L., and Hero III, A. O., Spatio-Temporal Graphical Model Se-

lection (Submitted to The Annals of Applied Statistics). April 2010

Harrington Jr., P.L., Wiesel, A., and Hero III., A.O., Robust Logistic Regression

with Bounded Data Uncertainty (In Preparation for the IEEE Transactions on Signal

Processing). April 2010

Harrington Jr., P.L., Rao, A., and Hero III., A.O., Functional Discriminants for

Classification and Prediction of Multiple Time-Series (In Preparation for the Journal

of Computational and Graphical Statistics). April 2010

Harrington Jr., P.L., and Hero III, A. O., Information Theoretic Adaptive Track-

ing of Epidemics in Complex Networks Forty-Seventh Annual Allerton Conference

on Communication, Control, and Computing, Monticello, IL USA, October 2009

Harrington Jr., P.L., and Hero III, A. O., Percolation Thresholds of Updated
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Posteriors for Tracking Causal Markov Processes in Complex Networks. Technical

Report. arXiv:0905.2236v1. March 2009

Harrington Jr., P.L., Rao, A., and Hero III, A. O., Classification and Subspace

Selection of Multiple Biomedical Time-Series Data via Ensemble Learning. AMIA

Summit on Translational Bioinformatics, San Francisco, CA USA, March 2009

Harrington Jr., P.L., Rao, A., and Hero III, A. O., Classification of Multiple

Time-Series via Boosting. IEEE Digital Signal Processing, Marco Island, FL USA,

January 2009

Harrington Jr., P.L., Rao, A., Kliger, M., Woolf, P.J., and Hero, A.O., Socio-

Molecular Predictors of Health and Disease, Invited Paper to 2008 Information The-

ory and Applications Meeting, San Diego, CA. USA. January 2008

Harrington Jr., P.L., Rao, A., Kilger, M., Woolf, P.J., Hero, A.O., Spatio-Temporal

Networks for Predictive Health and Disease. IEEE Workshop on Statistical Signal

Processing, Madison, Wisconsin USA. August 2007



CHAPTER II

Information Theoretic Adaptive Tracking in Complex
Networks

2.1 Introduction

This paper treats the important problem of monitoring the states of nodes in large

computer, social, or power networks where these states dynamically change due to

viruses, rumors, or failures that propagate according to the graph topology [9, 16,

40]. This class of network dynamics has been extensively modeled as a percolation

phenomenon, where nodes on a graph can randomly “infect” their neighbors.

Percolation across networks has a rich history in the field of statistical physics,

computer science, and mathematical epidemiology [27, 38, 40]. Here, researchers are

typically confronted with a network, or a distribution over the network topology, and

extract fixed point attractors of node configurations, thresholds for phase transitions

in node states, or distributions of node state configurations [13, 6, 42]. In the field

of fault detection, the nodes or edges can “fail”, and the goal is to activate a subset

of sensors in the network which yield high quality measurements that identify these

failures [68, 51]. While the former field of research concerns itself with extracting

offline statistics about properties of the percolation phenomenon on networks, devoid

of any measurements, the latter field addresses online measurement selection tasks.

Here, we propose a methodology that actively tracks a causal Markov process

9
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across a complex network (such as the one in Figure 2.3(a)), represented as a dynamic

Bayesian network, where measurements are adaptively selected using feedback from

the updated posterior distribution. We establish conditions such that the updated

posterior probability of all nodes “infected” is driven to one as the number of time

samples goes to infinity. The proposed epidemic/percolation threshold on the updated

posterior distribution over the hidden states is a function of structural properties of

the network, epidemiological parameters, and sensor likelihoods corresponding to

those nodes that were sampled.

The proposed percolation threshold should more accurately reflect the true con-

ditions that cause a phase transition in a network, e.g., node status changing from

healthy/normal to infected/failed, than traditional thresholds derived from condi-

tions on predictive distributions which are devoid of any measurements. As the

conditions of a threshold are extracted by inspecting the dominant mode of decay of

the updated posterior, this permits specification of best and worst case convergence

rates of that a network clears the infection. Additionally, the decay dynamics of the

updated posterior can yield insight into the asymptotic detection performance of the

system for a given false alarm rate.

Since most practical networks of interest are large, it is usually infeasible to sample

all nodes continuously and exhaustively. Given sampling constraints, we present an

information theoretic sampling strategy that selects specific nodes that will yield the

largest information gain, and thus, better detection performance.

The proposed sampling strategy balances the trade-off between trusting the pre-

dictions from the assumed model dynamics and expending precious resources to

select a set of nodes for measurement.

We present the adaptive measurement selection problem and give two tractable
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approximations to this subset selection problem based upon the joint and marginal

posterior distribution, respectively. A set of decomposable Bayesian filtering equa-

tions are presented for this adaptive sampling framework and the tractable inference

algorithms for complex networks are discussed. We present analytical worst case

performance bounds for our adaptive sampling performance, which can serve as sam-

pling heuristics for the activation of sensors or trusting predictions generated from

previous measurements.

We believe that this is the first attempt to extract conditions of percolation thresh-

olds in actively monitored dynamic Bayesian networks where the updated posterior

distribution is the sufficient statistic of interest rather than observation independent

predictive distributions.

2.2 Problem Formulation

The objective of actively monitoring the n node network is to recursively update

the posterior distribution of each hidden node state given various measurements.

Specifically, the next set of m measurement actions (nodes to sample), m # p, at

next discrete time are chosen such that they yield the highest quality of information

about the p hidden states. The condition on m # p simulates the reality of fixed

resource constraints, where typically only a small subset of nodes in a large network

can be observed at any one time.

Here, the hidden states are discrete random variables that correspond to the states

encoded by the percolation process on the graph. Here, the graph G = (V , E), with

V representing the set of nodes and E corresponding to the set of edges. Formally,

we will assume a state-space representation of a discrete time, finite state, partially
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observed Markov decision process (POMDP). Here,

(2.1) Zk = {Z1
k , . . . , Z

p
k}

represents the joint hidden states, e.g., healthy or infected

(2.2) Yk = {Y (1)
k , . . . , Y (m)

k }

represents the m observed measurements obtained at time k, e.g., biological assays

or PINGing an IP address, and

(2.3) ak = {a1
k, . . . , a

m
k }

represents the m actions taken at time k, i.e., which nodes to sample. Here, Y (j)
k ,

continuous/categorical valued vector of measurements, which is induced by action aj
k,

aj
k ∈ A, with A = {1, . . . , p} confined to be the set of all p individuals in the graph,

and Zi
k ∈ {0, 1, . . . , r}. Since the topology of G encodes the direction of ”flow” for the

process, the state equations may be modeled as a decomposable partially observed

Markov process:

Y i
k = f(Zi

k) + wi
k(2.4)

Zi
k = h({Zj

k−1}j∈{η(i),i}).(2.5)

Here, η(i) = {j : E (Vi,Vj) /∈ ∅} is the neighborhood of i, f(Zi
k) is a non-random

vector-valued function, wi
k is measurement noise, and h({Zj

k−1}j∈{η(i),i}) is a stochas-

tic equation encoding the transition dynamics of the Markov process (see Figure 2.1

for a two node graphical model representation).

2.2.1 Bayesian Filtering

In our proposed framework for actively monitoring the hidden node states in the

network, the posterior distribution is the sufficient statistic for inferring these states.
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Zj
k−1Zi

k−1

Yj
k−1Yi

k−1

Yi
k Yj

k

Zi
k Zj

k

Figure 2.1: Partially Observed Markov Structure for i and j for E (Vi,Vj) /∈ ∅

The general recursion for updating the joint posterior probability given all past and

present observations is given by the standard Bayes update formula:

(2.6) p(Zk|Y0:k) =
f(Yk|Zk)

g(Yk|Y0:k−1)
p(Zk|Y0:k−1)

with

(2.7) p(Zk|Y0:k−1) =
∑

z∈{0,1,...,r}p

p(Zk|Zk−1 = z)p(Zk−1 = z|Y0:k−1).

and

(2.8) g(Yk|Y0:k−1) =
∑

z∈{0,1,...,r}p

f(Yk|Zk = z)p(Zk = z|Y0:k−1).

The Chapman-Kolmogorov equations provide the connection between the posterior

update (2.7) and the distribution resulting from the standard percolation equations.

In the former, the updates are conditional probabilities that are conditional on past

observations, while in the latter, the updates are not dependent on observations.

The local interactions in the graph G imply the following conditional independence

assumptions:

(2.9) f(Yk|Zk) =
p∏

i=1

f(Y i
k |Zi

k).
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(2.10) p(Zk|Zk−1) =
p∏

i=1

p(Zi
k|{Z

j
k−1}j∈{η(i),i})

where the likelihood term is defined in (2.4) and the transition dynamics are defined

in (2.5). This decomposable structure allows the belief state (posterior excluding

time k observations) update, for the ith node in G, to be written as:

(2.11) p(Zi
k|Y0:k−1) =

∑

z∈{0,1,...,r}‖pa(i)‖

p(Zi
k|Z

pa(i)
k−1 = z)p(Zpa(i)

k−1 = z|Y0:k−1)

with the parent set, pa(i) = {η(i), i}. Unfortunately, for highly connected nodes in G,

this marginal update becomes intractable. It thus must be approximated [12, 43, 35].

2.2.2 Information Theoretic Adaptive Sampling

In most real world situations, acquiring measurements from all p nodes at any

time k is unrealistic, and thus, a sampling policy must be exploited for measuring a

subset of nodes [24, 68, 8, 30]. Since we are concerned with monitoring the states

of the nodes in the network, an appropriate reward is the expected information

gain between the updated posterior, pk = p(Zk|{Y i
k}i∈ak

, Y0:k−1), and the belief state,

pk|k−1 = p(Zk|Y0:k−1):

(2.12) ak = arg maxa⊂AE
[
Dα

(
{Y i

k}i∈a

)
|Y0:k−1

]

(2.13) Dα

(
{Y i

k}i∈a

)
= Dα

(
pk||pk|k−1

)
, 0 < α < 1

with α-Divergence defined by

(2.14) Dα(p||q) =
1

α− 1
log (Eq [(p/q)α])

for any distributions p and q with identical support.

The reward in (2.12) has been widely applied to multi-target, multi-sensor tracking

for many problems including, sensor management and surveillance [24, 47]. Note that
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limα→1Dα(p||q) → DKL(p||q), where DKL(p||q) is the Kullback-Leibler divergence

between p and q. The expectation in (2.12) is taken with respect to the conditional

distribution g(Yk|Y0:k−1) given the previous measurements Y0:k−1 and actions ak. In

practice, the expected information divergence in (2.12) must be evaluated via Monte-

Carlo methods. Also, the maximization in (2.12) requires enumeration over all
(

p
m

)

actions (for subsets of size m), and therefore, we must resort to approximations. We

propose incrementally constructing the set of actions at time k, ak, for j = 1, . . . ,m,

according to:

(2.15) aj
k = argmaxi∈A\ak

E
[
Dα

(
Y i

k , {Y j
k }j∈ak

)
|Y0:k−1

]
.

Both (2.12) and (2.15) are selecting the nodes to sample which yield maximal diver-

gence between the percolation prediction distribution (belief state) and the updated

posterior distribution, averaged over all possible observations. Thus (2.12) provides

a metric to assess whether to trust the predictor and defer actions until a future time

or choose to take action, sample a node, and update the posterior.

Lower Bound on Expected α-Divergence

Since the expected α-Divergence in (2.12) is not closed form, we could resort

to numerical methods for estimating this quantity. Alternatively, one could specify

an analytical lower-bound that could be used in-lieu of numerically computing the

expected information gain in (2.12) or (2.15).

We begin by noting that the expected divergence between the updated posterior

and the predictive distribution (conditioned on previous observations) differ only

through the measurement update factor, fk/gk|k−1 ((2.12) re-written):

(2.16) Egk|k−1

[
Dα

(
pk||pk|k−1

)]
] = Egk|k−1

[
1

α− 1
log Epk|k−1

[(
fk

gk|k−1

)α]]
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where fk = f(Yk|Zk) and gk|k−1 = g(Yk|Y0:k−1). So, if there is significant overlap

between the likelihood distributions of the observations, the expected divergence will

tend to zero, implying that there is not much value-added in taking measurements,

and thus, it is sufficient to use the predictive distribution for inferring the states.

It would be convenient to interchange the order of the conditional expectations

in (2.16). It is easily seen that Jensen’s inequality yields the following lower bound

for the expected information gain

(2.17) Egk|k−1

[
Dα

(
pk||pk|k−1

)]
≥ 1

α− 1
log Epk|k−1

[
Egk|k−1

[(
fk

gk|k−1

)α]]
.

Here, the inner conditional expectation can be obtained from Dα

(
fk||gk|k−1

)
, which

has a closed form for common distributions (e.g., multivariate Gaussians) [24].

2.3 Asymptotic Analysis of Marginal Posterior

For tracking the percolation process across G, we have discussed recursive up-

dating of the posterior. However, computing these updates is generally intractable.

For the remainder of the paper, we will use (2.4) and (2.5) to directly update the

marginal posterior distribution using the following matrix representation:

(2.18) pk(z) = Dk(z)pk|k−1(z)

with updated marginal posterior pk(z) = [p1,k(z), . . . , pp,k(z)]T with pi,k(z) = p(Zi
k =

z|Y i
k , Y0:k−1), Dk(z) = diag

(
f (z)

i,k /gi,k|k−1

)
, and marginal belief state pk|k−1(z) =

[p1,k|k−1(z), . . . , pp,k|k−1(z)]T with pi,k|k−1(z) = p(Zi
k = z|Y0:k−1).

Note that for i /∈ ak, (Dk(z))i,i = 1, and pi,k(z) = pi,k|k−1(z). Given that we

can find an efficient way of updating pk|k−1(z), according to the transition dynamics

(2.5), we can solve a modified version of (2.15), for j = 1, . . . ,m:

(2.19) aj
k = arg maxi∈A\ak

E
[
Dα

(
Y i

k

)
|Y0:k−1

]
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(2.20) Dα

(
Y i

k

)
= Dα

(
pi,k(z)||pi,k|k−1(z)

)
, 0 < α < 1.

2.3.1 Pearson χ2 Divergence of Updated Marginal Posterior

One interesting property of the Bayesian filtering equations is that the updated

posterior can be written as a perturbation of the predictive percolation distribution

through the following relationship (z omitted for clarity):

(2.21) pk = Dkpk|k−1 = pk|k−1 + (Dk − I) pk|k−1.

Hence, when the sensors do a poor job in discriminating the observations, Dk ≈ I,

we have pk ≈ pk|k−1. It is of interest to determine when there is significant differ-

ence between the posterior update and the prior update specified by the standard

percolation equations. Recall that the updated posterior is, in the mean, equal to

the predictive distribution, E [pk|Y0:k−1] = pk|k−1. The total deviation of the updated

posterior from the percolation distribution can be summarized by computing the

trace of the following conditional covariance:

(2.22)

tr (Cov [pk|Y0:k−1]) = tr
(
E

[
(pk − E [pk|Y0:k−1]) (pk − E [pk|Y0:k−1 ])T |Y0:k−1

])
.

Using (2.21) and properties of the trace operator, we obtain the following measure

of total deviation of the updated posterior from the predictive distribution in terms

of fk and gk|k−1:

(2.23) tr (Cov [pk|Y0:k−1]) = tr
(
E

[
(Dk − I)2 |Y0:k−1

]
Pk|k−1

)

with Pk|k−1 = pk|k−1pT
k|k−1. The conditional expectation in (2.23) is the Pearson χ2

divergence between distributions fi,k and gi,k|k−1, for all i. This joint measure of

deviation is analytical for particular families of distributions and thus can be used

as an alternative measure of divergence for activation of sensors [24].
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2.3.2 Decay Dynamics of Updated Posterior Distribution

There has recently been significant interest in deriving the conditions of a perco-

lation/epidemic threshold in terms of transition parameters and the graph adjacency

matrix spectra for two state causal Markov processes [6, 13, 42]. Such thresholds

yield conditions necessary for phase transition in the probability of local infections

becoming epidemics. Knowledge of these conditions are particularly useful for de-

signing “robust” networks, where the probability of epidemics is minimized.

Epidemic thresholds are typically obtained by extracting the sufficient conditions

of the network and model parameters for the node states to be driven to their sta-

tionary point, with high probability. The probability of these events are computed

using the observation independent distribution encoding the stochastic dynamics of

the process [6, 13, 42].

We use the results in [6, 13] to derive a percolation threshold based upon the

updated posterior distribution (2.6) assuming a restricted class of two-state Markov

processes. The dominant mode of decay characterizing the conditions of a threshold

should more accurately model the current dynamic response of the posterior dis-

tribution since the updated posterior tracks a particular “disease” trajectory better

than the observation independent predictive distributions.

Formally, Zi
k ∈ {0, 1}, f (z)

i,k = f(Y i
k |Zi

k = z) is the conditional likelihood for node

i, pi,k = p(Zi
k = 1|Y i

k , Y0:k−1), and pi,k = p(Zi
k = 1|Y0:k−1). Here, we will assume that

Zk = 0 is the unique absorbing state of the system.
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The Bayes update for pi,k can be written as (i subscript omitted for clarity):

pk =
f (1)

k

f (1)
k pk|k−1 + f (0)

k (1− pk|k−1)
pk|k−1

=
f (1)

k /f (0)
k

1 +
f
(1)
k −f

(0)
k

f
(0)
k

pk|k−1

pk|k−1

=
f (1)

k /f (0)
k

1 + ∆fk

f
(0)
k

pk|k−1

pk|k−1.(2.24)

There are three different sampling/observation dependent possibilities for each in-

dividual at time k: case (1), i is not sampled and therefore, pk = pk|k−1, case (2),

∆fk > 0, and case (3), ∆fk < 0. We first derive a tight-upper bound for cases (2)

and (3) of the form pk ≤ ck pk|k−1. For the remainder of the analysis we will assume

that |∆fk

f
(0)
k

pk|k−1| < 1 for cases (2) and (3).

In case (2), when ∆fk > 0, we can re-write (2.24) in terms of an alternating

geometric series:

pk =
f (1)

k

f (0)
k




∞∑

l=0

(−1)l

(
|∆fk|
f (0)

k

pk|k−1

)l


 pk|k−1

≤ f (1)
k

f (0)
k

[
1 +

|∆fk|
f (0)

k

pk|k−1

]
pk|k−1(2.25)

where we have used the fact that 1/(1 + |a|) ≤ 1 + |a|. Recalling that p ≥ p2 for

0 ≤ p ≤ 1, we have

(2.26) pk ≤
f (1)

k

f (0)
k

[
1 +

|∆fk|
f (0)

k

]
pk|k−1.

In case (3), when ∆fk < 0, (2.24) can be expanded as a geometric series:

pk =
f (1)

k

f (0)
k




∞∑

l=0

(
|∆fk|
f (0)

k

pk|k−1

)l


 pk|k−1

=
f (1)

k

f (0)
k



1 +
|∆fk|
f (0)

k

pk|k−1 +
∞∑

l=2

(
|∆fk|
f (0)

k

pk|k−1

)l


 pk|k−1.(2.27)
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Exploiting the fact that p ≥ p2 for 0 ≤ p ≤ 1, we obtain:

(2.28) pk ≤
f (1)

k

f (0)
k

[
1 +

|∆fk|
f (0)

k

]
pk|k−1 +O

(
|∆fk|
f (0)

k

pk|k−1

)

where the higher order terms of |∆fk|
f
(0)
k

pk|k−1 are captured in

(2.29) O
(
|∆fk|
f (0)

k

pk|k−1

)
=

∞∑

l=2

(
|∆fk|
f (0)

k

pk|k−1

)l

.

Now that an upper-bound has been established for conditions when a node is sampled

(under both scenarios on the signed difference of the sensor likelihoods), we can state

the general equality/inequality (equality for case (1)) of pk ≤ ck pk|k−1 with

bk =






1 , i /∈ ak

f
(1)
k

f
(0)
k

[
1 + |∆fk|

f
(0)
k

]
, |∆fk| > 0

with ck = bk for cases (1) and (2) and ck = bk +O
(

|∆fk|
f
(0)
k

pk|k−1

)
for case (3).

After gathering all p nodes into vector notation, we have the following element-

wise upper-bound on the updated belief state:

(2.30) pk ≤ Ckpk|k−1 = (Bk +Ok) pk|k−1.

with

(2.31) Bk = diag (bi,k)

and

(2.32) Ok = diag

(
I{∆fi,k<0}O

(
|∆fi,k|
f (0)

i,k

pi,k|k−1

))

where I{∆fi,k<0} is the indicator function for the event ∆fi,k < 0.

Thus far, we have established, under the assumptions of |∆fk

f
(0)
k

pk|k−1| < 1, an upper-

bound for the updated posterior in terms of observation likelihoods and the belief

state (2.30).
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Next, consider the restricted class of two-state Markov processes on G, for which

we can produce a bound of the form

(2.33) pk|k−1 ≤ Spk−1

where S contains information about the transition parameters and the topology of

the network.

A class of models where such a bound exist is the Susceptible-Infected-Susceptible

(SIS) model of mathematical epidemiology [6]. The SIS model on a graph G,

assumes that each of the p individuals are in states 0 or 1, where 0 corresponds to

susceptible and 1 corresponds to infected. At any time k, an individual can receive

the infection from their neighbors, η(i), based upon their states at k − 1.

Under this SIS model, the matrix S is given by

(2.34) S = (1− γ)I + βA

where the Markov transition parameters γ is the probability of i transitioning from

1 to 0, β is the probability of transmission between neighbors i and j, and A is the

graph adjacency matrix (see Figure 2.2).

Returning to the derivation, using the bound on updating the belief state (2.33)

and updating the posterior (2.30), we have by induction, the following recursion:

pk ≤ Ckpk|k−1 ≤ CkSpk−1 ≤ (CkS · · ·C1S) p0

= (BkS · · ·B1S) p0 +OCkS(2.35)

where we have lumped the higher order modes and higher order cross-terms into

OCkS.

The dominant mode of decay of the updated posterior may be found by investi-
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gating the following eigen-decomposition:

(2.36) BkS =

(
p∑

j=1

bj,keje
T
j

) (
p∑

j=1

λjuju
T
j

)

with ej = [0, . . . , 0, 1, 0, . . . , 0]T (1 at jth element). Without loss of generality, we can

assume the eigenvalues of S are listed in decreasing order, |λ1| ≥ · · · ≥ |λp|. Now

rewriting (2.36), we have

BkS =
(
bjk

ejk
eT

jk
+OB

) (
λ1u1u

T
1 +OS

)

=
(
λ1bjk

ejk
eT

jk
u1u

T
1 +OBS

)
(2.37)

where bjk
= maxj∈{1,...,p}bj,k and the OB,OS,OBS variables corresponds to the higher

order terms. Inserting (2.37) into (2.35), and matching the largest eigenvalues of Bk

with λ1 we obtain

pk ≤ (BkS . . . B1S) p0 +OCkS

= λk
1

k∏

l=1

bjl

(
k∏

l=1

(
ejl

eT
jl
u1u

T
1

)
)

p0 +O(ϕk).(2.38)

Thus, at large k, the dominant mode of the posterior goes as λk
1

∏k
l=1 bjl

(the modes

in O(ϕk) decay faster than the dominant mode presented above).

We can see that if the spectral radius of S is less than one, |λ1| < 1, then for large

k, pk → 0, which is the unique absorbing state of the system.

This epidemic threshold condition on λ1 has been previously established for un-

forced (observation independent) SIS-percolation processes [6]. However, in the

tracking framework, the rate at which the posterior decays to the susceptible state

is damped by an additional measurement dependent factor,
∏k

l=1 bjl
, resulting from

using the updated posterior distribution.

This measurement-dependent dominant mode of the posterior should more accu-

rately model the true dynamic response of the node states better than that in [6]
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since the posterior better tracks the truth than the unforced predictive distribution.

Additionally, this dominant mode of the updated posterior distribution allows one to

simulate the response of the percolation threshold to intervention and control actions

which are designed to increase the threshold, such that the probability of epidemics

is minimized.

2.4 Numerical Example

IS

γ

1− γ
q1− q

I(1) I(|η|)

Figure 2.2: SIS Markov Chain for Node i Interacting with the Infected States of its Neighbors

Here, we present results of simulations of our adaptive sampling for the active

tracking of a causal Markov ground truth process across a random 200 node, scale-

free network (Figure 2.3(a)). Since most modern networks in which this method is

most applicable, e.g., social networks, tend to be scale-free in their degree distri-

bution (see Figure 2.3(b)), the proposed network shall suffice for extracting various

statistics under the proposed adaptive tracking method. Since the goal in tracking is

to accurately classify the states of each node, we are interested in exploring the detec-

tion performance as the likelihood of an epidemic increases through the percolation

threshold for this network.

One would expect different phase transitions (thresholds) in detection perfor-

mance for various sampling strategies, ranging from the lowest threshold for unforced

predictive distributions to highest for a continuous monitoring of all n nodes. We will
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present a few of these detection surfaces that depict these phase transitions for the

unforced percolation distribution, random m = 40 node sampling, and our proposed

information theoretic adaptive sampling of m = 40.

Here, we will restrict our simulations to the two-state SIS model of mathematical

epidemiology described above.

(a) 200 Node Scale Free Synthetic Network

0 2 4 6 8 10 12 14
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(b) Degree Distribution of the 200 Node Scale Free Network

Figure 2.3: Structure of the 200 Node Synthetic Network Used in Simulations

The sensor models (2.4), are of the form of two-dimensional multivariate Guassians

with common covariance and shifted mean vector. The transition dynamics of the
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ith individual (2.5), for the SIS model is given by:

(2.39) Zi
k|Z

{i,η(i)}
k−1 ∼ (1− γ)Zi

k−1 + (1− Zi
k−1)



1−
∏

j∈η(i)

(1− βZj
k−1)



 .

where Zi
k−1 ∈ {0, 1} is the indicator function of i being infected at time k − 1. The

transmission term between i and η(i) is known the Reed-Frost model [6, 13, 40]. Since

the tail of the degree distribution of our synthetic scale-free graph contains nodes

with degree greater than 10, updating (2.11) exactly is unrealistic and we must resort

to approximate algorithms. Here, we will assume the mean field approximation used

by [6] for this SIS model, resulting in the following marginal belief state update for

the ith node of infected (Zi
k = 1):

(2.40) pi,k|k−1 = (1− γ)pi,k−1 + (1− pi,k−1)

[
1−

∏

j∈η

(1− βpj,k−1)

]
.

Equation (2.40) allows us to efficiently update the marginal belief state directly for

all n nodes which are then used for estimating the best m measurements using (2.19).

As we are interested in detection performance, as a function of time and epidemic

intensity, the Area Under the ROC Curve (AUR) is a natural statistic to quantify

the detection power at each time and each propensity of epidemic (detection of the

infected state). The AUR is evaluated at each time k, each SIS percolation intensity

parameter

(2.41) τ = β/γ

and over 500 random initial states of the network. For the SIS model, τ is the single

parameter (aside from the topology of the graph) that characterizes the intensity

of the percolation/epidemic. It is useful to understand how the detection perfor-

mance varies as a function of epidemic intensity, as it indicates how well the updated

posteriors are playing “catch-up” in tracking the true dynamics on the network.
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(a) AUR Surface for Unforced Prediction Distribution (no evidence acquired
throughout the monitoring)
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(b) AUR Surface for Updated Posterior Distribution with m = 40 Random
Measurements at Each Time k
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(c) AUR Surface for Updated Posterior Distribution with m = 40 Information
Theoretic Adaptive Measurements at Each Time k

Figure 2.4: Detection Performance Surface: Area Under the ROC (AUR) Curve Surface as a Func-
tion of Percolation Parameter τ = β/γ and Time

For this SIS model, the percolation threshold is defined as τc = 1/λ1(A) where

λ1(A) = maxi∈{1,...,p}|λi| is the spectral radius of the graph adjacency matrix, A [6].
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Values of τ greater than τc imply that any infection tend to become an epidemic,

whereas those values less than τc imply that small epidemics tend to die out.

For the network under investigation (Figure 2.3(a)), τc = 0.1819. We see from

Figure 2.4(a) that a phase transition in detection power (AUR) for the unforced

percolation distribution does indeed coincide with the epidemic threshold τc. While

the epidemic threshold for the random and adaptive sampling policies is still τc =

0.1819, the measurements acquired allow the posterior to better track the truth, but

only up to their respective phase transitions in detection power (see Figures 2.4(b)

and 2.4(c)).

Figure 2.4(c) confirms that the adaptive sampling better tracks the truth than ran-

domly sampling nodes, while pushing the phase transition in detection performance

to higher percolation intensities, τ . We see that the major benefit of the adaptive

sampling is apparent when conditions of the network are changing moderately, at

medium epidemic conditions. Beyond a certain level of percolation intensity, more

resources will need to be allocated to sampling to maintain a high level of detection

performance.

A heuristic sampling strategy based on the topology of G was also explored (results

not shown) by sampling the ”hubs” (highly-connected nodes). However, detection

performance was only slightly better than random sampling and poorer than our

adaptive sampling method.

It is often useful for developing sampling heuristics and offline control/intervention

policies to inspect what type of nodes, topologically speaking, is the adaptive sam-

pling strategy targeting, under various network conditions (different values of τ). In

Figure 2.5, the relative frequency of nodes sampled with a particular degree is plot-

ted against time (under the m = 40 adaptive sampling strategy) for three different
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(a) τ = 0.125 < τc
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(b) τ = 0.2143 ≈ τc
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(c) τ = 0.5 < τc

Figure 2.5: Relative Frequency of Nodes Sampled of a Given Degree under m = 40 Adaptive Sam-
pling Strategy

values of τ (over 500 random initial conditions of the network).

For the larger of the three values explored (τ = 0.5 > τc) we see that the sam-

pling is approximately uniform across the nodes of each degree on the graph (Fig-

ure 2.5(c)). Therefore, under extremely intense epidemic conditions, the adaptive

sampling strategy is targeting all nodes of each degree equally, and therefore, it is

sufficient to perform random sampling. For the two lower values of τ , Figure 2.5(a)

and Figure 2.5(b) (near τc), we see that adaptive policy targets highly connected
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nodes more frequently than those of lesser degree and thus, it is more advantageous

to exploit such a strategy, as compared to random sampling (see AUR surface in

Figure 2.4(c)).

2.5 Conclusion

In this paper, we have presented an information theoretic framework for recur-

sively selecting the best subset of nodes to sample in a dynamic Bayesian network

that yield the largest expected information gain about the hidden state of the net-

work. This framework can be applied to a variety of problem domains, including

actively tracking an influenza outbreak across a population or adaptively monitoring

the diffusion of information across large networks, such as a terrorism network.

Within the proposed adaptive tracking/sampling framework, we have derived con-

ditions for a network specific percolation threshold using an updated posterior distri-

bution rather than an observation independent predictive distribution. These condi-

tions recover the unforced percolation threshold derived in [6] but with an additional

factor involving sensor likelihood terms due to measurements obtained throughout

the monitoring. A term of the form λk
1

∏k
l=1 bjl

(derived in (2.38)) was shown to

be the dominant mode of the updated posterior dynamic response to active inter-

vention of immunizing the nodes (holding node states constant). The conditions of

the threshold, using the updated posterior, should more accurately model the phase

transition in detection performance and thus, enable a better assessment of immu-

nization strategies and any subsequent observations resulting from such actions. The

framework and modes of decay of the updated posterior should provide additional

insight into active monitoring of large complex networks under resource constraints.

Exploring phase transitions in updated posteriors for other classes of diffusion
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is the subject of future work. One particularly interesting question is identifying

conditions of phase transitions between multi-state processes (> 2) and explore the

rates at which a system transitions between various states.



CHAPTER III

High Dimensional Spatio-Temporal Graphical Model
Selection

3.1 Introduction

This chapter treats the problem of learning the interaction structure of a spatio-

temporal graphical model for a discrete state and discrete time stochastic process

known as the susceptible, infected, recovered (SIR) model. The presence of spatial

interactions cause adjacent nodes in the graph to affect each others states over time.

Learning the topology of this graph is known as model selection. We cast this graph-

ical model selection problem as a penalized likelihood problem, resulting in a convex

program for which convex optimization solvers can be applied. SIR spatio-temporal

graphical models are commonly used in modeling the random propagation of infor-

mation between nodes in large networks in bioinformatics, signal processing, public

health, and national security [9, 16, 40]. Knowing the network link structure allows

accurate prediction of individual node states and can aid the development of con-

trol and intervention strategies for such networks. This paper develops a tractable

method to estimate the topology of the network for the SIR spatio-temporal graph-

ical model from empirical data.

Exact solutions of the graphical model selection problem is NP hard due to the

combinatorial nature of enumeration through the discrete space of possible graph

31
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topologies. Researchers studying Bayesian networks, both static and dynamic, have

developed exact and approximate methods for selecting a good candidate topology

[10, 14, 39]. Such methods are appropriate for networks of small size and of unknown

generative models for the observations. However, they are difficult to scale to larger

graphs. SIR processes are used to model transmission events on complex networks

which tend to be sparse in their interactions [41, 6, 40, 13, 9], so that there are

relatively few edges in the graph. Over the past decade sparse regularization methods

have been developed for graphical model selection using !1-regularization and other

approaches. Examples include Gaussian graphical models (GMMs) [37, 18, 65, 50, 46]

and Markov random fields (MRFs) [33, 59, 50].

The SIR model used throughout this paper is both discrete state and discrete

time and thus any !1-penalized GMM method that is designed for real valued Gaus-

sian random vectors would not be appropriate for this model. The structure learn-

ing algorithms for MRFs discussed in [33, 59, 50] are designed for discrete samples

drawn from a MRF and most are limited to binary states (the SIR model has three

states and is a different generative model than the MRF). Research in MRFs and

GMMs have successfully used the !1-penalty to control the sparseness of the es-

timated graphical model topologies and we will adopt this approach for the SIR

model. The method presented in this paper also scales to large networks more easily

than traditional Bayesian network structure learning algorithms [10, 14, 39].

The proposed sparse structure learning method is designed for graphs that incor-

porate random causal transmission events affecting the evolution of the node states,

such occurs in the propagation of infectious disease. Identifying the structure of

social networks in tracking epidemics has received increased attention due to the

global response to pandemic influenza A (H1N1) 2009. We illustrate the accuracy
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of the proposed network structure learning on two moderate sized complex networks

using real-world epidemiological parameters that approximate an H1N1 flu inspired

outbreak [64]. We compare performance of the proposed estimation method against

a MRF graphical model selection using !1-regularized logistic regression [59]. The

proposed method is more accurate than generic approaches such as [59] for detection

of anomalous network structure given sampled data from a spatio-temporal SIR

process.

3.2 SIR Spatio-Temporal Graphical Models

The SIR graphical model has been used to approximate the general problem

of modeling the evolution of node states in a network in which there is random

transmission of disease or information between adjacent nodes on a graph [6, 40, 13,

9]. In the limit of large populations with equal mixing rates, SIR models have been

used to model population proportions of particular states using differential equations

[1, 48, 38, 27]. Unlike these studies, this paper addresses the problem of estimation

of the topology of interactions between individual nodes in the network.

The SIR graphical model is a discrete time, discrete state model for the states

of nodes in the network. Nodes can only affect the states of adjacent nodes in the

network when they are in the “infected” state. The state of a node is given by

Xi,k, where i refers to the individual (node) and k denotes time, and Xi,k takes on

values x ∈ {0, 1, 2} (corresponding to “susceptible”, “infected”, and “recovered”,

respectively). The model is specified by the state transition probabilities given in



34

the 3x3 stochastic matrix

(3.1) Pi,k|k−1 =





1− qi,k|k−1 0 γ

qi,k|k−1 1− α 0

0 α 1− γ





where qi,k|k−1 is the probability of transmission from “infected” neighbors of node i at

time k, γ is the probability that node i transitions from “recovered” to “susceptible”,

and α is the probability that node i transitions from “infected” to “recovered”. Since

(3.1) allows a transition from recovered back to susceptible, this is actually a SIRS

model (SIR and SIRS will be used interchangeably to refer to the three state

stochastic process). For p nodes, the spatial topology of the network is defined by

the interconnectivity, or adjacency, matrix

(3.2) E =





E1,1 · · · E1,p

...
. . .

...

Ep,1 · · · Ep,p





where the l, mth entry El,m ∈ {0, 1} is the indicator event that nodes l and m are

connected. The pattern of non-zero entries in (3.2) specifies the interconnection

topology of the network. The fundamental assumptions for an SIR network model

is that the transition probabilities do not depend on node i while the interconnectivity

matrix (3.2) is independent of time k. Under these assumptions, the joint distribution

of an observed trajectory of length T , represented by the p-dimensional discrete state

vector Xk = [X1,k, . . . , Xp,k]T , factorizes

(3.3) P (X1, . . . , XT ) =
T∏

k=2

P (Xk|Xk−1) =
T∏

k=2

p∏

i=1

P
(
Xi,k|{Xj,k−1}j∈{η(i),i}

)
,

where the neighborhood of node i is denoted

(3.4) ηi = {j : Ei,j *= 0}.
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The core component of most variations of the SIR model is the assumption that node

i is conditionally independent of all non-neighboring nodes given the states of node i

and its neighbors at time k− 1. Each neighbor can transmit the “infection” to node

i independent of the others neighbors. Under these assumptions, the probability of

at least one transmission to node i at time k is given by

(3.5) qi,k|k−1 = 1−
∏

j∈ηi

(1− ωz(1)
j,k−1),

where z(1)
k−1 ∈ {0, 1} is the indicator random variable of the jth variable being in

state “infected” at previous time k − 1 and ω is the prior Bernoulli probability of

transmission between j and i (also referred to as the attack rate). The conditional

transition distribution in (3.3) is given by the following multinomial distribution

(3.6) P
(
Xi,k = x|{Xj,k−1 = xj,k−1}j∈{ηi,i}

)
=

∏

x∈{0,1,2}

(
pi,k|k−1(x)

)z
(x)
i,k

with indicator variable z(x)
i,k = I{xi,k=x} and label probability pi,k|k−1(x) given by

pi,k|k−1(x) =






γz(2)
i,k−1 + z(0)

i,k−1

∏
j∈ηi

(
1− ωz(1)

j,k−1

)
, x = 0

z(0)
i,k−1

(
1−

∏
j∈ηi

(
1− ωz(1)

j,k−1

))
+ (1− α)z(1)

i,k−1 , x = 1

αz(1)
i,k−1 + (1− γ)z(2)

i,k−1 , x = 2,

where the model parameters are defined in (3.1). While the proposed graphical model

selection method in this paper is motivated using the canonical three state SIR

model, the method can be extended to any discrete state, discrete time stochastic

model with state interactions of the form of the probability of transmission given in

(3.5).
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3.3 Spatio-Temporal Topology Estimation

Here we develop an estimate of the topology E (3.2) given training sequences D

of observed states

(3.7) D = {xi,k}p,T
i=1,k=1,

where T is the horizon of the measurement period.

It will be convenient to rewrite the term involving the probability of transmission

in (3.5) as

∏

j∈η(i)

(
1− ωz(1)

j,k−1

)
= exp

{
log

(
∏

j∈ηi

(
1− ωz(1)

j,k−1

))}

= exp

{
∑

j∈ηi

log
(
1− ωz(1)

j,k−1

)}

= exp

{
∑

j∈ηi

log (1− ω) z(1)
j,k−1

}
,(3.8)

where we have exploited the fact that log(1−ωz(1)
j,k−1) = log(1−ω)z(1)

j,k−1 ≤ 0 in (3.8).

Define θi,j

θi,j =






log(1− ω) , Ei,j = 1

0 , Ei,j = 0

and re-writing the sum term in (3.8) to run over the other p− 1 nodes we arrive at

the following

(3.9) 1− qi,k|k−1 = exp

{
∑

j '=i

θi,jz
(1)
j,k−1

}
, θi,j ∈ {log(1− ω), 0} ∀j *= i.
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Inserting (3.9) into the state label probabilities, we have

pi,k|k−1(x) =






γz(2)
i,k−1 + z(0)

i,k−1e
P

j #=i θi,jz
(1)
j,k−1 , x = 0

z(0)
i,k−1

(
1− e

P
j #=i θi,jz

(1)
j,k−1

)
+ (1− α)z(1)

i,k−1 , x = 1

αz(1)
i,k−1 + (1− γ)z(2)

i,k−1 , x = 2.

Define the p − 1 dimensional column vector θi by θi = {θi,j}j '=i. Given the spatial

and temporal conditional independence assumptions represented in (3.3), the joint

likelihood can be written as the multinomial distribution

(3.10) L(φ;D) =
T∏

k=2

p∏

i=1

∏

x∈{0,1,2}

(
pi,k|k−1(x)

)z
(x)
i,k

with φ = {θ, α, γ, ω} and θ = {θi}p
i=1. The joint log-likelihood can be written as

(3.11) !(φ;D) =
p∑

i=1

!(φi;D),

with φi = {θi, α, γ, ω}. The objective is to estimate the topology parameter θ while

the α, γ, and ω are nuisance parameters. The ith log-likelihood function is

!(θi;D) =
T∑

k=2

{
z(0)

i,k log pi,k|k−1(0) + z(1)
i,k log(pi,k|k−1(1))

}

=
T∑

k=2

{
z(0,0)

i,k|k−1

∑

j '=i

θi,jz
(1)
j,k−1 + z(1,0)

i,k|k−1 log
(
1− e

P
j #=i θi,jz

(1)
j,k−1

)}
,(3.12)

with z(0,0)
i,k|k−1 = z(0)

i,k z(0)
i,k−1 and z(1,0)

i,k|k−1 = z(1)
i,k z(0)

i,k−1. Note that (3.12) only includes the

state transition probabilities that involve θi,j since θi,j is obtained by optimizing over

!(θi;D). In particular, the transition from any state to recovered does not depend

on θi,j. Note that the only parameter appearing in (3.12) necessary for estimation

of θ is the transmission attack rate ω, appearing implicitly through the definition of

θi,j, θi,j ∈ {log(1− ω), 0}.
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Maximization of the likelihood over all possible θ ∈ {log(1 − ω), 0}p(p−1) is in-

tractable even for small networks. The key to our maximum likelihood estimation

approach is to relax θi,j to a continuous valued variable lying between its discrete

values log(1− ω) and 0, i.e., log(1− ω) ≤ θi,j ≤ 0.

We use an !1-penalty on the likelihood to enforce sparsity, i.e., only a few θi,j are

non-zero. Such !1-penalization is common in high dimensional statistical problems

[55, 59, 29, 37, 18, 65, 50]. This yields the following convex program

minθ − !(θ;D) + λ‖θ‖%1

s.t. log(1− ω) - θ - 0(3.13)

with λ > 0 and - denotes element wise inequality between vectors. The estimated

neighborhood set of node i is then

(3.14) η̂i(λ) = {j : θ̂i,j(λ) < 0}.

The set of all such neighborhoods will specify a (directed) graph that can be used

to estimate the network topology E in (3.2). Specifically, the estimate of the lth

mth entry of E by Êl,m(λ) = I{θ̂l,m(λ)<0}. The global estimate of the topology is then

defined as Ê(λ) = {Êl,m(λ)}l,m.

3.3.1 Incorporating Prior Knowledge

There generally exists prior topological constraints that couple the optimization

over {θi}p
i=1 for different i in (3.11). One such topological constraint is symmetry in

the interactions, i.e., θi,j = θj,i, corresponding to an undirected graph E . One way

to incorporate this symmetry is to use augmented lagrangian methods that impose

symmetry in the form of a variational penalty, e.g.,
∑

i,j(θi,j − θj,i)2 [44]. Another

method is to relax the symmetry constraint during the optimization followed by

averaging the θi,j and θi,j together after optimization is completed.
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If symmetry in θi,j is not imposed, the joint log-likelihood naturally factorizes as in

(3.11), and can be decoupled by applying a coordinate descent-like likelihood function

maximization that cycles through different nodes, updating its neighborhoods and

holding the other θi’s fixed:

minθi − !(θi;D) + λ
∑

j '=i

|θi,j|

subject to log(1− ω) ≤ θi,j ≤ 0, ∀j *= i.(3.15)

Researchers may have additional prior knowledge such as known interactions, known

non-interactions, or minimum or maximum size of neighborhoods. Some common

forms of prior knowledge, and their corresponding constraints are summarized in

Table 3.1.

Table 3.1: Common prior knowledge for complex networks appearing as constraints for the SIR
graphical model selection problem

Prior Knowledge Form of Constraint

Symmetry θi,j = θj,i

Known Interactions θi,j = log(1− ω), j ∈ ηi

Known Non-Interactions θi,j = 0, j /∈ ηi

Min Possible Size of Neighborhood
∑

j #=i θi,j ≥ ai · log(1− ω)

Max Possible Size of Neighborhood
∑

j #=i θi,j ≤ bi · log(1− ω)

It is more natural to work with the dual of the objective function in (3.13). In the

dual one can immediately identify which of the inequality constraints are active.

For instance, if one has prior knowledge regarding the maximum size of a particular



40

neighborhood, e.g.,
∑

j '=i θi,j ≤ b · log(1− ω), one can determine if b · log(1− ω) < s,

in which case, the constraint of ‖θ‖%1 ≤ s would be inactive for the subvector θi.

This results in convexity preserving topological constraints

minθ − !(θ;D)(3.16)

subject to ‖θ‖%1 ≤ s

log(1− ω) - θ - 0

{hj(θ) ≤ νj}k
j=1

{gl(θ) = 0}r
l=1.

3.3.2 Numerical Solution

The proposed !1-penalized likelihood problem in (3.15) is a convex program where

there exists a variety of powerful solvers capable of producing a solution [4]. The

proposed numerical solution in this paper is most appropriate for networks on the

order of hundreds to a few thousand nodes. For networks on the order of tens of

thousands of nodes, a large scale method such as the one given in [29] might be more

appropriate.

We will relax the symmetry constraints when optimizing over θ and later impose

them as a post-estimation heuristic

(3.17) η̂i(λ
∗) ← η̂i(λ

∗) ∪ j, if i ∈ η̂j(λ
∗) ∩ j /∈ η̂i(λ

∗)∀i, j.

We use a coordinate-wise gradient descent based method for solving (3.15) by quadrat-

ically expanding the negative log-likelihood, resulting in iteratively solving a sequence

of quadratic programs that incorporates an additional line search. The Newton-step
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update is accomplished by solving

δθ(m)
i = arg minθi

1

2
θT

i H(m)
i θi + θT

i g(m)
i + λ

∑

j '=i

|θi,j|

s.t. log(1− ω) ≤ θi,j ≤ 0, ∀j *= i,(3.18)

with gradient

(3.19) g(m)
i = −∇!(θi;D)|

θi=θ̂
(m)
i

,

and Hessian

(3.20) H(m)
i = −∇2!(θi;D)|

θi=θ̂
(m)
i

.

The updated parameter θ̂(m+1)
i given by

(3.21) θ̂(m+1)
i = θ̂(m)

i + ε(m)
i δθ(m)

i ,

with step size ε(m)
i determined by performing a backtracking line search [4]

(3.22)

while − !(θ̂(m)
i + ε(m)

i δθ(m)
i ;D) > −!(θ̂(m)

i ;D) + 0.2ε(m)
i (g(m)

i )T δθ(m)
i , ε(m)

i ← 0.3ε(m)
i ,

with ε(m)
i initially set to 1. While (5.35) is convex, the presence of the !1-norm makes

the objective function non-differentiable. However, the objective function can be

transformed into an equivalent convex, differentiable objective by replacing the !1-

norm with linear inequality constraints [4, 29]. An alternative to solving the Newton

update (5.35) with the (p − 1)x(p − 1) Hessian is replace it with a quasi Newton

update which construct a surrogate objective function [57, 36, 32] and replaces the

Hessian, H(m)
i with α(m)

i I, where I is the identity and α(m)
i is chosen such that

(3.23) α(m)
i I 2 H(m)

i ,
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and (3.23) means that α(m)
i I − H(m)

i 2 0 is positive semi-definite. A consequence

of the proposed penalized likelihood formulation for the SIR model is that H(m)
i ,

in addition to being symmetric and positive semi-definite, has positive entries, i.e.,

(H(m)
i )s,r ≥ 0. Such non-negative conditions on the entries in H(m)

i can be enforced

by using the Perron-Frobenius bound [25]

(3.24) maxsλs

(
H(m)

i

)
≤ maxs

∑

r

(
H(m)

i

)

s,r
,

where the optimization is applied to the upper bound

(3.25) α(m)
i = maxs

∑

r

(
H(m)

i

)

s,r
,

thus guaranteeing (3.23).

By replacing the Hessian with a diagonal surrogate is that the p− 1-dimensional

quadratic program in (5.35) factorizes into p− 1 individual programs which have an

analytical update and can be evaluated simultaneously. The update for θi,j under

such a surrogate Hessian becomes

δθ(m)
i,j = arg minθi,j

1

2
α(m)

i θ2
i,j + g(m)

i,j θi,j + λ|θi,j|, log(1− ω) ≤ θi,j ≤ 0

=






−1

α
(m)
i

(
|g(m)

i,j |− λ
)

+
: g(m)

i,j < λ− α(m)
i · log(1− ω)

log(1− ω) : g(m)
i,j ≥ λ− α(m)

i · log(1− ω)
(3.26)

with (u)+ = max(0, u). The proposed gradient descent method for the !1-penalized

likelihood problem for the spatio-graphical model selection problem is summarized

in Algorithm 1 (below).

Algorithm 1

1. Let θ̂(0)
i ∈ [log(1− ω), 0]p−1 be an initial parameter vector for the ith neighbor-

hood.
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2. Update δθ(m)
i by solving (5.35) or solving (3.26) ∀j *= i with surrogate diagonal

Hessian given by (3.25)

3. ε(m)
i ← backtracking line search from (3.22)

4. θ̂(m+1)
i = θ̂(m)

i + ε(m)
i δθ(m)

i

5. If convergence criteria met, stop and repeat step 1 with next node index, i ← i+

1. If convergence criteria not met, update gradient and Hessian (and potentially

the surrogate diagonal Hessian) and repeat step 2 through 5 Note: Algorithm

1 can be parallelized across all p log-likelihoods rather than the cyclical update

of i ← i + 1. Symmetry is imposed through (3.17).

A possible speed up would be to perform active set updates to those coefficients which

are non-zero by preferentially updating the coefficients corresponding to nodes that

most likely belong to the neighborhood. Such active set updates have been used suc-

cessfully in estimating sparse partial correlations [46]. They have also been proposed

to block co-ordinate descent in group lasso logistic regression [36]. Implementing

such accelerations is out of the scope of this paper.

3.3.3 Selection of Tuning Parameters

Algorithm 1 requires specification of the tuning parameter λ. Typically, an es-

timate of the best λ is desirable in order to perform cross validation or other error

assessment. In this paper we report a BIC-like penalty, similarly used in previous

work on the estimation of partial correlation networks [46], for selecting the best

estimate of λ, denoted by λ∗, by cross validation. Specifically, assuming the attack

rate ω is known, we perform the update θi,j as follows

(3.27) θ̂i,j(λ) ← log(1− ω),∀i, j ∈ {i, j : θ̂i,j(λ) < 0}.
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The BIC penalty for the ith node is

(3.28) BICi(λ) = −!i(θ̂i(λ);D) +
1

2
log Ti #{j : θ̂i,j(λ) < 0},

where #{i, j : θ̂i,j(λ) < 0} is the number of non-zero entries in the estimator. The

term Ti = #{k : z(0)
i,k = 1} represents the effective time horizon for the ith node

as the number of terms in the ith log-likelihood, which depends on the number of

of z(0)
i,k equal to one (see (3.12)). Given (3.28), there will be multiple regularization

parameters, one for each neighborhood i:

(3.29) λ∗i = arg minλBICi(λ).

The common approach is to impose that all the λ∗i ’s are the same and solve for a

single tuning parameter

(3.30) λ∗ = arg minλ

p∑

i=1

BICi(λ).

The latter approach has been previously used in controlling the sparseness of esti-

mated partial correlation networks [46] and learning directed acyclic graphs (DAGs)

[53].

3.4 Model Selection Under Observation Errors

In practice, the training trajectories are often contaminated through observation

mislabeling. There are two common ways for accommodating for measurement error:

(1) - maximum likelihood over the hidden true node states that are randomly per-

turbed through observation or (2) - robust estimation of the hidden true nodes states.

Within the negative maximum likelihood framework, the former approach reduces to

solving a min min program, which is non-convex, where 2p−1 hidden combinatorial

state variables need to be estimated under Bernoulli measurement noise corruption.
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In risk sensitive domains, one might sacrifice optimality under best-case mislabel-

ing errors and instead, desire an estimate of a neighborhood structure that is robust

to worst-case mislabeling. This robust approach [15, 2] produces an analytically

tractable robust negative log-likelihood which is then minimized with respect to θi.

Directly extracting the joint robust log-likelihood is intractable. We will approxi-

mate this joint robust likelihood by identifying the robust marginal log-likelihood

corresponding to worst-case mislabeling of all other nodes necessary for estimating

the ith neighborhood structure. For simplicity of presentation, we will confine our

attention to the two-state SIS process, however, the results within this section can

be naturally extended to any multi-state variant of the SIR model.

The robust graphical model selection problem is given via the following

minθi maxy∈Z(z,m) − !(θi;D(y)) + λ
∑

j '=i

|θi,j|

subject to log(1− ω) ≤ θi,j ≤ 0, ∀j *= i(3.31)

where the uncertainty set is given by

(3.32) Z(z,m) = {Zk(z,m)}T
k=2

with uncertainty set at time k given by

(3.33)

Zk(z,m) =
{
zj,k−1 : yj,k−1 = zj,k−1 + δj,k−1(1− 2zj,k−1), j *= i, δk−1 ∈ {0, 1}p−1,1T δk−1 ≤ m

}

where zj,k−1 = z(1)
j,k−1 and yj,k−1 = y(1)

j,k−1 have had their superscripts removed for

clarity. When δj,k−1 = 1, a mislabeling occurs, and we are alloted at most m per

time k. Under these assumptions, the marginal negative log-likelihood for node i can
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be written as

(3.34)

−!(θi;D(y)) = −
T∑

k=2

{
(1− zi,k)θ

T
i ψk−1(y) + zi,k log

(
1− ezi,k−1logγ+θT

i ψk−1(y)
)}

with ψk−1(y) = {(1− zi,k−1)yj,k−1}j '=i.

As the inner maximization in (3.31) only affects the negative log-likelihood, we

proceed with evaluating the maximization step via the following

Φ = maxy∈Z(z,m) − !(θi;D(y))

= maxy∈Z(z,m) −
T∑

k=2

{
(1− zi,k)θ

T
i ψk−1(y) + zi,k log

(
1− ezi,k−1logγ+θT

i ψk−1(y)
)}

= maxδ∈∆ −
T∑

k=2

{
(1− zi,k)θ

T
i ψk−1 + (1− zi,k)Ω(δk−1) + zi,k log

(
1− ezi,k−1logγ+θT

i ψk−1+Ω(δk−1)
)}

= maxδ∈∆ −
T∑

k=2

{
(1− zi,k)Ω(δk−1) + zi,k log

(
1− ezi,k−1logγ+θT

i ψk−1+Ω(δk−1)
)}

where uncertainty set ∆ is given by

(3.35) ∆ =
{
k : δk−1 ∈ {0, 1}p−1,1T δk−1 ≤ m

}

and Ω(δk−1) is given by

(3.36) Ω(δk−1) = (1− zi,k−1)θ
T
i (I − 2Dk−1) δk−1

with Dk−1 = diag(zk−1).

The estimate of δk−1, denoted by δ∗k−1 is conditional on three possible outcomes

of the node states {zi,k = 1, zi,k−1 = 0}, {zi,k = 0, zi,k−1 = 0}, and zi,k−1 = 1.

When zi,k−1 = 1 the influence of θi is removed from the likelihood and the ability

to resolve interactions is destroyed and thus, our attention will be devoted to the

other two conditions.
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Under the conditions when zi,k = 1 and zi,k−1 = 0, the inner maximization of

(3.31) reduces to solving the following

maxδk−1∈∆ − Ω(δk−1) = maxδk−1∈∆ − θT
i (I − 2Dk−1) δk−1

= maxδk−1∈∆ −
∑

j '=i

θi,j (1− 2zj,k−1) δj,k−1

= maxδk−1∈∆

∑

j:zj,k−1=0

θ̃i,jδj,k−1 −
∑

j:zj,k−1=1

θ̃i,jδj,k−1(3.37)

with θ̃i,j = −θi,j ≥ 0. In (3.37), the first sum is positive whereas the second sum is

negative, thus our attention is devoted to the first term where zj,k−1 = 0. Here, if

the number of variables in the 0 (susceptible) state is less than or equal to m, e.g.,

|{j : z(1)
j,k−1 = 0}| ≤ m then the estimation is given by

(3.38) δ∗k−1 = {1}
j∈I(0)

k−1
∪ {0}

j /∈I(0)
k−1

.

with I(0)
k−1 = {j *= i : zj,k−1 = 0}.

In the case when more variables are in the zero-state than the allotted m labeling

errors, |{j : zj,k−1 = 0}| > m, we relax the combinatorial uncertainty set (3.35) to

the following

(3.39) ∆ =
{
k : δk−1 ∈ [0, 1]p−1, ‖δk−1‖%2 ≤

√
m

}
.

Isolating the terms in the first sum in (3.37) and setting δj,k−1 = 0 for all zj,k−1 = 1

(as they only decrease the value of the objective function) we have

∑

j:zj,k−1=0

θ̃i,jδj,k−1 =
[
(I −Dk−1)θ̃i

]T

δk−1

=
(
Ik−1θ̃i

)T

δk−1

≤ ‖θi‖Ik−1
‖δk−1‖%2

≤
√

m‖θi‖Ik−1
.(3.40)
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The upper-bound in (3.40) is achieved at the max of (3.37) and therefore

(3.41) maxδk−1∈∆ − Ω(δk−1) =
√

m‖θi‖Ik−1
.

Both (3.37) (with worst-case mis-labeling indexed by (3.38)) and (3.45) are the so-

lutions to the kth inner-maximization step of (3.31) for {zi,k = 1, zi,k−1 = 0} with

|{j : zj,k−1 = 0}| ≤ m and |{j : zj,k−1 = 0}| > m, respectively. We will now proceed

to solve the kth inner-maximization step of (3.31) when {zi,k = 0, zi,k−1 = 0}.

Conditioning on {zi,k = 0, zi,k−1 = 0}, the maximization of the kth component of

the negative log-likelihood in (3.31) reduces to the following

(3.42) maxδk−1∈∆−log
(
1− eθT

i ψk−1+Ω(δk−1)
)

= −log
(
1− eθT

i ψk−1+maxδk−1∈∆Ω(δk−1)
)

.

Inspecting the maximization over (3.36) within the argument of the negative loga-

rithm in (3.42) we have

maxδk−1∈∆Ω(δk−1) = maxδk−1∈∆ θT
i (I − 2Dk−1) δk−1

= maxδk−1∈∆

∑

j '=i

θi,j (1− 2zj,k−1) δj,k−1

= maxδk−1∈∆

∑

j:zj,k−1=1

θ̃i,jδj,k−1 −
∑

j:zj,k−1=0

θ̃i,jδj,k−1.(3.43)

If |{j : zj,k−1 = 1}| ≤ m, then each of the corresponding δ∗j,k−1 = 1 and the rest are

set to zero, Ik−1 = {j : zj,k−1 = 1}. However, if |{j : zj,k−1 = 1}| > m then we

must relax the uncertainty set to (3.39) and proceed similarly as before. Isolating

the terms in the first sum of (3.43) and setting δj,k−1 = 0 for all those in the second

sum (as they only decrease the value of the objective function) we have the following

∑

j:zj,k−1=1

θ̃i,jδj,k−1 =
[
Dk−1θ̃i

]T

δk−1

≤ ‖θi‖Dk−1
‖δk−1‖%2

≤
√

m‖θi‖Dk−1
.(3.44)
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The upper-bound in (3.44) is achieved at the max of (3.43) and therefore

(3.45) maxδk−1∈∆Ω(δk−1) =
√

m‖θi‖Dk−1
.

Given the mis-labelings under worst-case conditions, the “robust” penalized likeli-

hood problem is

minθi − !r(θi;D) + λ
∑

j '=i

|θi,j|

subject to log(1− ω) ≤ θi,j ≤ 0, ∀j *= i(3.46)

with robust negative log-likelihood given by

(3.47) −!r(θi;D) = −
∑

k:zi,k−1=0

{
(1− zi,k)Ω

∗
k−1 + zi,k log

(
1− eθT

i ψk−1+Ω∗
k−1

)}

and values of Ω∗k−1 presented in Table 3.2.

Table 3.2: Conditional values of Ω∗k−1 for robust marginal likelihood

Ω∗k−1 Conditions

θT
i (I − 2Dk−1) δ∗k−1 {zi,k = 1, zi,k−1 = 0} and |{j : zj,k−1 = 0}| ≤ m

−
√

m‖θi‖Ik−1 {zi,k = 1, zi,k−1 = 0} and |{j : zj,k−1 = 0}| > m

θT
i (I − 2Dk−1) δ∗k−1 {zi,k = 0, zi,k−1 = 0} and |{j : zj,k−1 = 1}| ≤ m

√
m‖θi‖Dk−1 {zi,k = 0, zi,k−1 = 0} and |{j : zj,k−1 = 1}| > m

The non-zero entries of δ∗k−1 in rows 1 and 3 are given by Ik−1 = {j : zj,k−1 = 0}

and Ik−1 = {j : zj,k−1 = 1}, respectively.

3.5 Numerical Results

Given the global response to the recent outbreak of pandemic influenza A (H1N1)

2009, the ability of public health organizations and world governments to develop
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effective control and intervention strategies depends on knowledge of the topology of

social networks. We illustrate the proposed penalized likelihood topology estimate

for the problem of identifying the structure of synthetic social networks given disease

spread that has attack rate parameters that simulate H1N1, specifically ω = 0.273

as reported in [64]. The other two parameters, not needed for network inference

but necessary for generating SIR trajectories from (3.2), were taken as α = 0.250

reflecting a mean infectious period of 4 days and γ = 0.100 producing an average

time of 10 days for transition from “recovered” to “susceptible”.

We simulated two 200 node networks using two types of connection models: scale-

free and small-world. These models have been proposed for many practical complex

networks [41]. The two randomly generated networks used for experiments were cre-

ated using the iGraph package for R [11]. The power law network was sampled such

that the degree distribution reflected those which appear in real complex networks.

Specifically, the exponent parameter of the degree distribution was taken as 2.2, con-

sistent with evidence reported in [41]. The rewiring probability of the small-world

network was taken as 0.1 to elicit tight communities that were loosely connected to

other clusters.

The SIR model (3.2) was used to generate training, validation, and test data for

each of the two simulated 200 node networks. The networks were initialized with 40

randomly selected nodes were in “infected” state while the rest were in “susceptible”

state. The quadratic program appearing in Algorithm 1, (5.35), was solved using the

CVX environment in MATLAB and the solver SDPT3 4.0 [21, 58] with cold start

initializations of θ̂(0)
i = 0. Symmetry was included in the estimated neighborhoods

following the post estimation heuristic (3.17).

We present a comparison against a modified version of graphical model selec-
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tion using !1-logistic regression (!1-LR) [59]. Since the method described in [59]

is designed for binary random variables generated from an Ising model, to imple-

ment !1-LR we transform the three state SIR variables to binary random variables.

The transformation is the following: for each node i, the indicator event of the ith

node transitioning from “susceptible” to “infected”, is regressed on all other p − 1

“infected” nodes indicator variables at previous time k − 1 with a bias controlling

constant as explained in [59] and symmetry imposed through (3.17). By transforming

the multi-state SIR random variables to the binary random variables for the imple-

mentation of !1-LR, we capture the causality of transmission from neighbors. While

we transform the three state SIR random variables to two state random variables for

implementing !1-LR, the proposed graphical model selection in this paper, referred

to as !1-SIR, uses the original three state variables in the log-likelihood (3.12). As

the estimated parameters using !1-LR [59] can take on any value on the real-line, we

define the estimated neighborhood for the ith node as those estimates with non-zero

value.

The ROC curves corresponding to !1-SIR and the modified !1-LR for the scale-

free network and small-world network for T = {500, 1000} are displayed in Figure

3.1(a) and Figure 3.1(b), respectively. Inspection of Figure 3.1 validates that the

proposed !1-SIR graphical model selection outperforms !1-LR when confronted with

data drawn from the SIR distribution. At a false alarm rate of 5%, we see that the

proposed !1-SIR method achieves a 5%− 10% gain in power over the modified !1-LR

method for both networks. As !1-LR [59] uses one !1 penalty, for baseline comparison

between these two graphical model selection algorithms, only a single regularization

penalty was used in the ROC curves generated from !1-SIR. Both structure learning

methods perform poorer in the case of the small-world network than in the case of
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the scale-free network. This is possibly due to the increased frequency of re-infection

in the tight clusters of the small-world network.
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(a) Scale-Free Network
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(b) Small-World Network

Figure 3.1: ROC curves of "1-SIR graphical model selection (blue) vs. "1-logistic regression (red)
for number of time points T = {500, 1000}

We next present the model selection performance on the 200 node scale-free net-

work using the proposed method with global and neighborhood specific penalties,

optimized by minimizing the BIC penalties (3.30) and (3.29), respectively, for time

durations of T = {100, 400, 700, 1000}. The images in Figures 3.2 and 3.3 reflect the

estimated network topologies, represented as symmetric adjacency matrices E , aver-

aged over the 1000 resampled initial conditions corresponding T = 100 and T = 1000,

respectively. Subfigures a.) through c.) correspond to ground truth, !1-SIR with a

single !1-penalty, and !1-SIR with neighborhood specific !1-penalty, respectively.

The intensity, located at row i and column j, indicates the frequency of an edge

discovered between nodes i and j, white designates a strong edge and black desig-

nates no edge. Visual inspection of these figures establish that the proposed !1-SIR

graphical model selection methods accurately extract the global community struc-

ture of the scale-free network when using a single or multiple penalties to enforce

sparseness.
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a.) b.) c.)

Figure 3.2: % zeros in the reconstruction of edges in 200 node synthetic scale free network under
100 time points resampled over 1000 initial conditions of 40 randomly selected nodes as
“infected” with rest “susceptible”. a.) ground truth, b.) single tuning parameter, c.)
multiple tuning parameters (white - 0% black 100%)

a.) b.) c.)

Figure 3.3: % zeros in the reconstruction of edges in 200 node synthetic scale free network under
1000 time points resampled over 1000 initial conditions of 40 randomly selected nodes
as infected with rest susceptible. a.) ground truth, b.) single tuning parameter, c.)
multiple tuning parameters (white - 0% black 100%)
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A quantitative comparison of accuracy of topology estimation is given by the

sensitivity, specificity and probability of error. Table 3.3 summarizes the mean (with

standard deviation shown in parentheses) when assessing the performance across

the 1000 reconstructed topologies corresponding to the 1000 resampled simulations.

We see that the sensitivity of this method, using a single λ∗ and multiple {λ∗i }
p
i=1,

increases when the number of time samples increases while the specificity remains

robust to the number of time samples and consistently above 0.96. Likewise, the

global probability of error is below 0.05 for both methods across all time horizons

explored. It is worth noting that the proposed method is only able to resolve an

interaction between nodes i and j if both nodes states have changed at some point

throughout the monitoring interval. Therefore for small time horizons, the epidemic

may not have enough time to propagate the entire graph thus inhibiting the ability

to accurately detect interactions.

A scale-free network has a wide distribution of vertex degrees (few hubs, many

lesser connected nodes). Figure 3.4 a.), b.), and c.) show the sensitivity, specificity,

and probability of error, respectively, of correctly detecting the neighborhood of

each node as a function of increasing vertex degree. In all three subfigures, we see

that regularizing with tuning parameters characteristic to each neighborhood {λ∗i }
p
i=1

selected according to (3.29) tends to produce similar sensitivity and specificity with

lower probability of error across all types of node degrees than when regularizing

with a single penalty λ∗ selected according to (3.30).

The performance of the proposed method was also assessed for a 200 node small-

world network. Visual inspection of Figure 3.6 shows that the proposed method

method accurately extracts the small-world community structure, represented by
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Table 3.3: Detection statistics vs. time horizon for 200 node synthetic scale-free network with
trajectories resampled over 1000 initial conditions of 40 randomly selected nodes as
“infected” with rest “susceptible”

Method T Sens.(λ∗) Spec.(λ∗) Pe(λ∗)

"1-SIR(λ∗) 100 0.40(0.02) 0.96(0.00) 0.05(0.00)
"1-SIR({λ∗i }

p
i=1) 100 0.34(0.02) 0.97(0.00) 0.05(0.00)

"1-SIR(λ∗) 400 0.80(0.05) 0.97(0.00) 0.03(0.00)
"1-SIR({λ∗i }

p
i=1) 400 0.78(0.05) 0.96(0.00) 0.04(0.00)

"1-SIR(λ∗) 700 0.95(0.08) 0.96(0.00) 0.04(0.00)
"1-SIR({λ∗i }

p
i=1) 700 0.95(0.07) 0.96(0.00) 0.04(0.00)

"1-SIR(λ∗) 1000 0.97(0.08) 0.96(0.00) 0.03(0.00)
"1-SIR({λ∗i }

p
i=1) 1000 0.97(0.08) 0.96(0.00) 0.03(0.00)
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Figure 3.4: Neighborhood detection statistics vs. node degree for 200 node scale-free network with
T = 1000 with trajectories resampled over 1000 initial conditions of 40 randomly se-
lected nodes as infected with rest susceptible. a.) sensitivity, b.) specificity, c.) proba-
bility of error (red Single Penalty, blue Multiple Penalties)

the recovery of the banded structure of the adjacency matrices. In addition to

detecting the characteristic clusters of the small-world ground truth network, the

method also tends to identify the between-cluster interactions which are depicted

in the off-diagonal elements. In terms of the detection statistics (Table 3.4), the

sensitivity of both methods improves with the number of time samples and the single
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a.) b.) c.)

Figure 3.5: % zeros in the reconstruction of edges 200 node synthetic small world network under
100 time points resampled over 1000 initial conditions of 40 randomly selected nodes as
“infected” with rest “susceptible”. a.) ground truth, b.) single tuning parameter, c.)
multiple tuning parameters (white - 0% black 100%)

tuning parameter method (3.30) results in higher power across all time samples.

The method of regularizing with tuning parameters unique to each neighborhood

(3.29) seems to perform similarly to the method when using a single penalty. The

decomposition of the global detection statistics on a per vertex degree basis for the

small-world network was also explored. Figure 3.7 a.), b.), and c.) represent the

sensitivity, specificity, and probability of error, respectively, in reconstructing the

neighborhoods of nodes as a function of node degree. The more highly connected

nodes tend to have poorer sensitivity and higher probability of error. Figure 3.7

suggests that both methods tend to produce similar results in detection performance

as a function of vertex degree. Given this similarity, one should opt for the reduced

complexity of using single penalty with tuning parameter selected by (3.30).

3.6 Conclusion

We have presented an estimator of the topology of interactions in a spatio-

temporal graphical model. While the penalized likelihood formulation was derived
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a.) b.) c.)

Figure 3.6: % zeros in the reconstruction of edges 200 node synthetic small world network under
1000 time points resampled over 1000 initial conditions of 40 randomly selected nodes
as infected with rest susceptible. a.) ground truth, b.) single tuning parameter, c.)
multiple tuning parameters (white - 0% black 100%)

Table 3.4: Detection statistics vs. time horizon for 200 node synthetic small-world network with
trajectories resampled over 1000 initial conditions of 40 randomly selected nodes as
“infected” with rest “susceptible”

Method T Sens.(λ∗) Spec.(λ∗) Pe(λ∗)

"1-SIR(λ∗) 100 0.26(0.05) 0.94(0.01) 0.08(0.01)
"1-SIR({λ∗i }

p
i=1) 100 0.28(0.04) 0.92(0.01) 0.10(0.01)

"1-SIR(λ∗) 400 0.41(0.02) 0.95(0.00) 0.07(0.00)
"1-SIR({λ∗i }

p
i=1) 400 0.46(0.02) 0.93(0.00) 0.08(0.00)

"1-SIR(λ∗) 700 0.77(0.02) 0.90(0.01) 0.11(0.01)
"1-SIR({λ∗i }

p
i=1) 700 0.77(0.02) 0.90(0.00) 0.11(0.00)

"1-SIR(λ∗) 1000 0.87(0.01) 0.90(0.00) 0.07(0.01)
"1-SIR({λ∗i }

p
i=1) 1000 0.87(0.02) 0.90(0.00) 0.07(0.00)

for the general SIR model, more complex SIR processes, i.e., SI1 · · · , ImRS could

be handled by our approach. The detection performance resulting from simulations

of a H1N1 epidemic model suggests that the proposed method accurately recon-

structs the topology of these types of networks while outperforming other state of

the art structure learning algorithms.
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Figure 3.7: Neighborhood detection statistics vs. node degree for 200 node small-world network
with T = 1000 with trajectories resampled over 1000 initial conditions of 40 randomly
selected nodes as infected with rest healthy. a.) sensitivity, b.) specificity, c.) proba-
bility of error (red Single Penalty, blue Multiple Penalties)



CHAPTER IV

Robust Logistic Regression with Bounded Data
Uncertainties

4.1 Introduction

There are two common methods for accommodating uncertainty in the observed

data in risk minimization problems. The first approach assumes stochastic measure-

ment corruption, centered about the true signal. This method is commonly known as

error in variables (EIV) and has a rich history in least-squares and logistic regression

(LR) problems [62, 60, 5, 26]. Unfortunately, EIV estimators are optimistic, require

solving non-convex optimization problems, and de-regularize Hessian-like matrices

making numerical estimation less stable. The latter approach of accommodating

measurement uncertainty involves developing estimators that are robust to worst-

case perturbations in the data and result in solving well posed convex programs

[7, 20, 15, 31, 28, 63, 2].

The work presented throughout this paper builds on the results of [15] and [7].

Here, we generalize the robust optimization problem to a variety of different un-

certainty sets appropriate for real problems. We present thresholding conditions

which produce block-sparse parameters when confronted with grouped uncertainty.

The robust risk functions, resulting from the minimax estimation, are regularized

with group structured penalties to accommodate high dimensional data when the

59
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underlying signal is both block-sparse and measurements are uncertain. A block

co-ordinate gradient descent with an active shooting speed up algorithm is presented

which exploits the iterative grouped thresholding conditions. The relationship be-

tween ridge LR and robust LR (RLR) is discussed. The robustness of ridge LR is

established by identifying conditions when the uncertainty magnitude of robust can

be re-parameterized in terms of the ridge tuning parameter such that both methods

yield the same solution. Conditions on the Hessians of each method are established

such that the RLR approach converges to this solution faster than ridge LR. We also

present an empirical approach to estimating the uncertainty bounds using quantiles.

We conclude by presenting a motivating example using gene expression data and

discuss how robust !1-regularization paths recover “robust genes” that were previ-

ously over looked by standard !1-regularization paths. The worst-case probability of

errors and false alarm rates of RLR are always less than or equal to those from LR.

The results suggest that “robustification” of logistic classifiers can lead to significant

performance gains in gene expression analysis.

4.2 Robust Logistic Regression

The goal of robust logistic regression (RLR) is to extract an estimator by min-

imizing the worst-case errors in measurements on the LR loss function (binomial

deviance) subject to bounded uncertainty. The general case of RLR with spheri-

cal uncertainty, previously explored by [15], involves n measured training variables

{xi}n
i=1, xi ∈ Rp with minimax formulation

minβ,β0 max{δi}n
i=1

n∑

i=1

log
(
1 + e−yi(βT (xi+δi)+β0)

)

subject to ‖δi‖%2 ≤ ρ ∀ i = 1, . . . , n.(4.1)
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Here, the true signals are given by {zi = xi + δi}n
i=1 and the parameter ρ is the

magnitude of the worst-case perturbation. The minimax problem in (4.1) is solved

by first solving the inner maximization step analytically, resulting in a convex RLR

loss function which is then minimized with respect to β, β0. We will confine our

efforts to the situation in which class labels are perfectly observed.

Note that the maximization over each of the n perturbations, δi can be moved

within the sum loss function in (4.1)

minβ,β0

n∑

i=1

maxδi log
(
1 + e−yi(βT (xi+δi)+β0)

)

subject to ‖δi‖%2 ≤ ρ ∀ i = 1, . . . , n.(4.2)

We would like to reduce the minimax problem in (4.2) to a closed form minimization

problem over β as performed in [7]. We begin by noting the following

(4.3) −yiβ
T δi ≤ ‖β‖%2‖δi‖%2 ≤ ‖β‖%2ρ.

Given that the loss function is monotonic in −yiβT δi, we have the following upper-

bound on the binomial deviance for the ith sample:

(4.4) log
(
1 + e−yi(βT (xi+δi)+β0)

)
≤ log

(
1 + e−yi(βT xi+β0)+ρ‖β‖"2

)
.

The upper-bound in both (4.3) and (4.4) is achievable for δi collinear with β, i.e., δi =

γiβ for some alignment parameter γi, thus yielding the solution to the constrained

maximization step for the ith observation

(4.5) maxδi,‖δi‖"2
≤ρ log

(
1 + e−yi(βT (xi+δi)+β0)

)
= log

(
1 + e−yi(βT xi+β0)+ρ‖β‖"2

)
.

We may now proceed with obtaining the robust estimated normal vector β cor-

responding to the binomial deviance via the following unconstrained minimization
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problem:

(4.6) minβ,β0

n∑

i=1

log
(
1 + e−yi(βT xi+β0)+ρ‖β‖"2

)
.

Geometrically, the robust binomial deviance penalizes points based upon their dis-

tance to the “uncertainty margins” ±ρ‖β‖2, i.e., a point is penalized more for being

the same distance away from the hyperplane under the robust formulation than stan-

dard LR. This pessimism is intuitive as observations that are close to the decision

boundary could have their true value lying on the misclassified side under worst-case

perturbations (see Figure 4.1).

βT x + β0 = 0

ρ

ρ

ρ

βT x + β0 = ρ‖β‖!2

βT x + β0 = −ρ‖β‖!2

Figure 4.1: Bounded Uncertainty Modification Penalizes Based on Potentially Mis-Classified Points
Translating Logistic Regression Loss to Penalize Based on Margins

4.2.1 Robust Logistic Regression with Group Structured Uncertainty Sets

In practice, joint spherical uncertainty may be inappropriate for modeling real

data. A more appropriate form of uncertainty occurs when it affects groups of

variables. Here, we assume that perturbations have group structure and are applied

to G disjoint subsets of the p variables. These assumptions produce the following
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robust optimization problem

minβ,β0

n∑

i=1

maxδi log
(
1 + e−yi(βT (xi+δi)+β0)

)

subject to {‖δi,g‖%2 ≤ ρg}G
g=1 ∀ i = 1, . . . , n(4.7)

where δi = {δi,g}G
g=1 with δi,g ∈ R|Ig | and Ig ⊂ I, I = {1, . . . , p}, are the set indices

corresponding to the variables in group g. We will assume that Ig ∩ Ig′ = ∅ for

g *= g′. Note that that loss function is monotonic in
∑G

g=1−yiβT
g δi,g, and therefore,

under worst-case perturbations, we have

(4.8)
G∑

g=1

−yiβ
T
g δi,g ≤

G∑

g=1

‖βg‖%2‖δi,g‖%2 ≤
G∑

g=1

ρg‖βg‖%2 .

The inner maximization step in (4.7) is achieved when the upper bounds in (4.8)

is tight, which is when βg is colinear with δi,g. Therefore, as in (4.5), we have

analytically computed the inner-maximization step, and thus, our problem reduces

to solving the following:

(4.9) minβ,β0

n∑

i=1

log
(
1 + e−yi(βT xi+β0)+

PG
g=1 ρg‖βg‖"2

)
.

The term within the argument of the RLR loss function is the “group lasso” penalty

(4.9) which tends to promotes spareness in the groups (or factors) when used to

regularize convex risk functions [66, 36].

When the number of groups is G = p (each variable in its own group), the

perturbations are interval based, and the group lasso penalty is equivalent to the

!1-penalty, and thus, our minimization problem becomes when ρg = ρ, for all g =

1, . . . , p

(4.10) minβ,β0

n∑

i=1

log
(
1 + e−yi(βT xi+β0)+ρ‖β‖"1

)
.

The minimization problem in (4.10) was previously treated in the context of interval

perturbations in [15].
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4.2.2 Regularized Robust Logistic Regression

Penalties such as the !1-norm are used in high-dimensional data settings, as they

tend to zero out many of elements in β, which may better represent the structure of

the underlying signal. Many fields of research increasingly involve high-dimensional

data measurements that are obtained under noisy measurement conditions, such

as gene expression microarrays that measure the activity of thousands of genes by

assaying the abundances of mRNA in the sample. Here we develop new logistic

classifiers that have the combined advantages of sparsity in variables and robustness

to measurement uncertainty.

Here, we will assume that the group structure of the regularization penalties

coincide with the structure of uncertainty sets. For an arbitrary set of G disjoint

groups, the following regularized robust solution is

(4.11) minβg ,β0

n∑

i=1

log
(
1 + e−yi(βT xi+β0)+

PG
g=1 ρg‖βg‖"2

)
+

G∑

g=1

λg‖βg‖%2 .

The presence of the additional group-lasso penalty should promote block-sparsity in

β while being robust to measurement error affecting the same variables in the group.

4.3 Computations for Regularized Robust Logistic Regression

Here, we present a numerical solution to the general regularized RLR problem

based on block co-ordinate gradient descent with an active shooting step to speed

up the convergence time when confronted with sparse signals or many groups. Since

the penalized loss function in (4.11) is convex, denoted by Lρ,λ, we can iteratively

obtain βg via block coordinate gradient descent. However, the gradient of (4.11) does

not exist at βg = 0, and thus we must resort to sub-gradient methods to identify

optimality conditions ([3, 36, 52]). The necessary and sufficient conditions for βg to
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be a valid solution of (4.11) require

−XT
g Aρy + (ρg tr (Aρ) + λg)

βg

‖βg‖%2

= 0 ,βg *= 0

‖XT
g A−βg ,ρy‖%2 ≤

(
ρgtr(A−βg ,ρ) + λg

)
,βg = 0

with Aρ = (I + Kρ)
−1, Kρ = diag

(
eyi(βT xi+β0)−

PG
g=1 ρg‖βg‖"2

)
. Note that A−βg ,ρ

means that βg is set to 0 in Kρ. The group thresholding that arises from these

optimality conditions appears in group lasso regularized problems [66, 36, 52] and to

the authors knowledge, has not been previously extracted in the context of RLR [15].

While RLR uses a different loss function than the binomial deviance, the thresholding

conditions (above) establish the relationship between regularizing a standard convex

risk function with a non-differentiable penalty and the sparse solutions that tend to

appear when using robust linear classifiers with uncertain data [15]. It is intuitive

that the thresholding conditions depend on both the uncertainty magnitude ρg and

the sparseness penalty parameter λg.

The proposed block co-ordinate gradient descent consists of updating the gth group

parameters by initially computing a Newton-step

(4.12) δβ(m)
g = −

[
∇2

βg
L(m)

ρ,λ

]−1

∇βgL
(m)
ρ,λ

followed by performing a backtracking line search ([4]) for appropriate step size

ν(m) > 0, and then updating β(m+1)
g

(4.13) β(m+1)
g ← β(m)

g + ν(m)
g δβ(m)

g .

The numerical solution to solving (4.11) is outlined below in Algorithm 1. The active

shooting [46] steps updates the parameters that were non-zero after the initial step

until convergence. After this subset has reached convergence, then gradient descent

is performed over all the variables. This preferential update tends to reach the global

minima faster when confronted with many groups or sparse signals.
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Algorithm 2: Active Shooting Block Coordinate Descent with Group

Thresholding

1. Initialize:

(a) β(1)
0 ← ν(0)

0 δβ(0)
0 with all parameters set to zero

(b) β(1)
g ← ν(0)

g δβ(0)
g , for g = 1, . . . , G, with β0 evaluated at β(0)

0 and all other

parameters set to zero

2. Define the active set Λ = {g : β(0)
g *= 0}

3. β(m+1)
0 ← β(m)

0 + ν(m)
0 δβ(m)

0 with δβ(m)
0 via (4.12), ν(m)

0 by performing backtrack-

ing, and β held at previous value

4. For g ∈ Λ

(a) if ‖XT
g A−βg ,ρy‖%2 ≤ ρgtr

(
A−βg ,ρ

)
+ λg, β(m+1)

g ← 0

(b) else, evaluate δβ(m)
g from (4.12) while holding all other parameters at previ-

ous values, compute step size ν(m)
g via backtracking, and update β(m+1)

g ←

β(m)
g + ν(m)

g δβ(m)
g

5. Repeat steps 3 and 4 until some convergence criteria met for active parameters

in Λ.

6. If convergence criteria satisfied, define Λ = {1, . . . , G} and repeat 3 and 4 until

convergence in all parameters.

4.4 Empirical Estimation of Uncertainty

The magnitude of the potential uncertainty is determined by ρg. There are sit-

uations when a researcher has prior knowledge on the value of ρg but more often

this parameter must be estimated empirically. In modern biomedical experiments,
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in which gene expression microarrays are used to assay the activity of tens of thou-

sands of genes, technical replicates are frequently obtained to assess the effect of of

measurement uncertainty.

We will estimate ρg using a generalization of the method in [61] based on quantiles.

For grouped uncertainty sets, we estimate ρg via the following

(4.14) ρ̂g(α) = infτP(
√

xT
g xg ≤ τ) = α

where the distribution in (4.14) is taken with respect to a data set independent of

the training data, such as technical replicates of a biological experiment. Note that

(4.14) reduces to interval based quantile estimates when the number of groups G = p.

As the cumulative distribution function (CDF) in (4.14) does not depend on class

label y, we obtain (4.14) by

(4.15) P(zg ≤ τ) =
∑

y∈{−1,+1}

P(zg ≤ τ |Y = y)P(Y = y)

with zg =
√

xT
g xg and data centered about their respective class centroids. The

class priors are estimated empirically by P̂(Y = y) = my/m, where my and m are

the number of replicate samples with label y and total number of replicate samples,

respectively. The estimation in (4.14) can be assessed with respect to the empirical

CDF of the data {xi,g}n
i=1 or approximated by the inverse-CDF of the χpg distribution

[61] with pg = |Ig| degrees of freedom. The application of the proposed estimation

of uncertainty bounds is presented within the results section in the context of high

dimensional gene expression data in which technical replicates are available.

4.5 Robust vs. Ridge Regression

4.5.1 Robustness of Ridge Logistic Regression

One important question is how the proposed RLR formulation relates to Ridge

LR. Ridge LR involves adding a squared !2-penalty to the binomial deviance loss
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function:

(4.16) minβ

n∑

i=1

log
(
1 + e−yiβT xi

)
+

λ

2
‖β‖2

%2 .

Our goal is to identify values of ρ as a function of λ for which both robust (4.1) and

ridge (4.16) produce approximately identical estimates of β. We begin by inspecting

the optimality conditions for β. The gradients for ridge and robust, respectively, are

given as (intercept removed for clarity):

∇βLλ = −XT Wy + λβ(4.17)

∇βLρ = −XT Wρy + ρtr(Wρ)
β

‖β‖%2

.(4.18)

where W = diag( e−yiβT xi

1+e−yiβT xi
) and Wρ = diag( e

−yiβT xi+ρ‖β‖"2

1+e
−yiβT xi+ρ‖β‖"2

). If we linearize the

sigmoidal terms in W and Wρ, the scaled gradients can be approximated by the

following:

n−1∇βLλ ≈
(

1

4n
XT X + (λ/n)I

)
β − 1

2
δx̄n

= Hn,λβ −
1

2
δx̄n(4.19)

with δx̄n = n−1 (n+x̄+ − n−x̄−)

n−1∇βLρ ≈ 1

4n
XT Xβ − 1

2
δx̄n +

1

4
ρ2β

+
ρ

2‖β‖%2

(
(1− βT δx̄n

2
)β − 1

2
‖β‖2

%2δx̄n

)

= cβ + aβρ2 + bβρ.(4.20)

Since the gradient for ridge regression can be approximated by the linear system of

equations in (4.19), we can approximate βλ via

(4.21) β̂λ ≈
1

2
H−1

n,λδx̄n.
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Inserting (4.21) into (4.20), summing (4.20) over its elements by an inner product

with a vector of 1’s, and solving for ρ, produces the following quadratic equation of

ρ in terms of λ

(4.22) ρλ ≈
−1T bβ̂λ

±
√(

1T bβ̂λ

)2

− 4 · 1T aβ̂λ
· 1T cβ̂λ

2 · 1T aβ̂λ

.

The positive value of ρλ is the uncertainty magnitude. This establishes equivalence

between the solutions of ridge and robust logistic regression for a given λ.

4.5.2 Convergence Rates of Ridge and Robust

We established conditions of equivalence between ridge and robust LR estimators

through a re-parameterization of ρ in terms of λ (4.22). It is also of interest to

investigate the rate at which these methods converge under the proposed conditions

of equivalence. For ease of exposition, we will assume that the data has been centered

and there are balanced sample sizes (n+ = n−). We will assume that the data is not

“too far” from the decision boundary (as stated above).

We begin by assuming that the gradients of both ridge LR (4.19) and RLR (4.20)

are in some neighborhood about 0. The structure of the Hessian specify rates of

convergence through the eigenvalues. Under the assumptions detailed above, the

scaled Hessian for the ridge case is obtained from differentiating (4.19) is given by

(4.23) n−1∇2
βLλ ≈

1

4n
XT X + (λ/n)I.

By differentiating (4.20) and noting that 1
8β

T δx̄n # 1
2 , we obtain the scaled Hessian

for robust logistic regression

(4.24) n−1∇2
βLρ ≈

(
1

4n
XT X +

1

4
ρ2I

)
+ ρ (A−B)

with positive semi-definite matrix A

(4.25) A =
1

2‖β‖%2

(
I − 1

‖β‖2
%2

ββT

)
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and positive semi-definite matrix B

(4.26) B =
1

8‖β‖%2

δx̄nβ
T .

We are interested in extracting conditions on ρ such that the Hessian corresponding

to the robust binomial deviance is “larger” than that corresponding to ridge, i.e.,

∆H = ∇2
βLρ −∇2

βLλ 2 0, when both methods yield the same β, or equivalently

(4.27) wT ∆Hw ≥ 0,∀w.

One can directly derive necessary conditions that must be satisfied by ∆H by en-

forcing that (4.27) holds for some choice of w. We take w = δx̄, which is the right

eigenvector of B, and substitute β̂λ (4.21) and ρλ (4.22) for β and ρ, respectively

in (4.27). The conditions such that robust logistic regression converges faster to the

solution of ridge logistic regression are

(4.28) ρ2
λ +

2(1− ε′λ)

‖β̂λ‖%2

ρλ ≥ 4λ/n

where ε′λ is given by

(4.29) ε′λ =
(
β̂T

λ δx̄
)2

(
1

‖δx̄‖2
%2
‖β̂λ‖2

%2

+
1

4

)
.

4.6 Numerical Results

4.6.1 Recovery of Regularization Path Under Signal Corruption

Many researchers in machine learning and bioinformatics assess importance of

various biomarkers based upon the ordering of !1-regularization paths. Thus, it is

worthwhile to explore how the ordering of the variables within the regularization

path change as uncertainty is added. We first show a simple synthetic example

there are n = 100 samples in each class with x ∈ Rp, p = 22, with x ∼ N (µy, Σ).

The class centroids are given by µ+1 = [−1
2 ,

1
3 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 , 0, · · · , 0]T and µ−1 =
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[12 ,−
1
3 , 0, · · · , 0, 0, 0, 0, 0]T . The structure of Σ is block diagonal, where diagonal

components {σii}p
i=1 are equal to one and the block structure affects only the variables

x1, x2, x3, x4, x5, x6, where the off-diagonal elements in this block {σij}6
j=1,j '=i are

equal to 0.1. The other off-diagonal elements have covariance of zero.

Figure 4.2(a) represents the !1-regularization path as a function of log10 λ on the

original data. In Figure 4.2(b), x3 has been perturbed such that x3 ← x3 + δ3 with

−ρ ≤ δ3 ≤ ρ, which leads to a shift in the ordering within the regularization path

under normal !1-LR. Using the perturbed data set and knowledge that ρ = 0.1 for x3

and presented with interval uncertainty, the !1-regularized robust logistic regression

recovers the original ordering of the variables (see Figure 4.2(c)).

4.6.2 Human Rhino Virus Gene Expression Data

Here we present numerical results on peripheral blood gene expression data set

sampled over 14 time points from a group of n = 20 patients inoculated with the

Human Rhino Virus (HRV), the typical agent of the common cold [67]. Half of the

patients responded with symptoms (y = +1) and the other half did not (y = −1).

The original 12, 023 genes on the microarray were reduced to p = 129 differentially

expressed genes controlling for a 20% False Discovery Rate [54]. We will regularize

both the robust binomial deviance and standard binomial deviance with an !1-penalty

to control the sparsity of the resulting model forcing many elements in β to be zero.

In this experiment there were approximately 20 microarray chips that were technical

replicates. The technical replicates were used to estimate the interval uncertainty

bounds using (4.14).

Since microarray devices detect the presence of mRNA abundance by including

thousands of different probe sets (short sequences) that bind to a particular mRNA

molecule, produced from a specific gene, we will adopt interval uncertainty across
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(a) %1-Regularization Path on Original Data
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(b) %1-Regularization Path with Bounded Pertur-
bations in x3 and ρ3 = 0.1
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Figure 4.2: Regularization Paths as a Function of log10 λ: Robust Recovers Original Ordering After
Perturbation

the p genes. The estimated interval uncertainty bounds, {ρ̂i(α)}p
i=1, were obtained

from (4.14) using the empirical CDF of the independent technical replicate data

with linear interpolation between sampled data. The CDF in (4.14) was computed

by (4.15) with each conditional CDF centered about their class dependent sample

mean and equal class priors P̂(Y = +1) = P̂(Y = −1) = 1/2. Technical replicates

are generated from the blood sample used to assess gene expression activity in the

training data and thus, are commonly used to isolate the effect of measurement error.
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We explored the effect of interval uncertainty bounds resulting from quantiles

of (4.14) at levels of α = {0.25, 0.50, 0.75, 0.95, 0.99}. Figure 4.3 shows the !1-

regularization paths obtained by solving (4.11) on the training data for different

interval uncertainty (including no uncertainty corresponding to standard !1-LR) and

illustrates how robustness affects the ordering of the genes. We see from Figure

4.3(a) that the first gene to appear in the regularization path is the anti-viral de-

fense gene RSAD2. RSAD2 persists at the first gene in the regularization path

for α = {0, 0.25, 0.50, 0.75} (latter three not shown) but disappears from the reg-

ularization path completely, along with a few other genes, in Figure 4.3(a), when

α = {0.95, 0.99}. The three “robust genes” that persist across all explored values of

α are ADI1, OAS1, and TUBB2A. Of these three, OAS1 (codes for proteins involved

in the innate immune response to viral infection) barely appears in Figure 4.3(a), yet

is the first gene to appear in the robust regularization paths that is common to both

α = {0.95, 0.99} (see Figures 4.3(e) and 4.3(f)). These results suggest that when

assessing variable importance via regularization paths, one should be aware of the

effect of measurement uncertainty on the ordering of the variables.

The robust formulation within this paper aims at minimizing the worst-case con-

figuration of perturbations on the logistic regression loss function. As our goal is

discriminating between two phenotypes, it is of interest to compare the worst-case

probability of error for LR and RLR on perturbed data sets, i.e., xi ← xi + δi,

|δi| ≤ ρ̂i(α), after training on the original data. The !1-tuning parameter λ for both

standard !1-LR and !1-RLR was chosen to minimize the out-of sample probability of

error via 5-fold cross validation. Given the cross validated value of λ for both meth-

ods, the models were then fit to the entire set of training data. 50,000 perturbed

data matrices were then generated subject to interval uncertainty bounds {ρ̂i(α)}p
i=1
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for α = {0.25, 0.50, 0.75, 0.95, 0.99}. The best-case and worst-case probability of er-

ror were recorded in Table 4.1. We see for all values of α explored, the worst-case

probability of error corresponding to !1-RLR is always less than or equal to that of

!1-LR. When α = {0.95, 0.99}, the worst-case probability of error for !1-LR is 0.30

but reduces to 0.20 when using !1-RLR with interval uncertainty estimated from

the data using (4.14). Corresponding to the worst-case probability of errors are the

sensitivity and 1-specificity, given in Table 4.2. We see that !1-RLR achieves the

same power as !1-LR at false alarm rates less than or equal to that of the non-robust

method. The proposed method can be used to reduce classifier error sensitivity in

large scale classification problems. This can be important in practical applications

such as biomarker discovery and predictive health and disease.

Table 4.1: Best and Worst Case Probability of Error, Pe, for the HRV Data Set
α "1-LR "1-Robust LR

min Pe max Pe min Pe max Pe

0.25 0.10 0.15 0.10 0.15
0.50 0.05 0.20 0.10 0.20
0.75 0.10 0.25 0.10 0.25
0.95 0.00 0.30 0.05 0.20
0.99 0.00 0.30 0.00 0.20

Table 4.2: Sensitivity and 1-Specificity Corresponding to Worst Case Probability of Error from
HRV Data

α "1-LR "1-Robust LR
Sens. 1-Spec. Sens. 1-Spec.

0.25 0.70 0.00 0.70 0.00
0.50 0.70 0.10 0.70 0.10
0.75 0.70 0.20 0.70 0.20
0.95 0.70 0.20 0.70 0.10
0.99 0.70 0.30 0.70 0.10
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4.7 Conclusion

Building on the results of [15] and [7], we have formulated the robust logistic

regression problem with group structured uncertainty sets. By adding regularization

penalties, one can enforce block-sparsity assumptions of the underlying signal. We

have presented a block co-ordinate gradient method with iterative grouped thresh-

olding for solving the penalized RLR problems. The group thresholding is affected by

both the group-lasso penalty and the magnitude of the worst-case uncertainty. Thus

RLR tends to promote thresholding of highly uncertain variables, thus performing an

initial step of variable selection. We have proposed an empirical approach to estimat-

ing the uncertainty using quantile estimation. This approach was applied to a real

gene expression data set where quantile estimation was applied to a set of technical

replicates. The numerical results on this real data set establish that our approach

can yield lower worst-case probability of error and lower false alarm rates. Such a

gain in worst-case detection performance can improve the performance for predic-

tive health and disease, and in particular for predicting patient phenotype. It will

be interesting to explore the situation when the group-structure of the uncertainty

differs from that of the regularization penalty. Such a situation could potentially be

solved by modifying the sparse group-lasso solution as in [17]. It is also of interest

to explore the kernelization of this method in which one can study the propagation

of bounded data uncertainty in a reproducing kernel Hilbert space.
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(f) α = 0.99

Figure 4.3: Regularization paths on the HRV data set as a function of log10 λ/λmax for different
magnitudes of interval uncertainty, as determined by the α quantile



CHAPTER V

Functional Discriminants for Classification of
High-Dimensional Time-Series

5.1 Introduction

This chapter treats the problem of performing classification given high-dimensional,

discretely sampled, time-series data. We propose summarizing the discriminating

power of each of the p variables by transforming the observed time-series to Gaus-

sian Process (GP) [49, 34] log-odds ratios in similar vein as linear discriminant

(LD) and quadratic discriminant (QD) analysis [23]. The transformation of the

original p-dimensional time-series data to p different log-odds ratios represents the

new basis used in forming a single powerful classifier using !1-Logistic Regression

(!1-LR) [29, 45]. The proposed supervised learning framework naturally accommo-

dates mis-alligned time-series (time-series with different time-stamps). The proposed

framework is applicable to biomedical data analysis where sequential measurement

sampling is used to discriminate between potential phenotypes or determine opti-

mal treatment strategies. This work presented in this chapter develops a functional

classifier given empirical high-dimensional time-series data.

The classification of multiple time-series is a difficult task. If a time-series is

treated as a random vector and traditional classification techniques are applied, one

is typically not capturing the causal nature of temporal data. To enforce such causal-

77
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ity in the classification or regression model, researchers have proposed using the fused

LASSO regularization penalty [56]. The fused LASSO penalizes the absolute de-

viance of the successive differences of the model parameters corresponding to each of

the discretely sampled time-points. While this approach incorporates the direction of

time into the resulting model, it requires aligned time-series, i.e., samples with iden-

tical time-stamps of identical length, a difficult constraint to enforce when gathering

temporal biomedical data. GPs have been previously used as a functional regression

tool for smoothing or prediction in time-series problems [49]. Recently, [34] has pro-

posed summarizing the discretely sampled time-series as smooth mean functions in a

Reproducing Kernel Hilbert Space (RKHS) where kernel based classification meth-

ods, such as Support Vector Machines (SVMs), can be used to discriminate between

two classes which produces the data. Unfortunately, the method presented in [34]

is designed for single feature problems rather than high-dimensional temporal data,

such as temporal gene expression data. The proposed method represents the noisy

time-series as functions and captures the discriminating behavior of such functions

by summarizing then as log-odds ratios corresponding to GPs. These new basis func-

tions are extracted for each of the p features/variables and then a single classifier

is formed using !1-LR. The proposed method can be extended to accommodate the

missing time-stamp dilemma by treating time as a random nuisance parameter and

removing it using Bayesian methods. We exhibit the power of this method on a

large human gene expression time-series data where the goal is discriminating be-

tween symptomatic and asymptomatic phenotypes given inoculation with Human

Influenza A/H3N2 (H3N2), or Human rhino virus (HRV), or Human respiratory

syncytial virus (RSV).
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5.2 Gaussian Process Formulation

Gaussian Processes (GPs) are a functional extension to the multivariate Gaussian

distribution [49]. A multivariate Gaussian distribution is fully specified by its mean

and covariance matrix. When empirically estimating these quantities, one must

estimate T (T − 1)/2 parameters in the covariance matrix if T is the dimension of

the variable. If T corresponds to the number of discretely sampled time points in a

time-series, estimating these T (T −1)/2 may be statistically intractable. In addition

to estimating the elements within the covariance matrix, the multivariate Gaussian

density assumes a fixed dimension of the variable, T . When working with GPs, the

covariance matrix is replaced with kernel functions which parameterize the covariance

between multiple time-points. GPs are also not limited to fixed length time-series

or alignment of the corresponding time-stamps. In other words, the likelihood of an

out of sample test trajectory, of different length and different time-stamps can be

naturally computed using a GP distribution with parameters estimated on empirical

time-series of different dimension.

Here, we are confronted with n training trajectories of p features

(5.1) D = {tj, f (j)
i , yj}n,p

j=1,i=1

where tj = [tj1 , . . . , tjk
]T are the time stamps of the discretely sampled time-series in

the jth sample, f (j)
i = [f (j)

i (tj1), . . . , f
(j)
i (tjk

)]T is the jth measured trajectory corre-

sponding to the ith feature , and yj ∈ {−1, +1} is the class label. We will assume

that the dynamics of the trajectories are conditionally dependent on label (pheno-

type). We will assume that these random functions can be decomposed into two

independent stochastic terms, a GP and white measurement error:

(5.2) fi(t|y) = gi(t|y) + ε(t)
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with signal represented by

(5.3) gi(t|y) ∼ N (µi,y(t), ki,y(t, t
′))

and white measurements

(5.4) ε(t) ∼ N
(
0, σ2

nδt,t′
)

where δt,t′ is the Dirac Delta function and σ2
n is the noise variance of the observation.

Given the independence of (5.3) and (5.4), we can model our observed trajectories

via

(5.5) fi(t|y) ∼ N
(
mi,y(t), ki,y(t, t

′) + σ2
nδt,t′

)
.

The index term y denotes the class dependent dynamics through the mean function

mi,y(t) and covariance kernel function ki,y(t, t′) relative to some reference time t′.

We are interested in exploiting the observed training trajectories to form the

predictive posterior distribution of some new test observation evaluated at a time

point tk. Given the prior distributions defined in (5.2), the class dependent posterior

distribution of fi(tk|y) is given via

(5.6) fi(tk|y)|{tj, f (j)
i }j:yj=y ∼ N (mi,y(tk), Σi,y(tk))

with posterior mean function

(5.7) mi,y(tk) = kT
i,y(tk, ty)

(
Ki,y(ty, ty) + σ2

nI
)−1

fi,y

and posterior covariance kernel

(5.8) Σi,y(tk) =
(
ki,y(tk, tk) + σ2

n

)
− kT

i,y(tk, ty)
(
Ki,y(ty, ty) + σ2

nI
)−1

ki,y(tk, ty).

Here, ty = {tj}j:yj=y, ki,y(tk, ty) is the column vector of kernel evaluations between tk

and all time points in ty, Ki,y(ty, ty) is the matrix of kernel evaluations between all
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time points in ty, and fi,y = {f (j)
i (tj)}j:yj=y is the column vector of all measurements

of the ith feature corresponding to label y.

The distribution in (5.6) is the posterior distributions of fi(tk|y) given a single

test point tk. The extension of (5.6) to a collection test time-points t = [t1, . . . , tm]T

is given by the following two distributions [49]:

(5.9) fi|t, {tj, f (j)
i }j:yj=y ∼ N (mi,y(t), Σi,y(t))

with posterior mean vector function

(5.10) mi,y(t) = Ki,y(t, ty)
(
Ki,y(ty, ty) + σ2

nI
)−1

fi,y

and posterior kernel function matrix

(5.11) Σi,y(t) =
(
Ki,y(t, t) + σ2

i,nI
)
−Ki,y(t, ty)

(
Ki,y(ty, ty) + σ2

nI
)−1

Ki,y(ty, t).

Figure 5.1 depicts the interpolation of the posterior mean function through observa-

tions enveloped with a 95% confidence interval of two differentially expressed genes,

RSAD2 and IFI44, in a pan-viral human gene expression data set. We see at early

hours (less than 30 hrs), that the symptomatic and asymptomatic mean functions

are on top of eachother. From 30 hrs post-innoculation, we begin to see a divergence

in the two mean functions, thus capturing the average divergence of the symptomatic

class from the asymptomatic class.

5.2.1 Functional Discriminants

Since we are interested in discriminating between different groups, Bayesian de-

cision theory states that the posterior distribution of the class label is sufficient for

optimal decision making [22]. Under our GP assumptions, we can form the posterior

distribution of the class label given data for the ith feature

(5.12) P (Y = y|{t, fi},Di) =
N (mi,y(t), Σi,y(t)) πy∑

y∈{−1,+1}N (mi,y(t), Σi,y(t)) πy
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Figure 5.1: Phenotype Dependent Posterior GP Mean Function and 95% Confidence Intervals of
Genes RSAD2 and IFI44 Resulting from Pan-Viral Human Challenge Study

with prior distribution πy = P (Y = y) and training data for the ith feature Di =

{tj, f (j)
i , yj}n

j=1. When performing binary classification given a test trajectory {t, fi},
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it is sufficient to inspect the odd-ratio, or equivalently the log-odds:

φi(t, fi) = log
P (Y = +1|{t, fi},Di)

P (Y = −1|{t, fi},Di)
= log

N (mi,+1[t], Σi,+1[t])

N (mi,−1[t], Σi,−1[t])
+ log

π+1

π−1

=
1

2
fT

i Ai(t)fi + bT
i (t)fi + ci(t)(5.13)

with

Ai(t) =
(
Σ−1

i,−1(t)− Σ−1
i,+1(t)

)
(5.14)

bi(t) =
(
Σ−1

i,+1(t)mi,+1(t)− Σ−1
i,−1(t)mi,−1(t)

)
(5.15)

ci(t) = log
π+1

π−1
+ log

|Σi,−1(t)|
|Σi,+1(t)|

+ mT
i,−1(t)Σ

−1
i,−1(t)mi,−1(t)−mT

i,+1(t)Σ
−1
i,+1(t)mi,+1(t).

(5.16)

We see from (5.13), that the functional quadratic classifier φi(t, fi) is dependent on

observed values of fi and the corresponding observed time-points t, thus allowing a

temporally dependent decision boundary, e.g., φi(t, fi) = 0, an important property

of any classifier for temporal data.

We can collect each of the p basis functions (5.13) to form the p-dimensional

column vector φ(t, f) = [φ1(t, f1), . . . ,φp(t, fp)]T . We seek a single classifier that is an

aggregate of all p log-odds such that the resulting classifier yields a lower probability

of error than any single log-odds (5.13). Specifically, we seek the following classifier

(5.17) h(t, f) = βT φ(t, f) + β0

with β ∈ Rp and bias controlling parameter β0 ∈ R. The parameters β, β0 may be

estimated by minimizing any convex risk function with possible added regularization

penalties

(5.18) minβ,β0 L(β, β0;D) + λJ(β)

where L(β, β0;D) is a convex loss function, e.g., the logistic regression loss function,

λ > 0 is a tuning parameter, and J(β) is a convex penalty on β that enforces prior
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knowledge, such as the !1-norm, which promotes a sparse β̂(λ) for sufficiently large

λ, i.e., many β̂(λ)i’s are zero [55, 29, 36, 52].

The classifier h(t, f) in (5.17) consists of a linear combination of the p log-odds,

resulting from summarizing each of the p trajectories as log-odds ratios of GPs.

Since many variables in stochastic systems jointly evolve over time it may be useful

to add additional basis functions that capture second order effects. Specifically, we

can model all
(

p
2

)
pair-wise evolutions using the bivariate GP between features i and

j

(5.19) fij(t|y) =




fi(t|y)

fj(t|y)



 +




gi(t|y)

gj(t|y)



 +




ε(t)

ε(t)





with covariance kernel matrix

(5.20) Kij,y(t, t
′) =




ki,y(t, t′) kij,y(t, t′)

kT
ij,y(t, t

′) kj,y(t, t′)



 .

Under the bivariate GP modeling, the predictive posterior distribution of fij(t|y)

evaluated at a sequence of time points t is

(5.21) fij(t|y)|{tl, f (l)
ij }l:yl=y ∼ N (mij,y(t), Σij,y(t))

with posterior mean function

(5.22) mij,y(t) =




mi,y(t)

mj,y(t)





and posterior covariance kernel

(5.23) Σij,y(t) =
(
Kij,y(t, t) + σ2

nI∆

)
−Kij,y(t, ty)

(
Kij,y(ty, ty) + σ2

nI∆

)−1
Kij,y(ty, t)

with matrix I∆ given by

(5.24) I∆ = {δtk,tk′}k,k′ .
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Through Bayes rule (5.12), we can obtain the log-odds corresponding to each of the

(
p
2

)
trajectories

(5.25) φij(t, fij) = log
P (Y = +1|{t, fij},Dij)

P (Y = −1|{t, fij},Dij)
=

1

2
fT

ijAij(t)fij + bT
ij(t)fij + cij(t)

with parameters in the quadratic function given previously in (5.16) but replaced

with their pair-wise values mean and covariance functions in (5.22) and (5.23). The

training data for features i and j is given as Dij = Di ∪Dj.

One may expand the existing dictionary of first order effects to incorporate addi-

tional second order effects by forming a new column vector φ, φ ← {φi(t, fi)}p
i=1 ∪

{φij(t, fij)}i,j>i which is then inserted into (5.18) for extracting a single classifier.

The addition of
(

p
2

)
additional basis functions may be unrealistic in high-dimensional

settings when p is large and p > n.

5.2.2 Kernel Function Parameter Estimation

The kernel covariance functions ki,y(t, t′) contain parameters which must be esti-

mated empirically. In this study, we will assume that the kernel covariance functions

are of the form of the radial basis function. The kernel function of the ith feature

under class label y is given by

(5.26) ki,y(t, t
′) = σ2

i,yexp

(
−‖t− t′‖2

2!2
i,y

)

where σ2
i,y is the variance of the process for feature i under label y and !2

i,y is the

characteristic length scale that determines how quickly the covariance between time

points t and t′ decays. Define θi,y = {σi,y, !i,y} and θ = [θ1, . . . , θp, σ2
n]T with θi =

[θi,+1, θi,−1]T . We seek to estimate θ via maximum likelihood of the trajectories under

the GP prior distribution (5.5) with a zero mean prior function. For this estimation,

the observed values are shifted to have zero mean by subtracting off their class
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dependent mean, computed across all samples and time. The joint maximum log-

likelihood problem is given as

(5.27) maxθ l(θ;D) = maxθ

p∑

i=1

l(θi, σ
2
n;Di)

with

(5.28) l(θi, σ
2
n;Di) =

∑

y∈{−1,+1}

∑

l:yl=y

log p(f (l)
i |tl, y, θi,y, σ

2
n)

and p(f (l)
i |tl, y, θi,y, σ2

n) distributed by (5.5). We iteratively solve (5.27) via co-

ordinate wise gradient descent [4] as the p marginal likelihoods are coupled by com-

mon noise parameter σ2
n. Unfortunately, the log-likelihood in (5.27) is not convex

and random restarts will be required to assess the global maxima [49, 4].

The partial derivative of (5.28) with respect to the lth term in θi,y, denoted by

θi,y,l, is given by

(5.29)
∂

∂θi,y,l
l(θi, σ

2
n;Di) =

1

2

∑

j:yj=y

tr

(
(αi,jα

T
i,j −K−1

i,yj
(tj, tj))

∂Ki,yj(tj, tj)

∂θi,y,l

)

with αi,j = K−1
i,yj

(tj, tj)f
(j)
i . The partial derivative of (5.28) with respect to the

common noise variance σ2
n is given by

(5.30)

∂

∂σ2
n

l(θi, σ
2
n;Di) =

1

2

∑

y∈{−1,+1}

∑

j:yj=y

tr

(
(αi,jα

T
i,j −K−1

i,yj
(tj, tj))

∂Ki,yj(tj, tj)

∂σ2
n

)
.

Note that if the time series are aligned, e.g., tj = t, for all j, then we can avoid

having to invert ny different kernel matrices as Ki,yj(tj, tj) = Ki,yj(t, t). The matrix

derivatives of the kernel matrix with respect to the process variance, characteristic

length scale, and noise variance for the radial basis function kernel (5.26) are given

below

(5.31)
∂Ki,yj(tj, tj)

∂σ2
i

=

(
1

σ2
i

Ki,yj(tjm , tjl
)

)

m,l
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(5.32)
∂Ki,yj(tj, tj)

∂!2
i

=

(
‖tjm − tjl

‖2

2(!2
i )

2
Ki,yj(tjm , tjl

)

)

m,l

.

(5.33)
∂Ki,yj(tj, tj)

∂σ2
n

= I.

Given θ̂, the kernel parameters for the GP trajectories are specified and the predictive

posterior distributions within each log-odds basis function (5.13) can be formed.

The structure of the resulting classifier will now be discussed using the loss function

corresponding to the binomial deviance of logistic regression.

5.3 !1-Regularized Logistic Regression

When confronted an unlabeled test trajectory of p variables, we wish to place

a prediction on the class that most likely produced such observations. In many

modern disciplines, such as bioinformatics or signal processing, p tends to be large

with p 5 n. In these high-dimensional settings, one must control the degrees of

freedom of the resulting model. Additionally, many of the p features may not be

capable of discriminating between different class labels, and thus, their influence

in the final classifier should be removed in estimation. In this study, the penalty

function J(β) will be taken as the !1-norm, i.e., ‖β‖%1 =
∑

i |βi|, which tends shrink

many βi’s to zero for sufficiently large values of λ. We desire a value of λ such that

h(t, f) generalizes well to out of sample test data. This tuned value of λ, denoted

by λ∗, is selected by minimizing the out-of-sample probability of error using 5-fold

cross validation.

We will minimize the !1 regularized logistic regression loss function for forming

the final classifier. The minimization is given by

(5.34) minβ,β0

n∑

j=1

log
(
1 + e−yj(βT φ(tj ,f (j))+β0)

)
+ λ‖β‖%1 .
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To solve (5.34), we use a gradient descent based method by quadratically expanding

the loss function, resulting in iteratively solving a sequence of quadratic programs

that incorporates an additional line search. At the mth iteration of gradient descent,

we seek the Newton step by solving the following

(5.35) δβ(m) = arg minβ

1

2
βT H(m)β + βT g(m) + λ‖β‖%1

with gradient

(5.36) g(m) = ∇βL(β, β0;D)|
β0=β

(m)
0 ,β=β(m)

and Hessian

(5.37) H(m) = ∇2
βL(β, β0;D)|

β0=β
(m)
0 ,β=β(m)

with logistic regression loss function L(β, β0;D) =
∑n

j=1 log
(
1 + e−yj(βT φ(t,f (j))+β0)

)

and updated parameter β(m+1) given by

(5.38) β(m+1) = β(m) + η(m)δβ(m)

with step size η(m) determined by performing a backtracking line search [4]. While

(5.35) is convex, the presence of the !1-norm makes the objective function non-

differentiable. However, the objective function can be transformed into an equivalent

convex, differentiable objective by replacing the !1-norm with linear inequality con-

straints [4, 29] which produces a differentiable convex program in which any modern

solver is capable of solving. The estimation of the kernel parameters, logistic regres-

sion coefficients, and the tuning parameter selection is summarized in Algorithm 3

(below).

Algorithm 3
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1. Center all observed trajectories: {f̃ (j)
i ← f (j)

i − f̄i,y}p
i=1, j ∈ {j : yj = y}, y ∈

{−1, +1} where f̄i,y is the scalar sample mean for feature i taken with respect

to all samples from class y.

2. Obtain θ̂ via maximum likelihood (5.27) using gradient descent with random

restarts on the centered Gaussian Process trajectories using D̃ = {tj, f̃ (j)
i , yj}n,p

j=1,i=1.

3. !1-Logistic Regression

(a) Initialize β, β0

(b) β(m+1)
0 = β(m)

0 + η(m)
0 δβ(m)

0 with η(m)
0 via backtracking

and δβ(m)
0 = −

[
∇2

β0
L(β, β0;D)

]−1∇β0L(β, β0;D)|
β0=β

(m)
0 ,β=β(m)

(c) δβ(m) = arg minβ
1
2β

T H(m)β + βT g(m) + λ‖β‖%1

(d) η(m) ← backtracking line search

(e) β(m+1) = β(m) + η(m)δβ(m)

(f) Repeat steps 3b through 3e until some convergence criterion met

4. The optimal value of λ∗ is chosen to minimize the out of sample probabil-

ity of error using 5-fold cross validation, which indexes the final estimate of

{β̂(λ∗), β̂0(λ∗)}

5.4 Missing Time-Stamps in Test Data

We have presented an approach at extracting basis functions which summarize

the discriminating power of multiple time-series observed at potentially mis-alligned

time-points. The basis functions were obtained on a training set and used to form a

single linear classifier in (5.34). Often times when handling out of sample test data,

one may possess multiple observations forming a time-series but may be unaware

of the corresponding time-stamps. This situation may occur when a patient makes
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a sequence of visits to a physician in which data is gathered upon each visit. A

schematic of an example involving the progression of a disease is shown in Figure 5.2.

Here, t may represent the unknown time since infection, ∆t1 and ∆t2 represent the

observable successive differences in time between subsequent visits to the physician.

T is some maximum horizon time corresponding to the recovery period of the disease.

t0 t ∆t1 ∆t2

t

TT − t−
2∑

k=1

∆tk

t + ∆t1
t + ∆t1 + ∆t2

Figure 5.2: Sequential Measurements with Unknown Time Since “Infection” t

5.4.1 Unobserved Time as a Random Nuisance Parameter

Here, we will treat the missing time-stamps of an out of sample test trajectory

as random nuisance parameters. We will assume that all kernel parameters, clas-

sification coefficients, and tuning parameters have been trained using the observed

trajectories and their corresponding time-stamps. Adopting a prior distribution on t,

denoted by p(t|y), we can form the joint distribution of the sequence of observations

for feature i and unobserved time stamps t conditioned on label y

(5.39) p(fi, t|y, θ̂i,y) = p(fi|t, y, θ̂i,y)p(t|y)

where θ̂i,y are the estimated kernel parameters and measurement variance for feature

i and p(fi|t, y, θ̂i,y, σ̂2
n) is the posterior distribution given in (5.9). We can marginalize



91

out the dependence of t to obtain the time-stamp independent posterior likelihood

(5.40) p(fi|y, θ̂i,y) =

∫

t∈T
p(fi, t|y, θ̂i,y)dt =

∫

t∈T
p(fi|t, y, θ̂i,y)p(t|y)dt.

where T is the support of t. We can now define the time-independent log-odds

(5.41) φi(fi) = log
p(Y = +1|fi, θ̂i,y)

p(Y = +1|fi, θ̂i,y)

which, when gathered over all p variables, is then inserted into the previously trained

classifier in (5.17). The integral appearing in (5.40) may be computed using approx-

imate Bayesian inference methods [19].

5.4.2 Unobserved Time as an Additional Class Label

Alternatively, one may desire a simultaneous prediction on both the label y and

if t is within some region of time, e.g., phenotype = infected with Influenza A/H3N2

and time since inoculation is between 8 and 16 hrs. Here, we will decompose the

time domain T into m, possibly unequal, time-regions

(5.42) T = {T1 ∪ T2 ∪ · · · ∪ Tm}, Ti ∩ Tj = ∅, i *= j.

Treating time as a random nuisance parameter, the joint likelihood of test trajectory

fi and t ∈ Tl, is given by

(5.43) p(fi, t ∈ Tl|y, θ̂i,y) =

∫

t/∈Tl

p(fi, t|y, θ̂i,y)dt =

∫

t/∈Tl

p(fi|t, y, θ̂i,y)p(t|y)dt

which allows us to obtain the joint posterior probability of {Y = y, t ∈ Tl}

(5.44) p(Y = y, t ∈ Tl|fi, θ̂i,y) =
p(fi, t ∈ Tl|y, θ̂i,y)p(y)

∑
y∈{−1,+1}

∑
l=1,...,m p(fi, t ∈ Tl|y, θ̂i,y)p(y)

.

One may then re-train the linear classifier in (5.17) to accommodate for multiple

class labels using the basis functions resulting from (5.44).
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5.5 Pan Viral Gene Expression Time-Series Results

Here we present numerical results on peripheral blood time-series gene expres-

sion data set from a group of n = 57 patients inoculated with either HRV, H3N2,

or RSV [67]. In a series of three challenge studies, patients were inoculated with

one of the three viruses corresponding to that particular study. Roughly half of the

patients responded with symptoms (y = +1, n+1 = 28) and the other half did not

(y = −1, n−1 = 29). The original 12, 023 genes on the microarray were reduced to

p = 129 differentially expressed genes controlling for a 20% False Discovery Rate

[54]. The density of the sampling ranged from a minimum number of samples per

patient of four to a maximum number of 20 with a median of 13. The time-series

contain are not jointly aligned, although multiple patients have identical time-stamps

corresponding to their peripheral blood samples. The goal is to explore the detec-

tion of symptomatic vs. asymptomatic using the proposed method as a function

of increasing number of time-samples. We explore the !1-regularization paths and

detection performance using LD and QD basis functions, resulting from assuming

phenotype independent kernel parameters for the former and phenotype dependent

kernel parameters for the latter.

We explored the effect of time-series duration on variable selection and detection

performance by forming four sets of basis functions and corresponding linear classi-

fiers using all samples with time-stamps up to and including 12 hrs, 36 hrs, 96 hrs

and 165.5 hrs. The linear and quadratic discriminant basis functions are the log-odds

ratio under posterior GP distributions. One would expect improved detection per-

formance when including later time measurements as the symptomatic patients have

fully developed the symptoms of their respective disease and the symptomatic pos-
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terior mean functions should reflect this divergence from the asymptomatic posterior

mean function and result in a non-zero basis log-odds ratio.

Figure 5.3 shows the !1-regularization paths using LD basis functions formed

using all of the 57 patients samples up to and including 12 hrs, 36 hrs, 96 hrs, and

165.5 hrs corresponding to Figures 5.3(a), 5.3(b), 5.3(c), 5.3(d), respectively. LD

kernel parameters were estimated using (5.27) over the 57 patients samples using 100

random restarts per gene-specific basis function and normalized to unit variance. The

!1-regularization paths were obtained by inserting these LD basis functions into (5.34)

and plotting β̂(λ) as a function of increasing λ. Inspection of the pre-symptomatic

regime of up to and including 12 hrs post-incoluation in Figure 5.3(a), we see that

genes ABCB4, TUBB2A, STARD8, and CORO2B are the first few genes which

appear at large values of λ. Similar genes appear in Figure 5.3(b) at large values

of λ. By 96 hrs, the patients have achieved peak symptoms. Figure 5.3(c) contains

genes OAS1 and SERPINE2, both genes are typically activated in virus infection,

which did not exist in the !1-regularization paths at the pre-symptomatic times of

12 and 36 hrs. By 165.5 hrs, OAS1 and IFI35 appear first at large values of λ. The

appearance of virus activated genes at later time suggest that the GP basis functions,

when presented with additional time points deeper into the perturbation study, are

capturing the discrimination at peak symptoms over pre-symptomatic 12 hrs.

Figure 5.4 shows the !1-regularization paths using QD basis functions formed using

all of the 57 patients samples up to and including 12 hrs, 36 hrs, 96 hrs, and 165.5

hrs corresponding to Figures 5.4(a), 5.4(b), 5.4(c), 5.4(d), respectively. QD kernel

parameters were estimated by solving (5.27) over the 57 patients samples using 100

random restarts per gene-specific basis function. The !1-regularization paths were

obtained by inserting these QD basis functions into (5.34) and plotting β̂(λ) as a
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Figure 5.3: "1-Logistic Regression Regularization Paths Using Standardized Linear Discriminant
Basis Functions Trained Using Subsets of Trajectories

function of increasing λ. Similarly to the ordering in Figure 5.3(a), we see in Figure

5.4(a), that genes ABCB4, TUBB2A, and STARD8 are the first few genes to appear

at large values of λ. Genes OAS1 and SERPINE2 first appear in Figure 5.4(c) and

corresponding to the earlier genes that appear in the regularization path. The anti-

viral defense gene RSAD2 appears for the first time at 165.5 hrs, along with OAS1 at

large values of λ. The appearance and disappearance of genes in the !1-regularization

paths with quadratic discriminants further confirm that the functional nature of the

GP basis functions are capturing time dependent discriminating behavior.
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Figure 5.4: "1-Logistic Regression Regularization Paths Using Standardized Quadratic Discrimi-
nant Basis Functions Trained Using Subsets of Trajectories

The out of sample sensitivity, specificity, and probability of error were estimated

with basis functions and final classifier trained using time-samples up to and including

12 hrs, 36 hrs, 96 hrs, and 165.5 hrs. For each of these four different time-horizon

trained models, out of sample basis functions were formed using time samples up to

and including 12 hrs, 24 hrs, 36 hrs, 48 hrs, 96 hrs, 117.5 hrs, and 165.5 hrs. These

out of sample basis functions were formed using the posterior mean functions and

covariance kernel functions in (5.13) estimated on the in-sample data corresponding

to each of the four time horizons. To estimate the out of sample detection statistics,

we held out a random subset of 11 patient’s data. The remaining 46 p-dimensional
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trajectories were used for training and validation. The tuning parameter λ was

estimated by minimizing the 5 fold cross validated probability of error over these

46 p-dimensional trajectories. Given the optimal tuning parameter corresponding to

the linear and quadratic discriminant basis functions (parameters estimated on this

46 patient in-sample), the final classifier models were formed using (5.34). Given

the in-sample posterior mean functions, kernel functions, and β̂(λ∗), the sensitivity,

specificity, and probability of error were assessed on this 11 patient out of sample

data. This process was repeated 100 times for each of the four training time-horizons

of 12 hrs, 36 hrs, 96 hrs, and 165.5 hrs. The trained models were applied to each of

the seven out of sample test time-horizons.

Figure 5.5 shows the average out of sample (with error bars) probability of error,

sensitivity, and 1-specificity trained using samples up to and including 12 hrs and

applied to out of sample time samples up to and including 12 hrs, 24 hrs, 36 hrs, 48

hrs, 96 hrs, 117.5 hrs, and 165.5 hrs. By applying the classifier to samples with other

time-horizons than the one the model was trained on, we can inspect the sensitivity

of the classifier to out of sample test basis functions summarizing the divergence

between phenotypes using data from additional or fewer time points. We see in

Figure 5.5 a.) that the average probability of error at early times (less than 50

hrs) ranges from 0.31 to 0.35 using quadratic and linear discriminants, respectively.

When the classifier with QDs is applied to data using 96 hrs, 117.5 hrs, and 165.5

hrs, the average probability of error is 0.35. However, when the classifier with linear

discriminants is applied to these hours, the average probability of error decreases to

0.30. The sensitivity of the classifier using linear discriminants is less than that using

quadratic discriminants. However, the classifier using QD produces an increase in

1-specificity as the out of sample time horizons increase whereas the classifier using
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LD produces more stable 1-specificity.

0 50 100 150 200

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Hours Post Innoculation

a.)

P
ro

b
ab

il
it

y
 o

f 
E

rr
o
r

0 50 100 150 200
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hours Post Innoculation

b.)

S
en

si
ti

v
it

y

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Hours Post Innoculation

c.)

O
n
e 

M
in

u
s 

S
p
ec

if
ic

it
y

Figure 5.5: Probability of Error a.), Sensitivity b.), and One Minus Specificity c.) For "1-Logistic
Regression Classifier Trained Using Samples up to and Including 12 Hours and Applied
to Out of Sample Subsets of Trajectories up to and Including 12, 24, 36, 48, 96, and
165.5 Hours (Blue - Linear Discriminant, Red - Quadratic Discriminant)

Figure 5.6 shows the average out of sample (with error bars) probability of error,

sensitivity, and one minus specificity trained using samples up to and including 36

hrs and applied to out of sample time samples up to and including 12 hrs, 24 hrs, 36

hrs, 48 hrs, 96 hrs, 117.5 hrs, and 165.5 hrs. Figure 5.6 a.) shows that the average

probability of error at early times (less than 50 hrs) ranges from 0.34 to 0.27. When

the classifier with quadratic discriminants is applied to data using 96 hrs, 117.5 hrs,

and 165.5 hrs, the average probability of error for classifiers using both LDs and

QDs is around 0.27. The classifiers using QDs over LDs appear to have slightly

lower average probability of error. Both sensitivity and the 1-specificity increase

with additional time-obsevations with the classifier using QDs having slightly higher

values of both statistics.

Figure 5.7 shows the average out of sample (with error bars) probability of error,

sensitivity, and one minus specificity trained using samples up to and including 96

hrs and applied to out of sample time samples up to and including 12 hrs, 24 hrs, 36
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Figure 5.6: Probability of Error a.), Sensitivity b.), and One Minus Specificity c.) For "1-Logistic
Regression Classifier Trained Using Samples up to and Including 36 Hours and Applied
to Out of Sample Subsets of Trajectories up to and Including 12, 24, 36, 48, 96, and
165.5 Hours (Blue - Linear Discriminant, Red - Quadratic Discriminant)

hrs, 48 hrs, 96 hrs, 117.5 hrs, and 165.5 hrs. Figure 5.7 a.) shows that the average

probability of error at early times (less than 50 hrs) decrease from 0.37 at 12 hrs to

0.32 at 50 hrs for both classifiers. When the classifiers are applied to data using 96

hrs, they both produce an average probability of error 0.23. The probability of error

for the classifier using LDs decreases for 117.5 hrs and 165.5 hrs to 0.20 while the

probability of error increases to 0.28 for these two time points using the classifier with

QDs. The additional complexity of the model with quadratic basis functions may

cause the poor generalization to these time points. The sensitivity for both methods

increase with the time sample horizon with the LD based classifier producing higher

average sensitivity. The 1-specificity for the classifier with LDs appears to be stable

with increasing measurement time horizon whereas the classifier using QDs sees an

increase in average 1-specificity.

Figure 5.8 shows the average out of sample (with error bars) probability of error,

sensitivity, and one minus specificity trained using samples up to and including 165.5

hrs and applied to out of sample time samples up to and including 12 hrs, 24 hrs,
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Figure 5.7: Probability of Error a.), Sensitivity b.), and One Minus Specificity c.) For "1-Logistic
Regression Classifier Trained Using Samples up to and Including 96 Hours and Applied
to Out of Sample Subsets of Trajectories up to and Including 12, 24, 36, 48, 96, and
165.5 Hours (Blue - Linear Discriminant, Red - Quadratic Discriminant)

36 hrs, 48 hrs, 96 hrs, 117.5 hrs, and 165.5 hrs. Figure 5.8 a.) shows that the

average probability of error decreasing to 0.16 for both methods. The sensitivity for

both methods increase with the time sample horizon with the LD based classifier

producing higher average sensitivity. The 1-specificity for the classifier with LDs

appears to be stable than the classifier using QDs.
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Figure 5.8: Probability of Error a.), Sensitivity b.), and One Minus Specificity c.) For "1-Logistic
Regression Classifier Trained Using Samples up to and Including 165.5 Hours and Ap-
plied to Out of Sample Subsets of Trajectories up to and Including 12, 24, 36, 48, 96,
and 165.5 Hours (Blue - Linear Discriminant, Red - Quadratic Discriminant)

The results suggest that to accurately discriminate between phenotypes at early
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times post-inoculation it is best to use a classifier trained using time samples in a

neighborhood about these early time points. A classifier trained using early time

samples performs well on trajectories at higher time points as the molecular diver-

gence in the gene expression between phenotypes is strong. If one desired optimal

classification performance above 96 hrs post inoculation, one should seek a classifier

trained using full trajectories or in a neighborhood about these high times.

Figures 5.9, 5.10, 5.11, 5.12 depict the distribution of genes appearing in the

final trained classifier within each of the 100 iterations of cross validation described

above. The distribution frequency of genes appearing in the classifier with LDs tends

to fall off sharply after the first few genes whereas the distribution corresponding to

the classifier with QDs tends to have a more uniform distribution over differentially

expressed genes. This suggests that the model with QDs is capturing higher order

effects between the included genes than the classifier using LDs.

In many situations, one may be given a single static observation and corresponding

time-stamp and must determine which phenotype generate such data. The proposed

methodolgy naturally accommodates such situation given the model has been trained

on full trajectories. Here, we explore the detection performance of the four classifiers

trained using time samples up to and including 12 hrs, 36 hrs, 96 hrs, and 165.5

hrs and apply it to out of sample single observations from measurements gathered

in neighborhoods about 12 hrs, 24 hrs, 36 hrs, 48 hrs, 96 hrs, 117.5 hrs, and 165.5

hrs. We define the neighborhoods for each of these seven times as the following:

T12 = {t : 8 hrs ≤ t ≤ 16 hrs}, T24 = {t : 21.5 hrs ≤ t ≤ 29 hrs}, T36 = {t : 30 hrs ≤

t ≤ 42 hrs}, T48 = {t : 45.5 hrs ≤ t ≤ 53 hrs}, T96 = {t : 84 hrs ≤ t ≤ 101 hrs},

T117.5 = {t : 108 hrs ≤ t ≤ 125 hrs}, and T165.5 = {t : 132 hrs ≤ t ≤ 165.5 hrs}.

Figures 5.13 shows the average detection performance (with error bars) of the
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(a) Linear Discriminant Basis Functions
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(b) Quadratic Discriminant Basis Functions

Figure 5.9: Distribution of Gene Frequency Appearing in “In-Sample” Trained Classifier Through-
out the Cross Validation Trained on Samples Up to 12 Hours Post-Innoculation

classifiers trained using samples up to and including 12 hrs and applying it to single

static measurements in neighborhoods about 12 hrs, 24 hrs, 36 hrs, 48 hrs, 96 hrs,

117.5 hrs, and 165.5 hrs. Both LD and QD based classifiers produce average proba-

bility of errors when applied to data around 12 hrs of 0.36. Both classifiers produce a

decrease in average probability of error with the increase of samples deeper into the



102

ABCB4 TUBB2A CISH CDKN1C STARD8 PVALB C1QA CHI3L1 FBLN5 TCL1A
0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

en
cy

 o
f 

G
en

e 
in

 C
la

ss
if

ie
r

(a) Linear Discriminant Basis Functions
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(b) Quadratic Discriminant Basis Functions

Figure 5.10: Distribution of Gene Frequency Appearing in “In-Sample” Trained Classifier Through-
out the Cross Validation Trained on Samples Up to 36 Hours Post-Innoculation

perturbation. The QD based classifier produces average probability of error at the

highest two time samples of 0.17 whereas the LD based classifier at these time points

produces an average probability of error around 0.23. These results suggest that this

QD based classifier, is capturing discriminating patterns better than the LD based

classifier when applied to samples further into the perturbation experiment.
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(a) Linear Discriminant Basis Functions
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(b) Quadratic Discriminant Basis Functions

Figure 5.11: Distribution of Gene Frequency Appearing in “In-Sample” Trained Classifier Through-
out the Cross Validation Trained on Samples Up to 96 Hours Post-Innoculation

Figure 5.14 shows the average detection performance (with error bars) of the clas-

sifier trained using samples up to and including 36 hrs and applying it to single static

measurements in neighborhoods about 12 hrs, 24 hrs, 36 hrs, 48 hrs, 96 hrs, 117.5

hrs, and 165.5 hrs. Both LD and QD based classifiers produce average probability

of errors when applied to data around 36 hrs of 0.30 and 0.34 for LD and QD, re-
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(a) Linear Discriminant Basis Functions
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(b) Quadratic Discriminant Basis Functions

Figure 5.12: Distribution of Gene Frequency Appearing in “In-Sample” Trained Classifier Through-
out the Cross Validation Trained on Samples Up to 165.5 Hours Post-Innoculation

spectively. Both classifiers produce a decrease in average probability of error with

the increase of samples deeper into the perturbation.

Figure 5.15 shows the average detection performance (with error bars) of the

classifier trained using samples up to and including 96 hrs and applying it to single

static measurements in neighborhoods about 12 hrs, 24 hrs, 36 hrs, 48 hrs, 96 hrs,
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Figure 5.13: Probability of Error a.), Sensitivity b.), and One Minus Specificity c.) For "1-Logistic
Regression Classifier Trained Using Samples at 12 Hours and Applied to Out of Sample
Static Observations at 12, 24, 36, 48, 96, and 165.5 Hours (Blue - Linear Discriminant,
Red - Quadratic Discriminant)
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Figure 5.14: Probability of Error a.), Sensitivity b.), and One Minus Specificity c.) For "1-Logistic
Regression Classifier Trained Using Samples at 36 Hours and Applied to Out of Sample
Static Observations at 12, 24, 36, 48, 96, and 165.5 Hours (Blue - Linear Discriminant,
Red - Quadratic Discriminant)

117.5 hrs, and 165.5 hrs. The classifier using LDs produces an average probability

of error at 96 hrs of 0.23 whereas the classifier using QDs produces an average

probability of error of 0.38. The results suggest that the increased complexity of

the model, when using a single static observation, sees an erosion in its ability to

generalize to out of sample data.

Figure 5.16 shows the average detection performance (with error bars) of the

classifier trained using samples up to and including 165.5 hrs and applying it to single
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Figure 5.15: Probability of Error a.), Sensitivity b.), and One Minus Specificity c.) For "1-Logistic
Regression Classifier Trained Using Samples at 96 Hours and Applied to Out of Sample
Static Observations at 12, 24, 36, 48, 96, and 165.5 Hours (Blue - Linear Discriminant,
Red - Quadratic Discriminant)

static measurements in neighborhoods about 12 hrs, 24 hrs, 36 hrs, 48 hrs, 96 hrs,

117.5 hrs, and 165.5 hrs. The classifier using LDs produces an average probability

of error at 165.5 hrs of 0.23 whereas the classifier using QDs produces an average

probability of error of 0.24. However, the classifier with LD basis function appears

to generalize better to other time points than the classifier using QDs.
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Figure 5.16: Probability of Error a.), Sensitivity b.), and One Minus Specificity c.) For "1-Logistic
Regression Classifier Trained Using Samples at 165.5 Hours and Applied to Out of
Sample Static Observations at 12, 24, 36, 48, 96, and 165.5 Hours (Blue - Linear
Discriminant, Red - Quadratic Discriminant)
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5.6 Conclusion

We have presented a methodology for the classification of multiple time-series by

modeling the p-dimensional time-series are phenotype dependent Gaussian Processes.

The discriminating power of the functional data is summarized as a log-odds ratio

corresponding to each of the p-variables. The p-dimensional basis functions are

fed into an !1-logistic regression classifier to generate a single powerful classifier.

The proposed model can naturally accommodate mis-aligned time-series, a desirable

feature when dealing with biological data. The method has been applied to a large

pan viral human gene expression mis-aligned time-series data set and capable of

accurately discriminating between asymptomatic and symptomatic patients at early

and late times.



CHAPTER VI

Conclusion

The four core chapters of this dissertation are an attempt to develop necessary

components of the PHD socio-molecular inference engine. The methods draw on

insights and techniques from fields ranging from physics, epidemiology, statistical

signal processing, operations research, bioinformatics, and machine learning. The

concept of a spatio-temporal graphical model with high-dimensional noisy observa-

tions can model a social network with disease states changing over time and clinical

observations being collected on the individual basis. Chapters 2 and 3 address the

issue of reasoning under uncertainty on a large, potentially unknown social network,

where limited resources are available for monitoring the state of the network. The

latter two chapters confront the issue of accommodating noisy temporal individual

high-dimensional data which would then be fused up into the social network level for

performing inference on the hidden disease states.

While these four chapters develop the methodology for implementation of a PHD

socio-molecular inference engine, additional work remains in extending these ideas to

real time disease management. In particular, chapters 1 and 2 would greatly benefit

from applying these methods to a controlled cohort of individuals where an infectious

agent can propagate across a known social network. One could establish an estimate

108



109

on the social network topology given these observed disease trajectories and then

insert this estimate into the adaptive sampling method. Statistical significance on

the validity of the proposed adaptive sampling method and graphical model selection

method could be quantified using a permutation test over an offline sampling strategy

with an unknown estimate of the network topology. In such a cohort study, a patient’s

“state” is observed through measurement of gene expression, symptom history, etc.

It would be worthwhile to use robust logistic regression to estimate this hidden state

on a wild-type virus strain given a patients gene expression measurements using a

model trained from existing challenge studies. This would quantify the extrapolative

power of such a classifier and hopefully, outperform non-robust methods. Finally,

one could establish the value added in gathering series of measurements from patients

to better estimate their phenotype using the Gaussian Process framework discussed

in chapter 4. We hope that these concepts can be successfully applied to such a

challenge study and extended to active disease management.
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