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Chapter I 

Electrophysiology and beyond: Multiple roles of Na+ Channel β subunits in 

development and disease 

 

(Portions of this chapter have been published in Neurosci Lett 2010, 

doi:10.1016/j.neulet.2010.06.050) 

Voltage-gated Na+ channel (VGSC) β subunits are not “auxiliary.” These 

multifunctional molecules not only modulate Na+ current, but also function as cell 

adhesion molecules (CAMs) – playing roles in cellular aggregation, migration, invasion, 

neurite outgrowth, and axonal fasciculation [9, 10]. β subunits are integral members of 

VGSC signaling complexes at nodes of Ranvier, axon initial segments, and cardiac 

intercalated disks, regulating action potential propagation through critical intermolecular 

and cell-cell communication events. At least in vitro, many β subunit cell adhesive 

functions occur both in the presence and absence of pore-forming VGSC α subunits [64, 

65, 70], and in vivo β subunits are expressed in excitable as well as non-excitable cells 

[3, 7, 18, 24, 30, 33, 54, 85] [11, 80](O’Malley, submitted), thus β subunits may play 

important functional roles on their own, in the absence of α subunits. VGSC β1 subunits 

are essential for life, and appear to be especially important during brain development [6, 

9, 17].  Mutations in β subunit genes result in a variety of human neurological and 

cardiovascular diseases (summarized in Table I.3).  Moreover, some cancer cells exhibit 

alterations in β subunit expression during metastasis [7, 18, 24]. In short, these subunits, 

originally thought of as merely accessory to α subunits, are critical players in their own 

right in human health and disease. 
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β Subunits are Immunoglobulin (Ig) Superfamily CAMs 

There are four mammalian VGSC β subunit genes, SCN1B - SCN4B, encoding 

β1 - β4, respectively. All VGSC β subunits are type I transmembrane proteins, 

containing an N-terminal signal peptide and a single, heavily glycosylated Ig domain in 

the extracellular region, a single transmembrane domain, and an intracellular domain 

(Figure I.1).  
 
 

Figure I.1. Subunit structure of VGSCs. VGSCs in the central nervous system are 
multiprotein complexes composed of a single pore-forming α subunit, one non-
covalently-linked β subunit (β1 or β3), and one covalently-linked β subunit (β2 or β4). 
β1B is a secreted, soluble subunit. In addition, α and β subunits interact with multiple cell 
adhesion, extracellular matrix, cytoskeletal, and intracellular signal transduction proteins.  

 

VGSC β subunits are enriched in lipid rafts in brain, but are also present in non-

raft domains [8, 125]. VGSCs in brain are heterotrimers, containing a single α subunit 

associated with one non-covalently (β1 or β3) and one covalently (β2 or β4) linked β 

subunit [38, 39, 76, 80, 128]. SCN1B gives rise to two splice variants, β1 and β1B (called 
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β1A in earlier publications [54]) [95].  β1B is formed through retention of intron 3, with the 

splice site located following exon 3, encoding the Ig loop domain, and before exon 4, 

encoding the transmembrane domain [54, 95]. The predicted amino acid sequence of 

the retained intronic region exhibits very low homology between species [95], however, 

hydrophobicity analysis of these sequences reveals no transmembrane domains in any 

species, predicting that β1B is a secreted protein that may function as a ligand for cell 

adhesion [91]. Multiple SCN1B splice variants, including transmembrane and secreted 

forms, is consistent with other CAMs of the Ig superfamily [49, 99]. 

Structurally, all of the VGSC β subunits, including the splice variants, belong to 

the Ig superfamily of CAMs [128] [45].  Interaction of β subunits with other CAMS has 

been demonstrated for β1, β2, and β3, but not yet for β4, although there is evidence that 

β4 may function as a CAM in neurite outgrowth [77].  Interestingly, while β1 and β2 

display both homophilic and heterophilic cell adhesive interactions, β3 is not a 

homophilic CAM despite significant homology between β3 and β1 [69], and evidence to 

date shows only heterophilic interaction of β3 with neurofascin-186 [97]. Within the Ig 

loop domain of all four β subunits there are multiple N-linked glycosylation sites [44, 45, 

80, 128].  The presence of sialic acid in this area is required for Na+ current modulation 

by β1 and β2 [47, 48]. The A/A’ face of the β1 Ig loop is an important site of interaction 

with the α subunit [68].  

The intracellular domains of β1 and β2 interact with the cytoskeletal proteins 

ankyrinB and ankyrinG, and this intracellular region is an additional site of α subunit 

interaction for β1 and β3 [64, 65, 72, 108]. β1 and β3 contain a YLAI motif in the 

intracellular domain that predicts internalization through clathrin-coated pits [80]. 

Phosphorylation of this tyrosine in β1 (Y181) modulates its subcellular localization and 

ability to associate with ankyrin [66]. Regarding the aminoacid nomenclature of β 

subunits, it is important to mention that the amino acid sequences for all the β subunits 

available on NCBI and Uniprot contain a signal peptide with the initiator methionine 
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designated amino acid #1. This nomenclature is also followed in studies reporting 

pathogenic human mutations in genes encoding the β subunits. In contrast, in much of 

the literature discussing structural domains of β subunits amino acid #1 is defined to be 

the first residue after cleavage of the signal peptide. Lengths of the signal peptide and 

the first amino acids of the mature protein for each β subunit are summarized in Table 

I.1.  
 
 
Table I.1. Length of signal peptides and identity of the first aminoacid after it in VGSC β 
subunits. 
  

β Subunit Length of signal 
peptide 

(aminoacids) 

First aminoacid 
after signal 

peptide 

Reference 

β1 19 Glycine (G) [44] 
β1B 19 Glycine (G) [95] 
β2 29 Methionine (M) [45] 
β3 24 Valine (V) [80] 
β4 30 Leucine (L) [128] 

 

β3 contains a tyrosine in the position corresponding to β1Y181, but its 

phosphorylation or its ability to associate with ankyrin has not been demonstrated [69]. 

In the intracellular domain of β4, the sequence KKLITFILKKT may function as an open-

channel blocker allowing resurgent Na+ current [2, 5, 34].  

 All four VGSC β subunit proteins are substrates for sequential cleavage by the β-

site amyloid precursor protein-cleaving enzyme 1 (BACE1) and γ-secretase [125]. β2 

can also be cleaved by the α-secretase ADAM10 [56]. Processing of β subunits by 

BACE1 or α-secretase at cleavage sites in the extracellular juxtamembrane region 

results in ectodomain shedding, leaving membrane-bound C-terminal fragments (CTFs) 

[56, 125]. Evidence suggests that the shed ectodomain of β1 may function as a soluble 

ligand for cell adhesion to promote neurite outgrowth [20, 64]. The CTFs are further 

processed by γ-secretase at intracellular sites, resulting in free small intracellular 

domains (ICDs) [56, 125]. Pharmacological inhibition of β2 cleavage by γ-secretase 
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reduces cell-cell adhesion and migration [56] and β4 processing by BACE1 increases 

neurite outgrowth [77], predicting that proteolytic processing events are critical to the in 

vivo functioning of these subunits. The β2 ICD localizes to the nucleus and increases 

Scn1a mRNA and Nav1.1 protein levels, suggesting that this fragment may function as a 

transcriptional regulator of VGSC α subunits [55]. Although all four β subunits are BACE 

substrates in in vitro assays, in vivo processing by BACE1 has only been confirmed for 

β2 and β4 in the mouse CNS [125], suggesting that this role may be specific to subunits 

that are covalently linked to α. 

 

β Subunits Are Expressed In Excitable And Non-Excitable Tissues 

All four β subunits, including β1B, are widely expressed in the soma of neurons of 

the mammalian brain and spinal cord [6, 17, 54, 80, 95, 128]. β1 is also highly expressed 

in the axon initial segment of cortical and hippocampal pyramidal neurons and cerebellar 

Purkinje neurons[124]. β1, β2 and β4 are present at optic and sciatic nerve nodes of 

Ranvier [16, 17, 29, 50, 92](O’Malley, submitted). β3 is not found at nodes in optic nerve 

or spinal cord (O’Malley, submitted). Interestingly, while β1 is present at the majority of 

nodes in optic nerve and spinal cord, β2 and β4 are expressed in subsets of nodes in 

these areas (O’Malley, submitted).  These data suggest that the VGSC subunit 

composition at nodes can be αβ1β2 or αβ1β4, resulting in differential electrical and cell 

adhesive effects.  In addition to nodes, β1 is present in the axon initial segment of 

cerebellar Purkinje neurons and cerebellar granule neurons (CGNs), and in CGN growth 

cones where it is postulated to contribute to neurite outgrowth [6]. β1 and β2 are 

expressed in mammalian retinal ganglion cells [50], and scn1ba (β1) protein in zebrafish 

is present in multiple types of retinal cells [29]. β1B, β2, and β3 are present at the soma 

of subpopulations of large and small DRG neurons [12, 54, 93, 95], and their differential 

expression may predict subtle variations in neuronal firing properties. β1B and β3 are 

also present in peripheral nerve fibers [12, 95]. Finally, β subunits are expressed in glia. 
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Scn1b mRNA is expressed in Schwann cells and astrocytes [3, 33, 85] and Scn2b 

mRNA is detected in cerebral and spinal cord astrocytes [84]. β1 and β4, but not β2 or 

β3, are detected in Bergmann glia [20]. All four β subunit proteins are expressed in 

oligodendrocyte precursor cells (O’Malley, submitted). The zebrafish protein scn1bb (β1) 

is expressed in optic nerve myelin, in spinal cord radial glía, and in Schwann cells [30]. 

Thus, β subunits are expressed in excitable as well as non-excitable cells in brain, 

suggesting that they may play cell adhesive roles in the absence of an associated α 

subunit in vivo. 

In addition to brain, all four VGSC β subunits are expressed in heart [43, 51, 62]. 

β1 and β1B are present in atrial and ventricular tissues [28, 54]. β3 is present in 

ventricular cardiomyocytes, but not in atrial cells [28]. β2 and β4 are expressed in 

ventricular myocytes, but their presence in atrial tissue has not been studied. All four β 

subunits are expressed in the sinoatrial (SA) node [63]. β1 is also expressed at low 

levels in atrioventricular (AV) node and His bundle, and abundantly in Purkinje fibers 

[26]. In the ventricles, non-phosphorylated β1, β3, and β2 co-localize at the t-tubules, 

along with the α subunits Nav1.1, Nav1.3 and Nav1.6. Tyrosine phosphorylated β1, β2, 

and β4 are found at intercalated disks of ventricular cardiomyocytes with Nav1.5 [22, 62, 

66]. Scn3b mRNA  is detected in both the SA and AV nodes [67], while SCN1B mRNA 

encoding β1B is expressed in both ventricles and the Purkinje fibers [122].  

β subunits are expressed in skeletal and smooth muscle. In skeletal muscle, RT-

PCR experiments detect mRNAs for all mammalian β subunits [11, 128]. 

Immunohistochemistry experiments show zebrafish scn1ba in skeletal muscle [29]. The 

mRNAs for SCN1B, SCN2B and Scn4b, but not SCN3B, are present in smooth muscle 

cells [94, 105]. In addition, β1B protein is expressed in endothelial cells [54]. SCN1B and 

SCN4B mRNA are expressed in other non-excitable tissues, including lung, kidney, liver, 

placenta, prostate, and thyroid [11].  Scn3b mRNA is also present in kidney and liver 

[80]. These data again suggest non-conducting roles for β subunits in vivo. Importantly, 
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because levels of VGSC β subunit mRNA and protein rarely correlate [60], expression of 

these subunits at the protein level must be confirmed in future studies. 

There is little information regarding the factors that control β subunit transcription, 

although it is known that β subunit expression in the CNS is developmentally regulated. 

mRNAs for β1B and β3 predominate in fetal brain, with levels decreasing (but not 

disappearing) during late gestation and after birth. In contrast, levels of β1 and β2 mRNA 

increase progressively and become dominant over β1B and  β3 after birth [45, 54, 101, 

106]. A similar temporal characterization has not been carried out for β4. β2 is present in 

murine optic nerve nodes of Ranvier during early postnatal development [16, 50]. At later 

time points, β1 is also present in these structures [17], although early expression of β1 at 

nodes has not been investigated.  Levels of Scn1b mRNA in the heart increase toward 

the end of gestation and after birth, and this increase is, at least in part, dependent on 

the prepartum surge in cortisol [27]. Silencing of the voltage-gated K+ channel subunit 

KChIP2 in neonatal ventricular cardiomyocytes reduces the levels of Scn1b mRNA and 

protein [21].  In Scn3b null mice there is a selective ventricular (but not atrial) increase in 

Scn1b mRNA [35, 36]. Increased Scn3b expression is repressed by the RE1-silencing 

transcription factor (REST) [89] and is induced by p53 [1]. Taken together these studies 

indicate that the genes encoding VGSC β subunits are subject to multiple mechanisms 

of control, including possible modulation by other ion channel subunits. 

 

β subunits interact with multiple cytoskeletal, cell adhesion, signal transduction, 

and extracellular matrix proteins 

β subunits modulate Na+ current as integral members of the VGSC signaling 

complex and, as such, associate with multiple pore-forming α subunits [22, 66, 76, 108]. 

In addition, these multifunctional proteins interact both in cis and in trans with multiple 

CAMs, with components of the extracellular matrix, and with intracellular cytoskeletal 

and signaling molecules. A summary of those interactions is presented in Table I.2, with 
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the majority of these studies focusing on β1. Similar studies have not been carried out 

for β1B, however, because β1 and β1B share the extracellular Ig domain, it is safe to 

assume that these two CAMs share many, if not all, extracellular binding partners. 

β1 subunits associate with multiple CAMs, including contactin, neurofascin-186 

and -155, NrCAM, N-cadherin, and β2 [52, 66, 70, 71, 97]. β2 does not associate with 

contactin, but does associate with β1 and the extracellular matrix proteins, tenascin-C 

and tenascin-R [109] [70]. Transfected fibroblasts expressing β1 or β2 are repelled by 

substrates containing tenascin-R, suggesting initial binding and recognition of this 

extracellular matrix molecule by these β subunits [126]. Some information is known 

regarding the β1-binding domains of these partners. For example, neurofascin-186 

interacts with β1 through its first Ig-like domain and second fibronectin type III-like 

domain [97]. Contactin binds the β1 Ig loop through its fibronectin-like domain [70]. β2 

associates with the fibronectin type III repeats 1-2, A, B, and 6-8 of tenascin-C and 

fibronectin type III repeats 1-2 and 6-8 of tenascin-R [109]. Functionally, the cysteine-

rich amino-terminal domain of tenascin-R, termed EGF-L, is responsible for tenascin-R’s 

repellent effect on β1- or β2-expressing cells. The tenascin-R epidermal growth factor-

like repeats and fibronectin-like repeats 6-8 are critical for the initial adhesion of β1- or 

β2-expressing cells [126]. 

Trans homophilic β1-β1 or β2-β2 association results in the recruitment of ankyrin 

to points of cell contact [64]. The key residue in the interaction between the intracellular 

domain of β1 and ankyrin is β1Y181. Phosphorylation of this tyrosine abolishes the 

ability of β1 to associate with ankyrinB or ankyrinG and is postulated to be a mechanism 

regulating β1 subcellular localization [65, 71]. Association of the β1 intracellular domain 

with receptor phosphotyrosine phosphatase β may provide a yin-yang mechanism of 

phosphorylation and dephosphorylation [96]. Indirect evidence suggests that β1 may
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associate with the lipid raft kinase fyn in response to extracellular trans β1-β1 adhesion 

[8]. β1 and β2 also participate in trans heterophilic extracellular interactions and some of 

these interactions require the intracellular domain of at least one of the partners. For 

example, the intracellular domains of NrCAM and β2, respectively, are necessary for the 

extracellular association of these CAMs with β1, suggesting inside-out signaling 

mechanisms [70].  

 VGSC β subunits can associate with other ion channels. In neonatal rat 

ventricular myocardium β1 and Nav1.5 associate with the voltage-gated K+ channel 

subunits Kv4.2 and Kv4.3, and the accessory subunit KChIP2 [21]. These results suggest 

that Na+ and K+ channels may physically communicate to regulate action potential 

conduction and that β subunits may act as key junctional components of multi-channel 

complexes in excitable cells in vivo. 

 

What do β subunits do? 

1. β subunits modulate Na+ current:  

A large body of literature exists to show that β subunits modulate Na+ current in 

transfected cells in vitro. While this approach has yielded valuable structure-function 

information, these data may have little relevance to the in vivo situation. Evidence shows 

that given α-β subunit combinations yield different electrophysiological results in different 

cell backgrounds.  For example, β1 shifts the voltage dependence of Nav1.2-expressed 

Na+ current in the negative direction in 1610 Chinese hamster lung cells but in the 

positive direction in HEK cells [46]. β1-mediated effects on Nav1.5 have been particularly 

difficult to resolve using heterologous systems. Some groups have reported no effect of 

β1 on Nav1.5, while other studies have found significant changes in the characteristics of 

Na+ current. However, which electrophysiological parameter was modulated, as well as 

the extent of modulation, varied between studies (see [73] for a more detailed 

discussion). These differing effects may be due to the presence of varying levels of 
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endogenous β subunits in different cell lines [78, 79] and/or the differential expression of 

other endogenous VGSC interacting or modifying proteins. Excitable cells express 

multiple VGSC α subunit genes in specific complexes of signaling, cytoskeletal, and 

adhesion molecules in particular subcellular domains, e.g. [6, 14, 22, 50, 83] a situation 

that cannot be mimicked using a heterologous system.  Importantly, while co-expression 

of β subunits, especially β1, produces significant changes in Na+ current characteristics 

in heterologous systems, mouse models tell us otherwise.  For example, even though 

Scn1b null mice have a severe neurological phenotype, there are so far only subtle, cell 

type specific changes reported in Na+ current [2, 6, 17, 92, 114]. Thus, heterologous 

systems have revealed little useful information regarding the effects of β subunits, 

especially β1, on Na+ current in vivo. 

β subunit modulation of Na+ current in vivo is cell type specific and subtle, yet 

may result in significant changes in electrical excitability in brain. Scn1b null CGNs 

exhibit reduced resurgent Na+ current that likely contributes to the ataxic phenotype of 

these mice [6]. Minor changes in hippocampal excitability in Scn1b null mice may 

contribute to severe seizures [92]. A portion of Scn2b null hippocampal neurons show 

negative shifts in the voltage dependence of inactivation [16, 114], while in small-fast 

DRG neurons there is slowing of Na+ current activation and inactivation with no change 

in voltage-dependence [60]. In wildtype hippocampal neurons transfected with β4, 

persistent current is increased. β4-expressing neurons from Scn1b and Scn1b/Scn2b 

null mice show slowed entry into inactivated states [2]. Data from this study suggest that 

β1 and β4 may play antagonistic roles in hippocampus in vivo, with the former favoring 

inactivation, and the latter favoring activation. Because increased VGSC availability may 

facilitate action potential firing, these results suggest a mechanism for seizure 

susceptibility of both mice and humans with mutated β1 subunits [2].  

In the heart Na+ current gating abnormalities have been documented for Scn1b 

null mice [59], Scn3b null mice [36], and a strain of mice (129P2) that are cardiac-
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specific Scn4b hypomorphs [98]. Scn1b null ventricular myocytes show increased 

transient and persistent Na+ current with no changes in other electrophysiological 

parameters. Scn3b null ventricular myocytes show a hyperpolarizing shift in the voltage-

dependence of current inactivation. Scn4b null mice have not been developed, however, 

ventricular cardiomyocytes from 129P2 mice exhibit a depolarizing shift of the voltage-

dependence of current activation when compared to cells isolated from the FVB/N strain 

that expresses high levels of β4 [98].   

The gating modulating properties of β subunits are also  important for the 

response of α subunits to VGSC blockers, as shown in vivo for flecainide with β3 [37], ex 

vivo for carbamazepine with β1 and β2 [114], and in vitro for phenytoin with β1 [61], and 

lidocaine with β1 and β3 [57]. 

The interaction of β subunits with other CAM, cytoskeletal, or signaling molecules 

may also influence Na+ current.  For example, β1 association with contactin or NrCAM 

results in increased current density in vitro and in vivo [52, 70]. β1 and β2 are ankyrin 

binding proteins.  AnkyrinB null mice exhibit reduced Na+ current density and abnormal 

Na+ current kinetics [15], suggesting that β subunits may play important roles in the 

VGSC-ankyrin complex. These interactions may be particularly critical at the nodes of 

Ranvier. Scn1b null mice show reduced numbers of nodes, dysmyelination, and 

disruption of axo-glial cell-cell contacts [17].  While Nav1.6, contactin, caspr, and K+ 

channels are normally localized to nodes in these mice, association between VGSCs 

and contactin, and possibly ankyrin, neurofascin, and NrCAM, are disrupted. It is 

proposed that loss of these critical β1 subunit-dependent protein-protein interactions 

leads to instability of the nodal complex [17, 53]. Finally, β1 and Nav1.6 reciprocally 

modulate each other in terms of neurite outgrowth, subcellular localization, and 

regulation of resurgent Na+ current in CGNs [6]. 
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2. β subunits modulate channel cell surface expression: 

β subunits, especially β2, increase Na+ current density in heterologous systems 

by enhancing the trafficking of α subunits to the plasma membrane. In contrast to 

discrepancies in Na+ current modulation in vitro vs. in vivo for β1, this β2-mediated effect 

holds up to in vivo scrutiny. α subunit association with β2 and concomitant plasma 

membrane insertion are the final steps in VGSC biosynthesis in primary brain neurons, 

suggesting that β2 is critical for establishment and maintenance of channel cell surface 

expression and excitability [103, 104] Experiments in Scn2b null neurons supports this 

conclusion. In Scn2b null mice acutely dissociated hippocampal neurons have Na+ 

current density that is ~50% of wildtype. Scn2b null embryonic neuronal cultures exhibit 

a ~50% reduction in cell surface 3H-saxitoxin (STX) binding compared to wildtype. No 

difference was observed comparing 3H-STX binding to lysed neuronal cultures, 

indicating that the absence of β2 had no effect on overall VGSC expression, but 

specifically on VGSC cell surface trafficking [16]. Like most of the effects of β subunits 

described in this chapter, the ability of β2 to increase Na+ current density is cell-type 

specific, since neurons from the dentate gyrus of Scn2b null mice have similar Na+ 

current densities as their wild-type littermates [114]. Scn2b null small-fast dorsal root 

ganglia (DRG) neurons have significantly decreased protein expression of Nav1.1 and 

Nav1.7 and subsequent reduction in tetrodotoxin (TTX)-sensitive Na+ current density 

compared to wildtype, but unchanged TTX-resistant Na+ currents [60], suggesting that 

the effects of β2 may be specific to TTX-sensitive channels.   

In the CNS β1 may be required for the expression or subcellular localization of 

specific VGSC α subunits in specific cell types. Scn1b null hippocampal neurons in the 

CA3 region express decreased levels of Nav1.1 and increased levels of Nav1.3 

compared to wildtype, as assessed by immunofluorescence [17].  Subpopulations of 

Scn1b null CGNs exhibit reduced expression of Nav1.6 channels, but increased levels of 

Nav1.1 channels, at axon initial segments compared to wildtype [6].  
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Cell surface expression of Nav1.5 in the heart may be mediated by its association 

with β3, as in Scn3b null ventricular cardiomyocytes  Na+ current density is reduced [36]. 

Despite coimmunoprecipitation experiments using rodent heart lysates demonstrating 

association between β1 and Nav1.5, as well as data showing increased current density 

upon co-expression of β1 with Nav1.5 in some heterologous systems,Scn1b null heart 

levels of Scn5a mRNA and Nav1.5 are increased [59], again suggesting that in vitro 

experiments may fail to predict the in vivo situtation. β1 may affect the expression of 

other, TTX-sensitive, VGSC α subunits in the heart, as Scn1b null heart lysates have 

increased 3H-saxitoxin binding [59]. It is possible that BACE1 cleavage of β1 normally 

results in dampened VGSC transcription in the heart. In the absence of β1 VGSC gene 

expression may lose this regulation, resulting in channel over-expression. 

The mechanism by which β subunits promote VGSC α subunit cell surface 

expression is not well understood, although some information is known. Nav1.8 contains 

an endoplasmic reticulum retention (ER) signal in its first intracellular loop that is masked 

by the intracellular domain of β3 when the two subunits are associated, facilitating exit of 

the α subunit from the ER [129]. In spite of this, β3 does not promote the cell surface 

expression of Nav1.8 in this system, suggesting that other factors are required. Evidence 

suggests that β1 may act as a chaperone to facilitate proper folding of mutant Nav1.1 

subunits associated with epilepsy, allowing them to pass the quality control mechanisms 

of the ER [100 ]. However, β1 does not appear to enhance the expression of wildtype 

Nav1.1 at the cell surface in vitro [92, 100].  

 

3.  β subunits modulate cellular migration, neurite extension, and axonal fasciculation: 

As is true for other CAMs, VGSC β subunits are critical for cellular migration, 

neurite outgrowth, and axonal fasciculation. Forced expression of β1 and β2 mediate 

migration of fibroblasts away from a tenascin-R substrate [126]. β1 also modulates the 

migration and invasion of cancer cells, as described below. β1 and β4 promote neurite 
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extension in a cell type-dependent manner [20, 77]. In the mouse neuroblastoma cell 

line Neuro2a β4 promotes neurite outgrowth and branching [77]. In mouse CGNs β1 

promotes neurite outgrowth, β2 inhibits neurite outgrowth, and β4 has no detectable 

effect [20]. We have shown that β1-mediated neurite outgrowth requires β1-β1 trans 

interactions: β1 expressed at the CGN cell surface must interact with another β1 subunit 

that is located either on the cell surface of an adjacent neuron or glial cell (likely 

Bergmann glia in the cerebellum) [20]. In addition, β1-mediated neurite outgrowth in 

CGNs requires the presence of Nav1.6 at the axon initial segment, TTX-sensitive Na+ 

current, the CAM contactin, and fyn kinase [6, 8]. Requirements for contactin are 

complicated by the finding that Cntn null mice are Scn1b hypomorphs in the brain, thus 

the reported results may have reflected a difference in β1 cell surface expression. Scn1b 

null mice exhibit significant defasciculation of the corticospinal tract at the level of the 

pyramidal decussation, abnormal migration of CGNs from the external germinal layer, 

and defasciculation of cerebellar parallel fibers [9]. These cerebellar defects may 

contribute to the ataxic phenoype of these mice [17]. Zebrafish scn1bb morphants 

exhibit defasciculation of the olfactory nerve [30].  Taken together, these data suggest 

that VGSC β subunits are critical modulators of brain development. 

In heart the differential subcellular localization of β subunits in ventricular 

myocytes may affect mechanical and electrical coupling through cell adhesive and 

electrophysiological modulation. At the intercalated disk β subunits, especially β1, may 

interact with other CAMs (e.g. N-cadherin or connexin-43 [66]) and cytoskeletal 

molecules to stabilize intercellular junctions critical for mechanical and electrical coupling 

[22, 62, 66]. In addition, association of β subunits with Nav1.5 at this location (and 

possibly with voltage-gated K+ channel subunits [21]) likely influences the propagation of 

action potentials through the ventricular tissue. β subunits located at t-tubules may 

associate with TTX-sensitive VGSCs and ankyrinB to modulate excitation-contraction 

coupling [22, 62, 66]. 
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The roles of β subunits in cell migration, adhesion, and neurite extension depend 

not only on extracellular CAM interactions, but also on intracellular signal transduction 

events. β1-mediated neurite outgrowth in CGNs requires fyn kinase [8], suggesting that 

extracellular β1-β1 cell adhesion results in intracellular activation of fyn and initiation of a 

tyrosine phosphorylation signal transduction cascade. Blockade of processing of β2 by γ-

secretase inhibits cell adhesion and cell migration [56]. These data suggest that 

intracellular β2-ankyrin interactions may first need to be interrupted by γ-secretase 

cleavage of the β2 ICD for cytoskeletal remodeling to occur. 

 

What is the role of β subunits in disease? 

1. Evidence from mouse models: 

Given the multifunctional nature of β subunits in the normal organism, what are 

the morphological and behavioral consequences of their functional disruption? While 

Scn2b and Scn3b null mice show some abnormalities, both of these models, as well as 

their heterozygous counterparts, have relatively normal life spans and behaviors [16, 

36]. Scn2b null mice have a ~50% loss of cell surface TTX-sensitive VGSCs in central 

and peripheral neurons [16, 60].  This results in a reduction in the amplitude of 

compound action potentials and an increased action potential threshold in optic nerve, 

increased susceptibility to seizures induced by the muscarinic acetylcholine receptor 

agonist pilocarpine, increased sensitivity to thermal stimuli, and decreased sensitivity in 

some models of neuropathic pain. The phenotype of Scn3b null mice, as reported, 

appears to be mild and limited to cardiac abnormalities, as discussed below. The 

apparent lack of a neurological phenotype in these mice may suggest that Scn1b can 

compensate for Scn3b in brain. On the other hand, Scn1b null mice have a severe and 

complex phenotype that includes retarded growth, ataxia, spontaneous seizures, and 

lethality between the second and third postnatal week [17]. These results suggest that 

the remaining β subunit genes cannot compensate for the loss of Scn1b. Scn1b null 
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mice have been proposed to represent a novel model for Dravet Syndrome (also called 

Severe Myoclonic Epilepsy of Infancy) [92]. In contrast, Scn1b+/- mice have a normal 

phenotype [17]. Surprisingly, in spite of an extensive literature describing significant 

electrophysiological effects of β1 co-expression with VGSC α subunits in heterologous 

systems, only subtle changes in Na+ current have been described in Scn1b null neurons, 

as described above [17, 92, 114].  Taken together, these results suggest that the cell 

adhesive functions of β1 may be more important than their effects on current modulation 

in brain in vivo.  

β subunits are also important for proper cardiac function. Isolated Scn1b null 

ventricular myocytes exhibit increased transient and persistent Na+ current and action 

potential prolongation resulting in prolonged QT and longer RR intervals in intact heart 

[59]. In contrast, Scn3b null ventricular myocytes exhibit shortened action potentials and 

a decreased effective refractory period. Hearts from these animals show slower heart 

rates, longer sinus node recovery times, longer P wave and PR interval durations, and a 

high tendency for induced atrial tachycardia and fibrillation, and ventricular tachycardia 

[35, 36]. Ventricular cardiomyocytes isolated from 129P2 mice, which are cardiac-

specific Scn4b hypomorphs, exhibit slowed upstroke velocities and prolonged action 

potentials compared to myocytes isolated from the FVB/N strain.  This results in 

increased PQ and QRS intervals, although no arrhythmias could be induced with the use 

of flecainide [98]. No cardiac characterization of Scn2b null mice has been performed. 

Taken together, these mouse models suggest that β1, β2, β3 and β4 are all required for 

normal excitability in vivo. 

 

2. Human inherited arrhythmia and epilepsy: 

VGSC β subunits are involved in a number of human diseases, either as a 

primary cause, as a downstream target, or as a modifying factor. Table I.3 summarizes 

the diseases that have been linked to β subunits and the experimental models used to 
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demonstrate this association. Figure I.2 shows the amino acid location of β subunit 

mutations reported in the literature and one being reported in the third chapter of the 

present work. To date, all diseases associated with β subunit mutations are episodic, or 

paroxysmal, disorders that show variable penetrance and expressivity (see references in 

Table I.3).  

In all but one case the mutations reported are heterozygous in humans [92], 

which, for loss-of-function mutations, contrasts with findings described above that 

Scn1b+/-, Scn2b+/-, and Scn3b+/- mice are phenotypically normal. 

Mutations in SCN1B, SCN2B, SCN3B, and SCN4B are associated with cardiac 

arrhythmia, including atrial, ventricular, and conduction system diseases [112, 115, 122]. 

Mutations associated with sudden infant death syndrome (SIDS) are also included in this 

section, as in vitro studies using heterologous systems have found abnormalities in their 

electrophysiological modulation of Nav1.5 [112]. To attempt to understand the 

mechanisms by which these mutations cause arrhythmia, wildtype and mutant cDNAs 

have been expressed with Nav1.5 in heterologous systems. However, these results are 

complicated by the problems discussed above. 

In vitro, all β1 mutations associated with arrhythmia result in the loss of the ability 

of β1 to increase Na+ current density [121, 122]. Their effects on other currents 

parameters, however, are less consistent. β1p.R85H abolishes β1-mediated modulation 

of the voltage dependence of current activation and inactivation.  β1p.E87G abolishes 

the effect of β1 on voltage-dependence of activation but not on inactivation. β1p.D153N 

conserves the effects of the wildtype subunit on voltage-dependence [121, 122]. Co-

expression of β1p.E87G with wildtype β1 and Nav1.5 results in currents that are 

indistinguishable from currents generated by co-expression of mutant β1 and Nav1.5, 

suggesting that β1p.E87G might have a dominant-negative function [122]. As discussed 

above, other studies have found no effect at all of wildtype β1 on Nav1.5 in various 

heterologous systems [73], adding another layer of complexity to understanding 
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Table I.3. Human diseases associated with β subunits.  
 

β 
Subunit 

Disease Relationship Model Reference 

β1 Conduction disease Causal Human [122] 
 Atrial fibrillation Causal Human [121] 
 Long QT syndrome Causal Mouse [59] 
 Febrile seizures Causal Human, Mouse [4, 87, 102, 

117, 118, 
124] 

 Dravet Syndrome Causal Human, Mouse [17, 92] 
 Temporal lobe 

epilepsy 
Causal Human [102] 

 Traumatic nerve 
injury 

Downstream 
target 

Human [19] 

β1B Brugada syndrome Causal / 
Modifying factor 

Human [82, 122] 

 Conduction Disease Causal Human [122] 
β2 Atrial fibrillation Causal Human [121] 

 Multiple sclerosis Modifying factor Mouse [81] 
 Post-traumatic 

neuropathic pain 
Downstream 

target 
Mouse [93] 

 Inflammatory pain Modifying factor Mouse [60] 
 Traumatic nerve 

injury 
Downstream 

target 
Human [19] 

β3 Idiopathic ventricular 
fibrillation 

Causal Human [115] 

 Sudden infant death 
syndrome 

Causal Human [112] 

 Brugada syndrome Causal Human  [43] 
 Atrial fibrillation Causal Human [119] 
 Conduction disease Causal Mouse [36] 
 Temporal lobe 

epilepsy without 
hippocampal 
sclerosis  

Causal vs. 
Downstream 

target 

Human [116] 

 Traumatic nerve 
injury 

Downstream 
target 

Human [12] 

 Cancer Modifying factor Mammalian cell 
lines 

[1] 

 Non-syndromic oral 
clefts 

Causal Human [90] 

β4 Long QT syndrome Causal Human [75] 
 Sudden infant death 

syndrome 
Causal Human [112] 

 Huntington’s disease Downstream 
target 

Human, Mouse  [88] 
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the role of SCN1B mutations in heart in vivo. To date there is one reported SCN1B 

arrhythmia mutation that specifically affects the β1B splice variant. β1Bp.W179X 

abolishes all effects of wildtype β1B on Nav1.5 expressed current [122].  

Similar to arrhythmia mutations in SCN1B, mutations identified in SCN2B and 

SCN3B affect Na+ current density expressed by Nav1.5, while the effects on other 

current parameters are variable. The two reported SCN2B mutations associated with 

atrial fibrillation affect the same residue in the β2 signal peptide, arginine-28 [121]. 

Whereas wildtype β2 neither modifies the current density nor voltage-dependence of 

activation of Nav1.5, both of these mutations decrease the current density and shift the 

voltage-dependence of activation towards more depolarized potentials, suggesting gain-

of-function. Regarding the voltage-dependence of inactivation, β2p.R28W abolishes the 

effect of wildtype β2 while β2p.R28Q conserves it [121].   

β3 does not affect the density of Nav1.5-expressed current, but all of the reported 

arrhythmia mutations in SCN3B are reported to dramatically reduce the current density, 

suggesting gain-of-function [43, 112, 115, 119]. In addition, β3p.V54G completely 

abolishes the effects of wildtype β3 on the voltage-dependence of inactivation [115]. 

β3p.V36M does not change it, but increases the level of persistent current [112]. 

β3p.L10P, located in the signal peptide, shifts the voltage-dependence of inactivation 

towards more hyperpolarized potentials compared to wildtype β3 and prolongs the 

kinetics of recovery from inactivation [43]. Unlike the aforementioned reports, in the 

paper describing β3p.A130V even the wild-type β3 had no effect on the voltage-

dependence of inactivation of Nav1.5 [119], despite the fact that all of these papers have 

used HEK derived cell lines as their heterologous system. β3p.V54G and β3p.L10P are 

trafficking deficient mutants, resulting in the intracellular retention of Nav1.5 with a 

subsequent reduction in current density [43, 115]. β3p.A130V is not a trafficking-deficient 

mutant, thus the reduction of sodium current is due to a predominantly 

electrophysiological effect on Nav1.5 [119]. 
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Figure I.2. Localization of human epilepsy and cardiac arrhythmia mutations in  
VGSC β subunits. Colored bars indicate the position of amino acids affected by 
reported genetic mutations. Solid bars represent missense mutations, dotted bars 
represent nonsense mutations, and striped bars indicate deletions. The conventions in 
the lower panel depict the symbols used for the structural domains of the β subunits (left) 
and the color code for the diseases associated with the mutations (right).  

 

At the moment it is unknown if β3p.V36M is trafficking-deficient.  β3p.A130V acts is able 

to act as a dominant-negative mutant [119], while β3p.V54G does not [115]; No such 

characterization has been performed for β3p.L10P and β3p.V36M. 

While all reported arrhythmia mutations affecting β1, β2, and β3 are located in 

the extracellular domains of these subunits, those identified in β4 are located in the 

transmembrane or intracellular domains [75, 112], perhaps suggesting in vivo 

functioning of β4 in heart that does not involve cell adhesion. Neither the mutations, nor 

wildtype β4 affect the density of Nav1.5-expressed current. However, both mutants, 

β4p.S206L and β4p.L179F, abolish the effect of wildtype β4 on the voltage-dependence 

of inactivation, resulting in increased window current and enhanced levels of persistent 

current [75, 112]. β4p.L179F also alters the kinetics of recovery from inactivation [75]. 
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Expression of β4p.S206L in isolated adult rat ventricular myocytes using adenoviral 

vectors resulted in increased persistent Na+ current and prolongation of the action 

potential [112].  

In summary, results from heterologous systems suggest that mutations affecting 

β1, β2 and β3 may alter the cardiac action potential through their effects on Na+ current 

density.  In contrast, mutations in β4 appear to result in changes in the level of persistent 

Na+ current. Confirmation that such changes actually occur in cardiac myocytes has 

been performed for only some of these mutations [112]. In addition a microsatellite 

polymorphism in the untranslated region of SCN1B intron three (within the part of the  

intron that is retained in β1B) may be a risk factor, but is not by itself a cause, for 

Brugada syndrome [82].  

Of the four VGSC β subunits genes, to date only mutations in SCN1B have been 

reported to cause epilepsy (Figure I.2). At least two different studies have purposefully 

screened SCN2B for mutations in epileptic patients with no positive results [40, 117]. No 

such studies have been reported for SCN3B. Interestingly, all epileptic syndromes 

associated with SCN1B mutations thus far include febrile seizures as part of the 

symptomatology, assigning them to the disease spectrum of genetic epilepsy with febrile 

seizures plus (GEFS+) [4, 87, 92, 102, 117, 118]. Most studies characterizing these 

mutants have been performed in heterologous systems, and thus results must be 

interpreted with caution. The study by Patino et al [92] provides a summary of the results 

of these studies. It is important to note that the majority of these SCN1B mutations are 

loss-of-function [2, 74, 92, 111, 127]. Three of these mutants (β1p.R125C, β1p.R85H, 

β1p.R85C) have been shown to be trafficking deficient [92, 127]. Whereas the 

β1p.C121W mutant is able to traffic to the cell surface in heterologous systems (Patino 

and Isom, unpublished data), a knock-in mouse model of this mutation showed an 

absence of β1 at the axon initial segment of pyramidal cells. Mice homozygous for the 

mutation exhibited spontaneous seizures, tremor,growth retardation and died by the 
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fourth week of life [124].  In all cases but one [92], the GEFS+ patients described carry a 

single mutant SCN1B allele, making the data difficult to resolve with the normal 

phenotype of Scn1b+/- mice [4, 102, 117, 118], although the mice heterozygous for the 

β1p.C121W had a lower threshold for temperature-induced seizures and more severe 

convulsive episodes [124]. It is likely that genetic background as well as epigenetic 

factors play important roles in the phenotypes of these mutant alleles in human families.  

At this point it is important to remember that β subunits also modulate the 

response of α subunits to medications used to treat both epilepsy (phenytoin and 

carbamazepine) and cardiac arrhythmias (flecainide and lidocaine), as was mentioned 

before. 

 

3. Is there a role for β subunits in neuroprotection or neurodegeneration? 

Rodent models of nerve injury have suggested a protective role for β2 in 

neuropathology. β2 expression is increased in peripheral axons and cell bodies in both 

the spared nerve injury and spinal nerve ligation models of neuropathic pain. Consistent 

with this, the behavioral response to these models is significantly attenuated in Scn2b 

null mice [93]. In addition, Scn2b null mice have a reduced response to the formalin 

model of inflammatory pain [60]. In the Experimental Allergic Encephalomyelitis (EAE) 

mouse model of Multiple Sclerosis Scn2b null mice exhibit significantly attenuated 

symptoms, mortality, and axonal loss when compared to wildtype littermates [81].  The 

proposed mechanism for this neuroprotective phenotype is blockade of Nav1.6 up-

regulation along demyelinated axons in the absence of β2, resulting in attenuation of the 

known rise in persistent Na+ current, and subsequent prevention of reverse activation of  

Na+/Ca2+ exchange and activation of damaging Ca2+ signaling cascades in the axon that 

lead to degeneration [123]. In support of this, brains of wildtype mice with EAE show 

higher levels of Nav1.6 than Scn2b null mice under the same conditions [81].  
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Mouse strains that express huntingtin protein with expanded polyglutamine 

repeats are models of Huntington’s disease (HD). In two of these models, HD190QG 

and R6/2, brain levels of Scn4b mRNA are reduced. This change is reflected in the 

protein levels of β4 in the basal ganglia of R6/2 mice, as well as in human HD patients. 

In R6/2 mice the reduction in β4 precedes the appearance of motor symptoms. It has 

been proposed that, in light of its neurite outgrowth promoting ability, a reduction in β4 

may cause neurite degeneration as well as alter Na+ current [88].  

 

4. β subunits and cancer: 

The role of β subunits as CAMs appears to be critical for their involvement in 

certain types of cancer, and may be independent of their electrophysiological function. 

Most interestingly, β subunits may be involved in cellular metastasis and invasion in 

breast cancer. β1 is highly expressed in the weakly metastatic breast cancer cell line, 

MCF-7. In contrast, its expression levels are very low in the strongly metastatic line, 

MDA-MB-231. Knock-down of β1 using siRNA in MCF-7 cells resulted in reduced 

cellular adhesion ability and enhanced cellular migration, suggesting that β1 expression 

may limit the metastatic potential in this cancer type [18]. A previous study showed that 

the expression of a neonatal splice variant of Nav1.5 is positively correlated with the in 

vitro metastatic behavior of MDA-MB-231 cells [7]. MCF-7 cells exhibit low levels of this 

Nav1.5 splice variant. β1 knock-down increases Nav1.5 expression and stimulates 

cellular migration, implicating β1 in a regulatory role. Cellular migration resulting from 

this increase in VGSC expression is blocked by TTX [18]. As in neurons, the effects of 

β1 in cancer cells may be cell type specific, as strongly metastatic prostate cancer cell 

lines express higher levels of SCN1B mRNA than weakly metastatic lines [24]. Also, as 

is a theme throughout this review, cell line data must be interpreted with caution and 

hypotheses tested using in vivo models and patient samples. 
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Some disease associations suggest novel functions of β subunits. One study 

found using in vitro methods that β3 can induce apoptosis and enhance the response to 

anticancer drugs [1]. In one study a robust association was found between SCN3B SNP 

markers and non-syndromic oral clefts, one of the most common birth defects, but the 

mechanism of this association was not clear [90]. 

 

Conclusions and future directions 

An exciting direction in ion channel research focuses on the finding that voltage-

gated ion channels are multi-functional.  In addition to regulating electrical excitability 

through ion conduction, some voltage-gated ion channels contribute to processes as 

diverse as intracellular signaling, transcriptional regulation, scaffolding, and cell 

adhesion without requiring changes in ion flux [8, 9, 58]. Data presented here 

demonstrate clear roles for VGSC β subunits in the regulation of VGSC cell surface 

expression, localization, Na+ current modulation, action potential conduction, and cell 

adhesion. While many drugs targeting VGSC α subunits are in common use [13, 23, 41, 

42, 86, 107], the potential of VGSC β subunits as therapeutic targets has not been 

considered.  Moreover, therapeutic targeting of the non-conducting functions of VGSCs 

may be critical. Previous work has centered on the functional roles of VGSC β subunits 

in current modulation.  Interestingly, while β subunits clearly modulate Na+ current in 

heterologous systems in vivo models indicate that this may not be their most important 

role. It is critical that we now challenge our previously held concepts and take a fresh 

look at the biology of these multi-functional subunits. 

Patients with SCN1B mutations have GEFS+ spectrum epilepsy disorders, 

including the milder GEFS+, more severe temporal lobe epilepsy, and Dravet Syndrome, 

a catastrophic pediatric epileptic encephalopathy that includes mental retardation [92]. 

Importantly, there is a significant comorbidity of neuropsychiatric disease and seizures 

[25, 32] and anti-epileptic therapies targeting VGSCs are effective in mood disorders 
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[113]. Taken together, this suggests a shared pathophysiology between these diseases 

[32]. Bipolar disorder is linked genetically to ANK3, encoding ankyrinG, a protein that is 

critical for VGSC targeting and localization in neurons [31]. VGSC β1 and β2 are 

ankyrinG binding proteins [65]. SCN8A, encoding Nav1.6 that associates with β1 and β2 

and is also an ankyrinG binding protein, is another susceptibility gene for bipolar disorder 

[120]. Scn1b null mice have neuronal migration, pathfinding, and fasciculation defects in 

the cerebellum [6, 9].  Recent data suggest that cerebellar output targets multiple non-

motor areas in the prefrontal cortex and posterior parietal cortex associated with 

behaviors such as attention, memory, learning, and emotion [110]. Thus, a possible 

novel direction for β subunit research is the idea that mutations in SCN1B may be linked 

to mood disorders as well as epilepsy. Because SCN1B plays important roles in 

neuronal pathfinding and VGSC expression, disruptions in its expression during 

development and early childhood may lead to a spectrum of childhood and adolescent 

neurological and neuropsychiatric diseases.  In vivo data suggest that the primary role of 

SCN1B in brain is cell adhesion, further, that disruptions in SCN1B-mediated cell 

adhesive interactions result in pathology. This may be the case for other β subunits as 

well. β subunit function may be modulated in the future by interfering with or enhancing 

cell adhesive interactions, such that patients with β subunit gene mutations might be 

effectively treated with small molecules that mimic or alter these interactions.  In 

conclusion, important advances in the therapy of diseases that are associated with 

VGSC β subunit loss- or modulation-of-function may be achieved by targeting β subunits 

directly.  

In the following chapters I will present my work describing the experiments that 

led to a number of significant findings described in this introduction. Specifically, my 

thesis work focuses on characterizing the structure and physiology of the β1B splice 

variant.  In addition, I describe two novel human SCN1B mutations associated with 

epilepsy that cause protein trafficking defects. 
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Chapter II 

A functional null mutation of SCN1B in a patient with Dravet Syndrome 

 

(This chapter has been published in J Neurosci 2009; 29: 10764-10778) 

Introduction 

Patients with Dravet syndrome (OMIM 607208, Severe Myoclonic Epilepsy of Infancy) 

typically exhibit prolonged febrile seizures in the first year of life. Subsequently, multiple types of 

febrile and afebrile seizures occur. Seizures are difficult to control, often requiring polytherapy. 

Cognitive development is normal until approximately two years of age, when it slows or 

stagnates. All patients exhibit some level of mental retardation.  Patients often exhibit other 

neurological abnormalities, including ataxia and pyramidal signs. Risk of death is high in this 

group, including patients with sudden unexpected death in epilepsy (SUDEP) [19, 69]. 

 40 to 85% percent of Dravet syndrome patients have mutations in SCN1A [10, 33, 46], 

the gene encoding voltage-gated sodium channel Nav1.1. In most patients mutations are 

acquired de novo [23, 32], although in some they are inherited [24, 44]. Sodium channels are 

multimeric protein complexes essential for action potential generation in excitable cells, 

including neurons. Sodium channels are composed of a central, pore-forming α subunit and two 

β subunits: a non-covalently-linked β1 or β3 subunit, and a disulfide-linked β2 or β4 subunit [8, 

11]. In the central nervous system the most abundant α subunits are Nav1.1, Nav1.2, and Nav1.6 

[11]. Therefore it is not surprising that mutations in genes encoding these subunits lead to 

epilepsy.  

 Sodium channel β1 subunits modulate channel voltage-dependence and gating as well 

as channel cell surface expression [28-30]. β1 also participates in cell-cell and cell-matrix 

adhesion  [6, 7]. β1-mediated homophilic cell adhesion in vitro results in cellular aggregation,
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ankyrin recruitment, and neurite outgrowth [17, 37, 38]. In vivo, the loss of β1 results in 

spontaneous seizures, ataxia, and aberrant neuronal pathfinding and fasciculation [6, 

14]. SCN1B, encoding β1 [28], gives rise to at least two splice variants, β1 and β1B, that 

differ in their carboxyl-terminal domains [31, 50].  

 Heterozygous mutations in SCN1B have been reported in patients with Genetic 

Epilepsy with Febrile Seizures Plus type 1 (GEFS+1). Other genes implicated in GEFS+ 

include: SCN1A (GEFS+2),  GABRG2 (GEFS+3), GABRD (GEFS+5) and SCN9A 

(GEFS+7) (OMIM 604233) [3, 9, 54, 64, 65, 71]. GEFS+ is an epilepsy syndrome that 

includes mild to severe forms of epilepsy, with Dravet syndrome classified on the most 

severe side of the spectrum. All GEFS+ patients with SCN1B mutations reported to date 

fall in the mild to moderate range of seizure severity, comprising febrile seizures, febrile 

seizures plus, early-onset absence epilepsy, mild to moderate generalized epilepsies 

and focal epilepsies. Here we report the first case of Dravet syndrome caused by a 

SCN1B homozygous mutation and explore the mechanisms by which this mutation may 

cause disruptions in the control of electrical excitability. 

 

Materials and Methods 

1. Genetic analysis: 

Mutation analysis of the 6 exons and intron-exon boundaries of SCN1B was 

performed on genomic DNA of the patient by PCR sequencing. Primer sequences can 

be obtained upon request. Purified PCR products were subsequently sequenced using 

the ABI BigDye Terminator cycle sequencing kit v3.1 and analyzed on an ABI 3730 

automated sequencer (PE Applied Biosystems). Automated variation (SNPs and indels) 

discovery was performed using novoSNP [66]. Pyrosequencing with the PSQTM96 

System (Pyrosequencing AB) was used to confirm the presence of the mutation in the 

patient and to exclude it from the parents and a panel of 92 control individuals, of which 

40 were of Moroccan origin, similar to the patient's family. DNA was extracted from 
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peripheral blood of all participants. The Commission for Medical Ethics of the University 

of Antwerp approved this study and participants or their legal representative signed an 

informed consent.     

Mutations were numbered according to the published cDNA sequence (accession 

number NM_001037) with nucleotide +1 corresponding to the A of the ATG translation 

initiation codon and the nomenclature followed the MDI/HGVS Mutation Nomenclature 

Recommendations [18]. 

 To test for homozygosity we genotyped 4 STR-markers distributed over 5 Mb 

surrounding SCN1B. The markers were amplified in one multiplex PCR reaction and 

analyzed on an ABI 3730 automated sequencer (PE Applied Biosystems). 

  

2. Animals:  

Female Xenopus laevis frogs were obtained from Xenopus I (Ann Arbor, MI), and 

housed in cages filled with distilled water and protected from light. Frog chow was 

available ad libitum. Recovery of oocytes was performed as described below and 

previously [22]. Frogs were allowed to recover at least two weeks between surgeries, 

and consecutive surgeries took place on opposite sides of the abdomen for each 

individual frog. 

 Scn1b-/-  and Scn1b+/+ mice, congenic on the C57BL/6 background for at least 15 

generations, were generated from Scn1b+/- mice as described [14]. Animals were 

housed in the Unit for Laboratory Animal Medicine at the University of Michigan. All 

procedures were performed in accordance with University of Michigan guidelines for 

animal use and care.  

 

3. Antibodies: 

Primary antibodies used in these studies were: anti- β1intra (1:1000 dilution) [13, 

48], anti-V5 monoclonal antibody (1:2000, AbD Serotec), or anti-α-tubulin monoclonal 
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antibody (1:10000, Cedarlane Laboratories). The specificity of the anti- β1intra  has been 

reported previously using Western blot analysis of Scn1b+/+ and Scn1b-/- brain 

membranes [13]. To test the specificity of anti- β1intra using immunofluorescence, we 

labeled Scn1b+/+ and Scn1b-/- optic nerve nodes of Ranvier as in [14] (Figure II.1.A and 

B).  Scn1b+/+ nerves showed β1 immunofluorescence in the nodal gap with caspr 

marking the paranodal regions, as expected.  In contrast, Scn1b-/- nerves showed 

paranodal caspr staining but no β1 signal in the nodes. To test the specificity of the anti-

V5 antibody, membrane preps from rat or Scn1b-/- mouse brains, V5-tagged p.R125C-

transfected or untransfected 1610 cells ([14, 67]) were analyzed by Western Blot, as 

described below. No immunoreactive bands were detected in rat or mouse brain or 

untransfected cells.  In contrast, V5-tagged p.R125C was detected in the transfected 

cells by the anti-V5 antibody (Figure II.1.C). Secondary antibodies used in these studies 

were HRP-conjugated goat anti-rabbit or anti-mouse (Pierce, Rockford, IL) diluted 

1:2000, and Alexa Fluor 568 anti-rabbit (Molecular Probes, Eugene, OR). Cell nuclei 

were counterstained with 4',6-diamidino-2-phenylinodole (DAPI) (10 µg/ml; Sigma, Saint 

Louis, MO) 

 

4. Expression vectors:  

p.R125C cDNA was generated by PCR using human β1 cDNA in pcDNA3 as the 

template while simultaneously introducing the mutation by site-directed mutagenesis. 

For the experiments in mammalian cells, p.R125C cDNA was inserted into pcDNA3.1 

Hygro(+), as was the human β1 cDNA (β1WT), and the sequences of both constructs 

were confirmed. From these plasmids, cDNAs were amplified by PCR to remove the 

stop codon and then inserted into pcDNA3.1/V5-HIS using the pcDNA3.1/V5-HIS 

TOPO TA Expression Kit (Invitrogen, Carlsbad, CA), according to the manufacturer’s 

instructions, to produce the V5-His tagged subunits.  
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Figure II.1. Specificity of anti- β1intra antibody. (A) Anti-β1intra labels nodes of Ranvier 
in optic nerve. Scn1b+/+ optic nerves were prepared and stained for 
immunofluorescence as in [14]. Green: anti- β1intra. Red: anti-caspr (Neuromab). (B) As 
in (A), but Scn1b-/- optic nerves were stained in place of WT. Arrows in (A) and (B) 
indicate positions of nodes of Ranvier. (C) Specificity of the anti-V5 antibody. Rat 
(RB) or Scn1b-/- mouse (MB) brain membrane preparations, untransfected 1610 cells 
(UT) or p.R125C-V5-transfected 1610 cells were analyzed by Western blot with anti-V5 
antibody. No immunoreactive bands were detected in anysample except for 1610 cells 
stably transfected with V5-tagged p.R125C. Arrow indicated position of β1 
immunoreactive band. Molecular weight markers are in KDa. 
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For oocyte expression, p.R125C cDNA was inserted into pSP64t-BXN [42]. β1WT-

pSP64t-BXN was generated as previously described [42]. The plasmid encoding rat 

Nav1.2 has been described previously [22]. 

 

5. Cell Lines:  

All cell lines were maintained at 37°C with 5% CO2 with the exception of the 27oC 

growth experiment, as indicated. HEK-293 cells expressing human Nav1.1 (HEKhNav1.1) 

were obtained from Glaxo-Smith-Kline under a Materials Transfer Agreement and 

maintained in DMEM supplemented with 10% heat inactivated fetal bovine serum (HI-

FBS), 200 μg/ml G418, 0.1% non-essential amino acids, 100 U + 100 μg/ml 

penicillin/streptomycin, and 0.25 μg/ml Fungizone (all from Invitrogen). HEKrNav1.1 cells 

are HEK-293 derived and stably express the rat Nav1.1 subunit. These cells were 

cultured in MEM with Earle’s salts, supplemented with 10% HI-FBS, 1% Glutamax, 1% 

sodium pyruvate, 1% non-essential amino acids mix, 100 U + 100 μg/ml 

penicillin/streptomycin, 400 μg/ml Zeocin, 0.25 μg/ml Fungizone (all from Invitrogen). 

Untransfected HEK cells were maintained in this medium in the absence of Zeocin. 

SNaIIa cells are derived from Chinese hamster lung 1610 cells and stably express the 

rat Nav1.2 subunit [67]. They were cultured in DMEM with low glucose, L-glutamine and 

sodium pyruvate; supplemented with 5% HI-FBS, 100 U + 100 μg/ml 

penicillin/streptomycin, 400 μg/ml G418, 0.25 μg/ml Fungizone. 1610 cells were 

maintained in this medium in the absence of G418. All cells were transfected with 

Fugene 6 transfection reagent (Roche) according to the manufacturer’s instructions.  

For electrophysiology experiments using transient transfection, 2 μg of the 

cDNAs encoding wildtype or mutant β1 subunits were co-transfected with 0.5 μg of 

Enhanced Green Fluorescent Protein (EGFP), using pEGFP-N3 (Clontech), as a 

marker. 24 hours later the cells were passaged into 35 mm Petri dishes (Falcon). 24 to 

48 h later, whole-cell patch-clamp recordings were performed at room temperature, 
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using an Axopatch 200B amplifier (Axon Instruments). The presence or absence of 

EGFP did not affect the results obtained (data not shown). Cells were visualized using 

an epi-fluorescence-equipped inverted microscope (Zeiss Axovert 25). For biochemical 

experiments using transient transfections 3 μg of the cDNAs encoding wildtype or 

mutant β1 subunits were transfected into HEKhNav1.1 cells. 24-48 hours post-

transfection the cells were trypsinized and processed for whole-cell lysates or cell 

surface biotinylation experiments as described below. 

To generate stable cell lines, 2.5 μg of β1 cDNAs were transfected and 24 h later 

cell were passed into new medium containing selective antibiotics (400 μg/ml 

Hygromycin (Invitrogen) for untagged β1 subunit cDNAs, or 400 μg/ml G418 for V5 

epitope-tagged β1 subunit cDNAs). The cells were then incubated for several days until 

cell colonies were visible, when they were isolated and grown until reaching 95% 

confluence as in [30]. Cell clones were then passaged for biochemical and 

electrophysiological characterization. 

 

6. Whole-cell patch clamp analysis:  

Micropipettes were obtained from capillary glass tubing (Warner Instruments, 

Hamden, CT) using a horizontal P-97 puller (Sutter Instrument, Novato, CA). Electrode 

resistance was between 1.5 and 3.5 MΩ. Voltage pulses were applied and data recorded 

using Clampex 9.2 and a Digidata 1322A digitizer (Axon Instruments). Pipette and 

whole-cell capacitance were fully compensated and the series resistance compensation 

was set to approximately 80% with the lag set no greater than 15 μs. Residual linear 

currents were subtracted using the p/4 procedure on-line, except for current rundown 

recordings. Signals were low pass filtered at 5 kHz and data sampled at 40 kHz online. 

Extracellular solution contained (in mM): 130 NaCl, 4 KCl, 1.5 CaCl2, 1 MgCl2,5 glucose, 

10 HEPES. Intracellular solution (in mM): 20 CsF, 95 CsCl, 10 NaCl, 10 EGTA, 10 

HEPES. To determine the sodium current amplitude and voltage-dependence of 
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activation, currents were evoked by depolarization to different 250 ms test pulses (from -

120 to -70 mV at 10 mV intervals, from -70 to -10 mV at 5 mV intervals, and from -10 to 

50 mV at 10 mV intervals) from a holding potential of -90 mV and a hyperpolarizing -120 

mV, 500 ms prepulse. Peak currents were normalized to cell capacitance and used to 

plot current density/V curves and to calculate conductance (g=I/(V-Vrev) where V is the 

test potential and Vrev is the measured reversal potential). Voltage-dependence of 

inactivation was determined by applying a 50 ms test pulse of 0 mV after 250 ms 

prepulses to the same voltages as described for the voltage-dependence of activation. 

Peak currents were normalized to the peak current amplitude. Normalized voltage 

conductance and inactivation curves were fit with the Boltzmann equation 1/[1+exp(V-

V1/2)/k], where V1/2 is the membrane potential in the midpoint of the curve, and k is a 

slope factor. To asses the time course of recovery from inactivation a pulse to 0 mV for 

20 ms was followed by a recovery interpulse of variable duration (from 0.2 ms to 750 

ms) to -110 mV and then a 20 ms test pulse to 0 mV to determine the fraction of 

recovered channels. Peak currents during the test pulse were normalized to the peak 

current during the corresponding prepulse, and plotted as fractional recovery (Fr) against 

time. Data were then fit with a double exponential to determine the time constants for 

recovery, using the formula Fr=(Ff*(1-exp((-x)/τf)))+(Fs*(1-exp((-x)/τs))); where Ff and Fs 

are the proportions of fast and slow recovery, respectively. τf and τs are the fast and slow 

constants of recovery, respectively. For those cells that fit better with only one 

exponential Fs was considered to be 0 for statistical analysis. The kinetics of inactivation 

were measured on the test pulse to 0 mV from the same protocol used for voltage-

dependence of activation. The current from 90% of the peak amplitude to 20 ms after the 

test pulse was fitted by the Chebyshev method to the equation i=(Ff*e-t/τ
f)+( Fs*e-t/τ

s)+C, 

where I is the current and C is the steady-state persistent current. The presence of 

persistent current was measured with the same protocol as above, from 245 to 250 ms 

after the test pulse was started, averaging the current in the segment and then 
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normalizing against the peak current during the test pulse. To measure use-dependent 

rundown a 10 mV pulse was given from a -100 mV holding potential, at a frequency of 

80 Hz. Residual linear currents were subtracted using the p/4 procedure off-line. Peak 

current was measured and normalized to the peak current of the first pulse, and then 

plotted against pulse number [34, 42]. Analysis of the recorded currents was carried out 

using the software packages Clampfit 9.0.2 (Axon Instruments) and Origin 7 (OriginLab).  

 

7. Two-electrode voltage clamp recordings:  

Plasmids containing the cDNAs encoding rat Nav1.2, rat β1WT, or human 

p.R125C were linearized using Xho I (Nav1.2), EcoR I (β1WT), or Apa I plus Not I 

(p.R125C). mRNA was synthesized from the linearized plasmids using T7 (Nav1.2) or 

SP6 (β1WT and p.R125C) mMessage mMachine RNA Synthesis Kits (Ambion, Austin, 

Tx). The resultant cRNAs were resuspended in RNA resuspension buffer (5 mM 

HEPES, 0.1 mM EDTA, pH 7.5) and 1 μl of each preparation was analyzed by agarose-

formaldehyde gel electrophoresis. Total cRNA yields for each preparation were 

estimated by comparison of the intensities of ethidium bromide stained bands on the 

gels. After being anesthetized with 3-aminobenzoic acid ethyl ester (tricaine, 0.2%, 

Sigma), and under aseptic conditions, lobes of ovary were removed through a 

paramedian incision from female Xenopus laevis. Muscle and peritoneum we closed 

together with catgut, followed by skin using the same type of suture. The lobes 

containing oocytes were manually teased and then washed twice in OR2 (82.5 mM 

NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, pH 7.5), defolliculated, and separated by 

shaking in collagenase Type I (1.5 mg/ml, Sigma). Healthy stage V-VI oocytes were 

selected and incubated overnight at 18°C in Barth’s medium (88 mM NaCl, 1 mM KCl, 

0.82 mM MgSO4, 0.33 mM Ca(NO3)2, 0.41 mM CaCl2, 2.4 mM NaHCO3, 10 mM HEPES, 

pH 7.4), supplemented with 50 μg/ml of gentamycin [22].  On the second day, oocytes 

were microinjected with 50 nl of cRNA in the following combinations: α subunit alone, α 
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plus β1WT, or α plus p.R125C. We used approximately a 5-fold concentration of α: β1, 

and equivalent concentrations of β1WT and p.R125C. After 16 to 48 h of incubation at 

18°C, two-electrode voltage clamp recordings were performed at room temperature, 

using a Turbo TEC-10C amplifier (NPI Electronic, Germany). Micropipettes were 

obtained from capillary glass with internal filament (A-M systems, Carlsborg, WA) using 

a horizontal puller P-97. Electrode resistance was between 0.5 and 1.5 MΩ. Voltage 

pulses were applied and data recorded using Clampex and a Digidata 1322A digitizer. 

Residual linear currents were subtracted using the p/4 procedure. Signals were low pass 

filtered at 2 kHz and data sampled at 20 kHz online. Oocytes were continuously 

perfused with Ringer Solution (115 mM NaCl, 2.5 mM KCl, 1.8 mM CaCl2, 10 mM 

HEPES, pH 7.2) to which choline solution was sometimes substituted for sodium to 

obtain adequate voltage control [22, 42, 49]. To examine the electrophysiological 

properties of sodium currents in oocytes, similar protocols and analyses were used as 

described for the mammalian cell lines with the following modifications: To determine the 

voltage dependence of activation the peak currents were evoked by depolarization with 

90 ms pulses, from -100 mV to 55 mV in 5 mV increments, from a holding potential of -

80 mV. Voltage dependence of inactivation was determined by applying 90 ms 

prepulses to potentials ranging from -100 to 55 mV, followed by a test pulse of 0 mV for 

80 ms. To assess the time course of recovery from inactivation a pulse of 0 mV for 5 ms 

was followed by a recovery prepulse of variable duration to -80 mV and a test pulse to 0 

mV. 

 

8. Western Blot analysis of cell lysates:  

For each experiment, stably transfected cells from  a 100 mm Petri dish, or 

transiently transfected cells from a 60 mm dish, at 95% confluence were pelleted, 

resuspended, and homogenized in Tris-EGTA buffer (50 mM Tris, 10 mM EGTA, pH 8) 

with Complete Mini protease inhibitor tablets (Roche) and centrifuged once again. Cell 
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pellets were then resuspended in RIPA buffer (50 mM Tris, 10mM EDTA, 150 mM NaCl, 

1.25% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) and incubated on ice for 20 min. 

Non-solubilized proteins were removed by centrifugation and the resultant supernatant 

mixed with loading buffer containing SDS and β-mercaptoethanol. Proteins were 

separated by SDS-PAGE on a 10% polyacrylamide gel, transferred to nitrocellulose 

membrane and Western blot analysis performed as previously described [40]. 

Incubations with both primary and secondary antibodies were carried out at room 

temperature for 1 h. Immunoreactive bands were detected using West Dura or West 

Femto chemiluminescent substrate (Thermo Scientific). Rat brain membranes were 

prepared as previously described [40] and used as positive controls. Immunoreactive 

signals were quantified using ImageJ software (NIH) and normalized to the level of α-

tubulin. 

 

9. Surface biotinylation assays:  

Surface biotinylation assays were performed as previously described [42] with 

slight modifications. Briefly, stably transfected cells were grown in tissue culture plates 

and membrane proteins biotinylated using the Cell Surface Labeling Accessory Pack 

(Thermo Scientific) following the manufacturer's instructions. All samples were loaded on 

a 10% SDS-PAGE gel and processed as described above. 

 

10. Seizure induction in Scn1b+/- and Scn1b+/+ mice:  

Pentylenetetrazole (PTZ, Sigma) was diluted in sodium chloride physiological 

solution (Fluka, Sigma) at room temperature. P18-P21 Scn1b+/- and Scn1b+/+ littermate 

mice were injected IP at doses between 0 and 80 mg/kg. Mice were observed for 

seizures in a large-sized cage that allowed exploration, with soft bedding, for 45 min, 

during which seizures were classified according to the Modified Racine scale [16, 51, 52, 
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68, 72]. Following the experiment all animals were euthanized with an overdose of IP 

sodium pentobarbital (Ovation Pharmaceuticals) followed by removal of vital organs.  

 

11. Hippocampal slice recordings: 

Acute brain slices were prepared from P17-19 Scn1b+/+ and Scn1b-/- littermate 

mice.  Brains were dissected and immersed in ice-cold dissection solution (in mM; 10 D-

glucose, 4 KCl, 26 NaHCO3, 234 sucrose, 2.5 MgCl2, 1.3 CaCl2) within 30 s.  Each brain 

was then submerged in a chamber filled with ice-cold dissection solution and connected 

to a vibrating tissue slicer (Oxford vibratome sectioning system) for preparation of 

coronal hippocampal slices (400 μm thick).  Slices were transferred to an incubation 

chamber containing circulating artificial cerebral spinal fluid (ACSF; in mM, 119 NaCl, 

2.5 KCl, 1 NaH2PO4, 11 glucose, 26 NaHCO3, 2.5 MgCl2, 1.3 CaCl2) saturated with 5% 

CO2 and 95% O2 mix and held at 35o C for 1h. The slices were allowed to return to room 

temperature (22-24oC) following the incubation period. Slices were then transferred to a 

recording chamber and continuously superfused with 30oC ACSF. All recordings were 

made 1-5 hours after slicing.  Patch pipettes were pulled from borosilicate glass using a 

Flaming/Brown Micropipette puller.  Whole-cell recordings from randomly chosen 

neurons were carried out with a Multiclamp 700B amplifier (Axon Instruments).  Patch 

pipettes (4-8MΩ) were filled with an internal solution (in mM; 115 K-gluconate, 20 KCl, 

10 HEPES, 2 MgCl2, 4 Na2-ATP, 3 Na3-GTP, pH = 7.26, 290 mOsM).  For current-clamp, 

changes in membrane potential were recorded in CA1 and CA3 neurons after injecting 

currents ranging from -100 pA to 280 pA in 20 pA intervals.  Resting membrane 

potentials and action potential (AP) properties were then analyzed using ClampFit 8.2. 

The initial AP generated in each experiment was analyzed as follows:  Cell resting 

membrane potential was recorded as the average resting membrane potential of all 

traces.  Internal resistance was calculated using V=IR, where V was the change in 

voltage from resting membrane potential to maximal negative voltage produced by the 
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fist injected current of -100 pA.  AP threshold was calculated at the onset of the AP.  AP 

rise time was calculated as the change in time from the onset of the AP to the maximal 

voltage reached.  AP amplitude was calculated as the change in voltage from the 

threshold voltage to the maximal voltage reached.  Half-decay time was measured as 

the time required for the AP to decay to ½ of its maximal voltage. Finally, the maximum 

rates of depolarization and repolarization were measured from the AP differentiated 

waveform.  

 

12. Sodium current recordings and β1 immunocytochemistry in acutely dissociated 

CA3 hippocampal neurons: 

Acutely dissociated CA3 neurons were prepared from P10-P14 Scn1b-/- and 

Scn1b+/+ littermate mice.  Brains were rapidly dissected and immersed in ice-cold high 

sucrose solution (in mM; 250 sucrose, 11 D-glucose, 0.5 KCl, 1 NaH2PO4, 2 MgSO4, 2 

CaCl2) saturated with O2, for 2 min. The brain was submerged in a chamber filled with 

ice-cold high sucrose solution and connected to a vibratome tissue slicer (World 

Precision instruments) to generate coronal hippocampal slices (300-350 μm thick). 

Slices were then transferred to a dish containing cold Na-isethionate solution (in mM; 

140 Na-isethionate, 23 glucose, 15 Hepes, 2 KCl, 4 MgCl2, 0.1 CaCl2) and the CA3 

region was isolated. CA3 areas were transferred to a chamber containing bicarbonate 

buffered holding solution (in mM; 126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 10 glucose, 26 

NaHCO3, 2 MgCl2, 2 CaCl2, 1 pyruvic acid, 0.2 ascorbic acid, 0.1 N-nitro-L-arginine, 1 

kynurenic acid) saturated with 5% CO2 and 95% O2 mix and held at room temperature 

(21-22 oC) for 1-6 h. To dissociate neurons, 2-3 CA3 slices were incubated in Hank’s 

balanced salt solution (HBSS, Gibco) supplemented with 20 mM ascorbic acid, 0.2 mM 

ascorbic acid and 1.25 mg/ml of protease type XIV (Sigma) saturated with O2 for 20 min. 

The HBSS solution was removed and the slices were rinsed 3 times using cold Na-
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isethionate solution.  After the final rinse, 300 μl of this solution was left to triturate the 

tissue using silicon coated Pasteur pipettes with progressively smaller tip sizes. 

After mechanical dissociation, 100-150 μL of cellular suspension were 

transferred to a dry glass coverslip. For sodium current recordings the coverslip was 

placed inside of the recording chamber. After 5-10 min the Na-isethionate solution was 

replaced by extracellular solution,  (in mM; 20 NaCl, 1 BaCl2, 2 MgCl2, 55 CsCl, 1 CdCl2, 

1 CaCl2, 10 HEPES, 20 TEA-Cl and 100 glucose, pH 7.35 with CsOH). Voltage clamp 

recordings were performed in the standard whole-cell configuration, using similar 

conditions to those described by [35] using an Axopatch 200B voltage-clamp amplifier 

(Axon Instruments). Isolated sodium currents were recorded from single neurons (bipolar 

or pyramidal, as assessed by morphology) at 21° C. Fire-polished patch pipettes were 

generated from borosilicate glass capillaries (Warner Instrument Corp.) using a Sutter P-

87 puller (Sutter Instrument Co.) and were filled with internal solution  (in mM; 1 NaCl, 

150 N-methyl-D-glucamine, 10 EGTA, 1 CaCl2, 2 MgCl2, 2 Na2ATP, 0.05 GTP, 10 

HEPES, and 5 glucose, pH 7.3 with CsOH). All recordings were performed within 10-60 

min following plating of cells on the coverslip.  

For immunocytochemistry, dissociated neurons were transferred to BD BioCoat  

coverslips that were pretreated with poly-D-lysine and laminin (BD Biosciences). After 

allowing the neurons to rest on the coverslip for 20 min the neurons were fixed with 4% 

paraformaldehyde for an additional 20 min. After three washes with PBS, the coverslips 

were incubated in block solution (5% non-fat dry milk, 1% bovine serum albumin fraction 

V, 0.025% Triton-X100 from Sigma, in PBS) for 1 h. Incubation overnight at 4°C with 

primary antibody (anti- β1intra at a 1:500 dilution in block solution) was followed by three 

washes with block solution and 1 h incubation at room temperature with secondary 

antibody (Alexa Fluor anti-rabbit 568, 1:500 dilution). After three additional washes with 

block solution and PBS each the coverslips were incubated for 5 min at room 

temperature with DAPI. Following a final wash with water for 20 min the coverslips were 
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mounted on glass slides using Gel/Mount  (Biomeda Corp.) and placed at 4°C. Samples 

were viewed using a Fluoview 500 confocal laser-scanning microscope (Olympus) with 

100x objective. Images (1024 x 1024 pixels) were acquired with the Olympus Optical 

Fluoview software, and then exported into ImageJ.   

13. Statistical analyses: 

 Data were tested for normality using the Kolmogorov-Smirnov test, and for 

homogeneity of variances using the Levene test. Continuous variables with normal 

distribution were compared using two-tailed Student’s t-test or ANOVA. If homogeneity 

of variance existed, Tukey’s was selected as the post-hoc test, otherwise Tamhane’s T2 

was used. Discrete variables and continuous variables not normally distributed were 

compared using the Mann-Withney U test or Kruskal-Wallis H. Statistical significance 

was set at a p < 0.05. The version 13.0 for Windows of SPSS (SPSS Inc.) was used for 

all determinations of statistical significance.  

 

Results 

1. Clinical evaluation: 

  This male patient was a dizygotic twin born after cesarean section at 39 weeks 

of gestation following a normal, uncomplicated pregnancy. His parents are first cousins 

of Moroccan origin. Both parents and his brother are healthy with no reported seizures. 

A history of epilepsy during adolescence was reported in a maternal aunt. At age 3 

months, the patient developed generalized tonic-clonic seizures after vaccination. During 

a subsequent hospitalization he experienced a second generalized seizure. Treatment 

with valproic acid was started. MRI was normal and EEG showed rolandic discharges. 

Five days after a new hospital admission, the patient developed fever-associated 

convulsions that occurred at a frequency of 2-3/week. During the following month, he 

experienced several generalized myoclonias each day that were often associated with 

fever. Valproic acid doses were increased and clobazam was added to the treatment 
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without a clear reduction in seizure frequency. From the age of 5 months the patient was 

repeatedly hospitalized for persistent myoclonias during episodes of infections. His 

mother reported a deterioration of psychomotor abilities. Myoclonias remained refractory 

to treatment with valproic acid, clonazepam, clobazam and phenytoin. Clinical 

examination at the age of 13 months revealed a tetrapyramidal syndrome with 

pronounced global hypotonia. The patient died three weeks later due to respiratory 

insufficiency secondary to an aspiration pneumonia. 

 

2. Genetic analyses: 

 Mutation analysis for SCN1A was performed as described elsewhere [15]. No 

mutations in SCN1A were identified. The 6 coding exons of SCN1B were analyzed next. 

All single nucleotide polymorphisms located in the amplicons of SCN1B were observed 

homozygously, and a novel homozygous mutation was identified in exon 3 (c.373C>T), 

predicting a missense mutation of a highly conserved arginine residue (R) at position 

125 to cysteine (C) (Figure II.2.A and B). p.R125 is located in the β1 extracellular 

immunoglobulin domain, 4 amino acids downstream from the previously identified 

p.C121W GEFS+1 mutation (Figure II.2.C) [65]. Both parents were found to be 

heterozygous carriers of the mutation, which was not observed in the 92 control 

individuals tested. Genotyping of 4 STR markers in a 5 Mb region surrounding SCN1B 

revealed a common haplotype in both parents that was transmitted to the child (Figure 

II.2.D). These data confirm that both mutated alleles from the child originated from the 

same ancestral haplotype, consistent with the consanguinity of the parents. 

 

3. Electrophysiological characterization of p.R125C in mammalian cell lines:  

 Previous mutations of SCN1B reported in epileptic patients have shown 

abnormalities in β1-mediated channel gating properties when assayed in heterologous 

expression systems [42, 65, 70]. In the following series of experiments, we assessed the  
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Figure II.2. SCN1B homozygous mutation found in Dravet Syndrome.  
(A) Chromatogram showing the c.373C>T homozygous mutation in the SCN1B exon 3 
amplicon in the proband (upper lane), whereas both parents are heterozygous (lower 
two lanes) for the mutation. The mutation results in a change of arginine (R) at position 
125 to cysteine (C) in the amino acid sequence. (B) Alignment of the corresponding 
region of the sodium channel β1 subunit amino acid sequence across multiple species 
showing the high conservation of p.R125. (C) Topology of the sodium channel β1 
subunit. The extracellular domain contains an immunoglobulin (Ig) loop bound by a 
disulfide bridge (S--S). A mutation in the distal cysteine of the disulfide bridge (p.C121, 
red circle) has been reported in families with GEFS+. The amino acid position of the 
mutation found in the proband (p.R125C) is marked by the yellow circle. Domains 
shared by both splice variants, β1 and β1B, are shown in blue and include only the 
extracellular region. β1B contains a novel domain encoded by a retained intron. The 
transmembrane domain (TM) of β1 is followed by a short intracellular domain. (D) The 
genotyping of 4 STR markers around the SCN1B site confirm the ancestral haplotype. 
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effect of the p.R125C β1 mutant subunit on currents expressed by Nav1.1 and Nav1.2 

using the whole-cell patch clamp technique in transfected mammalian cells. 

 To examine the effects of p.R125C on sodium currents expressed by Nav1.1 we 

transiently transfected HEK-293 cells that stably express rat Nav1.1 (HEKrNav1.1) with 

wildtype human β1 (β1WT) or p.R125C cDNA as described in Methods. The rat Nav1.1 

sequence (NP_110502.1, P04774) exhibits a 98.16% amino acid identity with human 

Nav1.1 (NP_008851.3, P35498), predicting that effects of β1 subunits should be similar 

on channel proteins from both species [56, 61]. We found no significant difference in 

sodium current density (Figure II.3.A), voltage-dependence of activation or inactivation 

(Figure II.3.B and C), kinetics of inactivation or recovery from inactivation (Figure II.3.D, 

Table II.1) between cells expressing β1WT (NP_001028.1, Q07699) and those 

transfected with the p.R125C mutant. However, we also found no significant differences 

between cells expressing Nav1.1 alone compared to cells co-expressing β1WT subunits, 

in agreement with previously reported findings [12, 39, 53]. Similar results were obtained 

when we used HEK cells stably expressing human Nav1.1 in place of the rat clone (data 

not shown). An effect of β1WT on the kinetics of current inactivation of Nav1.1 has been 

previously reported [1]. In agreement with that study, we found a statistically significant 

difference in the rate of inactivation comparing cells expressing Nav1.1 alone with those 

expressing β1WT using a single exponential for analysis. This difference, however, 

disappeared when the data were fit with two exponentials (Table II.1).  Using two 

exponentials there was also no difference between the cells expressing β1WT compared 

with those expressing p.R125C. 

 As an alternative, we tested the p.R125C mutant in SNaIIa cells. We have 

published a number of papers using this cell line [30, 41, 42], Chinese hamster lung 

1610 fibroblasts that stably expresses rat Nav1.2 [67] (NP_036779.1, P04775). Previous 

studies have demonstrated multiple significant effects of β1 co-expression with Nav1.2 in 

this heterologous system [30]. Stable transfection of SNaIIa cells with β1WT or p.R125C  
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Figure II.3. p.R125C and β1WT have no effect on the properties of sodium current 
in HEKrNav1.1 cells. Cells stably expressing rat Nav1.1 in a HEK-293 background 
(HEKrNav1.1) were transiently co-transfected with GFP and either β1WT (filled circles) 
or p.R125C (open triangles). HEKrNav1.1 cells transfected only with EGFP (filled 
squares) were used as negative controls. Whole-cell patch-clamp recordings of sodium 
currents were performed as described in Methods. (A) Sodium current density is 
unchanged in the presence and absence of β1 subunits, as is (B) the voltage-
dependence of activation. (C) A similar lack of effect from either transfected β1 subunit is 
observed for the voltage dependence of inactivation and (D) recovery from inactivation. 
Insets depict the protocol scheme. (A) and (B) were obtained using the same protocol. 
Data points represent mean ± SEM, solid lines represent fit to the means. Biophysical 
properties are provided in Table II.1. 

 

cDNA was performed as described in Methods. Whole-cell patch-clamp analysis 

revealed expected changes in sodium current density (Figure II.4.A), voltage- 

dependence of activation and inactivation (Figure II.4.B and C), kinetics of steady-state 

inactivation and recovery from inactivation (Figure II.4.D and Table II.2), persistent 

current (Table II.2), and frequency dependence at 80 Hz for β1WT (Figure II.4.E) [30, 

42].  In contrast, cells transfected with p.R125C yielded results that were 

indistinguishable from untransfected SNaIIa cells (Figure II.4.A - E), suggesting a lack of  
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Table II.1: Biophysical parameters of sodium current in HEKrNav1.1 cells compared with 
HEKrNav1.1 cells co-expressing β1WT or p.R125C. 
 

 HEKrNav1.1 HEKrNav1.1 +  
β1WT 

HEKrNav1.1 + 
p.R125C 

Voltage-dependence of activation  
V1/2 (mV) -18.27 (±1.53) -19.09 (±1.79) -18.49 (±0.92) 

k -7.54 (±0.35) -6.52 (±0.54) -6.87 (±0.26) 
n 12 9 11 

Voltage-dependence of inactivation  
V1/2 (mV) -55.52 (±1.32) -54.18 (±0.77) -54.30 (±1.47) 

k 4.73 (±0.22) 4.59 (±0.13) 4.79 (±0.21) 
C 0.04 (±0.01) 0.05 (±0.01) 0.60 (±0.01) 
n 11 9 11 

Kinetics of inactivation, one exponential  
τslow (ms) 0.63 (±0.06) 0.42 (±0.03)A 0.59 (±0.03) 

n 11 8 10 
Kinetics of inactivation, two exponentials  

τslow (ms) 25.07 (±12.99) 6.95 (±3.18) 16.10 (±8.68) 
Amplitudeslow (%) 7.72 (±1.65) 4.43 (±2.35) 5.20 (±4.84) 

τfast (ms) 0.48 (±0.05) 0.34 (±0.01) 0.46 (±0.02) 
Amplitudefast (%) 92.27 (±1.65) 95.56 (±2.35) 94.79 (±1.45) 

N 11 8 10 
 
Data are mean ± SEM. A p < 0.05 compared to Nav1.1. 

 

functional expression of this mutant β1 subunit. We next attempted to express human 

Nav1.1 cDNA in 1610 cells to analyze the effect of β1 and p.R125C on Nav1.1 channels 

in this background.  Unfortunately, numerous experiments using three different 

transfection methods/reagents resulted in no measurable sodium currents. 

 

4. Cell surface expression of β1WT vs. p.R125C:  

To investigate the mechanism underlying the inability of p.R125C β1 to modulate 

sodium currents, we evaluated the level of total expression vs. cell surface expression of 

p.R125C and β1WT subunit polypeptides. Experiments were performed in 1610 cells as 

well as in HEKrNav1.1 cells that were stably transfected with β1WT or p.R125C. To be 

able to confirm our results using two different antibodies, we engineered a V5-His  
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Figure II.4. p.R125C does not modulate sodium current expressed by Nav1.2 in 
SNaIIa cells. SNaIIa cells were stably transfected with either β1WT (filled circles) or 
p.R125C (open triangles) and used for whole-cell patch clamp experiments as described 
in Methods. Untransfected cells (filled squares) were used as negative controls. β1WT 
(A) increased the current density, (B) negatively shifted the voltage-dependence of 
activation and (C) inactivation, (D) slowed the recovery from inactivation, and (E) 
reduced the availability of sodium channels under high frequency stimulation (inset 
shows the protocol scheme) compared to cells expressing α alone. In contrast, p.R125C 
did not modulate sodium current properties. Protocols for (A), (B), (C) and (D) are the 
same as in Figure II.3. Biophysical properties can be found in Table II.2. 

 

epitope tag on the carboxyl-termini of β1WT and p.R125C, respectively, as described in 

Methods, and used these constructs to generate additional stable cell lines in 1610 and 

HEKrNav1.1 cells. Western blots were probed with anti-V5 antibody, as shown in Figure 

II.5, and these results were confirmed with anti-β1intra antibody (not shown). Similar 

results were obtained in cell lines expressing untagged β1 subunits with Western blots 

probed with anti-β1intra (not shown). Comparison of total cellular protein levels of β1 

subunits in either 1610 cells (Figure II.5.A) or HEKrNav1.1 cells (not shown) showed 

that the p.R125C mutant was expressed at a level comparable to that of the β1WT  
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Table II.2: Biophysical parameters of sodium current in SNaIIa cells compared with 
SNaIIa cells coexpressing β1WT or p.R125C. 
 

 SNaIIa SNaIIa + β1WT SNaIIa + p.R125C 
Voltage-dependence of activation  

V1/2 (mV) -16.04 (±1.02) -20.63 (±1.22) -17.50 (±1.50) 
k -7.92 (±0.46) -7.15 (±0.22) -7.79 (±0.38) 
n 17 15 18 

Voltage-dependence of inactivation  
V1/2 (mV) -58.26 (±1.49) -66.72 (±1.47)A -59.66 (±1.05)B

k 4.76 (±0.12) 5.11 (±0.08) 5.59 (±0.17) 
C 0.02 (±0.01) 0.02 (±0.01) 0.05 (±0.00) 
n 13 14 16 

Kinetics of inactivation  
τslow (ms) 4.82 (±0.75) 6.26 (±1.20) 4.71 (±1.60) 

Amplitudeslow (%) 6.41 (±0.99) 0.04 (±0.00)C 10.62 (±1.60)D

τfast (ms) 0.57 (±0.02) 0.49 (±0.04) 0.56 (±0.33) 
Amplitudefast (%) 93.58 (±0.99) 97.15 (±0.01)C 89.37 (±1.60)D

n 12 14 10 
Persistent current  

% of peak current 2.70 (±0.70) 0.00 (±0.00)A 1.88 (±0.41)B 
n 12 13 14 

 
Data are mean ± SEM. A p < 0.005 compared to Nav1.2. B p < 0.005 compared to β1WT.  
Cp < 0.001 compared to Nav1.2. Dp < 0.001 compared to β1WT. 

 

subunit. The average expression levels of multiple cell clones of both 1610 and 

HEKrNav1.1 cells relative to α-tubulin expression were compared by densitometry.   

There were no significant differences in the levels of total protein expression between 

wildtype (0.91 arbitrary units ± 0.11, n = 9) and mutant β1 subunits (0.61 arbitrary units ± 

0.25, n = 12) in all of the cell lines tested (p = 0.293, Student’s t-test). In contrast, in all 

cell lines tested, we observed that p.R125C was poorly expressed at the cell surface 

compared with β1WT, both in the presence and absence of α subunits.  Figure II.5.B 

shows results of surface biotinylation for one HEKrNav1.1 clone expressing β1WT, two 

different HEKrNav1.1 clones expressing p.R125C (samples 1 and 2), and three different 

1610 clones expressing p.R125C (samples 3 - 5). The p.R125C-expressing cell lines 

showed barely detectable (sample 3) or no detectable (samples 1, 2, 4, and 5) levels of 

cell surface expression in spite of robust intracellular expression. For comparison,  
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Figure  II.5. p.R125C is poorly expressed at the cell surface at physiological 
temperatures.  
(A) Comparison of total cellular expression of β1WT vs. p.R125C in 1610 cells. 
Representative Western blot of 1610 cells stably transfected with V5-tagged p.R125C 
(lane 3), demonstrating that the expression of the mutant protein is comparable to β1WT 
(lane 2). Untransfected cells (UT, lane 1) were used as a negative control. Re-probing 
the blot with anti-α-tubulin confirmed the presence of protein in all lanes. (B) Cell surface 
expression of β1WT vs. p.R125C. HEKrNav1.1 or 1610 cells stably transfected with V5-
tagged β1WT or p.R125C were surface biotinylated, and the biotinylated proteins probed 
as described in Methods. Untransfected cells show no anti-V5 immunoreactivity (UT, 
lane 1). Cells transfected with β1WT show robust cell surface expression (lane 2). Faint 
or no cell surface expression was detected in multiple clones of cells transfected with the 
mutant p.R125C (HEKrNav1.1 cells: samples 1 and 2; 1610 cells: samples 3 - 5). For 
comparison, sample 4 is the same cell line used to detect total cellular expression in (A), 
p.R125C. (C) Box plots of band intensities measured using ImageJ for clones of 
HEKrNav1.1 and 1610 cells transfected with β1WT and p.R125C and processed to 
detect surface biotinylated proteins as described in Methods. We calculated a significant 
difference (p < 10-6 Mann-Whitney U-test) between the level of cell surface expression of 
β1WT (n = 18 experiments) compared to p.R125C (n = 15 experiments). (D) p.R125C is 
poorly expressed at the cell surface in the presence of human Nav1.1. Upper panel: 
Comparison of total cellular expression of β1WT vs. p.R125C in HEKhNav1.1 cells. 
Representative Western blot of HEKhNav1.1 cells stably transfected with V5-tagged 
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p.R125C (lane 2), demonstrating that the expression of the mutant protein is comparable 
to β1WT (lane 1). Center panel: Re-probing the blot with anti-α-tubulin confirmed equal 
loading of protein in both lanes.  Lower panel: Cell surface expression of β1WT vs. 
p.R125C. HEKhNav1.1 transiently transfected with V5-tagged β1WT or p.R125C were 
surface biotinylated, and the biotinylated proteins probed as described in Methods. Cells 
transfected with β1WT show robust cell surface expression (lane 1). Faint or no cell 
surface expression was detected in cells transfected with the mutant p.R125C (lane 2). 
The blot is representative of triplicate experimental repeats. Molecular weight markers 
are in KDa. 

 

sample 4 in Figure II.5.B is the same cell line used to demonstrate total cellular 

expression of the mutant subunit in Figure II.5.A, lane labeled "p.R125C." 

Quantification of Western blot analyses of many biotinylated cell clones (in both 

1610 cells and HEKrNav1.1 cells) by densitometry using ImageJ software showed that, 

on average, p.R125C cell surface expression was 6.7% of β1WT levels (Figure II.5.C; 

β1WT n = 18 cell clones, p.R125C n = 15 cell clones). To determine whether the cell 

surface expression of p.R125C was dependent on the presence of a human, rather than 

a rat, α subunit, we repeated the cell lysate and surface biotinylation experiments using 

the HEKhNav1.1 cell line. As shown in Figure II.5.D, both β1WT and p.R125C were 

expressed at comparable levels in whole cell lysates.  In contrast and similar to results 

obtained in the HEKrNav1.1 line, only β1WT was detectable at the cell surface.  

Many disease mutations have been shown to act through mechanisms involving 

trafficking deficiency to the cell surface (reviewed in [25]). Some of these mutants, 

including sodium channel α subunit mutations associated with GEFS+ and long QT 

syndrome [53, 60], can be rescued in vitro by incubation of cells at nonphysiological 

temperatures. To investigate whether a similar mechanism occurs with p.R125C, we 

grew a selected clone of V5-tagged p.R125C stably transfected 1610 cells in a 

humidified CO2 incubator at 27ºC for 48 h. This same p.R125C cell clone had no 

detectable cell surface expression at 37oC as assessed by surface biotinylation (Figure 

II.6, "37oC" lane). Surface biotinylation followed by Western blot analysis of this same 

cell line grown at 27ºC demonstrated that p.R125C was expressed at the cell surface 
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following the low temperature incubation, suggesting that this mutant is trafficking 

deficient (Figure II.6, "27oC" lane). 

Figure II.6. Cell surface expression of p.R125C is rescued at low temperature.  
1610 cells stably transfected with V5-tagged p.R125C were incubated at 37ºC or 27ºC 
for 48 h and then surface biotinylated as described in Methods. The resulting Western 
blot was probed with anti-V5 antibody. Incubation at 27ºC rescued the cell surface 
expression of p.R125C, resulting in the presence of β1 immunoreactive bands at 40 kDa 
and higher, likely representing various levels of avidin attachment, whereas no band is 
detectable for the cells incubated at 37 ºC. Molecular weight markers are in KDa. 

 

5. Sodium current modulation by p.R125C in Xenopus oocytes:  

We observed that the p.R125C mutant β1 subunit is expressed at significantly 

lower levels at the cell surface of mammalian cells grown at physiological temperatures 

compared with wildtype, and that this low level of surface expression is insufficient to 

modulate whole cell sodium currents. To determine whether p.R125C β1 would be 

capable of current modulation if it did reach the cell surface, we co-expressed wildtype 

or mutant β1 subunits with sodium channel α subunits in Xenopus oocytes. This model 

system has the advantages of expressing high levels of sodium channel α and β subunit 
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proteins (e.g. [22]) as well as growth under low temperature conditions [55] that, in our 

hands, promote p.R125C cell surface expression. We demonstrated previously that 

another GEFS+1 mutant, p.C121W β1, is robustly expressed in oocytes, where it 

modulates sodium currents similar to wildtype β1 in spite of a significant loss of 

functional modulation of current in mammalian cells grown at 37oC [42]. We measured 

sodium currents expressed by rat Scn2a (encoding Nav1.2) cRNA injected alone or 

currents expressed by the α subunit co-injected with rat β1WT (NP_058984.1, Q00954, 

96.33% amino acid identity with human β1) or p.R125C using the two-electrode voltage 

clamp technique (Figure II.7). We observed that the effects of p.R125C β1 on sodium 

current expressed by Scn2a (Figure II.7.A - C) were indistinguishable from β1WT. To 

determine whether a lower level of p.R125C expression would result in the loss of 

current modulation by this mutant subunit in oocytes, we diluted the p.R125C mRNA 

stock 50-fold prior to injection. In contrast to previous results with p.C121W β1 [42], we 

observed no reduction in Nav1.2 current modulation by p.R125C under these conditions 

(Figure II.7.A - C). Taken together, these data suggest that even though p.R125C is 

inefficiently expressed at the cell surface at physiological temperatures in mammalian 

cells, if this trafficking defect could be overcome, the mutant subunit would be fully 

capable of modulating sodium current. 

 

6. Seizure susceptibility of mice expressing a single wild-type Scn1b allele:  

Scn1b-/- mice have been described previously by our lab [14]. These mice are 

born normally but then exhibit spontaneous generalized seizures beginning in the 

second postnatal week, and exhibit other neurological abnormalities including ataxia, 

characteristics that are similar to Dravet syndrome patients. Scn1b-/- mice die in 

adolescence by postnatal day 21 (P21), recapitulating the small proportion of Dravet 

syndrome patients that die as a consequence of the disease. In contrast, Scn1b+/- mice  
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Figure II.7. p.R125C modulates sodium currents expressed by Nav1.2 in Xenopus 
oocytes Xenopus laevis oocytes were injected with the cRNA encoding Nav1.2, either 
alone (filled squares), with β1WT (filled circles), or with p.R125C (open triangles). The 
p.R125C mRNA was also diluted 1:50 before injection (open diamonds). Neither β1WT 
nor p.R125C had any measurable effect on the voltage dependence of activation of 
Nav1.2. (A). p.R125C modulates the voltage-dependence of inactivation (B), and rate of 
recovery from inactivation (C) of Nav1.2 currents similar to β1WT. Insets show protocol 
schemes. Data points represent mean ± SEM.  Solid lines represent fits to the means. 
Biophysical properties are provided in Table II.3. 
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Table II.3: Biophysical parameters of sodium currents expressed by Nav1.2 alone or 
Nav1.2 coexpressed with β1WT or R125C in Xenopus oocytes. 
 

 Nav1.2 Nav1.2 + β1WT Nav1.2 + p.R125C 
Voltage-dependence of activation  

V1/2 (mV) -18.81 (±1.38) -20.06 (±3.08) -16.81 (±1.29) 
k -6.88 (±0.31) -7.8 (±0.18) -8.59 (±0.51) 
n 10 7 13 

Voltage-dependence of inactivation  
V1/2 (mV) -51.69 (±2.60) -58.11 (±1.33) -58.17 (±1.41) 

k 10.12 (±0.31) 7.18 (±0.49)A 6.61 (±0.28)A

C -0.01 (±0.00) -0.02 (±0.00) 0.01 (±0.01) 
n 10 9 14 

Kinetics of inactivation  
τslow (ms) 7.41 (±0.68) 5.10 (±0.50) 6.05 (±0.72) 

Amplitudeslow (%) 46.42 (±3.09) 10.10 (±1.29)A 20.71 (±1.44)A

τfast (ms) 1.43 (±0.31) 0.49 (±0.04)A 0.68 (±0.05)A

Amplitudefast (%) 53.57 (±3.1) 89.89 (±2)A 79.28 (±2.11)A

n 10 6 9 
 

Data are mean ± SEM. A p ≤ 0.001 compared to Nav1.2. 

 

do not exhibit spontaneous behavioral seizures and live normal life spans, suggesting 

that the presence of a single wildtype Scn1b allele is sufficient for normal sodium current 

modulation by β1 in vivo. We demonstrate above that a SCN1B Dravet syndrome 

mutant, p.R125C, is inefficiently trafficked to the cell surface in transfected mammalian 

cells at physiological temperatures, resulting in functional SCN1B gene inactivation.  

Unlike previously described GEFS+1 patients carrying a single mutant SCN1B allele 

[54], the patient described in our study is homozygous for the p.R125C mutation. Thus, 

based on our heterologous expression data, we predict that this Dravet syndrome 

patient had a functional SCN1B null phenotype. Both parents of this patient are 

heterozygous for the mutation and do not exhibit seizures, similar to Scn1b+/- mice [14]. 

To investigate whether patients carrying one mutant SCN1B allele might be more 

susceptible to seizure induction in response to proconvulsive stimuli, we injected 

Scn1b+/- and Scn1b+/+ littermates with the GABA antagonist pentylenetetrazole (PTZ) at 
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age P18-21, the time interval during which the seizures observed in Scn1b-/- mice are at 

their most severe. Scn1b+/- and Scn1b+/+ mice were injected with a single dose of PTZ 

between 20 to 80 mg/kg, and the resulting seizures were graded according to the 

Modified Racine scale [16, 52], described in the legend to Table II.4. At 20 mg/kg we 

observed minor changes in the level of activity of mice of both genotypes, whereas at 40 

mg/kg a minority of mice from both groups exhibited myoclonic jerks and forelimb 

clonus. At 60 mg/kg the majority of mice from both groups exhibited seizures between 

grades 2 and 6. At this dose there were no statistically significant differences in the 

mean time to myoclonic jerk or seizures of higher severity between Scn1b+/- mice and 

Scn1b+/+ (Table II.4). Also, at 60 mg/kg there were no significant differences in the 

highest seizure level reached by each genotype (Table II.4).  At a dose of 80 mg/kg, 

85% of Scn1b+/+ and 90% of Scn1b+/- died during status epilepticus. There were no 

statistical differences in the mean time to death between the two groups (Table II.4), or 

cumulative survival (Figure II.8). While not significant, trends in the data suggest that 

Scn1b+/- mice may be even less sensitive to PTZ seizure induction than their wildtype  

 
Table II.4: Seizure parameters in Scn1b+/+ and Scn1b+/- mice. 
 

Parameter Pentylenetetrazole 
dose (mg/kg) 

Scn1b+/+ Scn1b+/- 

Time to myoclonic 
jerk or seizure of 
higher severity 

(min)A 

60 2.52 (±0.31) 5.79 (±1.36)

Highest seizure 
levelB, C 

60 6 (3.68-6.56) 6 (3.03-6.46) 

Time to death (min) 80 4.92 (±1.67) 11.36 (±3.26) 
nD  8 8 

 
A Data are mean ± SEM. B Data are median (95% CI). C As measured using the Modified 
Racine Scale: 0 = no seizure, 1 = staring/unresponsive, 2 = focal clonic convulsion 
(including head nod, twitch, myoclonic jerk, backing), 3 = forelimb clonus (tonic/clonic 
seizure), 4 = rearing, 5 = loss of posture (including jumping, rearing, and falling), 6 = 
status epilepticus and death. D 8 mice of each genotype used for each dose. 
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Figure II.8. Time to death due to status epilepticus of Scn1b+/- mice is similar to 
Scn1b+/+ mice. Mice with either one (Scn1b+/-) or two copies (Scn1b+/+) of Scn1b were 
injected with pentylenetetrazole (PTZ) to induce seizures. Following a dose of 80 mg/kg 
the majority of mice died as a consequence of status epilepticus.  Cumulative survival 
curves show no significant differences between Scn1b+/- mice (broken line, n=8) and 
Scn1b+/+ (full line, n=8), p = 0.383, Log-rank test.  

 

littermates. Throughout these experiments, control animals were injected with vehicle 

alone (0.9 % saline solution); none of these animals exhibited seizures. 

 

7. Scn1b-/- mice show altered electrical excitability in CA3 but not CA1 regions of the 

hippocampus:  

Hippocampal pyramidal neurons acutely isolated from Scn1b-/- mice have normal 

sodium currents [14]. To explore potential differences in electrical excitability by which a 

loss of functional expression of β1 may result in seizures, we performed recordings from 

acutely isolated hippocampal slices, a preparation in which synaptic contacts remain 

intact. Because Scn1b-/- mice exhibit differential expression of Nav1.1 and Nav1.3 in the 

CA3 but not in the CA1 region of the hippocampus [14], we analyzed APs in both 

regions. As shown in Table II.5, we did not observe significant differences in the 

excitability of Scn1b-/- CA1 neurons compared to wildtype. Measurements included the 

neuronal resting membrane potential, input resistance, AP threshold, AP rise time, AP 

peak voltage, and AP amplitude. In contrast, we observed that Scn1b-/- CA3 neurons 
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fired evoked APs with a significantly higher peak voltage and significantly greater 

amplitude compared to wildtype. The differences in AP rise time for CA3 neurons 

between the two genotypes approached significance (p = 0.051). Thus, the absence of 

functional β1 subunits is predicted to result in CA3 neuronal hyperexcitability in vivo, 

consistent with the severe seizure phenotype of Scn1b-/- mice as well as the severe 

seizure phenotype of the pediatric patient in this study. 

 
Table II.5. Analysis of evoked action potentials in CA1 or CA3 hippocampal slices from 
Scn1b+/+ and Scn1b-/- mice.  
 

 Scn1b+/+ Scn1b-/-

CA1   
Resting potential (mV) -71.99 (±1.21) -71.78 (±0.76) 
Input resistance (MΩ)  142.60 (±27.68) 141.36 (±11.23) 
Threshold (mV) -33.81 (±2.00) -33.00 (±1.50) 
Rise time (ms) 0.76 (±0.03) 0.67 (±0.03) 
Peak voltage (mV) 35.48 (±1.91) 33.73 (±2.16) 
Amplitude (mV) 69.29 (±2.90) 66.74 (±2.36) 

N 22 19 
CA3 

Resting potential (mV) -72.96 (±0.54) -71.74 (±0.59) 
Input resistance (MΩ)  156.99 (±5.97) 161.75 (±11.06) 
Threshold (mV) -33.82 (±0.75) -35.73 (±0.78) 
Rise time (ms) 0.61 (±0.02) 0.52 (±0.01)
Peak voltage (mV) 38.77 (±1.49) 46.36 (±1.21)A

Amplitude (mV) 72.59 (±1.60) 82.10 (±1.29)B

N 34 21 
 
Data are mean ± SEM. A p = 0.001 compared to Scn1b+/+. B p < 0.001 compared to 
Scn1b+/+. 

 

8. Sodium current density in Scn1b-/- CA3 bipolar neurons is similar to wildtype:  

Scn1a+/- mice recapitulate the phenotype of Dravet syndrome patients with 

SCN1A mutations. The mechanism of epileptogenesis in Scn1a+/- mice includes a 

substantial reduction in sodium current density of hippocampal bipolar, but not 

pyramidal, neurons [73]. We showed previously that hippocampal pyramidal neurons 

acutely isolated from Scn1b-/- mice have normal sodium currents compared to their 
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wildtype littermates [14]. To explore whether the changes in CA3 hyperexcitability 

observed in hippocampal slice recordings resulted from a similar mechanism as 

described for Scn1a+/- mice, we recorded sodium currents in bipolar neurons. We first 

documented the expression of β1 subunits in acutely dissociated CA3 bipolar neurons 

from Scn1b+/+ mice by staining with anti- β1intra. All of the bipolar neurons examined were 

positive for the presence of β1 in the cell body, with the majority of neurons also 

exhibiting β1 in their processes (Figure II.9). We then recorded peak sodium current 

density elicited in acutely isolated CA3 hippocampal bipolar neurons following a test 

pulse to -20 mV from a holding potential of -80mV, using the whole-cell patch clamp 

technique. In contrast to [73], we observed no significant differences in peak sodium 

current density between genotypes (Scn1b -/- mice : -87.24 ± 13.44 nA/pF, n = 17; 

Scn1b+/+ littermates: -58.21 ± 9.99 nA/pF, n = 9, p = 0.159; Student's t-test).  Similarly, 

there were no measurable differences in the capacitance (Scn1b-/- : 10.73 ± 1.14 pF, n = 

17; Scn1b+/+ littermates: 13.37 ± 1.13 pF, n = 9, p = 0.152; Student's t-test), the voltage-

dependence of activation (Scn1b-/- :-45.00 ± 2.20 mV, n = 4; Scn1b+/+ littermates: -42.34 

± 0.46 mV, n = 4, p = 0.28; Student's t-test), or voltage-dependence of inactivation 

(Scn1b-/- : -58.00 ± 1.26 mV, n = 4; Scn1b+/+ littermates: -61.22 ±  2.28 mV, n = 4, p = 

0.26; Student's t-test) of bipolar cells between the two genotypes.  Thus, while the 

phenotypes of Scn1a+/- and Scn1b-/- mice are remarkably similar, the mechanisms of 

epileptogenesis are different in these two models.  

 

Discussion 

In the present study we demonstrate for the first time a homozygous loss-of-

function mutation in SCN1B responsible for Dravet syndrome, an epilepsy syndrome in 

the most severe range of the GEFS+ spectrum. SCN1B p.R125C results in β1 subunit 

polypeptides that are synthesized normally but not transported to the cell surface in 

mammalian fibroblasts in vitro.  Because the patient in our study carried two mutant 
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SCN1B alleles, our data predict a complete loss of β1 function, resulting in a null 

phenotype. Trafficking of p.R125C is rescued at non-physiological temperatures in 

mammalian cells and p.R125C exhibits normal channel modulation in Xenopus oocytes,  

 

Figure II.9. β1 is expressed in hippocampal CA3 bipolar neurons.  
Acutely dissociated hippocampal CA3 bipolar neurons from P10 Scn1b+/+ mice were 
fixed with 4% paraformaldehyde and stained for β1 using anti- β1intra antibody. (A) Bright 
field images. (B) Anti-β1intra, green; DAPI, blue. Scale bar: 20 µm. 

 

a heterologous system that is maintained at 18oC. The seizure susceptibility to 

administration of PTZ in Scn1b+/- mice was not significantly different from wildtype.  Slice 

recordings from Scn1b-/- hippocampus showed increased excitability in CA3 but not CA1 

neurons.  In contrast to the Scn1a+/- model of Dravet syndrome [73], we did not measure 

significant differences in sodium current density in Scn1b-/- CA3 bipolar neurons. We 

conclude that one SCN1B allele is sufficient for the maintenance of normal electrical 

excitability in brain whereas the SCN1B null phenotype results in hyperexcitability, both 

in mice and in humans. These results predict that future therapeutic interventions for 

patients carrying trafficking mutations in SCN1B may include small molecule 

chaperones, similar to those being developed for cystic fibrosis, afibrinogenemia, and 

α1-antitrypsin deficiency [2, 26, 62].  
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Inherited as well as de novo mutations of ion channel genes result in several 

different types of epilepsy. Mutations in SCN1B are linked to GEFS+1, a syndrome that 

displays multiple seizure types in different families, and even within single individuals, 

bearing the mutated channel subunit [3, 54, 64, 65]. Epilepsy syndromes in GEFS+ 

families include febrile seizures, febrile seizures plus, mild generalized epilepsies, 

severe epileptic encephalopathies including myoclonic-astatic epilepsy and Dravet 

syndrome, temporal lobe epilepsy, and frontal lobe epilepsy [54]. Subsequently, the 

diverse seizure pattern of GEFS+ has also been identified in families bearing mutations 

in SCN1A, encoding Nav1.1 [20, 21, 63], as well as in GABRG2, encoding the γ2 subunit 

of the GABAA receptor [5, 27, 63]. These findings have challenged the idea that a 

defined mutation of a single ion channel gene results in a uniform seizure type and 

suggest that Nav1.1, sodium channel β1, and GABAA receptors may be functionally 

linked.  Further, mutations in any of the genes encoding these proteins can result in 

GEFS+ spectrum diseases through disruption of inhibitory neuronal excitability.  

At least 700 mutations in SCN1A are associated with Dravet syndrome [9, 36, 

43, 59], with many of these mutations resulting in SCN1A haploinsufficiency. Scn1a+/- 

mice, that express half the normal complement of Nav1.1 channels [73], and knock-in 

mice that carry the p.R1407X mutation, found in some patients with Dravet Syndrome 

[45] are animal models of this disease.  Scn1a+/- mice display spontaneous seizures and 

sporadic deaths beginning after P21.  Scn1a-/- mice develop ataxia and seizures 

beginning at P9 and die by P15.  The loss of Scn1a has no measurable effects on 

sodium currents in isolated hippocampal pyramidal (excitatory) neurons.  However, 

GABAergic inhibitory bipolar neurons isolated from both Scn1a-/- and Scn1a+/- mice have 

significantly reduced sodium current density [73]. Scn1aRX/RX mice develop ataxia and 

seizures during the second postnatal week and die by P20. Scn1aRX/+ mice exhibit 

seizures from the third postnatal week and increased mortality thereafter, most probably 

as a consequence of status epilepticus. The Scn1aRX/+ mice also exhibit 
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electrophysiological abnormalities of inhibitory cortical interneurons that are positive for 

parvalbumin. In these neurons the membrane potential is more negative, and there is a 

progressive decrement in spike amplitude during prolonged spike trains [45]. The 

behavioral and molecular phenotypes of Scn1a-/-, Scn1a+/-, Scn1aRX/RX and Scn1aRX/+ 

mice are similar to that of Scn1b-/- mice, that develop generalized seizures and ataxia 

beginning at ~P10 and die by P21 [14]. The mechanisms of neuronal hyperexcitability 

between these models, however, appear to be different, as we did not detect reductions 

in bipolar neuron sodium current density in Scn1b-/- mice, as described for Scn1a+/- 

neurons [73]. Nevertheless, consistent with a functional link between Scn1a and Scn1b, 

Scn1b mice have significantly reduced Nav1.1 protein expression in the hippocampus 

[14], suggesting that Scn1a and Scn1b may be critical partners in the regulation of 

hippocampal excitability. Elucidation of the mechanism causing Dravet syndrome-like 

seizures in Scn1b-/- mice will require a more detailed investigation in the future.  Possible 

insights into this problem may be gleaned from our recent work with Nav1.1 expressed in 

a heterologous system suggesting that β1 plays a dominant role in reducing sodium 

channel activity [1].  These results raise the possibility that disruption of β1 in inherited 

epilepsies may slow inactivation rates in some neurons, and thus contribute to the 

excessive firing associated with seizure disorders. 

A mutation in SCN1A identified in a family with dominantly inherited GEFS+ 

further illustrates the importance of Nav1.1-β1 interactions in the regulation of electrical 

excitability in brain [57]. The mutation, D1866Y, alters a conserved aspartate residue in 

the C-terminus of Nav1.1, resulting in decreased modulation of Nav1.1 by β1. 

Coimmunoprecipitation from transfected mammalian cells confirmed the interaction 

between the C-termini of wildtype Nav1.1 and β1. The Nav1.1 D1866Y mutation weakens 

this interaction, demonstrating a novel molecular mechanism involving α-β1 association 

leading to seizure susceptibility and adding support to the hypothesis that SCN1A and 

SCN1B are functionally linked in the molecular basis of epilepsy. 
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Mutations (p.C121W, p.I70_E74del, p.R85C, and p.R85H, Table II.6) in SCN1B cause 

GEFS+1 epilepsy [3, 54, 64, 65]. Interestingly, all of these mutations are located within 

the extracellular immunoglobulin loop domain, suggesting that β1-mediated cell 

adhesion is clinically relevant. We showed previously that, compared to wildtype, 

p.C121W increases the fraction of available sodium channels at resting membrane 

potentials and reduces sodium current rundown during high frequency channel activity 

[42]. The p.C121W mutation also disrupts β1-mediated homophilic cell-cell adhesion. 

Although its precise mechanism in neurons is not understood, it is generally agreed that 

p.C121W produces a non-functional β1 subunit [4]. We demonstrated recently that 

sodium channel complexes containing p.C121W may require larger than normal stimuli 

to open, but once activated, inactivate considerably less readily than channels 

containing wildtype β1, a feature that may promote repetitive firing and lead to 

hyperexcitability [1]. Similar to p.R125C, p.R85C and p.R85H are not detectable at the 

cell surface in vitro, although p.R85H appeared to modulate the voltage-dependence of 

sodium channel slow inactivation without any effect on other electrophysiological 

parameters. p.R85C had no detectable effects on any channel property measured, 

suggesting that, similar to p.R125C, this mutant β1 subunit polypeptide may not be 

expressed at the cell surface [70].  The p.I70_E74del mutant has not been tested 

functionally.  

With the exception of the present report, all mutations responsible for the GEFS+ 

spectrum of epilepsies to date have been found to be autosomal dominant, with patients 

expressing one mutant and one wildtype allele. To our knowledge, this is the first report 

of a SCN1B mutation that extends the range of GEFS+ phenotypes to the most severe 

side of the spectrum as well as the first report of an autosomal recessive mutation 

resulting in a GEFS+ spectrum disease. Given that our proband was homozygous for the 

mutation and his parents are heterozygous and healthy, it is unlikely that p.R125C 
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Table II.6. Characteristics of SCN1B mutants associated with epilepsy  
 

Mutation Heterolo
gous 
System 

VGSCA 
α 

subunit 
tested 

Results Ref. 

p.C121W Xenopus 
oocytes 

Nav1.2 Similar functional modulation of α when 
injected at high concentration.  
Decreased modulation at lower 
concentrationB. 

[42] 

 1610 
cells 

Nav1.3 Association with α. No shift in voltage-
dependence of current inactivation. 
Decreased frequency-dependent 
rundown. Acceleration of recovery from 
fast inactivationB. No dominant negative 
effect. 

[42] 

 1610 
cells 

Nav1.2 Association with α. No shift in voltage-
dependence of current inactivation. No 
decrease in frequency- dependent 
rundown. Acceleration of recovery from 
fast inactivationB. Equally effective as 
WT in promoting cell surface expression 
of α subunitsB. 

[42] 

 HEK-293 
cells 
 
 
 
HEK-293 
cells 

Nav1.4 
 
 
 

Nav1.1 

Equally effective as WT in promoting cell 
surface expression of α subunitsB. 
Unable to accelerate recovery from 
inactivationA. 
Channels containing p.C121W may 
require larger than normal stimuli to 
open, but once activated, inactivate 
considerably less readily than channels 
containing wild-type β1. 
 

[58] 
 

[1] 

p.I70-E74del N/A N/A N/A [3] 
 
p.R85C 

 
HEK-293 
cells 

 
Nav1.2 

 
No modulation of current density. 
Inability to shift voltage-dependence of 
fast activation, fast, or slow inactivation, 
decrease time constant of fast 
inactivation, or accelerate recovery from 
fast inactivationB. No protein expression 
detectedB. 

 
[70] 

p.R85H HEK-293 
cells 

Nav1.2 No modulation of current density. 
Inability to shift voltage-dependence of 
fast activation or inactivation or 
accelerate recovery from fast 
inactivationB. No protein expression 
detectedB. 

[70] 

p.R125C HEK-293 
cells 

Nav1.1 Reduced cell surface expressionB. Present 
paper 
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 1610 
cells 

Nav1.2 Decreased sodium current densityB. 
Inability to shift voltage-dependence of 
inactivation. Reduced frequency- 
dependent rundown, accelerated 
recovery from fast inactivation, increased 
persistent currentB. 
Reduced cell surface expressionB. 

Present 
paper 

 Xenopus    
oocytes 

Nav1.2 Channel modulation similar to WT. Present 
paper 

 
p.D25N N/A N/A de novo mutation, partial crisis [47] 
p.V138I N/A N/A Family members not available, febrile 

convulsion 
[47] 

p.K208I N/A N/A Family members not available, febrile 
convulsion 

[47] 

p.C211Y N/A N/A Found also in controls, partial crisis [47] 
p.G213D N/A N/A Found also in controls, febrile convulsion [47] 
A voltage-gated sodium channel.  B Compared to β1WT.   

 

functions as a dominant-negative. The parental phenotypes recapitulate the situation 

observed in mice in which animals homozygous for the Scn1b null mutation seize 

spontaneously while animals with one wildtype Scn1b allele appear to be neurologically 

normal. Like Scn1a+/- and Scn1aRX/+ mice, the epileptic phenotype of Scn1b-/- mice has 

similarities to that observed in Dravet syndrome patients. All are normal at birth and then 

begin exhibiting seizures during infancy that gain in intensity. However, while seizures in 

patients tend to be preceded by a triggering event, e.g. fever or vaccination, they occur 

spontaneously in the mice. Nevertheless, patients eventually develop spontaneous 

seizures, which also mark the beginning of rapid disease progression. Scn1a+/-, 

Scn1aRX/RX and Scn1b-/- mice also exhibit an ataxic gait, similar to many Dravet 

syndrome patients [14, 45, 73]. Thus, Scn1a+/-, Scn1aRX/+ and Scn1b-/- mice may 

represent animal models of Dravet syndrome. However, in contrast to Scn1a, in which 

haploinsufficiency results in a severe epileptic phenotype, the functional loss of both 

Scn1b alleles is required for disease. We propose that one wildtype copy of Scn1b is 

sufficient for normal control of excitability in the brain.  
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In summary we present the first case of Dravet syndrome due to a homozygous 

mutation in SCN1B, and show that the consequence of this mutation is the inability of β1 

polypeptides to be trafficked to the surface of transfected mammalian cells. While HEK 

and 1610 cells certainly do not fully recapitulate the situation in neurons, our data predict 

that the patient carrying this mutation is a functional SCN1B null and that  

Scn1b-/- mice may be a model for Dravet syndrome. The present results from 

hippocampal slice recordings as well as previous results from Scn1b-/- mice [6] predict 

that not only deficits in excitability but abnormal cell adhesion resulting in aberrant 

neuronal pathfinding and fasciculation may play a role in this epileptic syndrome.  
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Chapter III 

Voltage-Gated Na+ channel β1B: a secreted cell adhesion molecule involved in 

human epilepsy 

 

Introduction 

SCN1B, encoding VGSC channel β1 subunits, is essential for life.  Deletion of 

this gene in mice results in severe epilepsy, ataxia, growth retardation, cardiac 

abnormalities, and early death [9, 10, 25]. Human mutations in SCN1B result in GEFS+-

spectrum disorders (reviewed in [38]), Brugada Syndrome [53], and atrial fibrillation [50]. 

We demonstrated that patients carrying two alleles of a functional null mutation of 

SCN1B, p.R125C, have Dravet Syndrome, a pediatric encephalopathy associated with 

mental retardation that is the most severe GEFS+-spectrum disease [38]. SCN1B can be 

expressed as two developmentally regulated splice variants, β1 and β1B (originally 

called β1A) that includes part of a retained intron encoding a novel C-terminus, stop 

codon, and polyadenylation site [22, 41] (Figure III.1.A). We and others have shown 

than β1 is a multifunctional molecule that participates in Na+ current modulation, channel 

expression and subcellular localization, cell adhesion, cellular migration, and neurite 

outgrowth [4, 5]. In contrast, very little is known about the structure and function of β1B.  

Because Scn1b null mice lack both splice variants, some aspects of their complex 

phenotype may be due to the absence of β1B, however, this has not been investigated.  

In addition, because all of the SCN1B epilepsy mutations described to date are located 

in the immunoglobulin (Ig) loop region common to both splice variants [37], β1B, as well  
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as β1, is likely involved in human brain disease. The goal of this project was to understand 

the structure and function of β1B and to investigate a novel human SCN1B epilepsy mutation 

(p.G257R) located in the region unique to β1B.  We demonstrate that β1B is not a 

transmembrane protein, as originally assumed, but is a soluble protein that functions as a 

ligand for β1-mediated neurite outgrowth. β1B is expressed predominantly during embryonic 

development in human brain, with the ratio of β1:β1B mRNA in brain increasing with 

development into adulthood, when β1 becomes the predominant splice variant. Association 

of β1B with VGSC α subunits is not detectable by 3H-saxitoxin (STX) binding or 

coimmunoprecipitation, suggesting that β1B may not modulate Na+ current in brain, but 

instead functions as a cell adhesion molecule (CAM) independent of channel function. 

Consistent with this, β1B stimulates neurite outgrowth of cerebellar granule neurons (CGNs) 

through adhesion with neuronal β1 subunits. The β1B epilepsy mutation p.G257R results in 

intracellular retention of β1B, generating a functional null allele.  We conclude that β1B is a 

secreted CAM, expressed predominately in human embryonic brain, which stimulates neurite 

outgrowth.  We hypothesize that the p.G257R mutation causes epilepsy through a 

mechanism that includes intracellular retention of this subunit, resulting in aberrant neuronal 

migration and pathfinding. 

 

Materials and Methods 

1. Clinical Samples 

A group of 360 unrelated probands diagnosed with episodic neurological disease were 

studied. Diagnosis was performed by experienced clinicians specialized in these neurological 

disorders. For most patients collected, additional clinical information allowed for a better 

definition of the disease sub-phenotype. The ethnic origin of all study samples is known and 

additional affected and non-affected family members for each proband studied was also 

collected for the purpose of co-segregation/pedigree analysis. Informed consent was 
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obtained from all study participants and study protocols were approved by the ethics 

committees of the institutions where collections occurred. An additional cohort of 192 

unrelated Tourette’s patient samples was used to assess involvement of the p.G257R variant 

in Tourette’s syndrome. The patient from pedigree 1 had tonic-clonic seizures starting from 

10 years of age.  The proband’s mother and maternal aunt also had a history of seizures.  

The patient from Pedigree 2 had right temporal lobe seizure onsets with secondary 

generalized seizures starting at 15 years of age, sometimes preceded by an aura.  Seizures 

were controlled by Carbamazepine.  This patient was also diagnosed with Gilles de la 

Tourette syndrome, with facial tics and aggressive compulsions. There was no family history 

of epilepsy in either parent. 

 

2. Amplicon design and PCR 

Amplicons were designed to minimize the amount of intronic sequence for each 

amplicon, and to avoid repetitive elements. PCR primers were designed using PrimerSelect 

(DNASTAR) and purchased from BioCorp (Montreal). The primer sequences, amplicon sizes 

and amplification conditions are given in Tables III.1 and III.2. Genomic DNA was isolated 

from blood samples  and amplified using Taq DNA polymerase (Qiagen) on a PE 9700 PCR 

thermocycler (Perkin Elmer). Addition of Q solution (Qiagen) was done for problematic 

amplicons. All amplified fragments were tested by agarose gel electrophoresis.  

 

Table III.1 PCR primers used to amplify regions of the humanSCN1B gene 

*Exon 3 was amplified in two separate minimally-overlapping PCR fragments. 

Exon Forw ard primer sequence (5'>3') Reverse primer sequence (5'>3') Size (bp) Protocol

1 CGCGCTCCCGGGGACATTCTAACC CCCGGCCCCCACCCGCTGGAG 356 TD3+Q
2 CAATGGGTGCCTCTGCCTGAC CCCACCGCCTCCCACTCGT 269 TD8

3A* GAGAGGCCCAGGCAGTGACA GTTCTGTACCCGGAGCGTCTGT 527 TD1
3B* CAGCCCCTCCTGCCCACTCC CCCGCCCCAGAGGTGTTGAG 465 TD10
4 GAGGGCCTCCAGAATGACACAGAT CGGGCTCCGGAGTTCCTCTC 440 TD11
5 GGGGTTGGGTCGGTCTGATGATGG AGGGCCTGAAGGGGAGCAAGAGA 222 TD8
6 GCCGAAGTCCCCCAGGTCCCTAAT AGGAGCTGGAGGAGGCGAAAGTGG 233 TD8
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Table III.2 Touch-Down PCR amplification conditions 
      Touch Down  Amplification    

Protocol 

Initial 
Denaturation 

(1 cycle) 

denat 
temp 
(30s) 

anneal temp 
ramp (30 s) 

elong 
temp 
(45 s)  cycles 

denat 
temp 
(30s) 

anneal 
temp 
(30 s) 

elong 
temp 
(45 s)  cycles 

Final 
Elongation
(1 cycle) 

TD1  94°C, 4 min    94°C 

70°C to 53°C  
(‐1°C per 
cycle)  72°C  17  94°C  54°C  72°C  25  72°C, 5 min  

TD3  94°C, 4 min    94°C 

70°C to 60°C  
(‐1°C per 
cycle)  72°C  10  94°C  60°C  72°C  30  72°C, 5 min  

TD8  94°C, 4 min    94°C 

66°C to 59°C  
(‐0.5°C per 
cycle)  72°C  14  94°C  58°C  72°C  25  72°C, 5 min  

TD10  94°C, 4 min    94°C 

70°C to 63°C  
(‐0.5°C per 
cycle)  72°C  14  94°C  62°C  72°C  25  72°C, 5 min  

TD11  94°C, 4 min    94°C 

72°C to 65°C  
(‐0.5°C per 
cycle)  72°C  14  94°C  64°C  72°C  25  72°C, 5 min  

 

3. dHPLC and sequence analysis 

PCR fragments were optimized for melting temperature on a model 3500HT WAVE dHPLC 

apparatus (Transgenomic Inc.) with Wavemaker software version 4.1.44. PCR fragments from 

DNA samples were amplified using the optimized conditions and the fragments were then tested 

on agarose gels. Amplified fragments were pooled 4x, denatured at 95ºC in a heating block for 5 

min. and renatured slowly by cooling the block to 25ºC over the course of 1 hour. The pooled 

PCR fragments were run on the dHPLC apparatus at two different melting temperatures. The 

elution profiles of each sample pool were compared, and samples from 1 to 3 pools showing 

variant elution profiles were selected for sequence determination at the Genome Quebec 

Innovation Centre sequencing facility (Montreal). Sequencing reactions were performed on an ABI 

prism 3700 sequencing apparatus. Sequence traces were aligned using a genomic sequence 

contig constructed in SeqManII (DNASTAR). Base-pair variants were identified and annotated. 
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Publicly available predicted Single Nucleotide Polymorphisms (SNPs, from NCBI dbSNP version 

132) were identified, and those found in the sequence contig were noted. 

 

4. Genotyping 

Genotyping was performed either by direct sequencing, allele specific oligonucleotide 

(ASO) hybridization, or Restriction fragment length polymorphism (RFLP) assay. Genotypes 

obtained from sequence reads were generated by Mutation Surveyor (SoftGenetics Inc.).  

For each ASO assay, two oligonucleotides were designed to differentiate the wild-type from 

the mutant alleles. The ASO assays were done essentially as described [2]. The p.G257R 

variant was genotyped using an MspI RFLP assay.  The 465 bp fragment from amplicon 3B 

(Table III.1) was digested with MspI restriction enzyme (New England BioLabs) and the 

products were separated on a 1.5% agarose gel, migrated for 2.5 hours at 135V, stained with 

EtBr and visualized with ultraviolet light.  The 257Gly allele yields digested products of 49, 

87, 90, and 239 bp in size, whereas the 257Arg allele yields fragments of 49, 87 and 329 bp 

in size.   

 

5. In silico analysis 

The amino acid sequences of human β1 (GenBank accession number NP_001028.1), 

human β1B (NP_950238.1), rat β1 (NP_058984.1), rat β1B (AAF25186.1), and mouse β1 

(NP_035452.1) were obtained from NCBI in FASTA format. The N-terminal region of mouse 

β1/β1B, encoded by the first three exons of Scn1b, was obtained by aligning the mouse β1 

sequence with the human and rat sequences and comparing the common region to the 

mouse chromosome 7 sequence (GenBank accession number AC158993.2). The unique C-

terminal region of mouse β1B was obtained by translating in silico the third intron of mouse 

Scn1b as found in the chromosome 7 sequence. To predict transmembrane domains, β1 and 
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β1B subunit amino acid sequences were analyzed using TopPred software 

(http://mobyle.pasteur.fr/cgi-bin/portal.py?form=toppred) [11, 49].  

Alignment of human, mouse, and rat β1 and β1B amino acid sequences was performed using 

CLUSTALW software (http://npsa-pbil.ibcp.fr/cgi-

bin/npsa_automat.pl?page=npsa_clustalw.html) [47]. 

 

6. Animals 

Scn1b wild-type and null mice, congenic on the C57BL/6 background for at least 18 

generations, were generated from Scn1b+/- mice as described [10]. Animals were housed in 

the Unit for Laboratory Animal Medicine at the University of Michigan. All procedures were 

performed in accordance with University of Michigan guidelines for animal use and care. 

 

7. Antibodies 

Primary antibodies used in these studies were: anti-V5 monoclonal antibody (1:1000, 

AbD Serotec MCA1360), mouse or rabbit anti-pan Na+ channel antibodies (1:1000, Sigma 

S8809 or S6936 respectively), and anti-Na+/K+ ATPase β1 subunit antibody (1:2000, Thermo 

Scientific MA1-16732). The specificity of the anti-V5 antibody in 1610 and HEK cells has 

been reported previously [38]. Secondary antibodies used in these studies were HRP-

conjugated goat anti-rabbit or anti-mouse (Pierce, Rockford, IL) diluted 1:2000. 

 

8. Expression vectors and site-directed mutagenesis 

The plasmid referred to as β1V5 contains a C-terminal V5-His-epitope tag and has 

been described previously [38]. The cDNA for human β1B was amplified by PCR and ligated 

into pTRACER-CMV (Invitrogen) at the EcoRI restriction site. The p.G257R mutation was 

introduced by site directed mutagenesis using  the QuikChange II kit  
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Figure III.1. A SCN1B mutation that affects β1B is found in two pedigrees of idiopathic 
epilepsy. (A) Genomic structure of SCN1B.  Exons 1-6 constitute β1. Extension of exon 3 
into intron 3 generates the variant, β1B.  The novel 3’ end of β1B does not contain a 
transmembrane domain (TM). * Indicates position of G257R mutation. (Not drawn to scale.) 
(B) Chromatogram showing the p.G257R heterozygous missense mutation in the epilepsy 
proband from pedigree 1 (lower row) whereas it is absent from a control individual (top row). 
(C) Two pedigrees segregating the p.G257R missense mutation.  Pedigree 1 has epilepsy, 
whereas pedigree 2 has epilepsy and Tourette syndrome.  Affected individuals are indicated 
with black symbols, normal individuals are shown with white symbols. 1, 257Gly allele; 2, 
257Arg allele.  

 

(Stratagene). V5-His epitope tags were added to the C-termini of β1B and p.G257R cDNAs 

using a PCR strategy followed by ligation into pcDNA3.1/V5-His TOPO TA (Invitrogen). β1V5 

and β1BV5 cDNAs were also ligated into pcDNA3.1 Hygro (+). The p.R214Q, p.S248R and 

p.R250T mutations were introduced into β1BV5 cDNA by site-directed mutagenesis. The 

integrity of all plasmids was confirmed by DNA sequencing. PCR primers and conditions for 
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all reactions are available upon request. The cDNA for human Nav1.5 corresponding to the 

hH1 polymorphism (GenBank accession number M77235) [26] in pRcCMV (Invitrogen) was 

kindly provided by Dr. Al George. 

 

9. Cell lines 

All cell lines used in this study were maintained at 37°C with 5% CO2. Chinese 

hamster lung 1610 cells were maintained as described in [38]. HEK-293 cells expressing 

human Nav1.1 (GenBank accession number NP_008851.3, HEKhNav1.1) were obtained from 

Glaxo-Smith-Kline under a Materials Transfer Agreement and maintained as described in 

[38]. Chinese Hamster Ovary cells stably expressing human Nav1.3 (GenBank accession 

number NP_008853.3, CHOhNav1.3) were kindly provided by Dr. David Ragsdale and 

maintained as described in [35].  

For transient transfection in HEKhNav1.1, 7.5 μg of cDNA encoding β1V5 or β1BV5 

were used. 24 to 48 h later, cells were collected for biochemical experiments. Fugene 6 

(Roche) was used for all transfections. 

To generate stable cell lines, 2.5 μg of β subunit cDNAs were transfected and 24 h 

later cells were passaged into fresh medium containing selective antibiotics: G418 (400 

μg/ml) for Nav1.5 or V5-His-tagged β subunit cDNAs; Hygromycin (400 μg/ml) for V5-His-

tagged β subunit cDNAs transfected into cell lines stably expressing α subunits; Zeocin (400 

µg/ml) for wild-type or mutant β1B subunit cDNAs in pTRACER. Colonies were selected as in 

[19]. To confirm stable transfection of pTRACER vectors, cells were plated in Glass Slides 

(BD Falcon), and fixed with 4% paraformaldehyde for 20 min at RT. Samples were viewed 

using a Fluoview500 confocal laser-scanning microscope (Olympus) with 100x objective. 

Images (1024 x 1024 pixels) were acquired with the Olympus Optical Fluoview software.  
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10. Western blot analysis  

For each experiment, stably transfected cells from a 100 mm Petri dish, or transiently 

transfected cells from a 60 mm dish (at 95% confluence), were processed as described in 

[38]. Proteins were separated by SDS-PAGE on a 10% polyacrylamide gel, transferred to 

nitrocellulose membrane and Western blot analysis performed using the SNAP i.d. Protein 

Detection System (Millipore) according to the instructions of the manufacturer.  

 

11. Purification of β1B from conditioned media 

Cells stably expressing V5-His epitope-tagged subunits were grown in one 850 cm2 

polystyrene roller bottle (Corning) containing 50 ml of media, or in twelve 150 mm x 25 mm 

cell culture dishes (Corning) containing 20 ml of media per dish until confluent (8-15 days). 

When the cells reached confluence, conditioned media were collected and centrifuged at 

5000 g for 10 minutes. The media from culture dishes were then concentrated using an 

Amicon Stirred Cell Concentrator, with a Regenerated Cellulose Ultrafiltration Membrane 

NMWL: 10,000 (both from Amicon-Millipore), to obtain a volume of ~50 ml. Complete, EDTA-

free Protease Inhibitor Cocktail (Roche) was added to the conditioned media. To purify the 

V5-His-tagged proteins, concentrated conditioned media were mixed with 1.2 ml total volume 

of His-Select HF Nickel Affinity Gel (Sigma), previously rinsed with 3 ml of deionized water 

and 5 ml of equilibration/washing buffer (50 mM sodium phosphate, pH 8.0, 300 mM sodium 

chloride, 10 mM imidazole) in a Poly-Prep Chromatography Column (Bio-Rad), and 

incubated for 30 minutes at RT on a Clay Adams Nutator Mixer (BD). The mix was then 

centrifuged at maximum speed in a swinging bucket rotor for 5 min. The supernatant was 

discarded by careful suction and the nickel gel resuspended in 15 ml of equilibration/washing 

buffer. This washing step was repeated until the supernatant after centrifugation was 

completely clear. The nickel gel was then resuspended in 10 ml of equilibration/washing 

buffer, transferred to the chromatography column, and washed with 20 ml of 
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equilibration/washing buffer. 4 ml of elution buffer (50 mM sodium phosphate, pH 8.0, 300 

mM sodium chloride, 250 mM imidazole) were added to the gel and the eluted fraction 

collected in an Amicon Ultra-4 Centrifugal Filter Device with a 10,000 MWCO regenerated 

cellulos filter (Millipore). The filter device was then centrifuged at top speed in a swinging 

bucket rotor for 25 min and the non-filtered fraction collected and mixed with loading buffer 

containing SDS and β-mercaptoethanol at a 1:1 ratio.  

 

12. Surface biotinylation  

For surface biotinylation assays, transfected cells were grown in 4 tissue culture 

plates (60 mm dishes for transiently transfected or 100 mm dishes for stably transfected cell 

lines) and membrane proteins biotinylated as described in [38]. Immunoreactive signals were 

quantified using ImageJ software (NIH) and normalized to the level of Na+/K+ ATPase β1 

subunit.  

 

13. Coimmunoprecipitation: 

200 µl of Protein G-Sepharose 4B beads (Sigma) per sample of α + β1 or α + β1B cell 

lines were rinsed three times with 1x PBS and split into two microcentrifuge tubes. Beads 

were resuspended in 250 µl of dilution buffer (60 mMTris/HCl pH 7.5, 180 mM NaCl, 1.25% 

Triton X-100, 6 mM EDTA pH 8 with Complete Mini Protease Inhibitor Tablets) and incubated 

overnight with end-over-mixing at 4°C with 4 µg of mouse or rabbit pan Na+ channel antibody 

or 4 µg of mouse or rabbit IgG, as indicated in the figure legends. Cells coexpressing α + β 

subunits were resuspended in a 50 mM Tris, 10 mM EGTA, pH 8 solution (with Complete 

Mini) by scraping. The amount of sample used for each cell line were as follows: For 

HEKhNav1.1 cells transiently transfected or HEKhNav1.5 cells stably transfected with β1 or 

β1B, one 60 mm cell culture dish; for CHOhNav1.3 cells stably transfected with β1 or β1B, 

two 100 mm cell culture dishes. Cell suspensions were then centrifuged at 3000 g for 10 
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minutes at 4°C. Cells were washed again in Tris/EGTA solution, resuspended in 1 ml of 

dilution buffer and incubated 30 min on ice for lysis. After a centrifugation step to remove 

insoluble material, half of the supernatant was added to the beads incubated with anti-pan 

Na+ channel antibody and the other half to the beads incubated with IgG. Beads with cell 

lysates were incubated with end-over-end mixing for 4 hours at 4°C, then washed three times 

with washing buffer (50 mM TRIS pH 7.5, 150 mM NaCl, 0.1% Triton X-100, 0.02% SDS, 5 

mM EDTA pH 8 with Complete Mini) and once with washing buffer without Triton X-100. 35 µl 

of Western blot sample buffer (see Methods section in main text) were then added to the 

beads, triturated, and incubated at 100°C for 5 minutes. Samples were then separated by 

SDS-PAGE on 10% or 18% polyacrylamide gels and transferred to nitrocellulose membranes 

for Western blot analysis as described in the Methods section of the main text.  

 

14. 3H-STX binding:   

3H-STX binding was performed on intact cells, analyzed, and normalized to total 

cellular protein as previously described [33].   

 

15. Deglycosylation: 

5 µl of whole cell lysate from 1610-β1BV5 were treated with PGNase F (New England 

BioLabs P0704S) following the instructions of the manufacturer. After enzymatic 

deglycosilation the sample was mixed with Western blot sample buffer, separated by SDS-

PAGE in a 10% polyacrylamide gel and transferred to a nitrocellulose membrane for Western 

blot analysis. Another 5 µl aliquot of untreated whole cell lysates was included in the Western 

blot analysis as a negative control. 

 

 

 



93 

 

16. Reverse-transcriptase PCR 

Human Fetal frontal lobe total RNA samples (22 and 36 weeks gestation) were 

obtained from AMS Bio. Human postnatal frontal lobe and occipital lobe (n=4 each) total RNA 

samples were kindly provided by Dr. Miriam Meisler. The RT-PCR mix was prepared using 

0.5 µg of RNA as template and the Titan One Tube RT-PCR System (Roche). Primers and 

PCR conditions available upon request. 

 

17. Quantitative PCR 

Custom Taqman MGB probes were ordered from Applied Biosystems for β1 (Product 

number 4331348, AILIWI2) and for β1B (Product number 4331348, AIMRUPA), both located 

in the region downstream of the exon 3 - intron 3 splice site. Sequences are available upon 

request. The equivalent efficiency of both sets of primers was confirmed. Six µg of each 

sample of RNA were incubated with DNase I (Invitrogen 18068-015) . cDNA was then 

synthetized from the processed RNA using the SuperScript First-Strand System (Invitrogen). 

The final volume of cDNA was then divided in two (half for the β1 assay and half for the β1B 

assay) and used as template for the Taqman Gene Expression Assay using the standard 

cycling program of a StepOnePlus Real-Time PCR System and TaqMan Gene Expression 

Master Mix (both from Applied Biosystems). CT determinations were made with the StepOne 

Sotfware version 2.0 (Applied Biosystems). At least five repeats for each RNA sample were 

obtained.  CT values were then used to calculate mean CT and SD for each sample.  

 

18. CGN neurite outgrowth assays 

Acute dissociation of cerebellar granule neurons from P14 wild-type and Scn1b null 

mice and their use in neurite outgrowth assays was described previously [12].  
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19. Statistical analyses 

Categorical data was compared using Fisher’s exact test.  

For continuous data normality was tested using the Kolmogorov-Smirnov test. Group 

means were compared using ANOVA, withTukey’s or Tamhane’s T2  as  post-hoc test. 

Statistical significance was set at a P < 0.05. SPSS v13.0 for Windows (SPSSInc.) was used 

for all determinations of statistical significance.  

To edit the figures for this paper, images were exported to Adobe Photoshop CS3 

Extended version 10.0.1 (Adobe). Besides cropping, and converting to greyscale where 

applicable, no other changes were made to the original images. 

 

Results 

1. A SCN1B mutation affecting β1B is found in two families with idiopathic epilepsy 

Mutations in SCN1B are associated with human disease, including epilepsy and 

cardiac arrhythmia [38, 50, 53].  While one mutation specific to the region encoding β1B is 

linked to Brugada Syndrome [53], to date all of the SCN1B epilepsy mutations occur in the Ig 

loop domain shared by β1 and β1B [39]. To test the hypothesis that SCN1B mutations 

specifically affecting β1B and not β1 may cause epilepsy as well as arrhythmia, all SCN1B 

exons and intron 3, that is retained in β1B [22, 41], were amplified by PCR as part of a 

screening study of 150 genes in 360 unrelated patients with episodic brain disorders (118 

with epilepsy, 110 with migraine, 66 with bipolar disorder, 35 with Tourette’s syndrome, 25 

with essential tremor, 4 with episodic ataxia, one with episodic vertigo and one with episodic 

syncope). A total of 14 SCN1B variants were identified, of which five resulted in amino acid 

substitutions in the unique region encoding β1B (Table III.3). Of these, three had minor allele 

frequencies (MAF) > 0.1 (p.L210P, p. S248R, and p.R250T) and occurred in all cohorts of 

patients. A variant (p.R214Q) had MAF = 0.005 but was also present in four out of eight 

cohorts. One variant (p.G257R) was identified in two unrelated probands with idiopathic 
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epilepsy (MAF = 0.002) as a heterozygous mutation (Figure III.1.B). One of those probands 

belonged originally to the Tourette’s cohort, but upon further clinical investigation this patient 

was found to be comorbid for epileptic seizures, suggesting that this variant was associated 

with an epilepsy phenotype. Clinical characteristics of all probands are given in the Methods 

section. 

To further examine whether the p.G257R variant was associated with Tourette’s syndrome, 

an additional 192  unrelated Tourette’s probands were genotyped (data not shown). The 

variant was not detected in this additional cohort, suggesting that p.G257R is not associated 

with increased risk of Tourette’s syndrome. We screened an additional 187 normal control 

samples for the portion of intron 3 pertaining to the β1B splice isoform.  One individual was 

found that had the p.G257R missense.  

To examine segregation of p.G257R, additional samples from the probands’ available 

family members were genotyped. For pedigree 1, both the proband and her mother carried 

the mutation and suffered from epilepsy. For pedigree 2, the mutation was inherited from the 

mother but there was no reported history of seizures in either parent (Figure III.1.C).  The 

frequency of the mutated allele giving rise to the p.G257R missense mutation in patients with 

epilepsy (3 in 236 alleles) was significantly higher than the frequency in people without 

epilepsy (2 in 1242 - including healthy controls and probands with other neurological 

diseases; P = 0.032 Fisher’s exact test). Thus, a SCN1B mutation in the region unique to β1B 

is linked with human epilepsy, possibly as a risk factor, given its presence in healthy controls, 

suggesting that wild-type β1B is critical for proper development of neuronal excitability. 

 

2. Na+ channel β1B is a secreted protein 

The topology of β1 is well understood [17], however, less is known about β1B. In silico 

analyses of the predicted amino acid sequences of human β1 and β1B were performed using 

the Goldman Engelman Steitz hydrophobicity scale as described in Methods. In contrast to 
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Figure III.2. β1B is a secreted protein. (A) Hydrophobicity plots analyzing the amino 
acid sequences of human β1 (left panel) or β1B (right panel) show identical N-terminal 
signal peptides. β1, but not β1B, contains a transmembrane domain. (B) β1 but not β1B 
is expressed at the cell surface. Upper panel: Lane 1 (β1B Lysate S1) demonstrates 
robust β1B protein expression in the whole-cell lysates of 1610-β1BV5. This same cell 
clone (β1B Biotin S1) showed that β1B is not expressed at the cell surface. An 
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independent 1610-β1BV5 clone (S2) gave a similar result. A biotinylated sample from 
1610-β1V5 (Biotin β1) was used as positive control. (C) β1B but not β1 is expressed in 
conditioned media. Upper panel: Conditioned media collected from 1610-β1V5 (Cond. 
Media β1, lane 2) or 1610-β1BV5 (Cond. Media β1B, lane 3). A surface biotinylated 
sample of 1610-β1V5 cells (Biotin β1) was used as a positive control. Lower panel: 
Ponceau red staining of the nitrocellulose membrane shows the presence of protein in 
all lanes. (D) β1B is expressed at the cell surface in the presence of Nav1.5. Upper 
panel: Cell surface biotinylation samples from cell lines expressing Nav1.1, Nav1.3, or 
Nav1.5 with β1BV5 (β1B-1.1, β1B-1.3 and β1B-1.5 lanes, respectively). Surface 
biotinylation samples from cells coexpressing Nav1.1 or Nav1.5 with β1V5 (β1-1.1 and 
β1-1.5 lanes, respectively) were used as positive controls. A sample from 1610-β1BV5 
cells (β1B“–“ lane) served as a negative control. Lower panels in (B) and (D): A Western 
blot of the same samples probed with an antibody to the Na+/K+ ATPase β1 subunit 
served as loading control for surface proteins. All blots are representative of triplicate 
experimental repeats. Molecular weight markers in kilodaltons.  Arrows indicate β1 or 
β1B immunoreactive bands. 

 

β1 [17], a hydrophobic transmembrane domain was not predicted for β1B (Figure 

III.2.A). The predicted β1B amino acid sequences from rat and mouse were analyzed 

similarly for hydrophobicity (Figure III.3).  In contrast to predicted amino acid sequences 

for β1 from these species, which are highly conserved (Figure III.4.A), very little 

similarity was found in the C-terminal region unique to β1B, suggesting that the 

sequence of this domain is species specific (Figure III.4.B). Importantly, none of 

theseunique β1B sequences contained a predicted transmembrane domain, suggesting 

that β1B may be a secreted protein (Figure III.3).  

To investigate whether β1B is indeed a secreted protein we stably transfected 

Chinese hamster lung 1610 fibroblasts with a V5-His epitope-tagged human β1B cDNA 

construct (1610-β1BV5).  Protein expression at the cell surface was assessed by surface 

biotinylation, probing the final Western blot with anti-V5 antibody. 1610 cells stably 

expressing β1V5 (1610-β1V5) were used as a positive control [38] and, as expected, 

β1V5 was detected at the cell surface (Figure III.2.B). In contrast, β1BV5 was not 

detected at the cell surface despite abundant levels of β1BV5 protein in the whole cell 

lysate sample (Figure III.2.B). We next assayed conditioned media by Western blot to 

test for the presence of β1B. Anti-V5 immunoreactive bands were present in conditioned  
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Figure III.3. Rat and mouse β1B are predicted to be secreted proteins. The 
predicted amino acid sequences of rat and mouse β1 (upper panels) contain signal 
peptide and transmembrane domains.  In contrast, rat and mouse β1B (lower panels) 
contain a signal peptide but no transmembrane domain. Hydrophobicity analyses were 
performed using TopPred software as described in Methods.  

 

media from 1610-β1BV5 cells, while, as expected, no bands were detected in 

media from 1610-β1V5 cells despite high levels of protein present on the Ponceau red 

stained blot (Figure III.2.C).  

While performing this project we noticed that the migration of β1B on SDS-PAGE 

was variable, over a size range of approximately 26 kDa (the predicted molecular weight 

of non-glycosylated β1B) to 45 KDa, with the majority of experiments showing the ~45 

kDa band. Interestingly, the same clonal line of 1610-β1BV5 cells yielded bands of 

different sizes in different experiments, and we were unable to identify the source of this 

variability. We hypothesized that these bands might represent different glycosylation 
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Figure III.4. The unique C-terminal region of β1B is not conserved between 
species. (A) Alignments of the predicted amino acid sequences of the C-terminal region 
of β1 encoded by exons 4 and 5 in human, rat and mouse using the CLUSTALW 
algorithm. (B) Alignments of the predicted amino acid sequences of the unique C-
terminal region of β1B encoded by retained intron 3 in human, rat and mouse using the 
CLUSTALW algorithm. Numbers above all alignments correspond to the human 
sequence. 

 

states of β1B and that enzymes present in the culture medium or experimental solutions 

might result in artifactual deglycosylation of this protein. To test this, whole cell lysates of 

1610-β1BV5 cells were treated with PNGase F and samples were then analyzed by 

Western Blot. PNGase F treatment resulted in collapse of the β1B immunoreactive band  

from ~45 to ~26 KDa (Figure III.5), suggesting that the various immunoreactive β1B 

bands identified in the conditioned media represent different glycosylation states.  

Because we do not yet have a specific anti-human β1B antibody, we were not able to 

assess the glycosylation state of native β1B in human brain, however, this will be the  
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Figure III.5. β1B is a glycoprotein. Western blot of 1610-β1BV5 whole cell lysates 
before (left lane) and after (right lane) treatment with PNGase F. This blot is 
representative of three experimental repeats. Molecular weight markers are given in 
kilodaltons. Arrows indicate β1B immunoreactive bands. The lower immunoreactive band 
is consistent with the molecular weight of fully deglycosylated β1B (~26 kDa). 

 

focus of future investigation. Native rat β1B migrates at ~45 kDa [22], thus we are 

reasonably confident that this will be the case for human β1B. 

Taken together, these data suggest that both β1 and β1B are glycoproteins, 

however β1 has transmembrane topology while β1B is secreted.  

The experiments in Figure III.2 (panels B and C), demonstrate that β1B is 

secreted from cells that do not express Na+ channels. We then decided to test the ability 

of β1B to associate with different α subunits. To test whether the presence of a VGSC α 

subunit may result in retention of β1B at the cell surface, we performed surface 

biotinylation assays on cell lines coexpressing human β1BV5 with human Nav1.1,  

Nav1.3, or Nav1.5. Similar to 1610 cells, β1B was not detected at the surface of cells 

coexpressing Nav1.1or Nav1.3 (Figure III.2.D), suggesting that β1B is secreted in spite 

of the presence of these channels.  In contrast, cell surface β1B expression was 

detected in biotinylated samples from cells coexpressing Nav1.5 and β1B (Figure 
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III.2.D), suggesting that β1B may be selectively retained at the cell surface by this 

channel.  

β1 associates with multiple VGSC α subunits and increases their functional 

expression [14, 19, 22]. For example, β1 associates with Nav1.2 and this association is 

functionally detected by increased Na+ current density and by increased cell surface 3H-

saxitoxin (STX) binding [18, 32]. Rat β1B increases the cell surface expression of rat 

Nav1.2 in transfected cells, suggesting that these subunits functionally associate [23]. 

Similarly, human β1B co-expression increases Na+ current density generated by human 

Nav1.5 [52]. Here, we tested whether human β1B affects the cell surface expression of 

human Nav1.3. Because Nav1.3 is predominately expressed in fetal brain [8] it is most 

relevant to β1B physiology. Chinese hamster ovary fibroblasts stably expressing human 

Nav1.3 (CHOhNav1.3) [34] were transfected with human β1 or β1B cDNAs. [3H]-STX 

binding to intact cells was used to assay Na+ channel cell surface expression [32]. 

Because STX is membrane impermeant, binding to intact cells measures only cell 

surface and not intracellular channels [30, 32]. As expected, β1 significantly increased 

cell surface 3H-STX binding compared to Nav1.3 alone (Nav1.3 + β1: 8.93 ± 0.72 

fmol/mg vs. Nav1.3 alone: 5.53 ± 0.65 fmol/mg, n = 9 for each subunit combination, P < 

0.001).  In contrast, β1B did not significantly increase cell surface 3H-STX binding 

compared with untransfected cells (Nav1.3 + β1B: 5.90 ± 0.92 fmol/mg) (Figure III.6.A), 

suggesting that human Nav1.3 and β1B do not functionally associate. 

Because SCN1B mutations affecting the region specific to β1B are linked to 

cardiac arrhythmia [52] and epilepsy (shown here), we tested the effects of human β1B 

co-expression on human Nav1.1, a common target of genetically determined epilepsy 

[36], and on human Nav1.5, the α subunit most prevalent in heart and a target of 

inherited arrhythmia [8, 42, 44]. For unknown reasons, we were unable to establish 

stable β1V5- or β1BV5-expressing cell lines using HEKhNav1.1 cells [38].  Thus, all 
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experiments with this cell line were performed following transient transfection of β1V5 or 

β1BV5 cDNA. We were able to establish stable β subunit-expressing lines using HEK 

cells stably transfected with human Nav1.5 (HEKhNav1.5). The effects of β1 or β1B on 

cell surface expression of Nav1.1 or Nav1.5 were then studied using cell surface 

biotinylation assays. Western blots were quantified by densitometry and normalized to 

the cell surface levels of α subunit in cells expressing no β subunits. Neither β1 nor β1B 

affected the levels of cell surface expression of Nav1.1 compared to cells expressing α 

subunit alone (1.67 ± 0.13 versus 1.49 ± 0.34 versus 1.00 ± 0.41 arbitrary units 

respectively, n = 3 for each condition, P = 0.36, Figure III.6.B). The lack of functional 

modulation of human Nav1.1 by β1 in this cell line was reported previously [38]. Similarly, 

neither β subunit affected the cell surface levels of human Nav1.5 detectable with this 

assay (HEKhNav1.5: 1 ± 0.17; HEKhNav1.5 + β1: 0.77 ± 0.06; HEKhNav1.5 + β1B:  0.75 

± 0.00, n = 3 for each condition, P = 0.27, Figure III.6.B).  

 We next examined whether β1B associates with Nav1.1, Nav1.3, or Nav1.5 using 

coimmunoprecipitation assays.  In these experiments, anti-pan Na+ channel antibody 

was used for the immunoprecipitation step from Triton X-100-solubilized whole cell 

lysates and Western blots were probed with anti-V5 to detect associated β subunits. β1 

co-precipitated with Nav1.1, (Figure III.6.C), Nav1.3 (Figure III.6.D), and Nav1.5 (Figure 

III.6.E). In contrast, β1B association was not detected with any α subunit (Figure III.6.C -

E). Western blots of whole cell lysates from each cell line coexpressing α and β1BV5 

subunits demonstrated the presence of β1B in all three (Figure III.6.F). Lack of 

association between Nav1.5 and β1B in the coimmunoprecipitation assay contrasts with 

our result showing cell surface retention of β1B in the presence of Nav1.5, and with a 

previous report of functional β1B-Nav1.5 association [51]. One possible explanation for 

this discrepancy is that the interaction between β1B and Nav1.5 is disrupted by detergent 

solubilization.  
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Figure III.6. Association of β1B with Nav1.1, Nav1.3 or Nav1.5 is not detectable. (A) 
[3H]-STX binding to intact cells stably expressing Nav1.3, Nav1.3 + β1V5 (Nav1.3+β1), or 
Nav1.3 + β1BV5 (Nav1.3+β1B).  Specific binding data were normalized to protein 
concentration. Data presented as mean ± SE. Significance: ** P < 0.001. (B) Surface 
biotinylation comparison of cell surface expression of Nav1.1 or Nav1.5 in the presence 
of β1 versus β1B. Representative Western blot analysis of surface biotinylation assays 
of cells stably expressing Nav1.1 or Nav1.5 alone (Nav1.1 UT or Nav1.5 UT), Nav1.1 or 
Nav1.5 with β1V5 (Nav1.1 β1 or Nav1.5 β1), or Nav1.1 or Nav1.5 with β1BV5 (Nav1.1 β1B  
or Nav1.5 β1B) probed with anti-pan Na+ channel antibody. Analysis of the same 
membrane with anti-Na+/K+ ATPase β1 subunit antibody served as loading control. (C-E) 
Coimmunoprecipitation from cells stably coexpressing Nav1.1 (C), Nav1.3 (D) or Nav1.5 
(E) with β1V5 or β1BV5, as indicated, was performed using anti-pan Na+ channel 
antibody for immunoprecipitation followed by anti-V5 to probe the Western blot. 
Immunoprecipitation with non-immune IgG was performed as a negative control. (F) 
Western blots of equal aliquots of whole cell lysates of β1B expressing cells used in 
panels C – E to demonstrate the presence of β1B. Molecular weight markers are given in 
kilodaltons. Arrows indicate immunoreactive β1 or β1B bands. 
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These results suggest that β1B may associate selectively, but perhaps transiently 

or with low affinity, with some VGSC α subunits but not others. Further, if β1B associates 

with Nav1.5, this suggests that the function of β1B in heart, where Nav1.5 is the principal 

Na+ channel, may be different than its function in brain, where Nav1.1 and Nav1.3 are 

predominately expressed. 

  

3. Expression patterns of β1 and β1B in human brain are developmentally regulated 

We demonstrated previously that β1 and β1B mRNA have complementary 

expression patterns in rat brain. β1B is expressed predominantly during embryonic rat 

brain development, with levels decreasing after birth. In contrast, β1 expression is low in 

embryonic rat brain, but becomes dominant over β1B in postnatal brain [22]. To 

determine whether this developmental expression pattern is conserved in humans we 

performed reverse transcriptase PCR (RT-PCR) using primers specific for β1 or β1B and 

human frontal lobe total RNA as template. Samples were obtained from both human 

embryonic brain (22 weeks and 36 weeks of gestation) and human postnatal brain (age 

range: 9-56 years). In addition, we obtained occipital lobe total RNA from the postnatal 

subjects. RNA from Scn1b null mouse brain was used as a negative control. At the 

earliest time point assayed, 22 weeks of gestation, both variants were detected, 

although higher levels of β1B were detected compared to β1. As development 

progressed, the level of β1B appeared to remain relatively constant while the level of β1 

increased (Figure III.7.A). To quantify these results we prepared cDNA from each RNA 

sample and performed quantitative PCR using the Taqman assay. Ratios of β1 to β1B 

were compared using the 2-ΔCT method. At 22 weeks of gestation β1:β1B= 0.08 (mean 2-

ΔCT ± SD: 0.08 ± 0.15). At 36 weeks of gestation β1B and β1 levels were similar (β1:β1B  
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Figure III.7. β1B is the predominant SCN1B splice variant during human fetal brain 
development. (A) Reverse-transcriptase PCR using primers for β1 or β1B performed 
with total RNA as template from human embryonic frontal lobe (22 weeks gestation: 
lanes 1 and 2; or 36 weeks gestation: lanes 3 and 4), postnatal frontal lobe (lanes 5 and 
6), or postnatal occipital lobe (lanes 7 and 8). Samples of total RNA from Scn1b null 
mouse brain were analyzed in parallel as negative controls (lane 9 and 10). The gel 
shown is representative of triplicate experimental repeats. Nucleic acid markers are 
shown in base pairs. Arrows indicate migration of β1 and β1B bands. (B) Quantitative 
PCR was performed with cDNAs generated from the RNA frontal lobe samples using the 
Taqman assay as described in Methods. Ratios of β1 to β1B were compared using the 2-

ΔCT method for each time point. Values are presented as mean ± SD. Note the 
logarithmic scale on the y-axis. 
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4. β1B stimulates neurite outgrowth in CGNs through β1 adhesion  

VGSC β subunits contain a single extracellular Ig loop domain and function as CAMs 

[27, 28, 31]. β1 promotes CGN neurite outgrowth in vitro and in vivo through trans 

homophilic cell adhesive interactions [3, 4, 12]. Because β1 and β1B contain identical Ig 

loop domains, we hypothesized that β1B may function as a secreted CAM to promote 

neurite outgrowth.  Previous results using an engineered soluble β1 extracellular domain 

support this idea [12]. To test this hypothesis, we investigated the ability of β1B to 

promote neurite outgrowth of CGNs. CGNs were isolated from P14 C57BL/6 mice and 

plated on monolayers of untransfected 1610 cells (as a negative control), 1610-β1V5 

cells (as a positive control), or 1610-β1BV5 cells, as described in Methods. After 24 

hours of incubation cells were fixed, immunostained with anti-GAP43, and the length of 

the longest neurite measured.  Consistent with previous results [4, 12], the mean neurite 

length of CGNs plated on 1610-β1V5 cells (64.88 ± 2.63 µm SE) was significantly 

greater than CGNs plated on 1610 cells (40.64 ± 1.70 µm). Importantly, the mean 

neurite length of CGNs plated on 1610-β1BV5 cells (69.43 ± 2.46 µm) was also 

statistically greater than CGNs plated on 1610 cells, and not significantly different from 

cells plated on 1610-β1V5 cells (n = 300 for each group, P< 0.001; Figure III.8.A). Thus, 

similar to β1, β1B functions as a CAM in neurite outgrowth. In contrast to β1, however, 

we propose that β1B functions as a secreted rather than as a transmembrane CAM. 

The neurite outgrowth promoting activity of β1 is abolished in CGNs isolated from 

Scn1b null mice [12], demonstrating that trans homophilic β1-β1 interactions are 

required. To test if a similar requirement of β1 expression on the neuron exists for β1B 

signaling, we compared neurite outgrowth of CGNs isolated from Scn1b null mice vs. 

wild-type controls plated on β1B-secreting monolayers. In agreement with our previous 

studies [12], the mean neurite length of WT CGNs plated on 1610-β1V5 cells (75.46 ± 

2.44 µm) was statistically greater than for Scn1b null CGNs (36.42 ± 1.45 µm). In a  
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Figure III.8. β1B stimulates neurite outgrowth of CGNs.(A) Neurite lengths of CGNs 
isolated from wild-type mice grown on 1610 cells (Untransfected) or 1610 cells stably 
expressing β1V5 (β1) or β1BV5 (β1B) measured as described in Methods. Significance: 
*** P< 0.001. (B) Neurite lengths of CGNs from wild-type and Scn1b null mice grown on 
1610 cells stably expressing β1V5 or β1BV5. Significance: *** P< 0.001. All data are 
presented as mean ± SE. 
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similar manner the mean neurite length of WT CGNs plated on 1610-β1BV5 cells (75.06 

± 2.71 µm) was significantly higher than that of null CGNs (38.66 ± 1.69 µm, n = 300, P< 

0.001; Figure III.8.B). There was no significant difference between the mean neurite 

lengths of WT or null CGNs plated on 1610-β1V5 cells versus those on 1610-β1BV5 

cells.  These data demonstrate that the neurite outgrowth promoting ability of β1B 

requires interaction with β1 subunits present at the neuronal surface, similar to the 

mechanism described for β1 [3, 4]. 

 

5. β1B p.G257R is a trafficking deficient mutation resulting in a functional null allele 

To investigate the mechanism by which β1B p.G257R could cause seizures we 

stably transfected 1610 cells with V5-His-tagged p.G257R cDNA (1610-p.G257RV5). In 

contrast to wild-type β1BV5, p.G257RV5 was not detected in conditioned media (Figure 

III.9.A) despite high levels of expression of the protein in the whole cell lysates (Figure 

III.9.B) and in the Ponceau red stained blot (Figure III.9.A). We used surface 

biotinylation assays to determine whether p.G257RV5 might be present at the cell 

surface. As demonstrated in Figure III.9.B, p.G257RV5 was detected in the whole cell 

lysate but not in the conditioned media or on the cell surface. From these data we 

concluded that p.G257R is a trafficking deficient mutant. To confirm that the trafficking 

deficiency of p.G257R is specifically pathogenic we tested three other SCN1B non-

seizure related polymorphic variants containing amino acid substitutions in β1B found in 

our cohort of patients: p.R214Q, p.S248R, p.R250T. These variants were present in  

each disease cohort and hence were not associated with epilepsy (Table III.3). To 

facilitate detection of these proteins, V5-His epitope tags were inserted at their C-termini, 

similar to p.G257RV5. 1610 cells were stably transfected and conditioned media were 

collected. In contrast to p.G257RV5, all three variants were detected in the conditioned 

media similar to wild-type β1BV5 (Figure III.9.C). These results suggest that the lack of  
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Figure III.9. β1B p.G257R is a trafficking deficient mutant. (A) β1B but not p.G257R 
is detected in conditioned media. Upper panel: Conditioned media from 1610- β1BV5 
(Cond. Media β1B) or 1610-p.G257RV5 (Cond. Media p.G257R S1 and S2, 2 
independent cell clones). A surface biotinylated sample from 1610-β1V5 (Biotin β1) was 
used as a positive control. Lower panel: Ponceau red staining of the nitrocellulose 
membrane. (B) p.G257R is retained intracellularly. Western blot analysis of whole-cell 
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lysate (p.G257R CL), surface biotinylated cells (p.G257R B), or conditioned media 
(p.G257R CM) from the same 1610-p.G257RV5 cell clone. Conditioned media from 
1610-β1BV5 cells (β1B CM) shows normal secretion of β1B. (C) β1B polymorphic 
variants are secreted. p.R214Q, p.S248R, and p.R250T are normally secreted into 
conditioned media similar to wild-type β1B. (D) p.G257R does not interfere with the cell 
surface expression of β1. Upper panel: Surface biotinylation assays of 1610-β1V5 and 
either β1B or p.G257R. 1610-β1V5 cells (UT lane) used as positive control. Lower panel:  
Western blot of the same samples with an antibody to the Na+/K+ ATPase β1 subunit 
served as loading control for surface proteins. (E) p.G257R does not interfere with 
normal secretion of β1B. Conditioned media from two independent 1610-β1BV5 clones 
and p.G257R (p.G257R S1 and S2). Conditioned media from 1610-β1BV5 cells (UT) 
was used as positive control. (F) p. G257R does not stimulate neurite outgrowth. Neurite 
lengths of CGNs isolated from wild-type mice grown on 1610 cells (Untransfected),1610 
cells stably expressing β1V5 (β1), 1610 cells stably expressing β1BV5 (β1B), or 1610 
cells stably expressing p.G257RV5. Data are mean ± SE. Significance: *** P< 0.001. All 
Western blots are representative of three experimental repeats. Molecular weight 
markers are given in kilodaltons. 

 

secretion of p.G257R is a pathogenic change and not a normal variability present in 

β1B polymorphisms. 

To test whether p.G257R may inhibit β1 cell surface expression via a dominant-

negative function, 1610-β1V5 cells were stably transfected with cDNA encoding either 

β1B or p.G257R in pTRACER. This plasmid encodes EGFP under control of a separate 

promoter than that used for the multiple cloning site. After stable transfection, greater 

than 99% of the 1610-β1V5 cells coexpressing β1B or p.G257R showed green 

fluorescence, confirming β1B or p.G257R protein expression (Figure III.10). Surface 

biotinylation assays were subsequently performed on 1610-β1V5 cells or 1610-β1V5 

cells coexpressing either wild-type β1B or p.G257R in pTRACER. Surface expression of 

similar levels of β1V5 surface expression, indicating that co-expression of β1B or β1V5 

was detected by probing the Western blots with anti-V5 antibody. All lanes showed 

p.G257R did not interfere with β1 trafficking to the plasma membrane (Figure III.9.D). A 

similar strategy was used to assess whether p.G257R functioned as a dominant-

negative for wild-type β1B secretion. Stably transfected 1610-β1BV5 cells were 

transfected with p.G257R in pTRACER. Western blots of conditioned media were  
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Figure III.10. Confirmation of expression of β1B or p.G257R in pTRACER in 1610-
β1V5 cells or 1610-β1BV5 cells, as indicated. 1610-β1V5 cells or 1610-β1BV5 cells 
were stably transfected with the pTRACER constructs, fixed with 4% paraformaldehyde, 
and monitored for GFP fluorescence (left panels) and bright field images (right panels), 
as indicated, using confocal microscopy. UT indicates untransfected cells. Scale bars, 
100 µm. 

 

probed with anti-V5 to detect wild-type β1B secretion. Conditioned media collected from 

1610-β1BV5 cells were used as a positive control. Comparable levels of anti-V5 
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immunoreactive bands were detected in all lanes, demonstrating that p.G257R does not 

interfere with wild-type β1B secretion (Figure III.9.E).  

 Consistent with the observed intracellular retention of p.G257RV5, wild-type 

CGNs plated on 1610-p.G257RV5 cell monolayers had mean neurite lengths that were 

indistinguishable from those plated on untransfected 1610 cells (1610-p.G257RV5: 

40.87 ± 1.56 μm vs. 1610: 35.96 ± 1.63 µm, n = 300 and 200, respectively) and 

significantly shorter than CGNs plated on 1610-β1V5 (70.02 ± 2.07 µm, n = 300) or  

1610-β1BV5 (65.89 ± 2.31 µm, n = 300, P< 0.001) (Figure III.9,F).  These results 

demonstrate that p.G257R is a functional null allele. 

 

Discussion 

In spite of an extensive literature demonstrating dramatic effects of β1 subunit 

coexpression on Na+ current in heterologous systems, the major role of SCN1B in vivo 

appears to be cell adhesion rather than current modulation [39].  Studies with Scn1b null 

mice show that this gene plays significant roles in promoting neuronal migration, neurite 

extension, and axonal fasciculation in brain and corticospinal tract [3, 4].  In contrast, the 

observed effects of Scn1b deletion on neuronal Na+ current are cell type specific and 

subtle [1, 3, 10, 48].  Na+ current is required for Scn1b-mediated neurite outgrowth [3], 

but we argue that Scn1b-mediated modulation of Na+ current is not.  Localization of 

Nav1.6 to the axon initial segment is modulated by Scn1b and is critical for Scn1b-

mediated neurite outgrowth in CGNs [3].  However, we argue that this effect can be 

attributed to Scn1b-mediated adhesive interactions and not Scn1b-mediated Na+ current 

modulation.  

The present results emphasize that understanding the physiological role of 

Scn1b in brain must include consideration of the functions of β1B in addition to those of 

β1. This is under-appreciated in the field, as most studies have considered only β1. Our 
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results showing that β1B is a secreted CAM expressed in embryonic brain that may not 

associate with neuronal VGSC α subunits suggest that this splice variant may play 

critical roles in Scn1b function during brain development through non-conducting cell 

adhesive mechanisms. Interestingly, because β1B is a secreted CAM, it may play 

autocrine or paracrine roles in neuronal pathfinding. Deletion of β1B may make a 

significant contribution to the severe neurological Scn1b null phenotype. This phenotype 

includes not only Scn1b null mice but also the functional null SCN1B p.R125C mutation 

linked to Dravet syndrome in humans [38].  Prior to the present study, all reported 

SCN1B mutations linked to human epilepsy were found to be located in the Ig loop 

domain that is shared between β1 and β1B.  These results suggest that cell adhesion is 

clinically relevant, and importantly, that disruption of either splice variant may result in 

human brain disease. Novel evidence provided here demonstrates that β1B p.G257R 

(located in the retained intronic region unique to β1B) also associates with human 

epilepsy, strengthening the hypothesis that β1B is a critical player in brain development. 

CAMs are critical for normal nervous system development and for synaptic 

plasticity in adulthood.  Dysregulation of NCAM expression or signaling is associated 

with a number of brain disorders, including depression, anxiety, bipolar disorder and 

schizophrenia [see [6] for review].  Deletion of Nr-CAM in mice results in an altered 

behavioral phenotype reflective of increased impulsivity [29]. Deletion of the CAM Lsamp 

in mice leads to heightened reactivity to novelty [7] and conditional deletion of L1-CAM in 

brain results in decreased anxiety-like behavior [24]. Epilepsy and neuropsychiatric 

disease have a bidirectional relationship of comorbidity [13, 15, 20, 40, 46] and thus may 

share common genetic mechanisms. SCN1B-dependent  neuronal pathfinding may be 

critical to abnormal brain development in both neurological and psychological disease. 

Expression of multiple SCN1B splice variants, including a secreted form, is also 

consistent with other members of the Ig superfamily of CAMs [21, 43]. For example, 
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increased expression of secreted forms of NCAM is associated with bipolar disorder and 

depression [6]. In a similar way, modulation of β1B secretion may have pathological 

consequences in brain, as suggested here for β1B p.G257R. 

We did not detect biochemical or functional association of human β1B with 

human VGSC α subunits, including Nav1.1, Nav1.3, and Nav1.5.  These results 

strengthen the argument that the β1B splice variant functions as a CAM independent of 

the ion-conducting pore.  Intriguingly, however, β1B was sequestered at the cell surface 

by Nav1.5 but not by Nav1.1 or Nav1.3.  This result implies that β1B and Nav1.5 associate 

functionally (but perhaps transiently or with low affinity), in agreement with a previous 

study showing modulation of Nav1.5 currents in heterologous cells by β1B [53].  A 

SCN1B mutation linked to Brugada syndrome disrupts the current modulatory properties 

of β1B [53], supporting the idea that β1B function in human heart may be different than in 

brain. In addition to heart, Nav1.5 is expressed in a population of limbic neurons in brain 

[16].  It is possible that differential β1B expression in specific brain areas may result in 

different effects on excitability and neurite outgrowth depending on which Na+ channel α 

subunits are co-expressed. These data, in concert with our recent results showing 

specific partnering of Nav1.6 and β1 subunits in cerebellum [3], raise the possibility that 

certain VGSC α and β subunits form selective partnerships in excitable cells. 

 The epilepsy-linked mutation SCN1B p.G257R results in intracellular retention of 

β1B. This mechanism is consistent with that of SCN1B p.R125C, linked to Dravet 

syndrome,  that results in intracellular retention of β1 and, presumably, β1B as well [37]. 

It is interesting to consider that defective β1/ β1B trafficking may be a common 

mechanism of some SCN1B epilepsy mutations, resulting in functional null alleles 

including reduced secretion of β1B. In addition to abolishing β1/β1B function, retention of 

these subunits in the cytoplasm may inhibit signaling or trafficking of other proteins or 

induce cellular stress leading to neural degeneration. Thus, SCN1B gene dosage 
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appears to be critical for brain disease. Heterozygous expression of one mutant and one 

wild-type SCN1B allele results in mild to moderate GEFS+ spectrum disorders with 

incomplete penetrance in human patients, with symptom severity likely depending on 

genetic background and/or epigenetic factors. In this sense the pedigrees presented in 

our study are similar to those reported previously [45, 53], and is compatible with the 

presence of the mutation in healthy controls. In contrast, inheritance of two mutant 

SCN1B alleles affecting the region common to β1 and β1B results in Dravet syndrome, 

the most severe, and sometimes fatal, disorder of the GEFS+ spectrum. If, as predicted 

by the present results, secreted β1B regulates neurite extension in developing human 

brain through cell adhesive interactions, gene dosage will be critically important, as 

varying levels of SCN1B expression are predicted to regulate gradients of β1B in the 

extracellular matrix, which may then serve as attractive or repulsive signals.  The 

contribution of β1B to brain development is not yet known, however, our results shed 

new light on the role of this subunit in SCN1B function and present a fresh perspective 

on the biology of these multi-functional subunits. 
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Chapter IV 

Conclusions 

 

The work presented in this thesis makes significant contributions to two important 

areas of sodium channel biology: sodium channel subunit structure and the 

pathophysiology of SCN1B mutations in epilepsy.  Our novel findings on the structure 

and function of sodium channel β1B subunits have changed the field and introduced a 

new perspective on these multifunctional proteins, including their role in human brain 

development and disease. 

 

1. The subunit structure of voltage-gated sodium channels  

Currently, there are 14 genes described that encode VGSC subunits: 10 encoding α 

and 4 encoding β subunits [4]. Whereas most of the genes encoding α subunits give rise 

to multiple splice variants, SCN1B is so far the only β subunit gene found be alternatively 

spliced in the coding region [17, 28] [7]. Prior to our work, all of the splice variants 

encoded by α subunit genes, as well as the β 1 - 4 subunits, were shown to be 

transmembrane proteins [4, 13, 14, 22, 37].  Based on this information, it was assumed 

that short strings of hydrophobic amino acids present in the C-terminus of the β1B splice 

variant represented a transmembrane domain [17]. Importantly, our new results, 

presented here, prove that β1B lacks a transmembrane domain and is instead a soluble 

protein that is secreted into the extracellular medium. These results are the first 
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 description of a soluble VGSC subunit. A soluble voltage-gated potassium channel 

subunit of unknown function has been described previously in the rat kidney, but unlike 

β1B, this subunit is intracellular [1], and it is unlikely that it could have similar functions 

as β1B. 

The stoichiometry of VGSCs is known only for rat brain, from which channels 

were purified to theoretical homogeneity.  These data showed that VGSCs are 

heterotrimers, consisting of one α central, pore-forming subunit associated with one 

covalently and one non-covalently linked β subunit [11, 12].  Based on these data, it has 

been assumed that the same configuration holds true for VGSCs in other tissues and 

species. However, whether this 1:1:1 stoichiometry occurs in all areas, all cell types, and 

all subcellular compartments of the CNS is unknown. The presence of a soluble β 

subunit lends greater complexity to the possible combinations of VGSC subunits and 

thus VGSC function. For example, secreted β1B interacts with neuronal β1 in trans to 

promote neurite outgrowth in cerebellar granule neurons.  In spite of our results 

suggesting that β1B does not associate with neuronal VGSC α subunits, if neuronal β1 

subunits that bind β1B are also associated with α, then β1B may associate indirectly with 

the VGSC complex. This idea fits with our new understanding of VGSCs as multi-protein 

complexes composed of ion-conducting proteins, cell adhesion molecules, 

transmembrane proteases, extracellular matrix molecules, and signaling proteins [27]. 

Interestingly, while we have no evidence of β1B association with neuronal α subunits, 

our biochemical results suggest that β1B may interact transiently with Nav1.5, in 

agreement with previous results showing modulation of Nav1.5 current by β1B [32]. 

Similarly, it is possible that the electrophysiological properties of Nav1.1 or Nav1.3 (or 

those of other tetrodotoxin-sensitive α subunits) may be transiently modulated by β1B or 

indirectly modulated through β1–β1B trans interactions. Alternatively, β1B may function 

exclusively in subcellular domains where β1 is present in the absence of α subunits. 
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2. Pathophysiology of SCN1B mutations 

A number of SCN1B mutations located in the Ig loop domain are linked with mild 

to moderate GEFS+ epilepsy syndromes (reviewed in [26]). Our results have expanded 

the spectrum of epileptic syndromes linked to SCN1B to include Dravet Syndrome (the 

most severe type of GEFS+) and idiopathic epilepsies. We have also demonstrated that 

a mutation affecting only the β1B splice variant, and not β1, (p.G257R) is linked to 

neurological disease. Interestingly, the two SCN1B mutations we studied, p.R125C and 

p.G257R, have a common pathogenic mechanism: they are both trafficking-deficient. 

While p.R125C was tested on the β1 backbone, we predict that this Ig loop domain 

mutation affects both β1 and β1B, resulting in intracellular retention of both subunits.  

Immunocytochemical experiments suggest that the mutants p.R85H and p.R85C are 

also trafficking-deficient [35]. We predict that the trafficking deficiency demonstrated for 

these mutations, using the β1 backbone, also occurs for β1B. Taken together, these 

results suggest that trafficking deficiency, resulting in functional null alleles, might be a 

common mechanism for some cases of β1/β1B dysfunction.  

Because Scn1b null mice lack β1 and β1B, it is not possible to determine which 

subunit is most critical for normal functioning of the CNS. Similar to Scn1b null mice, the 

p.R125C proband is predicted to lack β1 and β1B function [26]. It is tempting to point to 

the p.G257R mutation as a cause of epilepsy to argue that β1B is the most critical 

SCN1B subunit in terms of CNS function. However, caution is necessary in addressing 

this question. An on-going project in our lab is the generation of mice expressing only 

the β1B splice variant. Once these mice are available, their neurologic phenotype will 

help to start answering critical SCN1B structure-function questions. 

Whereas most of the literature regarding SCN1B mutations and epilepsy has 

focused on the changes that the mutation causes in the modulation of the 
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electrophysiological characteristics of selected VGSC α subunits in heterologous 

systems, our ex vivo recordings of neurons from wild-type or Scn1b null mice have 

evidenced only subtle changes in sodium current. A large body of work from our lab has 

also demonstrated that VGSC β subunits are multifunctional.  In addition to modulation 

of sodium current, β subunits function as CAMs, and in the case of β1B (with its limited 

ability to associate with α subunits) this might be the predominant function in vivo. 

Similar to the question regarding the relative functional importance of SCN1B splice 

variants, the question of which function, electrophysiology versus cell adhesion, is most 

relevant in vivo is difficult to answer. In the end, both splice variants and both functions 

are likely critical in brain – although with differential cell type specific, subcellular domain 

specific, temporal components. 

Importantly, our results demonstrate that the mechanism of epileptogenesis due 

to SCN1B mutations is different from that due to SCN1A mutations. Multiple lines of 

evidence point to diverse mechanisms underlying a common disease phenotype. 

Scn1a+/- mice exhibit a severe neurological phenotype [36] that is similar to Scn1b null 

mice [5] and Dravet Syndrome patients (either due to heterozygous SCN1A or 

homozygous SCN1B mutations) [3, 9, 19, 34] and that is not very dissimilar to that of the 

Scn1a null mice [36]. Scn1b+/- mice, on the other hand, have a normal neurological 

phenotype.  These data suggest that while only one copy of SCN1B is required for 

normal brain function, severe epilepsy results from SCN1A haploinsufficiency. Nav1.1, 

encoded by SCN1A, is a key VGSC in the generation of action potentials in hippocampal 

inhibitory neurons [24, 36].  Consistent with this, GABAergic neurons from Scn1a+/- 

hippocampus exhibit dramatic reductions in sodium current density compared to wild-

type cells [36]. This loss of function is proposed to be responsible for seizures present in 

both the mouse model and in human patients with SCN1A mutations. In contrast, 

electrophysiological recordings from Scn1b null neurons, including hippocampal bipolar 
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neurons[26], have demonstrated only minor differences in sodium current compared to 

wild-type, suggesting a different mechanism of seizure induction. Finally, while epileptic 

syndromes linked to SCN1A mutations do not respond to (and can be exacerbated by) 

treatment with sodium channel blocking drugs [6], patients described in our study of the 

β1B p.G257R mutation were successfully treated with carbamazepine, again suggesting 

different mechanisms of epilepsy. Together, these data suggest that while seizures due 

to SCN1A mutations may be caused by neuronal cell type-specific changes in sodium 

current, seizures due to SCN1B mutations likely have a different underlying cause. 

Based on results from our laboratory demonstrating the importance of Scn1b in the 

correct migration and tract formation of cortical and cerebellar neurons [2], we propose 

that aberrant β1/ β1B CAM function leading to neuronal pathfinding errors may be 

responsible for the development of neuronal hyperexcitability resulting in seizures. 

 

3. Unanswered questions and future directions 

One of the most puzzling aspects of SCN1B mutations and epilepsy is the 

observation that, while the majority of human epilepsy patients with such mutations are 

heterozygous, Scn1b+/- mice do not exhibit seizures, and may even have a higher 

seizure threshold than wild-type according to our PTZ seizure-induction experiments[26]. 

If SCN1B haploinsufficiency in human subjects results in seizures, then why is it 

necessary for mice to be missing both Scn1b alleles to cause the epileptic phenotype? 

Genetic background and epigenetics are likely critical here.  In support of this, many of 

the SCN1B mutations reported to cause epilepsy or cardiac arrhythmia (including our 

two studies) have incomplete penetrance. Another possibility, not mutually exclusive with 

the one above, is based on key biological differences between a null allele (resulting in 

gene deletion) and a mutated allelle (resulting in production of an abnormal protein). 
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Importantly, a mutant protein may be either loss-of-function (similar to a deleted allele) or 

gain-of-function. Our results in heterologous systems predict that β1 p.C121W [21], β1 

p.R125C, and β1B p.G257R result in partial to complete loss-of-function. However, the 

possibility exists that these mutations may result in gain-of-function in vivo. Current work 

in our laboratory aims to determine if the presence of these mutated proteins may be 

detrimental to the function of neurons, or even cause cellular stress and apoptosis 

through the activation of the unfolded protein response [38]. 

A very pressing question is how do we translate our findings to the clinical realm? 

Our results open new avenues for clinical research that must be followed in the hope of 

developing the best treatments possible for patients with SCN1B mutations. So far all 

the patients reported with SCN1B mutations present with either epilepsy or cardiac 

arrhythmia, but there are no known reports of a patient with both types of pathology. One 

reason for this might be that the epileptic syndromes in this context predominate during 

childhood and adolescence whereas the cardiac arrhythmias (Brugada syndrome, 

conduction disease, and atrial fibrillation) usually make their appearance from the third to 

fourth decades of life onwards [31, 32]. Complicating this lack of overlap in age of 

presentation is that the clinical manifestations of both the epileptic syndromes and the 

cardiac arrhythmias can be subtle. Most patients with epilepsy due to SCN1B mutations 

present with febrile seizures, which are the most common type of seizure during 

childhood. By the same token, people presenting with cardiac arrhythmia associated 

with SCN1B mutations can be asymptomatic for many years. To address this question it 

will be necessary to perform systematic electrocardiographic studies in epilepsy patients 

with SCN1B mutations. Such studies will not be easy because the arrhythmias described 

can be episodic. Thus, it might be important to perform the electrocardiographic studies 

in settings known to induce rhythm disorders, like fever and sleep for Brugada syndrome 

[15, 25, 29, 30]. The possible association of epilepsy and cardiac arrhythmia in the same 
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subject as a consequence of one mutation has the potential to explain some of the 

sudden unexplained death in epilepsy (SUDEP) cases due to cardiac arrhythmia [20, 

23].  

Previous results from our laboratory have demonstrated a function for β1 and 

β1B as CAMs during tract formation in the CNS. Since abnormalities in brain 

development and function can result not only in neurological syndromes but in 

psychiatric ones as well, exemplified by the significant comorbidity between epilepsy and 

psychiatric syndromes [8, 10], it will be important to explore the possible role of SCN1B 

mutations and polymorphisms in behavioral phenotypes. Such work is ongoing in our 

laboratory with Scn1b+/- mice. In addition, whether β1 and β1B function as CAMs during 

development of the peripheral nervous system remains to be explored. In support of this 

possibility a previous study has demonstrated peripheral nerve abnormalities in patients 

with the p.C121W mutation [18]. If such a role proves true it could also be important for 

the cardiac arrhythmia phenotype as a proportion of patients with Brugada syndrome 

demonstrate a reduction in sympathetic innervation of the heart [16, 33].  

In conclusion, my graduate work has made a number of important contributions 

to the understanding of the role of sodium channel β subunits in brain development and 

disease. The results from these projects, which will continue in our laboratory, and of the 

proposed human studies promise to bring us closer to targeted and effective therapies 

for patients with SCN1B mutations and to a better understanding of VGSC physiology. 

Undoubtedly, many new questions will also arise. But we look forward both to pursuing 

those new challenges and continuing to apply them for the benefit of our patients. 
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