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ABSTRACT

A novel method to evaluate the trajectory dynamics of low-thrust spacecraft is

developed. Using a two-body Newtonian model, the spacecraft thrust vector com-

ponents are represented by Fourier series in terms of eccentric anomaly, and Gauss’s

variational equations are averaged over one orbit to obtain a set of secular equations.

These secular equations are a function of 14 of the thrust Fourier coefficients, re-

gardless of the order of the original Fourier series, and are sufficient to determine a

low-thrust spiral trajectory with significantly reduced computational requirements as

compared with integration of the full Newtonian problem.

This method is applied to orbital targeting problems. The targeting problems

are defined as two-point boundary value problems with fixed endpoint constraints.

Average low-thrust controls that solve these problems are found using the averaged

variational equations and a cost function represented also as a Fourier series. The

resulting fuel costs and dynamic fidelity of the targeting solutions are evaluated.

Low-thrust controls with equivalent average trajectory dynamics but different

thrust profiles are also studied. Higher-order control coefficients that do not affect the

average dynamics are used to reduce fuel costs and transform time-varying controls

into controls with constant thrust arcs, which can be implemented more easily by

low-thrust propulsion systems.

These methods have applications to low-thrust mission design and space situa-

tional awareness. Example problems based on past missions and potential future

scenarios demonstrate the effectiveness of these methods.
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CHAPTER 1

Introduction

Low-thrust propulsion systems offer an efficient option for many interplanetary

and Earth orbit missions. Advances in electric propulsion have made low-thrust

engines a growing trend in the spacecraft industry over the past few decades. The

Deep Space 1, SMART-1, Hayabusa, and Dawn missions have demonstrated this

technology, and it is slated for launch on the LISA Pathfinder and BepiColombo

missions, among others. With high specific impulse and long engine lifetimes, low-

thrust propulsion is well-suited for many applications, including orbit transfers and

interplanetary missions.

Trajectory design and control of low-thrust spacecraft, however, remain difficult

problems. The general continuous-thrust problem requires integration of the Newto-

nian equations of motion for the trajectory, which may comprise hundreds of orbits

and is highly sensitive to small changes in the thrust profile. Analytical solutions

exist for several special cases of low-thrust orbit transfer problems, such as Forbes’s

spiral[1], the logarithmic spiral [1, 2, 3], the exponential sinusoid [4], constant radial or

circumferential thrust [5, 6, 7], Markopoulos’s Keplerian thrust arcs [8], Lawden’s spi-

ral [9], and Bishop and Azimov’s spiral [10]. The calculus of variations [11] and direct

optimization methods [12] have also been used to determine optimal low-thrust con-

trol laws within certain constraints. Several methods for open-loop, minimum-time

transfers [13, 14, 15] and optimal transfers using Lyapunov feedback control [16, 17]

also exist. Averaging methods, in combination with other approaches, have proven
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effective in overcoming sensitivities to small variations in initial orbit and thrust pro-

file [18, 19, 20, 21]. Yet all of these solutions remain limited to certain regions of the

thrust and orbital parameter space.

The focus of this dissertation is a novel method to evaluate the effect of low-thrust

propulsion on spacecraft orbit dynamics with minimal constraints. Using a two-body

Newtonian model, we represent each component of the thrust acceleration as a Fourier

series in eccentric anomaly, and then average Gauss’s variational equations over one

orbit to define a set of secular equations. The equations are a function of only 14 of

the thrust Fourier coefficients, regardless of the order of the original Fourier series.

Thus the continuous control is reduced to a set of 14 parameters.

With the addition of a small correction term to eliminate offsets of the averaged

trajectory due to initial conditions, the averaged secular equations are sufficient to

determine a low-thrust trajectory. This is verified by comparison of the averaged

trajectory dynamics with the fully integrated Newtonian equations of motion for

several example acceleration functions.

This method has applications to orbital targeting problems. Two-point boundary

value problems are solved using an iterative method that converges to the minimum-

norm set of the 14 force Fourier coefficients. Problems involving sequences of target

states are also solved by either finding the optimal set of control coefficients between

each pair of states or by fitting a single set of control coefficients to the entire or-

bit transfer using a least-squares approach. The resulting fuel costs and dynamic

fidelity of the targeting solutions are evaluated. These methods require significantly

reduced computing resources compared to integration of the full Newtonian equations

of motion.

We also make use of the acceleration Fourier coefficients that do not appear in

the averaged secular equations. These coefficients are of higher order than the 14 key

coefficients, and they do not affect the fundamental trajectory dynamics. Thus, they

2



can be used to modify a calculated control to meet implementation requirements or

further reduce fuel costs without altering the trajectory. To demonstrate this concept,

several methods are developed to transform a time-varying control into a step control.

Most current low-thrust spacecraft engines are able to operate over a range of

thrust levels, but operators of these systems often prefer to minimize switching be-

tween throttle points. Therefore a control law based on constant thrust arcs is de-

sirable. We present several methods for selecting higher-order Fourier coefficients to

create a constant-thrust control law with average trajectory dynamics equivalent to

those of a variable-thrust control. Extensions of these methods to fuel cost reduction

are also discussed.

Trajectory analysis using the reduced Fourier coefficients has several potential

fields of application, including mission design and space situational awareness (SSA).

Mission designers could use the averaged secular equations to efficiently estimate

control laws for a large number of potential orbital paths, to compare fuel costs and

other trajectory characteristics, and to estimate the feasibility and cost of proposed

deviations from a selected path. In SSA applications, observers could reconstruct

the orbital path of a suspected low-thrust spacecraft from a few discrete observations

to identify the fundamental characteristics of the control law used, estimate fuel

consumption, and predict the future trajectory. The different methods developed

for solving orbital targeting problems and calculating equivalent control laws have

different strengths and weaknesses that make them appropriate, respectively, for these

different applications.

The method has certain limits of applicability. The averaged secular equations are

developed only for the restricted two-body model; other gravitational perturbations

or spacecraft mass effects must be considered separately. The thrust acceleration

must be able to be represented by a Fourier series, as is true for almost any physical

system. The resulting controls are periodic in eccentric anomaly, unless the control

3



Fourier coefficients are changed from orbit to orbit. Trajectories that include circular

orbits present analytical challenges that are also discussed.

1.1 Contributions

The primary contributions of this research are:

• Development of a method to evaluate the average trajectory dynamics of low-

thrust spacecraft with minimal constraints on the thrust and orbital parameter

space.

• Development of efficient methods to find average solutions to low-thrust orbital

targeting problems and evaluate the resulting fuel costs.

• Development of methods to transform time-varying trajectory controls into con-

trols with lower fuel costs or constant thrust arcs for better implementation by

existing low-thrust propulsion systems.

1.2 Relevant Publications

The following publications are related to the subject matter of this dissertation.

• J. Hudson, D. Scheeres, “Reduction of Low-Thrust Continuous Controls for

Trajectory Dynamics,” Journal of Guidance, Control, and Dynamics, Vol. 32,

No. 3, pp. 780-787, 2009.

• J. Hudson, D. Scheeres, “Orbital Targeting and Trajectory Optimization us-

ing the Reduced Eccentric Anomaly Low-Thrust Coefficients,” submitted to

Journal of Guidance, Control, and Dynamics.

• J. Hudson, D. Scheeres, “Equivalent Average Trajectory Dynamics using the

Reduced Low-Thrust Coefficients,” AIAA/AAS Astrodynamics Specialist Con-

ference, Toronto, ON, August 2010, AIAA-2010-7829.
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• J. Hudson, D. Scheeres, “Determination of Fundamental Low-Thrust Control

Frequencies for Fitting Sequences of Orbital States,” AIAA/AAS Space Flight

Mechanics Meeting, San Diego, CA, February 2010, AAS 10-213.

• J. Hudson, D. Scheeres, “Trajectory Optimization Using the Reduced Eccen-

tric Anomaly Low-Thrust Coefficients,” AIAA/AAS Astrodynamics Specialist

Conference, Honolulu, HI, August 2008, AIAA-2008-6617.

• J. Hudson, D. Scheeres, “Reduction of Low Thrust Continuous Controls for Tra-

jectory Dynamics,” AIAA/AAS Astrodynamics Specialist Conference, Mack-

inac Island, MI, August 2007, AAS 07-345.
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CHAPTER 2

Averaged Variational Equations

2.1 Variational Equations

We consider a spacecraft of negligible mass in orbit about a central body, which

is assumed to be a point mass. The spacecraft is subject to a continuous thrust

acceleration of potentially varying magnitude and direction. The spacecraft trajectory

can be described by the Newtonian equations of motion

~̇r = ~v, (2.1)

~̇v = − µ
r3
~r + ~F , (2.2)

where ~r is the position vector, ~v is the velocity vector, and µ is the standard grav-

itational parameter of the central body. The thrust acceleration vector ~F can be

resolved along the radial, normal, and circumferential directions,

~F = FRr̂ + FW ŵ + FS (ŵ × r̂) , (2.3)

where r̂ = ~r
|~r| and ŵ = ~r×~v

|~r×~v| .

The Newtonian equations can be decomposed into the Lagrange Planetary Equa-

tions, which describe the time rate of change of the classical orbit elements of a body

subject to the perturbations FR, FW , and FS. The Gauss form of the Lagrange
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Planetary Equations [22] is

da

dt
= 2

√
a

µ

[
FR

ae√
1− e2

sin ν + FS
a2
√

1− e2

a (1− e cosE)

]
, (2.4)

de

dt
=

√
a

µ

√
1− e2 [FR sin ν + FS (cos ν + cosE)] , (2.5)

di

dt
=

√
a

µ

(1− e cosE)√
1− e2

FW cos (ν + ω) , (2.6)

dΩ

dt
=

√
a

µ

(1− e cosE)√
1− e2

FW sin (ν + ω) csc i, (2.7)

dω

dt
=

√
a

µ

√
1− e2

e

[
−FR cos ν + FS

(
1 +

1− e cosE

1− e2

)
sin ν

]
− cos i

dΩ

dt
, (2.8)

dε1
dt

= −2

√
a

µ
(1− e cosE)FR +

(
1−
√

1− e2
)(dω

dt
+
dΩ

dt

)
+2
√

1− e2 sin2

(
i

2

)
dΩ

dt
. (2.9)

In these equations, a is the semi-major axis, e is the eccentricity, i is the inclination,

Ω is the longitude of the ascending node, ω is the argument of periapsis, ν is the true

anomaly, and E is the eccentric anomaly. The element ε1 is used to determine the

mean anomaly, M ,

M =

∫
n dt+ ε1 − (Ω + ω) , (2.10)

where n is the mean motion.

In the modeling and simulation of low-thrust spacecraft orbits, both the Newto-

nian equations and the Gauss equations provide identical results. The Gauss equa-

tions are often preferred for clear visualization of the orbit over time.

2.2 Fourier Series Expansion of Control

Given an arbitrary thrust acceleration vector ~F , each of its components can be

represented as a Fourier series over an arbitrary, finite time interval. The properties

7



of Fourier series are described in Appendix A. This representation is reasonable for

almost any low-thrust spacecraft control, as the Fourier series of a function converges

to the periodic extension of the function itself for nearly all physical systems.

The Fourier series of the acceleration vector components can be expanded in time

or in a time-varying orbital parameter, such as true anomaly, eccentric anomaly,

or mean anomaly. Letting θ represent this arbitrary parameter, the acceleration

component Fourier series on the interval (0, L) are

FR ∼
∞∑
k=0

[
αR,θk cos

(
2πkθ

L

)
+ βR,θk sin

(
2πkθ

L

)]
, (2.11)

FW ∼
∞∑
k=0

[
αW,θk cos

(
2πkθ

L

)
+ βW,θk sin

(
2πkθ

L

)]
, (2.12)

FS ∼
∞∑
k=0

[
αS,θk cos

(
2πkθ

L

)
+ βS,θk sin

(
2πkθ

L

)]
. (2.13)

The acceleration function ~F is thus defined by the coefficients α
(R,W,S),θ
k and β

(R,W,S),θ
k .

2.3 Averaged Variational Equations

We begin the first-order averaging analysis by assuming a thrust acceleration vec-

tor that is specified over one orbit period (L = 2π) with a sufficiently low magnitude

that the size and shape of the orbit do not change significantly over one orbit. There-

fore, we can average the Gauss equations over one orbit period with respect to mean

anomaly to find equations for the mean orbit elements,

ȯ =
1

2π

2π∫
0

ȯ dM, (2.14)
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where o represents any orbit element. The 2π periodic acceleration slightly simplifies

the Fourier series and coefficient definitions,

FR ∼
∞∑
k=0

[
αR,θk cos kθ + βR,θk sin kθ

]
, (2.15)

FW ∼
∞∑
k=0

[
αW,θk cos kθ + βW,θk sin kθ

]
, (2.16)

FS ∼
∞∑
k=0

[
αS,θk cos kθ + βS,θk sin kθ

]
, (2.17)

where

α
(R,W,S),θ
0 =

1

2π

2π∫
0

F (θ) dθ, (2.18)

α
(R,W,S),θ
k =

1

π

2π∫
0

F (θ) cos (kθ) dθ, (2.19)

β
(R,W,S),θ
k =

1

π

2π∫
0

F (θ) sin (kθ) dθ. (2.20)

At this point, the choice of orbital parameter for the thrust acceleration vector

components’ Fourier series expansion becomes significant. If the acceleration compo-

nents are expanded as Fourier series in true anomaly and the independent parameter

for the averaging is likewise transformed to true anomaly, the resulting secular equa-
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tions become quite lengthy. For example, the equation for semi-major axis becomes

ȧ =
1

2π

2π∫
0

ȧdM

=
1

2π

(
1− e2

) 3
2

2π∫
0

ȧ

(1 + e cos ν)2dν

=
1

π

√
a

µ

(
1− e2

) 2π∫
0

[
FR

ae sin ν

(1 + e cos ν)2 + FS
a

1 + e cos ν

]
dν

=
1

π

√
a

µ

(
1− e2

) 2π∫
0

[( ∞∑
k=0

αR,νk cos kν + βR,νk sin kν

)
ae sin ν

(1 + e cos ν)2

+

(
∞∑
k=0

αS,νk cos kν + βS,νk sin kν

)
a

1 + e cos ν

]
dν. (2.21)

Note that the denominator (1 + e cos ν)k can be expanded as the cosine series

1

(1 + e cos ν)k
=
∞∑
i=0

bki (e) cos iν. (2.22)

Thus in the true anomaly expansion, each averaged equation contains integrals

of products of sine and cosine series. Resolved into secular equations, each equation

contains the full Fourier series for each acceleration direction. Even more complicated

results are found if the expansion and averaging are carried out in mean anomaly.

However, if the acceleration vector components are expanded as Fourier series

in eccentric anomaly and the averaging is carried out with eccentric anomaly as

the independent parameter, the problematic denominators are eliminated, as dM =

(1− e cosE) dE. The averaged Gauss equation for any orbital element is thus given

by

ȯ =
1

2π

2π∫
0

(1− e cosE) ȯ dE. (2.23)

Applying this, the averaged Gauss equations with respect to eccentric anomaly can

10



be stated as

ȧ =
1

π

√
a3

µ

2π∫
0

[
FRe sinE + FS

√
1− e2

]
dE, (2.24)

ė =
1

2π

√
a

µ

√
1− e2

2π∫
0

[
FR
√

1− e2 sinE

+FS

(
2 cosE − 3

2
e− 1

2
e cos 2E

)]
dE, (2.25)

i̇ =
1

2π

√
a

µ

1√
1− e2

2π∫
0

FW

[ (
1 + e2

)
cosω cosE − 3

2
e cosω −

√
1− e2 sinω sinE

−1

2
e cosω cos 2E +

1

2
e
√

1− e2 sinω sin 2E

]
dE, (2.26)

Ω̇ =
1

2π

√
a

µ

csc i√
1− e2

2π∫
0

FW

[√
1− e2 cosω sinE +

(
1 + e2

)
sinω cosE − 3

2
e sinω

−1

2
e
√

1− e2 cosω sin 2E − 1

2
e sinω cos 2E

]
dE, (2.27)

ω̇ =
1

2π

√
a

µ

1

e

2π∫
0

[
− FR

(√
1− e2 cosE − e

√
1− e2

)
+FS

((
2− e2

)
sinE − 1

2
e sin 2E

)]
dE − cos iΩ̇, (2.28)

ε̇1 = − 1

π

√
a

µ

2π∫
0

(1− e cosE)2 FR +
(

1−
√

1− e2
)(

ω̇ + Ω̇
)

+2
√

1− e2 sin2

(
i

2

)
Ω̇. (2.29)

Henceforth we do not write the superscript θ = E for the Fourier coefficients, as all

thrust acceleration Fourier series are expanded in eccentric anomaly.

Substituting the Fourier series for the thrust vector components, Equations 2.15

11



- 2.17, into the averaged Gauss equations leads to the orthogonality conditions,

L∫
0

cosnx cosmxdx =


0, n 6= m,

L
2
, n = m 6= 0,

L, n = m = 0,

(2.30)

L∫
0

sinnx sinmxdx =

 0, n 6= m, n = 0, or m = 0,

L
2
, n = m 6= 0.

(2.31)

This orthogonality eliminates all but the 0th, 1st, and/or 2nd order coefficients of each

thrust acceleration Fourier series. Therefore, the averaged secular Gauss equations

are

ȧ = 2

√
a3

µ

[
1

2
e βR1 +

√
1− e2 αS0

]
, (2.32)

ė =

√
a

µ

√
1− e2

[
1

2

√
1− e2 βR1 + αS1 −

3

2
e αS0 −

1

4
e αS2

]
, (2.33)

i̇ =

√
a

µ

1√
1− e2

[
1

2

(
1 + e2

)
cosω αW1 −

3

2
e cosω αW0 −

1

2

√
1− e2 sinω βW1

−1

4
e cosω αW2 +

1

4
e
√

1− e2 sinω βW2

]
, (2.34)

Ω̇ =

√
a

µ

csc i√
1− e2

[
1

2

√
1− e2 cosω βW1 +

1

2

(
1 + e2

)
sinω αW1 −

3

2
e sinωαW0

−1

4
e
√

1− e2 cosω βW2 −
1

4
e sinω αW2

]
, (2.35)

ω̇ =

√
a

µ

1

e

[
−1

2

√
1− e2 αR1 + e

√
1− e2 αR0 +

1

2

(
2− e2

)
βS1 −

1

4
eβS2

]
− cos i Ω̇, (2.36)

ε̇1 =

√
a

µ

[(
−2− e2

)
αR0 + 2eαR1 −

1

2
e2αR2

]
+(

1−
√

1− e2
)(

ω̇ + Ω̇
)

+ 2
√

1− e2 sin2

(
i

2

)
Ω̇. (2.37)

The average rates of change of the orbital elements a, e, i, Ω, ω, and ε1 are only

dependent on the 14 Fourier coefficients αR0 , αR1 , αR2 , βR1 , αS0 , αS1 , αS2 , βS1 , βS2 , αW0 ,
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αW1 , αW2 , βW1 , and βW2 , regardless of the order of the original thrust acceleration

Fourier series.

The assumption of a thrust acceleration vector specified over only one orbit period

is not necessary; the same averaging method can be used with acceleration functions

specified over other periods by substituting Equations 2.11 - 2.13 and A.2 - A.4 and

averaging the Gauss equations over the full interval. An example of this is presented

in Section 2.4. In general, when L = mπ, the 0th, m
2

-th, and m-th coefficients remain,

with fractional indices required in the Fourier series when m is not an even integer.

However, the averaging assumption may become less valid for aperiodic controls of

long duration, for which the orbit changes significantly from start to finish.

2.4 Agreement with Newtonian Equations

To verify the averaged secular equations, we first consider a simple control: a step

acceleration function in the circumferential direction only, with two burns and coast

arcs as pictured in Figure 2.1. The Fourier series for this step function is determined

Figure 2.1: Step circumferential acceleration
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by Equations 2.18 - 2.20

FS =
∞∑
k=0

αSk cos (kE) + βSk sin (kE) , (2.38)

αS0 =
1

2π

2π∫
0

FSdE =
1

2
, (2.39)

αSk =
1

π

2π∫
0

FS cos (kE) dE = 0, (2.40)

βSk =
1

π

2π∫
0

FS sin (kE) dE =

 −
4
kπ
, k = 2, 6, 10, ...,

0, otherwise.
(2.41)

Figure 2.2 compares this Fourier series, numerically evaluated up to order 100,

to the series of only the five terms that appear in the averaged secular equations.

There is considerable variation between these two representations of the periodic step

acceleration control. In this section, all dimensions are normalized to a standard

gravitational parameter µ = 1, so figure units are not stated.

Figure 2.3 describes the osculating orbital elements of an example spacecraft sub-

jected to these thrusts. Equations 2.32 - 2.37 with αS0 , αS1 , αS2 , βS1 , and βS2 of the

two-step acceleration profile above were integrated using a Runge-Kutta method to

estimate the trajectory over 10 orbits. For comparison, the Newtonian equations

(Equations 2.1 and 2.2) were also integrated using the Fourier series up to order 100.

The two methods determined very similar orbital trajectories.

14



Figure 2.2: Fourier series approximations of step circumferential acceleration

Figure 2.3: Orbital element trajectory due to step circumferential acceleration
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Another case of interest is acceleration with constant magnitude but varying di-

rection, as on a spacecraft with one gimbaled thruster. As an example of this case, we

consider an acceleration that oscillates sinusiodally between the radial and circum-

ferential directions, as shown in Figure 2.4. The Fourier series for the components

of this acceleration vector are immediate: αR1 = 1, αS0 = 1, αS1 = −1, and all other

coefficients are zero.

Figure 2.4: Constant-magnitude acceleration

Figure 2.5 shows the trajectory resulting from this acceleration, as determined by

both the Newtonian equations and the averaged secular equations. Again, there is

close agreement between the two methods.
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Figure 2.5: Orbital element trajectory due to constant-magnitude acceleration

Next, we consider a more complex control. Figures 2.6 - 2.8 describe the trajectory

of a system whose thrust acceleration Fourier coefficients were randomly selected up

to order 10 within the range (-2.5e-7, 2.5e-7). Figure 2.6 compares the time histories

of the osculating orbital elements as determined by both methods. We note that

there is close agreement between the Newtonian equations and the averaged secular

equations for the first several orbits. In the later orbits there is some drift, most

noticeable in mean anomaly and argument of periapsis, due to higher order effects

not captured in the averaging process and to mismatch between the average initial

conditions and the secular initial conditions. Correction of this drift is addressed in

Section 2.5.

Figure 2.7 compares one component of this acceleration vector over three orbits

with the first five terms of its Fourier series expansion, i.e. the terms which appear

in the secular equations.
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Figure 2.6: Orbital element trajectory due to randomly-generated acceleration

Figure 2.7: Normal component of randomly-generated acceleration
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Figure 2.8 shows the eccentric anomaly over the 15-orbit timespan. Note that the

eccentric anomaly shifts slightly as the nominal orbit evolves. This implies that the

original control has a changing time variation as the orbit evolves, even though the

coefficients may stay constant.

Figure 2.8: Eccentric anomaly of trajectory due to randomly-generated acceleration

Figures 2.9 and 2.10 show an example of the same method applied to a control

with a period longer than 2π. In this example, the acceleration function is defined

on the interval (0, 6π), with randomly-selected Fourier coefficients up to order 10

in the range (-2.5e-8, 2.5e-8) and dimensions normalized to µ = 1 as above. The

14 coefficients that remain in the averaged secular equations in this case are αR0 ,

αR3 , αR6 , βR3 , αS0 , αS3 , αS6 , βS3 , βS6 , αW0 , αW3 , αW6 , βW3 , and βW6 . Figure 2.9 shows the

osculating orbital elements over 20 orbits. Figure 2.10 shows the normal component

of the acceleration vector and the first five terms of its Fourier series over the first

nine orbits, or the first three cycles of the periodic acceleration.
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Figure 2.9: Orbital element trajectory due to randomly-generated acceleration with
period 6π

Figure 2.10: Normal component of randomly-generated 6π periodic acceleration
vector over nine orbits
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2.5 Offset Correction

Average trajectories calculated using Equations 2.32-2.37 show the correct trends

in the evolution of the osculating orbital elements, and are reasonable approximations

of the true trajectories. However, they may be offset from the true averages and may

diverge from true trajectories over many orbits. This may be partially due to higher

order effects not captured in the averaging method, but it may also be due to non-

trivial periodic components, which can shift the mean value of the state from the

initial condition. This initial condition offset can be corrected by the addition of an

averaged periodic term to the initial conditions of the averaged secular equation for

each orbital element.

At any time t, the true value of any orbital element o, can be expressed as the

sum of an initial condition o0, a secular term ȯt and a periodic term op (t),

o (t) = o0 + ȯt+ op (t) . (2.42)

The periodic term repeats itself over each orbit. The average value of the orbital

element over one orbit is thus

o = o0 +
T

2
ȯ+ op, (2.43)

where T is the period, ~x is a vector of the six orbital elements, and ȯ = f(~x) represents

Equations 2.32-2.37.

The time derivative of Equation 2.42 provides a differential equation for the peri-

odic term,

ȯp = f(~x, t)− f(~x), (2.44)

where o (t) = f(~x, t). We substitute the nominal inital condition ~x0 for the true

orbital element vector, knowing that the corrections are of higher order, and perform
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the quadrature for op,

op =

t∫
0

f (~x0, τ) dτ − f ( ~x0) t. (2.45)

This periodic term can be averaged over one orbit,

op =
1

2π

2π∫
0

 t∫
0

f (~x0, τ) dτ − f (~x0) t

 dM. (2.46)

For compatibility with the form of the Gauss equations above, the independent pa-

rameters of the two integrals are shifted to eccentric anomaly,

op =
1

2π

2π∫
0

 E∫
E0

1

n
(1− e cosE ′) f ( ~x0, E

′) dE ′

 (1− e cosE) dE

−π
n
f ( ~x0) , (2.47)

where n =
√

µ
a3 is the mean motion. Note that π

n
= T

2
. This expression for op can be

substituted into Equation 2.43 to determine the average value of the orbital element

over the first period,

o = o0 +
1

2π

2π∫
0

 E∫
E0

√
a3

µ
(1− e cosE ′) f ( ~x0, E

′) dE ′

 (1− e cosE) dE. (2.48)

To correct the initial conditions for the averaged secular equations, Equation 2.47

is substituted into Equation 2.42 at t = 0. The averaged secular equations, thus

initialized, yield a more accurate average of the true periodic trajectory,

o (0) = o0 +
1

2π

2π∫
0

 E∫
E0

1

n
(1− e cosE ′) f (~x,E ′) dE ′

 (1− e cosE) dE

−T
2
f (~x) . (2.49)
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To calculate the averaged periodic correction term, we substitute the Fourier series

in eccentric anomaly for the acceleration component terms in the Gauss equations.

To avoid infinite series in the solution, we include only the 14 terms of the Fourier

series whose coefficients appear in the averaged secular equations, as they have been

shown to have the most significant effect on the trajectory dynamics. Assuming zero

eccentric anomaly initial conditions, the correction terms are

ap =
a3

µ

[
e
[
(2 + e)αR0 +

1

2
αR1 −

(
1

2
e+

2

3

)
αR2 + πβR1

]
+
√

1− e2
[
2παS0

+(2 + e)βS1 + βS2

]]
− T

2
ȧ(~x0), (2.50)

ep =
1

2

a2

µ

[
(1− e2)

[
(2 + e)αR0 +

1

2
αR1 −

(
1

2
e+

2

3

)
αR2 + πβR1

]
+
√

1− e2
[
− 3eπαS0 + 2παS1 −

1

2
eπαS2 +

(
1− 5

4
e2 − 8

3
e

)
βS1

+

(
−5

8
e+

8

3

)
βS2

]]
− T

2
ė(~x0), (2.51)

ip =
1

2

a2

µ

1√
1− e2

[
αW0

[√
1− e2 sinω

(
−1− 1

2
e

)
− 3πe cosω

]
+αW1

[
π cosω

(
1 + e2

)
+
√

1− e2 sinω

(
2

3
e+

1

4
e2 − 1

2

)]
+αW2

[√
1− e2 sinω

(
2

3
+

5

8
e

)
− 1

2
πe cosω

]
+βW1

[
cosω

(
1

2
− 8

3
e− 3

4
e2

)
− π
√

1− e2 sinω
]

+βW2

[
cosω

(
4

3
− 9

8
e+

4

3
e2 +

1

2
e3

)
+

1

2
πe
√

1− e2 sinω
]]

−T
2
i̇(~x0), (2.52)
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Ωp =
1

2

a2

µ

csc i√
1− e2

[
cosω

√
1− e2

[
αW0

(
2 +

1

2
e

)
+ αW1

(
−1

4
e2 +

1

2
− 2

3
e

)
+αW2

(
−5

8
e− 2

3

)
+ πβW1 −

1

2
eπβW2

]
+ sinω

[
παW1

(
1 + e2

)
− 7

2
πeαW2

+βW1

(
1

2
− 8

3
e− 3

4
e2

)
+ βW2

(
4

3
− 9

8
e+

4

3
e2 +

1

2
e3

)]]
− T

2
Ω̇(~x0),(2.53)

ωp =
1

2

a2

µ

1

e

[
αS0

(
4− 3

2
e− 2e2 − e3

)
+ αS1

(
π − 2

3
e− 3

4
e2

)
+αS2

(
−4

3
− 9

8
e+

2

3
e2 +

1

2
e3

)
πβS1

(
2− e2

)
− 1

2
πβS2 + 2eπ

√
1− e2αR0

−π
√

1− e2αR1 + βR1
√

1− e2

(
−1

2
+ 2e+ e2

)]
− cos iΩp

+
T

2
Ω̇(~x0)− T

2
ω̇(~x0), (2.54)

ε1p = −a
2

µ

[
παR0

(
2 + e2

)
− 2πeαR1 +

1

2
πe2αR2 + βR1

(
2− e+

2

3
e2

)]
+
(

1−
√

1− e2
) [
ωp + Ωp +

T

2
ω̇(~x0) +

T

2
Ω̇(~x0)

]
+2
√

1− e2 sin2 i

2

[
Ωp +

T

2
Ω̇(~x0)

]
− T

2
ε̇1(~x0). (2.55)

Figure 2.11 shows the effect of these corrections on the system with randomly-

selected Fourier coefficients in Figure 2.6. The corrected initial conditions shift the

estimated average trajectory to more accurately reflect the true average trajectory.

They also can reduce the divergence between the true and average trajectories, most

noticeably in the plot of mean anomaly. Some drift remains, however, due to higher

order effects. This can be seen in the argument of periapsis; the corrected trajectory

closely approximates the average of the Newtonian trajectory over the first few orbits,

but diverges as higher-order effects accumulate over several orbits.
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Figure 2.11: Orbital element trajectory due to randomly-generated acceleration with
short-period offset correction. The original trajectory is the same as in Figure 2.6

2.6 Nonsingular Equations

Equations 2.32-2.37 contain singularities in the case of zero eccentricity or in-

clination, due to singularities in the Gauss equations. To avoid these singularities

when evaluating trajectories that closely approach circular or equatorial orbits, we

substitute the nonsingular variables

h1 = e sin ω̃, (2.56)

k1 = e cos ω̃, (2.57)

h2 = sin i sin Ω, (2.58)

k2 = sin i cos Ω. (2.59)
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We can return to the classical orbit elements from these variables using the reverse

transformations

ω̃ = tan−1

(
h1

k1

)
, (2.60)

e =
√
h2

1 + k2
1, (2.61)

Ω = tan−1

(
h2

k2

)
, (2.62)

i = sin−1

(
h2

sin Ω

)
= sin−1

(
k2

cos Ω

)
, (2.63)

ω = ω̃ − Ω. (2.64)

We find the averaged differential equations for the nonsingular variables using the

same approach as above,

ḣ1 = ė sin ω̃ + ˙̃ωe cos ω̃

=
1

2π

2π∫
0

(1− e cosE) ḣ1dE. (2.65)
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The equations for e, i, Ω, and ω are thus replaced by

ḣ1 =
na2

µ

[
e
√

1− e2 cos ω̃αR0 −
1

2

√
1− e2 cos ω̃αR1 +

1

2

(
1− e2

)
sin ω̃βR1

e√
1− e2

cos ω̃ tan
i

2

[
− 3

2
e sinωαW0 +

1

2

(
1 + e2

)
sinωαW1

−1

4
e sinωαW2 +

1

2

√
1− e2 cosωβW1 −

1

4
e
√

1− e2 cosωβW2

]
−3

2
e
√

1− e2 sin ω̃αS0 +
√

1− e2 sin ω̃αS1 −
1

4
e
√

1− e2 sin ω̃αS2

+
1

2
cos ω̃

(
2− e2

)
βS1 −

1

4
e cos ω̃βS2

]
, (2.66)

k̇1 =
na2

µ

[
− e
√

1− e2 sin ω̃αR0 +
1

2

√
1− e2 sin ω̃αR1 +

1

2

(
1− e2

)
cos ω̃βR1

e√
1− e2

sin ω̃ tan
i

2

[3

2
e sinωαW0 −

1

2

(
1 + e2

)
sinωαW1

+
1

4
e sinωαW2 −

1

2

√
1− e2 cosωβW1 +

1

4
e
√

1− e2 cosωβW2

]
−3

2
e
√

1− e2 cos ω̃αS0 +
√

1− e2 cos ω̃αS1 −
1

4
e
√

1− e2 cos ω̃αS2

−1

2
sin ω̃

(
2− e2

)
βS1 +

1

4
e sin ω̃βS2

]
, (2.67)

ḣ2 =
na2

µ
√

1− e2

[
(cos i sin Ω cosω + cos Ω sinω)

[
− 3

2
eαW0 +

1

2

(
1 + e2

)
αW1

−1

4
eαW2

]
+ (− cos i sin Ω cosω + cos Ω cosω)

[1

2

√
1− e2βW1

−1

4
e
√

1− e2βW2

]]
, (2.68)

k̇2 =
na2

µ
√

1− e2

[
(cos i cos Ω cosω − sin Ω sinω)

[
− 3

2
eαW0 +

1

2

(
1 + e2

)
αW1

−1

4
eαW2

]
+ (cos i cos Ω cosω + sin Ω sinω)

[
− 1

2

√
1− e2βW1

+
1

4
e
√

1− e2βW2

]]
. (2.69)
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We can also use the substitution [23]

e = sinφ, (2.70)

1

e
=

tan φ
2

1−
√

1− e2
, (2.71)

to rewrite the equation for ε1,

ε̇1 =
na2

µ

[(
−2− e2 + e

√
1− e2 tan

φ

2

)
αR0 +

1

2

(
4e−

√
1− e2 tan

φ

2

)
αR1

−1

2
e2αR2 +

tan i
2√

1− e2

[
− 3

2
e sinωαW0 +

1

2

(
1 + e2

)
sinωαW1

−1

4
e sinωαW2 +

1

2

√
1− e2 cosωβW1 −

1

4
e
√

1− e2 cosωβW2

]
+ tan

φ

2

[1

2

(
2− e2

)
βS1 −

1

4
eβS2

]]
. (2.72)

These substitutions are effective for near-zero eccentricity and inclination. How-

ever, we find innacuracies when integrating trajectories that pass through exactly

circular orbits, indicating that the averaging analysis must be reconsidered for this

case.

2.7 Circular Orbits

When the method described in Section 2.6 is used to model circular orbits, two

problems can occur. First, the eccentricity vector becomes undefined in the exactly

circular case, which prevents most of the orbital elements from being calculated cor-

rectly. To resolve this, a different coordinate frame can be used to define the ec-

centricity vector and its normal, such as the line of nodes, its normal in the ecliptic

plane, and the vertical, as shown by the vectors â, b̂, and ẑ in Figure 2.12.

Second, in highly perturbed problems, as the spacecraft approaches a circular

orbit it may be captured at periapsis or apoapsis, causing the eccentric anomaly to
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Figure 2.12: Alternate coordinate frame for circular orbits (â,b̂,ẑ)

enter a period of libration. This phenomenon is shown in Figures 2.13 and 2.14. In

these cases, the averaging assumptions described in Section 2.3 are violated, as the

eccentric anomaly does not complete a full 360◦ cycle. To work with these problems,

we can perform the averaging over the quantity E + ω, so that the motion of the

spacecraft always follows an orbit-like path from an inertial perspective.
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Figure 2.13: Trajectory as orbit approaches circular. The spacecraft stops completing
full revolutions after about 14 orbits.

Figure 2.14: Eccentric anomaly as orbit approaches circular. The eccentric anomaly
enters a period of libration as the spacecraft stops completing full orbits.
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In the following analysis, we implement both of these solutions. We also consider

another set of state variables to avoid singularities and simplify the equations of

motion. Here we use a state vector with seven elements: the eccentricity vector ~e, the

angular momentum vector ~h, and the scalar energy E . Beginning with the definition

of the eccentricity vector,

~e =
1

µ
~v × (~r × ~v)− ~r

|~r|
, (2.73)

we find the time derivative such that this equation takes the form of the Gauss

equations,

~̇e =
∂~e

∂~v
· ~F

=
1

µ
[2~r~v − ~v~r − (~r · ~v)U ] · ~F . (2.74)

Assuming the orbit is nearly circular, we make the approximations

~r ≈ rR̂, (2.75)

~v ≈ vŜ. (2.76)

Therefore, Equation 2.74 can be stated as

~̇e =
rv

µ

(
2FSR̂− FRŜ

)
. (2.77)

To match the averaging variable, we redefine the Fourier series for the thrust vector

components,

FR, FW , FS =
∞∑
i=0

[
α̃i

(R,W,S) cos i (E + ω) + β̃i
(R,W,S)

sin i (E + ω)
]
. (2.78)

Using trigonometric identities, it can be shown that these “tilde” Fourier coefficients
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are related to the original coefficients by the equations

α̃i = αi cos (iω)− βi sin (iω) , (2.79)

β̃i = αi sin (iω) + βi cos (iω) . (2.80)

We then make the circular approximation E ≈ ν, so the independent variable of

both the averaging and the Fourier series becomes the argument of latitude, θ = ν+ω.

Thus, the averaged secular equation for the eccentricity vector is

~̇e =
1

2π

2π∫
0

rv

µ

[
2
∞∑
i=0

(
α̃i
S cos i (θ) + β̃i

S
sin i (θ)

)
R̂

−
∞∑
i=0

(
α̃i
R cos i (θ) + β̃i

R
sin i (θ)

)
Ŝ

]

=
h

µ

[(
α̃S1 cos Ω− β̃S1 cos i sin Ω +

1

2
α̃R1 cos i sin Ω +

1

2
β̃R1 cos Ω

)
x̂

+

(
α̃S1 sin Ω−+β̃S1 cos i cos Ω− 1

2
α̃R1 cos i cos Ω +

1

2
β̃R1 sin Ω

)
ŷ

+

(
β̃S1 sin i− 1

2
α̃R1 sin i

)
ẑ

]
. (2.81)

The vectors x̂ and ŷ can be converted to the vectors â and b̂ shown in Figure 2.12 by

the relations

â =
ẑ × ~h
|ẑ × ~h|

= cos Ωx̂+ sin Ωŷ, (2.82)

b̂ = ẑ × â = − sin Ωx̂+ cos Ωŷ. (2.83)

The same process can be used to find the averaged secular equations for the angular
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momentum vector and the energy,

~̇h = r
(
FSŴ − FW Ŝ

)
, (2.84)

~̇h = r

[(
α̃S0 sin i sin Ω +

1

2
β̃W1 cos Ω +

1

2
αW1 cos i sin Ω

)
x̂

+

(
−α̃S0 sin i cos Ω +

1

2
β̃W1 sin Ω− 1

2
αW1 cos i cos Ω

)
ŷ

+

(
α̃S0 cos i− 1

2
αW1 sin i

)
ẑ

]
, (2.85)

Ė =
h

r
FS, (2.86)

Ė =
h

r
α̃S0 . (2.87)

Equations 2.81, 2.85, and 2.87 were used to calculate the trajectory shown in

Figures 2.16 - 2.17. The initial state in this example is a circular orbit, which would

be problematic for the standard formulation of the averaged secular equations. The

dimensions in this example represent a low-thrust spacecraft in low Earth orbit.

Because of the circular orbit assumptions described above, these equations are

only appropriate for cases where the eccentricity is close to zero. For long-duration

simulations where the orbit is near-circular during part of the trajectory, hand-off

between Equations 2.32 - 2.37 and Equations 2.81, 2.85, and 2.87 can be performed

as necessary.
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Figure 2.15: Alternate state variable trajectory for initially-circular problem. This
example has an initial condition of zero eccentricity, so the averaged secular equations
for ~E, ~h, and E were used to calculate the trajectory.

Figure 2.16: Classical orbital element trajectory for initially-circular problem. The
average trajectory was calculated using the averaged secular equations for ~E, ~h, and
E , then converted to the classical orbital elements shown.
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Figure 2.17: 3D trajectory for initially-circular problem
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CHAPTER 3

Orbital Targeting

The averaged secular variational equations provide an efficient means of solving

low-thrust orbit transfer problems. Any spacecraft targeting problem with a time

span sufficient to allow low-thrust transfer can theoretically be solved by numerical

integration of the averaged equations and iterative evaluation of the 14 thrust Fourier

coefficients.

We primarily consider orbital targeting problems with fixed endpoint constraints.

These problems take the form of two-point boundary value problems in which a

spacecraft must transfer from an initial state to a final state, each defined by six

orbital elements, in a fixed amount of time.

The averaged equations solve these problems for the secular orbital elements.

These solutions will not precisely agree with the true spacecraft trajectory, as calcu-

lated by the Newtonian equations of motion, due to the short period offsets between

them. However the secular solutions are useful approximations, as they represent

the average of the full solution. They may be used to estimate flight requirements,

such as velocity increment and fuel consumption, or to initialize other optimization

methods to determine the true optimal trajectory.

3.1 Two-Point Boundary Value Problems

We approach the targeting problem in the averaged equations as a two-point

boundary value problem with given initial state ~x0, final state ~xf , and transfer time
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T . The equations of motion have the form

~̇x = G (~x) ~α + F (~x) , (3.1)

where ~x is the state vector of orbital elements, ~α is the 14×1 vector of thrust Fourier

coefficients that appear in the averaged secular equations, and F (~x) accounts for the

additional mean motion term in the differential equation for mean anomaly,

~x =



a

e

i

Ω

ω

M


, ~α =



αR0

αR1

αR2

βR1

αS0

αS1

αS2

βS1

βS2

αW0

αW1

αW2

βW1

βW2



, ~F =



0

0

0

0

0

n


.

The term G (~x) ~α represents Equations 2.32 - 2.37.

Solutions to these problems involve only the secular orbital elements. The true

trajectory, as calculated by the Newtonian equations, does not match these solutions

exactly due to the short period offsets. Nonetheless, these secular solutions accurately

represent the averaged dynamics of the true trajectory and are thus useful for many
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applications.

We assume an initial control that does not meet the targeting objectives,

~xf 6= ~x (T, ~α0, ~x0) . (3.2)

We then add a small adjustment to ~α0 to make the state at time T equal to the final

state,

~xf = ~x (T, ~α0 + δ~α, ~x0) . (3.3)

We expand this as its first-order Taylor series approximation,

~x (T, ~α, ~x0) ≈ ~x (T, ~α0, ~x0) +
∂~x

∂~α
· δ~α, (3.4)

where ~α = ~α0 + δ~α, and solve for
(
∂~x
∂~α

)
δ~α,

(
∂~x

∂~α

)
δ~α = (~xf − ~x (T, ~α0, ~x0)) . (3.5)

However, this problem has an infinity of possible solutions as there are 14 free variables

in ~α and only 6 constraint equations. We therefore add an additional constraint,

imposing that we choose the one solution that minimizes a cost function J(~α).

The problem then becomes a constrained minimization problem, which can be

solved by defining a generalized cost function that includes the boundary value con-

straints multiplied by a Lagrange multiplier vector,

J = J (~α) + ~λ [~x (T, ~α, ~x0)− ~xf ] . (3.6)

Here the Langrange multiplier ~λ is represented as a six-dimensional row vector. The
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necessary condition to minimize J(~α) and satisfy the boundary conditions is

∂J

∂
(
~α,~λ

) = [0]20x1 =

 ∂J
∂~α

+ ~λ ∂~x
∂~α

~x (T, ~α, ~x0)− ~xf

 . (3.7)

We again replace ~x (T, ~α, ~x0) with its Taylor series approximation, Equation 3.4.

For clarity, let ∂~x
∂~α

= Ψ. To evaluate this matrix, we take the partial derivative of

Equation 3.1 with respect to ~α,

∂

∂~α

(
~̇x
)

=

[
∂ ~F

∂~x
+ ~α

∂G

∂~x

](
∂~x

∂~α

)
+G (~x) . (3.8)

We ignore the ~α∂G
∂~x

term, which is small compared to G (~x), assuming that the per-

turbing thrust coefficients are small. We then have an equation of the form

Ψ̇ (t) =
∂ ~F (t)

∂~x
Ψ (t) +G (~x (t)) , (3.9)

Ψ (0) = 0. (3.10)

Noting that the matrix ∂ ~F
∂~x

has only one nonzero element, we solve the homogeneous
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system,

Ψ̇h =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−3
2
n
a

0 0 0 0 0


Ψ, (3.11)

Ψh(t) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

−3
2
n
a
t 0 0 0 0 1


Ψ0 = Φ(t)Ψ0, (3.12)

Φ (0) = I, (3.13)

where Φ = ∂~x
∂ ~x0

is the orbital element transition matrix.

Using the standard procedure, we find the particular solution, then sum the ho-

mogeneous and particular solutions at t = 0 to find the general solution,

Ψ (t) = Φ (t)

t∫
0

Φ−1 (τ)G (~x (τ)) dτ. (3.14)

This expression for Ψ can be used to find the solution to the necessary conditions

(3.7). Beginning with the zero thrust case, we iteratively update the thrust coefficient

vector ~α = ~α0 + δ~α by solving the two simultaneous vector equations,

∂J

∂~α ~α+δ~α
+ ~λ ·Ψ = 0, (3.15)

~x (T, ~α0, ~x0) + Ψ · δ~α− ~xf = 0. (3.16)
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We assume a cost function of the form

J (~α) =
1

2π

2π∫
0

f
(
~F
)
dM, (3.17)

where ~F represents the force due only to the 14 relevant terms in the component

Fourier series. We evaluate this total cost over one orbit, which agrees with the

averaging result. Thus, this is proportional to the average cost of the given control.

If the integrand of the cost function is represented as a Fourier series,

f
(
~F
)

=
∞∑
j=0

aj cos (jE) + bj sin (jE) , (3.18)

and the independent variable of integration is shifted to eccentric anomaly, only the

first two terms of the Fourier series remain,

J (~α) =
1

2π

2π∫
0

[
∞∑
j=0

aj cos (jE) + bj sin (jE)

]
(1− e cosE) dE

= a0 −
e

2
a1. (3.19)

By the definition of Fourier coefficients,

a0 =
1

2π

2π∫
0

f
(
~F
)
dE, (3.20)

a1 =
1

2π

2π∫
0

f
(
~F
)

cos (E) dE. (3.21)

To evaluate Equation 3.15, we need the partial derivative ∂J(~α)
∂~α

, which has the

form

∂J (~α)

∂~α
=

∂a0

∂~α
− e

2

∂a1

∂~α
. (3.22)
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This partial derivative can be evaluated numerically for most cost functions and may

be evaluated analytically for certain simple cost functions. First, we consider the cost

function J(~α) representing the minimum of the norm of the acceleration vector for

the targeting problem, which is the total velocity increment of the thrust over one

orbit. We assume a negligible rate of mass loss such that this is the average thrust

per orbit,

J (~α) =
1

2π

2π∫
0

√
F 2
R + F 2

S + F 2
WdM. (3.23)

Equations 3.20 and 3.21 become

a0 =
1

2π

2π∫
0

√
F 2
R + F 2

S + F 2
WdE, (3.24)

a1 =
1

2π

2π∫
0

√
F 2
R + F 2

S + F 2
W cos (E) dE. (3.25)

However, the the partial derivatives of these coefficients are difficult to evaluate ana-

lytically and are undefined in the zero thrust case,

∂a0

∂~α
=

1

4π

2π∫
0

∂
∂~α

(F 2
R + F 2

S + F 2
W )√

F 2
R + F 2

S + F 2
W

dE, (3.26)

∂a0

∂~α
=

1

4π

2π∫
0

∂
∂~α

(F 2
R + F 2

S + F 2
W ) cos (jE)√

F 2
R + F 2

S + F 2
W

dE. (3.27)

To avoid this problem, we consider a different cost function J (~α), the square of

the norm, representing the minimum energy solution,

J (~α) =
1

2π

2π∫
0

(
F 2
R + F 2

S + F 2
W

)
dM. (3.28)
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This cost function allows us to find an upper bound on the velocity increment, ∆V ,

per unit time. For our control, the ∆V between two time periods, t0 and t0 + δt, is

∆V =

t0+δt∫
t0

‖~u(t)‖dt

=

t0+δt∫
t0

√
F 2
R + F 2

S + F 2
Wdt. (3.29)

From the Cauchy-Schwarz inequality [24],

t0+δt∫
t0

√
F 2
R + F 2

S + F 2
Wdt ≤

√√√√√ t0+δt∫
t0

(√
F 2
R + F 2

S + F 2
W

)2

dt ·
t0+δt∫
t0

dt

≤

√√√√√ t0+δt∫
t0

(F 2
R + F 2

S + F 2
W ) dt · δt. (3.30)

Therefore, ∆V is bounded by

∆V ≤
√

2δt
√
J (~α). (3.31)

The orthogonality conditions lead to a simple expression for Equation 3.20. To

simplify Equation 3.21, we note that the square of each force vector component is

a finite sum of products of two elements of ~α and two sines or cosines of iE, where

i = 0, 1, or 2. Using trigonometric identities, each product can be represented as a

sum of sines and cosines of jE, where j = 0, 1, 2, 3, or 4. Thus the orthogonality

conditons can be applied again,

a0 =
1

2

(
~α · ~α +

(
αR0
)2

+
(
αS0
)2

+
(
αW0
)2
)
, (3.32)

a1 = 2αR0 α
R
1 + αR1 α

R
2 + 2αS0α

S
1 + αS1α

S
2 + βS1 β

S
2 + 2αW0 α

W
1

+αW1 α
W
2 + βW1 βW2 . (3.33)
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Now the partial derivative ∂J(~α)
∂~α

is straightforward to evaulate analytically,

∂J (~α)

∂~α
= ~α

(
Q− 1

2
eZ

)
, (3.34)

where

Q =


q4×4 0

q5×5

0 q5×5


14×14

, (3.35)

q4×4 =



2 0

1

1

0 1


, q5×5 =



2 0

1

1

1

0 1


,

Z =


z4×4 0

z5×5

0 z5×5


14×14

, (3.36)

z4×4 =



0 2 0 0

2 0 1 0

0 1 0 0

0 0 0 0


, z5×5 =



0 2 0 0 0

2 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0


.

Equations 3.15 and 3.16 can now be solved to iteratively update ~α:

δ~α = −
(
Q− 1

2
eZ

)−T
ΨTλT − ~α0, (3.37)

λT =

[
Ψ

(
Q− 1

2
eZ

)−T
ΨT

]−1

(~x (T ; ~α, ~x0)− ~xf −Ψ ~α0) . (3.38)
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The initial condition offset corrections described in Chapter 2 improve the accu-

racy of the targeting algorithm. We initialize the algorithm with zero thrust, then use

the Fourier coefficients calculated in each iteration to correct the initial state of the

subsequent iteration. Thus each integration of the averaged equations has a slightly

different initial conditon which more closely approximates the average of the desired

transfer trajectory. The initial condition of the jth iteration is

~x0(j) =



a0 + ap(j − 1)

e0 + ep(j − 1)

i0 + ip(j − 1)

Ω0 + Ωp(j − 1)

ω0 + ωp(j − 1)

ε10 + ε1p(j − 1)


. (3.39)

This method converges to a set of 14 Fourier coefficients that describes a con-

trol that solves the targeting problem in the averaged secular equations. The true

trajectory under this control, as determined by the Newtonian equations, generally

compares well to the averaged trajectory.

An example of the targeting methodology applied to a transfer in five orbital

elements is shown below. Table 3.1 shows the initial and final states of the boundary

value problem, between which the spacecraft must transfer. The targeting algorithm

was initialized with the zero thrust case and terminated when the thrust coefficients

changed by less than 0.1% between iterations. This occurred after twelve iterations.

The final ~α is shown in Table 3.2 and the transfer trajectory is shown in Figures 3.1

and 3.2.

The true spacecraft trajectory, as calculated by the Newtonian equations of mo-

tion, doesn’t match the secular solution exactly due to the short period offsets between

them. In solving these two-point boundary value problems, we solve only for the sec-
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ular orbital elements, so precise agreeement with the Newtonian equation solutions

is not expected.

Table 3.1: Initial and target states for 2PBVP targeting example

Initial State Final State

a (km) 6800 7000

e 0.2 0.25

i (deg.) 20 25

Ω (deg.) 20 25

ω (deg.) 20 25

M (deg.) 0 0

Table 3.2: Final force Fourier coefficients after twelve iterations for 2PBVP targeting
example

Radial Normal Circumferential

αR0 -174.069 αS0 -0.922 αW0 27.367

αR1 916.653 αS1 -1817.659 αW1 207.469

αR2 22.645 αS2 2.999 αW2 16.777

βR1 -43.777 βS1 -42.195 βW1 607.177

βS2 402.234 βW2 47.261
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Figure 3.1: 3D trajectory after twelve iterations for 2PBVP targeting example

Figure 3.2: Orbital element trajectory after twelve iterations for 2PBVP targeting
example
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This method can also be used to solve more complex targeting problems involving

sequences of two or more target states. A lengthy orbit transfer may be approached

as a series of two-point boundary value problems and the optimal set of control

coefficients may be calculated between each pair of states.

An example of this targeting through a series of states is shown below. The

target points, shown in Table 3.3, approximately reflect the states of the SMART-1

spacecraft in the early days of its mission1. These states occur at fixed times over

approximately 80 orbit periods.

Table 3.3: Target states for SMART-1 example

Time (h) a (km) e i (deg.) Ω (deg.) ω (deg.) M (deg.)

Initial State 0 26433 0.671 6.915 160.315 194.821 3.136

Target 1 155.833 26825 0.662 6.907 158.793 197.752 3.138

Target 2 342.702 27815 0.640 6.871 157.153 200.66 3.128

Target 3 487.163 28713 0.622 6.861 156.084 202.442 3.142

Target 4 680.502 29745 0.604 6.838 154.886 204.387 3.143

Target 5 853.156 30235 0.598 6.848 153.996 205.839 3.142

Target 6 1017.363 31380 0.573 6.826 153.178 207.342 3.144

Starting with the given initial state and zero thrust, the vector ~α was iteratively

updated to converge on a control that drives the average trajectory to the first target

point. The first target point was then used as the initial condition for the next two-

point boundary value problem, and so on. The iterative algoirthm for each pair of

states was terminated when the thrust coefficients changed by less than 0.1% between

iterations, which happened after four to six iterations. Figures 3.3 and 3.4 show the

final trajectory. The velocity increment for this orbit transfer is 1300.6 m/s.

1http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=31517&farchive objecttypeid
=30&farchive objectid=30930&fareaid 2=63
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Figure 3.3: 3D trajectory calculated by 2PBVP method for SMART-1 targeting ex-
ample

Figure 3.4: Orbital element trajectory calculated by 2PBVP method for SMART-1
targeting example

49



The average trajectory is continuous throughout the transfer; however, the true

trajectory may have discontinuities at the intermediate target states due to short-

period variations. Figure 3.5 is a detail view of the semi-major axis plot near the

first target state, in which one of these discontinuities can be seen. In this example

problem, we do not include corrections of short-period offsets in the initial conditions,

which would also lead to discontinuities in the trajectory. In practice, these discon-

tinuities would make it impossible to actually implement the trajectory, making this

approach inappropriate for many applications.

Figure 3.5: Detail of discontinuity in 2PBVP method for SMART-1 targeting exam-
ple. This discontinuity in the true trajectory near the first target state is the result
of initializing a new boundary value problem at each intermediate state.

In some cases, however, calculation of the precise trajectory through the target

states is not necessary. In the early stages of mission planning, for example, the

target points may represent general mission goals with some flexibility in the actual

trajectory. This two-point boundary value method may be appropriate for these
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applications.

3.2 Least-Squares Regression

In the second method for fitting sequences of orbital states, we use a least-squares

regression approach for calculating the low-thrust trajectory. Here, we eschew precise

targeting of the states to find a single control for the entire orbit transfer. We approach

the problem using the averaged equations with a given initial state ~x0, a series of N

intermediate target states ~x = [x(t1), x(t2, )..., x(tN)], and a set of times associated

with each target state T = [t1, t2, ..., tN ]. The equations of motion again have the

form of Equation 3.1. To carry this out, we could use a cost function of the form

C (~α) =
1

2

N∑
i=1

[~x(~α, ti)− ~xi] · [~x(~α, ti)− ~xi] . (3.40)

To minimize C (~α), we would use the necessary condition

∂C

∂~α
=

N∑
i=1

[~x(~α, ti)− ~xi]
(
∂~x

∂~α

)
i

= 0. (3.41)

We would replace ~x(~α, ti) with its Taylor series approximation, Equation 3.4, and

then solve Equation 3.41 for δ~α to iteratively converge on a solution

δ~α =

[
N∑
i=1

(~xi − ~x( ~α0, ti))

(
∂~x

∂~α

)
i

][
N∑
i=1

(
∂~x

∂~α

)T
i

(
∂~x

∂~α

)
i

]−1

. (3.42)

However, the second bracketed term in Equation 3.42 is singular in most simula-

tions. This is due to the fact that solutions are not unique, so more than one possible

thrust profile may solve the problem. To resolve this issue, we add another con-

straint: a minimum-energy cost function J (~α) that must be minimized while solving
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the least-squares targeting problem,

J = J (~α) +
N∑
i=1

[~x (~α, ti)− ~xi]w [~x (~α, ti)− ~xi] . (3.43)

We minimize J(~α), the minimum-energy cost funtion defined by Equation 3.28,

while minimizing the least squares difference between ~x (~α, ti) and ~xi. We introduce

the weighting matrix w, a 6×6 matrix of constants that can be independently selected

to normalize numerical differences between variables or emphasize certain elements.

The necessary conditions are

∂J

∂ (~α)
= [0]14x1 =

∂J

∂~α
+

N∑
i=1

[~x (~α, ti)− ~xi]w (Ψ)i . (3.44)

The matrix
(
∂~x
∂~α

)
i

= (Ψ)i is calculated from Equation 3.14. The partial derivative for

the cost function J(~α) is evaluated by Equation 3.34.

To solve Equation 3.44, we replace ~x(~α, ti) with its Taylor series approximation,

Equation 3.4, and iteratively update the thrust coefficient vector, ~α = ~α0 + δ~α,

0 = (~α0 + δ~α)T
(
Q− 1

2
eZ

)
+

N∑
i=1

[~x (~α0, ti) + Ψiδ~α− ~xi]wΨi, (3.45)

δ~α =

[
−~α0

T

(
Q− 1

2
eZ

)
−

N∑
i=1

[~x (~α0, ti)− ~xi]wΨi

][
Q− 1

2
eZ

+
N∑
i=1

ΨT
i wΨi

]−1

. (3.46)

Figures 3.6 and 3.7 show an example of this method applied to the same targeting

problem as in Table 3.3. Beginning from a fixed initial state and with zero initial

thrust, the averaged secular equations were integrated and Equation 3.46 was used

to iteratively calculate the 14 thrust Fourier coefficients. The trajectory shown is the

result after ten iterations of this least-squares targeting method, when the algorithm

52



was terminated because the coefficients changed by a maximum of 0.1% between

iterations.

Figure 3.6: 3D trajectory calculated by least-squares method for SMART-1 targeting
example

The velocity increment for this transfer is 410.3 m/s, less than half the value

calculated by the previous approach. As shown in Figure 3.8, the overall magnitude

of the thrust calculated by the least-squares method is less than that of the two-point

boundary value method for most of the simulation time. Because the least-squares

algorithm was not required to rigidly satisfy all the targeting criteria, it was able to

find a significantly lower-cost solution to the problem.
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Figure 3.7: Orbital element trajectory calculated by least-squares method for
SMART-1 targeting example

Figure 3.8: Comparison of thrust acceleration magnitudes for SMART-1 targeting
example
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The ∆V result from the least-squares approach is comparable to the actual SMART-

1 spacecraft over the same interval. From launch through the final target state of this

simulation, SMART-1 had a ∆V of 665 m/s over 72 days and 946 hours of thrust

time2. This simulation does not include the first 30 days of the mission, during

which the electric propulsion system was used discontinuously, but assumes continu-

ous thrust over the remaining 42 days (1017 hours) without coast arcs.

Both the two-point boundary value method and the least-squares method are

able to calculate trajectories that closely approach each of the target states. Table

3.4 shows the mean difference between the true and calculated average value of each

orbital element over the six targets. The two-point boundary value method is very

accurate, but requires a different control for each segment of the trajectory and in-

cludes discontinuities. The least-squares method is less accurate, but uses a single

control. The relative accuracy of each variable in the least-squares method can be

adjusted through the weighting parameter w in Equation 3.43; in this solution, mean

anomaly was assigned a weighting value lower than the other orbital elements.

Table 3.4: Mean difference between calculated average state and target state for
SMART-1 targeting example. The values shown are the average over the six target
states of the difference between the target and the average trajectory.

a (km) e i (deg.) Ω (deg.) ω (deg.) M (deg.)

2PBVP -0.2135e-3 3.0370e-9 -1.5588e-7 -5.8031e-7 8.5762e-7 3.4883e-4

LSQ 31.4609 0.0183 -0.0094 -0.3208 -1.6875 -56.4976

3.3 Targeting in the Non-Singular Equations

Targeting problems that involve near-circular or near-equatorial orbits can be

solved using the nonsingular forms of the averaged secular equations given in Sections

2http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=34361
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2.6 and 2.7. In the case of circular orbits, Equations 2.81, 2.85, and 2.87 are most

effective. The same targeting methods described in Sections 3.1 and 3.2 can be used

with the alternate set of state variables ~e, ~h, and E .

The equations of motion now have the form

~̇x = G̃ (~x) ~̃α, (3.47)

where ~x is the 7 × 1 state vector of orbital elements, G̃ represents the nonsingular

averaged secular equations, and ~̃α is the 14 × 1 vector of redefined thrust Fourier

coefficients given by Equations 2.79 and 2.80,

~x =



E

hx

hy

hz

ex

ey

ez



~̃α =



α̃R0

α̃R1

α̃R2

β̃R1

α̃S0

α̃S1

α̃S2

β̃S1

β̃S2

α̃W0

α̃W1

α̃W2

β̃W1

β̃W2



.
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The vector ~̃α is related to the vector ~α by a matrix A,

~̃α = A~α

=


A4×4 0

A5×5

0 A5×5


14×14

~α, (3.48)

where

A4×4 =



1 0 0 0

0 cosω 0 − sinω

0 0 sin 2ω 0

0 sinω 0 cosω

0 0 sin 2ω 0


, (3.49)

A5×5 =



1 0 0 0 0

0 cosω 0 − sinω 0

0 0 sin 2ω 0 cos 2ω

0 sinω 0 cosω 0

0 0 sin 2ω 0 cos 2ω


. (3.50)

To solve a two-point boundary value targeting problem, we follow the procedure

described in Section 3.1, choosing a cost function J (~α) to be minimized while satis-

fying the boundary conditions. The necessary conditions have the form of Equation

3.7. The matrix Ψ = ∂~x
∂~α

is found using the new equations of motion,

∂

∂~α

(
~̇x
)

= ~α
∂
(
G̃A
)

∂~x
Ψ + G̃ (~x)A. (3.51)

We ignore the ~α
∂(G̃A)
∂~x

term, which is small compared to G̃ (~x)A, assuming that the
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perturbing thrust coefficients are small. We can then integrate the equation

Ψ̇ (t) = G̃ (~x (t))A, (3.52)

Ψ (0) = 0, (3.53)

to calculate Ψ (t) and find the solution to the necessary conditions.

The rest of the two-point boundary value targeting problem takes the same form

as in Section 3.1. Equations 3.37 and 3.38 can be solved with the new value of Ψ to

iteratively update the thrust coefficient vector ~α and converge on a solution to the

targeting problem.

Figures 3.9, 3.10, and 3.11 show an example of this method. The initial state is

an inclined, circular orbit with a radius of 6800 km; the target state is a circular orbit

with a radius of 7000 km in the same plane. The targeting algorithm was terminated

after 15 iterations, when the maximum change in the acceleration coefficients between

iterations was less than 1%.

Figure 3.9: Alternate state variable trajectory for circular targeting example
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Figure 3.10: Classical orbital element trajectory for circular targeting example. The
average trajectory was calculated using the secular equations for ~E, ~h, and E , then
converted to the classical orbital elements shown.

Figure 3.11: 3D trajectory for circular targeting example
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3.4 Targeting in the Newtonian Equations

We may also use the Newtonian equations of motion (Equations 2.1 and 2.2)

to solve targeting problems involving circular or near-circular orbits. By consider-

ing only the 14 acceleration Fourier coefficients that appear in the averaged secular

equations, we reduce the dimensionality of the problem and significantly reduce the

computational effort required to solve the full Newtonian targeting problem. The

equations of motion have the form

~̇x = F0 (~x) + F1 (~x) ~α

=

 ~v

−µ
r3
~r

+

 0

~G

 ~α. (3.54)

The state vector now contains the Cartesian position and velocity, while ~G contains

the position unit vectors and the relevant Fourier series terms,

~x =

 ~r

~v


6×1

, ~G =

[
r̂ r̂ cosE r̂ cos 2E r̂ sinE ...

]
3×14

.

As in the targeting algorithms described above, solutions to Equation 3.54 are

not unique. Therefore, we add an additional constraint, requiring that we choose the

solution that minimizes a cost function J = 1
2
~α ·~α. Following the procedure described

in Section 3.1, we find

Ψ̇ =
∂F0

∂~α
+
∂F1

∂~α
~α + F1. (3.55)

The first and third terms of Equation 3.55 are simple analytical functions, but

the second term is more difficult. Numerical simulations indicate that this term is

not negligible; thus we cannot ignore it in the targeting algorithm and converge on a

solution to the boundary value problem.
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Lacking a convenient analytical form for ∂F1

∂~α
, we instead evaluate the matrix Ψ

using numerical derivatives. We slightly increment each of the 14 Fourier coefficients

in turn to find the columns of Ψ, using the standard formula

f ′ (x) =
f (x+ h)− f (x)

h
. (3.56)

In Sections 3.1 and 3.2, we initialized the targeting algorithms with zero thrust

and they were able to converge on solutions. When we perform the targeting using the

Newtonian equations with initially-circular orbits, the algorithm often requires a non-

zero initial thrust vector in order to converge. We initialize the Fourier coefficients

that appear in the secular equations of the transfer variables of interest with arbitrary

values to speed the convergence.

Figure 3.12: Trajectory calculated by Newtonian equations for one-orbit circular
targeting example

Figure 3.12 shows an example of this targeting method. The semi-major axis of a

circular orbit is increased by 1% over one orbit while keeping all other orbital elements
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constant. The dimensions are normalized to a standard gravitational parameter µ =

1. Due to the large fluctuations in the state vector over each orbit when integrating

the Newtonian equations, multi-orbit problems have more difficulty converging with

this method.

3.5 Error Analysis

The analytical methods developed in this dissertation include assumptions and

approximations that can cause errors in calculating average trajectories and satis-

fying boundary conditions. Figure 2.11 shows an example of error in a trajectory

calculated by the averaged equations compared to the same trajectory calculated

by the Newtonian equations, even after correction of short period offsets. Table 3.4

shows another example of the mean errors in the boundary conditions of a multi-state

targeting problem.

These errors are primarily caused by the averaging assumptions. In the derivation

of the averaged secular equations, we assume that the thrust accelerations are small

enough that the shape and size of the orbit does not change significantly from one

revolution to the next. This assumption is never completely true, and the larger the

thrust accelerations are, the less valid the first-order averaging becomes. The higher-

order terms eliminated by the orthogonality still have a small influence on the average

trajectory, and this effect may result in drift between the true and calculated average

trajectories over many orbits.

Other errors may result from the use of Fourier series to model the thrust accel-

erations. In any function that contains jump discontinuities, for a finite number of

terms, the Gibbs phenomenon causes the Fourier series approximation of the func-

tion near the jump to have large oscillations, which do not vanish as the number of

terms approaches infinity [25]. This effect may not be significant in the analysis and

targeting methods described in Chapters 2 and 3, as these include only the 0th, 1st,
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and 2nd order coefficients of the Fourier series. However, it may affect the methods

in Chapter 4, which use higher-order terms to re-shape the controls. Nonetheless, the

errors associated with Fourier series are reasonably well understood and can usually

be quantified.

In general, this analytical and targeting method involves some sources of error,

which may not be as easily calculated as the errors in other purely computational

approaches. The strengths of this method, however, are its efficiency and its identifi-

cation of fundamental control parameters. In applications that require smaller, quan-

tified errors, this approach could be used to initialize other numerical algorithms.
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CHAPTER 4

Equivalent Average Trajectory Dynamics

Only 14 coefficients of the thrust acceleration Fourier series control the average

trajectory dynamics of the low-thrust spacecraft. However, the other coefficients of

order 3 and higher still affect the shape and frequency of the control itself. They may

be set to zero, or they may be selected to shape the control into a more desirable

form without altering the average trajectory.

In this chapter we explore several approaches for selecting these higher-order co-

efficients. First, they may be selected to reduce the fuel or energy cost of a transfer.

An existence proof of this cost-reduction potential is developed.

The coefficients may also be selected to transform the control into a form that is

more easily implemented by existing low-thrust engines. Current electric propulsion

systems operate on a range of fixed throttle points, and minimal switching is preferred.

Thus it is desirable to transform continuously-varying controls into step functions that

produce equivalent average trajectory dynamics. In some cases, the magnitude of the

total thrust acceleration within the step function can also be made constant, to mimic

the design of a typical spacecraft with one gimbaled low-thrust engine.

4.1 Existence of Equivalent, Lower-Cost Control

In many cases, additional terms in the thrust acceleration Fourier series beyond the

14 key terms can reduce the total cost of the transfer without significantly altering the
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trajectory. The following proves the existence of a lower-cost control for the quadratic

cost function and all controls with nonzero values of α2 or β2.

The quadratic minimum energy cost function is given by Equation 3.28. If the

thrust components FR, FS, and FW represent the acceleration due only to the 14

key coefficients, this cost can be described by Equations 3.19, 3.32, and 3.33. For

simplicity in this cost reduction calculation, we consider only the cosine series of one

directional component of the thrust. This cost, based only on the key coefficients, is

J (~α3) =
1

2

[
~α3 · ~α3 + (α0)2 − e (2α0α1 + α1α2)

]
, (4.1)

where ~α3 = [α0 α1 α2]T .

If the Fourier series is extended up to order N, the cost becomes

J (~αN) =
1

2

[
~αN · ~αN + (α0)2 − e (2α0α1 + α1α2 + ...+ αN−1αN)

]
, (4.2)

where ~αN = [α0 ... αN ]T . The difference between the new cost function and the cost

function for the key-element-only series is

∆J = J (~αN)− J (~α3)

=
1

2

[[
(α3)2 + (α4)2 + ...+ (αN)2]− e (α2α3 + α3α4 + ...+ αN−1αN)

]
(4.3)

If the additional terms are to reduce the energy of the transfer, we must have

∆J < 0. One method for this is term-by-term selection of the additional Fourier

coefficients. Given a nonzero value of α2, we can choose α3 such that

α2
3 − eα2α3 < 0. (4.4)
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That is,

0 < |α3| < e |α2| , (4.5)

where ε is defined such that 0 < ε < 1. Then α3 = eεα2. Continuing in this manner,

we can choose αn such that

αn = (eε)n−2 α2, (4.6)

where n = 1...N , so that each term further reduces ∆J . Now, let N →∞ and define

J ′

J ′ = α2
2 + 2∆J. (4.7)

Substituting Equations 4.3 and 4.6, we can simplify the expression

J ′ =
∞∑
j=0

[
α2
j+2 − eαj+2αj+3

]
=

∞∑
j=0

[
(eε)2j − (eε)2j+2

ε

]
α2

2

=
α2

2

1− (eε)2

[
1− e2ε

]
, (4.8)

where the final simplification is based on the fact that for any w < 1,

∞∑
j=0

wj =
1

1− w
. (4.9)

We can now solve Equation 4.7 to find the total reduction in transfer energy for a
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given choice of ε and infinite additional terms in the Fourier series,

∆J = −1

2
α2

2

e2

1− (eε)2 (1− ε) . (4.10)

Thus a lower-cost control exists for all controls with α2 6= 0. This method can be

extended to select terms of the full sine and cosine series of each directional component

of the force, assuming αR2 , βR1 , αS2 , βS2 , αW2 , and βW2 are nonzero.

In practice, this method generally results in very small reductions in total energy

cost. Other methods may be developed to improve or optimize the coefficient selection

methodology for greater cost reductions.

4.2 Coefficient Selection for Constant Thrust Arcs

The higher-order thrust acceleration Fourier coefficients may also be used to shape

a control function for improved implementation. We begin with a set of 14 control

coefficients that accomplish an orbital transfer of interest. These coefficients may be

the average solution to a targeting problem found by one of the methods in Chapter

3. Without additional terms, this control can be realized as a time-varying thrust

acceleration.

By adding higher-order terms, we can change the control to a series of constant

thrust arcs, which are easier for low-thrust engines to implement, without altering the

average trajectory dynamics. In most cases we can uniquely solve for a set of thrust

acceleration amplitudes and on/off times that produce a trajectory that is equivalent

to the original orbit transfer.

There are many possible ways to perform these shaping transformations. As the

number of degrees of freedom increase, the shape solution becomes more useful for

implementation, but the problem complexity increases. Table 4.1 summarizes the

shape transformations that are considered in this chapter.
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Table 4.1: Control shaping overview

Control Shape Degrees of Freedom Coefficients

One Step 3 (per thrust direction) α0, α1, β1

Two Steps 5 (per thrust direction) α0, α1, α2, β1, β2

Three Constant-Magnitude
Steps (planar)

10 αR0 , αR1 , αR2 , βR1 , (βR2 ),
αS0 , αS1 , αS2 , βS1 , βS2

Four Constant-Magnitude
Steps (3D)

14 all

4.3 Equivalent Control Function: One Step

As a simple case for an initial analysis, we choose a function shape with only one

step per orbit. We begin by considering the step function pictured in Figure 4.1.

Figure 4.1: One-step circumferential acceleration

This function is defined by three parameters: A, E1, and E2, or equivalently, A,
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∆E = E2 − E1, and E = E1+E2

2
. The Fourier series for this function is defined by

F =
∞∑
k=0

αk cos (kE) + βk sin (kE) , (4.11)

α0 =
1

2π

E2∫
E1

AdE, (4.12)

αk =
1

π

E2∫
E1

A cos (kE) dE, (4.13)

βk =
1

π

E2∫
E1

A sin (kE) dE. (4.14)

The 0th, 1st, and 2nd order coefficients are fixed by the targeting requirements. For

simplicity in this initial analysis, we consider only the 0th and 1st order coefficients

in a single-direction force,

α0 =
1

2π

E2∫
E1

AdE =
A

2π
∆E, (4.15)

α1 =
1

π

E2∫
E1

A cos (kE) dE =
2A

π
cosE sin

(
∆E

2

)
, (4.16)

β1 =
1

π

E2∫
E1

A sin (kE) dE =
2A

π
sinE sin

(
∆E

2

)
. (4.17)

We can re-write these equations

E = tan−1

(
β1

α1

)
, (4.18)

α2
1 + β2

1 =

(
2A

π

)2

sin2

(
∆E

2

)
, (4.19)

α0 =
A

2π
∆E, (4.20)
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and find that Equations 4.19 and 4.20 lead to the equation

∆E − 4α0√
α2

1 + β2
1

sin

(
∆E

2

)
= 0. (4.21)

Equation 4.21 is plotted in Figure 4.2 for various values of the coefficient c = − 4α0√
α2

1+β2
1

.

For a solution to exist, c must be less than approximately -2.

Figure 4.2: Equation 4.21, plotted for a range of values of c

Assuming the values of α0, α1, and β1 from the targeting control are such that

c < −2, we can solve for A, ∆E, and E and use these values in Equations 4.12-4.14

to generate higher-order coefficients for the force Fourier series.

Figures 4.3 and 4.4 show an example of this method. In this example, the Fourier

coefficients for the original circumferential thrust acceleration were chosen to make c <

−2 and the resulting trajectory was determined using both the Newtonian equations

of motion and averaged secular equations (plotted in blue and red, respectively).

Then, the above approach was used to re-calculate Fourier coefficients from order 2
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to 100 and the resulting trajectories were again determined using both the Newtonian

and averaged secular equations (plotted in black and green, respectively). As shown

in Figure 4.3, the two different controls lead to the same trajectory.

This method is effective, but its applicability is limited by the c < −2 restriction.

Also, the significant coefficients α2 and β2 are neglected, which may cause disparities

between the trajectories due to the original and transformed controls, particularly

over long time spans. (This re-calculating of α2 and β2 causes the difference between

the red and green plots in Figure 4.3).

Figure 4.3: Orbital element trajectories due to “equivalent” initial and one-step con-
trols, circumferential thrust only
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Figure 4.4: Initial, continuously-varying circumferential thrust acceleration and its
“equivalent” one-step acceleration

4.4 Equivalent Control Function: Two Steps

To avoid the limitations and inaccuracies of the one-step approach, we consider

a step function shape with five defining parameters, to match the maximum number

of significant coefficients in each of the force directions. The function in Figure 4.5 is

defined by A, E1, E2, E3, and E4 or, equivalently, A, ∆E1 = E2 − E1, E1 = E1+E2

2
,

∆E2 = E4 − E3, E2 = E3+E2

4
.

Figure 4.5: Two steps of same magnitude (opposite sign) and different duration
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As above, the 0th, 1st, and 2nd order Fourier coefficients for this function are

fixed by the original control,

α0 =
A

2π
(∆E1 −∆E2) , (4.22)

α1 =
2A

π

(
cosE1 sin

∆E1

2
− cosE2 sin

∆E2

2

)
, (4.23)

β1 =
2A

π

(
sinE1 sin

∆E1

2
− sinE2 sin

∆E2

2

)
, (4.24)

α2 = =
A

π

(
cos 2E1 sin ∆E1 − cos 2E2 sin ∆E2

)
, (4.25)

β2 =
A

π

(
sin 2E1 sin ∆E1 − sin 2E2 sin ∆E2

)
. (4.26)

By definition, there are several constraints on the angles, which can be used to

find constraints between the coefficients and the amplitude,

0 ≤ ∆Ei ≤ 2π, (4.27)

0 ≤ Ei ≤ 2π, (4.28)

−2π ≤ ∆E1 −∆E2 ≤ 2π, (4.29)

where i = 1, 2. From these, and allowing A to be positive or negative, the coefficients

are limited by

− |A| ≤ α0 ≤ |A|, (4.30)

−|A| ≤ πα1

4
≤ |A|, (4.31)

−|A| ≤ πβ1

4
≤ |A|, (4.32)

−|A| ≤ πα2

2
≤ |A|, (4.33)

−|A| ≤ πβ2

2
≤ |A|. (4.34)

These relations dictate a minimum magnitude of A in order for real solutions to
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exist. To solve Equations 4.22-4.26 using a numerical method, a useful starting guess

is A = max{α0,
πα1

4
, πβ1

4
, πα2

2
, πβ2

2
} or A = min{α0,

πα1

4
, πβ1

4
, πα2

2
, πβ2

2
}, whichever is

largest in magnitude.

As the magnitude of A increases beyond this minimum, the relative sizes of the

pulses must decrease, according to Equation 4.22. The relations

α2
1 + β2

1 =

(
2A

π

)2
[

sin2 ∆E1

2
+ sin2 ∆E2

2

−2 cos
(
E1 − E2

)
sin

∆E1

2
sin

∆E2

2

]
, (4.35)

α2
2 + β2

2 =

(
A

π

)2
[

sin2 ∆E1 + sin2 ∆E2

−2 cos 2
(
E1 − E2

)
sin

∆E1

2
sin

∆E2

2

]
(4.36)

may also be useful in choosing initial guesses for the unknown parameters.

Figures 4.6 - 4.8 show an example of this method. The initial control was the so-

lution to a targeting problem in which the out-of-plane orbital elements were changed

over three revolutions by thrust in the normal direction only. Matlab’s fsolve function

was used to solve Equations 4.22 - 4.26, initialized with guesses based on the relations

described above. The coefficients of the step control were then calculated up to order

100.
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Figure 4.6: Orbital element trajectories due to “equivalent” inital and two-step
controls, normal thrust only

Figure 4.7: Initial, continuously-varying normal thrust acceleration and its “equiva-
lent” two-step acceleration, plotted versus time
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Figure 4.8: Initial, continuously-varying normal thrust acceleration and its “equiva-
lent” two-step acceleration, plotted versus eccentric anomaly

This approach transforms the control into an “equivalent” step control. The

velocity increment, ∆V , for the orbit transfer with the original control was 834.5

m/s. The ∆V for the transfer with the step control was 761.1 m/s, an 8.8% decrease.

Solutions have been found to exist for most cases when the initial control is the

solution to a targeting problem. In some cases, multiple solutions for A, E1,2, and

∆E1,2 can be found, although these different solution sets usually describe the same

step function. For example, in the single-direction thrust case shown above, two sets

of solutions were found for the parameters of the step function. These two solutions

are shown in Table 4.2. Both sets lead to the same values for the Fourier coefficients;

thus they describe the same step control.

Figures 4.9 - 4.12 show another example of this method. In this example, the initial

control was the solution to a targeting problem in which all six orbital elements were

changed over three revolutions. Each directional component of the control was then

transformed into a two-step control with equivalent average trajectory dynamics.
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Table 4.2: Two sets of solutions that describe the same two-step control in the normal
thrust example above

Solution 1 Solution 2

A(m/s2) 0.0811 0.0811

E1(deg.) 41.2071 0.8144

E1(deg.) 136.9942 179.0149

∆E1(deg.) 149.6394 65.5979

∆E2(deg.) 210.0291 125.9820

Figure 4.9: Orbital element trajectories due to “equivalent” inital and two-step
controls, 3D thrust
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Figure 4.10: Initial, continuously-varying 3D thrust acceleration and its “equivalent”
two-step acceleration, plotted versus time

Figure 4.11: Initial, continuously-varying normal 3D acceleration and its “equivalent”
two-step acceleration, plotted versus eccentric anomaly

78



Figure 4.12: Total thrust acceleration of 3D thrust example. This plot shows the to-
tal thrust acceleration,

√
F 2
W + F 2

R + F 2
S , after each directional component was trans-

formed into a two-step control. If one engine were to implement this control profile,
considerable throttling would still be required.

This approach effectively transforms each directional component of the control

into an “equivalent” step control. The velocity increment, ∆V , for the orbit transfer

with the original control was 2320.6 m/s. The ∆V for the transfer with the step

control was 2436.5 m/s, a 5% increase. Simulations indicate that transformation to

a step control in this manner usually results in a decrease or small increase in ∆V .

4.5 Constant-Magnitude Control

These transformations to equivalent controls are motivated by the operational

profiles of low-thrust propulsion systems. The method described in the previous

section transforms each directional component of the control to a step function, which

is a valuable improvement, but does not consider the relations between the directional

components. As shown in Figure 4.12, this can result in a lot of switching for the

spacecraft engine, which must change its thrust direction and magnitude at each
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increment.

A more applicable approach should consider the control for all thrust directions

simultaneously. We consider a control made up of three steps of constant magnitude,

as pictured in Figure 4.13. The direction of the force, λ, stays constant throughout

the step, but may be different for each step. To simplify the calculations, we consider

the case of planar thrust only, as shown in Figure 4.14.

Figure 4.13: Constant-magnitude planar acceleration profile

Figure 4.14: Planar acceleration angle definition

This thrust acceleration profile has 10 unknown parameters: A, E1, E2, E3, ∆E1,

∆E2, ∆E3, λ1, λ2, and λ3.

Using the definitions of Fourier coefficients, we can write equations for the nine key

acceleration coefficients in terms of these unknown parameters (the tenth coefficient,
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αR2 , does not appear in the averaged equations, so we set it to zero). We solve for the

unknowns, then use them to calculate higher-order Fourier coefficients to transform

the control into step form,

αR0 =
A

2π

3∑
i=1

(cos (λi) ∆Ei) , (4.37)

αRk =
2A

kπ

3∑
i=1

(
cos (λi) cos

(
kEi

)
sin

(
k∆Ei

2

))
, (4.38)

βRk =
2A

kπ

3∑
i=1

(
cos (λi) sin

(
kEi

)
sin

(
k∆Ei

2

))
, (4.39)

αS0 =
A

2π

3∑
i=1

(sin (λi) ∆Ei) , (4.40)

αSk =
2A

kπ

3∑
i=1

(
sin (λi) cos

(
kEi

)
sin

(
k∆Ei

2

))
, (4.41)

βSk =
2A

kπ

3∑
i=1

(
sin (λi) sin

(
kEi

)
sin

(
k∆Ei

2

))
, (4.42)

An example of this method is shown below. The initial control was the solution

to a targeting problem in which semi-major axis was increased and eccentricity was

decreased over three orbits while the other orbital elements were held constant. Table

4.3 shows the parameters of the solution step function. Figures 4.15 - 4.17 show the

implementation of this solution.

Table 4.3: Parameters of example constant-magnitude planar step function

A (m/s2) 0.1062 ∆E2 (deg.) 59.8

E1 (deg.) 114.3 ∆E3 (deg.) 62.1

E2 (deg.) 247.8 λ1 (deg.) 167.3

E3 (deg.) 337.4 λ2 (deg.) 185.6

∆E1 (deg.) 181.8 λ3 (deg.) 186.7
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Figure 4.15: Thrust acceleration profile based on step parameters

Figure 4.16: Orbital element trajectories due to “equivalent” inital and planar
constant-magnitude step control
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Figure 4.17: Initial, continuously-varying planar thrust acceleration and its “equiv-
alent” planar constant-magnitude acceleration, plotted versus time

The velocity increment, ∆V , for the orbit transfer with the original control was

1503.8 m/s. The ∆V for the transfer with the constant-magnitude step control was

1515.6 m/s, a 0.79% increase.

To make this method fully general, out-of-plane thrust acceleration should be in-

cluded. This would require a step control defined by 14 parameters with a single

acceleration magnitude and variable thrust direction in three dimensions. Any func-

tion shape that meets these criteria could be used. For example, four steps of the

same magnitude and duration and different angles, as shown in Figure 4.18, could be

defined by the 14 parameters A, E1, E2, E3, E4, ∆E, λ1, λ2, λ3, λ4, φ1, φ2, φ3, and

φ4.

To shape the original control into this form, we would write the equations for the

14 key coefficients in terms of these 14 unknown parameters, solve for the unknowns,

then use them to calculate higher-order Fourier coefficients of the thrust acceleration.
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Figure 4.18: Four steps of constant magnitude and duration, varying direction in 3D

The equations for the 14 coefficients are

αR0 =
A

2π

4∑
i=1

(cos (φi) cos (λi) ∆E) , (4.43)

αRk =
2A

kπ

4∑
i=1

(
cos (φi) cos (λi) cos

(
kEi

)
sin

(
k∆E

2

))
, (4.44)

βRk =
2A

kπ

4∑
i=1

(
cos (φi) cos (λi) sin

(
kEi

)
sin

(
k∆E

2

))
, (4.45)

αW0 =
A

2π

4∑
i=1

(sin (φi) ∆E) , (4.46)

αWk =
2A

kπ

4∑
i=1

(
sin (φi) cos

(
kEi

)
sin

(
k∆E

2

))
, (4.47)

βWk =
2A

kπ

4∑
i=1

(
sin (φi) sin

(
kEi

)
sin

(
k∆E

2

))
, (4.48)
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αS0 =
A

2π

4∑
i=1

(cos (φi) sin (λi) ∆E) , (4.49)

αSk =
2A

kπ

4∑
i=1

(
cos (φi) sin (λi) cos

(
kEi

)
sin

(
k∆E

2

))
, (4.50)

βSk =
2A

kπ

4∑
i=1

(
cos (φi) sin (λi) sin

(
kEi

)
sin

(
k∆E

2

))
, (4.51)

where k = 1, 2 and βR2 = 0.

An example of a control shaped in this manner is shown in Table 4.4 and Figures

4.19 - 4.22. With this control shape, it is common for solutions to Equations 4.43 -

4.51 to exist that do not describe the intended shape. In this example, the solution

∆E = −175.3757◦ is not a realistic value for the width of the thrust intervals, which

leads to overlap of the intervals and changes in the total acceleration magnitude. It

is difficult to find solutions in which this overlap and thrust variation does not occur.

Nonetheless, solutions of this type may still be useful. Despite the changes

in thrust magnitude, these solutions still require less switching than the separate-

direction model described in Section 4.4. In many cases, operators may actually pre-

fer to switch between a few throttle levels and keep the thruster running constantly,

rather than repeatedly shutting down and restarting.

Table 4.4: Parameters of example 3D step function

A (m/s2) 0.0948 λ2 (deg.) 1.3510

E1 (deg.) 11.7876 λ3 (deg.) 7.9511

E2 (deg.) 155.9458 λ4 (deg.) 79.1455

E3 (deg.) 271.8353 φ1 (deg.) 10.4828

E4 (deg.) 348.7416 φ2 (deg.) 29.6743

∆E (deg.) -175.3757 φ3 (deg.) 21.2180

λ1 (deg.) -41.4604 φ4 (deg.) -64.6803
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Figure 4.19: Orbital element trajectories due to “equivalent” inital and 3D step
control

Figure 4.20: Initial, continuously-varying planar thrust acceleration and its “equiv-
alent” 3D acceleration components, plotted versus eccentric anomaly
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Figure 4.21: Total thrust acceleration of 3D step control example

Figure 4.22: Polar plot of acceleration components for 3D step control example
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4.6 Impulsive Controls

This approach can also be used to model the dynamics of spacecraft with impulsive

controls. An impulsive change in velocity may be approximated as a step function, as

shown in Figure 4.1, where ∆E approaches zero. Thus the function to be modeled by

a Fourier series has the shape shown in Figure 4.23. This function can be described

Figure 4.23: Impulsive control

by the delta function,

F (E) = ∆V δ (E − E∆V ) . (4.52)

The Fourier series for this function can be found with Equations A.1 - A.4. For a

function with n impulses, the Fourier coefficients are

α0 =
1

2π

n∑
i=1

∆Vi, (4.53)

αk =
1

π

n∑
i=1

∆Vi cos (kE∆Vi
) , (4.54)

βk =
1

π

n∑
i=1

∆Vi sin (kE∆Vi
) . (4.55)

Figures 4.24 and 4.25 show an example of this type of control. From its initial

orbit, the spacecraft undergoes a ∆V in the circumferential direction of 50 m/s at

E∆V = π
4
.
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Figure 4.24: Fourier series for impulsive thrust acceleration, evaluated up to 100
terms

Figure 4.25: Orbital element trajectory due to impulsive control

89



Equations 4.53 - 4.55 have a specific structure that may be useful for determining

whether an unfamiliar spacecraft has performed an impulsive maneuver. Given two

or more state observations of a spacecraft, we can use one of the targeting methods in

Chapter 3 to determine the 14 coefficients of the average control that connects them.

We can then evaluate the ratios

β
(R,W,S)
1

α
(R,W,S)
1

= tanE∆V , (4.56)

β
(R,W,S)
2

α
(R,W,S)
2

= tan 2E∆V , (4.57)

and solve for E∆V
. If these result in the same value for E∆V

, we can conclude that

the spacecraft performed one impulsive maneuver with a ∆V given by Equation 4.53.

We can also shape a time-varying control into an impulsive control using an ap-

proach similar to the methods described in the previous sections. If we consider each

thrust direction separately, as in Section 4.4, the impulsive control in each direction

must have five degrees of freedom. We choose the control shape shown in Figure 4.26.

Figure 4.26: Three impulses, two of which have the same ∆V

We solve Equations 4.53 - 4.55 with k = 1, 2 for the unknowns, ∆VA, ∆VB, E∆V1 ,

E∆V2 , and E∆V3 , then calculate the Fourier coefficients from order 3 to 100. The

resulting control and trajectory are shown in Figures 4.27 - 4.29. The ∆V of the

original trajectory is 285.9 m/s; the transformed ∆V is 858.7 m/s.
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Figure 4.27: Orbital element trajectories due to “equivalent” initial and impulsive
controls

Figure 4.28: Initial, continuously-varying planar thrust acceleration and its “equiv-
alent” impulsive acceleration, plotted versus time
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Figure 4.29: Total impulsive thrust acceleration. This plot shows the total thrust
acceleration,

√
F 2
W + F 2

R + F 2
S , after each directional component was transformed into

an impulsive control.

In general, an equivalent impulsive trajectory can only be found if the original

control coefficients are relatively small. In these simulations, with low Earth or-

bit initial conditions, the control coefficients had to be less than approximately 100

km/h2 (0.0077 m/s2) in magnitude in order for the extended Fourier series to de-

scribe an impulsive function and for the averaged equations to accurately determine

the trajectory.

Although this limits the applicability of this approach, the ability to represent im-

pulsive ∆V dynamics with the averaged secular equations is still useful for comparing

low-thrust results with traditional impulsive controls.
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CHAPTER 5

Applications

Trajectory analysis using the reduced Fourier coefficients has several potential

fields of application, including mission design and space situational awareness. The

different methods described above for solving orbital targeting problems and calculat-

ing equivalent control laws have different strengths and weaknesses that make them

appropriate, respectively, for these different applications.

The averaged secular equations can be used in low-thrust mission design to eval-

uate the control laws required for desired orbital trajectories. The solutions obtained

from these equations are not, in themselves, optimal, but they satisfy the proposed

targeting problem. Thus, they could serve as useful initial estimates for other opti-

mization methods.

Using the averaged equations, mission planners can efficiently estimate the control

laws for a large number of potential orbital paths, to compare the fuel costs and

other trajectory characteristics. Once a baseline mission profile has been selected,

these equations can be used to quickly determine the feasibility and cost of proposed

deviations from the selected path.

Generally, the two-point boundary value targeting method is best suited for mis-

sion design applications. The precise agreement of the averaged trajectory with the

target states is desirable, and discontinuities in the true trajectory may be inconse-

quential in the early mission planning stages, particularly if the solutions will later be

used to initialize other optimization methods. When the target states represent flex-
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ible objectives, rather than strict targets, the segmented solutions may help mission

designers to shift the target states to lower-cost alternatives. The two-point boundary

value method also converges fastest and doesn’t require the user to define a weighting

matrix, which can be subjective.

Space situational awareness (SSA) problems can also be solved using the averaged

secular equations. Given a few discrete observations of a suspected low-thrust space-

craft, these equations can reconstruct its orbital path and identify the fundamental

characteristics of the control law used. The parameters of an impulsive maneuver

can be determined using Equations 4.53 - 4.55 as described in Section 4.6. If, in-

stead, the spacecraft is found to have performed a low-thrust maneuver, observers

could estimate the amount of fuel remaining and extrapolate to predict the future

trajectory.

The least-squares targeting method is generally most appropriate for SSA prob-

lems. In these cases, precise agreement between the calculated and actual trajectory

may be less important than simply finding a reasonable estimate for the thrust profile

and fuel consumption. The SMART-1 example in Section 3.2 illustrates the process

of reconstructing a trajectory from a few known states using this method. Another

example of an SSA problem is shown below.

Table 5.1 shows a set of four states at which a hypothetical spacecraft has been

observed over six days. The trajectory is approaching the orbit of the International

Space Station. In this scenario, analysts would need to quickly characterize the

spacecraft’s propulsion system and control law and determine its future path.

Figures 5.1 - 5.3 show the results of the least-squares targeting in the averaged

equations through this set of states, using the 14 critical control coefficients. The

targeting alorithm was terminated after four iterations, when the coefficients changed

by less than 0.1% between iterations. The mean difference between the average

trajectory and the target states is shown in Table 5.2. In this simulation, the mean
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Table 5.1: Target states for SSA example

Time (h) a (km) e i (deg.) Ω (deg.) ω (deg.) M (deg.)

Initial State 0 6713.0 0.7842e-3 51.6 234.0 300.6 0

Target 1 28.94 6720.0 0.7841e-3 51.6 234.0 300.6 0.0974

Target 2 62.55 6728.2 0.7867e-3 51.6 234.0 300.3 0.2865

Target 3 90.15 6734.9 0.7936e-3 51.6 234.0 300.0 0.8480

anomaly was given a low weighting value in order to improve the accuracy of the

other orbital elements.

Figure 5.1: Orbital element trajectory calculated by least-squares method for SSA
targeting example
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Figure 5.2: 3D trajectory calculated by least-squares method for SSA targeting ex-
ample

Table 5.2: Mean difference between calculated average state and target state for SSA
example

a (km) e i (deg.) Ω (deg.) ω (deg.) M (deg.)

LSQ 0.0306 -7.3654e-007 2.7486e-007 -7.9385e-004 -0.0368 27.7552
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Figure 5.3: Thrust acceleration magnitude calculated by least-squares methods, 14
coefficients only
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Figures 5.1 and 5.4 - 5.6 show the equivalent constant thrust arc implementation

of this trajectory, using the two-step approach for the normal thrust direction, as

described in Section 4.4, and the planar constant-magnitude approach for the radial

and circumferential directions, as described in Section 4.5. The original ∆V for

this trajectory was 12.5764 m/s; the ∆V for the trajectory with the equivalent step

control, with Fourier series calculated up to order 100, was 12.5729 m/s.

The maximum total thrust acceleration for the step implementation was about

5.2e-5 m/s2, which would require a thrust of about 20.8 mN for a 400 kg spacecraft.

This is well within the thrust capability of existing electric propulsion systems, such

as the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR)

electrostatic ion thruster used on the Deep Space 1 and Dawn missions.

Figure 5.4: Equivalent step thrust acceleration for SSA example, plotted versus time.
Only the first three orbits are plotted, so that the individual steps can be seen.
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Figure 5.5: Equivalent step thrust acceleration for SSA example, plotted versus ec-
centric anomaly

Figure 5.6: Total equivalent step thrust acceleration for SSA example, first three
orbits
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As low-thrust propulsion technology becomes increasingly popular, SSA for low-

thrust spacecraft may become an area of increasing interest. Operators are more

frequently using low-thrust propulsion to place satellites in orbit, creating more op-

portunities for collisions and radio frequency interference as these spacecraft travel

slowly through altitude ranges. The averaged secular equations could provide ana-

lysts with a valuable tool for quickly and accurately assessing unknown low-thrust

objects.
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CHAPTER 6

Conclusions

A novel method was developed to efficiently evaluate the trajectory dynamics

resulting from low-thrust propulsion. The thrust acceleration vector components were

represented as Fourier series in eccentric anomaly, then Gauss’s variational equations

were averaged over one orbit and simplified by the orthogonality conditions. The

resulting secular equations were a function of 14 of the thrust Fourier coefficients,

regardless of the order of the original Fourier series. Thus, a general thrust profile

was reduced to a set of only 14 parameters. Unlike many special-case solutions, this

analytical method is not limited to constant-magnitude or constant-direction thrust.

The averaged variational equations in the 14 coefficients were shown to accurately

determine spiral trajectories resulting from continuous or discontinuous low-thrust

propulsion over many orbits, as compared with numerical integration of the full New-

tonian equations of motion. Offsets of the averaged trajectory due to initial conditions

were corrected by addition of an averaged periodic term. Singularities of the Gauss

equations were addressed with alternate state variables and reference frames.

Orbital targeting problems were solved using the averaged equations. Two meth-

ods, a two-point boundary value method and a least-squares method, were developed

for calculating averaged trajectories for single- or multi-orbit transfers through a fi-

nite number of orbital states. The two-point boundary value method generally results

in closer agreement between the average trajectory and the target states, however it

requires implementation of a new thrust vector for each interval. The calculated
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trajectory may have discontinuities due to short-period offsets of the true trajectory

from the averaged, so this method may not be suitable for applications that require

precise targeting. The least-squares method generally calculates controls with lower

dynamic fidelity, but provides a continuous trajectory.

A time-varying, low-thrust control can be transformed into various other types of

controls by selection of Fourier coefficients that do not affect the fundamental dynam-

ics. The transformed controls lead to spacecraft trajectories with equivalent average

trajectory dynamics. These transformations can reduce the energy cost of an orbit

transfer. They can also reduce the amount of throttling required by the low-thrust

engine, by shaping the control into a step function. In some cases, the magnitude of

the steps may be set constant, such that the control is simply a set of on/off times and

thrust directions. Numerical examples have shown that transformation to equivalent

step controls can increase or decrease the velocity increment required for a given orbit

transfer.

6.1 Future Work

Future work in this area could focus on many interesting applications of the av-

eraged secular equations, particularily in control optimization and shaping. The cost

reduction method described in Section 4.1 is just one example of a method that uses

the Fourier coefficient representation of a low-thrust control to reduce the energy cost

of an orbit transfer. Other methods can likely be developed to further reduce costs.

Likewise, the methods described in Sections 4.3 - 4.5 show several ways that a

control can be shaped into a form with improved implementation properties. These

shaping methods can also increase or decrease the velocity increment of an orbit

transfer. Methods for consistent, simultaneous cost reduction and control shaping

have not yet been developed.

This dissertation describes two key developments that bracket the problem of
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simultaneous control optimization and shaping. First, the output of any optimization

routine can be defined by a set of key coefficients that accurately describe the average

trajectory dynamics. Second, any general orbital targeting problem can be solved as

a two-point boundary value problem and the solution can be transformed into a series

of constant thrust arcs.

These two approaches might be combined into a complete method to optimize an

average trajectory using a realistic control cost. First, a targeting boundary value

problem could be solved as a constrained minimization problem, as described in

Section 3.1. This results in a minimum fundamental average solution: the set of

14 control coefficient that meet the targeting objectives on average while minimizing

the cost function. This solution can then be driven to a minimum implementable

average solution – a control with constant thrust arcs that further minimizes the cost

function – by selection of higher-order Fourier coefficients.

For any continuous thrust vehicle, the minimum-fuel optimal control usually con-

sists of thrusting at the maximum allowable rate while appropriately orienting the

thrust vector. The process of selecting the minimum-energy key coefficients and map-

ping them into the equivalent constant thrust arcs should then produce similar results.

Future work could compare this method to known optimal low-thrust solutions for

specific problems to evaulate this agreement.
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APPENDIX A

Fourier Series

According to Fourier’s theorem, every piecewise-smooth function f (θ) with a finite

number of jump discontinuities on the interval (0, L) can be represented by a Fourier

series,

f (θ) ∼
∞∑
k=0

[
ak cos

(
2πkθ

L

)
+ bk sin

(
2πkθ

L

)]
. (A.1)

Where the periodic extension of the function is continuous, the Fourier series con-

verges to the periodic extension of f (θ). Where jump discontinuities exist, the Fourier

series converges to the average of the two limits [25]. The Fourier coefficients are given

by

a0 =
1

L

L∫
0

f (θ) dθ, (A.2)

ak =
2

L

L∫
0

f (θ) cos

(
kπθ

L

)
dθ, (A.3)

bk =
2

L

L∫
0

f (θ) sin

(
kπθ

L

)
dθ. (A.4)
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Nearly all physical systems meet the conditions of piecewise-smoothness and jump

discontinuities. Thus, this representation can be applied to general low-thrust space-

craft controls that can be physically implemented.
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