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Abstract

Over the last two decades researchers have advanced the field of colloidal synthesis by

developing new synthesis techniques and characterizing particle interactions. Colloidal

particles are known to self-assemble into various unique architectures. However, there is

still no simple rule relating system condition and particle type to achievable self-assembled

structures. The goal of this thesis was to use simulation methods to further develop an

understanding of how tailoring inter-particle interactions and system parameters (such as

temperature and concentration) leads to self-assembled structures. We investigated three

specific topics in this thesis: i) nanotetrapods for nanoelectroinc devices, ii) crystal structures

formed by binary, ionic colloids, and iii) the extension of normal mode analysis to finite

temperature Lennard-Jones systems.

The applicability of one specific colloidal system - nanotetrapods - for use as nano-

electronic circuit elements is investigated. The electrical response for MESFET and JFET

nanotetrapods was determined through Technology Aided Design Tools, and it was deter-

mined that nanotetrapods have the potential to be utilized as circuit elements. Monte Carlo

simulations provide insight into how proper tuning of particle-particle and particle-substrate

interactions result in the assembly of ordered arrays of electrically gated nanotetrapods.

We used lattice energy calculations and normal mode analysis (NMA) to investigate

the thermodynamic and mechanical stability of binary, ionic colloidal crystals with size

ratio 1.0 : 0.8. Normal modes are calculated by solving Newtons equation of motion for

a perfect crystal system under a harmonic constraint, and can be used to determine if the

crystal structure is mechanically stable or unstable. The presence of Based on these methods,
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theoretical predictions were made regarding the stable crystal structure as a function of

potential interaction parameters. We found the normal mode results are in agreement with

lattice energy results, and were compared to molecular dynamics simulations to determine

the capacity for self-assembly. We found that not all predicted structures are kinetically

accessible. Additionally, we investigated the self-assembly of colloidal crystals for one

specific interaction parameter as a function of density and temperature, and found that, in

addition to the theoretically predicted crystal structure, a second entropically stabilized

crystal structure formed at higher temperatures.

The extension of NMA to finite temperature systems was developed without having to

couple to slower simulations. Using the Lennard-Jones model, kinetic energy was introduced

into the system by randomly displacing particles in a crystal. Temperature was related to

these displacements through the equipartition theorem. Upon comparison with published

work on the Lennard-Jones spinodal, we determined that NMA reasonably predicts the limit

of mechanical stability at low temperatures, but overestimates it at higher temperatures.
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Chapter 1

Introduction

1.1 Problem scope

Particle interactions can potentially be used to control the assembly of nanometer sized

particles into architectures useful for various applications including sensors and photonic

materials. Understanding how these interactions can be tuned to favor the assembly of

one structure over another, through simulation methods and theoretical calculations, is the

underlying theme of this work. Based on this theme, two distinct systems were studied -

first, the assembly of nanoparticles into specific patterns for use as electronic devices and

second, the assembly of binary, ionic colloidal particles into a variety of crystal structures

as a function of changing interaction parameters. Additionally, faster tools to study and

predict self-assembled structures are desired. Therefore, the technique of normal mode

analysis was applied to scan for the mechanical stability of three dimensional binary, ionic

colloidal crystals. Finally, the extension of normal mode analysis to finite temperature

systems, without the use of simulation, was investigated.

1.2 Motivation

Colloids are particles with a characteristic length that lies approximately between one

nanometer and ten micrometers suspended in a medium (often a liquid solvent), and which

experience Brownian motion due to their interaction with solvent molecules [7]. Examples
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of colloids found in everyday life include clouds, car exhaust, gelatin, paints, and milk.

Colloids can also form crystals, which are scientifically important for a number of advanced

material systems including electronics [8; 9; 10], photonics [11], and sensors [12]. Many of

these applications require precise particle arrangements and periodic structures spanning

hundreds of particle diameters in three dimensions.

Self-assembly is one method that can be exploited to create long-range order from

systems with many thousands of initially disordered colloidal particles. This process is

driven by the weak interactions between system components, without the need for external

mechanical forces. As a consequence of the weak interactions, self-assembly is a reversible

process when the kinetic energy is within the same order of magnitude as the system’s po-

tential energy. Many examples of self-assembly exist including self-assembling monolayers

(SAMs) [13], liquid crystals [14], and polymer systems [14]. Additional self-assembled

systems can be created through material engineering, which offers a means of tailoring

systems that will assemble into predefined, equilibrium structures.

The equilibrium state in which a colloidal system exists (gas, solid, or liquid) is highly

dependent on the various interactions that can exist between colloidal particles. The simplest

colloidal systems have no interactions and entropy alone drives the fluid-solid transition as

the particle density increases [14]. Introduction of attractive and repulsive forces increases

the phase complexity, and can occur through a variety of system changes, such as particle

and solution chemistry. For instance, attractive van der Waals interactions can be introduced

or suppressed by controlling the refractive index ratio between the particles and solvent [15].

Depletion interactions arise when non-adsorbing polymer is added as a third component to

colloidal solutions, creating a gradient in osmotic pressure and inducing attractive forces

between particles [16]. Electrostatic interactions occur when particles become charged in

solution due to the dissociation of surface layer molecules [7]. Charged particles of the

same chemical composition will repel each other; however, if two or more particle types are

present in the solution, attractive interactions can occur between dissimilar types (depending
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on correct choice of particle material and solvent) [17]. The Yukawa potential is often

used to model the electrostatic interactions between charged, colloidal particles, and is

parameterized by defining both an interaction range and strength.

A further layer of complexity is added, beyond the selection of interaction potential,

with the inclusion of different particle shapes and sizes. Spheres, cubes, prisms, rods, and

tetrapods of varying size have all been synthesized in solution. Binary systems are created

by mixing two distinct shapes or two different sizes of the same shape. System heterogeneity

can lead to asymmetric potentials existing between types of particle pairs, and introduce

entropic effects not associated with homogeneous systems.

No simple rule exists for determining how initial system conditions will lead to a final

assembled structure. However, simulation provides an effective, systematic method to

overcome the challenge of mapping the wide array of system variables to final, desired

states. In general, simulations are faster and cheaper to perform than experiments and can be

done in parallel to create phase diagrams predicting system response to changing variables.

Furthermore, simulations can be used to understand systems that have not yet been made

but only predicted. Molecular dynamics, Monte Carlo, dissipative particle dynamics, and

free energy calculations have all proven successful in elucidating the connection between

colloidal system parameters and self-assembled structures. For example, simulations were

used before theory or experiment to predict that spherical particles, with no attractive interac-

tions, undergo a first-order phase transition to form a high-density crystal [18]. Simulations,

just like experiments, only act as a technique to generate raw data. Statistical mechanics

provides a framework in which quantities measured in a simulation can be understood and

related to those observed in experiments.

There are two distinct pathways available for simulation studies of self-assembly -

first, reverse engineering specific building block geometries and interactions capable of

assembling into the target structure and second, predicting how a chosen system, with

tunable parameters, will assemble. Unfortunately, the number of system parameters is often
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large and, even with the use of computer simulation, mapping phase space still requires

a significant time investment. Therefore, faster methods are desirable. One such method

is normal mode analysis, which is a technique capable of quickly screening crystals for

mechanical stability and could be a useful complement to traditional colloidal simulations.

This method has already been applied to investigate colloidal configurations in one and two

dimensions, making the extension to three dimensions a natural progression. One limitation

to normal mode analysis is that it is inherently a zero-temperature concept. In order to

increase applicability, it would be useful to understand to what extent normal mode analysis

can be extended to finite temperature systems.

1.3 Thesis outline

The overall goal of this thesis is to use computer simulation and numerical techniques

to advance our understanding of how tuning particle interactions leads to interesting col-

loidal assemblies. Specific objectives are as follows: 1) demonstrate the feasibility of

self-assembling a nanoelectronic system; 2) study the assembly of crystal structures made

from ionic, binary colloidal particles as a function of varying electrostatic potential in-

teractions; 3) investigate the extension of normal mode to analysis to finite temperature

systems.

Chapter 2 details a multi-scale simulation study performed to address the potential of

using nanoparticles for nanoelectronic devices. The I−V characteristics of nanospheres

and nanotetrapods are determined, and their utility is evaluated. Monte Carlo self-assembly

studies are completed to determine the requirements needed to create specific nanoparticles

assemblies suitable for nanoelectronic devices.

Chapter 3 focuses on the crystal structures formed by systems of binary, ionic colloids.

Theoretical predictions are made based on both lattice energy calculations and normal

mode analysis (the latter method has never before been applied to systems of binary, ionic
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colloids). Molecular dynamics simulations are used to address the kinetic feasibility of the

theoretically predicted crystals.

Chapter 4 addresses the issue of extending normal mode analysis to finite temperature

systems. Specifically, we hypothesize that temperature can be incorporated into the system

through randomization of particle configurations, without the need to run full equilibrium

simulations. Temperature is then calculated through the equipartition theorem, and nor-

mal mode analysis is applied to determine a line of mechanical stability as a function of

temperature and density.

Chapter 5 summarizes this work’s key conclusions and provides recommendations for

future studies.
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Chapter 2

Design considerations for choosing and
self-assembling nanoparticles as

electronic devices

In this chapter we report the results from our investigation into the feasibility of using CdTe

nanotetrapods and core-shell nanospheres as circuit elements using models and simulation

at multiple scales. This study was a joint project involving several principle investigators at

different institutions, and focuses on manufacturing structures through self-assembly that

demonstrate specific working end applications. Using Monte Carlo simulations, we provide

insight into how control over inter-particle and particle-substrate interactions can lead to the

directed assembly of ordered arrays of electrically gated nanotetrapods and to the assembly

of networks composed of nanospheres. Our collaborators use Technology Computer-Aided

Design tools to simulate the electrical behavior for both nanotetrapod metal-semiconductor

field-effect transistors and nanotetrapod junction field-effect transistors and for circuits

designed using nanosphere circuit elements. Our results show that by varying the doping

concentrations and material composition, CdTe nanotetrapods have the potential to be useful

circuit elements, while the nanosphere system creates a device with resistive current-voltage

behavior, whose applications are relatively uninteresting. The nanotetrapod results presented

in this chapter were published as a cover article in Nano Letters [19].
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2.1 Introduction

A large disconnect exists in the field of nanoelectronics research with synthesis and charac-

terization of individual components on one side of the gap and self-assembly of individual

components into ordered structures on the other. Our collaboration with the Schrimpf and

Pantelides groups at Vanderbilt University seeks to connect this divide through the creation

of an interdisciplinary team whose goal is to develop and implement a multi-scale modeling

approach. We use this approach to characterize the circuit functions of self-assembled

structures based on the individual component’s electronic properties. We employ circuit

modeling and Monte Carlo (MC) simulations to develop a thorough understanding of the

self-assembly of nanoelectronic circuits from the atomistic to the macroscopic level.

Specifically within this thesis, our goal is to study the final self-assembled structures

of nanobuilding blocks as a function of particle geometry, inter-particle interactions, sol-

vent condition, and temperature. Here we have chosen to study two types of particles,

nanospheres and nanotetrapods, for which we have developed minimal models that allow

for the study of many thousands of particles using simulation techniques.

2.2 Background

In the last forty years, the silicon-based microelectronics industry has kept pace with Moore’s

Law by steadily decreasing transistor size and cost while increasing clock speed. As the lim-

its of miniaturization of conventional technology are clearly on the horizon, new approaches

are sought to complement or integrate traditional top-down fabrication of CMOS technology

with bottom-up fabrication of unique nanoelectronic devices [8; 20; 9; 10]

The premise that bottom-up assembly could supplement top-down CMOS technol-

ogy to achieve continued advances in chip speed and performance is based on recent

investigations into nanoparticle synthesis, assembly, and characterization. An impressive
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Figure 2.1 Linking the gap between research fields. Our study seeks to connect the divide
between research focused on nanoparticle synthesis and electronic characterization and the self-
assembly of individual nanoparticles into ordered structures. We do this through collaboration
amongst an interdisciplinary team capable of taking a multi-scale modeling approach.

variety of nanoscopic building blocks (NBBs) of different shapes, sizes, and materials

[2; 21; 22; 23; 24; 25; 1; 26; 27; 28; 29] have been synthesized. The electrical properties of

some of these individual nanoparticles have been characterized [9; 30; 31; 32; 33], demon-

strating desirable I-V characteristics. Indeed, many of the general components of CMOS

technology are being realized on the nanoscale, created from non-traditional materials and in

non-traditional functional forms [31; 34; 35; 36]. Additionally, the ability of nanoparticles

to self-assemble into unique desired structures on the basis of composition, geometry, and

local environment [28; 29; 37; 13; 38; 39] has been demonstrated.

2.2.1 Nanoparticle building blocks

Materials researchers have synthesized an impressive variety of NBBs of different shapes,

sizes, and materials including metallic and metallic tipped semiconductor nanorods [2; 4],

semiconductor and metallic nanowires [40; 2; 41], metallic nanocubes [1], nanoplates [42],

semiconductor nanotetrapods [3], nanotriangles [43] and nanoprisms [22], and carbon nan-
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Figure 2.2 Bottom-up self-assembly: a complement to top-down CMOS technology. We are
proposing using a bottom-up self-assembly approach where individual nanoparticles act as electronic
devices. This requires the electronic properties of individual nanoparticles to be characterized and
nanoparticles with suitable electronic properties to be self-assembled through the tuning of inter-
particle interactions. The self-assembled structures formed can then be mapped into equivalent
electronic circuits.

otube y-junctions [5]. Additionally, scientists have gained control over nanoparticle growth

and crystal structure [2; 1; 22], which could translate into precise control over device feature

size and design.

2.2.2 Electronic characterization of nanoparticles

Nanoparticles display a collection of unique physical properties not related solely to their

material composition but owing instead to their size and geometry, including confinement

effects, ballistic transport, and Coulombic blockade states. To date there has been a great

deal of research focusing on characterizing the electrical properties of individual molecules

and nanoparticles[31; 30; 32; 9; 33]. The I-V characteristics of molecules and nanoparticles

have been reported both from theoretical calculations and experimental work, and have

been shown to exhibit desirable features such as negative differential resistance [44; 45],
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Figure 2.3 Examples of nanoparticles. Synthetic chemists have created a wide variety of
nanoparticles in different shapes and sizes including (a) silver nanocubes [1], (b) gold nanorods [2],
(c) CdTe nanotetrapods [3], (d) gold tipped CdSe nanorods [4], and (e) carbon nanotube y-junctions
[5].

hysteresis [9], and single electron tunneling [30; 46] from which varied logic and memory

operations can be designed.

2.2.3 Nanoscale circuit architectures

In an attempt to develop the next generation of smaller, faster, cheaper circuit elements, many

of the general components of CMOS technology are being realized on the nanoscale - cre-

ated from non-traditional materials and in non-traditional functional forms [31; 36; 35; 47].

Recent examples of theoretical system architectures are based on a variety of NBBs and

include nanowire crossbar arrays [48; 49; 50], arrays of metallic nanodots [9; 10] and silicon
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nanorods [8; 20], memory elements [51], and logic gates [52]. For example, p and n-type

nanowires, created by doping silicon nanowires, can be assembled into transistors and diodes

that can be used to make programmable logic arrays [53]. An even more complex set of

possible system architectures could be constructed from the large variety of NBB shapes

and materials. Two and three-dimensional structures could be assembled with control over

the number of individual devices interconnected at junction points, allowing a variety of

different circuits to be designed. Often individual nanoparticles cannot be made into stand

alone devices, but instead metallic, semiconducting, and insulating NBBs could eventually

be incorporated as nanoscale circuit components. For example, the nanocell architecture

proposed by Husband et al. uses metallic nanoparticles as junction points that, when coupled

with organic molecules exhibiting negative differential resistance and voltage dependent

switching, form a system that can used for logic and memory applications [9].

2.2.4 Assembly of nanoparticles

For the bottom-up fabrication of nano electronic and nano computing circuits to be feasible

on a mass production scale, self-assembly of the circuit components is critical. In this

context, bottom-up self-assembly refers to the aggregation of NBBs into ordered arrays

and structures under the influence of inter-building block interactions. By tuning these

interactions, millions of NBBs can be formed into desired structures without mechanical

assistance. Self-assembly offers an inexpensive (compared to traditional top-down technol-

ogy), massively parallel process that is limited only by the size of the assembly units, our

ability to control their interactions, and kinetic barriers that may hinder assembly.

In principle, it also offers another extremely important advantage over traditional meth-

ods for increasing device densities. With the current planar lithography-based techniques,

creating three-dimensional networks requires a slow layer-by-layer assembly process. How-

ever, one-step construction of highly interconnected three-dimensional architectures would,

in principle, be relatively easy using self-assembly. Connecting devices into the proposed
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architectures will almost certainly require a blend of self-assembly to arrange millions of

devices into regular, periodic arrays and lithography to interconnect these arrays to CMOS

technology [9; 10; 8; 20].

Several well-known examples of self-assembly exist driven by the minimization of free

energy. Block copolymers, polymers made of distinct domains of dissimilar monomers,

can microphase separate into structures such as lamellae, cylinders, and spheres under the

appropriate conditions [14]. Surfactants self-assemble into a variety of phases including

micelles, bilayers, and ordered phases due to their amphiphilic nature [14]. To reliably pro-

duce specific self-assembled structures of NBBs several key hurdles must first be overcome.

These include elucidating the interactions between nano building blocks, gaining control

over these interactions, and understanding how specific types of interactions lead to target

structures.

A possible method to create and control interactions between nanoparticles is to deco-

rate their surfaces with sticky patches, which would provide highly directional attractive

inter-particle interactions [54]. While researchers are striving hard to fully master this

level of control, many examples in the literature indicate that the potential to create precise

patches exists and that the technology is not long off [55; 56]. Whitesides et al. have

demonstrated this technique on the microscale by patterning components with liquid solder

or self-assembled monolayers [57; 58]. Essential to these experiments is the ability to

control the interaction site location to create the desired order in the final structures. On the

nano-scale these patchy interactions can occur naturally in synthesis due to intrinsic particle

dipoles arising from magnetization [59], anisotropy in stabilizing ligand coatings [40], or

disparities in surface free energies of different crystal faces. Recently, by using a solvent

to partially remove stabilizing CdTe nanoparticles, Tang et al. found that the nanoparticles

spontaneously self-assemble into CdTe nanowires through dipole-dipole interactions [40].

Additionally, in another study conducted on CdTe nanoparticles, Tang et al. investigated

how anisotropic interactions, including dipole moments arising from the nanoparticle crystal
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structure, induced the self-assembly of particles into free-standing sheets [60].

Specific functionalization of the NBB can be used to tailor inter-building block in-

teractions. In nature biological molecules such as DNA and proteins are used to build

highly complex, precise structures. Researchers can exploit the sequence-specific binding

and programmability of both DNA and proteins. For example, surfaces of nanoparticles

and nanowires can be functionalized with DNA and proteins. Then the complementary

strands of these biomolecules can be used to either assemble arrays of nanoparticles

[61; 62; 63; 64; 65; 66; 67] or to pattern nanoparticles on the surface of DNA and protein

scaffolds [68; 69; 68]. For example, both Mirkin et al.[62] and Alivisatos et al. [61] demon-

strated that by attaching single-strands of DNA to gold nanoparticles and then adding the

complementary strand to the solution, the gold nanoparticles aggregate. This method can

also be used to assemble different types of nanoparticles. Sadasivan et al. functionalized

both gold and silica nanoparticles with single strands of DNA [64]. With the addition of

a single strand of DNA complementary to the DNA on both types of particles, the gold

particles assembled around the larger silica particles. Nanoparticles can also be assembled

on the surface of DNA and protein scaffolds. With the judicious choice of DNA strands,

self-assembled, periodic DNA scaffolds can be created onto which either protein molecules

or gold nanoparticles can be selectively bound. Though currently precise control over the

number and placement of linker molecules is not possible, the recent work by Jackson et

al. has shown a possible route to achieving this goal. In this work, surfactant-coated gold

and silver nanoparticles of 4 nm diameter have been synthesized with phase-separated

ordered domains as small as 5 Å [70]. Through both theoretical and experimental work,

Mokari et al. have demonstrated the growth of gold tips on cadmium selenide nanocrystals

creating metal-semiconductor heterostructures [71]. One-sided and two-sided growth has

been shown to occur with CdSe nanorods and nanodots, while gold tips can form on one

or all tips for CdSe nanotetrapods. These metal tips provide a site for the functionalization

of the nanoparticle with organic or biological molecules to be used in the self-assembly
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process. Depending on the molecule chosen, it can function purely as the bond between

nanoparticles (a conducting molecule exhibiting ohmic behavior), as an insulator, or could

exhibit desirable I-V characteristics.

2.3 Monte Carlo method

2.3.1 Introduction to Monte Carlo

The simulations in this chapter were performed using MC. MC is a powerful simulation

method, which at its heart, is a numerical technique that relies on repeated sampling of

a system to determine quantities of interest [18; 72]. What makes MC an efficient and

useful method is the implementation of the Metropolis importance sampling method. Often

the problems molecular simulators want to study involve a large configuration space with

extensive regions in which there is a low probability of finding the system. The Metropolis

method is an importance sampling technique devised to bias the simulation towards phys-

ically important regions of phase space. Sampling only the configurations relevant to a

problem, as opposed to sampling all possible states equally, allows researchers to perform

simulations in a reasonable period of time.

Central to the Metropolis algorithm is the concept of detailed balance, which determines

how a simulation proceeds from one state to the next. Detailed balance requires that, in

equilibrium, the probability of a system moving from state A to state B is equal to the

probability of a system moving from state B to state A. In practice, detailed balance is often

carried out as follows:

1. The potential energy of a system in its original configuration is calculated
2. A particle is chosen at random from among the collection of all particles
3. A trial move is performed in which the chosen particle is moved by a random amount
4. The potential energy of the system’s new configuration is calculated
5. If the energy difference between the new configuration and original configuration is

less than zero , the move is accepted
6. If the energy difference between the new configuration and the original configura-
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tion is greater than zero, the move is accepted according to the Boltzmann factor,
exp
[
−∆E
kBT

]
. This requires the generation of a random number between [0,1]. The

trial move is then accepted if the Boltzmann factor is larger than the random number
and rejected otherwise. Rejecting the trial move means the simulation returns to the
original configuration.

2.3.2 Implementation of Metropolis Monte Carlo

We perform MC simulations in the canonical (NVT) ensemble to study the self-assembled

structures formed by nanospheres and nanotetrapods systems. In this ensemble the number

of particles N, the volume V, and the temperature T are held constant. Different initial

starting configurations, cooling cycles and system sizes are run to ensure that the final

observed structures are the most probable and not a result of the system becoming trapped

in a metastable state.

Both the translational trial displacement length and rotational angle are automatically

adjusted throughout the simulation to maintain efficient sampling rates. For both types of

trial moves, a target acceptance ration of 0.5 is chosen. To maintain this ratio the acceptance

rates are monitored and at periodic intervals, typically every 1 million MC moves, are

compared to the target value. If the calculated acceptance ratio is below the target value, the

trial displacement is reduced by a factor of 0.05. Conversely if the calculated acceptance

ratio is above the target value, the trial displacements are increased by a factor of 0.05.

Rigid body rotations requires a method relating an axis fixed in space and one fixed

with respect to the rigid body[72]. A rotation matrix, A, relates the space-fixed, es to the

body-fixed, eb, vectors:

eb = A � es (2.1)

The rotation matrix can be constructed from three independent quantities capable of

defining the nine components of A. These are the Euler angles, θ , φ , and ψ , given which A
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becomes;

A =


cosφ cosψ− sinψ cosθ sinψ sinφ cosψ + cosφ cosθ sinψ sinθ sinψ

−cosφ sinψ− sinφ cosθ cosψ −sinφ sinψ + cosφ cosθ cosψ sinθ cosψ

sinφ sinθ −cosφ sinθ cosθ


(2.2)

As the simulation progresses eb remains fixed but es varies with time. Problems arise

when constructing equations of motion for the orientation of the rigid body as a sinθ term

appears in a denominator and discontinuities result whenever θ = 0 or θ = π .

A solution to this problem involves the use of quaternions, instead of Euler angles, to

track rigid body rotation in three dimensions [72]. Quaternions are a set of four scalar

quantities Q = (q0,q1,q2,q3) that satisfy q2
0 +q2

1 +q2
2 +q2

3 = 1. As quaternions are elements

of four-dimensional space describing action in a three-dimensional space and are linked by

one algebraic equation, the fourth variable is redundant and there are no discontinuities. The

rotation matrix, A , now becomes:

A =


q2

0 +q2
1−q2

2−q2
3 2(q1q2 +q0q3) 2(q1q3−q0q2)

2(q1q2−q0q3) q2
0−q2

1 +q2
2−q2

3 2(q2q3 +q0q1)

2(q1q3 +q0q2) 2(q2q3−q0q1) q2
0−q2

1−q2
2 +q2

3

 (2.3)

In each Monte Carlo step a translation or rotation move is attempted N times for par-

ticles selected at random. Translational moves are accomplished by generating a particle

displacement from a normal distribution between a maximum displacement and its negative.

Particle rotations are chosen uniformly and randomly over the surface of a sphere up to a

maximum rotation as described by Leach [73].

Nanosphere simulations are performed in a both two and three-dimensional simulations

boxes. For a two-dimensional simulation (honeycomb systems), a square box is used and

the motion of the particles is restricted to the x-y plane. Periodic boundary conditions
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are employed along the sides of the square box. A cubic simulation box with periodic

boundary conditions is employed in the study of nanosphere square arrays and nanosphere

three-dimentional honeycomb structures. The reduced units for length and energy are taken

from the potential and are σ = 1 and ε = 1 respectively. Sigma is taken to be the diameter

of a particle. The reduced temperature is defined as T ∗ = kBT/ε . Starting with a disordered

structure at a suitably high temperature, the system was cooled at a relatively moderate

cooling rate ( 0.1 T* per 106 MC steps).

Nanotetrapod simulations are performed in a box where the length of each side can be

varied independently. Periodic boundary conditions are not used and the walls of the box

are hard barriers to the particles in the simulation. The reduced units for length and energy

are σ = 1 and ε = 1 respectively. Sigma is taken to be the diameter of the beads making up

the tetrapod. The strength of the interactions between the tetrapods and the electrodes and

the tetrapods and the trench floor can be adjusted independently. The reduced temperature is

defined as T ∗ = kBT/ε .

2.4 Nanosphere system

Due to the simplicity of shape and ease of synthesis, investigating a nanosphere system

was a natural place to begin. Inspired by the work of Reed et al. and Di Ventra et al.

on determining the current-voltage characteristics of organic molecules [32; 9; 33], we

considered a self-assembled architecture of core-shell nanoparticles interconnected through

these organic molecules, Figure 2.4. The nanoparticle’s metallic core would thus act as a

distributor of charge, the shell acts as an insulating barrier preventing short-circuits, and

the organic molecule regulates the flow of charge through the network based on the applied

voltage.

17



Figure 2.4 Core-shell nanoparticles. Core-shell nanoparticles are created from a metallic
nanoparticle coated with an insulating barrier to prevent short-circuits. Adjacent nanoparticles
are connected via organic molecules.

2.4.1 Nanosphere model

The focus of our work is to study the final, self-assembled structures formed by thousands

of nanoparticles. Therefore, we employed a minimal model to capture the salient features of

the nanobuilding blocks. This allowed us to study large system sizes in a computationally

reasonable time frame. Spherical nanoparticles, which experimentally are composed of

hundreds to thousands of individual atoms, were modeled as a single, smooth particle.

Experimentally, patches could be achieved by decorating nano building blocks with linker

molecules in specific quantities, locations and shapes. Here spherically shaped patches are

modeled with an angular term. Additionally, nanoparticles in a neutral solvent would experi-

ence solvent screening effects decreasing the distance over which interparticle interactions

are important. These interactions are modeled through the use of the Kern-Frenkel potential

[74].

Originally developed to study the phase behavior of proteins, this pair-wise potential

captures both the directional and distance effects that would qualitatively map to an ex-

perimental system. The potential’s radial dependance, Eq. 2.4 is traditional square-well

potential, where Ui j is the potential energy between particles i and j , ri j the distance

between particles i and j , ε is the dimensionless interaction energy, σ is the reduced unit of

length, and λ is a multiplier determining cutoff distances.

The potential’s orientation is modeled as a step function where patches of attractive

interaction are defined as the intersection of a cone, described by an angle of 2δ and the
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Figure 2.5 Patchy particle model. (a) Patches are defined on the surface of a sphere by the
intersection of a cone with angle 2δ . Vector êi is the cones rotational line of symmetry; (b) Two
particles interact if the vector joining their centers, r̂i j , is within a defined angle; (c) Patches are
shifted an angle ∆θ along the polar axis while the azimuthal angle is chosen at random.

surface of the particle: the cone’s line of symmetry is described by vector êi , Figure 2.5a.

Thus, the variable δ determines patch size. An attractive interaction between particles occurs

when a vector linking two particle centers intersect a patch on both particles, Figure 2.5(b).

Ui j(r) =


∞ r < σ

ε ∗ fi j σ ≤ r < λσ

0 λσ ≤ r

(2.4)

fi j =

 1 êir̂i j ≤ cos(δ ) and ê j r̂ ji ≤ cos(δ )

0 otherwise
(2.5)

2.4.2 Nanosphere assembly results

Understanding nanocircuit fabrication means that we are interested in both the design of

particles to achieve specific architectures as well as structure tolerance to change in patch

placement. The first is achieved through patch number and patch placement. The second is

achieved by taking the original location of the patch center to be at the pole of the sphere.

The center is then displaced from its original position on êi by a polar angle of degree δθ
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and the azimuthal angle is chosen at random, Figure 2.5c. The change in patch location does

not alter the patch size. Patches are never shifted so much that two patches on particle i will

interact with one patch on particle j.

Figure 2.6 Self-assembled systems of core-shell nanoparticles. Systems of (a) square arrays,
(b) 2-D honeycomb networks, and (c) 3-D honeycomb networks are formed from patchy particles.

It was demonstrated by Zhang et al. that freestanding, 2-D square arrays can be formed

from the self-assembly of nanospheres in a dilute, neutral solvent when each nanoparticle

has four, attractive patches arranged in the equatorial plane at the vertices of a square [54].

To study the effects of imperfections in patch location on sheet architecture stability, the

four patch locations are shifted by amounts up to ∆θ = 5◦ , 12◦ , 15◦, 18◦ while all other

parameters are kept constant. Figure 2.7 gives a pictorial summary of the resulting structures.

We find that sheets form for a shift of ∆θ = 5◦, (a) and ∆θ = 12◦ (b), though at ∆θ = 12◦

buckling of sheets begins to appear. This buckling increases as ∆θ is increased and at

∆θ = 15◦ (c) and ∆θ = 18◦ this curvature leads to discontinuous sections of various sized

sheets.

We investigated the assembly of honeycomb networks of nanodevices, which if they

have ”always on” coupling between them, can serve as the efficient RAM memory element

proposed by Benjamin and Bose [75]. Two-dimensional lattices were formed from spheres

with three sticky patches located on the equatorial plane equidistant from each other, Figure

2.6(b). Finally, the assembly of 2-D honeycomb structures was extended to three dimensions
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Figure 2.7 Sensitivity of patch location on assembled square arrays. The sensitivity of assem-
bled square arrays to patch location is depicted. Patches are shifted by (a) 5o, (b) 12o, (c) 15o, (d)
18o.

by choosing a NBB with sticky patches in a triangular bi-pyramidal arrangement, Figure

2.6(c).

Having succeeded in self-assembling the honeycomb structure using defect-free patchy

particles, we further investigated the effects of patch placement. As before, we allow varia-

tion in the location of patches in our system, Figure 2.8. To do so, the location of the center

of the patch was chosen randomly on the surface of the spherical nanoparticle described by

the solid angle θ about the ideal location of the patch center (corresponding to the precisely

equidistant patches along the equatorial plane). As in the case of freestanding 2-D sheets we

21



Figure 2.8 Sensitivity of patch location on assembled honeycomb arrays. The sensitivity of
assembled honeycomb networks to patch location is depicted. Patches are shifted by (a) 5o, (b) 10o,
(c) 15o.

observed more and more defects occurring in the honeycomb structures, as the value of θ

was increased. This is shown by the snapshots at three different values θ = 5◦,10◦,15◦

Figure 2.8(a) shows the configuration when the patches are randomly placed within a

solid angle of ∆θ = 5◦ about the ideal position. As the variation in patch location is increased

to within a solid angle of ∆θ = 10◦ about the ideal locations, we still see configurations

with a network of rings, however, the rings are composed of five, six or seven- nanoparticles,

Figure 2.8 (b). Further increase in variation leads to a more disordered structure shown in

Figure 2.8 (c). Thus in our model system, the honeycomb structure is precisely realized as

long as the variation in patch locations is limited within a solid angle of ∆θ = 5◦ about their

ideal locations.

2.4.3 Nanosphere circuit results

Having demonstrated the robustness of the square-array and honeycomb structures for the

considered model, we next investigated these self-assembled structures’ performance as

a nanocircuit, Fig 2.9. To start, the structures are mapped onto the chosen gold/benzene-

dithiolate/gold system. These networks are made of two different types of elements: metallic

nanoparticles, whose size is on the order of 10 nm, and organic molecules, much smaller

22



(in the case of the benzene-dithiolate less than 0.8 nm). The organic molecules connect the

metallic nanoparticles together and control the current flow throughout the self-assembled

structure. As a starting point we assumed that each sticky patch corresponds to an attach-

ment point for one end of a molecule. Thus, a unique I-V characteristic obtained from the

device compact model can be used to define the electrical behavior of any device of the

self-assembled structure.

Figure 2.9 Circuit representation of a self-assembled honeycomb architecture. (a) Cartoon
depicting how input and output leads are connected to the honeycomb network. (b) A circuit model
representation of a self-assembled nanosphere system.

We investigated the electrical characterizations of the square and honeycomb arrays

obtained from the Monte-Carlo simulation. Despite the interesting Coulomb gap of the

benzene-dithiol I-V characteristics, results show that the networking of this molecule simply

creates a device with ohmic I-V behavior whose applications are relatively uninteresting.

The same characteristics are present for the square-arrays and for the three-dimensional

honeycomb networks.

Two separate paths are available that may be more successful at producing functional

nanoscale circuits. The first involves maintaining the spherical, core-shell nanoparticles

but choosing a linking molecule exhibiting different I-V response characteristics such as

negative differential resistance or hysteresis. The second approach involves choosing a new

nanoparticle entirely - one that itself has the desired I-V characteristics and does not require

23



any additional molecules to create a logic circuit. For example,we investigated systems of

y-shaped, x-shaped, and nanotetrapod particles. We found that, due to the inherent three-

dimensional nature of the nanotetrapod particles, they could be used as a three-terminal

device whose I-V response can be controlled with a back-gate. We discuss the nanotetrapod

system in more detail in the following section.

2.5 Nanotetrapods

Nanotetrapods are an ideal model NBB for this study, since they are well studied experi-

mentally. Recent studies of CdTe nanotetrapods have included fabricating particles with

independent control over arm aspect ratio [3], using capillary interactions to deposit particles

into lithographically defined spaces [76], and analyzing the particle’s electrical responses

[30].

Our investigation capitalizes on the natural anisotropy of nanotetrapods. Variation in

material composition of tetrapod arms allows for a range of current voltage responses,

which can be used to construct working devices. Additionally, material asymmetry can be

exploited and material specific interactions tuned to direct the assembly of nanotetrapods

into circuits. Unlike systems of nanospheres where a continuous two or three-dimensional

architecture was appropriate, the nanotetrapod’s natural anisotropy is best exploited by

individually addressing each particle. In this manner each tetrapod can act as an individual

circuit element. With this in mind, we studied the use of nanotetrapods as nanotransistors.

Unlike the sphere system, where we first investigated the self-assembly process and then

the circuit I−V response, we first studied the tetrapod’s I−V characteristics in order to

determine a self-assembled structure that fully realizes the system’s electronic potential.

These I−V studies were done in collaboration with the Schrimpf and Pantelides groups at

Vanderbilt University.
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2.5.1 MESFET tetrapods

The MESFET tetrapod considered here is comprised of two CdTe arms with ohmic contacts

to the source and the drain and two metal arms connected to a back gate Figure 2.10. As in

the work by Cui et al. [30], the main gating mechanism is through the third tetrapod arm.

This choice is supported by the findings of Cui et al. that direct electrostatic interaction

from the metal electrode plays a less important role, which means it is not a good gating

mechanism for a transistor. The semiconductor arms correspond to the conducting channel

in conventional MESFET transistors. Each arm has a diameter of 20 nm and is 75 nm

long. The metallic arms are composed of palladium and serve as back-gates. Additionally

they form a Schottky contact with the intrinsic CdTe (ΦCdTe = 5.12 eV). For the present

electrical simulations, the tetrapods are made of a continuous macroscopic material without

any internal interfaces. Considerations of crystal orientations and internal surfaces are

beyond the scope of this paper, which seeks to provide a first understanding of how such

devices might operate.

Figure 2.10 Tetrapod transistor. A single electrically gated MESFET (JFET) nanotetrapod
transistor.

We assume that the TP arm surfaces are simply passivated by the surfactant so that the

semiconductor extends unaltered up to the interface with the surfactant. In principle one
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can include the effect of charging on the surfactant, but to a good approximation the net

effect would be a narrowing of the diameter of the conducting path. For the purposes of the

present calculation, charging effects have been neglected in order to get a first description of

a device with this kind of geometry

For undoped CdTe arms, the drain current is very low and significant leakage current

flows through the gate. This low current results from the very low intrinsic density of

CdTe (ni ≈ 105 cm−3) [77; 78] and the extension of positive space charge through the tetra-

pod, limiting the current from the source to the drain. Such intrinsic devices are therefore

unsuitable for transistor applications.

We focus next on Schottky-gated structures in which the two current-carrying (CdTe)

arms are doped n-type with concentrations, ND, ranging from 1018 - 1020 cm−3. These

structures were simulated using the DESSIS simulator [79], which solves Poisson’s equation,

along with the electron and hole continuity equations.

For the case of ND = 1018 cm−3, the output drain current (ID) is low and the gate pinch-

off voltage, VP, is approximately 0.5 V, as shown in Figure 2.11a. The entire diameter of the

channel arms is depleted due to the Schottky barrier between the metal gates and the CdTe

arms even when the gate is grounded (Figure 2.11b). The ID−VD characteristics resemble

those of a diode when the gate is grounded. This kind of structure is potentially useful as a

normally OFF (enhancement-mode) transistor, although the gate current increases rapidly as

the gate-body diode becomes forward biased and the drain current is still low.

However, doping concentrations between 1× 1019 - 3× 1019 cm−3 give more useful

device characteristics; namely, a higher drain current level and a negative VP (the specific

value depends on the doping concentration of the arms, as discussed below), corresponding

to a normally ON transistor. These devices exhibit good gate control of the output current,

as seen in Figure 2.11c.

Higher channel-arm doping concentrations give similar results, except that the gate pinch-

off voltage increases with the channel-arm doping. For example, with ND = 1020cm−3,
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the value of VP is approximately −8V , which means that a gate voltage of −8V (or more

negative) has to be applied to turn OFF the transistor. This value is relatively large compared

to values desired for typical logic applications. The magnitude of this value could be reduced

by using a different metal with a higher work function, such as platinum (ΦPt = 5.65eV ),

especially for very high doping (ND ≥ 1020cm−3).

2.5.2 JFET tetrapods

The general principle of the JFET tetrapods considered here is similar to that of the MES-

FETs, except that the entire structure is made of CdTe (Figure 2.12a), with two n-doped

arms (channel) and two p-doped arms (gate). The channel arms in these simulations have

a doping concentration ND = 1019cm3. The voltage applied to the gate arms modulates a

depletion region, due to the P-N junction.

The drain current is plotted vs. drain voltage for different values of gate-arm doping

concentrations (NA) in Figure 2.12b. The gate is grounded in these simulations and the drain

current decreases as the gate-arm doping concentration increases. We explain this behavior

qualitatively based on a one-dimensional approximation of the depletion-region thickness

within the n-doped channel arm (xn) as a function of the gate doping (NA):

xn =
NA

NA +ND
∗

√
2εCdTe

q

(
1

NA
+

1
NB

)
∗ (Vb−VG) (2.6)

where Vb is the built-in voltage of the junctions. At a given gate voltage, the depletion-region

thickness is less for lower values of NA. Figure 2.12b shows the output I-V characteristics

for various values of gate-arm doping (channel-arm doping, ND = 1019 cm−3, for all lines in

Figure 2.12b). The current is higher for the gates with lower doping concentrations (Figure

2.12b), since the depletion region extends primarily into the gate rather than the channel. On

the other hand, higher values of NA increase the amount by which the drain current changes

for a given change in the gate voltage (i.e., the transconductance). In these tetrapod devices,
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there is a good compromise only when both doping concentrations NA and ND have the same

order of magnitude, with NA slightly higher than ND (blue curve in Figure 2.12b).

2.5.3 Carrier transport

The I-V characteristics of these devices are affected significantly by high field velocity

saturation, since the simulations show that the electric field can exceed 106 V/cm in some

regions of the tetrapod. TCAD simulations of the simpler plane-parallel structure, shown

in Figure 2.13a, demonstrate that quantum effects (based on quantization of the density of

states) are not significant for this tetrapod size. Quantum effects begin to be significant for

an arm diameter below 10 nm, as shown in Figure 2.13b, although the effects are relatively

minor for this arm diameter. Simulations of a MESFET tetrapod (ND = 3× 1019cm−3),

based only on electron current (no hole current) confirm that quantum effects are negligible

for tetrapods with arm diameter of 20 nm. Single electron charging is not included in this

model, and the tetrapod is modeled as a conventional device.

In addition to TCAD simulations, it is useful to develop analytical models that describe

the electrical characteristics of tetrapods. We use a two-arm MESFET structure (Figure

2.14a) to approximate the I-V characteristics of tetrapods as well as important parameters

such as the gate pinch-off voltage (VP) and the saturation current (Isat). This is a useful tool

that can be used to aid in device design or for analyzing the physical phenomena observed

in the simulation results.

The output current ID is modulated by the width of the depletion region in the cylindrical

gate region. We find that the I−V characteristic has the following form:

ID = G0

(
VD +

1
2VP0

[(
VD +V

′
G

)2
−V

′
G

]
− 4

3
√

VP0

[(
VD +V

′
G

) 3
2 −V

′ 3
2

G

])
(2.7)
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VP0 =
q∗ND ∗a2

2εCdTe
(2.8)

V
′
G = Vb−VG (2.9)

where G0 is the transconductance and VP0 is the gate pinch-off voltage.

The first term of Eq. (2.7) describes a linear dependence between the output current (ID)

and the applied voltage (VD), whereas the second term describes the parabolic contribution

to the behavior. The results obtained from these equations are compared to TCAD simu-

lations in Figure 2.14b, illustrating very good agreement, especially for high values of ND

(ND > 1019 cm−3).

The analytical model assumes a single value for the mobility and does not include

quantum effects. However, it is useful as a design tool for evaluating the effects of changes

in the dimensions (length and diameter of the tetrapod) and the tetrapod material.

29



Figure 2.11 Electronic properties of a nanotetrapod MESFET. (a) Output ID−VG characteris-
tic for n-doped current-carrying (CdTe) arms with ND = 1018cm−3. (b) Space charge concentration
( cm−3) for the current-carrying arms of a tetrapod FET with ND = 1018 cm−3. (c) Output ID−VD

characteristic for different gate voltages and a channel doping concentration of 1019cm−3.
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Figure 2.12 Electronic properties of a nanotetrapod JFET. (a) CdTe JFET tetrapod model. (b)
Output ID−VD characteristic with VG = 0V and for different acceptor doping concentrations of the
gate (NA).

Figure 2.13 Analysis of quantum effects in a nanotetrapod MESFET. (a) Simulation structure
used to analyze the significance of quantum effects in the current-voltage characteristics of a plane-
parallel MESFET. The lines represent the mesh used for the finite-element simulations. (b) Output
characteristic of a plane-parallel MESFET with an edge dimension of 10 nm.
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Figure 2.14 Analytical model for a nanotetrapod transistor. Theoretical two-arm equivalent
of a backgated tetrapod. (b) Comparison of TCAD and theoretical results.
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2.5.4 Nanotetrapod assembly

In our investigation of nanotetrapod electronic behavior, each particle is individually ad-

dressed and backgated. To create complex circuits, it is desirable to assemble multiple

particles into a single structure. Previously investigated methods based on capillary interac-

tions are not material-specific, and therefore do not offer precise control over nanoparticle

placement. Here we consider directed assembly based on specific material interactions. For

computational expediency, we model a tetrapod as a rigid particle constructed of overlapping

beads with the angle between the spherocylindrical arms set at 109.5 degrees (Figure 2.15a).

Beads on different tetrapods interact through excluded volume interactions, while beads

forming the tips of the four tetrapod arms have additional attractive, square-well interactions

that mimic lock and key type interactions between tetrapod tips and electrodes or tetrapod

tips and substrate [38; 39]. Specifically, the tips of two arms interact selectively with the

electrodes, while the other two tips interact selectively with the floor of the trench, Figure

2.15b. Such selective interactions could be achieved through a different material deposited

at the tip, or via short DNA oligonucleotides grafted to the tips and to the electrodes in such

a way as to enhance, or at least not disrupt, the conduction path. The substrate, trench walls,

and trench floors are all modeled as flat planes and the electrodes are modeled as a series of

beads joined together residing at the intersection of the trench wall and substrate, Figure

2.15b.

To study the self-assembled structures formed by systems of nanotetrapods, we perform

MC simulations in the NVT ensemble where N is the number of tetrapods, V is the volume,

and T is the temperature. Starting from an initial random configuration, we run different ini-

tial starting configurations, cooling cycles and system sizes to ensure that the final observed

structures are the most probable and not a result of the system becoming kinetically trapped

in a metastable state.

Our simulations are performed in a rectangular box with the box walls being hard barriers

to the tetrapod. The reduced units for length and energy are σ = 1 and ε = 1 respectively,
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Figure 2.15 Self-assembly model of nanotetrapods . (a) An individual tetrapod. The red tips
are attracted to the electrodes while the white tips are attracted to the floor of the trench. (b) A
single tetrapod in a trench. The electrodes are shown in yellow, the floor of the trench in light brown
and the substrate surface in green/gray. (c) Multiple tetrapods aligning within a trench with no
particle-particle interactions other than excluded volume.

where σ is taken to be the diameter of the beads making up the tetrapod, and ε is the strength

of the repulsion between tetrapods. The reduced temperature is defined as T ∗ = kBT
ε

. In

each MC step, a translation or rotation move is attempted for every tetrapod; the maximum

translation and rotation moves allowable are 0.1 bead diameters to optimize the acceptance

probability for moves. Smaller moves do not change the result; larger moves can produce

unphysical overlaps and very low acceptance probabilities.

Simulations with 15 tetrapods and 5 electrodes were performed, first assuming no

particle-particle interactions other than excluded volume. We find that tetrapods align

between every electrode within the trench and multiple particles contact electrodes and each

other (Figure 2.15c). In a working circuit this would result in a short and therefore the addi-

tion of a repulsive interaction between beads forming different tetrapods was investigated.

We choose to model this repulsion with a standard Yukawa potential (Eq. 2.10) used to

model charged colloidal systems [80]. Here ε is the strength of the repulsion, κ−1 is the

inverse screening length, and r is the separation between beads. After evaluating a range

of potential cutoffs, rc, we chose a cutoff leading to no more than four percent energy lose.

This cutoff is both computationally efficient and does not produce errors from neglected
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particle interactions.

U(ri j) =


εexp(−κ(

ri j
σ
−1))

r
σ

ri j ≥ σ

0 ri j < σ

(2.10)

Realistically, CdTe nanoparticles are known to be charged in solution due to the ioniza-

tion of the capping agent and interact through screening lengths between 1 to 10 particle

diameters depending on solvent. Both the charge and screening length could be tuned

through the addition of salt to the solvent.

Systems with 15 or 30 tetrapods were run in simulation boxes containing 5 electrodes

or 10 electrodes respectively. We investigated the effects of changing the relative strengths

of the Yukawa potential and the square-well interaction between the tetrapods and floor or

electrodes. The well depth of the square well attraction chosen between tetrapod tips and

the substrate ranged between 0.5−10.0εYUKAWA, the depth of the square-well defining the

interaction between tetrapod tips and the electrodes ranged from 0.5−6.0εYUKAWA , and the

screening length (κσ ) varied between 0.5 - 4.0. Upon cooling to , it was found that tetrapod

assembly is sensitive to screening length and only occurred for κσ = 0.5 and 1.0. A typical

system of assembled tetrapods with repulsive interactions is shown in Figure 2.16a and

Figure 2.16b shows the regions of assembly for screening lengths κσ = 0.5 and 1.0. The

shaded region indicates values of interaction strengths where assembly occurs for screening

length κσ = 0.5. Upon changing the screening length to κσ = 1.0, the assembly region

shrinks to the area represented by the black line.

These MC studies indicate assembly could be achieved in real systems by correctly

choosing system attributes. Experiments conducted in solution would allow for the Brow-

nian motion our simulations mimic, and which is essential to particle arrangement via

thermodynamically-driven assembly. Attractive, short-range interactions could arise through

lock-and-key interactions such as those arising between complementary strands of DNA

or RNA and both attractive and repulsive interactions could be achieved through solvent
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Figure 2.16 Self-assembled nanotetrapod results. (a) Fifteen tetrapods aligned within a trench
with repulsive interactions. (b) Region of assembly for tetrapods with varying interaction strengths
(indicated on axes) and screening lengths (indicated on plot). The shaded region indicates the region
of assembly for screening length κσ = 0.5, while the black line indicates the region of assembly for
κσ = 1.0.

selectivity and appropriate choice of tip material.

2.6 Conclusions

In conclusion, we have studied the assembly of two distinct systems and the electronic prop-

erties of the resulting architectures. The first system of core-shell nanospheres was found

to self-assemble into square-arrays, and two and three-dimentional honeycomb networks

depending on the number and location of interaction sites. However, their circuit properties

are of little value as they act as a large resistor. The second system of nanotetrapods show

promising results as MESFET and JFET structures. By tuning material specific interactions,

systems of nanotetrapods can be backgated and aligned between electrodes, thus presenting

an avenue to achieve logic circuits. The use of nanotetrapods as simple logic circuit elements

is conceivable and we should focus now on more complex logic circuit elements derived

from their assemblies. This conclusion is further supported by the results of our directed
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assembly simulation studies. A range of particle parameters lead to assembled structures,

and exact material interactions should be determined by the required system tolerance.

Future work will center on the electronic modeling of specific tetrapod circuit elements, and

devising self-assembly schemes for the resulting device.
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Chapter 3

Thermodynamic and mechanical
prediction and self-assembly of binary,

ionic colloidal crystals with atomic
charge ratios

3.1 Introduction

Colloids have attracted scientific interest as model systems for atoms and molecules and as

advanced engineering materials. As model systems, colloids offer the advantage of direct

visualization of analogous microscopic phenomenon associated with atoms and molecules

[81]. As advanced materials colloidal systems - and specifically colloidal crystals - have

shown promise as sensors [12], band-gap materials [11], and as scaffold structures [82; 83].

Colloidal crystals are known to form a variety of structures depending on the number

of particle types, particle size ratio, and interaction potential of the system. The simplest

colloidal crystals are the face-centered-cubic (FCC) or hexagonally close packed (HCP)

crystals produced from monatomic, hard sphere systems. For binary colloidal systems, a

greater variety of crystal structures can be obtained. Hard sphere binary mixtures can form

three entropy-driven crystal structures: AB, AB2, and AB13 [84; 85; 86]. These phases

have been shown to be dependent on the size ratio between the A and B particles and have

been demonstrated both experimentally and by computer simulations.

The incorporation of enthalpic interactions into a hard sphere system can lead to addi-

tional crystal structures. Colloidal suspensions composed of monatomic charged colloidal
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particles in a solvent with counter ions can form body-centered cubic (BCC) and FCC

crystals [78; 87; 88]. Recently, systems of oppositely charged binary ionic colloidal charged

particles have been shown to be stable experimentally and the inclusion of attractive interac-

tions further extends the crystalline phase diagram. For example, Leunissen and coworkers

have reported the formation of CsCl, LS6 and LS8, and NaCl ionic colloidal crystals made

from polystyrene and silica spheres of size ratio 1:1, and 1:6, and 1:4, respectfully [17].

Bartlett and Campbell observed the formation of FCC, CsCl, and NaCl in mixtures of

poly(methyl methacrylate) spheres of size ratio 1:1 and varying charge ratios [89]. In both

papers it was found that particle charge ratio and size ratio had a significant impact on the

crystals structures formed.

In addition to experimental work, studies in silico have been used to expand self-assembly

predictions. Theoretical phase diagrams based on lattice energies have been calculated for

binary ionic colloids, and, while they offer a fast method to evaluate the thermodynamically

stable phase, predictions are limited to T = 0K and require an initial guess of possible crystal

structures [17; 90]. Free energy calculations have also been used to map out portions of

phase space, and are applicable to finite temperature systems [91; 92]. However, this method

still requires an initial prediction and is considerably slower than lattice energy calculations.

Monte Carlo (MC) simulations have been employed in conjunction with lattice energy

calculations and free energy calculations to explore kinetic effects and test the feasibility of

self-assembly, but have not yet been used to map complete phase diagrams investigating the

assembly of binary, ionic colloidal crystal structures [90].

Given the extensive parameter space spanned by binary ionic colloidal systems, it is

desirable to have a fast, effective way to screen proposed crystal structures. One such

method is normal mode analysis (NMA), which can be used to determine the mechanical

stability of colloidal crystal. The normal modes are calculated by solving Newton’s equation

of motion for a perfect crystal system under a harmonic constraint. Diagonalizing the Hes-

sian with respect to particle position results in a description of the instantaneous modes of
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motion present in the system, where each mode of motion can be described by an associated

eigenvector and eigenfrequency. The presence of negative frequencies indicates unstable

modes of motion and a mechanically unstable structure. NMA has been used to determine

mechanically stable ground state structures for systems of two-dimensional ionic, atomic

systems [93; 94] and quasi-one dimensional binary systems [95].

In this work, we expand on previous methods of creating theoretical phase diagrams

by coupling the thermodynamic predictions of lattice energies with mechanical stability

predictions based on normal mode analysis. We investigate the effects of changing particle

charge ratio and the range of potential interaction on the ground state structure predicted to

be both thermodynamically (through lattice energy calculations) and mechanically stable

(through normal mode calculations) for binary colloidal systems with size ratio 1.25 and

with charge ratios analogous to atomic systems. This system is possible experimentally,

but not yet been fully studied through either experiments or simulation. Additionally, we

address the kinetic accessibility of our theoretically predicted structures using molecular

dynamics simulations to study self-assembly. We explore the crystal structures formed

for one specific interaction potential over a range of temperatures and volume fractions.

We discuss the role of including mechanical stability information in the theoretical phase

diagram and its use as a tool to screen potential crystal structures.

3.2 Model

In our binary system both types of colloidal particles are modeled as spheres with diameter

D = 1.0σ and D = 0.8σ resulting in a size ratio DL
Ds

= 1.25. The particular choice of DL/Ds

= 1.25 is within the range that has previously been identified as of interest for forming

ionic colloidal crystals – simulation studies have produced ionic crystal phase diagrams for

systems with size ratio 1:1 and 1:3, for example [91; 96]. Moreover, we note that Hynninen

et al. have indentified DL/Ds = 0.82 as a condition under which hard spheres form complex
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ionic crystal structures such as MgCu2 and MgZn2 [97]. We also note that the extension of

our approach of incorporating NMA with lattice energy calculations and molecular dynamic

simulations to additional size ratios would be straightforward.

We restrict our study to colloidal crystals where the larger charge is on the smaller parti-

cle in analogy with atomic crystals [98]. The experimental systems our simulations seek to

mimic consist of charged colloidal spheres suspended in a density-matched solvent. Organic

salts present in solution act to screen the charge-charge interaction; this allows for control

over the characteristic distance over which colloids act via changing salt concentration

and eliminates the requirement of charge neutrality across colloidal particles. We use the

Yukawa potential to model these system conditions:

U(ri j)
kBT

=
ZiZ jλBexp

[
κ
((

ai +a j
)
− ri j

)]
(1+κai)(1+κa j)ri j

(3.1)

where ri j is the distance between particles i and j; ai and a j are the radii of particle i and

j, respectively; Zi and Z j are the charge magnitudes on particle i and particle j, respectively;

λB is the Bjerrum length, which we take to be 0.01σ ; and κ−1 is the Debye screening length.

If the sign of the charge on both particles is taken to be the same, Eq. 3.2 is suitable for

systems with purely repulsive charge interactions, while for systems with both attractive and

repulsive interactions a hard-sphere interaction is commonly added to prevent particles from

overlapping. However, this restricts the choice of simulation method to one that does not

require a smooth potential function over which to integrate, such as Monte Carlo methods.

Since we are interested in using normal mode and molecular dynamics methods to study

the stability and self-assembly of binary colloids, we augment the Yukawa potential with a

soft-core repulsion similar to that observed in experimental systems [15]:

U(ri j)
kBT

= ε

[(
ai +a j

)
ri j

]α

+
ZiZ jλB exp

[
κ
((

ai +a j
)
− ri j

)]
(1+κai)(1+κa j)ri j

(3.2)

Here ε and α allow us to control the potential strength at contact, the location of the well
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depth, and the magnitude of the well depth. After specifying the charge ratio between particle

types
(

Q = Z j
Zi

)
and κ−1, α and Zi are chosen given the following constraints: the potential

energy at contact between different particles types is
U(ri j)

kBT = 10.0, the minimum potential

energy occurs at a distance ri j = 1.07(ai +a j), and the well depth
U(1.07(ai+a j)))

kBT =−2.0 .

These parameters were chosen to create a potential, which approximates known interac-

tions of colloidal systems that form colloidal crystals. The potential minimum is shifted to

a slightly larger value than the interparticle spacing, as often there is a steric surface layer

associated with colloidal particles [15]. The potential increases sharply for particle spacing

smaller than the spacing associated with the minimum potential energy to capture excluded

volume effects. Furthermore, the minimum value of the potential energy was chosen to

represent a system for which crystallization would occur as opposed to gelation.

The dimensionless temperature is defined as T ∗ = kBT
U(rcontact)

, the volume fraction is

defined as φ = π(2aiNi+2a jN j
6V , where Ni and N j are the number of particles of each type,

and V is the volume of the simulation box. In this work, charge ratios are investi-

gated where the larger charge is on the smaller particle similar to atomic ionic crystals,

ZS
ZL

> 1.0. Charge ratios of ZS
ZL

= 1.0,2.0,3.0,4.0,5.0, and 6.0, and screening lengths of

κσ = 2.0,4.0,6.0,8.0,10.0, and 12.0 are studied.

3.3 Methods

3.3.1 Molecular dynamics

The studies contained in this thesis are focused on investigating the self-assembly of nano

and colloidal particles through the efficient use of minimal models. The class of simulation

techniques applied to such studies is referred to as meso-scale simulation techniques and

includes classical molecular dynamics (MD), Brownian dynamics (BD), and Monte Carlo

(MC) methods. This body of work specifically contains investigations using MD and MC

methods.
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The experimental systems we seek to explore via simulation are composed of thousands

of colloidal particles suspended in solvent, of which there are orders of magnitude more

solvent particles than colloidal particles. Therefore, in order to be able to carry out our

simulations in a reasonable amount of computational time and still access long time scales

with large system sizes, it is typical to exclude the solvent molecules from being explicitly

modeled in a simulation. Typically, this leads to the choice of BD as the preferred simulation

method, as the solvent effect is captured implicitly in the drag and random forces included,

along with a conservative force, in the Langevin equation governing a particle’s trajectory.

However, the equations solved in our simulations should be consistent with those used

in the normal mode calculations. Therefore, the method of MD is used to study the self-

assembly of binary, ionic colloidal particles. In MD simulations particles interact via a

conservative force and the time evolution of particle positions and velocities is governed by

Newton’s equations of motion:

F = ma (3.3)

The screening effect of the solvent is captured through our choice of interaction potential.

Simulations are run in the canonical ensemble (NVT) and the isobaric-isothermal ensem-

ble (NPT) using the Nose-Hoover thermostat and Anderson barostat. Derivations for each

of these methods are presented in Frenkel[18], but it is important to note the highlights. The

Nose-Hoover thermostat is based on the use of an extended Lagrangian and is a deterministic

method, which reproduces a canonical ensemble. Additionally, this thermostat conserves

momentum if the simulation cell’s center of mass is fixed, which can be ensured by zeroing

the velocity of the center of mass at the beginning of the simulation.

MD simulations presented in this work have been conducted using the code HOOMD-

blue (Highly Optimized Object-oriented Many-particle Dynamics – Blue Edition) developed

by the Glotzer group at the University of Michigan. The HOOMD-blue software was created

to run on computer graphics processing units (GPU) resulting in a simulations speed-up as
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compared to traditional codes. Simulations were run on the computer cluster Nyx, owned

by the Glotzer group at the University of Michigan. The Nyx cluster consists of Intel Xeon

CPUs and Tesla S1070 GPUs.

3.3.2 Lattice energies

Lattice energies refer to the calculation of a particle configuration’s potential energy. These

energies were calculated for perfect crystal lattices using our simulation code, but without

running integration steps. For a perfect crystal, lattice energies can be used to predict if a

crystal structure will be stable. For a crystal to be stable at T = 0 the lattice energy must be

negative. In a comparison of different crystal structure’s lattice energies, the crystal with

the lowest negative lattice energy is the theoretically favored crystal structure out of those

investigated.

3.3.3 Normal mode method

Introduction

Self-assembly of colloidal particles with weak interactions, is driven by the tendency of

system to seek thermodynamic equilibrium. Statistical thermodynamics develops an un-

derstanding of how particle properties determine macroscopic structure. Specifically, the

second law of thermodynamics states that an adiabatic system will maximize its entropy

at equilibrium. Often it is not convenient to study systems of constant energy. Instead,

the minimization of the Helmholtz free energy, A - for systems with constant temperature,

volume, and particle number - or the minimization of Gibbs free energy, G, - for systems

with constant temperature, pressure, and particle number - determines equilibrium.

Free energy landscapes for non-trivial systems are complex, and contain points of local

equilibrium, global equilibrium, and unstable states, Figure 3.1(a). A system is locally stable

if i) the free energy first derivative equals zero, and ii) the free energy second derivative
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is positive (concave curve). A system is globally stable if it meets all the criteria of a

locally stable system and, in addition, the free energy is minimized. A system in metastable

equilibrium is located at a relative minimum of the free energy - stable to small perturbations

and only explores phase space when larger perturbations evolve the system away from local

stability. Finally, for an unstable state i) the free energy first derivative is zero, but ii) the

free energy second derivative is less than zero (convex curve). Any perturbation, small or

large, will move a system away from an unstable state.

Figure 3.1 Example free energy landscape. Free energy plotted as a function of a non-specified
order parameter. (a) Free energy diagrams are complex and often contain metastable equilibrium (1),
unstable (2), and equilibrium (3) regions. (b) The spinodal (4) is the limit of metastability and occurs
when the metastable and unstable regions become indistinguishable, at which point the metastable
phase is unstable to disturbances of any size.

Mechanical equilibrium describes a system at a free energy minimum, and includes both

local and global equilibrium. The spinodal is the limit of mechanical stability, and indicates

where a system transitions from being unaffected by small perturbations to unstable to all

perturbations, Figure 3.1(b) . This is in contrast with the binodal, which indicates the limit

of thermodynamic stability for a given system.

Normal mode analysis is a method to determine the mechanical stability of a crystal.

The normal modes are calculated by solving Newton’s equation of motion for a perfect

crystal system under a harmonic constraint. Diagonalizing the Hessian with respect to

particle positions results in a description of the instantaneous modes of motion present in

the system, where each mode of motion can be described by an associated eigenvector and
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eigenfrequency. The presence of negative frequencies indicates unstable modes of motion

and a mechanically unstable structure. The Hessian is the square matrix of second-order

partial derivatives of the potential energy.

Physical picture

Colloidal crystals can be composed of hundreds to thousands of individual particles, and

while macroscopically the crystal may appear to be frozen, each particle is vibrating about

its lattice position. This vibrational motion is not random, but in fact determined by New-

ton’s laws of physics and the inter-particle potential. Information about a system’s lattice

dynamics can be used to determine a variety of physical properties - including thermal

properties, transport properties, and (of specific interest in this thesis) phase stability.

Using particle motion to determine phase stability can be thought of physically via

the following. Consider that every crystalline structure is composed of a set of particles,

located in specific lattice positions and interacting with a specific interaction potential. This

creates a unique potential energy landscape containing both minimum (stable) and maximum

(unstable) extrema. Applying a small disturbance to a crystal at equilibrium yields different

solutions for particle motion depending on whether the system is located at a minimum

or maximum of the potential energy landscape. A crystal structure at a minimum can be

equated to a system existing in the bottom of a well. Any small perturbation will shift

the crystal from the exact bottom, but after the perturbation is removed the system will

return to its original position due to the curvature of the well, Figure 3.2. Conversely, a

crystal structure located at a maximum of the potential energy landscape can be thought of

as existing at the top of a hill. Any small perturbation to the system will cause the system to

move off the apex, Figure 3.2. However, in this case the once the perturbation is removed

the system will not return to its original location, and due to the concave curvature of the

surface the perturbation of the system will grow.
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Figure 3.2 Effects of applying a disturbance to a system. Applying a disturbance to a system
can result in two outcomes. First, if the system is in a stable state the disturbance will not cause
a lasting change to the overall system structure. Second, if the system is in an unstable state the
disturbance will cause the system to evolve away from its initial state.

Methodology

Normal mode analysis is a method to determine the vibrational motion of particles in a

crystal. For a system of N particles the classical description of motion is given by Newton’s

second law, which states that the product of an object’s mass and acceleration is equal to the

total force acting on that object.

m~a = ~F (3.4)

A conservative force is defined as the negative gradient of the potential

F =−∇Φ (3.5)

and the force acting on a particle j is defined as

Fj =−∇φ j (3.6)

For this derivation, the potential acting on particle j, φ j , is assumed to be the instantaneous

summation of all individual pair-wise interactions between particle j and all other particles

in the system. The potential is taken to be a function of distance between particles i and j,
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and not on the spatial orientation of particles i and j. For a system composed of N particles

the potential energy on particle j is defined as:

φ j =
N

∑
i=1

φi j(~ri j) (3.7)

The classical formulae describing the instantaneous motion of particle j can now be written

as

m j
∂ 2~r j(t)

∂ t2 =−∇φ j(~r j, t) (3.8)

m j
∂ 2~r j(t)

∂ t2 =
N

∑
i=1
−∇φi j(~ri j, t) (3.9)

where m j is the mass of particle j and~ri j is the distance between particles i and j.

The overall goal of normal mode analysis is to develop a mathematical understanding of

how particle motion is affected by small disturbances. Consider particles i and j separated

by a distance ri j, Figure 3.3. If particle i is shifted from its original position by a distance

u in the direction β , ui,β , - which is small in comparison to the distance ri j - the resulting

formula becomes:

m j
∂ 2~r j(t)

∂ t2 =
N

∑
i=1

∑
β=x,y,z

−∇φi j(~ri j +ui,β (t)) (3.10)

The right-hand-side of the equation can be expanded as a Taylor series about the

equilibrium positions of the particles:

φi j(~ri j +ui,β (t)) =
∞

∑
n=0

φ n
i j(~ri j)(~ri j +ui,β (t)−~ri j)n

n!
(3.11)

φi j(~ri j +ui,β (t)) =
∞

∑
n=0

φ n
i j(~ri j)(ui,β (t))n

n!
(3.12)
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Figure 3.3 Perturbing the inter-particle spacing. The inter-particle distance is give by ri j. Nor-
mal mode analysis studies systems in which one particle is shifted from its original position by
ui,β .

Combining equations 3.10 and 3.12 yields:

m j
∂ 2~r j(t)

∂ t2 =
N

∑
i=1

∑
β=x,y,z

−∇

(
∞

∑
n=0

∇nφi j(~ri j)(ui,β (t))n

n!

)
(3.13)

Neglecting all terms third order or higher, we are left with a harmonic approximation.

m j
∂ 2~r j(t)

∂ t2 =−
N

∑
i=1

∑
β=x,y,z

∇φi j(~ri j)+(ui,β (t))∇2
φi j(~ri j) (3.14)

This is done because harmonic equations describing particle motion can be solved

exactly. This allows for the quick evaluation of important system characteristics - such

as mechanical stability - which will be exact at zero temperature, and, in general, more

representative of the true system properties at low temperatures than high temperatures.

Additionally, the first order terms in Eq. 3.14 are set to zero because the system is in equilib-

rium and the force is zero at a potential minimum. Therefore, to calculate if a configuration

is stable the system’s Hessian is solved.

Hαβ ,i j =
∂ 2H

∂ rα,i∂ rβ , j
(3.15)

where α and β = x,y,z and i and j are particle indices.

There are 3N unique sinusoidal wave solutions to the harmonic equation of motion (one

for each direction and particle). Finding the angular frequencies of each wave is a linear
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algebra problem for which solutions are a set of eigenvalues and eigenvectors.

The previous mathematical development has been based on Newton’s equation of motion,

which is valid for atomic systems. However, unlike atomic systems, colloidal systems are

affected by thermal noise and hydrodynamic drag and therefore are accurately described

by the Langevin equation. The effect is that the phonons associated with colloidal crystals

are almost always over-damped [99] and propagation is retarded. However, analysis of

normal modes based on the Langevin equation is not necessary for predicting a ground state

configuration’s mechanical stability as we are primarily interested in the lowest frequencies

corresponding to large collective motions - it is the lowest normal mode frequency that

is associated with the mechanical instability of a ground state configuration with respect

to perturbations [100]. It has been shown that in this limit of the lowest normal mode,

frictional forces vanish and damping becomes negligible [101], and analysis of the ground

state configuration is not affected by frictional forces [100].

3.3.4 General procedure for simulations and calculations

Lattice energy procedure

We calculate numerically the lattice energies for ground state crystal structures for a variety

of charge ratios and screening lengths. Colloidal crystal structures are generated from the

unit cells of analogous atomic crystals, with the larger colloidal particle sitting at the sites

occupied by the larger ion. Lattice energies are calculated for a range of crystal volume

fractions beginning at close-packed (for example, the close-packed volume fraction of NaCl

for this size ratio is φ = 0.54) and decreasing in increments of 0.01σ3 until a final volume

fraction of 0.1σ3, Figure 3.4.
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Figure 3.4 Isotropic expansion of a crystal structure. Crystals are expanded from a close-
packed volume fraction to a volume fraction of 0.1σ3 in increments of 0.01σ3.

Normal mode analysis procedure

Unlike to simulations, which are processor intensive, normal mode analysis is limited by

memory availability. Therefore, our results are given for crystal structures with N < 2500

particles (the exact number of particles will depend on the crystal symmetry). In order

to determine the effects of systems size, several test cases at various system sizes up to

N = 5000 particles were analyzed and the results were found to be consistent. The normal

modes are calculated for the same crystal structures, density ranges, and potential parameters

as the lattice energies.

Molecular dynamics procedure

Our simulations begin with a system of particles having initial random configurations to

which we randomly assign velocities sampled from a Maxwell-Boltzmann distribution,

Figure 3.5. In some systems a crystal seed was present in the simulation to promote crystal

formation during our simulation timescales. Random systems of particles are generated

by first creating a perfect crystalline lattice with the desired particle number and density.

Particles are set to interact through a weak, short-range repulsive Yukawa potential and the

system is then randomized at a temperature above the order/disorder transition (a typical

value for T ∗ = 1.50 for 500,000 time steps). After the system has been fully randomized, the
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Figure 3.5 Configuration snapshots taken during the course of a simulation. a) A simulation
initialized with a random configuration of particles evolves into a crystal. b) A simulation initialized
with a crystal seed evolves into a crystal.

repulsive Yukawa potential is changed to the interaction strengths under investigation (listed

in Section 3.2). The initial configuration of particles can be such that when the new potential

is introduced large forces result. Therefore to minimize the effect of particles suddenly

having velocities large enough to move the particle beyond the length of the simulation box,

we gradually increase the simulation time step from a value of ∆t = 0.000001 to a typical

simulation time step of ∆t = 0.001 over approximately four thousand integration cycles.

We investigated the phase diagram of colloidal particles by performing both cooling

runs - at fixed volume fraction - in which the simulation temperature is lowered, and com-

pression runs - at fixed temperature - in which the simulation box is gradually compressed.

Both the simulation box volume and the simulation temperature are varied linearly. In

addition to arriving at system phases by both cooling and compressing, different schedules

are implemented to help determine whether final system configurations are equilibrium

structures or kinetically trapped in metastable states. We enforce periodic boundaries in our

MD simulation box and calculate distances through the minimum image convention. To

52



minimize error that might be associated with finite box effects, systems of different sizes

are studied. Though our simulations have at most N = 16,000 particles and corresponding

experiments would have at least an order of magnitude more particles, the use of periodic

boundaries allow simulations to mimic infinitely large systems. Lastly, as a third measure

taken to avoid metastable structures at least three simulations - initialized with different

random number seeds - were performed for every point on the phase diagram investigated.

Additional simulation runs were carried out in the NPT ensemble to map out phase

boundaries. This ensemble provides a more accurate method to determine phase bound-

aries than do simulations conducted in the NVT ensemble, as coexistence does not occur

within the simulation box. The phase boundary was calculated as the hysteresis midpoint

constructed from simulations run at fixed temperature in which the box was either expanded

or compressed by very gradually linearly decreasing or increasing the pressure.

During the course of a simulation data files were written containing i) particle positions

and ii) the system’s time step, temperature, pressure, volume, and potential energy. The

former was typically saved every 250,000 time steps while the latter every five thousand

time steps.

3.4 Structure identification

Simulation results were determined by visual inspection, calculation of the radial distribution

function (RDF), and bond order diagrams (BODs). The radial distribution function (also

known as the pair correlation function) describes how the local density of a system varies

from a reference particle in comparison to an ideal gas [102]. In practice it is calculated by

creating a histogram detailing the distance between all particles in the system normalized

by the system number density. This ensures that the radial distribution function equals one

when no structure is present in the system.

BODs give insight into a system’s overall symmetry and are particularly useful to help
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identify crystalline materials [78]. To create a BOD, all normalized vectors connecting

system particles to their neighbors are calculated, shifted to originate at a common location,

and then projected onto the surface of a unit sphere. Highly ordered systems produce BODs

with distinctive groupings of projected points on the sphere’s surface, and these patterns

can be used to distinguish between many different types of crystal symmetries including

SC, BCC, FCC, HCP. Bond order diagrams for the structures self-assembled in this study

are shown in Figures 3.6, 3.7, and 3.8. Figure 3.6 illustrates the BOD for a CsCl crystal.

Overall, the CsCl crystal structure exhibits BCC symmetry, Figure 3.6 a. Individual particle

types are exhibit SC symmetry, Figure 3.6 b - c. Figure 3.7 illustrates the BOD for a NaCl

crystal. Overall, the NaCl crystal structure exhibits SC symmetry, Figure 3.7 a. Individual

particle types are exhibit FCC symmetry, Figure 3.7 b - c. Figure 3.8 illustrates the BOD for

a CaF2 crystal. Overall, the CaF2 crystal structure exhibits BCC symmetry, Figure 3.8 a.

Particles of type 1 exhibit SC symmetry, Figure 3.8 b) and particles of type 2 exhibit FCC

symmetry, Figure 3.8 c.
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Figure 3.6 CsCl bond order diagram. CsCl crystals can be identified using bond-order dia-
grams. a) Overall a CsCl crystal exhibits BCC crystal symmetry. b - c) Each individual particle type
is arranged in a SC lattice.

55



Figure 3.7 NaCl bond order diagrams NaCl crystals can be identified using bond-order dia-
grams. a) Overall a NaCl crystal exhibits SC crystal symmetry. b - c) Each individual particle type is
arranged in a FCC lattice.
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Figure 3.8 CaF2 bond order diagram. CaF2 crystals can be identified using bond-order dia-
grams. a) Overall a CaF2 crystal exhibits BCC crystal symmetry. b) Particles of type 1 are arranged
in a SC lattice. c) Particles of type 2 are arranged in a FCC lattice.
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3.5 Results and discussion

We investigated the thermodynamic and mechanical stability of crystal phases CsCl, NaCl,

CaF2, ReO3, PbO, ZnS, BN, NbO, NiAs, CuAu, FeB, and PtO4 using lattice energy and

normal mode analysis respectively. The crystals studied in this paper were chosen after

a survey of the literature, and have either been predicted to form experimentally or by

simulation, or are structurally related to those predicted [17; 103; 91; 90].

To illustrate the procedure used to determine the theoretically predicted crystal struc-

ture, data is presented for CsCl, NaCl, and CaF2 colloidal crystals for potential parameters

ZS
ZL

= 2.0 and κσ = 4.0. This data is chosen because it represents a boundary region in

Figure 3.19.

First, the lattice energies as a function of volume fraction are calculated for each crystal,

and this data is shown in Figures 3.9, 3.12, and 3.15. For each crystal structure there exists a

minimum lattice energy representing the theoretically favored volume fraction : φCsCl = 0.54

, φNaCl = 0.42 , φCaF2 = 0.46. As expected, this volume fraction is different for each crystal

structure because each crystal has a different geometry and a different maximum packing

fraction. Data for each crystal exhibits a sharp increase in the lattice energy at volume

fractions larger than the theoretically favored volume fraction, and a gradual increase in the

lattice energy for volume fractions smaller than the theoretically favored volume fraction.

At higher volume fractions particles are squeezed closer together and the potential’s strong,

short -range repulsive term begins to dominates, while at lower volume fractions particles

are expanded further apart resulting in a decrease in the potential’s longer-range attractive

term.

Second, NMA is carried out and distributions of eigenvalues are generated. Figures 3.10,

3.13, and 3.16 summarize the number of unstable modes as a function of volume fraction,

and Figures 3.11, 3.14, and 3.17 illustrate distributions of eigenvalues for selected volume

fractions around the theoretically predicted volume fraction as determined by lattice energy

calculations. The presence of negative eigenvalues correspond to unstable modes of motion,
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and indicates the crystal structure is unstable.

Beginning with the data for the CsCl colloidal crystal, Figures 3.10 and 3.11, it can be

seen that below φ = 0.50 the crystal structure is unstable, but as the volume fraction increase

from φ = 0.49 to φ = 0.50 negative eigenvalues disappear from the system. The crystal

remains stable until φ = 0.71. The NaCl colloidal crystal is unstable below a volume frac-

tion of φ = 0.38, but as the volume fraction increases from φ = 0.37 to φ = 0.38 negative

eigenvalues disappear from the system, Figures 3.13 and 3.14. The crystal remains stable

up a volume fraction of φ = 0.43, and at φ = 0.44 negative eigenvalues are again present

in the system. The CaF2 colloidal crystal is stable above φ = 0.40 and remains stable up

to the largest volume fraction studied, φ = 0.70, Figures 3.16 and 3.17. In Figures 3.11,

3.14, and 3.17 it can be seen that the magnitude of the highest frequency, associated with a

wavelength corresponding to the inter-particle spacing, increases as the density increases.

This is expected and is due to the inverse relationship between wavelength and frequency.

At higher densities the inter-particle spacing decreases resulting in a decrease in wavelength

and an increase in frequency.

For each crystal structure, the theoretical volume fraction determined by lattice energy

calculations (φCsCl = 0.54 , φNaCl = 0.42 , φCaF2 = 0.46) is predicted to be stable by NMA.

Therefore, the theoretically predicted crystal structure is the one with the overall lowest

lattice energy. Figure 3.18 presents a comparison of lattice energies as a function of volume

fraction for the CsCl, NaCl, and CaF2 colloidal crystals. The NaCl crystal has the lowest

lattice energy (though only by 0.035 KBT ) and is chosen as the theoretically favored crystal

structure. This energy difference increases farther away from the boundary region in Figure

3.19. It is the NaCl crystal structure that appears in Figure 3.19 for ZS
ZL

= 2.0 and κσ = 4.0

as the thermodynamically and mechanically predicted crystal structure. Additional data,

similar to that shown in Figures 3.9 - 3.17, is presented in Appendix A.
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Figure 3.9 Lattice energy vs. volume fraction for a CsCl colloidal crystal. The lattice energy
is graphed as a function of volume fraction for a CsCl crystal with ZS/ZL = 2.0 and κσ = 4.0. The
minimum lattice energy occurs at a φ = 0.54.
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Figure 3.10 Number of unstable modes as a function of volume fraction for a CsCl colloidal
crystal. For a CsCl crystal with potential parameters ZS/ZL = 2.0 and κσ = 4.0, the number of
unstable modes are presented as a function of volume fraction. Unstable modes disappear at volume
fractions between φ = 0.50−0.70, indicating the crystal is stable.
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Figure 3.11 Distribution of eigenvalues for a CsCl colloidal crystal. The distributions of
eigenvalues are shown for different volume fractions of a CsCl crystal with potential parameters
ZS/ZL = 2.0 and κσ = 4.0. At φ = 0.49 negative eigenvalues indicate instability. At φ = 0.50 no
negative eigenvalues are present and the crystal is stable. The crystal is stable as the volume fraction
is further increased to φ = 0.53, φ = 0.54, φ = 0.55, and φ = 0.56. The crystal becomes unstable
again at φ = 0.71 (not shown).
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Figure 3.12 Lattice energy vs. volume fraction for a NaCl colloidal crystal. The lattice
energy is graphed as a function of volume fraction for a NaCl crystal with ZS/ZL = 2.0 and κσ = 4.0.
The minimum lattice energy occurs at a φ = 0.42.
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Figure 3.13 Number of unstable modes as a function of volume fraction for a NaCl colloidal
crystal. For a NaCl crystal with potential parameters ZS/ZL = 2.0 and κσ = 4.0, the number of
unstable modes are presented as a function of volume fraction. Unstable modes disappear at volume
fractions between φ = 0.38−0.43, indicating the crystal is stable.
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Figure 3.14 Distribution of eigenvalues for a NaCl colloidal crystal. The distributions of
eigenvalues are shown for different volume fractions of a NaCl crystal with potential parameters
ZS/ZL = 2.0 and κσ = 4.0. At φ = 0.37 negative eigenvalues indicate instability. At φ = 0.38 no
negative eigenvalues are present and the crystal is stable. The crystal is stable as the volume fraction
is further increased to φ = 0.40, φ = 0.41, and φ = 0.43. At φ = 0.44 negative eigenvalues are again
present and the crystal is unstable.
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Figure 3.15 Lattice energy vs. volume fraction for a CaF2 colloidal crystal. The lattice
energy is graphed as a function of volume fraction for a CaF2 crystal with ZS/ZL = 2.0 and κσ = 4.0.
The minimum lattice energy occurs at a φ = 0.46.
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Figure 3.16 Number of unstable modes as a function of volume fraction for a CaF2 colloidal
crystal. For a CaF2 crystal with potential parameters ZS/ZL = 2.0 and κσ = 4.0, the number of
unstable modes are presented as a function of volume fraction. Unstable modes disappear at volume
fractions φ = 0.41−0.70, indicating the crystal is stable.
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Figure 3.17 Distribution of eigenvalues for a CaF2 colloidal crystal. The distributions of
eigenvalues are shown for different volume fractions of a CaF2 crystal with potential parameters
ZS/ZL = 2.0 and κσ = 4.0. At φ = 0.40 negative eigenvalues indicate instability. At φ = 0.41 no
negative eigenvalues are present and the crystal is stable. The crystal is stable as the volume fraction
is further increased to φ = 0.42, φ = 0.43, φ = 0.46, and φ = 0.47. The crystal remains stable to the
highest volume fraction investigated at φ = 0.70 (not shown).

68



0.32 0.36 0.4 0.44 0.48 0.52 0.56
Volume fraction (φ)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

La
tti

ce
 e

ne
rg

y

CaF2
CsCl
NaCl

Figure 3.18 Comparison of lattice energies for CsCl, NaCl, and CaF2 colloidal crystals. The
lattice energies for CsCl, NaCl, and CaF2 are graphed as a function of volume fraction for potential
parameters ZS/ZL = 2.0 and κσ = 4.0. The minimum lattice energies for the three crystal structures
occurs at φCsCl = 0.54 , φNaCl = 0.42 , φCaF2 = 0.46. Overall the NaCl crystal structure has a slightly
lower lattice energy than either CsCl or CaF2
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Similarly to the analysis just described, the volume fraction, where the i) minimum

lattice energy occurs and ii) the crystal is found to be mechanically stable by NMA, is

determined for each crystal structure and interaction potential (listed in Section 3.2). The

data is then compared among crystal structures to determine which mechanically stable

structure represents the overall minimum energy configuration. We present theoretical

phase diagrams in the charge ratio verses screening length plane - representing the effects of

changing potential parameters on predicted crystal structure. Figure 3.19 presents theoretical

results representing the crystal structure that is both thermodynamically and mechanically

stable. From these results, it is clear that the cesium chloride structure is the favored structure

at large values of κσ ,corresponding to short screening lengths. The inclusion of NMA

provides information regarding the proper choice of crystal types to study. If the test crystal

is mechanically stable, than it is at least a metastable state and should be included in a lattice

energy comparison to determine which test crystal is the most energetically favored.

To evaluate the kinetic accessibility of ReO3, CaF2, NaCl, and CsCl at finite temperature,

we carry out MD simulations for each combination of charge ratio and screening length.

The introduction of temperature expands the accessible phase space, and often we find that

there is both a stable high temperature crystal phase and a different stable low temperature

crystal phase. To make comparisons with our theoretical phase diagram, we are interested in

the stable low temperature crystal phase, although in Figure 3.30 we present an approximate

phase diagram in the temperature and volume plane for one parameter set.

Figure 3.20 represents the crystal structures found to be 1) thermodynamically stable by

lattice energy calculations, 2) mechanically stable by NMA, and 3) kinetically accessible via

MD simulations. In the regions where the cesium chloride (CsCl), sodium chloride (NaCl),

and fluorite (CaF2) are the predicted crystal prototypes, our simulation results match our

theoretical predictions. Examples of self-assembled structures for the CsCl, NaCl, and CaF2

crystal structures are shown in Figures 3.21, 3.22 , and 3.23 respectively. However, we find

that rhenium trioxide (ReO3) is only stable at very low temperatures and is not accessible on
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Figure 3.19 Theoretical phase diagram predicting binary, ionic colloidal crystal stability.
Theoretical phase diagram, in the charge ratio vs. screening length plane, represents crystals that
are predicted to be mechanically stable by NMA and are the minimal potential energy structure by
lattice energy calculations.

the timescales of our MD simulations as the particle diffusion becomes too low to achieve

self-assembly. Therefore in the regions of ReO3 stability, we investigate the assembly of the

second most stable crystal structure, CaF2, and find that it assembles in MD simulations.
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Figure 3.20 Phase diagram predicting self-assembled binary, ionic colloidal crystals. Phase
diagram, in the charge ratio vs. screening length place, is composed of crystal structures that are
predicted to be: (1) mechanically stable (2) thermodynamically stable (3) kinetically accessible via
MD simulations.
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Figure 3.21 Self-assembled CsCl crystal. A CsCl crystal, assembled from a disordered configu-
ration, is shown along with a unit cell.
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Figure 3.22 Self-assembled NaCl crystal. A NaCl crystal, assembled from a disordered system,
is shown along with a unit cell.

74



Figure 3.23 Self-assembled CaF2 crystal. A CaF2 crystal, assembled from a seed immersed in
a disordered system, is shown along with a unit cell.
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We find that self-assembly of particles into CsCl and NaCl type crystals is achieved

readily from a disordered system; although in the case of NaCl often the CsCl crystal is the

preferred structure at high densities and temperatures and if cooling or compression rates

are too fast the crystal structure is missed entirely. This, however, should not pose a problem

for experimentalists because the concept of temperature in colloidal systems is directly

linked to the potential and would be constant throughout a trial. Additionally, colloidal

crystals formed through sedimentation from a dilute solution would not be constrained by

the volume of a simulation box.

Examples of NaCl and CsCl appearing in the same simulation are given in Figures 3.24

and 3.25. Figure 3.24 illustrates the crystal structures observed in a NVT simulation for

κσ = 6.0 and ZS/ZL = 4.0. For this set of potential parameters, NaCl is the theoretically pre-

ferred crystal structure. The simulation was cooled from a high temperature while keeping

the volume fraction fixed at φ = 0.40. At high temperatures the CsCl crystal structure forms,

however, the system transitions to a NaCl crystal as the temperature is further decreased.

Consistent with theoretical predictions - valid at T = 0 - the NaCl crystal forms at low

temperatures.

Figure 3.25 illustrates the crystal structures observed in a NPT simulation for κσ = 4.0

and ZS/ZL = 2.0. Again the NaCl structure is the theoretically predicted structure, and is

observed at low volume fractions. However, as the system is compressed to higher volume

fractions a CsCl crystal forms. This is consistent with the CsCl crystal having a higher close

packed volume fraction than NaCl.

For the CaF2 crystal structure self-assembly did not occur as readily as for NaCl or

CsCl, and multiple regions of 5 to 6 unit cells formed while the rest of the system remained

disordered, Figure 3.26. The addition of a seed induced the formation of box spanning

crystals in much shorter simulation times than previously run without the presence of a

seed, Figure 3.27. We do not believe the seed induced the formation of a crystal that would

otherwise fail to form given that no other crystal structure was present in our self-assembly
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Figure 3.24 Assembly results from a NVT simulation in which the temperature was reduced.
Results are shown for potential parameters κσ = 6.0 and ZS/ZL = 4.0. The volume fraction of the
simulation box was φ = 0.40 and N = 5324. a) The simulation begins from an initial disordered state
at T ∗ = 0.4. b) A CsCl colloidal crystal, shown at T ∗ = 0.2, is formed when the system is cooled. c)
A NaCl colloidal crystal is formed, shown at T ∗ = 0.1, when the simulation is cooled further.

runs.

If we restricted our theoretical phase diagram to include only those crystal structures with

a particle ratio of 1:1 we arrive at the results shown in Figure 3.28. The region of predicted

CsCl stability remains unchanged from Figure 3.20, but the region of NaCl stability extends

slightly to lower screening lengths. Additionally in the region occupied by CaF2 in Figure

3.20, colloidal crystals analogous to zinc sulfide (ZnS) and lead oxide (PbO) are predicted

along with a region in which no crystal is predicted to be enthalpically stable. As with

Figure 3.20, Figure 3.29 represents the crystal structures found to be 1) thermodynamically

stable via lattice energy calculations, 2) mechanically stable via NMA, and 3) kinetically

accessible via MD simulations. Similarly to ReO3, both ZnS and PbO were stable for very

low temperatures and we were unable to assemble them in a simulation. Instead, NaCl

crystals predicted to be both thermodynamically and mechanically stable, although not the

most thermodynamically stable structure formed in the low temperatures regions of interest.

The resulting phase diagram presented in Figure 4 is similar to that predicted for colloidal

crystals of the same size by Leussian and coworkers [17], although our phase boundary
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Figure 3.25 Assembly results from a NPT simulation in which the system was compressed.
Results are shown for potential parameters κσ = 4.0 and ZS/ZL = 2.0. The system temperature was
T ∗ = 0.1 and N = 8788. a) The simulation begins from an initial disordered state at φ = 0.325. b) A
NaCl colloidal crystal, φ = 0.405, is formed when the system is compressed. c) A CsCl colloidal
crystal, φ = 0.495, is formed when the simulation is further compressed.

Figure 3.26 Assembly of CaF2 from an initial disordered configuration. a) A final simulation
snapshot showing multiple, small regions of CaF2 crystals assembled from a disordered configuration.
b) A highlighted region of the simulation box showing CaF2 crystal formation.

between NaCl and CsCl is slightly shifted to lower screening lengths. It is know that particle

size ratio has a large effect on determining crystal phase due to geometric packing arguments

[104; 105], both NaCl and CsCl crystal structures are a preferred packing arrangement for
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Figure 3.27 Assembly of CaF2 from a seed. a) An initial configuration containing a CaF2
crystal seed. b) A box spanning CaF2 crystal formed from the initial configuration shown in a).

particle size ratios close to 1.25.

Comparing the results between our theoretical phase diagrams (Figures 3.19 and 3.20)

and the results from our simulations studies (Figures 3.28 and 3.29) it is clear that theoretical

predictions are a valid method to start the exploration of a systems possible phases; however,

the prediction of theoretical stability is not a guaranteed prediction of kinetic accessibility.

Our work applies the idea of normal mode analysis to study the stability of three dimen-

sional, binary ionic colloidal crystals in an effort to complement, with additional information,

the technique of lattice energy calculations. An overall goal is to develop a comprehensive

approach to quickly screen candidate crystal structures for stability. In the systems studied,

the mechanical stability information agreed with thermodynamic stability information, and

no discrepancies were found. In addition to strengthening the lattice energy results, NMA

provides information as to the density range over which a particular structure will be stable,

which is not provided by lattice energy calculations. Furthermore, there may be systems

in which NMA and lattice energy calculations do not agree, and in these cases NMA will
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Figure 3.28 Theoretical phase diagram predicting binary, ionic colloidal crystal stability
with a 1:1 particle ratio. Theoretical phase diagram, for crystals with 1:1 particle ratio, in the
charge ratio vs. screening length plane, represents crystals that are predicted to be mechanically
stable by NMA and are the minimal potential energy structure by lattice energy calculations.

provide a quick and effective check on the lattice energy results.

As previously mentioned, the use of MD simulations to extend theoretical calculations

introduces temperature and volume as variables in determining the stable crystalline phase.

To illustrate this, we investigated the phase diagram for a system with particle ratio 1:1,

charge ratio 1:2, and screening length κσ = 4.0 as a function of temperature and volume

fraction, Figure 3.30. Hysteresis is seen between the expansion and compression runs

indicating first order phase transitions between the liquid and crystal phases, and the NaCl

and CsCl crystal phases. Points in Figure 3.30 represent the average location of phase

transitions based on the observed hysteresis. The lowest temperature simulation data was

collected was at T = 0.1, and the T = 0 data is from lattice energy calculations. The region

between the simulation data atT = 0.1 and the lattice energy at T = 0 is an extrapolated
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Figure 3.29 Phase diagram predicting self-assembled binary, ionic colloidal crystals with a
1:1 particle ratio. Phase diagram for a system with particle ratio 1:1 , in the charge ratio vs.
screening length place, is composed of crystal structures that are predicted to be: (1) mechanically
stable (2) thermodynamically stable (3) kinetically accessible via MD simulations.

phase boundary. NaCl is the theoretically predicted crystal structure for this parameter set

and correspondingly forms at low temperatures and volume fractions. However, CsCl, a

denser crystal structure than NaCl, is also present in the system and coexists with NaCl at

low temperatures but at higher volume fractions. At temperatures above T ∗ = 0.2 NaCl fails

to form and the system transitions directly from a liquid to CsCl. CsCl is observed to form

below temperatures of T ∗ = 0.75, however above T ∗ = 0.75 no crystal structure has been

observed to form and the system remains disordered.
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Figure 3.30 Self-assembly phase diagram. Approximate phase diagram predicted with MD
simulations showing the crystal phases for a system with size ratio SL/Sm = 1.25, charge ratio
ZS/ZL = 2.0, and screening length κσ = 4.0. • indicates simulation data and � indicates data from
lattice energy calculations. The NaCl crystal structure is the low temperature, low density structure
and is the predicted theoretical structure from lattice energy and NMA.
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3.6 Conclusions

Given the large scientific interest in crystalline colloidal materials and the vast parameter

space accessible to researchers, it is desirable to have fast techniques to quickly screen

through an array of potentially stable crystal structures and predict only those that are most

likely to be stable. We have combined the ideas of lattice energies - to predict thermo-

dynamic stability - and normal mode analysis - to predict mechanical stability - creating

theoretical phase diagrams for a system of binary, charged colloidal crystals. Specifically,

we study systems in which the larger particles diameter is 1.25 times that of the smaller

particle and in which the larger charge magnitude resides on the smaller particle. A variety

of crystal structures are predicted, and through MD self-assembly studies we demonstrate

which of these crystal structures are kinetically accessible and which are stable only at

very low temperatures close to T = 0K. Additionally, we investigate the phase diagram in

the temperature vs. volume fraction plane for a system with charge ratio Zs/ZL = 2.0 and

screening length κσ = 4.0. We find that, in addition to the predicted ground state structure,

an entropically stabilized crystal phase exists at higher temperatures. In this study, the

inclusion of mechanical stability information provides a basis by which we can evaluate our

choices of possible crystal structures. If the test crystal is mechanically stable, than it is at

least a metastable state and should be included in a lattice energy comparison to determine

which test crystal is the most energetically favored. Normal mode calculations are much

faster than either free energy calculations or simulations, can easily be included with lattice

energy calculations to bolster thermodynamic predictions.
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Chapter 4

Application of normal mode analysis to
finite temperature systems

4.1 Introduction

As discussed in Chapter 3, normal mode analysis (NMA) is an efficient method to screen

crystal structures for mechanical stability. One key assumption in the previous NMA de-

velopment is the inclusion of only second order terms (Eq. 3.14). The exclusion of higher

order terms, a harmonic approximation, results in a formulation that is rigorously true for

systems at T = 0K. However, colloidal crystals are used in applications at T > 0; therefore,

it would be desirable to extend NMA to finite temperatures, yet still maintain the ability to

quickly screen for crystal stability over a wide range of system parameters.

The Lindemann criterion is an empirical rule to predict the melting temperature of

crystalline solids at finite temperatures [106]. First introduced by Lindemann in 1910, this

simple rule has been applied to a variety of different fields including metals [107], polymer

glasses [108], and proteins [109]. The Lindemann rule relates particle vibrations about their

lattice positions to the temperature at which the limit of mechanical stability is reached.

As temperature increases, particle’s vibrational amplitudes also increase. Specifically, the

criterion states that a crystal melts when the root mean square fluctuations in the particle’s

vibrational amplitude about its equilibrium position exceeds a characteristic value - typically

10 to 20% of the nearest neighbor distance [110; 111; 109]. Given the importance of crys-

talline materials in advanced engineering applications, it is desirable to develop a method
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producing a more precise estimate for the melting temperature, yet, still maintaining the

advantage of speed over traditional simulations and experiments.

Normal mode analysis has been previously extended to finite temperature systems

through combination with molecular simulations [112; 113; 114]. The connection between

NMA and simulations can proceed in one of two ways. This comparison can occur by i)

relating dynamical information collected from simulation studies in the form of correlation

functions - for example, the velocity auto-correlation function - to the normal mode density

of states through a Fourier transformation [115; 114; 116] : or ii) calculating dynamical

information - such as the conformational changes or diffusion associated with movement

along the potential energy landscape - from the normal modes calculated from the simulation

[113; 117; 118]. These methods have been applied to a variety of systems including pro-

teins [113],viruses [117], RNA [119], simple chemical compounds [114], and mono-atomic

liquids [112]. Although NMA in conjunction with simulation is useful for understanding

the complex relationship between specific vibrational modes and configurational changes

corresponding to potential energy minimum surfaces, it is too detailed to be utilized as

a quick means of producing a melting temperature estimate. Therefore, it would be of

interest to develop a method extending NMA to finite temperatures without the use of time

consuming simulations.

The Lennard-Jones system is chosen as the model potential, and results from this study

will be compared to known information regarding the equilibrium and mechanical limits of

stability [6].

4.2 Model

The Lennard-Jones system was chosen as the test model because many of its thermodynamic

and structural properties are well understood. The Lennard-Jones potential describes strong,

short-range repulsive and comparatively weaker, longer-range attractive interactions between
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particles [18]. The Lennard-Jones potential was developed by Sir John Lennard-Jones to

describe the phase behavior of Argon, and has become one of the most widely used pair

potentials to describe non-bonded van der Waals interactions. The potential has the form:

U(ri j) = 4ε

[(
σ

ri j

)12
−
(

σ

ri j

)6
]

ri j ≥ rcutoff (4.1)

where ri j is the inter-particle separation. The characteristic length scale is give by σ , and

is set by the diameter of a particle. The characteristic energy scale is given by ε , and is

defined as the potential well depth, located at 2
1
6 σ . Both σ and ε are set to unity in this

investigation. The particle mass is taken to be unity as well. The potential cutoff, rcutoff,

is set to produce no more than a 2% energy loss. The 1
r6 term arises from the functional

form of attractive dispersion forces. The repulsive force is derived from the Pauli exclusion

rule, but the specific 1
r12 functional form is chosen for mathematical simplicity and has no

theoretical underpinning.

Though the Lennard-Jones potential is a generalized empirical model, its simple form is

computationally efficient. Its use in simulation studies has led to a broad understanding of

qualitative trends in a wide variety of systems including noble gases [18], polymeric systems

[120; 121], and glasses [122; 123]. Simple mono-atomic systems of spherical particles have

also been widely studied using this potential and many phase diagrams have been created. It

is now widely accepted that the Lennard-Jones crystal is FCC [124; 125] .

4.2.1 Method

Most systems of interest do not exist at zero temperature, but rather at finite temperature.

The addition of kinetic energy to a system is one possible means by which a structure

can become mechanically unstable. Unlike previous studies of NMA at finite temperature,

simulations were not run to create thermalized configurations for two reasons. First, the

goal of this study is to determine if NMA can predict the limit of mechanical stability when
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Figure 4.1 Distribution of particle displacements. Distribution of particle displacements sam-
pled for 1372 particles with a standard deviation of 0.1σ .

T > 0. Carrying out a simulation would allow the particle configuration to explore phase

space. This would make it unclear if NMA was detecting instabilities because the system

had reached the limit of mechanical stability or because the system had transitioned to the

thermodynamically stable state before reaching the limit of mechanical stability. Second,

the advantage to performing NMA is the speed at which it can be accomplished. Relying on

a simulation to generate the configurations would slow down the analysis and remove this

advantage.

Instead, thermal noise was introduced into a Lennard-Jones, FCC crystal by applying

a normal distribution of particle displacements to the original lattice, Fig. 4.1 and Fig.

4.2. Displacements were sampled independently in each of the three coordinate directions.

Periodic boundary conditions were applied after the randomization process to ensure particle
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Figure 4.2 Method to introduce thermal noise into a crystal system. Kinetic energy is in-
troduced into a perfect crystal by applying a Gaussian distribution of displacements to particle
locations.

configurations were located within the simulation boundary. Separate thermalized configu-

rations were created for a range of densities between ρ = 0.8 to ρ = 1.2 in increments of

∆ρ = 0.02. The standard deviation defining the normal distribution of particle displacements

was increased until subsequent configurations were no longer stable when analyzed with

NMA (system stability was determined by the presence or absence of negative eigenval-

ues). The corresponding temperature was then calculated and averaged over twenty-five

independent configurations.

Configurations were analyzed using the simulation and analysis code FLX, written and

maintained by John Kieffer at the University of Michigan (http://www.mse.engin.umich.edu-

/people/faculty/kieffer). This code was modified from its original form for the purposes of

this study. Modifications included adding code to calculate a dimensionless Lennard-Jones

potential.

Introducing disorder into a system via particle displacements does not directly set a

temperature. Therefore, the equipartition theorem was used to equate fluctuations with

temperature. Derived from classical statistical mechanics, the equipartition theorem states,

that for systems in thermal equilibrium, the system energy is divided uniformly amongst all

terms in the Hamiltonian, and each term will contribute kBT
2 per degree of freedom to the

overall energy [102]. The validity of the equipartition theorem is based on the appearance
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Figure 4.3 Modes of motion in a 1-D homogeneous particle chain. a) High frequency mode
corresponds to all particles vibrating with the same frequency at a wavelength given by the particle
spacing. b) Low frequency motion corresponds to a long wavelength and collective motion.

of quadratic terms in the Hamiltonian [102]. The Lennard-Jones potential is clearly not a

quadratic function, and therefore cannot be used in conjunction with the equipartition theo-

rem. However, at low temperatures a particle’s fluctuations about its equilibrium position

are small. Therefore, the Lennard-Jones potential can be effectively modeled as a harmonic

oscillator, which can be used to relate disordered configurations to temperatures. NMA

analysis is based on a harmonic approximation, so this assumption is not without basis.

The system temperature is related to the mean-square displacement through the charac-

teristic angular frequency via the formula[115]:

〈
|u( j)|2

〉
=

3kBT
m jω

2
j

(4.2)

where kB is the Boltzmann constant, T is the temperature, m j is the mass of particle j,〈
|u( j)|2

〉
is the mean-square displacement of a particle from its lattice site (and can also

be written as < (ri− ri,0)2 >), and ω2
j is the characteristic angular frequency of the system,

which is assumed to be the same for every particle. Figure 4.3 illustrates two possible

modes in a one-dimensional, homogeneous particle chain. An Einstein crystal is described
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Figure 4.4 Einstein crystal. In an Einstein crystal each particle vibrates about its lattice site and
can be considered a harmonic oscillator.

by a high frequency mode associated with particles independently vibrating about their

equilibrium positions, acting as a simple harmonic oscillator, Fig. 4.3 a) and Fig. 4.4. Each

oscillator has the same frequency, and there are 3N independent modes in the system. Lower

frequencies are associated with longer wavelength, collective motion, and particles vibrate

at different frequencies [102; 115], Fig 4.3 b). It is the high frequency mode which appears

in Eq. 4.2, and therefore it is the largest normal mode frequency which is used to calculate

the system temperature.

4.2.2 Results

NMA was performed on a perfect Lennard-Jones, FCC crystal at T = 0, and Figure 4.5

illustrates the distribution of eigenvalues as a function of angular frequency for four densities

of a perfect, Lennard-Jones, FCC crystal. At ρ = 0.75 negative eigenvalues are present

in the system indicating instability. As the density is increased to ρ = 0.80 the negative

eigenvalues disappear indicating the crystal is stable. The crystal remains stable as the

density is further increased to ρ = 0.9 and 1.0. From Figure 4.5 it can also be seen that

the magnitude of the highest frequency, associated with a wavelength corresponding to the

inter-particle spacing, increases as the density increases. This is expected and is due to the

inverse relationship between wavelength and frequency. At higher densities the inter-particle

spacing decreases resulting in a decrease in wavelength and an increase in frequency. NMA
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analysis was performed up to ρ = 1.20 ,and Figure 4.6 presents the number of negative

eigenvalues as a function of density. At a density of ρ = 0.8, the transition between stability

and instability can be seen. For density values below ρ = 0.8, negative eigenvalues appear

indicating unstable crystal configurations. Above ρ = 0.8 the crystal was found to be stable.

Figure 4.7 illustrates the lattice energy for the LJ, FCC crystal as a function of density.

The lowest lattice energy appears at a density of ρ = 1.08, and corresponds to the preferred

crystal density at T = 0. Comparing Figures 4.6 and 4.7 it is clear that the thermodynami-

cally favored crystal density predicted from lattice energy calculations lies within the region

of mechanical stability predicted from NMA. This is in agreement with theory - an energy

minimum will also be mechanically stable - and shows normal mode analysis correctly

estimates the relative position of the T = 0 spinodal in relation to the thermodynamically

predicted T = 0 density.

Similar data is generated for disordered systems, Fig. 4.8. The data presented is for

ρ = 0.90 at increasing values of σ (the standard deviation associated with the displacement

distribution), and the associated mean-square particle displacement. For smaller values of σ

and < (ri− ri,0)2 > there are no negative eigenvalues and all modes of motion are stable,Fig.

4.8 a. As σ increases < (ri− ri,0)2 > also increases, negative eigenvalues appear, and the

configurations are unstable, Fig. 4.8 b-d. The larger σ and < (ri− ri,0)2 > become, the

more negative eigenvalues appear. The angular frequency used in Eq. 4.2 is the highest

frequency exhibited by the system, and is indicated in the figure.

The distributions in Figure 4.8 were generated from the same random number and con-

stitute one sample. Twenty-five independent samples were generated for this study. When a

system has reached the spinodal all configurations will be mechanically unstable. Therefore,

the system was considered unstable when, for a given σ , every sample exhibited negative

eigenvalues. The temperature was then calculated and averaged over all samples. This was

repeated for a range of densities, and the resulting temperatures are presented in Figure 4.9.
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Figure 4.5 Distribution of angular frequencies for a perfect Lennard-Jones, FCC crystal.
The distributions of eigenvalues are shown for four densities of a perfect, Lennard-Jones , FCC crys-
tal. a) At ρ = 0.75 negative eigenvalues indicate instability. b) At ρ = 0.80 no negative eigenvalues
are present and the crystal is stable. The crystal is stable as the density is further increased to c)
ρ = 0.9 and d) ρ = 1.0. The magnitude of the largest frequency also increases as is expected.
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Figure 4.6 Negative eigenvalues as a function of density. For a LJ, FCC crystal, the number of
negative eigenvalues are presented as a function of density. Negative eigenvalues begin to appear at a
crystal density ρ < 0.8, indicating the onset of instability.
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Figure 4.7 Lattice energy as a function of density. For a Lennard-Jones, FCC crystal, the
lattice energy is plotted as a function of density. The minimum lattice energy occurs at ρ ≈ 1.1,
indicating the preferred density at T = 0.
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Figure 4.8 Distribution of angular frequencies for disordered LJ, FCC crystals at ρ = 0.90.
The distribution of eigenvalues for at a given frequency is shown for increasingly disordered crystals.
a) At smaller values of < (ri−ri,0)2 > all modes of motion are stable. b) As < (ri−ri,0)2 > increases
negative eigenvalues appear. c) and d) As < (ri− ri,0)2 > increases, more modes become unstable
and negative. The angular frequency used in Eq. 4.2 is labeled.
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4.3 Discussion

The temperatures calculated in this study have been plotted on a temperature-pressure

Lennard-Jones phase diagram 4.10. This phase diagram was taken from the paper entitled

”The Phase Diagram and Spinodal Decomposition of Metastable States of Lennard-Jones

System” by Kuksin et al.[6]. In this work the spinodal was calculated through molecular

dynamics simulations. Isothermal and isochoric simulation runs were conducted and the

macroparameters monitored. The stability limit occurred when these macroparameters

varied abruptly or when
(

∂P
∂ρ

)
= 0 (depending on the simulation type).

It can be seen in Fig. 4.10 that, at low temperature, our data closely matches that of

Kuksin et al., but over estimates the spinodal temperature at higher densities and temper-

atures. For example, at ρ = 0.82 our data predicts the limit of stability would occur at

T = 0.13 and Kuksin et al. predict T = 0.04, but at ρ = 0.90 our data predicts T = 2.5

while Kuksin et al. predict T = 0.8. This is in agreement with the known limitation of NMA

and the equipartition theorem stemming from the harmonic approximation, which implies

that our analysis will be exact at T = 0 and show greater deviations as the temperature

increases and anharmonic terms become more important.

Additionally, the root mean square vibrational amplitudes at melting - taken to be

10− 20% of the nearest neighbor distance in accordance with the Lindemann criterion -

are compared to those at the onset of instability as predicted by NMA, Fig. 4.11. At low

densities, the values predicted by NMA lie within the range predicted by Lindemann, but

are higher than those predicted by Lindemann at larger densities. This result is in agreement

with the known limitations of a harmonic approximation. At low densities the melting

temperature is low and NMA is most accurate. At higher densities, the melting temperature

is higher and results obtained from NMA will deviate due to the harmonic approximation.
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Figure 4.9 Stability limit predicted from finite temperature NMA. The T −ρ diagram of the
stability limit as predicted by finite temperature NMA. A crystal is predicted to be mechanically
stable if its associated density and temperature lie below the red line.
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Figure 4.10 Phase diagram of the L-J system. The T −ρ phase diagram of the L-J system. Data
in black is taken from [6]: • indicates the solid’s limit of stability (from isothermal simulations), ◦
indicates the solid’s limit of stability (from isochoric simulations). The dashed line indicates the
triple point temperature, and the black lines are the curves of equilibrium coexistence. The data
shown in red is obtained through NMA
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Figure 4.11 Root mean square vibrational amplitude at melting. The root mean square vi-
brational amplitudes at melting, predicted to be 10−20% of the nearest neighbor distance by the
Lindemann criteria, are indicated by the shaded region. The root mean square vibrational amplitudes
at melting predicted by NMA are shown in red. Lower melting temperatures occur at lower crystal
densities.
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4.4 Conclusions

In conclusion, the extension of normal mode analysis to finite temperature systems was

studied using the Lennard-Jones system as a model. Thermal noise was introduced into

the system by randomly displacing particles from their lattice positions. Normal mode

analysis was used to calculate the eigenvalues of the disordered system, which represent

the angular frequencies present in the system, and the system temperature was calculated

through the equipartition theorem. The results indicate that it is possible to apply normal

mode analysis to systems for which T > 0 and to obtain a close, bounding estimate of the

limit of mechanical stability. However, due to the harmonic approximation inherent in NMA

and the equipartition theorem, the results will be a closer match to the thermodynamically

predicted limit of mechanical stability at low temperatures.
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Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis, the self-assembly of colloidal particles was studied through Monte Carlo

and molecular dynamics simulation methods. Two separate colloidal systems were studied

with these methods for different potential applications. In both studies, phase diagrams

were constructed linking changes in particle pair potential to changes in the final structure.

These phase diagrams are meant to serve as a qualitative guide to researchers interested in

fabricating the systems presented.

In Chapter 2, systems of nanoparticles were studied to determine their suitability for

nanoelectronic applications. This required the determination of both the nanoparticle’s

electronic properties and propensity for self-assembly. This work began by investigating

the self-assembly of nanospheres modeled as a single, smooth particle interacting through

attractive patches. Monte Carlo simulations demonstrated that a suitable choice of patch

number and location lead to nanospheres assembling into two-dimensional square arrays

and two and three-dimensional honeycomb networks.

To study the electronic properties of nanosphere assemblies, nanospheres were mod-

eled as gold particles and the patches as benzene-dithiolate linker molecules. The organic

molecules act to both connect the metal spheres and to control the flow of current through

the self-assembled structure. Unfortunately, it was determined that, despite the interesting

Coulomb gap for the benzene-dithiol molecule, the nanosphere assemblies have uninterest-
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ing ohmic I−V behavior. Though this study did not result in a model of a useful device, it

did lead to a better understanding of how nanobuilding block choice affects the final device

properties, including a recommendation of choosing non-spherical nanoparticle building

blocks with intrinsically interesting I−V characteristics.

Nanotetrapods were the second system studied for use as nanoelectronic devices. This

work was a collaborative effort between University of Michigan and Vanderbilt Univer-

sity research groups with complementary expertise. Our collaborators used Technology

Computer Aided Design tools to simulate the electrical behavior of both a nanotetrapod

metal-semiconductor field-effect transistors and junction field-effect transistors. By varying

the doping concentration and material composition of the tetrapod arms, cadmium telluride

nanotetrapods have the potential to be useful circuit elements. Specifically, it was shown

that nanotetrapod MESFETs could be fabricated as either normally OFF or ON transistors

depending on dopant concentrations. Nanotetrapod JFETs were shown to have normally

ON characteristics.

Monte Carlo assembly studies were used to investigate the arrangement of nanotetrapods

in trenches and the alignment of these particles between electrodes. Particles interacted

through a screened electrostatic potential and excluded volume interactions. Particles are

driven to assembly between electrodes in the trench with an attractive square-well poten-

tial. Tuning the strength of the electrostatic interaction in relation to the strength of the

square-well attraction leads to the desired assembly of tetrapods. Experimentally, these

interactions could be tuned through solvent selection and appropriate chemical modification

of the nanotetrapod arms’ tips.

The future impact of this work can be divided into two parts. First, this work addresses

the feasibility of, and motivates the use of, nanotetrapods as electronic devices. Secondly,

beyond specific results, this work presents a successful example of a multi-scale collabo-

ration, and establishes a paradigm to combine modeling of electronic characteristics with

self-assembly studies. This work was published in Nano Letters [19].
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In Chapter 3, the self-assembly of spherical, binary, ionic colloids was examined. The

outcome of this work was twofold - first, phase diagrams predicting expected crystal structure

as a function of potential interaction were determined, and second, normal mode analysis

was applied to systems of three-dimensional binary ionic colloids for the first time. Mixtures

of colloidal particles, with size ratio 1 : 0.8, were theoretically predicted to form ReO3,

CaF2, PbO, ZnS, NaCl, and CsCl crystal structures depending on mixture stoichiometry,

potential screening length, and potential charge ratio. The theoretical predictions were then

tested through molecular dynamic simulations. It was determined that only the CaF2, NaCl,

and CsCl crystal structures are kinetically accessible, while the remaining structures are

only stable at very low temperatures close to T = 0K.

Theoretical predictions were made based on lattice energy calculations and normal mode

analysis. In this study, the inclusion of normal mode analysis did not alter the predictions

based on lattice energy calculations, but this may not always prove true. Even though the

results were unaffected, the inclusions of normal mode analysis strengthens the predictions

made by lattice energy calculations.

In the future, the predictions of crystalline stability can be used to qualitatively assist in

choosing systems that would assemble into desired structures. Additionally, normal mode

analysis can be applied to study the mechanical stability of systems of binary, ionic colloids

with different size ratios than studied in this thesis.

In Chapter 4, the extension of normal mode analysis to finite temperature systems was

investigated. To maintain the speed advantage of NMA, kinetic energy was introduced by

applying Gaussian distributions of particle displacements. The temperature of the system

was then calculated through application of the equipartition theorem. A line of mechanical

stability as a function of temperature and density for a Lennard-Jones, FCC crystal was

determined. Comparison to published data for the Lennard-Jones system indicates, that at

low temperatures, that our line of mechanical stability predicted by NMA matches closely

the known mechanical stability boundary. At higher temperature our method overestimates
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the melting temperature. However, this is expected due to the inherent assumptions in the

method.

5.2 Future work

Assemblies of colloidal particles are important for a number of advanced engineering ap-

plications. Systems relevant to two such applications have been investigated in this work

- nanotetrapods for nanoelectronic applications and binary, ionic colloids, which could be

promising systems for photonic crystals. This dissertation has used simulations to connect

particle pair interactions with predicted phase behavior. Building from this work, there

are several future projects which are of scientific interest - including designing nanotetra-

pod logic gates and understanding the implications of replacing spherical particles with

non-spherical particles in the binary colloidal systems.

5.2.1 Design and assembly of nanotetrapod logic circuits

In Chapter 2, nanotetrapods were found to be a promising system for the design and as-

sembly of nanocircuit elements. This study explored the I-V response for nanotetrapod

MESFETs and JFETs, and the subsequent ability to assemble the particles into ordered

arrays. However, to take full advantage of these particles as circuit elements, it is necessary

to design logic gates or even more complicated circuit functions capable of executing a

prescribed task.

The demonstration of promising I-V characteristics of single nanotetrapods and the

ability to control and direct their assembly strengthens the feasibility of more complicated

electrical assemblies. Paralleling the original study, the design of logic elements would first

require the characterization of the I-V response for a collection of nanotetrapods. Poten-

tially, AND, OR, NOT, XOR, and XNOR logic gates could all be created with a suitable

arrangement of tetrapod transistors. Self-assembly design studies would then be employed
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to determine the necessary particle-particle and particle-substrate interactions required to

achieve the desired architecture.

Additionally, in the current study only three arms of the tetrapods were utilized in the

creation of transistors. Incorporation of the fourth arm into the electronic structure might

allow for the creation of three-dimensional architectures. One of the present limitations

to increasing computing power is the ability to increase transistor densities by decreasing

transistor size. The extension to three dimensions could allow for denser circuit design

without necessitating a decrease in transistor size, and would be a natural development of

using complex nanoparticles for nanoelectronic applications.

5.2.2 Polydispersity of binary, ionic colloids

In Chapter 3, systems of spherical, binary, ionic colloids were found to form distinct crystal

types based on interaction parameters. Additionally, a phase diagram in the temperature

verses density plane indicated the presence of multiple crystal types - at low temperatures,

a small region of energetically stabilized crystal and a much larger, entropically stabilized

phase at higher temperatures. These studies were carried out for monodisperse systems;

however, synthesis techniques rarely yield particles with polydispersities less than 5 to

10%. Given the narrow existence region for the low-temperature crystal phase, it is possible

that polydispersity might affect the phase boundaries. Incorporating polydispersity into

simulation studies would be relatively easy and provide direction for a future study that may

have more industrially relevant applications.

5.2.3 Application of normal mode analysis to additional systems

In Chapter 3, normal mode analysis was used in conjunction with lattice energy calculations

to investigate the theoretical stability of binary, ionic colloidal systems. This method is

faster than performing traditional simulations and can be used to quickly scan for stable
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crystal structures. In the future, NMA can be extended to quickly scan for stable crystal

structures in systems interacting through potentials described by a continuous function with

an inflection point in the second derivative. Additionally, in Chapter 4, NMA was used

to predict the limit of mechanical stability for the L-J system at low temperatures. This

technique could be applied to other systems to quickly located the limit of metastability at

low temperatures without the need for expensive simulations.

5.2.4 Binary, ionic colloidal rods

Chapter 3 focused on systems of charged spheres interacting through the Yukawa potential.

However, through progress in synthetic chemistry techniques, experimentalists have been

able to realize a wide variety of nanoparticles. Variations in size, geometry, topology, and

material composition mean that there is a large assortment of possible starting materials

for the construction of binary colloids crystals. Examples include gold nanorods [2], silver

nanocubes [1], nanotriangles [43], and nanoplates[42]. This variety presents researchers

with the opportunity to control self-assembly, not just through thermodynamics parameters

such as solvent conditions, particle concentration, and particle number density ratios, but

also through entropic and enthalpic conditions derived from the specifics of the nano build-

ing block itself. While this most certainly increases the complexity of the binary colloidal

assembly process, there is also the possibility to increase the potential pay-off in useful and

novel structures.

The synthesis of non-spherical colloidal particles has lagged behind that of spherical

nanoparticles, since on the colloidal length-scale the minimization of the interfacial en-

ergy leads to mainly spherical shapes. However, recent progress in the development of

lithographic techniques has led to the ability to produce large quantities of non-spherical

colloidal particles such as colloidal cubes, hexagons, and triangular plates [126; 127; 128],

opening up the possible choices of building blocks for ICCs.

While the ability to experimentally produce colloidal particles and nanoparticles with
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non-spherical shape exists, there have not been many experimental or simulation studies

conducted on the assembly of non-spherical shapes (besides rods and ellipsoids) and on

electrostatic induced self-assembly of shaped particles. Dullens et al. conducted stud-

ies on how particle shape affects crystallization [129]. When changing from a system of

monodisperse spherical colloidal particles to a system of monodisperse polyhedral shaped

colloidal particles they found that the perfect hexagonal lattice is disrupted and long-range

translational order is lost. Several simulation studies have been carried out to investigate

the phase behavior of non-spherical, hard-particle systems including rectangles, pentagons,

and cuboids [130; 131; 132]. Additionally, the Glotzer group has performed studies on the

assembly of varying nanoparticle geometries through short-ranged, anisotropic, attractive

interactions and interacting tethers [133; 54; 28].

Particularly of interest are systems of binary, charged colloidal rods, which are now

experimentally realizable and present an exciting new area of research. The literature on

spherical, binary, ionic colloids and assemblies of non-interacting rods provides a starting

point to develop hypothesis and draw comparisons. Simulations of rod shaped particles inter-

acting via a screened electrostatic interaction are immediately realizable. The efficient and

systematic nature of simulations make them a natural method to begin a study of colloidal

rods.
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Appendix A

Chapter 3 supplementary data

In Chapter 3, we present theoretical phase diagrams based on lattice energy and normal

mode calculations. Here supplementary data is presented, which was used to create Figures

3.19 and 3.28. This data is similar to that presented in Figures 3.9 - 3.17 . Though this data

does not represent the entirety of the data generated, as that would require over 700 graphs,

it does exemplifies the data investigated in this thesis and could be used in the future as a

guide in reproducing this work.

Figures A.1 through A.18 illustrate data for the NaCl colloidal crystal with charge ratio

ZS
ZL

= 2.0 as κσ increase from κσ = 2.0 to κσ = 12.0. Figures A.19 through A.33 presents

data for the NaCl crystal with κσ = 4.0 as the charge ration increase from ZS
ZL

= 1.0 to

ZS
ZL

= 6.0.
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Figure A.1 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0 and κσ = 2.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 2.0 and κσ = 2.0.
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Figure A.2 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0 and
κσ = 2.0. The number of unstable modes as a function of volume fraction is shown for the NaCl
colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 2.0.
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Figure A.3 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 2.0 and
κσ = 2.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 2.0.
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Figure A.4 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0 and κσ = 4.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 2.0 and κσ = 4.0.
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Figure A.5 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0 and
κσ = 4.0. The number of unstable modes as a function of volume fraction is shown for the NaCl
colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 4.0.
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Figure A.6 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 2.0 and
κσ = 4.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 4.0.
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Figure A.7 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0 and κσ = 6.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 2.0 and κσ = 6.0.
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Figure A.8 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0 and
κσ = 6.0. The number of unstable modes as a function of volume fraction is shown for the NaCl
colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 6.0.
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Figure A.9 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 2.0 and
κσ = 6.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 6.0.
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Figure A.10 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0 and κσ = 8.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 2.0 and κσ = 8.0.
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Figure A.11 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0
and κσ = 8.0. The number of unstable modes as a function of volume fraction is shown for the
NaCl colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 8.0.
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Figure A.12 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 2.0 and
κσ = 8.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 8.0.
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Figure A.13 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0 and κσ = 10.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 2.0 and κσ = 10.0.
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Figure A.14 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0
and κσ = 10.0. The number of unstable modes as a function of volume fraction is shown for the
NaCl colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 10.0.
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Figure A.15 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 2.0 and
κσ = 10.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 10.0.
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Figure A.16 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0 and κσ = 12.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 2.0 and κσ = 12.0.
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Figure A.17 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 2.0
and κσ = 12.0. The number of unstable modes as a function of volume fraction is shown for the
NaCl colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 12.0.
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Figure A.18 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 2.0 and
κσ = 12.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 2.0 and κσ = 12.0.

127



0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
Volume fraction (φ)

-3

-2.75

-2.5

-2.25

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

La
tti

ce
 e

ne
rg

y

Figure A.19 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 1.0 and κσ = 4.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 1.0 and κσ = 4.0.
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Figure A.20 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 1.0
and κσ = 4.0. The number of unstable modes as a function of volume fraction is shown for the
NaCl colloidal crystal with potential parameters ZS

ZL
= 1.0 and κσ = 4.0.
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Figure A.21 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 1.0 and
κσ = 4.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 1.0 and κσ = 4.0.
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Figure A.22 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 3.0 and κσ = 4.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 3.0 and κσ = 4.0.
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Figure A.23 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 3.0
and κσ = 4.0. The number of unstable modes as a function of volume fraction is shown for the
NaCl colloidal crystal with potential parameters ZS

ZL
= 3.0 and κσ = 4.0.
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Figure A.24 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 3.0 and
κσ = 4.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 3.0 and κσ = 4.0.
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Figure A.25 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 4.0 and κσ = 4.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 4.0 and κσ = 4.0.
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Figure A.26 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 4.0
and κσ = 4.0. The number of unstable modes as a function of volume fraction is shown for the
NaCl colloidal crystal with potential parameters ZS

ZL
= 4.0 and κσ = 4.0.
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Figure A.27 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 4.0 and
κσ = 4.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 4.0 and κσ = 4.0.
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Figure A.28 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 5.0 and κσ = 4.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 5.0 and κσ = 4.0.
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Figure A.29 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 5.0
and κσ = 4.0. The number of unstable modes as a function of volume fraction is shown for the
NaCl colloidal crystal with potential parameters ZS

ZL
= 5.0 and κσ = 4.0.
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Figure A.30 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 5.0 and
κσ = 4.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 5.0 and κσ = 4.0.
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Figure A.31 Lattice energy vs. φ for the NaCl colloidal crystal with ZS
ZL

= 6.0 and κσ = 4.0.
The lattice energy as a function of volume fraction is shown for the NaCl colloidal crystal with
potential parameters ZS

ZL
= 6.0 and κσ = 4.0.
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Figure A.32 Number of unstable modes vs. φ for the NaCl colloidal crystal with ZS
ZL

= 6.0
and κσ = 4.0. The number of unstable modes as a function of volume fraction is shown for the
NaCl colloidal crystal with potential parameters ZS

ZL
= 6.0 and κσ = 4.0.
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Figure A.33 Number of eigenvalues vs. ω for the NaCl colloidal crystal with ZS
ZL

= 6.0 and
κσ = 4.0. The number of eigenvalues as a function of angular frequency are shown for multiple
volume fractions of the NaCl colloidal crystal with potential parameters ZS

ZL
= 6.0 and κσ = 4.0.
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Appendix B

Colloidal crystal unit cells

In Chapter 3, binary ionic colloidal crystals were studied through lattice energy calculations

and normal mode analysis. This required constructing a perfect crystal upon which the

analysis was performed. In this appendix the orthonormal basis cells used to construct each

crystal are listed.

NaCl
a = b = c ; α = β = γ

1. Na - 0.5 0.5 0.5
2. Na - 0.0 0.0 0.5
3. Na - 0.0 0.5 0.0
4. Na - 0.5 0.0 0.0
5. Cl - 0.0 0.0 0.0
6. Cl - 0.5 0.5 0.0
7. Cl - 0.5 0.0 0.5
8. Cl - 0.0 0.5 0.5

CsCl
a = b = c ; α = β = γ

1. Cs - 0.0 0.0 0.0
2. Cl - 0.5 0.5 0.5

CaF2
a = b = c ; α = β = γ

1. F - 0.75 0.25 0.25
2. F - 0.25 0.75 0.75
3. F - 0.25 0.75 0.25
4. F - 0.25 0.25 0.75
5. F - 0.75 0.75 0.25
6. F - 0.25 0.25 0.25
7. F - 0.75 0.75 0.75
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8. F - 0.75 0.25 0.75
9. Ca - 0.50 0.50 0.0

10. Ca -0.00 0.00 0.00
11. Ca -0.50 0.00 0.50
12. Ca -0.00 0.50 0.50

CuAu
a = b = c ; α = β = γ

1. Cu - 0.0 0.0 0.0
2. Cu - 0.5 0.5 0.0
3. Au - 0.0 0.5 0.5
4. Au - 0.5 0.0 0.5

BN
a =
√

(3.0)b = 3.0c ; α = β = γ

1. B - 0.0 0.0 0.0
2. B - 0.5 0.5 0.0
3. B - 0.0 0.0 0.5
4. B - 0.5 0.5 0.5
5. N - 0.0 0.6667 0.25
6. N - 0.5 0.1667 0.25
7. N - 0.0 0.3333 0.75
8. N - 0.5 0.8333 0.75

CuAu
a = b = c ; α = β = γ

1. Cu - 0.0 0.0 0.0
2. Cu - 0.5 0.5 0.0
3. Au - 0.0 0.5 0.5
4. Au - 0.5 0.0 0.5

NiAs
a = b = c ; α = β = γ

1. As - 0.25 0.667 0.25
2. As - 0.25 0.333 0.75
3. As - 0.5 0.833 0.75
4. As - 0.5 0.167 0.25
5. As - 0.75 0.667 0.25
6. As - 0.75 0.333 0.75
7. Ni - 0.0 0.5 0.0
8. Ni - 0.0 0.5 0.5
9. Ni - 0.25 0.0 0.0

10. Ni - 0.25 0.0 0.5
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11. Ni - 0.5 0.5 0.0
12. Ni - 0.5 0.5 0.5
13. Ni - 0.75 0.0 0.0
14. Ni - 0.75 0.0 0.5

ReO3
a = b = c ; α = β = γ

1. Re - 0.5 0.0 0.0
2. O - 0.0 0.5 0.0
3. O - 0.0 0.0 0.5
4. O - 0.0 0.0 0.5

PbO
a = b = 1.27c ; α = β = γ

1. Pb - 0.0 0.0 0.0
2. Pb - 0.5 0.5 0.0
3. O - 0.5 0.0 0.7658
4. O - 0.0 0.5 0.2342

ZnS
a = b = c ; α = β = γ

1. S - 0.25 0.25 0.25
2. S - 0.75 0.75 0.25
3. S - 0.25 0.75 0.75
4. S - 0.75 0.25 0.75
5. Zn - 0.0 0.0 0.0
6. Zn - 0.5 0.0 0.5
7. Zn - 0.0 0.5 0.5
8. Zn - 0.5 0.5 0.0

FeB
a = b = c ; α = β = γ

1. B - 0 0 0
2. B - 0.428 0.5 0.5
3. B - 0.5 0 0.28
4. B - 0.928 0.5 0.78
5. Fe - 0.284 0.5 0.015
6. Fe - 0.144 0 0.515
7. Fe - 0.644 0 0.765
8. Fe - 0.784 0.5 0.265

NbO
a = b = c ; α = β = γ
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1. O - 0.5 0.0 0.0
2. O - 0.0 0.5 0.0
3. O - 0.0 0.0 0.5
4. Nb - 0.5 0.5 0.0
5. Nb - 0.0 0.5 0.5
6. Nb - 0.5 0.0 0.5

PtO4
a = b = c ; α = β = γ

1. O - 0.750000 0.250000 0.250000
2. O - 0.250000 0.750000 0.750000
3. O - 0.250000 0.750000 0.250000
4. O - 0.250000 0.250000 0.750000
5. O - 0.750000 0.750000 0.250000
6. O - 0.250000 0.250000 0.250000
7. O - 0.750000 0.750000 0.750000
8. O - 0.750000 0.250000 0.750000
9. O - 0.500000 0.000000 0.000000

10. O - 0.000000 0.500000 0.000000
11. Pt - 0.000000 0.000000 0.500000
12. Pt - 0.500000 0.500000 0.000000
13. Pt - 0.000000 0.500000 0.500000
14. Pt - 0.500000 0.000000 0.500000
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