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ABSTRACT

Indications of cognitive impairments such as dementia and traumatic brain in-

jury (TBI) are often subtle and may be frequently missed by primary care physicians.

These impairments are not uncommon: approximately 0.46% of Americans are hos-

pitalized for brain injury each year and it is estimated that by 2050 up to 13 million

Americans may have Alzheimer’s disease—the most common form of dementia—

quadruple the number that did in 2002.

This dissertation proposes and investigates ways in which machine inference and

wireless sensors can be used to support the assessment of cognitive functioning. The

central hypothesis is that object-usage data collected from wireless sensors during

the performance of daily activities are sufficient to assess cognitive impairment.

I first investigate the ability to recognize individuals based on their sensed object-

usage patterns during a simple task. This experiment constitutes an initial step

in understanding how well object-use patterns can be automatically observed and

analyzed. A preliminary study, using the simple task of preparing a cup of coffee,

demonstrated the ability to correctly recognize ten individuals with 77% accuracy

based on nine trials from each individual as training data.

The dissertation then directly addresses assessment of cognitive impairment with

a study in which individuals with TBI made a pot of coffee. Four features were de-

rived from the sensed data and compared to to the subjects’ scores on standard neu-

ropsychological evaluations. A key result is that Edit Distance, the most knowledge-

x



rich feature, significantly correlates with an apparent indicator of general neuropsy-

chological integrity, namely the first principal component of the neuropsychological

assessments. Since cognitive impairments are measured along many dimensions, sug-

gestive correlations between the computed features and individual assessments are

also presented.

Lastly, I present a preliminary study that investigates the possibility of differenti-

ating impaired individuals from unimpaired individuals. Data was collected from five

subjects with TBI and five matched, unimpaired subjects; analysis was done using

the same set of computed features. Although the study is preliminary, it is interest-

ing that Edit Distance is able to perfectly differentiate the impaired subjects from

the unimpaired and that full results are consistent with those from the assessment

study.
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CHAPTER I

Introduction

Mark Weiser, the father of Ubiquitous Computing wrote in his seminal 1991

paper that, “the most profound technologies are those that disappear. They weave

themselves into the fabric of everyday life until they are indistinguishable from it”

[62]. The paradigm of Ubiquitous Computing foresees the “third wave” of computing:

following the move from mainframes to personal computers, with many users and one

computer giving way to one user and one computer, Ubiquitous Computing predicts

a move to one user-many computer relationships. Many of these computers may

individually perform very simple operations, but collectively they provide incredible

value to the user, “weaving” themselves into daily life.

Passive observation of a user has been an important addition to the field of ubiq-

uitous computing. Unlike previous forms of human-computer interaction, the ability

of a computer to passively observe the user allows it to reason about the user and

her needs without the user needing to be actively engaged. The analysis of data col-

lected by sensors has made possible a broad range of prototype applications including

a number of assistive technologies, which support users with physical, cognitive, or

other types of disabilities. Examples include applications that observe and inter-

act with a user with dementia to facilitate handwashing [20], provide navigational

1
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guidance when a cognitively impaired user makes an error [34], and act as assurance

systems that can monitor movement and activity of an older adult living at home

[37].

Assistive technologies such as these often depend on the computer’s ability to

recognize a user’s activities. In the field of activity recognition, one tactic is to

attach to frequently used objects sensors that can detect human interaction with

those objects. Using object-use patterns, these detected patterns of interaction,

it is possible to identify basic activities that the user is performing [47]. Rather

than inferring the activities of the user, however, this dissertation focuses on making

inferences about the user herself: specifically, the identity of the user and whether the

user has a cognitive impairment and, if so, how severe it is. The main contribution

is a set of novel techniques for the automatic assessment of cognitive impairments

through the passive observation of an individual performing typical daily activities.

1.1 Research Hypothesis

The central hypothesis of this dissertation is that important inferences about an

individual can made by using sensor technology to observe the individual’s object-

use patterns during the performance of a simple task, significantly including the

assessment of an individual’s cognitive impairment. This hypothesis is broken into

three key research questions:

1. Can an individual be recognized from her object-use patterns in the perfor-

mance of a task?

2. Can the severity of an individual’s impairment be assessed by electronically

observing the individual’s object-use patterns from the performance of a task?
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3. Is it possible to recognize whether or not an individual has a cognitive impair-

ment based on sensor-derived object-use patterns?

The first research question is an important starting point for the hypothesis: it

is difficult to envision that assessment of impairment would be possible if regular

patterns of behavior could not be observed using sensors and recognized automati-

cally. Further, the question of whether people can be distinguished on the basis of

their object-use patterns is interesting in its own right, suggesting the possibility of

several new applications. This question will be examined in Chapter II.

The second and third research questions are the two important sub-tasks of assess-

ing a cognitive impairment: assessing the severity of an impairment in an individual

known to have a cognitive impairment, and determining whether an individual is im-

paired or not. These questions will be examined in Chapters III and IV, respectively.

The impaired subjects in the two studies presented here are limited to individuals

with Traumatic Brain Injury (TBI). Although it seems plausible that the results

presented in this dissertation would generalize to other forms of impairment, further

studies are needed to confirm this.

More generally, these three research questions also begin to address an important

larger question: what useful inferences about an individual can be made by auto-

matically observing the individual perform a simple task? This larger question is

interesting because automatic task observation is possible in an unobtrusive manner;

important inferences that can be made in this way would allow additional services to

be provided without demanding time or attention from the individual being observed.
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1.2 Motivation

The research presented here is motivated both by foundational questions and by

a range of applications that it can support.

1.2.1 Motivation for Recognition of Individuals

The study of whether object-use patterns can be used to automatically recognize

individuals has three direct motivations, as well as one indirect one—the latter is as

a precursor to the study of assessing cognitive impairments.

The first direct motivation is that the research is interesting in its own right: the

ability to do so indicates an individual’s object-use patterns can be recognized by

computers using existing technology.

There are also important privacy concerns that motivate this research: failing to

understand how well individuals can be recognized from object-use patterns could

lead to accidental release of private information. If recognition is possible, object-use

data collected for other purposes should be held more carefully to prevent mistakes

such as AOL’s release of ‘anonymized’ search data that still allowed some searchers

to be identified [5].

The final direct motivation is that the ability to recognize individuals based on

their object-use patterns may allow for unobtrusive biometric security. While many

forms of security are like fences–preventing entry to a system by unauthorized users

but providing no security once the user has accessed the system–security based on

usage patterns can continually confirm a user’s identity without interrupting the user

and while the user performs tasks that she would be performing anyway. A similar

idea is studied by Clarke and Furnell who authenticate users of mobile phones using

keystroke analysis since mobile phones are frequently stolen and are generally not
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protected by passwords or non-physical methods [11].

The indirect motivation is to provide preliminary evidence of the feasibility of

assessing cognitive impairment. As noted earlier, if recognition of individuals is not

possible—if sensors are not able to detect regular patterns of behavior from subjects

that are distinct from one another—it is difficult to envision that the recognition and

assessment of cognitive impairments would be feasible.

1.2.2 Motivation for Recognition and Assessment of Cognitive Impair-
ments

The ability to assess impairments using object-use patterns adds an interesting,

objective metric to the set of assessment tools available to health care professionals.

There are several advantages to this form of metric. First, it can be performed auto-

matically, in a home environment without the need for direct oversight by health care

professionals. This allows the observation of subjects over a longer period of time

and in the home environment, without additional effort from the health care profes-

sionals. Second, with this passive approach, frequent observation and re-evaluation

is possible without disrupting the life or schedule of the individual. Any sudden

changes in impairment, for example improvement caused by successful medication or

treatments, or sudden degradation resulting from a side-effect of medication, could

be quickly detected and acted upon. Additionally, frequent re-assessment of cognitive

status can potentially be used to track changes in status with a fine granularity. Fi-

nally, it can automatically provide feedback to systems that are assisting the subject.

For example, the system designed by Hoey, et al. to assist during handwashing uses

the cognitive status of the individual as one parameter to decide when to make rec-

ommendations [20]. Additionally, reminder systems such as Autominder [48] could

use cognitive status to decide when to issue reminders that might be important for
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a more severely cognitively impaired individual but unnecessary and obnoxious for

a less impaired person.

Traumatic Brain Injury is not uncommon: approximately 0.46% of Americans

are hospitalized for brain injury each year and individuals aged 15-24 are far more

likely than any other age group with over 0.9% hospitalized each year for brain

injury [54]. Of the Americans hospitalized each year, 50,000 will die from the brain

injuries and an additional 80,000–90,000 experience the onset of long-term disability

[58]. Adding to the importance of this work is the fact that cognitive impairments

are frequently seen in wounded veterans returning from the Iraq War. Improved

body armor has helped soldiers survive explosions that they might not have survived

before, but the soldiers are suffering brain damage as a result of the blasts. The

increase in Traumatic Brain Injury has been so dramatic that it has been called the

“signature wound” of the Iraq War [66]—in one study of servicemembers arriving at

Walter Reed Army Medical Center with injuries caused by explosions, 59% of the

soldiers were found to have TBI and 56% of those are considered moderate or severe

[38]. Like dementia, the existence and severity of TBI can be difficult to assess, in

part because it cannot always be detected with imaging tests [4].

Recognizing whether or not an individual has a cognitive impairment is motivated

by the fact that dementia can be very difficult to assess: primary care physicians

may often miss indications of cognitive impairment during patient visits, resulting in

between 29% and 76% of cases of dementia or probable dementia going undiagnosed

by primary care physicians [21]. Additionally, cognitive ability may vary from day

to day and, since case managers typically cannot observe patients on a daily basis,

they are often forced to rely on questioning and required to “play detective” [64].

Additionally, this work is motivated by the dramatically aging population both
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nationally and around the world. Dementia becomes more common with age, affect-

ing fewer than 1% of individuals in North America aged 60-64, but more than 30%

of those over age 85 [13]. Additionally, up to 50% of all individuals over 85 are found

to have measurable decline in cognitive function [2]. As the population ages, the

number of cases of Alzheimer’s disease and dementia in general is poised to increase

significantly. In 2000, 12.4% of the U.S. population was aged 65 and older, and it

is predicted to increase to 19.6% by 2030 and 20.6% by 2050. The oldest subgroup,

that of individuals aged 80 and older, is expected to rise even more dramatically,

more than doubling from 3.3% of the population in 2000 to 5.4% in 2030 and 8.0%

in 2050 [59]. Without scientific advances to lower the incidence rates or the progres-

sion of Alzheimer’s, it is estimated that between 7.98 and 12.95 million people in the

United States will have Alzheimer’s Disease in 2050, four times the number that did

in 2002 [51]. Even among younger individuals, certain subgroups of the population

may be more likely to develop dementia. For example, a recent survey showed that

nearly 2% of retirees from the National Football League between the ages of 30 and

49 had dementia or another memory-related disease compared to just 0.1% of the

general population of US men that age. Likewise, 6.1% of NFL retirees over the age

of 50 had memory problems, compared with 1.2% of the general population [61].

1.3 Background

In this section, I review related work in the areas of automatic detection of cog-

nitive impairments, activity recognition, and biometric identification. Section 1.3.1

explores attempts to automatically detect cognitive impairment as well as other con-

ditions. Section 1.3.2 presents activity recognition, focusing on techniques which

apply object-use interactions. Finally, section 1.3.3 looks at other biometric mea-
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sures that have been used for recognition or identification of individuals.

1.3.1 Automatic Detection of Cognitive Impairments

Due to the difficulty of evaluating dementia and cognitive decline in limited-

duration, periodic visits to a health-care provider [21], several projects have focused

on diagnosing dementia and cognitive impairments automatically.

A group at the Oregon Health & Science University has developed several tech-

niques to observe computer performance in order to assess impairment. One study

focuses on keyboard and mouse usage of elderly individuals, for logging in to the com-

puter and for playing the solitaire game FreeCell, respectively [25]. Another study

focuses on the performance of those individuals in the FreeCell game, comparing the

number of moves used by an individual to the number needed by an automated solver

to account for games of varying difficulty. Based on the performance results, it was

possible to differentiate the three mildly cognitively impaired subjects from the six

others [26]. Work with several other computer games, specially created to perform

assessments of cognitive impairments is underway [27, 23] including some promising

early results, showing a correlation between performance in a word game and scores

on a standard neuropsychological assessment of verbal ability [24].

Other work has studied automatically monitoring mobility because slowed mobil-

ity may be a predictor of future cognitive decline. The time to answer a phone call

was used to measure mobility, making the assumption that the user’s location distri-

bution in the home would remain relatively stable over time [41]. Another study by

the same team used passive infrared detectors and several models to infer the mobil-

ity of subjects more directly as they move about a residence, either by observing the

amount of time after activity ceased in one room room for it to begin in another, or
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by observing travel time down a hallway [18].

Both of these are very promising approaches towards the automatic assessment

of cognitive impairment. I chose a different approach—observation of object usage

during the performance of a task—for this dissertation in large part because obser-

vation of task performance is commonly used by occupational therapists to assess

impairment and to make decisions about whether an impaired individual should be

living independently, driving, or working. An advantage of this approach compared

to observing performance on a computer game is the ability to observe an individual

performing a task she would regularly perform—a recent study showed that fewer

than one quarter of individuals 65 and older play video games at all [46] and even

those who do play regularly may not ordinarily choose to play the particular games

that are designed to measure impairment.

This dissertation goes further than previous research to automatically assess an

individual’s impairment. While multiple studies involve impaired individuals, only

[26] attempts to individually differentiate impaired subjects from unimpaired sub-

jects (for example, [18] shows that the change in walking times from the morning

to the evening are significantly different between the impaired and unimpaired in-

dividuals, but only examines them as an average of the two groups, not on an in-

dividual basis). Additionally, none of these studies attempt to assess the severity

of an impairment—[24] shows a correlation between computed features and average

verbal fluency, a neuropsychological assessment, but none of the subjects had been

diagnosed with a cognitive impairment.
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Automatic Assessment of Other Conditions

Sensors have also been used to perform automatic assessments of conditions

other than cognitive impairments. This section gives three examples of systems

that demonstrate the range of conditions that are being investigated.

Albinali has used wireless accelerometers to detect stereotypical repetitive mo-

tor movements (body rocking and hand flapping) that are common in individuals

with Autism Spectrum Disorders (ASD). If unregulated, these stereotypical motor

movements can interfere with the development of new skills, the performance of es-

tablished skills, and even result in self-injurious behavior in certain conditions. The

accelerometers were placed on the chest and on each wrist of six children and young

adults with ASD. The system then used decision trees to achieve an accuracy of 89%

in real-time evaluations of subjects in a test lab, and 83% in a classroom setting [1].

Another system is the Gesture Pendant designed by Starner, a worn camera

that tracks hand movement. While the main goal of the system is to recognize

participants’ “control gestures” to control a television, stereo, or other devices around

the home, the system was also designed to track some tremors, potentially allowing

it to monitor tremors that can be symptoms of certain medical conditions such as

Parkinson’s Disease and pathological tremors, or that can be a side effect of medicine,

or even a warning sign for emergencies such as insulin shock in a diabetic [55].

Westeyn has also has also performed a preliminary study of adding sensors to

toys to support assessment of a child’s development. The toys are modeled after

typical toys for small children and have several sensors to measure touch, motion,

and sound in order to measure 25 distinct classes of play including rolling, grasping,

stacking, and knocking down [63].
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1.3.2 Activity Recognition

Activity recognition is an active field of research that uses various sensors and

algorithms to observe subjects and recognize the activities they are performing. Dif-

ferent applications in activity recognition focus on a wide range of activities. Recog-

nizing whether a subject is moving in ways such as jumping or walking [49], identi-

fying a user’s common destinations in a city [34], and differentiating whether a user

is taking medication, making cereal, or eating cereal [45] are all examples of tasks

distinguished by activity recognition systems. Although the work proposed in this

dissertation does not lie in the field of activity recognition, the two nonetheless have

ideas and techniques in common.

Several types of sensors can be used to observe interactions with objects, such as

RFID readers [8], motion detectors and accelerometers [57], as well as electric current

and water flow detectors [35]. In each case, the sensors measure approximations of

object usage: with RFID readers, for example, proximity of a hand and an object is

used as a proxy for object interaction; with accelerometers, movement of the object

serves as a proxy.

Because the starting and stopping points of tasks typically must be inferred,

various techniques are used to determine when the individual has changed tasks.

One way to do this is to perform the activity recognition based on sensor readings

during sliding windows of time [39, 35]; an alternative is to include task changing

as part of the model, such as in a Hidden Markov Model where one or more nodes

represent each task, and transitions are possible between the nodes of the different

tasks [39].

Various techniques have been used to analyze the collected sensor data, including

probabilistic methods and decision trees [39, 47, 56, 15, 35]. These vary in the types
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of features that are analyzed. Within a 30-second window, the RFID data collected

in [35] is examined to determine whether or each tag was detected, like the Detected

feature that is be presented in Chapter II. The eleven single-state HMMs (one for

each task) or single eleven-state HMM presented in [39] really examine how frequently

a sensor is detected, which the Count feature in Chapter II and the Object Misuse

feature in Chapter III are similar to, while the much larger HMM or the DBN used

in [39] additionally look at the order in which a task is performed like the Order

feature in Chapter II and the Edit Distance feature in Chapter III.

The differences between features used in this dissertation and those used in pre-

vious research reflect the fact that this dissertation has a different goal than activity

recognition research—inferring information about the individual performing a known

task rather than inferring which task is being performed.

Other recent work has automatically developed models for activity recognition

from instructional web pages [65] or common sense databases such as the Open-Mind

Indoor Common Sense database [45]. In [45], for example, the information mined

from the database was converted into Markov Random Fields (MRFs); temporal

relationships were represented using chain graphs in which a series of MRFs repre-

sented a time slice and links are created between nodes in different slices. These

models have also been improved using sparsely labeled sensor data, to address gaps

in the common sense databases [43, 44]. This approach is interesting for future re-

search in the assessment of cognitive impairment, to replace the manual creation for

each task of a partial-order plan and manual identification of appropriate numbers of

object interactions that were used in the Edit Distance and Object Misuse features

presented in Chapter III.

Note that there are also approaches to activity recognition research that are not
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based on the analysis of interactions with objects. One example is Opportunity

Knocks, a system that uses GPS to track a user as she uses public transportation

to travel around a city. The system learns the user’s common destinations and uses

knowledge of the mass transit system to identify situations where it believes the user

may have gotten on the wrong bus or be traveling in the wrong direction. When

this occurs, the system makes a “knocking” noise to alert the user and then gives

information about the presumed destination, the problem detected, and a remedy for

that problem (what steps to take to get to the destination) [40]. This is still within

the field of activity recognition because these locations are often associated with

the activities that will be performed there. Other work on activity recognition uses

small sensing platforms that collect accelerometer data and various other types of

sensing data sometimes including light, barometric pressure, temperature, compass

direction or sound readings. This data is then used to distinguish between activities

such as riding up an elevator, jogging, and riding a bicycle [31] or between types of

exercise such as running, cycling, and using an elliptical trainer or stair machine [10].

Another approach is to use a smaller number of extremely data-rich sensors such as

video cameras or microphones. For example, Zhang and Gong employ video cameras

to distinguish among ten basic actions including running, walking, and bending, as

well as jumping jacks, jumping forward, and jumping in place [22].

Although there exist a wide range of paradigms for observation of activity per-

formance, I focus on object-usage for two reasons. First, object usage has been

employed to perform activity recognition at the scope of the activities that should

be observed for the assessment of cognitive impairments. That is, object usage is

appropriate for observing users perform daily tasks rather than the way in which a

user is moving. Second, object usage patterns give insight to the specific processes
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undertaken by a subject when she performs activities. If a subject forgets certain

steps in the performance of a task or orders them oddly, object use patterns present

an excellent and natural way to observe this.

Other approaches involving activity recognition have been motivated by assess-

ing cognitive impairments. These include the use of motion detectors and contact

switches to broadly observe several activities of daily living (ADLs) [16, 6], and using

sensors on pillboxes to specifically observe medication taking, an instrumental ADL

(IADL) [28]. Although the motivation for these studies is the assessment of impair-

ment, they have primarily focused on the feasibility of observing the individual, and

no assessment of the individual performing the task has been reported. Additionally,

Hoey, et al use an estimate of the subject’s functionality in their system observes

handwashing in order to assist a user with dementia complete the task correctly.

This estimate is updated over time as the user completes the handwashing task [20].

While this approach seems very promising, there has been no analysis of the accuracy

of the estimate.

1.3.3 Biometric Identification

Although object-use analysis is frequently used in activity recognition, to the

best of my knowledge, there has not been other work done on recognizing or identi-

fying individuals—as opposed to their activities—based on their object-use patterns.

However, significant researched has focused on identifying individuals using other

biometrics. In this section, I review previous work studying two related forms of

biometric identification, typing patterns and gait recognition. Unlike other forms

of biometric identification such as fingerprint reading or retinal scanning, these two

forms of biometric identification use behavioral patterns.
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Keystroke Dynamics

Keystroke dynamics is a form of biometrics that analyzes users’ typing patterns.

It is used in computer security, most commonly to ‘harden’ passwords, or add a

layer of biometric security to confirm a user’s identity. Peacock [42] provides a good

overview and comparison of the work in this area. While most systems analyze

the timing of a user’s keystrokes, modified keyboards may also be made pressure-

sensitive to add additional feature to the data [12]. By using a combination of three

methods—average and the standard deviation of feature times, rhythm of striking,

and a comparison of the ordering—Hocquet, et al. have been able to achieve an error

rate of just 1.8% [19]. Additional research has been to apply keystroke dynamics to

mobile phones to identify users entering phone numbers and writing text messages,

in particular because mobile phones are frequently stolen [11].

Gait Recognition

In comparison to keystroke dynamics, which is used to confirm the identity of

a user, gait recognition aims to supplement the physical security of environments

such as airports and banks by identifying individuals who may pose a threat. Gait

recognition identifies individuals using patterns of movement [60]. It is frequently

performed in conjunction with automatic face recognition, which uses a photograph

or a series of photographs of a face to identify individuals [3].

Gait recognition is often approached by transforming the image of the individual

into a binary silhouette and then creating a model of the individual or measuring

several features such as silhouette width [7]. Performance in gait recognition systems

is frequently compared using the data from the HumanID Gait Challenge Problem,

data which was collected by the University of South Florida in a variety of conditions,
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including with two different kinds of shoes, and carrying or not carrying a briefcase

[7]. Using this data, the Gait Challenge Problem consisted of several problems of

varying difficulty, based on how the test cases are different from the training data.

For example, one of the test sets presents individuals who are walking on grass when

all the training data had individuals walking on concrete. Currently, one of the best

systems correctly identifies the individual 100% of the time on simpler test sets, even

with false negative rates of just 1%. On the harder problems, the correct verification

rates drop considerably, down to 36% when the same false negative rate is used [7].



CHAPTER II

Recognition of Individuals

In this chapter, I study the first research question: can an individual be recognized

by her object-use patterns from the performance of a task? I address this question

with a study in which I used electronic sensors to observe ten individuals perform a

basic task (making a cup of coffee). I then developed features that I hypothesized

would correspond to individuals’ object usage patterns and I learned decision trees

from those features. This chapter presents that study, including the features that

were developed for it, and the results of applying those features to the collected data.

2.1 Experimental Methodology

2.1.1 Selection of a Task

Several criteria were used in the selection of a task for subjects to perform. The

task should be an activity of daily living that is performed by many people on a

regular basis, for the long term goal of identifying pattern changes that may indicate

a cognitive impairment. An ideal task would also be relatively constrained in how

it may be performed, but would also have some natural variance in its performance.

Finally, it should be possible to perform the task in an instrumented laboratory.

The task of making a cup of coffee was chosen for this experiment because it is an

17
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Figure 2.1: Equipment Used in the Study. The Glove with an RFID Reader Attached
(l) and the Coffee Grinder with Several RFID Tags Attached (r).

excellent fit for all of these criteria.

2.1.2 Selection of Technology

As discussed earlier in section 1.3.2, Radio Frequency Identifier (RFID) technol-

ogy has been used successfully to study object-use interactions in several activity

recognition projects. RFID uses tags placed throughout an environment and readers

which detect nearby tags. An important advantage of this technology is that one can

use passive RFID tags which, while not as accurate as active tags, require no bat-

tery source, meaning they can be placed throughout an environment without need

for cords or batteries that need to be replaced. Other advantages to using RFID

are that it has a false positive rate of essentially 0% [39], tags are available in small

sizes (approximately the size of a postage stamp) and they are inexpensive (less than

$0.20) [47].

In earlier work done by Intel, an RFID reader placed on a glove or bracelet was

used to detect tags that are in close proximity to the hand (within 10cm) [14, 39,

47, 53]. Activity recognition is performed with the assumption that detected objects
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are the ones with which a user is interacting. Because Intel’s wireless iBracelet was

not available in time for use in this study, a wired system was used consisting of a

commercially available RFID reader and tags created by Phidgets, Inc. R©.1 This

glove is shown in Figure 2.1, along with the grinder to show the RFID tags. Because

the glove has a very short range, several tags were needed on most objects to allow

reliable detection of object usage.

2.1.3 Experimental Setup

Ten subjects were recruited to participate in the experiment. For each trial, the

subject was instructed to make a cup of coffee as if about to drink it, including

adding sugar and creamer as preferred. Subjects wore a glove outfitted with an

RFID reader on their right hand, but were told to ignore it as best they could. Each

subject participated in ten trials, spaced out with generally at most one per day, so

that the trials would reflect normal patterns of use, rather than artificial patterns

created by performing trials repeatedly one after another2.

Subjects were given a brief tour of the instrumented lab before their first trial,

and those who did not know how to make coffee were given basic instructions. These

instructions were as general as possible, and no physical demonstration of the coffee-

making process was given. The experimental setup consisted of a coffee maker, one

cup, one spoon, a coffee bean grinder, and a cabinet containing a bag of filters, a bag

of ground coffee, a bag of coffee beans, and a canister each of creamer and sugar.

Each item was tagged with multiple RFID tags and was put in the same location

1The studies presented in Chapters III and IV use one of the bracelets from Intel. This bracelet
overcomes several of disadvantages of the previously used glove, including having a longer range
and operating wirelessly.

2In some cases, the availability of the subject required more than one trial per day; five subjects
performed two trials on the same day at least once and one of those performed six trials on the last
day of the subject’s availability.
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before each trial, oriented in the same direction. (The bag of filters did not have an

obvious front and thus may have been reversed between trials.)

2.2 Machine Learning Approach

The data collected by the sensors during the trials was then analyzed by an

algorithm that learns decision trees. Decision trees are the simplest form of classifier,

and were used in this experiment because they form a reasonable starting point for

my investigation. A decision tree takes a set of properties as input and outputs a

“decision” by following the path down a tree from the root. This path is determined

by tests which are performed at each internal node encountered on the path, and the

decision is dictated by the leaf node that is reached on this path. I used the C4.5

decision-tree algorithm, which is based on the ID3 tree-inducing algorithm; C4.5 is

modified to avoid overfitting the data, the condition where an overly complex tree

is created that is less accurate than a simpler one would be [50]. Additionally, C4.5

has been used successfully in activity recognition [35].

A key question for this type of study is the proper definition of a feature set.

In this paper, I use a layered approach with five types of feature at three levels of

granularity. Formally, each feature is defined as < T, G,E > where T is one of the

five feature types defined in section 2.2.2 and G is one of the three levels of granularity

defined in section 2.2.1. E is an ordered set of entities (tags, groups, or objects) the

feature is applied to. As described below, for most feature types E is a set with a

single entity, though with Order it is an ordered set of two or three entities.

2.2.1 Observation Granularity

Observation granularity refers to how specific or general an observation is. The

classifier may use the more general fact that a subject touched the coffee-maker or
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more specifically that she touched the left-most sensor on the lid of the coffee-maker.

Because many of the objects used in the study had multiple tags affixed to them, I

considered three levels of abstraction:

1. Tag: Interaction with an individual tag affixed to an object.

2. Group: Interaction with any of a group of tags that are equivalent except for

the orientation of the object (e.g., the tag on the left side of the bag of ground

coffee and the tag on the right)

3. Object: Interaction with an object; that is, any of the tags on the object were

detected.

At times, these are functionally equivalent. The carafe, for example, has only a

single tag, so there is no difference between tag, group, and object interactions on the

carafe. For several objects like the bag of ground coffee, though, several tags divided

into multiple groups allow for different patterns to be detected at each granularity.

Table 2.1 gives a list each object used in the experiment and all the groups of tags

on that object.

2.2.2 Feature Type

Five types of features are used to measure the subject’s interaction with each

entity (tag, group, or object). The five types of features are:

1. Detected: A binary feature that is positive iff there was any interaction with

an entity.

2. Count: A scalar feature that records the number of times interaction with an

entity was observed.
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Objects Groups
Coffee maker Lid, power switch
Carafe Carafe
Mug Mug
Spoon Spoon
Coffee grinder Top row of tags, middle row, bottom row
Left cabinet door Left cabinet door
Right cabinet door Right cabinet door
Ground coffee Top tags on front and back, bottom tags on front and back,

tag on bottom, tags on sides
Coffee beans Top tags on front and back, bottom tags on front and back,

tag on bottom, tags on sides
Filters Tags on sides, tag on bottom
Creamer Tags on top row, tags on bottom row
Sugar Tags on top row, tags on bottom row
Faucet Faucet

Table 2.1: List of Tag Groups and Objects

3. Total Duration: A scalar feature that records the total amount of time inter-

action occurred with an entity.

4. Average Duration: A scalar feature representing the average time of interaction

with an entity: this is a computed feature, equal to the Total Duration divided

by the Count.

5. Order: A binary feature that is positive iff an arbitrary two- or three-entity

ordering is observed.

With the exception of Order, each feature type is calculated while consider-

ing the interactions with a single entity during a single trial. For example, De-

tected may be calculated using the tag underneath the coffee maker’s power switch

(<Detected ,Tag , {Coffee-Maker-Power-Switch} >). This will calculate whether that

tag was detected during a given trial. Detected would be calculated again for the

tag on the mug (<Detected ,Tag , {Mug} >), and for every other tag. A specific mea-
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surement, then, consists of applying one feature type to one particular entity at one

level of granularity while analyzing one trial. When analyzing the accuracy of using

specific sets of measurements to classify trials, the specified feature types will be

applied to all of the entities at the specified levels of observation granularity.

Order is the one slightly different feature type because it is applied to two or

three entities, rather than to a single entity. It determines whether a specific order-

ing of interactions is observed during a trial. This ordering may consist of two or

three entities, for example (<Order ,Object , {Ground-Coffee,Filters ,Spoon} >) For

simplicity, only one level of granularity is used within a specific ordering. Even with

this simplification, however, considering the 70 tags, 25 groups, and 13 objects in

the experiment, allows over 300,000 possible orderings. As a result, considering all

possible orderings of tags comes at a significant cost of performance. This will be

discussed further in sections 2.3.4 and 2.4.

2.2.3 Pre-Processing

Although the RFID reader and tag system provides accurate and generally reli-

able results, an individual tag is sometimes found and lost in quick succession, either

when it is near the maximum distance from the reader at which it can be sensed, or

if the reader moves rapidly. In order to smooth the data, a pre-processing step can

be performed on each trial prior to analysis. This step looks for consecutive accesses

to the same tag, group, or object within 0.5 seconds. When this is found, the records

of the two accesses at that level are merged into one, hopefully providing a more

accurate model of the subject’s actual behavior. This means that when a subject

moves her hand over several tags on the same object, the action will be interpreted as

one continuous interaction at the object level (which it is) though no change will be
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made at the tag level. Using pre-processing, a tag near the maximum range at which

it can be picked up, causing it to be lost and found repeatedly, will be interpreted

as one interaction (which it again is); it also means that when she quickly draws her

hand away from a tag and then puts her hand on the tag, the action will be inter-

preted as one continuous interaction (even though it’s not a continuous interaction).

Section 2.3.5 discusses the effect of this pre-processing.

2.2.4 Simplifying Behavioral Differences

I performed one additional type of pre-processing on the collected data. The

task of making coffee was chosen in part because there is a natural variance in how

the task may be performed. However, looking at whether a subject puts creamer or

sugar in her coffee has the potential to simplify recognition too much by partitioning

the subjects into four sets. A similar concern is identified using domain-specific

knowledge: using sensor data from the creamer and sugar may be misleading if an

individual is preparing coffee for someone else; while most actions should not be

affected, different patterns of the use of creamer and sugar may confuse a system

that could otherwise correctly recognize the subject. For that reason, in most of

the analysis, all data collected about creamer and sugar interactions are removed

before the analysis is performed (section 2.3.6 includes this data for comparison of

the results).

Like the first concern given, a subject’s use of either whole beans and a grinder or

of ground beans may potentially have over-simplified the recognition task. However,

because disregarding the data collected from tags on the ground coffee, whole beans,

and grinder would remove one-fifth of the data collected, I did not eliminate it. I

note, though, that one subject used whole beans, and that subject used whole beans
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in every trial. For that reason, one of the ten subjects can be distinguished very

easily from the other nine.

2.3 Results

By using ten subjects who performed ten trials each, I obtained 100 trials for

analysis. I then used a ten-fold cross-validation process, repeatedly using 90 trials

as training data for C4.5 and reserving the remaining 10 trials as test data. In

each iteration, the training data contained 9 trials for each subject, with the tenth

reserved for testing data; however, the learning system did not use the information

that there is exactly one trial per subject during the classification process.

2.3.1 Full Feature Set

Using the full feature set without the creamer and sugar data, the system achieves

a 73% accuracy. Three of the ten subjects are correctly recognized in all ten of their

trials, and eight of the ten are correctly recognized in at least half of their trials. The

remaining two are correctly recognized in only 2 and 4 of their ten trials, respectively.

A confusion matrix is shown in table 2.2.

The ten decision trees produced (one for each fold of the cross-validation) have

an average of 12.2 internal nodes and an average maximum depth of 7.8. All three

levels of observation granularity are used at least once, as well as all five feature

types, though Order features make up well over half the internal nodes.

2.3.2 Influence of Observation Granularity

While the first experiment considered all features, I now consider the possibility

of using a subset of the features. There are at three reasons for investigating the

success when only certain subsets of the features are used in the recognition process.
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Inferred Subject
Truth A B C D E F G H I J

A 7 1 2
B 8 1 1
C 2 2 3 1 1 1
D 10
E 1 1 4 1 1 2
F 1 1 7 1
G 10
H 1 9
I 10
J 1 1 1 1 6

Table 2.2: Confusion Matrix of the Full Feature Set

Observation Accuracy Subjects Correctly
Granularity Recognized in ≤ 5 Trials

Tag 72% C,E
Group 72% C
Object 69% C,E

Table 2.3: Accuracy at Each Level of Granularity

First, observing which features are more or less accurate individually can be used as

a heuristic to determine their relative importance to the system. Second, the impact

of the Order features deserves particular attention because, as will be discussed

in section 2.3.4, using Order features increases run time drastically. Finally, this

information may influence engineering decisions made in future systems—the effort

to identify groups and objects, for example, may not be necessary if the system is

just as accurate using only observations at the tag granularity.

To begin, I consider the influence of the different levels of observation granularity.

Table 2.3 shows the accuracy of the system with each level of granularity. This

analysis uses all five feature types.

The system’s accuracy is only slightly affected by using tag interactions only or

group interactions only rather than interactions at all three levels of granularity. At
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Interaction Accuracy Subjects Correctly
Measure Recognized in ≤ 5 Trials
Detected 59% A,C,E,F,J

# of Times Detected 65% C,E,J
Total Duration 75% E,F

Average Duration 58% C,D,E,F
Order 70% C,E,J

Table 2.4: Accuracy of Individual Feature Types

69%, object-level interactions perform the worst, but still only 4% below the accuracy

set by all three interaction types together. These results indicate that the effort of

combining tags into groups and objects may not have much of a payoff in terms of

increased accuracy. Also given for each level are the subjects who were correctly

recognized in five or fewer trials.

2.3.3 Influence of Interaction Measure

I next consider the success of the system using only a single interaction measure,

each computed using all three levels of observation granularity. Table 2.4 shows the

results. As with the levels of granularity results, all subjects who were correctly

recognized in five or fewer of the trials are also listed in the table.

The accuracy of the individual interaction measures clearly varies with a sev-

enteen percent gap from the highest accuracy to the lowest, and several measures

distributed between them. Once again subjects C and E are difficult to recognize

correctly, with subject E listed in all of the feature types and subject C being listed

in all but one. A very surprising result is that using the Total Duration feature

type alone actually has a slightly higher accuracy than the full system using all five

feature types. This result will be discussed further in section 2.4.
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2.3.4 “All But Order”

The subset of using all feature types except for Order was originally looked at

because performance of the system when Order is used is not ideal. With the creamer

and sugar data ignored, the system takes an average of 8 minutes to compute the

features and learn one tree, then perform subject recognition for ten trials. Including

the creamer and sugar data degrades performance significantly, requiring an average

of 40 minutes for the same task. Since performing recognition is still very quick, tak-

ing less than one second, this performance may be considered acceptable. However,

even learning time must be bounded; moreover, the performance problems are likely

to be exacerbated by more complex environments. Observing subjects performing

larger and more complex tasks may require several times as many sensors as were

used in this experiment. Using much larger time frames (for example, a year’s worth

of data instead of just ten trials) complicates this problem further. Additionally,

allowing a user to interleave actions from multiple tasks may prevent a system from

simplifying the learning process by only considering sensors relevant to a single task.

Although the number of features computed for other interaction measures grow

linearly, Order undergoes cubic growth since using Order involves generating and

considering a large number of possible two- and three-step sequences. I thus re-

peated the analysis, using the full feature set except for the three Order features

(Order applied to each level of observation granularity). This analysis also adds

understanding to which features are important in performing recognition.

As expected, processing time decreases in this case. It takes, on average, less

than five seconds to learn one tree and perform recognition ten times, a speed up

of two orders of magnitude from the eight minutes when Order is also considered.

Surprisingly, however, accuracy increases to 77%, the highest level observed without
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Interaction Measure Accuracy Before Accuracy After Subjects Correctly
Pre-Processing Pre-Processing Recognized in ≤ 5 Trials

All Features 73% 70% A,C,E,F,J
Detected 59% 59% A,C,E,F,J

# of Times Detected 62% 65% C,E,J
Total Duration 75% 75% E,F

Average Duration 58% 58% C,D,E,F
Order 70% 70% C,E,J

All But Order 77% 77% C

Table 2.5: Effects of Pre-Processing

using creamer and sugar data. This also has the best worst-case performance, missing

only half of the trials of subject C, its worst subject. Like the result from the previous

section, the fact that this outperforms the system when all five features types are

used will be discussed in section 2.4.

2.3.5 Influence of Pre-Processing

As discussed in section 2.2.3, I created a pre-processing step that smooths the data

in situations where a single interaction with an entity might be recorded as several

interactions that occur in rapid succession. The results of using this pre-processing

(which was not used in any previous results) are shown in Table 2.5.

It turns out that this pre-processing technique has little effect on the accuracy.

By definition, both the detected and Order features are unaffected by pre-processing.

Of the other three feature types, the accuracy of two remain unchanged while using #

of Times Detected becomes only slightly more accurate using pre-processing. When

all features but Order are used, the accuracy remains the same, while all five features

used together actually becomes slightly less accurate.
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Interaction Measure Accuracy Without Accuracy With Subjects Correctly
Creamer and Sugar Creamer and Sugar Recognized in ≤ 5 Trials

All Features 73% 70% C
Detected 59% 59% A,B,C,E,F

# of Times Detected 62% 62% C,E,J
Total Duration 75% 79%

Average Duration 58% 66% C,D,E
Order 70% 67% C,J

All But Order 77% 78%

Table 2.6: Effects of Including Creamer and Sugar

2.3.6 The Use of Creamer and Sugar

Creamer and sugar data have been ignored, primarily because including them

should simplify the problem, partitioning the full group of ten subjects into four

smaller groups. To see how much of an impact this data would have, several trials

were repeated now including the creamer and sugar data. The results are shown in

table 2.6.

The system does generally improve its accuracy, although not by much. Using

the total duration feature type alone records the highest accuracy achieved by the

system, going up four percent to 79%. All but Order also improves slightly to 78%.

In both cases, the worst subject is now correctly recognized in 6 of the 10 trials.

2.4 Discussion

This work provides preliminary evidence that individuals can be fairly consis-

tently recognized based on their object-use fingerprint, with the system accurately

recognizing individuals more than three-quarters of the time with the best-performing

feature set. Additionally, with this feature set, the system recognized every subject

in at least half of the subject’s trials.

There were some surprising results, however, particularly that using all five fea-
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ture types together did not achieve the best results. Most notably, removing Order

and using the other four feature types produced the highest accuracy. I hypothesize

that this is a result of the sheer number of Order features causing overfitting. The

results using creamer and sugar appear to support this hypothesis; although most

feature types achieved slightly higher accuracy when creamer and sugar data was

added, Order had slightly lower accuracy as did all five features used together. The

additional entities considered when using creamer and sugar cause a large increase in

the total number of Order features, and the increased overfitting may have been more

negative than the additional information about creamer and sugar was positive. One

possibility for simultaneously addressing the overfitting and performance problems

of Order while still using the feature is to identify a smaller number of interesting

orderings for the system to use. This could be done manually using domain-specific

knowledge, by pre-testing or by data-mining from the web (the latter of which would

be interesting in its own right).

Other potential areas for future study include replicating the experiment de-

scribed here on more and different types of subjects, on a broader range of activities,

and in naturalistic settings, so as to validate the generality of my preliminary results.



CHAPTER III

Assessing Cognitive Impairments

This chapter investigates the second research question of this dissertation: can

the severity of an individual’s impairment be assessed by observing the individual’s

object-use patterns from the performance of a task?

I developed four metrics that could be automatically computed from the collected

sensor data and that I hypothesized would correlate with cognitive impairments. I

hypothesized that these patterns of errors made in the performance of such activities

are associated with the severity and type of a patient’s cognitive impairment and

further, that wireless sensors could be used to accurately detect those errors. I

was concerned both with predicting overall neuropsychological integrity, and with

identifying more specific neuropsychological profiles, such as isolated difficulties with

memory, attention, or executive reasoning.

3.1 Experimental Methodology

3.1.1 Selection of Task and Technology

For the same reasons listed in sections 2.1.1 and 2.1.2, I selected the task of

preparing coffee and decided to use RFID to observe the task.

Two main changes were made in this study relative to the previous one: the

32
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Figure 3.1: RFID Equipment Used in the Experiment. The Intel iBracelet RFID
Reader (l) and Canister of Ground Coffee (r).

preparation of a pot of coffee rather than a cup and the use of the Intel iBracelet as

the worn RFID reader rather than the RFID glove. In the previous study, subjects

both prepared a pot of coffee and, once it was ready, poured themselves a cup and

added cream or sugar as if they were about to drink it. In this study, subjects only

prepared the pot of coffee, so far as to turn the coffee maker on to begin brewing—

this change is discussed more in the following section. The Intel iBracelet is an

improvement from the previously used RFID glove because it does not decrease

the subjects’ fine dexterity as the glove did and because it is wireless, not limiting

mobility or creating a tripping hazard as the glove did. The Intel iBracelet has a

range of about 10cm [14, 53] and is shown in Figure 3.1 with the canister of ground

coffee.

3.1.2 Experimental Setup

Twenty-five subjects with traumatic brain injuries were recruited to participate in

the study. Participants were asked to perform five trials each, with no more than one

trial per day, and the iBracelet RFID reader was used along with many RFID tags to
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observe the individual’s activity performance. The results presented in this chapter

are from the sixteen of those subjects for whom full neuropsychological evaluations

were available. Of these, thirteen completed at least three trials and ten completed

all five trials.

For each trial, the subject was asked to start a pot of coffee brewing—putting in

water, a filter and ground coffee and turning the coffee maker’s power on. Subjects

were each asked to perform five trials on five different days. The subjects performed

the trials in a kitchen at the medical center where they were receiving care for their

cognitive impairments. The coffee pot and all supplies were placed on a counter in

the kitchen, next to a sink for water. Subjects were asked if they knew how to make

coffee and given basic instructions if they did not. No physical demonstrations were

given. If subjects asked how much material to put in, they were told to use enough

for six cups of coffee (about half the capacity of the coffee pot).

The material that was set out included the coffee pot and carafe, a canister of

ground coffee, a bag of filters, a mug and a spoon. Twelve tags were used: four

on the coffee pot, four on the canister of ground coffee, and one each on the other

objects. Multiple tags are needed for some objects to reliably detect interaction due

to the range of the iBracelet (the shorter range is desirable to avoid a higher rate of

false positives).

The experimental setup was influenced by the fact that the subjects had cognitive

impairments and were performing the task within the clinic. I placed the supplies on

the counter, rather than away in cabinets, to make the task easier for the subjects

to complete in order to avoid causing frustration by having subjects searching in an

unfamiliar kitchen if they forgot where a supply was located. This also should not

be necessary when observing subjects in a home environment.
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Time Stamp Tag Detected

1200503935 Carafe
1200503935 Filters
1200503936 Filters
1200503937 Filters
1200503939 Ground Coffee 3
1200503955 Ground Coffee 2
1200503956 Ground Coffee 1
1200503989 Coffee Maker Lid 3
1200503990 Coffee Maker Lid 3

Figure 3.2: Stream of Time-Stamped Interactions from a Portion of a Trial. When
Multiple Tags are Placed on One Object, a Number Is Given Indicating
Which Tag Has Been Detected.

Out of an abundance of caution and on the advice of the clinic staff, I also did not

have subjects pour a cup of coffee once the pot had been brewed. This was to ensure

that the individuals would not be handling hot liquids and decrease the potential

of injuring patients at the medical facility. This should not be a barrier to using

a similar system in-home since I expect that many cognitively impaired individuals

regularly make coffee and, anecdotally, several participants in the study noted that

they regularly made coffee at home.

3.2 Automatic Assessments

The sensor data collected in each trial consists of a series of time-stamped in-

teractions with RFID tags, a sample of which is shown in Figure 3.2. From the

collected sensor data, I computed four features that I hypothesized might correlate

with the subjects’ cognitive impairments. The features are increasingly representa-

tive of the task, ranging from very simple—how long it takes the subject to complete

the trial—to much more detailed—how “far off” the subject’s behavior is from a

correct instance of task performance.
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3.2.1 Trial Duration

I hypothesized that an impaired individual would take longer to prepare the pot

of coffee than an unimpaired individual, as a result of confusion, mistakes, or simply

performing steps more slowly. Therefore, the first feature I computed is the duration

of the trial: how long it takes the subject to complete the task (measured in seconds).

Given a trial with n detected interactions, I define this feature using the fol-

lowing formula: TrialDuration(t) = EndTimen − StartT ime1 where StartT imei

and EndTimei indicate the start and end times of the ith action in the temporal

sequence of trial t. That is, the feature is simply measured as the time between the

first interaction that is detected and the last.

3.2.2 Action Gaps

Note that the trial duration feature is extremely simple and has very limited rep-

resentational power: it would not distinguish between two people who are behaving

in very different ways, provided only that the total amount of time for each trial

was the same. I next moved to a somewhat more representational feature, which is

based on the hypothesis that more severely impaired individuals might have more

periods during which they were not interacting with any objects, on the assumption

that during those periods they are considering what step to take next. The second

feature measures these periods of inactivity during the trial which I call Action Gaps.

I define the number of Action Gaps with length g of trial t:

ActionGapsg(t) =
n−1∑
i=1


1, if StartT imei+1 − EndTimei ≥ g

0, otherwise

I examine the number of brief action gaps using g = 3 seconds and the number
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of longer action gaps using g = 10 seconds.

3.2.3 Object Misuse

I next moved to a feature that accounts for the specific objects used in task per-

formance. One way of determining whether someone is being effective in carrying out

a task is to examine the number of times he or she interacts with each object used

in the task. I thus hypothesized that failure to interact with a required object—e.g.

to “touch” the coffee filters—indicates a problem, as does an excessive number of in-

teractions. For the simple task of making coffee, I manually determined a reasonable

range of interactions with each object, shown in Table 3.1. The filters, for example,

may be used once or twice—once to open the bag of filters and perhaps again if the

user closes the bag in a separate interaction (remember that the tag is on the bag

of filters, not individual filters themselves). Note that I do not state a maximum

number of accepted interactions with the Ground Coffee or the Mug or Carafe (to

get water) because these are difficult to define—unlike closing the lid which is one

distinct interaction, putting ground coffee in the coffee pot may involve touching the

ground coffee multiple times to get several scoops and filling the water may require

using the mug multiple times to fill the coffee pot. The Spoon is not included in this

feature because it was rarely detected—it would also be difficult to use since it is not

required but, like the ground coffee, may be used multiple times.

For each trial, I then computed the number of times the subject interacted with

each object b (touchb) and determined whether that number was outside the accepted

range and, if so, how far outside the range it was.1

1I also investigated a few variations of the Object Misuse metric, to address the possibility that
touching an object too many times could have a disproportionately large impact compared with
touching too few times. These variations were approximately as successful as the basic metric here;
because the variations and results did not appear to be interesting, they are not presented in this
dissertation.
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Object b minb maxb

Lid 2 2
Ground Coffee 1 ∞
Filters 1 2
Mug or Carafe (Getting Water) 1 ∞
Power Switch 1 1

Table 3.1: Number of Accepted Interactions for Each Object

ObjectMisuse(t) =
∑

b∈Objects



0, minb ≤ touchb ≤ maxb

minb − touchb, touchb < minb

touchb −maxb, touchb > maxb

3.2.4 Edit Distance

My final approach to automatically measuring performance moves even further in

the direction of matching the subject’s performance to an explicit model of correct

performance. With this approach, I begin with a representation of how to make

coffee—a “plan” for the task. The plan I used in my analysis is a partial order over

object interaction, depicted in Figure 3.3, with “Water” indicating using the carafe,

mug, or both to get water from the sink and put it into the coffee maker. Note that

the use of the partial order allows me to score as “correct” alternative task executions

that are reasonable: I score as correct both executions in which water is added before

the filter and ground coffee and those in which those actions are reversed. However,

I judge to be incorrect executions in which the power switch is turned on before the

filters are used.

I then further constrain my plan for correct executions to those in which object

interactions are not interleaved and using filters is followed directly with using ground
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Figure 3.3: Partially Ordered Plan of Object Interaction for Making Coffee

coffee. These two criteria are added for the same reason: for a basic task like making

coffee, I hypothesize that it is more likely that a mistake occurred than that the

individual chose to interleave actions (like getting ground coffee, water, and then

ground coffee again). Using filters and ground coffee are kept together because I

view them as really one general action: putting ground coffee in the coffee maker.2

Although I manually created the plan to represent making coffee, other research

on activity recognition has addressed the question of automatically constructing plans

for everyday activities by mining the web for descriptions of these activities [65]. Such

an approach could be adopted for extensions of this work.

Once I had a plan that models correct task executions in terms of object inter-

actions, I next needed to define a measure of deviations from that plan. For that,

I adopted the notion of edit distance, which is frequently used in the literature on

2The assumptions made in this model may be too constraining—perhaps many unimpaired indi-
viduals do interleave using filters and ground coffee with getting water, for example. This suggests
a further elaboration, in which the plans are probabilistic—with the probabilities representing the
plausibility of certain sequences being performed. This elaboration, however, is outside the scope
of this dissertation.
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natural-language processing [29], but which has also been used in prior work on activ-

ity recognition [39]. More specifically, I made use of the Levenshtein distance which

allows the insertion, deletion, or substitution of a character [32]. I computed the

distance between the sequence of observed object interactions and each of the legal

executions of the plan for the task and used the smallest of these distances (assuming

that the subject intended to use the ordering to which she was the closest).

Note that to compute the edit distance, I merged consecutive interactions with

the same object (for example, multiple usages of the ground coffee were just shown

once as long as no other objects are used in between). I then defined the Edit

Distance of a trial t:

EditDistance(t) = mine∈{LegalExecutions}(Distance(observed, e))

With the very simple plan, there are only two legal executions: the one in which

placement of the filters and the ground coffee precedes the filling of the water canister,

and the one in which these occur in the reverse order. Hence the Edit Distance feature

is easy to compute, involving determination of just two distances.

The edit distance is intended to provide a fairly fine-grained measure of the

relationship between the “correct” task performance, at least as modeled in my

plan, and the subject’s actual performance.

3.3 Neuropsychological Assessment

Neuropsychological impairments are assessed with a battery of tests that sample

a broad range of cognitive domains. Many of these tests assess general functioning,

such as intellectual ability. Others are very specific, having been chosen because

they are known to be associated with functioning that is mediated by a specific brain
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locus (e.g., left versus right hemisphere, anterior or lateral frontal lobe, specific sub-

regions of the areas that mediate expressive or receptive language), or because they

provide critical information about a cognitive domain that is central to performance

of everyday activities (e.g., attentional shifting). The measures employed for this

type of assessment are meticulously normed, often in the context of multiple samples,

such that statements can often be made about a patient’s performance relative to the

population at large, to specific cohorts (e.g., those of same gender and similar age or

education), or relative to specific clinical comparison groups (e.g., is the profile most

consistent with a cerebro-vascular accident, dementia, or depression) [52, 17, 33].

The neuropsychological assessments I used are given in Table 3.2.

I obtained the results of neuropsychological tests from the patient records of the

16 subjects in this study to use as ground truth. I then computed the correlations

of the computed features with the individual neuropsychological assessments listed,

using an individual’s average value over the five trials for each computed feature

and applying one-tailed non-parametric evaluation. In addition to the individual

neuropsychological assessments, I applied principal component analysis (PCA) to

the complete set of neuropsychological assessment data for the subjects in order to

examine how well the computed features correlate with larger trends in the assess-

ment data. PCA is a standard statistical technique that finds linearly independent

components that explain as much of the variance in the data as possible. Each com-

ponent is a linear combination of the assessments where the sum of the squares of

the component coefficients is one. The first principal component is the linear combi-

nation that has the largest possible variance; the second principal component is the

linear combination that has the largest possible variance and is uncorrelated with

the first principal component; the third is uncorrelated with either of the first two
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Wechsler Adult Intelligence Scale (WAIS) III Verbal Comprehension (1)
WAIS III Perceptual Reasoning (1)
WAIS III Working Memory (1)
WAIS III Processing Speed (1,3)
Wechsley Memory Scale-Revised (WMS-R) Logical Memory I (3)
WMS-R Logical Memory II (3)
WMS-R Visual Reproduction I
WMS-R Visual Reproduction II
California Verbal Learning Test II (CVLT II) Total (1)
CVLT II Long Delay Free Recall (4)
CVLT II Recall Discriminability (4)
Trails A
Trails B (2,5)
Booklet Category Test (BCT) Error Total
Wisconsin Card Sorting Test (WCST) Concepts (3)
WCST Perseverative Errors (5)
Controlled Oral Word Association Test (COWAT-FAS) Total (1)
Animals (1)
Wide Range Achievement Test (WRAT) 4 Reading (1)
WRAT 4 Mathematics (5)
Peabody Individual Achievement Test-Revised (PIAT-R) Reading Comprehension
Peabody Picture Vocabulary Test-Revised (PPVT-R) (1)
Tactual Performance Test (TPT) Total (2)
TPT Memory (1)
TPT Location (2)
Finger Tapping Test - Dominant
Finger Tapping Test - Non-Dominant
Grooved Pegboard (GPB) - Dominant (2)
GPB - Non-Dominant (2)

Table 3.2: List of Standard Neuropsychological Assessments Used. Parentheses In-
dicate Principal Components in Which the Assessment has a Loading of
0.6 or More.
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Component % of Variance Cumulative %
1 26.4 26.4
2 15.0 41.5
3 12.8 54.2
4 9.0 63.3
5 8.7 72.0

Table 3.3: Principal Component Analysis of Neuropsychological Assessments

components, and so on. To perform the PCA, some of the summary assessments in

Table 3.2 were replaced with their component scores, a standard statistical practice.

The first principal component of the neuropsychological data accounts for 26.4%

of the total variance in the data and the top five principal components together

account for 72.0% of the total variance. Table 3.3 shows the first five principal

components and the variance explained by each component. Table 3.2 indicates

which factors, if any, each assessment (or any subtest of that assessment) has a

loading of 0.6 or higher.

After the principal components were computed, a domain expert and member of

the dissertation committee, Ned Kirsch, interpreted them. The first principal com-

ponent includes a diverse set of measures of general intelligence. It appears to be a

good proxy for general neuropsychological integrity, including measures of intellec-

tual functioning, verbal and nonverbal reasoning, memory, and complex attention.

The interpretation of the lower-order components is less clear, although the second

could be seen as a measure of general motor integrity; the third as representing verbal

memory and concept formation; the fourth, the ability to retain verbal information

over time; and the fifth, strategy formation and modification.
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3.4 Results

3.4.1 Assessing Neuropsychological Integrity

Recall that the main question I ask in this study is whether I can assess a patient’s

cognitive status by observing performance of an everyday activity using wireless

sensor networks. The main result is quite promising: there is a statistically significant

correlation (p < 0.01) between the Edit Distance feature and the first principal

component of the neuropsychological assessments, which, as just described, can serve

as a proxy for overall generalized neuropsychological integrity. Importantly, I did

not find such a correlation with any of the simpler features (Trial Duration, Action

Gaps, or Object Misuse). The ability to predict neuropsychological integrity, at

least within the scope of this experiment and in particular for the population of TBI

patients involved, is a strong indication that it is possible to conduct the types of

automatic assessments that motivate this work. Figure 3.4 shows the plot of Edit

Distance and the first principal component, with the regression line.

3.4.2 Assessing Other Metrics of Impairment

Although general neuropsychological integrity is a very important metric, it is

also interesting to see how the features assess other metrics of cognitive impairments.

The reason for doing this is based on domain practice—in addition to a concern with

overall neuropsychological integrity, it is often important for a rehabilitation team

to understand different aspects of a patient’s impairment: does it involve memory

impairment? Problems with focus of attention? Decreased motor coordination?

There is a potential for these to be blurred in a single measure of overall integrity,

important though that summary measure is. For instance, an individual whose

impairment involves decreased motor coordination or processing speed may have



45

Figure 3.4: Plot and Regression Line of Edit Distance with the First Principal Com-
ponent of the Neuropsychological Assessments

unimpaired executive function, and thus still be able to follow a “plan” for making

coffee successfully, but perform the task more slowly. An increased Trial Duration

might help tease out the types of cognitive difficulties facing this patient. To address

this, I also look at the next four (the second through fifth) principal components as

well as the twenty-nine individual assessments.

Additional statistical analysis such as a Bonferroni correction is required to state

that a correlation between two variables exists with statistical significance. How-

ever, because of the large number of assessments and features, achieving statistical

significance at this strict level would require the collection of data from a huge num-

ber of subjects—many more than were in the scope of this project. Nonetheless,

the results on the individual tests in this section are important as exploratory data

analysis and as a foundation for further research in the area. Although I recognize
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that correlations at the variable level are of questionable significance because of the

number of analyses performed, I am nevertheless presenting these findings because

the coherence of the relationships and the number of associations I found provide

important direction for future research. Additionally, while only suggestive, the vari-

able level correlations provide tentative guidance in regard to further refinement of

“markers” that clinicians can use when attempting to make a determination of the

mechanisms for a patient’s failure. Analysis of mechanisms (e.g., decreased pro-

cessing speed vs. executive functioning) may then lead, in turn, to choices on the

clinician’s part about interventions that are specifically targeted to the underlying

impaired cognitive mechanism.

Beyond this, it is noteworthy that I saw more correlations than would have been

expected by chance (22 actual correlations for the individual assessments versus 14.5

expected by chance), especially when looking at what would be strict p-values if

the Bonferroni correction were not required (p < .01: 8 actual correlations versus

2.9 by chance). Moreover, many of the identified correlations “make sense” from a

neuropsychological standpoint, in a manner similar to the example in the previous

paragraph. The results from correlations with principal components will also be

presented, although the number of correlations with the second through fifth principal

components (2) is what was expected by chance.3

Edit Distance

The Edit Distance feature achieved the best results with the individual evalua-

tions as well, having a suggestive correlation with the fourth principal component

3These numbers include the results from the additional five variations of Object Misuse noted
in Section 3.2.3 although those results are not presented here.
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Feature Correlations with # Suggestive Correlations with
Principal Components Individual Features

Edit Distance 1st (p < 0.01) 7
Suggestive: 4th

Trial Duration - 6
Action Gaps (≥ 3s) - 5
Object Misuse - 3

Table 3.4: Summary of Results from Each Feature

Computed Feature
Edit Trial Action Gaps Object

Assessment Distance Duration ≥ 3s Misuse

WAIS III Processing Speed * #
WMS-R Visual Reproduction II * * *
CVLT II Total *
CVLT II Long Delay Free Recall * * *
CVLT II Discriminability * *
Trails B * #
Animals * * *
WRAT 4 Reading * #
TPT Memory *
Finger Tapping - Dominant *
Finger Tapping - Non-Dominant * # * #
GPB - Non-Dominant * # * #
* indicates a suggestive correlation
# notes additional coverage: a metric not also correlated with Edit Distance

Table 3.5: Suggestive Correlations Between Neuropsychological Assessments and
Computed Features. Assessments with No Suggestive Correlations Are
Not Shown.
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as well as with 7 of the 29 (24%) neuropsychological assessments.4 Recall that the

fourth principal component appeared to represent the ability to retain verbal infor-

mation over time. The correlations with individual evaluations are predominantly

and compellingly with memory features; speculatively they could also be said to

measure the integrity of the left-cerebral hemisphere and the capacity to engage in

sequential and logical thinking. Generally the assessments that have suggestive cor-

relations with Edit Distance are also factors with a high loading in the principal

components with which Edit Distance is correlated but the slightly weaker inter-

pretation is likely due to the less efficient analysis of individual assessments. Table

3.4 summarizes the Edit Distance results and compares them to the other features.

Table 3.5 shows more detail, giving the assessments with which Edit Distance had a

suggestive correlation.

Trial Duration and Action Gaps

Trial Duration and Action Gaps also proved to be promising features. Though

neither had suggestive correlations with any of the principal components, they did

with a number of neuropsychological assessments. Trial Duration had a suggestive

correlation with 6 (21%) of the 29 neuropsychological assessments. Similarly, Action

Gaps of 3 seconds or greater suggestively correlated with 5 (17%) of the neuropsy-

chological assessments. These results are less coherent from a neuropsychological

perspective than the Edit Distance results but the correlation between processing

speed and Trial Duration is very logical. And while the results are not as good as

the Edit Distance results, they are still valuable: between the three features presented

thus far, there are suggestive correlations with over 12 (40%) of the 29 neuropsycho-

4I identify a suggestive correlation whenever there would be a statistically significant correlation
if the Bonferroni correction were not needed. Because it is necessary, these correlations are not
significant but are still of interest for their value in guiding future studies.
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logical tests, including 5 that did not have suggestive correlations with Edit Distance.

Suggestive correlations in Table 3.5 that provide additional coverage—correlations

with a metric that did not have a correlation with Edit Distance—are marked with a

#. I also tested Action Gaps of 10 seconds or greater but this only had a suggestive

correlation with one metric (GPB - Non-Dominant which also correlated with two

other features); I hypothesize that the poor result for this feature is due to the low

frequency of gaps that long.

Object Misuse

The results from the Object Misuse feature were the least successful—as shown

in Table 3.5 the feature had fewer suggestive correlations than Edit Distance, Trial

Duration or Action Gaps of 3 Seconds, and none with assessments that were not also

correlated with Edit Distance.

3.5 Conclusion and Discussion

I have presented an approach to using RFID-based sensing of individuals as they

perform a simple task, with the aim of assessing their level of cognitive impairment.

I presented four features, with increasingly representational power, that can be com-

puted from the collected sensor data, and evaluated them using the results of the

subjects’ performance on standard neuropsychological assessments as well as with

the principal components of those assessments. The most knowledge-rich feature I

computed, Edit Distance, had a statistically significant correlation with the mean-

ingful first principal component, a measure of general neuropsychological integrity. I

also presented the results of exploratory analysis of the correlations between the four

types of features and the individual assessments; these results are helpful to guide

future research into other metrics of impairment without the need for a massive
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amount of data collection.

It is interesting to note that the vast majority of trials resulted in coffee being

made successfully. Although mistakes were frequently made, the subject almost

always recognized and corrected them (for example, the lid of the coffee pot was

often closed before all the water and ground coffee was in, but this was almost always

recognized eventually and the lid reopened so the additional material could be put

in). Therefore, if a computed feature could be created that determined whether or not

the individual succeeded in making coffee correctly, it would have been of very little

use—it might be able to assess the most impaired individuals but would be unable

to differentiate the rest. I hypothesize that the computed features in this study were

successful because they measured how efficiently an individual performed the task.

Although Edit Distance would be able to detect forgotten steps, these forgotten

steps rarely occurred since coffee was almost always made correctly. Instead, Edit

Distance appears to have detected inefficiencies: extra steps that were caused by a

poor decision at the time of the extra step or to correct for earlier mistakes. Likewise,

it would be possible to have a very short Trial Duration if several necessary steps were

omitted during the trial. If this had happened with any frequency, Trial duration

would likely have been less successful, unless the possibility could be accounted

for (such as interpreting a very short Trial Distance as a poor result). However,

since almost all trials were completed successfully, Trial Duration was more simply

a measure of how quickly an individual could correctly make coffee—a shorter trial

indicated more efficiency in making decisions and performing the actions necessary

to complete the task.

There are many practical concerns for the in-home implementation of a system

that could automatically assess impairments. Compliance with the system is im-
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portant since the user must wear the bracelet and complete the task to be assessed;

individuals with an impairment may be particularly forgetful about doing this. Other

sensor modalities, such as accelerometers placed on the objects, motion detectors, or

current or water-flow sensors might be considered which do not have this drawback.

On the other hand, the privacy implications of observing individuals in a home envi-

ronment are important to address and these may be somewhat alleviated by using a

system which can clearly be prevented from observing an individual’s behavior (by

taking the bracelet off).

3.5.1 Future Work

A great deal of future work remains, including collecting additional data and per-

forming further analysis to investigate the suggestive individual correlations identified

in this study. Additionally, observation of other kinds of impairments (particularly

dementia) and longitudinal studies are necessary to understand the ability of these

techniques and potentially to develop new techniques to observe change in an indi-

vidual’s performance over time. There are a number of ways in which the scope of

the research can be expanded, particularly applying these assessment techniques to

other activities beyond coffee making and using them in a home environment.



CHAPTER IV

Recognizing Cognitive Impairments

This chapter continues to investigate how object-use patterns can be used to learn

about an individual’s cognitive impairment. While the previous chapter addressed

the question of whether an impairment could be assessed using object-usage patterns

for an individual known to be impaired, this chapter addresses the third research

question: is it possible to recognize whether or not an individual has a cognitive

impairment based on those object-use patterns?

To answer this question, I asked individuals with Traumatic Brain Injury (TBI)

and unimpaired individuals to perform the same task of preparing a pot of coffee

while wearing electronic sensors to observe their object usage. I used the same four

metrics developed in the previous chapter and I then investigated how successful

those metrics were at recognizing which individuals were impaired and which were

not. This chapter presents the results of that study which, though very preliminary

due to the limited number of subjects, are promising for being able to distinguish

between impaired and unimpaired individuals based on their object-usage patterns.

52
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Unimpaired Subject Impaired Subject
Pair Age Yrs. Educ. Age Yrs. Educ.

1 49.8 13 49.4 12
2 38.1 16 33.1 17
3 45.4 17 45.0 18
4 21.3 16 25.7 14
5 20.7 15 24.8 14

Table 4.1: Matched Unimpaired and Impaired Subjects

4.1 Experimental Methodology

4.1.1 Experimental Setup

The experimental setup used here is very similar to the setup used in Chapter

III; subjects were asked to make coffee five times while wearing the Intel iBracelet,

with each trial on a different day. Thirteen unimpaired subjects were recruited,

to be compared with the twenty-five subjects with TBI. To address the concern

that age and intelligence might have an impact on how individuals prepared the

coffee, I selected the five pairs of subjects (each pair having one impaired individual

and one unimpaired individual) that most closely matched each other in age and

education (which is used as a proxy for intelligence). Information about the five

pairs of individuals is shown in Table 4.1. Three of the impaired subjects and three

of the unimpaired subjects completed all five coffee trials. One of the impaired

subjects completed only two trials, and the remaining subjects (one impaired, two

unimpaired) completed three trials. Although promising, this study is preliminary

due to the limited number of subjects (no additional good matches were possible).

The unimpaired individuals were drawn from two different pools of subjects.

Unimpaired subjects 1 through 3 performed the trials at the same MedRehab kitchen

as the 25 impaired subjects. Unimpaired subjects 4 and 5 performed the trials at

the Computer Science and Engineering building at the University of Michigan, in a
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kitchenette that was set up to mirror the kitchen at MedRehab. Although these two

subjects were asked to complete all the steps in preparing a cup of coffee, including

pouring it into a cup for this study, I only used the data up to the point at which the

subject had finished preparing the pot of coffee (the point at which the subject had

finished preparation of the pot of coffee and started the coffee maker was manually

recorded in each trial; this corresponded to the point at which the other subjects’

trials were stopped).

4.1.2 Analysis

The four features presented in Chapter III are used again in this study. Based

on the results from that chapter, only Action Gaps with a duration of 3 seconds

are considered, not Action Gaps with a duration of 10 seconds. Likewise, only the

standard measure of Object Misuse is considered, not the other variations mentioned

in Section 3.2.3. In this study, these features were used to attempt to classify the

individuals as either impaired or unimpaired.

4.2 Results

4.2.1 Edit Distance

I first examine Edit Distance, the most knowledge-rich feature proposed and the

most successful feature in the experiments described in Chapter III. Figure 4.1 plots

the average Edit Distance for each subject, with error bars showing the standard

error for each subject. As can be seen, the impaired and unimpaired subjects can be

perfectly separated: the largest average Edit Distance for an unimpaired subject is

4.0 and the smallest average Edit Distance for an impaired subject is 4.4.

Although the results are very good, this study is preliminary since the sample

size is quite small. With more subjects, it would be unlikely that the results would
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Figure 4.1: Plot of Edit Distance for Impaired and Unimpaired Subjects

continue to remain perfect—even if repeated with the same subjects, an error would

not be unexpected since several subjects have error bars which cross the gap between

the impaired and unimpaired subjects. Nonetheless, the fact that the subjects can

be perfectly split based on the data that was collected is a very positive result and

is evidence that differentiating impaired and unimpaired subjects may be possible

with very good accuracy.

4.2.2 Other Features

Since it is not expected that Edit Distance would continue to perfectly classify

subjects, it is interesting to examine the performance of the other features to direct

future research in recognizing cognitive impairments. Figure 4.2 shows the plot

of average Trial Duration and Figures 4.3 and 4.4 show average Action Gaps of 3

seconds or longer and average Object Misuse, respectively. For clarity, error bars are
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Figure 4.2: Plot of Trial Duration for Impaired and Unimpaired Subjects

not shown in these graphs.

None of these three features can be used to perfectly classify subjects, at least

not individually. As a result, there’s a tradeoff between correctly identifying more

impaired individuals and correctly identifying more unimpaired individuals. A bal-

anced outcome, where both sets of subjects are identified with similar success rates

is one solution, but it might not be ideal. In particular, a false positive may be

preferable to a false negative (since a likely response to a positive result would be to

further investigate whether an impairment exists), so a lower threshold may be bet-

ter. Alternatively, a higher threshold—where false positives are minimized—might

be preferred since the subject can be evaluated repeatedly over time.

These tradeoff can be visualized using a Receiver Operating Characteristic (ROC)

curve. An ROC curve plots the true positives (sensitivity) against the false positives
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Figure 4.3: Plot of Action Gaps ≥ 3 Seconds for Impaired and Unimpaired Subjects

Figure 4.4: Plot of Object Misuse for Impaired and Unimpaired Subjects
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Figure 4.5: ROC Curve with All Four Features

(1 - specificity). By chance (if the feature has no impact on whether a subject is

impaired or not), these two values should be the same, creating the 45◦ line shown

for reference in Figure 4.5. A feature performing better than chance will have a

curve above that line, demonstrating that true positives are more common than false

positives. Since Edit Distance is able to perfectly differentiate the subjects, it has

an ideal ROC curve along the left and top sides of the graph.

As seen in Figure 4.5, Trial Duration, the second best feature from the results

of Chapter III, has a curve that is always at or above the line for chance, although

the difference is not very large. It is able to identify 2 of the 5 impaired subjects

without misidentifying any of the unimpaired subjects or correctly identify 3 of the 5

subjects in both data sets. The last two features, Action Gaps greater than 3 seconds

and Object Misuse do not perform well, being mainly at or below the line of chance.
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Figure 4.6: ROC Curve using Individual Trials

Again, remember that these results are preliminary due to the small sample size.

4.2.3 Analysis of Individual Trials

Finally, I study the influence of variation across individual trials, which is impor-

tant to the question of whether it is important to use an average of multiple trials

or if a single trial can provide similar accuracy. A related question is whether the

higher average values for impaired individuals are the result of a small number of

outliers for each subject or if the values are consistently higher in each trial.

Figure 4.6 shows the ROC curve from applying the four features to the individual

trials. Not surprisingly, the success of Edit Distance decreases dramatically from the

perfect accuracy achieved before, but it is still the most successful feature. The other

features have similar ROC curves as before: Trial Duration is mostly above the line

of chance while Action Gaps and Object Misuse are generally below that line.
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Due to the small sample size, it’s difficult to make meaningful comparisons be-

tween the performance using a single trial and that of using an average of multiple

trials. Nonetheless, the fact that Edit Distance and Trial Duration both perform rea-

sonably well using just one trial is further support for the earlier results suggesting

that those two features can be successfully used to recognize cognitive impairments.

With Edit Distance still fairly successful using only a single trial, it’s clear that

the impaired subjects’ trials had higher Edit Distance scores than the trials from

the unimpaired subjects with some consistency. The outliers in Figure 4.7 are also

notable, however: 4 of the 5 impaired individuals had at least one trial with an

Edit Distance of 8 or higher, while no trial from an unimpaired subject had an Edit

Distance over 6. These outliers suggest that there may be an important advantage

to computing an average of multiple trials since impaired individuals are able to

perform trials with low Edit Distances at least some of the time but none of the

impaired subjects in this study did so with the same consistency as the unimpaired

subjects.

There is an additional disadvantage to using just one trial that is noticeable in

Figure 4.6: the small number of feasible thresholds for the Edit Distance feature.

Edit Distance values are integers and are typically small, even for most of the trials

from impaired subjects, meaning there is not a great deal of variety: over 80% of

trials by unimpaired subjects have Edit Distances of 3 or 4, along with nearly 50%

of trials by impaired subjects (the features Action Gaps and Object Misuse have the

same problem, thought it’s less relevant due to their lower success rates). While the

available thresholds have fairly good success rates (two likely choices have a 50%

true positive rate with just 10% false positive rate or an 80% true positive rate with

a 50% false positive rate), there is no way to have rates between those two points
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Figure 4.7: Plot of Edit Distance for Individual Trials

with just a single trial.

4.3 Conclusion and Discussion

I have presented the results of a preliminary study using RFID-based observation

of individuals’ object usage in order to determine whether each individual has a

cognitive impairment or not. I applied the four features presented in Chapter III

and evaluated them on five pairs of impaired and unimpaired subjects, with each

member of a pair having a similar age and level of education as the other.

Although very preliminary, these results are promising: one feature (Edit Dis-

tance) is able to successfully differentiate the five impaired subjects from the five

unimpaired subjects using a simple threshold value. Results from the other three

features were presented as well. These results are consistent with the results from
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Chapter III: Edit Distance is definitively the best feature, Trial Duration is the next

best, and the Action Gaps and Object Misuse features do not perform as well. The

results of applying the features to a single trial were also presented, with similar

accuracy except for the Edit Distance feature which, while still the best feature, was

well below the perfect success rate it had using the average of the subjects’ trials.

The single trial results also discussed the problem of having few reasonable choices

for thresholds in Edit Distance, since a small number of values are the result of a

large number of trials for both unimpaired and impaired subjects.

A first step in future research is to collect data from more subjects, in order to

validate the results. Although Edit Distance and Trial Duration are clearly the best

two features in these results, Action Gaps and Object Misuse did have more sug-

gestive correlations than would be expected by chance in Chapter III, so they may

still prove valuable in larger studies of recognizing cognitive impairments. Addition-

ally, it’s very unlikely that Edit Distance would continue to perfectly differentiate

impaired subjects from unimpaired in larger data sets, so it may be interesting to

consider multiple features together: for example, by classifying an individual as im-

paired if her scores are above thresholds for a majority of the features.

The practical concerns raised in Section 3.5 are also concerns for a system differ-

entiating impaired and unimpaired individuals: an individual may not comply with

the system if she does not want to know (or to have others know) if she develops

a cognitive impairment. Again, using other types of sensors may help to increase

compliance but likely also have privacy drawbacks to consider.

Other important areas for future work include observation of other forms of im-

pairment, particularly dementia, since that is where the highest demand for this type

of system may be. Additionally, longitudinal studies of individuals at risk for impair-
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ment are important to understand how well a system could detect impairment at its

onset, and particularly how quickly after onset that determination could be made,

as well as to potentially develop new techniques that use an unimpaired individual’s

past behavior to assist in that determination.

Finally, as in the previous chapter, this research could be usefully expanded

by applying it to other activities beyond coffee making and using them in a home

environment.



CHAPTER V

Conclusion

This dissertation explored a novel area for computer science research: the au-

tomatic assessment of cognitive impairments from object-use interactions. This re-

search was undertaken as a result of practical, real-world concerns stemming from

the increased number of cases of cognitive impairment likely to result from an aging

population and the difficulty in assessing those impairments.

The main contribution of this thesis is the demonstration that inexpensive, un-

obtrusive, and privacy-preserving technologies can be used to assess the level of

cognitive impairment in patients performing routine activities of daily living. Addi-

tionally, I developed a set of features that may be used to perform this assessment

and studied their effectiveness at both recognizing whether an individual has a cog-

nitive impairment and assessing the impairment of an individual known to have one.

The most knowledge-rich of these features, Edit Distance, correlates significantly

with the meaningful first principal component of the neuropsychological evaluations

for individuals with traumatic brain injury and, in a preliminary study, was able to

differentiate impaired individuals from unimpaired individuals using a simple thresh-

old.

In this chapter, I first review the research hypothesis and three key research ques-

64
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tions presented in Chapter I, summarizing the answers to them that were obtained

in my research and explaining the research contributions of this dissertation. I then

discuss directions for future work, limitations and potential for the research presented

in the dissertation, and finally important lessons I learned that may be valuable to

others conducting similar research.

5.1 Key Research Results

The central hypothesis of this dissertation is that important inferences about an

individual can made by using sensor technology to observe the individual’s object-

use patterns during the performance of a simple task, significantly including the

assessment of an individual’s cognitive impairment. This hypothesis was divided

into three key research questions:

1. Can an individual be recognized from her object-use patterns in the perfor-

mance of a task?

This first question, addressed in Chapter II, introduces a novel application of

sensor-derived object-usage patterns: recognizing an individual. That chapter presents

preliminary evidence that the answer to this question is “yes”: the subjects in the

study were correctly recognized in more than three-quarters of the trials.

This application was chosen as an important starting point for the larger hypoth-

esis in order to learn about individuals’ patterns of object usage and whether those

can be detected by passive observation and analyzed automatically. I presented an

experiment to study the ability to observe individuals and extract relevant features

that can be used for recognition. Five features were introduced, ranging from a very

simple metric of whether an individual interacted with an object during the course of
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the trial to a more complex measure of the order in which the individual interacted

with objects. I also introduced the concept of levels of granularity: the ability to

consider the interactions at the object level, or at more detailed tag or group levels.

Finally, I presented the results of this study, including analysis of the different

features and levels of granularity. These results showed that, using just nine trials

as training data, ten individuals could be correctly recognized up to 77% of the time

based on their object-use patterns.

This research laid a foundation for the research in the two chapters following it

and for future research in object-usage patterns, showing that these patterns can

be observed and analyzed automatically. The research also had direct significance,

showing that privacy must be an important consideration in the design of systems

that collect and use object-usage data. Finally, the research provided evidence that

biometric security based on object usage may be feasible, potentially allowing smart

homes or other monitored spaces to provide an additional level of security based on

the tasks performed by individuals in the space.

2. Can the severity of an individual’s impairment be assessed by electronically

observing the individual’s object-use patterns from the performance of a task?

This is, of course, a complex question, but the results in my research point to an

affirmative answer.

In Chapter III, I addressed a second novel application of object-usage patterns:

the automatic assessment of cognitive impairments. To study this application, I

recruited 16 individuals with traumatic brain injuries for whom a full set of neu-

ropsychological evaluations had been performed and I collected sensor data as they

each performed a basic task, preparing a pot of coffee. I then introduced four types



67

of features which, as measures of how well the subject performed the task, I hypoth-

esized would correlate with the severity of a cognitive impairment. I compared these

features to the subjects’ scores on the neuropsychological evaluations.

The most important result in this chapter is that Edit Distance, the most knowledge-

rich feature I computed, had a statistically significant correlation with the first prin-

cipal component of a standard suite of neuropsychological tests; moreover, this com-

ponent was judged by a domain expert to be a meaningful measure of general neu-

ropsychological integrity. Additionally, although the results are preliminary, there

were many more suggestive correlations between the computed features and neu-

ropsychological evaluations than would be expected by chance, showing that they

can potentially provide important information to caregivers and medical profession-

als about the individual’s cognitive impairment. Forty percent of the standard neu-

ropsychological assessments had a suggestive correlation with one of the features,

evidence that the computed features can be used to evaluate a broad range of neu-

ropsychological abilities. This result is notable because cognitive impairments are

measured along many dimensions (e.g. memory, attention and executive reasoning)

and it is important for a rehabilitation team to understand different aspects of a

patient’s impairment.

As strong evidence that the automatic assessment of cognitive impairments is

possible based on individuals’ object usage patterns, the results presented here pro-

vide a basis for further development of this novel application: the success of the

features, particularly Edit Distance, is a motivation for larger studies with subjects

in lab environments, as well as for studies in subjects’ homes. All four features also

provide a basis for comparison with features that are developed in the future. The

suggestive correlations presented can also direct future research to study these types
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of features without the need for a massive amount of data collection. An important

additional result from this study is that, since the vast majority of trials resulted

in coffee being made correctly, the success of these features appears to be due to

their ability to measure efficiency in the performance of a task, rather than simply

whether or not the task was performed correctly.

3. Is it possible to recognize whether or not an individual has a cognitive impair-

ment based on sensor-derived object-use patterns?

Although the results in Chapter IV are preliminary, they point to an affirmative

answer for this question as well. Studying five pairs of impaired and unimpaired

subjects matched by age and education, I was able to perfectly separate the impaired

subjects from the unimpaired subjects using a simple threshold value of the Edit

Distance feature.

I also examined the performance of the three other types of features using an

ROC curve, which showed Duration generally performing better than chance and

the other two features slightly worse than chance.

Although preliminary, this research suggests that the same features that were

applied to assessing how severe an impairment is can also be applied to recognizing

whether an individual has an impairment or not. Because these results are consistent

with the results from Chapter III, it would appear that techniques that are useful

for one part of the assessment (recognition of the impairment or assessment of its

severity) are also useful for the other. It further bolsters the evidence that Edit

Distance and Duration are useful features for assessing cognitive impairments using

object-usage observation and that Edit Distance is a particularly strong feature for

this purpose.
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5.2 Future Work

5.2.1 Recognition of Individuals

There are several avenues for future work to specifically address the limitations

of the study in Chapter II. These include developing new techniques to increase

accuracy, conducting additional studies in more realistic conditions, generalizing the

results to other tasks, and investigating the implications of these results.

There are three key ways that the accuracy in this study could potentially be

improved: by developing new features that can be extracted from the sensor data, by

using different sensing technologies to observe the subjects, and by applying different

learning techniques.

Further research should address the ways in which the realism was limited in the

study. An important step is to replicate the study in subjects’ homes, where subjects

have more freedom in how they perform a task and where it may be difficult to tag

all relevant objects. Another way to address the limitations of the study is to involve

other, distracting, activities in the study: so that the starting and ending points of

the observed task must be determined automatically, and allowing the possibility of

interleaved or interrupting tasks. Additionally, because the subjects from the study

in Chapter II were mostly graduate students in engineering, further work should

include subjects across a broader range of ages and backgrounds.

Studying the recognition of individuals using other tasks is important in order

to understand the generalizability of these results, and it is also interesting to study

whether similar results can be obtained using a broad range of behavior (e.g. behavior

in an office, or during a day spent at home) rather than a specific task that may or

may not be performed when a subject’s identification is desired.

Finally, further analysis of the privacy implications of object-usage data includes
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studying various scenarios—for example, how much data is needed for a reasonably

accurate system when there are large numbers of subjects, or how accurate a system

can be when less training data is available.

5.2.2 Recognition and Assessment of Cognitive Impairments

Future work in the recognition and assessment of cognitive impairments includes

several similar directions as the future work in the recognition of individuals, as well

as several new directions including confirming preliminary results from Chapters

III and IV, studying the generalizability of the research to other kinds of cognitive

impairment, and examining the acceptance of this kind of technology by those at

risk for impairments.

There are several areas of future work in the recognition and assessment of cogni-

tive impairments that are similar to those in the recognition of individuals: studying

subjects in home environments, studying other tasks, and using other technology to

observe the individuals or creating new computed features from the collected sensor

data.

Studying subjects in home environments is probably the most important of these

avenues for future work. Although the assessment could be used in controlled envi-

ronments at rehabilitation centers, this form of assessment is particularly interesting

because of the potential for regular, unobtrusive observation in the home. There are

several additional challenges in a home environment including detecting when the

observed activity is being performed, and determining when it started and when it

stopped so that the features are only computed from relevant sensor data. Addition-

ally, in a home environment, subjects may be interrupted during the performance of

a task, or may interleave the performance of multiple tasks, and computed features
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would need to take these complications into account in order to provide a meaningful

assessment of the individual.

Also very important is generalizing the results by studying other tasks, or po-

tentially broader categories of behavior rather than specific tasks. Obviously, many

individuals do not drink coffee or make it frequently, so additional tasks would al-

low more subjects to be assessed in an unobtrusive way, but there are important

advantages to being able to observe a range of tasks, even for people who would

make coffee regularly. First, since performing different tasks require different sets of

skills, some tasks may be better suited for measuring a particular type of impairment

than others; this would also help assess different types of impairment more precisely

since coffee-making had suggestive correlations with a large number of neuropsycho-

logical assessments. Second is that this would allow the use of a range of “graded”

tasks of varying difficulty. A rehabilitation team typically uses graded tasks to ob-

serve impairment since some tasks may be too difficult for a more severely impaired

individual or too easy for a less severely impaired individual.

Further research into using other sensor technologies and developing new features

from the collected data may be able to improve the accuracy and reliability of the

assessments; it may also facilitate the observation of tasks or behavior for which

RFID sensors or the computed features presented are not ideal. To observe meal

preparation, for example, Edit Distance may be infeasible due to the huge number

of different foods that could be made, but other measures of efficiency may still be

valuable, such as the number of cabinets that were opened in order to find a desired

item (recall from section 3.5 that due to the vast majority of trials being performed

correctly, the computed features appear to be successful because they are measuring

efficiency in various ways).
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After studying subjects in a home environment, I expect that observing a set

of tasks would be the most likely of these to substantially improve an assessment

system, by adding redundancy to the evaluation and by including tasks that require

other kinds of abilities to complete. Although their impact is more difficult to predict,

the creation of new features could also be a very positive improvement, especially

if a new feature can build on the research here and be designed more explicitly to

measure efficiency, or if a successful new feature was found that measured a very

different attribute of task performance and, therefore, provided a different type of

insight into an individual’s impairment. Although there was room for improvement,

the RFID sensors used in this dissertation generally seemed to perform well; a change

in sensing technology would be particularly helpful only if a new task wasn’t well-

suited for observation with RFID or if needing to wear an RFID bracelet caused too

much intrusion or low compliance.

Several suggestive correlations were identified between neuropsychological evalua-

tions and the automatic features presented in Chapter III; further study is important

to learn which of those relationships are statistically significant. Similarly, the results

presented in Chapter IV are preliminary due to the small sample size and a study

with a larger subject population is needed to confirm these results.

Further study is necessary to understand the generalizability of these results to

other types of cognitive impairments, particularly dementia, including Alzheimer’s

disease. Of particular interest is studying how quickly the features presented in this

dissertation or other computed features could detect the onset of impairment in older

individuals at risk for those impairments, so longitudinal studies are important for

future work in this area. The current version of the Intel iBracelet is likely to be

considered too large and obtrusive and have too short a battery life to be ideally used
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in longitudinal studies, so other technology for object usage sensing may be better to

encourage higher participation, particularly over time. Longitudinal studies will also

face the challenges of in-home environments, addressed previously in this section.

Finally, further research is needed to examine how well this kind of technology

would be accepted by individuals at risk for impairments, particularly senior citi-

zens. While privacy implications of sensors in the home have already been explored,

including among senior citizens, subjects may be more hesitant to install a system

that could identify an impairment. In this dissertation, a decision was made to use

technology that subjects can clearly prevent from observing their behavior (by re-

moving the iBracelet RFID reader); this further research could also address questions

of whether this kind of concession is successful in alleviating many privacy concerns

and, alternatively, what the impact is on the amount of data collected from subjects

and whether it is still sufficient to assess impairments well.

Occupational Therapy Assessments

Neuropsychological assessments, which were the focus of the study in Chapter

III, are only a portion of the assessments performed for many cognitively impaired

patients. Occupational therapy (OT) assessments are of particular interest for fu-

ture work because they play an important role in making recommendations as to

whether an individual should be living independently, driving, or working; deter-

mining whether an impairment prevents an individual from doing any of those tasks

could be more important than just determining if an impairment exists. Addition-

ally, automatic assessment based on task performance seems well-suited since an

important part of occupational therapists’ assessments are their own observation of

patients’ task performance.
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Motor-Free Visual Perception Test-3 and MVPT-Revised
Test of Visual-Perceptual Skills (Non-Motor) (Upper Level and Lower Level)
Hooper Visual Organization Test
O’Connor Wiggly Block Test
Contextual Memory Test

Table 5.1: Occupational Therapy Assessments

Using the features described in Chapter III, I have performed some early ex-

ploratory analysis with several standard occupational therapy assessments, listed in

Table 5.1. These assess a wide range of skills including visual memory, perceptual

and spacial reasoning, and the perception of visual figure ground, visual closure, and

of spacial relationships. From this preliminary analysis, there appear to be some

interesting trends, including multiple potential suggestive correlations. This analysis

is not developed to a point that it is ready to be reported, however, but remains a

promising area for future work.

5.3 Limitations and Potential of this Research

In this section, I address two important limitations to the research presented in

this dissertation that are not identified elsewhere, as well as two related potential

strengths of this type of research.

As with much research involving human subjects, one limitation of this work is

the potential for subject bias, that subjects may attempt to provide “positive” re-

sults in order to aid the researcher [36]. For example, in Chapter II, studying the

recognition of individuals, subjects may have attempted to have more consistent task

performance than normal in order to assist recognition. Beyond an explanation of

the sensors necessary for informed consent, I declined to show the raw data collected

or discuss features being studied until a subject had completed participation in the

study, to reduce the ability of a subject to know what behavior might directly affect
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their results, but the risk still exists since subjects understood that their task perfor-

mance was being measured. This bias is difficult to explicitly avoid or measure, so it

is important to acknowledge the potential for it. This limitation directly relates to a

potential strength of this type of research, however, since the potential for this effect

exists in nearly all kinds of human subjects research, including neuropsychological

research. By using unobtrusive sensors in longitudinal studies, this form of assess-

ment has the potential to observe subjects without researchers present and over a

period of time such that this effect is likely to disappear.

A second limitation of this approach to the assessment of cognitive impairments

is the need to develop appropriate models for the computed features for each task

that is being observed. This is clear for the Edit Distance and Object Misuse fea-

tures, but even for the simpler features Trial Duration and Action Gaps, the typical

range for unimpaired individuals must be established for a task before recognizing or

assessing an impairment is possible. Previous work in activity recognition, discussed

in Section 1.3.2, has studied automatically creating models for activity performance

from web sites or common sense databases [65, 45]; this work could potentially be

adapted to create models for Edit Distance and Object Misuse and potentially even

to understand appropriate values for all four types of computed features. In contrast

to the case of activity recognition, an ideal assessment system would not need to work

for every activity performed, but using a large set of tasks to form the assessment

has several advantages, discussed in section 5.2.2.

The second strength is the potential to improve understanding of the ecologi-

cal validity of neuropsychological assessments. Neuropsychological assessments have

typically been developed to diagnose a patient, in order to understand whether a

patient has one or more brain lesions and, if so, where the lesions are. More recently,
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however, there has been increased interest in using those neuropsychological assess-

ments to understand how capable the impaired individual is of working, driving, and

living independently [9, 30]. This interest has led to investigating the ecological valid-

ity of neuropsychological assessments, the degree to which results on an assessment

relate to real-world performance. One reason ecological validity is challenging is that,

although actual ability should increase with rehabilitation and as the patient devel-

ops compensatory strategies, diagnostic tests are designed to remain stable measures

of the actual brain damage itself. As a result, diagnostic assessments are evaluated

in a quiet, supportive environment over short periods of time, designed to measure

the best that a patient can do, in order to avoid falsely diagnosing a brain lesion.

Ecological concerns, however, focus on how the patient does in real-world environ-

ments that are often distracting and unsupportive and this change in environment

may impact individuals differently [9]. By studying the relationship between real-

life task performance and neuropsychological assessments, this type of research has

the potential to improve the understanding of neuropsychological assessments and

potentially to assist in the development of assessments with higher ecological validity.

5.4 Lessons Learned

There are several valuable lessons I’ve learned while doing this research—especially

from the mistakes I’ve made along the way. Such mistakes are all too easy to make

when doing research involving a field well outside computer science. I share them

to help others pursuing similar lines of inquiry since, while many seem obvious in

hindsight, they were not so at the time.

The most important lesson is the value of a domain expert at all stages of the

research, especially throughout the experimental design and with the interpretation
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of results. In several cases, there were significant concerns with the validity of the

research designs that I created which would have led to a great deal of lost effort

if not for the involvement of a neuropsychologist, Dr. Ned Kirsch, in the design

process. Additionally, discussing the best approach to data analysis and interpreting

the results would have been impossible without the perspective of a domain expert.

A second lesson is the difficulty of performing research with human subjects. An

Institutional Review Board (IRB) oversees any research with human subjects and,

while this protection is very important, beginning the research is slowed dramatically

by needing to go through the approval process. Anecdotally, this process takes even

longer when the study includes protected subjects (such as individuals with cognitive

impairments) and when a medical school IRB is involved (as it was in the studies

for Chapters III and IV since the subjects were patients at a medical facility at

the university). Writing a detailed research protocol and discussing it amongst the

research team members and with individuals familiar with IRB-approved studies

makes this process go much more smoothly and helps to ensure that the application

is internally consistent. The protocol should cover the recruitment of subjects as

well as the experimental design, with particular concern for any safety precautions

that will be taken. Safety includes concerns such as how a study will be stopped

if there appears to be any danger to the subjects (in this study, I was particularly

alert for the possibility that a subject might be burned by hot coffee even though the

trial should end before any is produced—I would have intervened if there appeared

to be a situation where there was hot coffee or hot parts of the coffee maker that

the subject might touch). Other considerations in the experimental design were how

much instruction to give before the start of the task (both on how to complete the

task, and if the subjects need to do anything special to use the sensors—I always
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instructed them to ignore the sensors as best they could), how to answer questions

about the task during a trial, and how to respond to conversation from the subject

during the task. Though several of those details were not included in the design given

to the IRB, they were important to consider ahead of time in order to make the best

decision and to be consistent with all subjects. Since we used a worn sensor as part

of our study, that device needed to be separately approved by the IRB, including a

subcommittee specifically for biomedical engineering devices.

Subject recruitment and actual data collection can also be very slow. Without

the active support of Dr. Kirsch and the other staff at the University of Michigan’s

MedRehab clinic, a medical clinic for individuals with cognitive impairments, the

recruitment of impaired individuals would have been almost impossible. The data

collection was done before or after existing appointments at MedRehab to avoid

imposing on the subjects, but even though subjects were generally very willing to

participate, there were a large number of forgotten appointments. Since data col-

lection is so slow, a pilot study is highly recommended to find problems with the

experimental setup before real data collection begins. This helped to address re-

liability concerns with the sensors, make sure the information and prompts I was

giving to the subjects were appropriate, and prompted me to think about how to

respond to questions from the subjects. Once data collection for the full study has

started, it’s very difficult to modify any part of the study since even moving a sensor

that wasn’t often being picked up would have made it very difficult to compare data

collected before the change to data collected after it. Since a pilot study does not

need to be with impaired subjects, it may be possible to quickly submit a more broad

application for it to the IRB (or even one that will cover several pilot studies); by

the time the details have been figured out for the full study, the IRB application for
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the pilot study will hopefully have been approved.

A further complication with subject recruitment was the need to match subjects

for the study presented in Chapter IV. Dr. Kirsch identified two factors that might

particularly impact how an individual performs the task of preparing a pot of cof-

fee: age and intelligence (we used the number of years of education as a proxy for

intelligence since intelligence itself is difficult to measure). For example, a younger

individual would be likely to prepare coffee more quickly than an older individual

even if they were both unimpaired. The original set of unimpaired subjects I collected

data from, university students who were mostly undergraduates, were generally much

younger and better educated than the impaired subjects that I had collected data

from. As a result, I was unable to say whether the results showing differences be-

tween unimpaired and impaired subjects were due to the difference in impairment or

simply the difference in demographics. In fact, neuropsychological assessments are

generally studied very carefully for affects of age (and potentially gender) so that

an individual’s assessment is made relative to what is normal for her age group. It

was only by recruiting a second set of unimpaired subjects and then matching the

subjects (choosing pairs of subjects who had similar ages and levels of education)

that I was able to draw meaningful conclusions from the different results. It’s worth

adding that I did not actually compare the subjects in each pair to one another

(though that may have had some value with a larger sample size), but that sim-

ply choosing pairs of subjects helped protect my results from any effects of age and

education. Recruiting unimpaired subjects was actually harder than recruiting the

impaired subjects, mainly because there was a clear pool of impaired subjects with

whom the MedRehab staff already had an established relationship, and partly be-

cause I only wanted unimpaired individuals who had demographics that were similar
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to an impaired subject.

Careful consideration of what data should be collected is very important. In

this study, the sensor data was obviously central to the research, as were some

medical records about each patient’s impairment, but I wish I had collected more

information about the subjects themselves and it’s often very difficult or impossible

to get information about subjects after their participation in the study has ended.

In particular, I would have liked to have recorded how often each subject made

coffee previously and which hand the subject’s dominant hand was, since those could

impact how well a subject performed and potentially the performance of the sensors,

respectively. I had also not originally planned to collect information about each

subject’s age and level of education which ended up being very important to the

study in Chapter IV—without it, appropriate analysis would have been impossible.

Since gender plays a role in some neuropsychological assessments, it also would have

been good to record. This is not to suggest that huge amounts of demographic

information should be blindly collected, but that the kinds of information that might

be relevant should be carefully considered during the research design phase.

Lastly, I would like to discuss task selection. Almost certainly, making coffee is not

the only task for which this form of assessment could have succeeded. Nonetheless,

it has two attributes that I believe helped to make it a successful choice: it is a good

fit for the sensing technology and a good fit for testing the hypothesis.

Making coffee is easy to observe using RFID sensors. This is not true of all tasks

because some types of objects are more difficult to observe than others: RFID tags on

metallic objects often cannot be detected due to interference and I had trouble with

tags on smaller objects like spoons because the tag needed to be bent more tightly

than the circuitry allowed. I also wanted to avoid putting RFID tags in the oven or
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microwave, or having them submerged in water in order to keep them functioning

properly. Tags can’t go directly onto all objects of interest—a piece of bread, for

example, can’t have a tag on it, though putting tags on the bag of bread may be

enough to allow reasoning about the bread.

The task is a good fit for testing the hypothesis as well. There are only a few

different ways to most directly complete the task and most individuals seem to try

to perform the task in a direct way (inefficiencies that I observed generally appeared

to have been mistakes). It is also a task for which it is fairly easy to make small

mistakes—the fact that unimpaired individuals often unintentionally performed it

inefficiently gave me hope that impaired individuals would also make small mis-

takes (and hopefully more of them!). A task that was simple enough that mistakes

were rarely made by unimpaired individuals might also rarely involve mistakes from

impaired individuals. Finally, these mistakes were typically related to object inter-

action: for example, two common mistakes are closing the lid too soon and starting

to get the ground coffee before putting the filter in, and both of those mistakes are

related to object usage that the sensors could pick up, and relatively simple logic

could determine from the sensor data if those mistakes had occurred.

Two tasks that were considered were making a sandwich and doing a load of

laundry; both were eventually discarded because they did not fit either criterion

well. They both included items that were hard to tag—bread and utensils for the

sandwich and clothing that will be going into water and a metallic washer for doing

laundry. I also envision that it would be harder to detect mistakes with both of those

tasks by observing object usage because I cannot easily write out a series of object

interactions that clearly involves a mistake or inefficiency and is also likely to occur

during the performance of one of those tasks.
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