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CHAPTER I

Introduction

Simply acknowledging that the U.S. labor market does not behave like a frictionless, spot market
introduces a number of complications into the analysis of labor demand. Economists’ understanding
of these questions is still growing. On the one hand, while there are undoubtedly frictions in
the hiring and firing process, it has often been hard to identify concrete examples that could be
rigorously evaluated. Recently, though, empirical work has identified clear, observable costs of
adjusting employment and estimated the quantitative effects of these costs on firms’ labor demand
decisions. On the other hand, an exhaustive theoretical analysis of these frictions has been somewhat
delayed because of the difficulty of the models, even if the intuition behind the models’ behavior
is sometimes apparent. Therefore, the development of robust theoretical results has also received
more attention recently.

This dissertation contributes to both of these avenues of research. The first chapter explores the
consequences of an employment adjustment cost that prevailed within the domestic motor vehicle
industry for much of the last 20 years. The cost takes the form of a provision within the union labor
agreement known as the JOBS Bank. This provision required domestic motor vehicle manufacturers
to pay full salary to a worker for each week spent on layoff beyond an allotment specified in the
contract. Because the JOBS Bank provision is literally written into the labor agreement, it is a
readily observable and measurable cost of adjustment. This is one reason it is unique within the
literature. In many cases, authors must specify stylized forms of adjustment costs — for instance,
the cost of hiring workers grows linearly in the number of new hires — and estimate these, since no
direct measures of the costs exist. Therefore, the concreteness and transparency of the JOBS Bank
make it valuable from the standpoint of research. This chapter is able to take the cost of adjustment
as given — the analysis does not rely on any assumptions about its form. It then estimates the effect
of the JOBS Bank on employment dynamics at vehicle assembly plants.

The second and third chapters provide a theoretical analysis of labor demand models with



frictions. In each chapter, the cost of adjustment is more stylized than the JOBS Bank. This
sacrifices an element of realism but it has two payoffs. First, the costs may be more broadly
applicable in that each of them likely summarizes, at least approximately, several frictions that
are present in many sectors. This differs from the JOBS Bank, which is precisely measurable but
specific to one industry. Second, the stylized costs of chapters two and three are relatively tractable,
enabling a more complete theoretical analysis of their implications. In contrast, much of the analysis
of the model of the JOBS Bank must be done by computational methods.

In the second chapter, firms post vacancies in order to match with unemployed workers. The
employment adjustment friction takes the form of a cost that firms must pay to advertise each of
their vacancies. The chapter also allows for a non-linear production technology and incorporates
both idiosyncratic and aggregate innovations to productivity. The result is a rich model of the
firm’s labor demand problem. One of the key contributions of the paper is to show that the model
is also, despite its many “moving parts,” quite tractable. It thus provides a framework in which to
consider the implications of employment frictions for the behavior of individual firms and for the
aggregate labor market. Specifically, the paper provides a new result on the determination of the
wage rate in environments with frictions; develops comparative statics for optimal dynamic labor
demand; and provides a way to analytically aggregate over the decisions of heterogeneous firms in
order to characterize the causes of aggregate unemployment fluctuations.

Reflecting the rich array of frictions that operate in the U.S. labor market, the third chapter
confronts the firm with yet another cost of adjustment. This friction is a seemingly simple fixed
cost of adjusting employment: it is paid whenever any (net) change is made to the stock of workers.
Despite its apparent simplicity, the difficulty in analyzing fixed costs is well known: the presence of a
discrete cost implies that employment changes discretely, meaning that it is necessary to determine
the conditions under which the firm optimally “does nothing”. The paper provides a new means by
which to solve the firm’s problem analytically, whereas the previous literature had generally resorted
to numerical methods. The optimal forward-looking policy rule of the model may be shown to nest
the solution of the corresponding static, or myopic, model. Moreover, for reasonable calibrations
of the model, the myopic policy rule actually approximates forward-looking labor demand quite
well. Since the myopic rule is readily understandable, this result provides a critical window onto

the mechanics of a problem that has been considered quite difficult in the literature.



CHAPTER II

Layoff Costs and Dynamic Labor Demand: Evidence from

the U.S. Auto Industry’s Job Security Agreement

2.1 Introduction

In the fall of 1990, America’s largest corporation, General Motors, accepted a new provision in
its contract with the United Automobile Workers (UAW) that represented a significant departure
from recent agreements. GM agreed to substantially restrict its ability to reduce its own workforce
and, as a result, would guarantee full pay to workers for whom there was, in fact, no work to do.
It was no coincidence that UAW members voted 80-20 to ratify the agreement; it was the most
lop-sided vote in generations. The other two major domestic automobile producers, Ford Motor
and Chrysler, agreed to the same provision one month later.

This paper studies some of the economic consequences of this provision, known as the Job Op-
portunity Bank Security, or JOBS Bank. Stated more precisely, the JOBS Bank required domestic
automotive manufacturers to pay full salary to a worker for each week that worker spends on layoff
beyond an allotment specified in the union agreement. This structure has an immediate implication
for the producer’s problem: if there is an allotment of weeks on layoff, a week “spent” now is one
that cannot be deployed in the future if automobile demand deteriorates further within the current
union contract. It is this trade-off between layoffs now or (potentially) later that forms one of the
key problems posed by JOBS, and it is the focus of this paper.

I first present a stylized model of the manufacturer’s problem that illustrates that JOBS gener-
ates an option value of production: a plant wants to produce, and safeguard its allotment of layoffs,
in the event that vehicle demand declines further over the life of the contract. Within the model,

this behavior is manifest in two ways. First, the plant does fewer layoffs, all else equal, as the



number of past layoffs approaches the contractual allotment. Second, it implements more layoffs as
uncertainty is resolved and the contract draws to a close.

I initially use the model to motivate a linear regression that relates weeks on layoff per month
to the two critical JOBS-related variables: number of past layoffs (as a share of the allotment) and
the fraction of the contract completed. For this, I draw on a comprehensive plant-level database
that links layoffs at each U.S. assembly plant to the sales and inventories of products made there.
I initially find evidence that is consistent with the key qualitative implications of the model.

However, further investigation casts doubt on a causal interpretation of the reduced form. When
I re-estimate the regression model on data prior to 1990 — a period in which the JOBS Bank effect
ought to be zero — I still find non-zero effects. The reduced form thus fails a key falsification test.
The paper identifies potential sources of specification error that appear to contribute to a spurious
JOBS Bank effect in both sample periods. The analysis of the reduced form concludes that the
JOBS effect may in fact be almost zero.

The paper attempts to understand this result in the context of the structural model. It first
applies a simulation-based estimator, indirect inference, to uncover the structural parameters and
finds that the results also imply virtually no JOBS Bank effect. With the parameters in hand, it is
possible to conduct a series of simulations that helps identify the mechanisms of the model behind
this result. The analysis highlights, among other results, that a robust effect of the JOBS Bank
requires counterfactually highly persistent innovations to product demand. To see why, consider
a plant that receives an adverse shock and expects that its product demand will still likely be
subdued in the future when another negative disturbance may arrive. This plant has an incentive
to defer layoffs after the first shock, and instead “wait and see” if it will need its allotment of layoff
weeks later in the contract when demand may be lower still. On the other hand, if shocks dissipate
quickly, the length of the labor contract and the size of the allotment are such that the threat of
JOBS binding is small.

The paper follows in a long line of work on employment frictions. For the purposes of research,
the JOBS program has a distinct advantage in that it is literally written down as part of the
UAW’s agreements with the Detroit Three, or the major domestic automobile producers: GM,
Ford Motor, and Chrysler. This allows me to de-couple the measurement of the cost from the
study of its employment effects. This approach differs from macroeconomic studies that rely on
a particular model to map from the data on employment outcomes into the size and shape of the

employment adjustment cost. Since I may take the latter as given, this paper’s analysis of its effects



is not sensitive to the choice of any one parametric model used to estimate the cost.

This study is particularly closely related to work that has analyzed the effects of employment
frictions introduced by state and federal laws. Research in this area identified observable frictions
and attempted to estimate their causal effects on labor demand. Examples of frictions include
the layoff taxes charged under states’ unemployment insurance systems and wrongful dismissal
statutesE Even in this context, though, the tractable structure of the JOBS program and the
availability of plant-level data make JOBS stand out. In other applications, the adjustment cost,
though real, is sometimes hard to incorporate into a formal modeﬂ or the data are not available at
the level of the decision—makerﬂ This paper benefits from a combination of a clear cost structure
as well as a rich plant-level dataset on layoffs, sales, and inventories. These features allow me to
relate outcomes more precisely to observable changes in incentives at the microeconomic level from
month to month.

This paper now proceeds in six parts. Section 2 summarizes the essential details of the JOBS
program. Section 3 begins with a simple example to illustrate the mechanism by which JOBS
affects plant’s labor demand decisions. It then presents a more complete model of the plant’s
problem and characterizes the optimal policy functions for layoffs, inventory, and sales. Section 4
uses the model to motivate a linear regression that relates weeks of layoff to accumulated layoffs and
the share of the contract completed, the two JOBS-related variables. It estimates the regression
equation on a rich, plant-level database that links layoffs at the plant level to sales and inventories
of vehicles produced there. Various robustness tests are also conducted in this section, such as
the use of the pre-treatment period as noted above. Section 5 estimates the structural parameters
of the model by indirect inference and uses the estimates to conduct counterfactual simulations
which shed light on the mechanisms of the model that induce the small JOBS Bank observed in the
reduced form. Section 7 concludes and speculates on how one might still resurrect an JOBS Bank
effect employment. Details regarding the data and proofs associated with the model are provided

in two appendices in Section 8.

1On wrongful discharge laws, see Autor (2003); Autor, Donohue, and Schwab (2004, 2006); and, for a rebuttal,
Bester, Conley, Hansen, and Vogelsang (2008). On unemployment insurance, see Anderson (1993) and Anderson and
Meyer (2000).

2For instance, the channel through which wrongful discharge laws affect the labor demand decision depends, in
part, on the likelihood of a employee-initiated lawsuit. This may be a difficult feature of the problem to formally
model.

3To take one example, the study of layoff taxes under states’ unemployment insurance systems generally requires
access to establishment-specific layoff histories and tax rates. But these data are often hard to obtain.



2.2 The Detroit Three’s Benefits for Laid-off Workers

Domestic motor vehicle manufacturers have offered some form of supplemental unemployment
income for the last 50 years. The automobile manufacturers and the UAW first agreed to sup-
plemental insurance in 1955, and it has been included in all contracts since. The Supplemental
Unemployment Benefit (SUB) pays approximately 40 percent of a worker’s weekly (pre-tax) salary
when that worker is laid off for a full Weekﬁ The firm also continues to provide non-cash benefits,
such as health care, to the laid-off Workerﬂ

In 1984, firms agreed to a more expansive benefit for displaced workers. The JOBS program at
General Motors paid full salary to any worker displaced for “structural” reasons, such as advances
in automation (i.e., the introduction of new robots into a plant) (see Block, 2006). Ford agreed to
adopt the virtually identical Protected Employee Program that year, and Chrysler followed suit in
the subsequent year. For simplicity, I will generally refer to the job security programs at all Detroit
Three firms as the “JOBS Bank”, or simply JOBS. Workers laid off for “volume-related” reasons,
i.e., a slump in sales that pushes down labor demand given the current level of automation, were
not able to eligible to receive full salary under JOBS at this time.

The subject of this paper is the expansion of the JOBS program in the fall of 1990 to cover
workers laid off due to a decline in automobile demand. This portion of the program remained in
place through 2008, although it was modified in an important way in the fall 2007 negotiations and
finally suspended in January 2009 in the midst of the financial crisisﬁ It did not entitle workers
to full pay immediately upon layoff, as did the program introduced in 1984. Instead, the firms
agreed to pay workers who were laid off due to “volume related declines attributable to market
related conditions” (UAW, 1990) full salary for every week spent on layoff beyond a contractually
set maximum. The upper bound was 36 weeks in the 1990 agreement, extended to 42 weeks in 1999

(when the UAW and the Detroit Three adopted a four-, rather than a three-, year contract), and

4The Detroit Three also pay a “short week” benefit to workers on layoff for less than a full week. For those days
on which a worker is on layoff, he receives slighty more than 80 percent of his straight-time pay. Since short weeks
are rare relative to full-week layoffs (Ford Motor, 2007), I abstract from short-week downtime in the subsequent
analysis.

5The UAW agreement stipulates that a laid-off worker receives 95 percent of his or her after-tax earnings. Ford
Motor (2007) estimates this to be about 72 percent of pre-tax earnings for the typical assembler. This is, in turn, split
between state-administered unemployment insurance and the SUB. The firm partially reimburses the state through
a tax paid to support the UI fund. Some authors treat this tax rate as a component of the marginal cost of a layoff.
I will argue otherwise (see Section 4), so here, I do not fold this tax burden in with the SUB.

6The modification to the program in 2007 relaxed the restrictions on inter-plant transfers of JOBS Bank workers.
Prior to that year, a JOBS Bank member was permitted to refuse any number of jobs outside of a 50 mile radius
of his home plant and retain full salary. Because of this restriction, and data limitations, I abstract from the issue
of inter-plant transfers in this paper. A list of the “placement zones” of the Ford Motor Corporation, which was
reported in Appendix N of its 1990 agreement with the UAW, is available upon request. In the 2007 agreement, this
restriction was relaxed. A worker was instead given three opportunities to accept a new position anywhere in the
United States before he was removed from the JOBS Bank.



extended once more to 48 weeks in the 2003 (four-year) agreement. For each week on layoff below
the maximum, the plant pays the SUB. Once that maximum was breached, the worker received full
(straight-time) salary (and non-cash benefits) for every subsequent week on layoff.

As a result, if the worker transitions from SUB to the JOBS program, labor costs jump up
sharply. Figure 1 illustrates this relation between SUB and JOBS program participation for a very
simple case where the worker is on indefinite, or long-term, layoff. The numbers are drawn from
the estimates discussed in Section 5. In short, even after the SUB is expanded to reflect non-cash
benefits, it remains roughly 50 percent below compensation under the JOBS program.

Contractually, workers who received full salary under JOBS were entitled to the benefit only
for the duration of the extant contract. But in practice, no workers who received full salary under
the JOBS program had their unemployment compensation reduced when a contract concluded.
Therefore, workers have in fact remained under JOBS until recalled to production work (or until
they received a buy-out offer from the firm).

It is quite a different matter for workers who accumulated many weeks on layoff over the life of an
agreement but who never reached the contractual maximum. For instance, if a worker accumulated
10 weeks of layoff between, say, the 1990 and the 1993 negotiations, those weeks would not count
toward his allotted 36 in the next contract. Rather, he would have to accumulate a full 36 weeks on
layoff over the 1993-1996 agreement in order to become JOBS eligible. This is why, among human
resources personnel, it is said that a worker on layoff who did not receive full salary under the JOBS
program had his “clock” reset when a new agreement is signed. This is illustrated in Figure 2. For
the purposes of the new contract, this worker’s accumulated weeks on layoff are re-set to zero.

This feature of the agreement suggests that a firm might have an incentive to defer layoffs so
as not to exhaust its allotment before the contract expires. Consider an assembly plant that is
subject to uncertainty about the future evolution of demand. It has a specified number of weeks on
layoff that it can “spend” over the life of any contract before the JOBS program becomes active.
Intuitively, if it knows that, in some (bad) states of the world, it will have to shut down in the
future, it does not want to have to pay full salary to laid off workers while it does so. Thus, it
may keep the factory going now (even at a loss) in order to preserve its option to shut down in the
future in a relatively more profitable way. This is the basic idea that will be investigated in the

remainder of the paper.



2.3 Model

This section first introduces a simple model that helps make precise how JOBS influences labor
demand. The main actor in the model is the individual automobile assembly plant. To communi-
cate the intuition as clearly as possible, I abstract from several features of the plant’s problem that

are taken up subsequently in Section 3.2.

2.3.1 A Simple Example
Analytics

The key assumptions of the model are as follows. The plant faces a iso-elastic demand curve
of the form = = 2P~ % , where z is sales, z is a demand shifter, and P is the product price For
simplicity, I assume z is i.i.d. with probability distribution function G. Next, output is a binary
variable: y = 0 or y = Y = AN, where N is the plant’s labor force and A is output per worker.
It follows that revenue is 0 if y = 0 and Y5 if y =Y. Let W be the wage. If this were
the only cost of production, no plant would actually breach the allotment since any layoff would
sacrifice revenue but not reduce the cost of operation. This is a counterfactual implication — there
were workers in the JOBS Bank. To remedy this, I introduce intermediate inputs. Specifically, I
maintain the assumption throughout the paper that the plant must also spend C' per worker to
equip its employees with the materials needed for production. In this case, even if JOBS nearly
binds, the plant may still shut down in order to avoid these other variable costs. The total cost of
operation per worker is then W = W + C. The profit in a period in which the plant does operate
is then given by

¥ (2) = Y WN,

where the superscript on 7 refers to the level of production.

If the plant does not produce, it pays a layoff benefit outlined in a labor agreement. Suppose
the agreement lasts for two periods, and the plant is allowed one period of layoff. The second layoff
within an agreement triggers the JOBS program, and workers are paid W for that second period,
whereas they are paid a benefit, B < W, for the first period on layoff. Let 7 = 1,2 denote the

period of the contract. To keep track of layoffs over the agreement, let L_; denote, as of the start

Tt is not necessary to assume that the plant is a price setter. Perhaps a simpler way to proceed is to assume that
the plant operates in a perfectly competitive market and faces shocks to the market price. Since I will retain this
monopolistic demand structure throughout, I introduce it here for contintuity.



of the current period, the number of periods of layoff since the beginning of the contract. If 7 =1,
then L_; = 0 by construction: the JOBS “clock” is re-set when a new contract is initiatedﬂ If
7 =2, then L_; = 0 if no layoff was conducted in period one and 1 otherwise. Profit in the event

the plant does not produce is then given by
7 (L_1)=0-WN1[L_, =1 - BN1[L_; = 0]

where 1[-] is an indicator function that equals one if the term inside the bracket is true.

The plant’s decision problem is to devise a layoff policy rule. The model is solved backward,
and the solution is depicted in Figure 3. Suppose a plant laid off its workers in period one, in which
case it pays the full wage, W, if it shuts down in the terminal period of the contract. The plant

compares ¥ and 7¥ in period two and produces if (and only if)

2> (W-W)NY?=Z(Ly,7)=2Z(1,2).

If L_; =0, on the other hand, the plant produces if

2> (W —B)NY?=2(0,2).

That Z (0,2) > Z(1,2) follows from W > B. This states that, if the JOBS Bank binds, a layoff
saves the plant relatively little in labor costs. Consequently, it continues to produce even as z falls
below Z (0,2).

What is of more interest is the first-period problem. The figure indicates that Z (0,1) < Z (0, 2),
which means the plant produces over a lower range of zs in period one than in period two, given

L_1 =0 in both periodsﬂ The gap between the two thresholds depends on the sum of two terms:

Z(1,2) Z(0,2)
(2.1) w-mN [ g+ [ Ly O o),

where g is the density function, g = G’ (2), and 2’ refers to the value of z next period. To understand

this, suppose a plant uses up its allotment in period one. If z falls below Z (1,2) in the next period,

8Consistent with the JOBS agreement, accumulated layoffs are reset to zero at the end of the contract if the plant
conducts only one period of layoff throughout the agreement. For simplicity, I also reset accumulated layoffs to zero
if the workers are in the JOBS Bank at the end of the contract. This is consistent with my treatment of the problem
in the next subsection. It does deviate from the literal text of the JOBS agreement, where workers remain in the
JOBS Bank across contracts. I discuss this further in section 3.2.3.

9Recall that, as of the first period, the number of layoffs since the beginning of the agreement is zero by construc-
tion, L_; = 0.
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it will be optimal to lay off despite the fact that JOBS will bind. But the plant will lose W — B
relative to what it would have lost if it had preserved its allotted layoff until period two. If instead
z' falls in the range [Z (1,2), Z(0,2)], the plant, which has exhausted its supply of layoffs, will
produce and earn  (2’). But if it had preserved the option to shut down in the final period and
pay only B, it would earn 7° (0) — 7Y (2’) more. These two considerations generate an option value
of production in period one. In this example, this option value represents the contract time effect,
as it drives a wedge between the optimal policies across two different periods of the contract that
share the same L_;.

Equation also provides the simplest context in which to explore the effect of uncertainty
on the option value. Uncertainty enters only through the density function, g, since the triggers,
Z(0,2) and Z (1,2) are pinned down by the terminal period problem. An increase in uncertainty
works through g to potentially raise the option value. Figure 4 illustrates the case where a mean-
preserving spread raises the amount of mass above each point to the left of the trigger, Z (0, 2), and
so increases the value of each term in the expression in . In this case, an increase in uncertainty
raises the expected future cost of exhausting the allotment in period one by raising the likelihood
of conducting a layoff in period ton The two-period model is obviously a special case, but the
essential point will survive in the generalizations of this model presented below.

One drawback of the two-period model is that, if the plant implements a layoff in period one,
the JOBS program binds in a “hard” fashion in period two: the plant will pay W if it does another
round of layoffs. But the JOBS program can influence the plant’s labor demand decision even if it
does not bind now or next period; as long as it binds in expectation in the future, it can affect the
contemporaneous choice. To illustrate this point, it is necessary to extend the model.

Consider now a three-period problem where the plant is allowed two layoffs instead of one. Figure
5 illustrates the solution to the problem. There are three observations to make. First, as long as
the plant arrives in period two with zero accumulated layoffs (i.e., L_; = 0), the JOBS program
is guaranteed mot to bind within this particular agreement. This is why the layoff decision rule is
identical across the three scenarios, (L_1,7) = (0,2), (L_1,7) = (0,3), and (L_1,7) = (1,3). In

each case, the plant is not threatened by the prospect of JOBS, and so the thresholds for production

10S¢trictly speaking, the effect of a mean-preserving spread depends on the location of the trigger Z (0,2) along
the support of the z. Figure 4 actually illustrates this: a “fanning out” of the distribution must reduce mass within
a certain range, so the trigger has to lie away from this subset. To be more precise, it is helpful to specialize g to
be the lognormal probability density function. Then it is straightforward to show that a mean-preserving spread —
raising the variance of z from, say, O'l2 to Jﬁ — will increase the option value if

log (o /a1)

Z(0,2) < p— =5 —
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are the same, i.e., Z(0,2) = Z(0,3) = Z(1,3). In contrast, Z (2,3) lies below these thresholds
because, if L_; = 2, another layoff will trigger the JOBS Bank.

Second, if the plant implements a layoff in period one, then it is more cautious about how it uses
its last allotted layoff in period two. This caution is represented by the fact that Z (0,2) > Z (1,2),
which says that the plant will operate over a lower range of zs if it has one accumulated layoff

rather than zero. The gap between these thresholds depends on

Z(2,3) Z(1,3)
— Z/ Z/ 7TO 77TY Z, Z/ Zl
woBlN [ g +/Z(2’3) [ (1) — =¥ ()] () d

which resembles expression . The term is always positive since the plant prefers to shut down in
the final period if it has one accumulated layoff and z falls below the threshold, Z (1, 3). Intuitively,
this is the added expected profit the plant will earn in the final period if it preserves its layoff
and is able to shut down relatively more profitably in the future. This option value represents the
effect of accumulated layoffs on the layoff decision, as it drives a wedge between the optimal policies
associated with two different values of L_; (within the same contract period).

Third, there is a contract time effect that operates in the first period of the agreement. Note
that, irrespective of the plant’s action, JOBS will not bind in period one or two. Yet the impact
of the JOBS agreement on the first-period decision can be seen in the gap between the thresholds,
Z(0,1) and Z (0,2). That Z (0,1) < Z (0, 2) indicates the plant will produce over a lower range of
zs in period one than in period two.

The wedge between these two thresholds depends on the sum of two components that make up

the option value of production in period one. The first is given by

2(0,2)
[ o= @],

Z(1,2)

To see the intuition behind this, suppose the plant foregoes a layoff in the initial period. It is able to
deploy that layoff in the second period when z is moderately low, i.e., in the range [Z (1,2), Z (0, 2)].
If the plant, on the other hand, uses a layoff in period one, it is constrained to operate in the next
period if z falls in this range because it does not want to exhaust its allotment before the final
period. Since 7°(0) > 7Y (2/) for z € [Z (1,2), Z(0,2)], this gives the plant a motive to conserve
a layoff in period one.

To motivate the second component, suppose z falls below Z (1,2) in period two, in which case

the plant will have to execute another layoff. This is the source of two additional concerns to the
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plant. First, if z also falls below the threshold, Z (2,3), in the third period, the JOBS Bank will
bind, and the plant will pay W rather than B. This concern is represented in the top line of the
expression given below. Second, if z does not fall that far in the final period but instead lies in
the range [Z(2,3), Z(1,3)], the plant that has used up its allotment has to operate. But if it had
conserved a layoff, it would be able to shut down relatively more profitably and pay just B. This
concern is captured in the bottom line of the expression. Together, these two represent the second

component of the option value,

Z(1,2) Z(2,3)
(W — B) N/ / g(z")dz"g (") d

Z(1,2) Z(1,3)
+/ / [0 (1) =7 ()] g (z") d2"g (') d'.

Z(2,3)
Quantitative Application

While this model is very simple, it still may be instructive to get a first look at the quantitative
effect of the JOBS program. Even such a simple model helps reveal some of the mechanisms that
contribute to a robust JOBS Bank effect. Many of the insights obtained from this analysis will
carry over to the more realistic model presented in the next section.

The model is set at a weekly frequency since plants generally decide schedules on a weekly
basis. The calibration largely relies on the estimates to be presented in Section 5. In particular,
the allotment of layoffs and the length of the contract are now parameterized to be consistent with
the agreements signed by the UAW and Detroit Three in the 1990s. I set the allotment, denoted by
L, to 36 weeks and the contract duration, denoted by 7', to 156 weeks, or three yearsE It would
be tedious to derive the analytical solution here, so the model is solved numerically by backward
induction. To obtain the numerical solution, however, we do have to specify the stochastic process
for z. Above, z was assumed to be i.i.d. to ease the algebra. Here, I assume it follows a Gaussian

geometric autoregressive process,
(2.2) logz =+ plogz_y+¢e, e~ N(0,0%).

This law of motion will be used throughout this paper. I set the persistence parameter, p, to be 0.6

on a monthly basis The standard deviation of log z is defined as s = o/4/1 — p? and set equal to

1 The labor contracts signed in the 1990s were three-year agreements. Beginning in 1999, though, the contract
lengthened to four years, and the allotment, L, rose proportionally (to 48 weeks per agreement). Thus, the number
of weeks allotted per month of the contract remained at one.

12 Although a weekly model is preferable (see Ramey and Vine (2004) and Copeland and Hall (2009)), data
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0.268. (One might just as well work with o directly; I work with s since this is the parameter that
is estimated in Section 5.) This calibration is consistent with that presented later in the paper and
so a full discussion is deferredﬁ Given this, this section concentrates on the comparative statics
of the model with regard to p and s.

The effect of L_; on the (unconditional) weekly probability of a layoff is shown in Figure 6,

given alternative values of 7. The probability of a layoff is calculated as

(2.3) -

o <10gZ (L1, 7) = (n/ (1= p))>

where p/ (1 — p) = E[log 2] is the mean of log z. The figure illustrates that the probability of layoff
this period declines as past weeks of layoff, L_;, accumulate. This is consistent with the policy
function derived in the context of the three-period model. The numerical analysis goes one step
further and suggests that the rate of decline in the layoff probability increases in L_;. While we did
not predict any nonlinearity in our analysis above, it does appear sensible: as the limit is neared,
the plant exercises greater restraint in its use of layoffs in order to safeguard the few weeks that
remain in its allotment.

Under this calibration, the quantitative effect of L_; is unnoticeable until the plant reaches
roughly half of its allotment. At that point, the probability of layoff begins to fall as L_; rises
further. For a plant midway through the agreement, the probability declines from approximately 4
percent to 3.75 and then 3.1 percent as L_; reaches 25 and 30 weeks. The implication of this is that
the identification in the data of a strong JOBS Bank effect likely requires that a sufficient number
of plants exhaust nearly 3/4 or so of their allotment. This point will re-emerge in the analysis of
Section 5.

The effect of 7 on the weekly probability of layoff is shown in the top panel of Figure 7. It confirms
that the passage of time within the contract relieves downward pressure on layoffs. In addition,
it indicates that the rate of increase declines as the agreement comes to a close. Intuitively, the
marginal effect of the passage of time diminishes as it becomes clear that the plant will not breach
the JOBS-imposed allotment. Another qualitative feature of the optimal policy that emerges from

the figure is the interaction between 7 and L_;. The increase in the probability of layoff over the

limitations mean that the model introduced in the next section must be set at a monthly frequency. For the sake of
consistency, though, I will report parameter values throughout on a monthly basis wherever possible. For instance,
in the model of this section, I use p = 0.88. At a monthly frequency, this translates to 0.881/4 = 0.6.

13The calibration borrows from the discussion of Section 5. The values of the other parameters are set as follows:
A =1.545; N = 2540; W = 1 (normalization); C' = 0.62; W = 0.38; B = 0.152; and ¢ = 3.5.
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contract is greater for a plant whose L_; is initially relatively high. This reflects the fact that a
high L_; suppresses the probability of layoff, and so the passage of time relieves pressure on this
plant to a greater degree than at facilities where L_ is low.

Figure 7 demonstrates, however, that the quantitative effect of contract time is quite small
relative to that exerted by L_;. Indeed, the increase in the probability of layoff over the course
of the entire agreement is less than one-tenth of one percentage point. In the discussion of the
two-period model, I argued that the strength of the contract time effect is likely tied to the degree
of uncertainty around the evolution of future vehicle demand. It is straightforward to illustrate this
here. The bottom panel of Figure 7 shows how the probability of layoff varies over the contract
when s is increased by roughly one fifth, to 0.326. This raises the probability of layoff for any 7, of
course, which is why the scale of vertical axis differs from that in the top panel. But it also raises
the importance of contract time: the weekly probability of layoff increases between 2.4 and 6.4
percent over the course of the first half of the agreement (from a level of 0.083 to 0.085 if L_; =4
and from 0.078 to 0.083 if L_; = 14). This impact still appears modest, but represents literally an
order of magnitude increase over the effect illustrated in the top panel, where s was smaller.

The quantitative model also allows one to investigate the impact of variations in p. The two-
period model did not speak to this, but in the presence of the JOBS Bank, persistence is likely to
matter because it determines the likelihood that a plant, which receives an adverse shock today,
will face subdued household demand for the remainder of the contract. If so, the plant recognizes
that any future negative shocks will occur when demand for its product is likely to still be relatively
depressed. As a result, the plant defers layoffs now until it recovers, lest it exhaust its allotment
and have to face future deteriorations in demand without any “cushion” in terms of allotted layoffs.

To summarize the effects of both s and p, I simulate the model and calculate the JOBS Bank
effect for different choices of these parametersE The results are given in Table 1. The first two
columns report the probability of layoff with and without JOBS. These columns summarize the
impact of the JOBS Bank on the layoff decision, aggregating across the effects of L_1 and 7. The
results indicate that, unless p is sufficiently near one, JOBS may induce very little difference in the
aggregate layoff rate. Given p = 0.6, for instance, even the 20 percent increase in s mentioned above
does not, despite its strengthening of the contract time effect, generate a statistically significant
reduction in the relative layoff rate under JOBS. As p rises, however, the relative probability of

layoff declines appreciably. For p = 0.9, the weekly layoff probability under JOBS is almost 18

M Specifically, I run 100 simulations, each of which calculates the paths of layoffs for 50 plants over five 36-month
contracts. The size of the panel and the structure of the contract mirrors the calibration used in the simulation
experiments conducted later.
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percent smaller (0.0334 versus 0.0406), given s = 0.268. If the variance of the innovation also rises,
the gap between the layoff probabilities widens to 26 percent. This suggests that the interaction
between s and p is powerful, at sufficiently high levels of p.

The next two columns provide a measure of the individual contributions of L_; and 7. The
first column reports the effect on the probability of layoff of an increasing L_; in increments of
one-standard deviation. (These calculations use equation ) The nonlinearity of the thresholds
comes through starkly. For instance, given p = 0.8 and s = 0.326, the effect of raising L_; from
its mean by one-standard deviation is to reduce the probability of layoff by 1.1 percentage points.
But raising it by another standard deviation generates a 3.1 percentage point reduction.

The second column reports the effect of raising 7 in increments of 9 months, which represents
the passage of one quarter of the contract. Again, the nonlinearity of the response is striking. In
particular, the table indicates that, for p sufficiently high, the threshold function is convex, rather
than concave, in 7. What is behind this? Earlier, it seemed as if the marginal importance of one
month declined in contract time. The intuition was that, if the uncertainty regarding whether
JOBS will bind is nearly resolved midway through the agreement, then the passage of one more
month beyond that point does not affect plant behavior greatly. That conclusion is overturned
when p is high because the uncertainty persists for much longer into the contract. The reason is
that, if an adverse shock dissipates very slowly, the plant remains vulnerable, even halfway into the
agreement, to a sustained period of slow sales that might exhaust the allotment. Consequently, the
probability of layoff remains suppressed well into the second half of the agreement, and then rises

rapidly as uncertainty is resolved.

2.3.2 A More General Model

I now describe a more general problem for the individual assembly plant. Unlike the model
studied above, the model of this section is set at a monthly frequency, and the plant selects the
number of weeks per month to operate. This decision was made because data on which estimation
of the model relies is not available at a higher frequency. Also, unlike in Section 3.1, the model here
allows the plant to store unsold units of the good it produces, i.e., the plant holds inventory. This is
a necessary feature to add in any model of the motor vehicle industry since inventory fluctuations
contribute to movements in layoffs. I first state the plant’s problem and then describe the optimal
policy. This analysis guides the development of the regression model in Section 4. A fuller discussion

of the rationale behind some of the simplifying assumptions of the model is deferred until the final



16
subsection.

The plant’s problem

The plant seeks to maximize the expected present discounted value of profits, which is given by

> A

2
ZBS |:pt+sxt+s - 5 (It+571 - a$t+s) — Wits|
s=0

where p; is the price of a vehicle; x; is sales; I;_; is inventory brought into period ¢; and w; is
the cost of production. The maximization is carried out subject to, among other constraints to be

introduced, the law of motion for inventory,

(2.4) I=11+y()—=z

where £ is the number of weeks of layoff per month and production, y (£), takes a very simple form,

(2.5) y(6) = AN (4 0)

with N the number of workers available to the plant and A output per worker per week. The
production function indicates that a layoff involves all workers at the plant: either all work or none
at all. For vehicle assembly plants, this is a reasonable, though, stylized treatment of weekly layoffs.
I do abstract, however, from other margins of output adjustment.

The three components of the objective function merit discussion. I handle each of these in turn.

Vehicle demand. A large literature studies the household’s discrete choice problem over many
differentiated vehicle products (or models) (see, among others, Berry, Levinsohn, and Pakes (1995)
and Esteban and Shum (2007)). This literature often, however, must abstract from many of the
details of the labor demand problem. In contrast, other research focuses solely on the factor demand
problem, abstract from the product market, and treat sales as given (see Ramey and Vine, 2006).
This paper attempts to take a middle ground. My focus here is labor demand, so the product
market is kept intentionally simple. On the other hand, I find that a model in which sales are
explicitly determined has important implications for the econometric analysis, even if that model
must omit a number of features of the plant’s actual decision problem. This is a point to which I

return below.
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I assume a representative household that seeks to maximize,

Zﬁs [u(Crys) + 0 (Xiys)]
s=0

where C' is a nondurable (non-vehicle) aggregate and X is an aggregator of vehicle sales. I assume

X is given by a constant elasticity of substitution aggregate,

P
p—1

p—1
— ) »
X = E 25T ; ,
J

where z; represents a preference for product j and z; is the quantity purchased of product j.

Household optimization implies a demand curve that faces each plant of the form,

1
4 (%)
where P is the Dixit-Stiglitz aggregate price index. If 8 (X) = log X, it is straightforward to show

that P = where A is the marginal utility of wealth. One may now write the assembly plant’s

el
revenue as p;; = A\~ 'z; (%) = Importantly, if the model is set in steady state, aggregate objects,
such as A and X, are fixed. In that case, it makes sense to collect these terms as 2 = [/\X %1] o
Any © # 1 can be captured by the choice of the mean of z. Thus, it is possible to normalize Q = 1

and write revenue as

(2.6) pT = 2T *°

where I have now dropped the subscript since each plant’s problem, by symmetry, is identical.
Inventory. The penalty function associated with inventory imparts to the plant an incentive hold
a sufficient number of units at the start of the period in order to satisfy a measure of sales. The form
of the function dates back at least to Holt, Modigliani, and Simon (1955) and has often been used
to study inventory behavior in produce-to-stock industries (see the discussion in Ramey and West,
1999). The penalty function was inspired by the initial, seminal work on inventory management
in the presence of a fixed cost-to-order and stock-out penalty (see, for instance, Arrow, Harris,
and Marschak (1951)). That work demonstrated that producers should build up “safety stocks” as
orders, or sales, increase, which is captured by the presence of the target, az. If & > 1, in particular,

the producer has an incentive to generally carry an excess of inventory over sales. (In the context
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of original §,s literature on inventory management, an o > 1 would reflect a combination of large
costs to order and stock-out penalties.) In this paper, it will be particularly important that «
may exceed one, as the size of inventory stocks in the automotive industry generally equals two to
three months of vehicle SalesE The incentive to hold inventory does have its limits, however. The
penalty function here also exacts a price on producers that carry over a level of inventory far in
excess of sales, as judged by the distance between I_; and ax.

Cost of production. First, I outline the cost of production at an active plant; then the cost to the
employer of a week of layoff without JOBS; and, finally, the cost of a week of layoff under JOBS.

The total cost of production at an active plant involves labor- and non-labor costs. Let w denote
weekly straight-time pay (per worker) and let h represent non-pecuniary compensation accrued over
a week (i.e., health care benefits). Then define W = w + h as the wage bill of a single worker and
WN as the wage bill of the plant as a whole. I assume non-labor costs are also proportional to the
size of the workforce, as noted above. The idea here is the plant spend must spend C dollars per
worker to supply that worker with the materials needed to produce a vehicle. It follows that the
weekly production cost of an active plant is (W + C) N = WN.

The cost of a week of layoff to the producer is relatively straightforward in the absence of
JOBS. Under the UAW agreement, each plant is still responsible for the non-wage component of
compensation, h. In addition, the plant pays approximately a share, b, of the weekly salary under
the SUB provision. (This share is roughly 40 percent, as noted above.) The total cost to the
employer of a single worker’s week of layoff is therefore B = bw + h. It follows that the cost of

operation over a month, in the absence of JOBS, is given by

O (0)=BN{+WN (4—10)

This states that if the plant implements ¢ weeks of layoff, it pays its workforce BN for those weeks
and W N for the 4 — ¢ that it is active.

Under JOBS, the current cost of a week of layoff depends on cumulated layoffs. For each week
on layoff in excess of the allotment, L, the plant pays W to its laid-off workers. Denote the total

weeks accumulated as of the start of the current period by L_; € {0,1,...,L}. Then the cost of

15This is not the only way to generate realistic inventory behavior. First, some authors have argued that inventories
of finished goods facilitate sales because they provide consumers the opportunity to browse a variety of products.
This idea has led these authors to enter inventory directly into the demand function, which in turn generates a
strong incentive to hold inventory. See Bils and Kahn (2002) and Copeland and Hall (2009) for applications. Second,
Kahn (1987) builds on Carr and Karlin (1962) to provide a model where the firm is allowed only limited backlogging
of unfilled orders and must select price and quantity before a demand shock is realized. In this case, inventory
accumulation allows the firm to build up a buffer stock in order to meet demand in the event of a large positive
shock.
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operation is formally given by

BN1(L_y+1<1L) _

(2.7) wl,Ly) =) +WN (4—-1),

=1 | +WN1(L_1+1> L)

where 210:1 [] = 0. This departs from @ (¢) in that, under JOBS, the current cost of operation
depends on the total number of weeks of layoff accumulated since the start of the contract.

The effect of contract time, denoted by 7 € {1,2,...,T}, is not evident in , but it is there
implicitly. The reason, as discussed further in the next section, is that the conclusion of one contract
and beginning of the next implies that L_; is reset to zero. In other words, L_; implicitly depends
on contract time, 7. In fact, the level of L_; at the beginning of a contract is uniquely, though

somewhat trivially, pinned down by 7 = 1, namely, L_; = 0.

The optimal policy

The variables, L_jand 7, which are introduced into the plant’s problem by the JOBS Bank,
affect only the current, and future expected, wage bills of the plant. The core of the problem is the
optimal selection of weeks worked and inventory. Key features of this problem may be delineated

in a simpler version of the model that omits JOBS. This section begins here and then incorporates

the JOBS Bank.

The model without JOBS If the wage bill of the plant is given by @ (¢), then its problem is

fully characterized by the Bellman equation,

V(I1,2) = ma {z;p - % (11— az)® — 6 (0) +B/V(I, ) dG (z'|z)}.

)

Since £ is discrete, we may rewrite this in two steps. First, for given ¢, the value of the plant is

given by
(2.8)
Vi 1, 2) = mIaLX{z(I_l +y(0) — I)WTjl — % oy —a(l_i+y)—-D) +B/V(I, 2')dG (z’|z)} :

Once I has been determined, the optimal number of weeks of layoff is selected:

V(I_,2)= m?X{VE (I_1,2) =& (0)}.
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The optimal policy is thus composed of two decision rules: one regulates the choice of inventory
given £, and the second determines when one value of ¢ is selected over the others. The choice of

inventory satifies the first order condition, taken for a given £:

p—1

(2.9) 2% Al — ax] = ﬂ/VI (I,2')dG (2']z), forall£=0,1,...,4,

where © = I_; + y (¢) — I. This states that the plant adjusts inventory until the marginal value of
sales this period is just offset by the expected future marginal value of foregone sales, i.e., inventory.
The first order condition yields a sales policy rule, x (I_1, z; £), that is conditioned on ¢ and varies
smoothly as a function of the state, (I_1, 2).

The choice of weeks of layoff is determined by comparing adjacent ¢-specific value functions.
For instance, the plant sets ¢ =/ rather than ¢ = /, where £ ¢, only if V£(I_1,2) — & ({) >

I’ (I-1,z) — & (f) . Rearranging, this becomes
VE(I1,2) = VI ,2) >0 -& ().

The left-hand side is the value of an increment of output to the plant. In the numerical solution of
the model, this is found to be increasing in z: the value of additional output is, expectedly, higher
when demand, z, is higher. It follows that, for any given pair (ﬁ, ?), with £< 7, there exists a unique

threshold, denoted by Z 1L such that the plant is indifferent between £ and ¢ at Z 0
(2.10) vt (1_1, Zﬂ) vt (1_1, Zﬂ) —o) - (),

and prefers £ for all z > Z,; and ¢ for all z to the left of Z . Moreover, by the implicit function
theorem, the “value matching relation” 1) defines a continuous function Z; (I ,QE Generaliz-

ing this to any adjacent pair (ﬁ, Z), where £ < ¢ and £,¢ € {0,1,2,3,4} suggests the following form

161f the ¢-specific value functions are each concave, then the implicit function theorem also gives that the threshold,
Zs5 (I-1), increases in I_1. The concavity of each within-£ value function would appear to, in turn, follow directly

from the concavity of the expected value function, v (I, z) = [V (I,2') dG (2’|z). One difficulty posed by the plant’s
problem, though, is that v is not necessarily concave. To see this, note that there are two effects of an increase in 1
on the marginal value of inventory. The first is that the value of an additional unit of inventory, for a given ¢, declines
in I. This result follows essentially from the concavity of current profit. The second effect is somewhat more subtle.
If the “trigger”, Z,, does in fact increase in I, this implies that an increment to inventory this period raises the
probability that the plant will produce discretely less next period. All else equal, this reduces the expected supply
of goods for sale, I + v/, in the future and raises the expected marginal value of beginning-of-period inventory. This
effect potentially counteracts the first.

Numerically, it is not hard to check which effect dominates: just plot the function to be maximized for a given
¢, namely, the expression in brackets in (2.8). If v (I, 2) is not concave, this will contort this function and generate
multiple local maxima. The policy functions induced by the parameterizations considered in this paper were “well
behaved”.
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for the optimal layoff policy, which is confirmed in the numerical solution of the model:

0 if 2> Zo1 (I-1)

(2.11) /= 1 Zf Zhz (I-1) < Z < Zo1 (1-1) ’

4 if 2 < Z3y (I-1)

with Zo1 (I-1) > Z1o(I_1) > -+ Z3y (I,l)m Each Z is indexed by the pair of layoff weeks to which
it applies, i.e., Z34 (I_1) is the threshold such that the plant implements four weeks of layoff rather

than three if and only if z < Z34 (I_1).

The model with the JOBS Bank The introduction of the JOBS Bank amends the wage
bill, as in ([2.7)), and introduces two new state variables, namely, total weeks of layoff since the start
of the contract, L_1, and the month of the agreement, 7. It is helpful to begin with the laws of

motion governing the evolution of L_; and 7. Contract time evolves as
(2.12) T=1[r_1=T]+ (-1 +1) x1[r_1 < T].

This states that if the last period was the terminal month of the contract, then 7 is reset to one

and otherwise accumulates as 71 + 1. The accumulation equation for L_; is given by
(2.13) L=0x1[r1 =T+ (L1 +€) x1[r_1 <T].

This states that, if last period was the terminal month of the contract, then L is reset to zero this
period and the accumulation of layoffs begins anew. Otherwise, L is given by the sum of L_; and
the number of weeks of layoff implemented this period, /.

The key observation is that, when L_; and 7 are reset, the plant faces fundamentally the same
problem as it did at the beginning of the last agreement. Put another way, the state of the world
is fully summarized by the quadruple, (I_q, 2, L_1,7); calendar time per se is irrelevant. It follows
that the optimal policy is stationary, controlling for contract time.

An important implication of this is that beginning-of-contract value function uniquely charac-

terizes the plant’s problem. To see this, define the value of the plant in the first period of a contract

17This rank condition on the thresholds follows directly if the expected value function is concave. The preceding
footnote, however, discusses why, in principle, the concavity of the expected value function cannot be taken for
granted, though it holds for all parameterizations considered in this paper.
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by Vi (1,2, L) =V1 (I,2',0) = v (I,2) for a pair (I,z’). The value of the plant in the prior period

is then given recursively by the Bellman equation,

Vr(I-1,2,L.1) = (Mv)(I-1,2,L_1)
77(176; I_l,Z)

= max { max ,

Tl —w(0)+ 8 [v(l,2)dG (']2)
where within-period profit is given by

m(I, 0 I-1,2) =2 (14 —i—y(ﬁ)—[)%l —%[I,l —a(l, +y(£)—[)]2.

Here, T have introduced the operator, M, to make explicit the notion that the period T value
function is obtained by application of the operator associated with right side of this equation to the
function, v. The formulation of the period T"— 1 value function is analogous. In the penultimate

period of the agreement, the value of the plant is given by
Vro1(I—2,2-1,L_2) = (MVy) (I_2,2-1,L_3) = (M*v) (I_2,2-1,L_5),

where the term on the right-hand side is given by

m (1_1,4_1; 1_2, 2_1) — W (f_l, L_g)
max { max 7 (1,0 I_1,2) —w(£,0)
f-r | =1 | 48 [maxy { max; dG (z]z-1)
+B [v(I,2")dG (#|2)
Inductively, it follows that the value function associated with each period of the contract is de-
termined by v. Since the optimal policy for a given (I_1,z,L_1,7) is invariant with respect to
calendar time, this means that the determination of v uniquely characterizes the plant’s problem.

To uncover v, note that, after repeated substitution, one finds
v=M"v.

This states that the beginning-of-contract value function, v, is the maximal fixed point of the
mapping, MT. The following proposition confirms that there is in fact just one fixed point of the

map, thus giving the existence and uniqueness of v.
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Proposition The operator, MT, has a unique fized point in the space of bounded and

continuous functions.

The proposition serves two purposes. First, it reveals that the solution of a relatively novel
dynamic program actually boils down to the solution of a straightforward fixed-point problem.
Second, the proposition provides guidance on the numerical solution for the policy rules. The proof
indicates that, since the contraction is performed on v, a natural way to proceed is to solve back
through the labor agreement, given an initial guess for v. That is, I first conjecture the value of
the plant in the initial period of a contract, when L_; = 0 and 7 = 1. Then I solve backward
through the prior contract until one arrives at the implied value of the plant in the first period of
that contract, 0. If v and © are within a specified tolerance, then I stop. Otherwise, I iterate until
I locate the fixed point@

Numerical solution of the model indicates that the form of the optimal sales and layoff policies
identified above generalize to the model with JOBS. Each variable is now a function of the JOBS-
related state variables, (L_1,7), in addition to I_; and z. In regards to the thresholds in particular,
recall that in the simple model of Section 3.1 found that each trigger function was decreasing in
L_; and increasing in 7. These predictions will apply with full force to the model augmented with
inventory, as will become clear in the course of the simulation analysis below.

This completes the description of the model, which will serve as the framework for the quanti-

tative work to follow.

Discussion of the model’s assumptions

To keep the model tractable and focused, the prior section made a number of assumptions
regarding market structure, the production function, and the demand curve, among others. This
section attempts to briefly discuss the rationale for those assumptions.

Competitive structure. Each plant makes a single, differentiated product. The model imagines,
in other words, a universe of monopolistically competitive assembly plants. Therefore, I abstract
from strategic interaction among producers. Given the presence of just a few major automotive
firms, this is not the most natural assumption. I make it principally for tractability. In this,
the paper follows several others which focused on factor demand and/or inventory dynamics and

sought to simplify along other dimensionsE Whether market structure is critical to the response

18] am grateful to Rudi Bachmann for a discussion that helped clarify the mechanics of this algorithm.
19See Ramey and Vine (2006) and Copeland and Hall (2009). In Blanchard’s widely cited 1983 paper, he assumed
perfectly competitive manufacturers.
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of optimal labor demand to the JOBS program or other frictions is a topic that must be left for
future work.

Aggregate steady state. The model unfolds within an aggregate steady state. This is an appar-
ently strong restriction. However, there are two points to bear in mind. First, this does not in
any way restrict the data analysis in section 4, which controls for aggregate variation. Second, it is
important to stress that the necessary ingredient in the model is idiosyncratic risk in the sense that
it is this variation that “spreads” plants over different pairs of (L_1,7) and ultimately provides
identification of the contract effects. While this does not imply idiosyncratic risk is sufficient (i.e.,
the dynamics of the model are not literally invariant to the steady state assumption), it does help
justify why the baseline investigation focuses only on idiosyncratic variation@

Retail-manufacturer relationship. 1 assume the manufacturer stores unsold output for future
sale, i.e., the producer manages an inventory stock. In this, I follow a long literature that abstracts
from the relationship between manufacturers and automobile dealer and instead assumes that the
producer manages its own inventory stockE This assumes that the identity of the firm that manages
the inventory is not critical to the relation between inventory and production. The intuition for
this is as follows. Because inventory-related costs are quadratic in inventory, the build-up of unsold
units raises the marginal cost of inventory accumulation and motivates the producer to reduce
production and price in order to clear out the backlog of unsold vehicles. In a model with a retailer
and the manufacturer, the build-up of inventory at the former would lead to fewer orders and
place pressure on the manufacturer to reduce output and price. That is, the relationship between
inventory accumulation and vehicle prices and production would be qualitatively similar in these
two models [

Production technology. 1 concentrate on the decision regarding the number of weeks of layoff
per month: this is the sole margin of output adjustment in the model. In reality, of course, a plant
has a number of other margins along which it may adjust (see Bresnahan and Ramey, 1994). Here,
I argue why I keep the model focused solely on weekly layoffs.

A typical plant operates for five days per week and produces vehicles in two shifts, each of

20Cooper, Haltiwanger, and Willis (2005) make a similar argument in their analysis of plant-level employment and
hours data. They remove aggregate time effects from the panel. Accordingly, they argue, the model that is estimated
on the regression-adjusted data does not include aggregate risk; identification is achieved from idiosyncratic variation.

21See Blanchard (1983), Blanchard and Melino (1986), Ramey and Vine (2006), and Copeland and Hall (2008).

22This does assume that the retailer faces an upward-sloped marginal cost schedule for inventory. How might one
motivate a quadratic storage penalty at the retail level? One clear source of storage costs is floorplan interest, or
the gross carrying cost of a new vehicle. In the absence of a binding capacity constraint on storage, however, this
appears to be essentially linear in inventory. On the other hand, if the size of the retail lot is fixed in the short run,
the storage cost would be linear only up to the lot size and vertical thereafter. This correspondence is convex but
not particularly convenient. A quadratic cost of holding inventory can be thought of as a means of “smoothing out”
this kink.
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which work eight hours per day and make s vehicles per hour. To adjust production, a plant may
in principle work along any one of these margins. For instance, to reduce monthly production, it
may choose not to operate for a certain number of weeks per month, in which case it lays off all of
its workers for that time. To raise output, it can operate overtime, which may involve up to two
extra hours per weekday and an eight-hour workday on Saturday. In addition, it may adjust the
number of shifts and/or the hourly speed of assembly, s. If it reduces the number of shifts from
two to one, for instance, half of the assembly plant workers go on indefinite layoff and production
will be cut roughly in half. If the hourly line speed is reduced, that generally involves reductions in
the size of each shift’s workforce, as fewer workers are needed to produced fewer vehicles per hour.

I abstract from line speed and shift adjustments, which implies that the plant has a fixed pool
of N potential workers. Ramey and Vine (2004) note that line speed adjustments are rare, which
suggests that their omission is not too consequential. In addition, over my sample, shift adjustments
are also relatively rare. I calculate that there is a 4.67 percent chance that a plant reduces a shift
within a given year, and 2.75 percent chance that it adds a shift. While it is true that many
entrants into the JOBS program were workers whose shifts were removed, it remains the case that
the decision which faces most plants most of the time is whether to conduct a temporary (weekly)
layoff. Therefore, I also fix the number of shifts.

One might argue, however, that it is the absence of shift adjustments that points to the influence
of the JOBS Bank: the cost to remove a shift is more substantial under JOBS, which means that
the cost to reverse the addition of a new shift is also higher. Does the omission of shift changes
lead one to understate the JOBS-related effect on employment? In response, it is important to note
that, if JOBS placed such strong upward pressure on shifts, it would have likely also placed strong
upward pressure on weeks worked, for a given number of shifts. After all, a strong JOBS effect on
the choice of shifts implies that vehicle demand conditions were so adverse that plants would have
liked to reduce their workforce but the cost of indefinite layoffs under JOBS was too high. Those
same vehicle demand conditions would have given the plant a motive to arrange weekly layoffs
with an eye toward their implications for the JOBS Bank allotment, L. Thus, while this paper’s
approach may underestimate the effect of the JOBS Bank on Detroit Three employment, it should
reveal whether there was, in fact, any effect at all@

The production function in also excludes other factors of production, such as capital

and materials. This is not out of line with earlier research that analyzed labor dynamics in the

23The other margin on which plants adjust, as mentioned above, is overtime. I abstract from overtime because
my focus is on the extensive margin, and, in particular, on output reductions. It seems unlikely that the model’s
conclusions will be overturned by the inclusion of an overtime margin.
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automotive industry. Given my focus, these simplifications are not crucial. For instance, layoffs in
this model are short-lived; I do not investigate the decision to replace workers permanently with
new machines. In light of that, the interaction between the JOBS program and the investment
decision does not bear significantly on the issue at hand@ Therefore, I simply assume the plant
must purchase a single non-labor input whose cost is proportional to the size of the workforce.
(This is the portion, CN, of the cost of operation in Section 3.1.) This is intended to capture the
notion that each worker requires a certain number of inputs, such as materials and capital services,
to do his or task. I return to this point when I discuss the cost of production in more detail in
Section 5.

JOBS. The JOBS program in the model is simplified slightly from its real-world analogue. In
reality, workers who are in the JOBS Bank at the conclusion of a labor agreement remain in JOBS
until recalled to work. These are often workers on indefinite layoff, many of whom had their shift
removed. But in the baseline model, I abstract from the shift decision. This means that the model
does not generate the sort of long-term layoff spells that are consistent with shift reductions. In
that case, little is lost if one assumes that, regardless of the number of accumulated layoffs at the
conclusion of an agreement, the plant is granted a fresh allotment at the beginning of the next, and
the JOBS “clock” is reset®]

In addition, I assume the cost structure under the JOBS program is treated as given by the
plant when it solves its problem. In other words, I do not model the determination of the union
contract. This means each plant assumes it cannot affect the terms of future agreements via any
action of its own in the current period. It also assumes that the JOBS program is fixed over the
life of the current agreement. These assumptions simplify matters slightly, but I judge them to be
quite reasonable over my sample period. The JOBS program was eventually suspended, but not
until two of the Detroit Three were on the verge of bankruptcy. Since the program appeared to
hold under less catastrophic circumstances, I simply assume it fixed in the model.

Lastly, the JOBS Bank literally allots L weeks per worker, whereas in the model, the allotment is
granted to a plant. For my purposes, this distinction is not critical, though. As I mentioned, I focus

on the implications of the JOBS Bank for the choice of weeks of layoff per month. These actions are,

24The reader may be concerned that, while the model distinguishes among reasons for a layoff, the data do not.
But fortunately, within the auto industry, there are agreed-upon standards regarding the reason for a layoff, which
allows me to map £ in the model to layoff events in the data. I will discuss this further in section 4.

25In other words, if a worker is in the JOBS Bank at the end of an agreement, it is unlikely that he will remain
continually on layoff for a significant amount of time under the new contract. Since the contract language grants
a fresh allotment of layoffs as soon as the worker is recalled, resetting the “clock” to zero at the start of the new
agreement is a reasonable simplification.
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in general, applied to an entire plant’s Workforceﬁ Adjustments such as shift reductions and line
speed slowdowns, on the other hand, result in indefinite layoffs that affect a subset of the workers
at a plant. To study the implications of JOBS for these margins of adjustment, I would need to
track individual workers in order cumulate their weeks on layoff. The data I have do not allow me
to do this. This is another reason I restrict this study to the decision regarding weeks of layoff per

month.

2.3.3 Roadmap

In the remainder of the paper, I put the structural model to work in two ways. First, I use it to
help develop a linear reduced-form specification of the layoff policy rule that is, conceptually, very
similar to a linear probability regression model. Section 4 formulates the regression specification,
introduces a rich panel dataset on the domestic motor vehicle industry, and tests for effects of the
JOBS Bank-related variables, L_; and 7. In Section 5, I assess the reduced-form estimates in
the context of the structural model. Specifically, this section estimates the structural model and
evaluates its ability to induce the reduced-form results. I then use the estimated model to conduct
a set of counterfactual simulations that help shed light on the features of the plant’s environment

that contribute to the strength of the JOBS Bank effects.

2.4 Reduced-form Evidence

2.4.1 Motivation

The rule governing weeks of layoff per month is a function of an unobservable, plausibly serially
correlated variable, z, and two endogenous regressors, I_; and L_; (in addition to the exogenous
7). This endogeneity is the principal challenge to consistent estimation of the effect of the JOBS-
related variables on the choice of £. In this subsection, I discuss two ways to approach this estimation
problem in a single-equation context and argue that each is either ill-advised or computationally
infeasible. I conclude that the return to nonlinear single-equation methods is not obviously that
high. As a result, I pursue a simpler strategy with regard to the estimation of the reduced form,
and complement this with a structural estimation exercise in the next section.

Any single-equation estimation strategy must begin with a Taylor series approximation to the

threshold functions, {Zo1, ..., Z34}. Once this is made, it initially appears possible to estimate the

26 Qccasionally, a plant will alternate shifts, that is, work the day shift one week and the night shift the next. But
both shifts spend the same number of weeks on layoff over the whole calendar month, which is the unit of analysis
here.
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layoff policy by maximum likelihood. The difficulty associated with this approach is that z is
unobserved and assumed to be potentially serially correlated@ As a result, if the econometrician
simply omits z_1, the coefficients on the endogenous regressors, I_; and L_1, will be inconsistently
estimated. In panels with only a few periods, it would be feasible to treat this problem by integrating
the sequence of unobservable realizations of z out of the likelihood (in a procedure analogous to
integrating the fixed effect out of a probit model). But this is a much more daunting task when
there are over 150 months of data for the average plant. In that case, the likelihood would be a
150-dimensional integral since the autoregressive process of z indirectly links each realization with
its entire history.

An alternative way to treat this sort of omitted variables problem is to estimate by simulation.
In this case, maximum simulated likelihood (MSL) would appear particularly attractive since it
naturally accommodates the discrete nature of the outcome variable@ In brief, while a 150-
dimensional integral is exceptionally hard to evaluate by quadrature methods, it is not necessarily
that hard to simulate@ The principal challenge of MSL in my case is computational. To take
account of heterogeneity across plants, it will be important to include product (vehicle) effects
and product-specific time trends. The presence of these controls will add roughly 280 additional
parameters to be estimated. This is far too many parameters for MSL to reasonably accommodate@

This discussion points me in the direction of a two-step strategy. I consider a simple, linear
reduced-form equation that is, conceptually, similar to the linear probability model still often used
in the discrete-choice literature. This affords a means to quickly and transparently recover the

qualitative effects of the regressors. In Section 5, I use the linear regression as part of the basis for

27To see why this is so significant, it is helpful to inspect the likelihood function for £t , which is the layoff decision
of plant j in time ¢. The likelihood may be written as

Pr (5, = 0) 6= x Pr(;, = )UGe=1 x . x Pr(4;, = 4)*[6e=1]

where, for instance,

Pr(¢;e = 0) = Pr(z;¢ > Zo1 (Ije—1, Lje—1,7t) | zj,6—1, 25,6—2,--.)

If zj follows a Gaussian geometric AR(1), as assumed above, this becomes,

Pr(£j; =0) = ®Pr([log Zo1 (Ij,t—1,Ljt—1,7t) — plogzje—1] / o)

Thus, z;:—1 appears as an unobserved regressor.

28For an introduction to MSL, see Stern (1997); Arias and Cox (1999); and Train (2009). The first two also include
discussions of efficient simulators. Hajivassiliou (1999) touches on a number of practical concerns associated with
implementation of MSL.

29To carry out MSL, again take a Taylor approximation to the threshold functions and provide an initial conjecture
for the parameters associated with each of their arguments. Then it is possible to efficiently simulate a sequence of
realizations of z that is consistent with the observed data on weeks of layoff and the (parameterized) optimal policy
and to, therefore, “build up” the likelihood function by simulation. Maximization then takes place as it otherwise
would (i.e., by application of gradient-based solver to improve on this initial guess), but here the objective to be
maximized is the simulated log likelihood.

30T numerically evaluate the Jacobian of the likelihood, one would have to perturb each of these model-related
effects; simulate the sequence of zs associated with the new parameters; and re-calculate the log likelihood function.
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structural estimation, which takes the nonlinear structure of the model more seriously.

2.4.2 An Estimation Equation

I now develop a reduced-form approach to the estimation of the effects of the JOBS program,
i.e., the effects of the variables, L_; and 7 on the choice of weeks of layoff. As seen in section 3,
the weeks-of-layoff decision is conditioned on z, the demand disturbance; I_1, the level of inventory
available at the start of the current period; L_1, the number of weeks on layoff implemented since
the beginning of the current contract; and 7, the period of the current contract. Given these state

variables, I initially specify the linear relation,

(=~ 42+l +yLL oy +77

I make one modification here that is preserved throughout this discussion. Since z affects revenue
multiplicatively (see ([2.6)), it is sensible to restrict it to be non-negative. A particularly simple way
to implement this is to assume that z follows a geometric AR(1) process given in equation ([2.2)).

For this reason, I modify the linear projection to relate ¢ to log z, rather than z@

C=r0+7:logz+vrl 1 +vL L1+ T

To turn into this an estimable equation, one must first address the endogeneity between ¢ and
log z. Given ([2.2)), this is relatively straightforward to treat. The law of motion of log z allows one

to rewrite this specification as

=%+ py:logz—1+yrl-1 + v L1+ 77 +¢€

where 7y = 70 + V. and £ = ~,¢ is the regression error. If logz_; were observable, this would be
a valid reduced-form specification.

The problem is that z_; is in fact unobservable. Fortunately, the structural model suggests how
one may proxy for z_;. To see this, it is useful to inspect Figure 8. The right-hand panel plots the
inverse of the layoff policy rule for a given (I_1, L_1, 7). Notice that the step-function shape of the
policy accords with the form of . The figure indicates that for a given triple, (I_1,L_1,7),
it is possible to identify the range in which z must lie if the econometrician knows ¢. This makes

sense: if £ is high, that must mean that z is relatively low. The left side of the panel then shows

31 A full log-linear specification is inadmissible since ¢ and L_; may be zero.
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that, given (I_1,L_1,7) and ¢, one may invert the sales policy rule and use sales, =, to pinpoint
the value of the z within this range. Together, then, (I_1,L_1,7), ¢, and = completely characterize
the position of the unobservable, z. This argument suggests that a useful proxy for log z_; involves

these five variables. For this reason, we amend the estimation equation as follows,

=%+ vl +vex—1 +vril1 +yredl 2 + v Loy +yr2Lo + v T + Yr2To1 + &

Fortunately, it is possible to simplify this equation slightly. In my sample period, T is rela-
tively long (at least 36 months), and so the number of contracts, five, is not that large. This has
implications for how much of the information on the right side of this equation is actually needed
in practice to proxy for z_;. For instance, if L_; and ¢_; are in the information set, then L_5 is
almost always implicit since, for 7_y < T, L_1 = £_1 + L_5. If the number of contracts is not that
large, then this is the case that will hold for almost all of the observations in the sample period.
Similarly, for 7_; < T, equation states that 7 = 7_1 4+ 1, which means that, given 7 (and
a constant), 71 is almost always implicit. These observations allow us to drop L_» and 7_; and

suffer almost no loss of information:

=3 +vl-1 + a1 +ynla vl + Ll +957+ €

To complete the empirical specification, a number of additional amendments to this baseline
are needed. First, the theoretical model omits any sources of persistent heterogeneity. But it is
arguable that estimation should allow different vehicles to have different average levels of demand.
In the context of , it is helpful to think of this as if the intercept is the sum of a common
component, p, and model-specific components, ;. As a result, model-specific dummies ought to
be included in the regression@ This acknowledges that a vehicle such as the Buick Lesabre, with
average sales of almost 12,000 per month, is better modeled as if it possesses a higher p than, for
instance, the Buick Park Avenue, which is also a General Motors-produced full-size automobile but
which averaged just over 4,000 sales per month@

Next, it is important to add controls for fluctuations in aggregate vehicle demand. To do so in

32Perhaps it is simplest to define model by way of example. The Ford Taurus is a model, whereas the Taurus SE
and SHO are known as trims. In this case, the SE is the base trim, which means it is the simplest available and the
least expensive. The SHO essentially looks like the SE but offers a number of options (i.e., push-button start, more
powerful engine) that are not available in the lower-price trims.

33 Average sales are calculated over the period, October 1991 through June 2004. This is the interval over which
Buick produced the Park Avenue in the United States. (Prior to 1991, Park Avenue was not regarded as a model;
it was a trim level of the Buick Electra.)
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a way that places the least structure on the data, I simply include time effects. Therefore, I include
a dummy for every calendar quarter in the sample. In addition, I include 11 monthly dummies to
pick up seasonal sources of variation in demand that are common across vehicles.

A third concern regarding the current form of the estimation equation is that it might take
the AR(1) assumption for log z too seriously. Fortunately, this may be relaxed. If log z follows an

AR(q), for instance, apply the logic of Figure 8 repeatedly to obtain,

q q q+1
= ’70 + Z fwse—s + Z’ya:sx—s + Z rYIsI—s + FYLL—I + VT + 77/X + 57
s=1 s=1 s=1

where, for reasons discussed above, it is sensible to drop the higher-order lags of L and 7. In the
analysis below, alternative lag orders for z are considered. Here, X includes the model effects;
quarterly time dummies; and seasonal effects discussed above.

Lastly, I make two additional changes to the estimation equation before I proceed to discuss the
data and present the baseline results. As written, inventory and sales are in levels; instead, in all
regressions to be reported in this paper, I instead specify both in logs. It is often thought within
the industry that the inventory-sales ratio is a useful predictor of weeks on layoff. If log (I_1) and
log (x_1) are entered, the regression allows (but does not assume) that the ratio of these objects
affects weeks on layoff. In short, the log specification balances the implications of the theoretical
model with independent information on the plant’s decision rule available from industry analysts
and management. Second, since contract length varies slightly over the sample, I normalize L_;
by L and 7 and contract length, 7. Intuitively, an L_; of 18 weeks implies a potentially different
option value if L = 36 weeks as opposed to L = 48. One straightforward way to adjust for this is

to express L_; relative to L. A similar argument applies for TE Thus, the estimation equation is

q q q+1
(214) (= ’70 + Z’Y@sgfs + Z’}/xs log ((E,S) +Z VIs 1Og (Ifs) +vL (Lfl/f/) + v (T/T) +77IX+£
s=1 s=1 s=1

2.4.3 Plant-level Panel Data

To estimate (2.14), I link plant-level observations on weeks of layoff with data on sales and
inventory for those vehicles produced at each assembly facility. My sample is October 1990 through

September 2007. Data on weeks of layoff for most of this period (October 1990 through Decem-

34Section 3 did not consider variation in L and 7 explicitly, but the effect of p on the strength of the JOBS Bank
variables hints at the importance of contract length in particular. That section found that, as p increased for a given
T, the JOBS Bank effect on the weekly layoff decision also rose. It stands to reason, and I have confirmed this in
separate simulations, that a reduction in 7', for a given p, has the same effect since it raises the half-life of a demand
shock relative to the contract length.
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ber 2006) have been assembled by Ramey and Vine (2004, 2008). Their source is an industry
publication, Automotive News, which provides weekly reports as to whether a plant’s workforce
is on layoff and, if it is, the reason for downtimeﬁ Four reasons are possible: holiday, model
changeover, inventory adjustment, and supply shortage. A model changeover refers to plant-wide
shutdown undertaken to prepare the facility to produce a new vehicle. Inventory adjustment is what
I have referred to as a volume-related reason. Supply shortage includes strikes; parts shortages; or
shutdowns due to acts of God (e.g., a tornado damages a plant’s paint facility).

This level of detail with respect to the reason for layoff is important for my purposes because, as
noted, only layoffs due to volume count against a plant’s allotment, L, under the JOBS’ program.
Therefore, I define £ as a layoff due to what Automotive News classifies as an inventory adjustment
and L as the cumulation of these weeks on layoff over the life of a contract. There are five such
contracts in my sample. Each starts in September or October and lasts for three or four years. The
five contracts span the intervals 1990-1993; 1993-1996; 1996-1999; 1999-2003; and 2003—2007@

Figures 9 and 10 summarize the time series and cross-sectional variation in the data. Figure 9
displays total weeks on layoff per month across all active U.S. assembly plants. The sharp increases
in 1990-91 and in the fourth quarter of 2000 coincide with, or just slightly lead, two NBER-dated
recessions. Weeks of layoff were also elevated in 2005 and 2006. GM posted an overall loss of $10
billion in 2005 while Ford Motor lost around $1.5 billion in North America and saw its market
share hit an 80-year low. Figure 10 shows the distribution of total weeks on layoff within the labor
agreement covered by my sample. Based on Figure 9, I aggregate the second and third contracts
since these appear to span similar periods of robust growth in the vehicle market. I also aggregate
the final two agreements since these span years of relatively lackluster growth. Relatively few plants
bump up against the allotment but as argued above, it is not necessary that JOBS binds directly for
it to influence plant behavior. The figure also reveals that majority of variation needed to identify
the contract effects likely is provided by the first, fourth, and fifth agreements.

To take the model to data, I match layoff outcomes with observations on sales and inventory.

These data are taken from Ward’s electronic databank, which reproduces the published series in its

35To fill out the sample, I received data for 2007 directly from Automotive News.

36The JOBS program literally allots L weeks per worker, but, for my purposes, this distinction is not critical. As I
mentioned in Section 3, I focus on the implications of the JOBS program for the choice of weeks of layoff per month.
These actions are, in general, applied to an entire plant’s workforce. (Occasionally, a plant will alternate shifts, that
is, work the day shift one week and the night shift the next. But both shifts spend the same number of weeks on
layoff over the whole calendar month, which is the unit of analysis here.) Adjustments such as shift reductions and
line speed slowdowns, on the other hand, result in indefinite layoffs that affect a subset of the workers at a plant. To
study the implications of JOBS for these margins of adjustment, I would like to be able to track individual workers
in order cumulate their weeks on layoff. The data I have do not allow me to do this. This is one reason I restrict this
study to the decision regarding weeks of layoff per month, for which the Ramey and Vine data are more appropriate.
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Automotive YeaTbookE The data are monthly and available by model. To be clear, the inventory
of a particular model is not attributed directly to any one assembly plant in the sense that the
plant produced each vehicle in that stock. However, Ward’s does report the models produced by
each plant in each month. In this sense, it is possible to match models with plants. I calculate the
empirical analogues of I and x for a plant as the sum of inventory (respectively, sales) across all
models produced by that facility. Appendix A includes a more detailed discussion of how inventory
and sales are matched to plants. I argue there that this is the best feasible strategy.

To provide a better sense of the panel, I now report some features of the plant-vehicle matched
database. Figure 11 reveals that the number of vehicles under production in any one month in my
sample varied from a low in the mid 50s to a high in the mid SOSE Next, I consider how these
vehicles are distributed across plants over time. First, I find that the typical plant produces roughly
two vehicles per month. This indicates that there are multi-product plants — facilities make more
than one vehicle at a time. Second, there is product turnover across time (within plant): the typical
plant makes four vehicles over the whole time it is in my sample. Third, in a typical month, a little
over 50 percent of the plants make a product, or a basket of products, that is unique to that plant.
In a little less than 30 percent of the plants, at least one product is shared with another plant, and
in 12 percent of the plants, at least one product is shared with two other plants. This indicates
the degree of product overlap across plants. These three features of the data do conflict with the
structural model set out in Section 3. That model assumed that one plant made one (differentiated)
product. In Appendix A, I discuss this issue in more detail and argue that the regression model

(2.14) remains a useful way to approach the data.

2.4.4 Results

Table 2 reports estimates of equation ([2.14]), where four lags of each variable based on standard
lag selection criteria@ Consistent with the optimal policy rule (2.11)) (see also Figure 8), inventory
exerts upward pressure on weeks of layoff, and higher sales, a proxy for z, are associated with fewer

weeks on layoff. In addition, the first two lags of ¢, also proxies for z, are statistically Signiﬁcantm

37I thank Dan Vine at the Federal Reserve Board for providing me access to the Ward’s data at the Board.

38There is a sudden decline in the number of models in the fall of 2003. This occurs because eight plants were
closed over the life of the 2003-2007 labor agreement and so the models made at these facilities were excluded from
the analysis (see Appendix A).

391 inspect Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) lag selection statis-
tics. The formula for the former is —2 x log (likelihood) + 2x degrees of freedom, and, for BIC, —2 X log (likelihood) +
log (n) xdegrees of freedom, where n is the number of plant-month observations. The choice of four lags does not
depend on whether n is interpreted as the total number of plant-month data points or as the number of clusters
(plants).

40The sign of the coefficients on £_1 and ¢_o are, of course, opposite those of the coefficients on the other proxy
for z, namely lagged sales, since the former are negatively correlated with z and the latter, positively correlated.
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When I turn to the JOBS-related variables, the signs are also in line with the theoretical model.
First, a higher L_; deters weeks of layoffs, so the coefficient on it is negative. The intuition for this
result is that, as L_; approaches the allotment L, the option value of a week of layoff rises: the
plant wants to preserve the option to shut down (relatively) more profitably in the future if demand
deteriorates further. Second, the passage of contract time leads to an increase, all else equal, in
weeks of layoff. As the contract draws to a close, uncertainty over vehicle demand throughout the
life of the current agreement is resolved, and the option value of deferment falls@

The specification reported in column one remains relatively conservative in one respect. While
it includes model effects, it does not allow for any trends in vehicle taste. This might have im-
portant implications for the JOBS variables in particular: adverse long-run movements in demand,
if omitted, would likely be correlated with L_;. Since plants that face these trends will tend to
implement more layoffs, this will bias up the coefficient on L_lﬁ

Column two of Table 2 reports results that include vehicle-specific trends. The effect on L_; is
substantial and consistent with the concern regarding omitted variable bias. The effect on 7 is also
noticeable. This might simply be due to the fact that 7 and L_; are positively correlated, which
implies a negative correlation between 7 and the vehicle trends. As a result, the omission of the
trends biases a positive coefficient on 7 down in the direction of zero. The effect of the introduction
of the vehicle trends on the other coefficients is not that substantial, although one difference is that
now one cannot reject the null that the coefficients on log I_; and logxz_; are equal in magnitude
and of opposite sign.

One obstacle to a causal interpretation of Table 2 is the potential for correlation between the
error and the endogenous regressors. This would occur if the error displays serial correlation, in
which case €; would be correlated, via its own lag, with the endogenous regressors, such as log (I;—1)
and L;_;. The lag selection tests should minimize this risk since any appreciable correlation in the
error due to, for instance, omitted lags of ¢ would show up in relatively high AIC and BIC scores.
Nonetheless, it is still worthwhile to formally test for serial correlation in the error. Wooldridge
(2002), section 7.8.5) recommends a simple procedure. First, calculate the series of residuals, 4,

from the regression in column two. Then include %;_1 as a regressor and re-estimate the equation.

41The standard errors shown in Table 2 are robust to heteroskedasticity and serial correlation within plant. If
the layoff policy rule were in fact linear, the law of motion of z would imply that the regression error is iid. Since
the linear reduced-form model is, however, an approximation, it is not obvious how seriously to push this
implication. It does appear to be rejected by the data: I have found that corrections for heteroskedasticity and serial
correlation appreciably affect the standard errors. Therefore, I simply report clustered errors in the table.

42To be concrete, an adverse trend in vehicle demand would be reflected in a “saw-toothed” pattern for L_; in
which the peak of L_1 at the conclusion of each contract exceeds that of the prior contract (and then resets to zero).
This upward trend in L_1 is (negatively) correlated with the trend in the “taste” for that vehicle.
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That 4;—1 is a generated regressor turns out to have no effect on inference in this (special) case:
under the null of zero serial correlation, the asymptotic distribution of the t-statistic associated
with a generated regressor is the same as if the regressor were measured perfectly. I estimate the
coefficient on 4;_1 to be -0.074 with a standard error of 0.093.

Another obstacle to inference in the baseline regression model relates to the presence of spatial
correlation in the data. Perhaps the most common robust covariance estimator for panel data,
due to Arellano (1987), accounts for serial correlation within plant (it “clusters” by plant) but not
for correlation across space (i.e., between, say, plant j in time ¢ and plant & in time ¢ + A). The
estimates in column two of Table 2 report Arellano standard errors. In the next two columns,
I report spatially robust standard errors based on two estimators. The first is due to Driscoll
and Kraay (1998). Foote (2007) shows that the Driscoll-Kraay estimator generalizes Arellano to
allow the temporal mean of a plant’s residuals to co-vary with that of other plants. An alternative
multi-way cluster estimator is provided by Thompson (2006), who illustrates how to use separately
clustered covariance estimators — clustered, that is, with respect to time and plant — to calculate
standard errors robust to spatial correlation. To implement Thompson’s formulas, the practitioner
must specify some interval A of time such that, if observations on two plants are separated by more
than A periods in time, the correlation between them is zero[]

Table 3 reports standard errors corrected for spatial correlation. On the whole, the correction
does not substantively affect inference: although the standard errors increase, the JOBS variables
remain significant at conventional levels. Adjustment for spatial correlation may have relatively
modest effects because the regression already included several controls for common sources of vari-

ation, such as (calendar) time effects, seasonal dummies, and model-specific effects and trends.

2.4.5 Robustness

In this subsection, I investigate the robustness of the baseline results along three dimensions.
First, the strength of the JOBS Bank effects depended heavily on the inclusion of vehicle-specific
trends. This warrants a deeper look. In particular, if the baseline estimates were influenced by
only a handful of vehicles, that would raise concern about the robustness of the results to minor
variations in the composition of the sample. Second, in the simulation analysis of Section 3, it

appeared that the effects of the JOBS Bank on the weekly layoff decision were nonlinear in L_;

43These formulas are finite sample implementations of a general asymptotic covariance estimator for correlated
vector processes. See Hayashi (section 6.5) for an introductory discussion and, in particular, for a concise statement
of Gordin’s conditions that make precise the degree of serial correlation permitted. See White (1984) for a proof of
Gordin’s central limit theorem.
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and 7. This suggests that higher-order terms in L_; and 7 be included in equation in order
test the full set of the model’s implications. Third, to interpret the reduced form estimates on 7
and L_; as the causal effect of the JOBS Bank, it stands to reason that the point estimates on 7
and L_; should vanish if we run regression on data prior to the JOBS Bank’s introduction in
October 1990. If, on the other hand, the JOBS-related variables are significant predictors of weeks
on layoff in the pre-1990 period, then they likely “stand in” for omitted variables that affect the

layoff decision in both sample periods. We take up each of these tasks in turn.

Subsample stability

I initially conjectured that the inclusion of vehicle specific trends is sensible on the grounds that,
in their absence, their effect will be attributed to L_1 and generate a spurious positive correlation
between accumulated layoffs and contemporaneous downtime. The baseline results were consistent
with this interpretation. Nonetheless, since the regression estimates depended so strongly on the
introduction of vehicle-specific time trends, it is important to take a deeper look.

To this end, I re-run the regression 144 times, once for each vehicle trend. On each iteration, I
drop a single trend and leave the remainder in. (All of the vehicle fixed effects are included in all
regressions.) This allows me to identify the ten vehicles whose trends, if omitted, most substantially
reduce the estimated effect of L_; (i.e., their removal pushes the estimate nearer to zero). These
models make up slightly less than 7 percent of the total number of vehicles.

Figure 12 reports the ten most influential models and their individual contributions to the
estimated effect of L_;. For instance, the removal of the trend specific to the Mercury Villager
minivan reduces the estimate effect of L_; by a little over 0.035 (from —0.394 to —0.358). What
lies behind this is a strong adverse trend in Villager sales in the 1990s. Sales per worker at the
Ohio plant that produced the minivan fell from nearly 3 to just over 1.5 in the second half of the
1990s. As a result, layoffs increased from 2 weeks for the whole of the 1993-1996 agreement to 15
weeks over the 1996-1999 accord and 28 weeks in the subsequent three years. Section 4 argued that
the linear regression attributes, rightly, at least a portion of this increase to an adverse trend in
minivan sales rather than any positive dependence between contemporaneous layoffs and L_;.

The figure reports the impact on the baseline result if all ten of these vehicles are removed from
the regression. The estimated effect of L_; declines by nearly 40 percent, as it falls from —0.394 to
—0.236. It does remain statistically significant, though. Thus, the magnitude of the effect of L_; is

moderately sensitive to variations in the composition of the sample, though the qualitative result
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remains intact@

Nonlinear contract effects

Thus far, I have entered the JOBS-related variables linearly into the regression. Yet there is
good reason to believe, in light of the analysis of Section 3, that these effects are in fact nonlinear.
For instance, as L_; approaches the allotment, the impact of an additional increase in L_ rises.
In other words, the marginal effect increases as the contract binds (in expectation) more severely.
In contrast, the marginal effect of contract time appeared to diminish as time wore on (at least for
p sufficiently small). Intuitively, the option value of deferment declines as uncertainty is resolved
and the possibility that the JOBS Bank will bind recedes. Consequently, the passage of one more
month means less nearer to the end of the contract than the beginning. Lastly, in the structural
model, there is likely to be an interaction effect between L_; and 7. In particular, the simulations
of Section 3 indicated that the marginal effect of 7 on the probability of layoff increases in L_;.
The reason is that the passage of time is more significant to a plant where L_; is already quite
high and, thus, where it is more likely that JOBS might bind. As a result, an increase in 7 has a
greater effect on that plant’s probability of layoff than it does on a comparable plant where L_; is
relatively low.

These arguments motivate the inclusion of second order terms. The baseline equation ([2.14)

becomes
q q q+1
(215% ’S/O + Z’YZSE—S + Z VYzxs IOg (m—s) + Z VIs IOg (I—s)
s=1 s=1 s=1

+v1 (L=1/L) 4+ L2 (L—l/i)z + 91 (T/T) + e (T/T) + i~ (L_1/L) (7)T) + ' X + ¢,

where X continues to include the model-specific trends discussed above. Table 4 reports the re-
sults@ At first, I include the quadratic terms and no interaction.To better understand the point
estimates associated with L_; and L?,, Figure 13 graphs the total effect of each JOBS-related
variable on weeks of layoff per month. The top panel reveals that the effect of L_; does rise at
a faster rate as L_; increases. The point estimates on 7 and 72 do not conform so neatly with
the model’s predictions, though. As seen in the bottom panel, the point estimates associated with

contract time imply that the marginal effect tapers off as 7 rises and then turns negative. The

44 As noted above, the introduction of model trends strengthened the effect of both accumulated layoffs, L_1, and
contract time. It follows that the removal of these ten vehicles also weakened the contract time effect, but it, too,
remained significant.

45Since the coefficients on the non-JOBS variables do not materially differ from those presented in Table 2, they
are suppressed in Table 4.



38

switch in the sign is hard to reconcile with the structural model. This might suggest that the
quadratic form is too restrictive, or, equivalently, that the second-order approximation still fails
to capture the nonlinearities embedded in the true threshold functions. But this same qualitative
picture emerges even when third- and fourth-order terms are entered.

The introduction of the interaction term yields another puzzle. The final column of Table 4
shows that vz, is estimated to be negative, which is in opposition to the prediction. The point
estimate suggests that the passage of time is more significant to a plant with few past layoffs than
a plant with many — even though the latter is virtually unencumbered by JOBS and has relatively
little reason to modify its behavior as time passes. The negative sign of the estimated interaction
effect, although statistically insignificantly different from zero, is worrisome insofar as it suggests
that the reduced-form effects may not reflect the option-value concerns embedded in the structural

model.

A falsification test

The final robustness test is to run the regression on the pre-1990 data. This pre-dates
the JOBS Bank and represents, therefore, a period over which the hypothesis regarding JOBS is
known to be false. If the baseline estimates reported in Table 2 reflect the causal effect of JOBS,
the coefficients on L_; and 7 should vanish over this period. It turns out that they do not.

I estimate equation over the period October 1973 through September 1990. The start of
the sample is determined by a combination of data availability and the union bargaining schedule.
Data on weeks of layoff at the plant level are available from Bresnahan and Ramey (1994) beginning
in January 1972. The UAW was in the middle of an agreement at that time. The next agreement
began in the fall of 1973, which is when I start the sample. The period I selected includes six
UAW-Detroit Three contracts.

As above, I construct a plant-level panel dataset that includes observations on weeks of layoff,
inventories, and sales. Data on weeks of layoff at the plant level are available from Bresnahan
and Ramey through December 1984 and beginning again in January 1990. 1 gathered data to
fill in the years 1985-1989. For this, I also used Automotive News@ With regard to sales and
inventory, Wards’ electronic database includes data on sales beginning in January 1980, but its
inventory stretches back only to January 1985. For cars, I was able to gather monthly sales and

inventory data by model from Automotive News and Wards Automotive Reports going back to 1973,

46For randomly selected weeks, I cross checked Automotive News’ reports with those in Ward’s Automotive Reports.
On weeks of layoff, the two almost always agreed. The only discrepancies I regularly found related to reports of
overtime hours at Chrysler plants. I do not use overtime hours in any of the work presented here.
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as required. For light trucks and SUVs, however, detail by model was not provided. Therefore, I
include only car assembly plants in my sample from October 1973 through December 1984. It is
not yet clear whether this assumption is harmless. On the one hand, car production made up at
least three-quarters of total output, on average, at each Detroit Three firm over this sample period.
At the same time, layoffs at light truck plants were sometimes much more common, particularly in
the 1980-82 downturn.

To link data on plant-level layoffs to sales and inventory, I am able to use Wards’ electronic
database from January 1985 through September 1990. Prior to that, I use reports in Wards Auto-
motive Yearbooks and in Automotive News’ Almanac that show the vehicles scheduled to be made
at each plant for each model year. The detail in these reports does degrade going back in time. If
vehicles are relocated from one plant to another or suspended altogether, reports beginning in the
late 1970s appear to regularly report this. Prior to that, these updates are not available. This will
generate some additional noise in the inventory and sales data.

For the 1973-1990, I construct the JOBS-related (counterfactual) variables as follows. In the
period over which JOBS was operative, the allotment of weeks on layoff over a contract was generally
equal to one quarter of the total number of weeks in that contract. For instance, for three of the
five contracts in the October 1990 — September 2007 period, the contract was 36 months long and
the allotment was 36 weeks, or 9 months. I use this ratio to generate allotments in the pre-JOBS
period. The construction of contract time, 7, remains straightforward@

Once the data are constructed, I re-estimate equation . The results are provided in Table
5. The coefficients on lagged layoffs, inventory, and sales appear reasonable and broadly similar
to those obtained over the post-1990 sample. Perhaps the only noticeable difference is the pattern
of coefficients on inventory: here lags one and two, rather than only the first (as in Table 2), are
significant.

The results with regard to the JOBS-related variables forcefully challenge the claim that the
reduced form is able to uncover the causal effect of the JOBS Bank. The reason is that the JOBS-
related variables are estimated to be statistically significant contributors to the layoff decision in

the period even before the JOBS Bank took effect. The coefficient on L_; is negative and significant

47One complication that arise in the construction of the JOBS variables is that some contracts in the pre-JOBS
period were re-opened prior to completion. For instance, GM and Ford re-opened their 1979 agreement five and eight
months, respectively, prior to the expiration of that agreement in September 1982. In this case, the re-negotiation
appears to have been largely unforeseen, triggered by substantial losses at Ford in particular in the recession of that
period. For this reason, I construct the data as if the plants anticipated the contract to extend through September
1982. In contrast, participants’ expectations are less clear in the case of a brief, one-year interim agreement signed
between Chrysler and the UAW in December 1982. That contract was re-opened nine months later, and two-year
agreement negotiated. Therefore, I simply drop this short contract from the sample.
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at the 2 percent level and quantitatively very similar to that found over the later sample period.
The effect of contract time is also statistically significant at the 8 percent level, though noticeably
smaller than in the JOBS period. To formally determine whether the difference across the two
periods in the difference in the JOBS Bank effects is statistically significant, I merge the samples
and interact L_1 and 7 with a dummy variable that takes the value of one for each month after
October 1990 and zero otherwise@ The regression equation isolates the “true” JOBS Bank effect.
The results, also shown in Table 5, indicate that virtually no effect of L_; but a significant effect

of contract time, though the magnitude is diminished relative to the baseline estimate@

2.4.6 A Reassessment of the Baseline Result

What might explain why both JOBS related variables predict of the layoff rate before and after
the JOBS Bank was introduced? This section offers up some possibilities, though future work is
needed to pursue these avenues more fully.

With respect to accumulated layoffs, it is possible that L_; serves as a proxy for the disincentives
for layoffs under experience-rated unemployment insurance. Such a system is funded, in part, by
a tax on firms that increases in the number of layoffs that the firm has performed. This implies a
qualitatively similar effect as JOBS on the weekly layoff decision: a sequence of past layoffs raises
the tax burden and reduces the probability of further layoffs.

I doubt, however, that this is behind the pre-treatment effects. The simple reason is that the
Detroit Three likely pay the maximal tax rate under the Ul system, which means its tax burden
does not increase with layoffs but functions more like a fixed cost of operation. To see this, consider
the state of Michigan, where the Detroit Three operated 26 assembly plants over the course of the
1973-1990 period. In Michigan, a firm’s tax bill equals the product of taxable payroll and the tax

rate, the most important component of which is calculated as

min { 0.063. 5 years of Ul benefits charged to ﬁrm} ’

5 years of taxable payroll

48The regression on the merged sample allows the vehicle effects and vehicle-specific trends to vary across the
sub-samples. Other than L_; and 7, these are the only variables whose coefficients are permitted to vary across the
two periods.

491f one allows L_; to affect the weekly layoff decision in a nonlinear way, the post-1990 regression results do
distinguish themselves at least slightly from the pre-1990 estimates. For instance, I re-estimated equation ,
where linear and quadratic terms in L_; were included, on the pre-1990 sample. The quadratic term is more powerful
in the post-1990 sample, which is consistent with the highly convex shape of the structural policy functions shown
in Figure 6. However, the effects are estimated so imprecisely that the difference is not statistically significant. The
same result obtains if one adopts a more flexible specification with regard to L_1. For instance, I formed a piecewise
linear spline in L_1, which allows the effect of accumulated layoffs to differ when L_; is relatively large. The effect
of L_1, conditional on L_;1 > 0.5, appears to be stronger in the post-1990 sample, which is consistent with the
results based on the quadratic specification. Again, however, the estimates are too imprecise to allow one to firmly
reject the null that the pre- and post-1990 effects are identical.
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that is, the rate increases in the level of Ul benefits claimed by that firm’s workers, but the upper
limit is 6.3 percent. The key observation here is that assembly plants generally conduct plant-wide
downtime — the entire plant’s workforce is laid off for a week, for instance. As a result, it takes
relatively few weeks of layoff per plant per year for the firm to accumulate total Ul charges on the
order of 5 to 10 percent of taxable payroll. In Michigan, it takes just one to two weeks of layoff per
year per plant to reach the upper bound of 6.3 percentﬂ

A more likely explanation for the result that L_; is significant is that accumulated weeks of
layoff serves as a proxy for hard-to-measure costs of changing production. Specifically, if the cost
of adjusting output increases in the number of recent down weeks, then accumulated layoffs would
predict fewer current layoffs. What are possible sources of such a cost?

First, there are restrictions in the labor agreements, in addition to JOBS, on weekly downtime.
For instance, the UAW agreement with Chrysler states that a plant may implement plant-wide
layoffs for up two consecutive weeks, after which the plant must place low-seniority workers on
indefinite layoff (and recall high-seniority workers) or negotiate for an exception with the local
union chapter. General Motors’ agreement with the union directs the firm to formally consult with
the UAW regarding continued downtime if each active shift has consistently worked less than 32
hours per week. Again, one suspects that this is designed to give voice to the union’s preference
for indefinite layoffs over frequent plant-wide shutdowns. As a result, persistent deviations of
accumulated layoffs from the guidelines articulated in the labor contract would likely strain relations
between the UAW and management. Since the union would seek redress of some form, it follows
that accumulated layoffs may signal increases in the shadow price of laborﬂ

Second, frequent shutdowns at final assemblers likely drive up the cost of production at their
suppliers and may result in higher intermediate input prices for the assembly plants. To see why,
suppose an engine plant supplies several final assembly facilities@ If orders from one assembler

decline, the engine plant may not be able to reduce the workforce: as long as some orders are made,

50Taxable payroll per worker is the first $9500 earned per year. Based on their wages, workers in the UAW generally
receive the maximal Ul benefit of $362 per week. Thus, the annual number of weeks of layoff, ¢, at which a firm will
“max out” the tax rate satisfies

5x8362x£x N  $362
5x $9500 x N $9500
where N denotes the size of the workforce at a typical plant. This yields ¢ = 1.65.

0.063 =

)

510f course, if it were relatively inexpensive to remove a shift, the plant would just do this and short-circuit any
increase in the shadow price. But the consensus in the literature (see Hall, 2000 and Ramey and Vine, 2004) is that
there are substantial costs involved in the removal of a shift. This is why the plant will pay some price in terms of
its relations with the union to run up accumulated layoffs, but there may be a limit to this approach.

52This example was motivated by a conversation with Dan Luria, though he should not be held liable for any
errors that follow.



42

each worker is needed to execute a specialized task on his particular machine. As a result, a decline
in orders may just reduce utilization and drive up unit costs. All else equal, this gives the assembly
plant an incentive to smooth production after a sequence of regular shutdowns.

These arguments indicate that accumulated layoffs may be costly. However, they do not sub-
scribe any particular meaning to the number of layoffs done since the beginning of a labor contract.
Thus, they suggest a simple test: include a rolling sum of past layoffs, which is orthogonal to
the contract structure, and see if the statistical significance of L_; vanishes. The rolling sum is
calculated as the number of weeks on layoff during the prior 36 week interval. Unlike L_q, this
variable does not reset to zero at the beginning of contracts. When the rolling sum is included in
a “horserace” with L_1, the estimated coefficient declines to —0.1 and is insignificantly different
from zero. The coefficient on the rolling sum is —0.42, which is reminiscent of the estimated effect
of L_; in the baseline regression. This is at least consistent with the argument that L_; functioned
as a proxy for the cost of high-frequency adjustments to employment and output.

The estimated effect of contract time presents a greater challenge for interpretation. This is for
two reasons. First, Table 5 suggests that there is a significant post-1990 effect of 7. Yet it is hard
to imagine a JOBS Bank-related mechanism that would generate a contract time effect and yet no
role for accumulated layoffs. Indeed, in simulations of the structural model reported below, these
effects go hand in hand: perturbations of a parameter that accentuate one effect tend to make the
other more significant, too.

Second, as for the pre-1990 effect, it is instructive to consult a paper by Bils (1990). He
documents a downward trend in motor vehicle industry employment growth within each labor
contract over the period from 1958 to 1984. Bils tried to replicate this result within a bargaining
model in which a monopoly union sets the wage, and the firm chooses labor. The firm in this model
has an incentive to reduce employment near the end of the contract in order to put downward
pressure on the future contract wage. However, within the model, there is a second, countervailing
force on employment growth. Specifically, if employment adjustments are costly to reverse, the
union is aware that the current choice of labor is sensitive to the future path of wage growth. As
a result, the union front-loads compensation, that is, it pre-commits to relatively slow future wage
growth. This effect overwhelms the firm’s incentive to reduce employment. As a result, Bils finds
that for plausible parameter values, the model predicts that employment actually increases through

the contract. The source of the apparent contract time effect, then, remains an open question.
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2.5 Structural Estimation

This section has two objectives. It first investigates whether the structural model is able to
induce the reduced-form estimates found in the prior section. In particular, it asks if the structural
model replicates little-to-no impact of the JOBS Bank on the weekly layoff decision. The paper finds
that it does, when the parameters are selected to be consistent with certain other salient moments
of the data. I then investigate the parameter configurations under which the JOBS Bank effect is
more substantial. The section concludes with a discussion of these counterfactual experiments@

To begin the quantitative investigation, though, it is helpful to first reduce the number of
structural parameters to be estimated. In the next subsection, I show how to set a number of them

directly. After that, I proceed to estimation.

2.5.1 Calibration

As noted above, this paper abstracts from several details of the product market in order to focus
attention on the JOBS program. As a result, with regard to the parameter that represents the price
elasticity of demand, I defer to other work that has modeled the product market in more detail.
For instance, Copeland and Hall (2009) apply a discrete-choice model of household demand to
transaction-level data on prices and sales of individual vehicles. The authors estimate (own-price)
elasticities of demand for eight market segments, such as mid-size cars and light pick-up trucks.
I set ¢ to equal the average elasticity of 3.5 reported by Copeland and Hall. (See Table 7 for a
complete list of the calibrated parameters.)

The wage-related parameters are calibrated directly based on information in the UAW agree-
ments where possible and publicly available data on compensation in the unionized manufacturing
sector where needed. The wage-related parameters include w, which is straight-time weekly pay;
h, weekly non-cash benefits; b, the share of straight-time salary paid by the employer to a laid-off
worker; and C', the non-labor component of the cost of production. Fortunately, there is a normal-
ization available. Inspection of the Bellman equations of Section 3.2.2 and the cost of operation,
, reveals that one may normalize by W = W + C and re-interpret parameters appropriately.
For instance, B is now interpreted as non-JOBS unemployment compensation relative to the total
cost of operation, W = W + C, at an active plant. Likewise, W is the labor’s share in total cost.
In addition, \ is expressed as a share of W (which will help explain why its estimate in Table 7 is

so low). Lastly, z is scaled by 1/W.

53An added benefit of the simulations is that, by documenting the effect of varying certain parameters on the
simulated moments, they help illustrate the sources of variation in the data that identify the structural coefficients.
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It remains to calibrate the two shares, B and W. After the normalization by W, these parameters

are constructed as follows:

E_ B _bw+h K_ w _w+h
W W+C W+4+C’ W W4+C W+C

Researchers tend to set b to the sum of two components: actual supplemental unemployment benefit
paid by the Detroit Three plus an additional amount that represents the tax paid by private firms
to state unemployment insurance agencies for layoffs at their plants. However, as I argued above,
the Detroit Three is likely very often at the maximum tax rate, which means that the marginal
tax cost of an additional layoff is approximately zero. Therefore, I will set b = 0.4, as the Detroit
Three pay 40 percent of straight-time pay in supplemental unemployment compensation to a laid
off worker (Ford, 2007). The results are robust to choices of b in between 0.4 and 0.65, as set in
Hall (2000).

Next, Ford (2007) and Chrysler (2007) provide time series data on straight-time hourly pay,
w. I calculate that the average wage rate for a typical assembly plant worker over the period
1990-2006 was $22.37E Both also include data on non-cash benefits, but this is not the proper
analogue to h. The reason is that the implied average hourly non-cash benefit rate reported by
Ford and Chrysler includes a number of components that have no counterpart in the model, such
as health insurance premiums paid on behalf of retirees. I require a more direct measure of non-
cash benefits for active workers, which is what h is intended to represent. Data in this area is
scarce, unfortunately. I assume that the benefit share of total compensation for the average hourly
UAW worker is the same as that reported for the average (active) blue-collar union manufacturing
worker. BLS reportﬂ that the latter was roughly constant at 38 percent from 1993 through 2003.
As anticipated, this is less than two companies’ reported share of about 50 percentm When benefits
are included, average hourly compensation, W = w + h, comes to $36.075.

The final parameter needed to calculate B and W is the non-labor cost, C. The key question
here is how to treat transfers of parts (i.e., engines, powertrain) from Detroit Three parts plants to

assembly facilities. On the one hand, layoffs in the theoretical model are treated as the counterpart

54This includes straight-time base pay plus cost of living adjustments. It does not include overtime pay. I have
not been able to locate a comparable time series for GM. However, based on scattered observations of GM’s base
wage rate, it appears, not surprisingly, to be nearly identical to the rates paid by the other two.

55These data are from the Employer Cost of Employee Compensation, series ID CCU230000406000P.

56 Researchers affiliated with MIT’s International Motor Vehicle Program reported that one quarter of compensation
in 1995 was paid out in non-cash benefits (Artzner and Whitney, 1997, p. 10). They relied on survey responses from
11 engine plants located around the world. The authors observe the smallest benefit shares at the four European
plants and the largest shares at the two plants in less developed economies. The remainder of the plants were in North
America, and the authors’ figure (see p. 11) suggests that the average share at these plants was in the neighborhood
of one third. Based on the authors’ discussion, it appears that most of these plants were unionized.
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to observed layoffs at assembly plants. This seems to suggest that one should treat the “plant” in
the model as quite literally an assembly facility. On the other hand, it is possible to interpret the
actor in the theoretical model as the manager of a generic facility that produces parts and final
products. In the model, the manager decides layoffs across both divisions (parts and final vehicles)
in the plant simultaneously, but in the data, I observe only outcomes among assembly workers. In
this case, one should not treat all parts transfers as materials purchases. Instead, it is necessary to
estimate the labor share in production costs across parts and final products. This was the approach

of Luria (1996), who found it to be about 38 percent on average across the Detroit Three. Thus,

as a baseline, I set W = 0.38; C' = % x W = $58.86; and B = %Ui_g = 0.%(2)3.53_:;-81;671 = 0.152

The duration of the contract is also calibrated. I set contract length in the model, T', to be 36
months. Consistent with UAW agreements of this length, I set the allotment, L, to be 36 weeks.
Over my sample, these parameters do change, but the ratio of the latter to the former remains
virtually constant. So in the model, I simply fix 7' = 36 months and L = 36 weeks for the duration
of the 17 years over which the model is simulated %]

To conclude, I set values for the discount factor, 8; the number of workers per facility, N;
and output per worker, A. The choice of discount rate is not an inconsequential matter, since the
impact of JOBS depends on the ezpected costs associated with future violations of the allotment, L.
Macroeconomic studies often calibrate 8 to be the inverse of one plus the risk-free Treasury bill rate.
One might argue for that based on the fact that these corporations are owned by households and,
therefore, ought to discount at a rate consistent with the representative household’s (steady-state)
optimal savings policy. On the other hand, the little direct evidence that is available suggests they

do not: corporations often discount at rates appreciably above the risk-free rate@ I attempt to

strike a balance, and to hew a little more closely to current research for comparability. I set 8 to

1
147

where 7, is the average implied monthly corporate interest rate, since the model is set at a
monthly frequency. Over my sample, 8 = 0.9938@ To select N, I use the annual Harbour reports
that provide estimates of the number of hourly workers at each vehicle assembly plant in North

America. I calculate that the average plant hourly workforce over my sample period was N =2540.

57Luria developed his estimates based on visits to dozens of assembly and parts facilities in the middle of the 1990s.
The estimate cited in the main text refers to the variable cost of production, which is the proper analogue to W 4 C
in the model. It does not include other components such as research and development.

581f I vary the contract parameters, I must re-solve the model several times in order to generate 17 years of data.
To reduce computational time, I fix L and 7.

59Based on responses from 228 Fortune 1000 firms, Poterba and Summers (1995) calculate that the average annual
real discount rate applied by these firms to future cash flows from an investment project was 12.2 percent. Their
discussion suggest that this corresponds to an average annual nominal rate of between 16 and 17 percent. To put
this in context, the Baa corporate bond rate in the fall of 1990, when the survey was administered, was around 10.5
percent, and the 30-year Treasury rate was in the neighborhood of 8.5 percent.

60T use the Baa rate tabulated and published by the Federal Reserve Board.
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Lastly, I use Wards data on plant-level production and Harbour report workforce estimates to
calculate average weekly output per worker to be A =1.545. It follows that output, y = AN (4 — ¥),
may take on one of five values, {0, 3924, 7849, 11773, 15697}.

2.5.2 Indirect Inference

There remain five unknown structural parameters: « and A of the inventory storage function and
three parameters governing the evolution of idiosyncratic demand, namely, the mean (u), variance
(s?) and persistence (p). I estimate these parameters by indirect inference. This involves a few

steps:

e First, specify a set of moment conditions that summarize, or reflect on, key features of the

optimal policy.

e Second, given a guess for the structural parameters, solve the plant’s problem; simulate the

endogenous variables; and calculate the moments of interest.

e Third, iterate on the structural parameters to minimize the distance between the empirical
moments obtained in step two (off simulated data) and the model-generated moments obtained

in step one (off actual data)@

More formally, I arrange the structural parameters into a 5x1 vector, x = (a, A, i, p, 8), and let
I" (x) denote the vector of empirical moments induced by the structural model. Define the empirical
counterpart of I' (x) to be I'. Indirect inference selects x to minimize (I‘ (x) — f)/ 0t (I‘ (x) — f‘)7
where () is the empirical variance-covariance matrix of the moments (Smith, 1993). The deviations
of the model from its empirical counterpart are thus weighted, roughly speaking, by the inverse of
the variance of the empirical moment.

I deal with each of these steps in turn. The first, the choice of moments, requires the most
discussion. I then briefly describe the solution and simulation of the model and the actual algorithm

used to optimize the quadratic criterion function.

The choice of moments

While I am principally interested in the structural model’s ability to fit the reduced-form equa-

tion ([2.14)), the regression coefficients are not the only informative moments with respect to the

611n other words, the estimated coefficients from step one are taken as the moments in what Smith (1993) refers
to as “extended method of moments”. Indirect inference is now the more commonly used name for this procedure.
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structural parameters. The addition of other moments will sharpen the identification of the param-
eters. For instance, in the canonical linear-quadratic model of inventory dynamics, where output
is divisible, the steady-state inventory-sales ratio is proportional to «, suggesting that the average
inventory-sales ratio in the data is likely informative with regard to this parameter. Of course, this
result will not map perfectly into the model of Section 3.2, but the moment is still likely to be
valuable: since the plant is penalized for deviations of I_; from azx, it should, whether output is
discrete or divisible, keep inventory in the neighborhood of ax on average.

With this in mind, I begin by proposing the following moments, where the numbers on the

right-hand side are sample estimates:

M1 : E[I/zx]=29
M.2 : Var(logl) = 0.042
M.3 : Corr(logl, logI_;)=0.87

M4 : E[f=0.172.

The interpretations of the first three are self-evident. The fourth states that the average number
of weeks of layoff per month is 0.17, which corresponds to a weekly probability of layoff of 4.25
percent. These equations are estimated on model-generated and actual data, as directed in step
two.

There is a reasonably intuitive correspondence between these moments and certain structural
parameters. The inventory-sales ratio has already been discussed. The variance of inventory, (M.2),
is likely to be particularly informative with regard to the choice of A, as the latter determines the
cost of fluctuations in inventory away from az. The autocorrelation of inventory speaks to p.
Indeed, in the standard linear-quadratic model, it is uniquely identified by the autocorrelation of
inventory. The probability of layoff, (M.4), intuitively maps to the mean, y, and variance, s2, of
log .

The final five moments are taken to be the coefficient estimates of a compressed version of the

reduced-form regression introduced in Section 4:

M.5 —M.9: ¢ =0.196¢_; +0.22log I_; — 0.166logz_, — 0.014L_; + 0.17 + &.

This equation summarizes the dynamics of weeks of layoff in a very parsimonious way. Because it

reflects on the dynamic response of £ to log I_; and log x_1, it represents a valuable addition to the
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set of conditions (M.1) — (M.4), none of which speaks to the interactions among the endogenous
variables. I simplify the original regression equation in large part because I have found that
the higher-order lags add relatively little information for the purposes of identiﬁcationﬁ

The coefficients of the linear regression are estimated by merging the pre and post 1990 samples.
I again define a dummy variable equal to one if an observation is realized after October 1990 and
zero otherwise. This dummy variable is interacted with each of the regressors identified above. This
means that the effect of each of the five covariates is allowed to vary across the sample and allows
one to isolate what is potentially a true JOBS Bank effect.

To be sure, it is not necessarily invalid to put forward the baseline regression estimates of Table
2 as the moments to be targeted. Even though it is doubtful that the JOBS Bank effects estimated
there are causal, that need not be a problem. In principal, a wide variety of moment conditions
are acceptable, provided the model may be simulated to generate them. I have chosen a different
approach since the analysis of Section 4 potentially vacates the economic content of those JOBS
Bank estimates. As a result, statistical identification may obtain, but it is hard to see how it would
obtain if those estimates were taken as the moments. What would enable the structural model, in
other words, to simultaneously match the JOBS Bank effects and other moments if the model is
properly specified and the former are, in reality, nearly zero? The absence of any strong intuition
for the mapping of moments to parameters argues against pursuing this approach.

To conclude this section, it is necessary to issue one caveat with regard to how (M.1) — (M.9)
are estimated on the actual panel. The caveat is that there are many factors that influence the
movement of the endogenous variables in the data that have no counterpart in the model. For
instance, in the data, a significant fraction of the variance of log inventory at the plant level is
related to product turnover. Consider a plant that switches from the production of an unpopular
large sedan to a light truck that is in high demand. The inventory level corresponding to that plant
will rise abruptly to support the increase in sales. Such movements have no place in the structural
model. Therefore, to place the data on the same basis as the model, it is necessary to regression-
adjust the variables. Specifically, I regress log I, log x, and £ on the set of control variables introduced
in Section 4, namely, a set of seasonal dummies, quarterly time dummies, vehicle fixed effects, and
vehicle-specific time trends. The residuals from these preliminary regressions are taken as the

regression-adjusted values of the variables and used to estimated the conditions, (M.1) — (M 9)@

62The mapping between (M.5) and structural parameters is admittedly less transparent than that relating (M.1) —
(M .4) to the parameters. It will become clearer, though, in the course of the simulation analysis performed later.

63The exception is (M.4): T do not regression-adjust £ before this equation is estimated. This assumes that the
mean number of weeks of layoff per month is not affected by the covariates listed in the text; the “raw” empirical
mean is, in fact, the appropriate analogue to the mean generated by the structural model.
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The use of regression adjustments is fairly standard in applications of indirect inference and
method of simulated moments@ but the implementation of it here does raise a concern. These
adjustments are valid if the controls, such as vehicle fixed effects, are strictly exogenous to the
evolution of the endogenous variables. Otherwise, if they are endogenous, then their omission
from the model constitutes a specification error, in which case the structural parameters cannot
be consistently estimated. The sequence of product decisions would have to be simulated along
with the rest of the outcomes and their implications for the endogenous variables made explicit at
every point in time. Of course, strict exogeneity is unlikely to hold exactly in my sample@ Since
a complete treatment of product choice is beyond the scope of this paper, I will proceed under
the assumption that strict exogeneity is at least approximately true. An integrated treatment of

product choice and labor demand remains an important topic for future work.

Solution, simulation and optimization

The model is solved by value function iteration on a grid of values for the four state variables,
(I-1,L_1,7,z). The grids for the JOBS-related variables come naturally: L_; takes any integer
between zero and L = 36, whereas 7 lies on a grid of integers that stretch from one to 36. The
demand disturbance, z, is discretized into a 22 x 1 vector and the transition matrix is computed in
accordance with Tauchen’s (1990) suggested quadrature procedure@ Inventory lies on a 160 x 1
grid where each increment is roughly equal to 1/8 of a week’s worth of output.

Since the Bellman equation of the plant defines a contraction mapping on the first-period-of-the-
contract value function, the model is solved by iterating on this value function until convergence.
The process is speeded along by using the solution of the no-JOBS model as the initial guess@

Once the model is solved, it must be simulated. In order to reduce the sensitivity of the
simulation results to the fineness of the discretization, I interpolate the ¢-specific value functions
and the inventory policy rule in order to calculate the layoff and inventory decisions at each point
in time. (I found that simple bi-linear interpolation worked quite well; more time-intensive multi-

dimensional splines did not improve the performance appreciably.) Fifty plants are simulated for

64See Cooper, Haltiwanger, and Willis (2005) and Guvenen and Smith (2009).

65Fortunately, it does not have to hold in order to interpret the reduced-form estimates of section 4. Consistency
in that context requires only weak exogeneity (pre-determinedness) with respect to the choice of weeks of layoff per
month. Only structural estimation is complicated by violations of strong exogeneity since it requires simulation of
the entire time series.

66 Adda and Cooper provided code for the arithmetic AR(1) process on the website for their 2003 textbook. It is
straightforward to adapt the program to a geometric autoregressive process.

67The solution of the no-JOBS model is, in turn, accelerated by use of the McQueen-Porteus bounds technique.
See the derivation in Bertsekas (1976) and the discussion in Rust (1994). I'm grateful that Dave Ratner pointed me
to Rust’s paper.
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six 36-month contracts, and the first contract is discarded in order to reduce the influence of initial
conditions. I repeat the simulations 25 times, which means that simulation error present in the
structural parameter estimates will be on the order of 1/25 = 4 percent (see Smith, 1993).

Lastly, I describe the search procedure used to identify the structural parameter. The presence
of (M.5) in particular poses a challenge to Newton-based methods of optimization because ¢ is
a discretely-valued variable. As a result, perturbations in the parameters generate discontinuous
movements in this series. It is now standard practice to eschew gradient-based solvers in this sort
of context (see Keane and Smith (2003) and Nagypal (2007)). Instead, I use the Nelder-Mead

simplex-based routine@

2.5.3 Estimation Results

This section reports the results of estimation. To begin, Table 6 reports the empirical moments
to be targeted and the success of the model in targeting them. The fit of the model is quite good
along various dimensions, such as the inventory-to-sales ratio and the persistence of log inventory.
The model also implies a response of layoffs to log/_; and logxz_; that fits the data well. The
model appears to struggle in two dimensions. First, it understates the mean level of weeks of layoff
per month and the persistence of weekly layoffs. Second, it fails to capture the contract time effect.
We return to the latter below. I confine remarks here to the former.

To investigate why the model misses the probability of layoff, it is useful to begin with a simple
observation: the model should be able to improve on the result in Table 6 if the standard deviation,
s, of the demand shock were increased. The question is, what moments conditions prevent this
increase in s? It must be, in other words, that the model’s performance degrades along some
dimensions if a higher s is considered. It turns out that the principal restriction on a higher
variance is the linear regression on which moments (M.5) — (M.9) are based. To see this, I discard
these moments and re-estimate the model. In this just-identified case, the model is able to precisely
replicate the empirical moments, (M.1) — (M.4). The most appreciable difference between the

parameter estimates obtained in this case relative those reported in Table 6 lies in s, which rises by

68In larger problems, this algorithm has been found to get “stuck” at non-optima, but it should have little difficulty
in a five-dimensional problem judging from the test problems solved in Torchen (1989). Improvements on Nelder-
Mead have been developed, but I am not aware of any that are suitable to the problem analyzed in this paper.
Torczon (1989), for instance, introduced a simplex-based algorithm that displays the same powerful convergence
properties as line-search-augmented Newton methods. No actual derivatives are required to implement the search,
but the theoretical convergence result relies on the continuous differentiability of the objective function. Kelley
(1998) provides a modification to Nelder-Mead that accommodates functions which are not necessarily continuously
differentiable everywhere, but the “noise” contributed by these non-differentiabilities must be bounded in a particular
way that is hard to verify in practice. The application of Kelley’s algorithm did not yield appreciably different results
in my problem.
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20 percent to 0.326. It is no surprise that such an increase pushes up the probability of a layoff. If
I then estimate (M.5) on the simulated data, given s = 0.326, the coefficients attached to ¢_; and
log I_; are much higher (0.33 and 0.56 , respectively) while the coefficient on log z_; falls to —0.48.
Each of these differ significantly from their empirical analogues.

The reason for these discrepancies helps illuminate the role of (M.5)—(M.9) in the identification
of the structural parameters. To begin, note that, for given (L_1, 7, z), it is possible to invert the
function, Zy ¢41, and interpret the inverse, log/_; = ZZ,L}H (L_1,7,2), as a threshold in inventory.
When s increases, the amplitude of inventory fluctuations also rises and, as a result, inventory tends
to be nearer to these bounds more often. An inspection of the data will therefore suggest that a
given increase in log I_; triggered an adjustment in output more frequently, which shows up in the
least squares regression as a larger estimated coefficient on log /_;. Similarly, a given increase in
log z_1, as proxied by log z_1, will result in a breach of the threshold Zy ;41 (I_1, L_1, T) more often
and trigger adjustments in weeks worked. This is a channel through which (M.5) — (M.9) informs
the choice of s.

Table 7 provides the point estimates and standard errors of the structural parametersﬂ Unfor-
tunately, there are few estimates in the literature to which to compare these. One exception is the
estimate of p. Copeland and Hall (2008) also estimate an geometric AR(1) shock to sales. Since
their model is set at a weekly frequency, I translate their estimate of p = 0.937 into a monthly
figure of 0.937* = 0.771. This is significantly higher than the estimate of 0.57 reported in the table.
There are several differences in the moment conditions, and in the model, considered here and in
Copeland and Hall, so it is difficult to trace the discrepancy in the estimated value of p to any single
cause. One point to bear in mind, though, is that Copeland and Hall do not target the dynamics
of weekly layoffs. In fact, weekly layoffs do not appear independently anywhere in their moment
conditions. The simulations below make plain that, as p increases, the fit of the model with regard
to (M.5) — (M.9) in particular unravels.

The implication of these parameter estimates for the optimal layoff policy function are revealed
in Figure 14, which traces out the effect of accumulated layoffs. For this exercise, I evaluate the
threshold function at I_; equal to one standard deviation above the mean and 7 equal to one-half

of the length of the contract. For each of the four thresholds, I calculate the probability that z

69The standard errors are calculated as the square root of the diagonal of,

VI (x) @'V (x),

where VI (x) is the 5x9 Jacobian of the moment vector and € is the 9x9 bootstrapped empirical variance-covariance
matrix of the moments. The latter is computed as follows. I draw 50 plants with replacement from the panel data
set and estimate the coefficients in I'. I repeat this 100 times and compute the covariance matrix of these coefficient
estimates. This procedure follows Cooper, Haltiwanger, and Willis (2005) and Bloom (2009).
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falls below it. For instance, the threshold Zy; is the value of z such that the plant operates for
the full month if z > Zy;. It follows that Pr(z < Zy1) = @ [(Zo1 — E[log 2]) /s] is the probability
that the plant does at least one week of layoff per month. Similarly, the probability that the plant
does at least two weeks of layoff is given by ® [(Z12 — E [log 2]) /s], where Z;5 is the threshold. It is
these probabilities that the figure traces out for different values of L_;. The plot reveals that the
estimated effect of accumulated layoffs is essentially zero until a plant reaches 3/4 of the allotment.
This seems consistent with the simulation results reported in Section 3.1. The contract time effect
is suppressed simply because the model implies virtually zero effect. I will return to the contract

time effect in the simulation analysis below.

2.5.4 Counterfactual Analysis

The model appears unable to rationalize any JOBS Bank effect. This naturally raises the
question, under what parameter configurations would JOBS exert a strong influence on the weekly
layoff decision? This section focuses in particular on p and s, which parallels the analysis of Section
3.1@ I perturb each parameter and consider its effect through two lenses. The first is the linear
regression and its associated moments, (M.5) — (M.9). I identify values of p and s that, within the
context of this linear model, imply a significant response of weekly layoffs to movements L_; and
7. When I measure the JOBS Bank effect in this context, moreover, it is possible to highlight how
variation in these parameters increases the estimated effect of the JOBS program at the expense
of the overall goodness of fit. This, in turn, sheds light on the identification of the structural
parameters. Second, I directly inspect the nonlinear optimal policy function and contrast it with
the policy displayed in Figure 14.

The top panel of Table 8 summarizes the effects on the model-generated moments induced by
changes in p. The estimated effect of the JOBS Bank variables rises noticeably as p approaches
0.9. The estimated coefficient on L_; falls to —0.26 and the coefficient on 7 rises to 0.09, which
are in the vicinity of the baseline estimates. To be sure that this is due to the JOBS Bank, and
does not reflect the specification error in the linear model, the bottom row shows the analogous
results for the model without JOBS. It is evident that movements in p contribute to insignificant

changes in the estimated JOBS effects when these effects are not in fact there, which is reassuring.

70T have also considered the effect of perturbations to A and c. Variations in o degrade the model’s ability to fit
the average inventory-to-sales ratio but have almost no impact on the strength of the JOBS Bank effect. Increases
in X\ constrain the ability of the plant to use inventory as a buffer for variations in demand. The increased reliance
on layoffs raises the importance of the JOBS Bank, but the quantitative impact is slight: the model still fails to
generate a significant JOBS effect. Moreover, this comes at a price: the ability of the model to replicate the variance
of inventory is damaged substantially.
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The results appear to be consistent with the discussion of Section 3.1 and likely driven by the same
mechanism identified there: if a plant receives an adverse shock and is exposed to a very persistent
demand process, it is cautious about its use of weekly layoffs since any future adverse shocks will
occur when z is likely still at a low level.

An increase in the persistence of the process also affects a number of other moments. For
instance, the responsiveness of weekly layoffs to fluctuations in inventory and sales rises. This is
due, at least in part, to a point stressed by Ramey and Vine (2004, 2006), who argued that a plant
will pay the discrete cost to raise weeks worked more often if the positive shock to sales is persistent.
Otherwise, the plant will absorb the innovation by allowing the time-varying inventory target, az,
to deviate from I_1, the cost of which will be relatively small (by virtue of the quadratic functional
form of the inventory storage cost) for modest changes in demand.

The changes in these regression coefficients lead them to diverge substantially from their empiri-
cal analogues, particularly for p near 0.9. This suggests that it would be very difficult to rationalize
the baseline regression results in the context of the structural model: further increases in p would
deliver JOBS Bank effects found in Table 2, but would also contribute to a further deterioration of
the fit along these dimensions|™]

I now turn my attention to s. The effect of variations in this parameter on the model-simulated
moments is reported in the bottom panel of Table 8. Again, the analogous results for the no-JOBS
model are shown in parentheses. The estimated JOBS Bank effect is seen to increase, although
the change is much more modest than that induced by increases in p. This indicates that, for
a given degree of persistence, it would take a very substantial amount of volatility to produce a
strong JOBS effect. Consider that when s reaches 0.43, the variance of log inventory is more than
double the empirical estimate, and yet the estimated effect of accumulated layoffs is just —0.04
and the estimated coefficient attached to contract time is just 0.02. In short, a s of 0.43 remains
small relative to the length of the contract: even large innovations dissipate too quickly to affect
the management of weekly layoffs in a contract of 36 months.

The effect of an increase in the innovation on the other moments should not be too surprising.

"1 The effect of p on the volatility and persistence of inventory appears to actually be non-monotonic. This remains
somewhat of a puzzle, and the interpretation offered here is tentative.

My starting point is the inventory accounting identity, I = Y + I_1 — «, from which it follows that var (I) =
var (Y) +wvar (I-1 — x) 4+ 2cov (Y, I_1 — z). The effect of increasing p is determined by a “horserace” among these
three terms. Layoffs become more responsive to changes in the state as p increases, so the first term increases. By
the same token, though, that implies inventory, spurred by large adjustments in output, generally “keeps up” with
movements in sales. As a result, the variance of the second second term declines, at least over a certain range of p.
The third term, the covariance, is negative, as increases in output accompany increases in sales (and reductions in
I_1 — z). The absolute value of this covariance also increases over a range of values of p, as the variance of Y rises
relative to x.
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The discussion above argued that an increase in the volatility of demand naturally shows up as an
increase in the estimated co-movement between £ and log I_; and log x_1, as captured effectively by
the linear regression. The impact on the average inventory-to-sales ratio likely reflects the incentive
for a plant to hold a larger buffer stock of inventory in anticipation of larger impulses to vehicle
demand.

To conclude this section, I compare the layoff policy function calculated under some of the
alternative parameterizations with the baseline estimate shown in Figure 14. To begin, I consider
the effect of the accumulated layoffs. In particular, I focus here on the effect of L_; on the
probability that the plant performs at least one week of layoffm I again fix I_; at one standard
deviation above its mean and set 7 = 0.5. The top panel of Figure 15 shows the effect of L_; for
three different pairs of (p, s): one pair consists of the point estimates reported in Table 7; another
leaves s unchanged but raises p to 0.9; and the other leaves p at its estimated value of 0.57 but
raises s to 0.43. Since these pairs of estimates induce very different steady state layoff probabilities
(even in the absence of JOBS), I normalize the probability of layoff when L_; = 0 under each
parameterization to one and trace out the effect of increases in L_;. This presentation allows one
to more sharply compare the JOBS Bank effect specifically across the different parameterizations.

The thresholds react strongly to the alternative parameterizations. Recall that the estimates in
Table 7 implied almost no effect of accumulated layoffs until L_; reached 3/4 of the allotment. By
that point, the probability of a week of layoff under p = 0.9 has already declined by 20 percent due
to the accumulation of past layoffs. The effect of a higher s is actually rather similar, although the
linear regression estimates (see Table 8) did not hint at such a strong effect. The reason is that,
with p = 0.9, there are more plants that, in the wake of an adverse shock, faced subdued demand
for an extended period. These plants actually “bump” up against the allotment, and this provides
for sharper identification of the JOBS Bank effect in the context of the linear regression.

The bottom panel of the figure shows the contract time effect. For this exercise, I set 1_; and
L_; to one standard deviation above their respective means. As mentioned above, the contract
time effect is literally estimated to be zero, so for the baseline (p = 0.57, s = 0.268), the threshold
is a horizontal line. When p = 0.9, the probability of layoff rises fairly smoothly for most of the
agreement, with the effect of contract time reaching 10 percent by about the 21st month or so (or 60
percent of the way through the contract). The effect of greater volatility is qualitatively somewhat

similar but appreciably smaller.

"2Inclusion of the other thresholds will clutter the diagram and not necessarily reveal that much more information.
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2.6 Conclusions

This paper has investigated a unique and observable employment friction that prevailed within
the unionized U.S. motor vehicle industry for most of the last two decades. It argued that the
JOBS program’s effects on labor demand, or weeks of layoff in this case, could be estimated as
the change in the layoff decision due to two measurable series: “contract time”, or the share of the
current labor contract completed, and the share of the allotment of weeks on layoff used up.

The paper introduced a framework in which consider the effect of these JOBS-related variables.
The model indicated that contract time causes an increase in the probability of layoff because the
passage of time, and the resolution of uncertainty over future vehicle demand, degrades the option
value of (layoff) deferment. The model also predicted that past layoffs reduce the probability of
downtime because, as layoffs accumulate, the plant increasingly values the option to deploy its
remaining allotted layoffs during future periods when demand may be lower than now.

Reduced-form regression analysis initially appeared to corroborate the model’s qualitative impli-
cations. However, a series of robustness tests diminished and then largely overturned this tentative
conclusion. The most severe result was the falsification test of Section 4.5, whereby the same
reduced-form regression was run on data from the pre-JOBS era. If the original estimate reflected
the causal effect of the JOBS program, the significance of the JOBS-related variables should vanish
when the regression model is taken to pre-1990 data. They did not. The estimated of accumulated
weeks of layoff was virtually identical across the periods, which cast doubt on a causal interpreta-
tion of the baseline result. Rather, it was argued that L_; likely functioned as a proxy for various
costs of adjusting weekly employment that are unrelated to the JOBS program but which deter
consecutive weekly downtime. The contract time effect, in contrast, was statistically significantly
larger in the post 1990 sample than in the pre-treatment period. The presence of a contract time
effect, in the absence of any impact of accumulated layoffs, presents a puzzle that has not been fully
resolved and awaits additional study.

The paper followed the reduced-form study with a more structural analysis. It asked two
questions. First, is the reduced-form result consistent with (in the sense that it may be induced by)
the structural model of Section 37 If so, this strengthens the interpretation of the false experiment
as suggesting that the true JOBS effect on weekly layoffs was nearly zero. To pursue this, the
structural model was estimated by indirect inference. The paper uncovered estimates that induced
moments similar to those observed in the actual data, including the regression moments taken from

the reduced-form regression.
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In light of this finding, the paper conducts a series of counterfactual simulations to explore
the set of parameter configurations that would generate a strong JOBS effect. In particular, it
highlights the role of the parameters governing the vehicle demand process. It concludes that, in
the data, the innovations to household demand appear to be too small and too transient to generate
the strong option-value effects associated with a robust JOBS program.

I conclude with a discussion of how one might still resurrect an employment effect of the JOBS
Bank. The principal point of departure from the framework above is the specification of uncertainty.
Suppose the most important source of uncertainty that confronts a plant is not due to stationary
innovations in demand. Rather, the dominant source of uncertainty relates to the “drift” in the
mean level of demand for particular vehicles. The vehicle fixed effect of Section 4, in other words,
is not in fact fixed. But once the new level is revealed, and that uncertainty resolved, there is
relatively little else that matters: the size of the subsequent stationary disturbances to demand
may be trivial by comparison. As a result, if the arrival rate of new vehicle models is sufficiently
low, the plant faces a simple choice once its “fixed effect” is revealed: run the factory or not. Under
JOBS, more plants are left open. But the benefit to the plant of optimally managing weekly layoffs
over the contract is small since the die, in a sense, has been cast. In other words, the marginal
losses due to less-than-optimal management of temporary layoffs pale in comparison to the expected
losses that the plant accepted by its decision to keep the plant open at all. Under this scenario,
variation in L_; and 7 across plants do not help identify the JOBS Bank effect.

This thought experiment suggests that perhaps a more promising source of identification may
lie in vehicle prices. Since the plant must sell vehicles in order stay open, one suspects that it must
reduce prices more drastically in response to adverse movements in household “taste” for their
product than in the pre-JOBS era. Because these innovations are likely due to perceived changes
in product quality, it may be possible to identify them via publicly available measures of vehicle
quality compiled by industry analysts, such as JD Power.

To take a structural approach to this would require a richer model of household demand than
that presented here in order to evaluate the JOBS effects. The payoff to this is that an exploration
into the effect of the JOBS Bank on prices has the potential to further the general understanding

of the relation between real frictions and nominal prices.
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Table 2.1: The Effect of the JOBS Bank in a Model Without Inventory

Weekly Layoff Effect of L ; on Effect of T on
Probability Prob(Layoff)® Prob(Layoff)*
Low L High L
o s WhoutloBs Withjogs < oWba o HighL.o Startof o End of
plant plant contract contract

0.0407 0.04065 -0.0115 -0.052 0.0055 0.0024
0.6 0.268

[0.0023]  [0.0023]

0.0849 0.083 -0.672 -2.043 0.244 0.157
0.6 0.326

[00037]  [0.0035]

0.04065 0.0383 -0.17 -0.391 0.051 0.071
0.8 0.268

[0.0038] [0.0034]

0.0846 0.073 -1.194 -3.122 0.293 0.429
0.8 0.326

[0.0061]  [0.0048]

0.04065 0.033 -0.296 -0.636 0.087 0.206
0.9 0.268

[0.0053]  [0.0039]

0.0848 0.063 -1.319 -3.512 0.311 0.591
09 0.326

[0.0082] [0.0055]

a Expressed in percentage points.

NOTE: This presents the simulations results for the model (section 2.3.1) without inventory.
The first two columns report the calibration. The first of these gives the persistence, p, of the
demand innovation. (As in the main text, p is quoted on a monthly basis.) The second of
these gives the standard deviation of the log of demand. The next two columns report the
weekly layoff probability with and without JOBS. Standard errors of the probabilities are
calculated based on 100 simulations and reported in brackets. The next two columns report
the effect of a change in L_;, the number of weeks on layoff since the start of the agreement,
on the probability of layoff, given that the plant is midway through the contract. The first of
these computes the change in the weekly layoff probability when accumulated layoffs, L,
increases from its mean to one standard deviation above its mean. The second column
computes the change in the probability due to an increase in L, from one standard deviation
above the mean to two standard deviations above mean. The final two columns give the effect
of a change in contract time (the period of the contract) on the probability of layoff, given that
L, is at its mean. The first column considers a change in contract time from 9 months to 18
months. The second considers a change from 18 to 27 months.
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Table 2.2: Baseline Reduced-Form Estimates

Independent No model trends With model-
Variable specific trends
/ 0.207*** 0.174%%%
- [0.023] [0.0217]
p 0.115%** 0.093***
2 [0.019] [0.019]
/ 0.0469%* 0.0316
- [0.0215] [0.0217]
. -0.007 -0.021
~ [0.018] [0.018]
log | 0.078* 0.12%*
b [0.0475] [0.051]
0.048 0.041
log L.
912 [0.067] [0.069]
0.077 0.076
log L.
9's [0.073] [0.073]
-0.033 0.017
log L.
9l [0.052] [0.05]
-0.18%%* 20.16%%*
log x.
9% [0.036] [0.034]
-0.019 -.018
log x.
9% .038] [0.039]
0.076** -.081%*
log x.
9%s [0.0365] [0.035]
0.0418* 0.042
log x.
9% [0.023] [0.021]
L -0.063 -0.394%**
b [0.07] [0.119]
] 0.083*** 0.161%**
[0.0326] [0.035]
No. of obs. 8404 8404
R-squared 0.3164 0.3515

* Significant at 10%, ** at 5%, *** at 1%
Dependent variable is weeks of layoff per month at each plant.
Robust (clustered at plant-level) standard errors are reported in brackets.
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Table 2.3: Baseline Reduced Form With Alternative Robust Standard Errors

Indepgndent Coefficient Standard Error
Variable Cluster by plant  Driscoll-Kraay Thompson

L, 0.174 0.0217 0.019 0.021
L, 0.093 0.019 0.027 0.023

l 0.0316 0.0217 0.023 0.028
l_, -0.021 0.018 0.021 0.021
log I, 0.12 0.051 0.059 0.059
log I, 0.041 0.069 0.083 0.067
log 1.3 0.076 0.073 0.089 0.077
log 1, 0.017 0.05 0.057 0.053
log x4 -0.16 0.034 0.039 0.038
log X, -.018 0.039 0.042 0.041
log X3 -.081 0.035 0.041 0.034
log X4 0.042 0.021 0.025 0.020
L, -0.394 0.119 0.130 0.159

T 0.161 0.035 0.061 0.063

NOTE: Plant-clustered standard errors allow for serial correlation of the residuals
within plant but assume independence across plants. Driscoll-Kraay and Thompson
standard errors correct for correlation across time and across plants.
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Table 2.4: Reduced-Form Estimates With Nonlinear JOBS Variables

In{j/:ﬁ?:bﬁm Baseline With second-order JOBS variables
L, -0.394*** -0.057 0.326
[0.119] [0.277] [0.405]
L2 -0.46 -0.34
t [0.34] [0.37]
. 0.161*** 1.07** 0.995**
[0.035] [0.43] [0.414]
2 -0.907** -0.809**
t [0.41] [0.39]
Lt -0.56
[0.42]
p-value of F-statistic: ©= =0 0.0009 0.0009
p-value of F-statistic: L, =L_,*=0 0.0062 0.5532

* Significant at 10%, ** at 5%, *** at 1%
Dependent variable is weeks of layoff per month at each plant.
Robust (clustered at plant-level) standard errors are reported in brackets.
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Table 2.5: Reduced-Form Estimates For Pre- and Post-1990 Samples

Oct. 1990-Aug. 2007  Oct. 1973-Sept.

In ndent Variabl Mer mpl
dependent Variable Sample 1990 Sample erged Sample
/ 0.174%** 0.234%** 0.2%**
-t [0.0217] [0.023] [0.0154]
/ 0.093*** 0.06*** 0.078***
N [0.019] [0.023] [0.0148]
/ 0.0316 0.038 0.0352**
- [0.0217] [0.0253] [0.0166]
/ -0.021 -0.036 -0.029**
- [0.018] [0.015] [0.012]
log | 0.12%* 0.124%** 0.11%**
b [0.051] [0.026] [0.026]
log | 0.041 0.194%** 0.173%**
2 [0.069] [0.039] [0.0367]
log | 0.076 0.0168 0.0285
N [0.073] [0.03] [0.0296]
0.017 -0.036 -0.028
log 14
[0.05] [0.029] [0.027]
| -0.16%** -0.213%** -0.197***
0g X4
[0.034] [0.028] [0.023]
| -.018 -0.052 -0.032
0g X
[0.039] [0.034] [0.025]
| -.081%* -0.016 -0.041*
0g X3
[0.035] [0.031] [0.025]
0.042 0.059 0.056%**
log x4
[0.021] [0.027] [0.019]
L -0.394%*** -0.365** -0.374**
* [0.119] [0.147] [0.145]
. 0.161%*** 0.06* 0.05
[0.035] [0.034] [0.032]
L., * 1[time > Oct. 1990] -0.017
[0.215]
0.124%**
. i
T * 1[time > Oct. 1990] [0.045]
No. of obs. 8404 8192 16596
R-squared 0.3515 0.3576 0.3548

* Significant at 10%, ** at 5%, *** at 1%
Dependent variable is weeks of layoff per month at each plant.
Robust (clustered at plant-level) standard errors are reported in brackets.
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Table 2.6: Empirical and Model-generated Moments

MOMENTS DATA MODEL

1st- and 2nd-order moments

M.1 : Average inventory- 2.9 2.817
sales ratio [0.011] [0.018]
M.2 : Variance of log 0.042 0.0483
inventory [0.0012] [0.0027]
M.3 : Autcorrelation of log 0.87 0.9
Inventory [0.005] [0.0038]
M.4 : Average number of 0.172 0.076
weeks of layoff / mo [0.006] [0.0059]
Regression moments

0.196 0.114
M5: ¢,

[0.022] [0.02]

0.22 0.236
M.6 : log(Inventory.,)

[0.03] [0.018]

-0.166 -0.169
M.7 : log(Sales._,)

[0.028] [0.022]

-0.014 0.08
M.8: L,

[0.225] [0.071]
M.O - T 0.1 -0.004

[0.045] [0.016]

NOTE: This presents the empirical moments and their model counterparts.
The standard errors of (M.1)-(M.4), presented in brackets, are obtained
from least squares regression on the post-Oct. 1990 sample. For instance,
log inventory is regressed on its own lag and a set of seasonal and time
dummies, vehicle fixed effects, and vehicle-specific time trends. The
coefficient on lagged inventory is taken to be the moment and the standard
error of the least squares estimate appears in brackets. Moments (M.5)-
(M.9) are obtained by linear regression on the merged sample. The
dependent variable associated with each moment is listed in the table.
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Table 2.7: Structural Parameters

Calibration
Parameter Description Value

(0] Price elasticity of demand 3.5
W Total cost of operation 1

C Interm. input share in total cost 0.62

w Labor share in total cost 0.38

B non-JOBS cost of layoff 0.152

A Output per worker / week 1.545

N Size of workforce 2540

L Layoff allotment under JOBS 36 weeks

T Length of contract 36 months

B Discount factor 0.9938

Estimation
Parameter Description Value [Std. Error]

a Inventory/sales target 2.782 [0.085]

N Cost of deviation of inventory 233006 [4.08e-07]

from target

¥ Mean of demand 14.32 [0.204]

p Persistence of demand 0.573 [0.064]

S Std. dev. of log(z) 0.268 [0.018]

NOTE: The top panel presents the calibration of those parameters which were
not estimated. The bottom panel presents the indirect-inference estimates.
Standard errors are given in brackets.



Table 2.8: Counterfactual Simulations — Strengthening the JOBS Effect

Data p=0.70 p=0.80 p=0.90

Avg. inventory-sales ratio 2.904 2222510 g;ggf i;ll:f
Variance of log inventory 0.042 883333? 882:;) 818?370
Autocorr. of log inventory 0.871 8:3883 82775: g:gggg
Avg. wks. on layoff / mo 0.172 81266? 8221291 8:22273
‘L 0196 ormas  omor  omss
og(invertory.) R A S
log(Sales.y) -0.166 pere Pyl Lotz

L, 0014 Doics 0000 Sotss

: 010 oy oows oo
Data s =0.32 s =0.37 s =0.43

Avg. inventory-sales ratio 2.904 2277388 gggg ﬁg’ggf
Variance of log inventory 0.042 8:82388 8:83856 8:18883
Autocorr. of log inventory 0.871 8:288888 82775578 8j§§f§
Avg. wks. on layoff / mo 0.172 8}2775 8:325385 82323;)
‘ 0108 om0 owe  oumss
ooy om0 03 0% ous
log(Sales_;) -0.166 8577775 832255 825?;57

L 004 oo owm  oom

T 0.100 00034 o0t o027

NOTE: The top panel presents simulation results for various ps. All other parameters are set equal
to their point estimates (see Table 2.7). For each moment, the value induced by the model with
JOBS is shown in the top row, and the value generated by the no-JOBS model is shown in italics
below. The bottom panel presents results for various values of the standard deviation of log(z), s.
Again, all other parameters are held fixed. Observe that the notation with regard to the regression

moments (the final 5 moments listed in the top and bottom panels) follows that in Table 2.6.
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non-JOBS
4‘
} Non-cash benefits

Average cash
payout

N

Allotment Weeks of Layo/ff

Layoff Cost as Share of Total Compensation of Active Worker

NOTE: This shows the schedule of payments that a Detroit Three firm makes to an
unemployed worker. For each week until the allotment, it pays the Supplemental
Unemployment Benefit, which amounts to 40 percent of the worker's (pre-tax) salary
(this is the "average cash payout") plus all contractually negotiated non-cash benefits,
such as health care. Once the allotment is reached, unemployment compensation rises
to full salary.

Figure 2.1: The Cost of Unemployment Compensation to the Detroit Three
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T

Contract ends

)] Cumulated
layoffs reset
to0

Weeks of Layoff Counted Against Allotment

Calendar time

NOTE: This shows a hypothetical path of weekly layoffs for a particular worker. In this
case, the worker amasses 10 weeks of layoff by the end of the contract, which means he
never becomes JOBS-eligible. When the contract concludes, cumulated layoffs reset to
zero, and the next contract begins.

Figure 2.2: Cumulated Layoffs Reset at End of Contract
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S A
z
Produce Produce
Z(0,2)® ~
A
Option value of
> production
v
Z(0,1)e _/
A
Do not produce Do not produce
v v
Period one Period two Time

NOTE: This presents the solution to the two-period problem discussed in section 2.3.1. nY(z) is
profit if the plant produces, where z is the demand shock; n°(0) is profit if the plant shuts down
with cumulated layoffs equal to zero; Z(0,2) is the value of z above which the plant produces in
the second period of the contract if cumulated layoffs equal zero; Z(1,2) is the threshold in the
second period if cumulated layoffs equal one; and Z(0,1) is the value of z above which the plant
produces in the first period.

Figure 2.3: The Effect of the JOBS Bank in a Two-Period Model
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Z(1,2) Z(0,2)
—e—low variance
—high variance
/?5

NOTE: An increase in uncertainty pushes more of the mass to the left of the thresholds. This
implies a greater option value of deferment since it raises the probability that the second layoff in the
allotment will be needed in the final period when demand may be particularly low.

Figure 2.4: The Effect of Uncertainty on the Option Value of Production in a Two-Period Model
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z
Z(0,2) 2(0.3)
o ° | LA
\
> If z falls in this range
in period two,
Z(12)e produce only if L ,=1
& shut down
otherwise
2(011) | If z falls in this range,
produce in period one
but shut down in period
two
Period one Period two Period three

NOTE: This presents the solution to the three-period problem discussed in section 2.3.1. The
notation follows Figure 2.3: Z(L_,,t) represents the value of z such that the plant operates if z >
Z(L4,1) and L, represents the number of accumulated weeks of layoff as of the start of the
period and 7 is the period of the contract. The wedge between Z(0,1) and Z(0,2) represents the
contract time effect (with cumulated layoffs held fixed at zero). The gap between Z (0,2) and
Z(1,2) represents the effect of cumulated layoffs (with contract time held fixed at two). It should
be noted that the model does not indicate whether Z (0,1) is in fact smaller than Z (1,2), as shown
here; the order of these two may be reversed. The model, rather, makes predictions with regard
to the relationship between these two thresholds and Z (0,2).

Figure 2.5: The Effect of the JOBS Bank in a Three-Period Model
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0.045

0.035 N X
—<— 25% of contract completed
—+H—50% of contract completed

—6— 75% of contract completed

0.03 \
0.025 X\Xﬂx
0.02

0.015 )

A |
A4

0.01
0 5 10 15 20 25 30 35

Accumulated Weeks of Layoff

NOTE: This traces out the effect of accumulated weeks of layoff on the weekly probability
of layoff in the model of section 2.3.1, which omits inventory. The length of contract is 36
months, and the layoff allotment is 36 weeks. See the text for the remainder of the
calibration.

Figure 2.6: The Effect of Accumulated Layoffs on the Probability of Layoff
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0.0416 T
[T |
0.0414 T ALL L R |
/
0.0412
0.041
4 weeks of layoff allotment used
—+H— 9 weeks of layoff allotment used
—S— 14 weeks of layoff allotment used
0.0408
0.0406
0 20 40 60 80 100 120 140 160
Week of Contract
0.086 T T T
0.085 —” s=0.326
0.084
0.083 /
0.082
0.081 4 weeks of layoff allotment used
—H&— 9 weeks of layoff allotment used
0.08 —©— 14 weeks of layoff allotment used —
0.079
0.078
0.077
0 20 40 60 80 100 120 140 160

Week of Contract

NOTE: This traces out the effect of contract time on the weekly probability of layoff
in the model of section 2.3.1, which omits inventory. The length of contract is 36
months, and the layoff allotment is 36 weeks.

Figure 2.7: The Effect of Contract Time on the Probability of Layoff
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z
®
(2.) Given I= 2,
map from sales to
unique value of z in (1) If 1=2, z lies
this range in this range
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/
/
/
/
/
< / S
0 1 2 3 4
Sales, given 1=2

Weeks of layoff, |
NOTE: The right-hand side of the figure shows the inverse layoff policy function. The left-hand
side presents the sales policy function given that 1=2.

Figure 2.8: The Plant’s Optimal Policy Functions Suggest a Proxy for z



73

1.4

1.2

0.8

0.6 A

0:4 /\ A A

or | VA N A/
NV AV \

LI N N A O B O

T

< < < < < < < < < < < < < < < < <
o o o o (= o o (=2 o o o o o o (= o

o - N ™ < Lo (o] N~ oo} (o2} o - N ™ < Lo O

(o] (o] (o] (o) (o) (o) (o) [o2} (o2} (o2} o o o o o o o

(o] (o] (o] (o)) (o)) (o)) (o)) (o} (o} (o} o o o o o (@] o

— — — — — — — — — — N N N N N N N

NOTE: Weeks on layoff are summed up across U.S. assembly plants in each month and
divided by the number of active plants at that time. The figure presents the quarterly
average of this monthly series.

Figure 2.9: Weeks of Layoff Per Month Per U.S. Assembly Plant
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1990-93 Agreement

..-_H

0--0.2 0.21-0.40 0.41--0.60 0.60--0.80 0.80+

1993-96 and 1996-99 Agreements

 —
0--0.2 0.21-0.40 0.41--0.60 0.60--0.80 0.80+

1999-2003 and 2003-07 Agreements

0--0.2 0.21-0.40 0.41--0.60 0.60--0.80 0.80+

Share of Allotment Used

Figure 2.10: Distribution of Weeks on Layoff Within Labor Agreements
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NOTE: This shows the total number of vehicle models in production in each month of the
sample. There is a sudden decline in the number of models in the fall of 2003. This occurs
because eight plants were closed over the life of the 2003-2007 labor agreement and so

the models made at these facilities were excluded from the analysis (see Appendix A for
more) .

Figure 2.11: Number of Models in Production
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0.04
S ? Mercury Villager
= 0.035 _
o Baseline  Coefficient When All 100
§ Estimate Trends Are Removed
[3+]
a5 0.03
5 % -0.394 -0.236
gé [0.119] [0.094]
§ S 0025
55
g5 o0
£5 Ford Explorer
33 Ford Bronco
O ﬁ 0.015 Ford
o] = . 0
ok Buick o Mustang Cadillac Dodge
ES LeSabre “Nevroie AR Dakota
E > Express Ford 500 Ford
£ 0.01 Econoline
[«b]
2
&
(@) 0.005

0

NOTE: This shows the change in the estimated coefficient on cumulated layoffs, L, when the vehicle-
specific time trends above are removed from the list of covariates in the linear, reduced-form
regression. For instance, when the trend associated with the Mercury Villager is removed, and all other
trends are left in, the estimated coefficient on L, rises from -0.394 to -0.358. The text in the figure also
reports the effect when all 10 trends are removed. Plant-clustered standard errors are given in brackets.
See text (section 2.4.5) for more.

Figure 2.12: Sensitivity of Reduced-Form Estimate to Changes in Sample
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Figure 2.13: Reduced-Form Estimates of Nonlinear JOBS Effects
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Figure 2.14: Estimated Effect of Accumulated Layoffs
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Figure 2.15: JOBS Bank Effects Under Alternative Parameters
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2.7 Appendix A: The Plant-level Panel Dataset

2.7.1 'Weeks of Layoff

While I do focus on inventory-induced layoffs, a few remarks are warranted regarding the others.
To frame this discussion, it is helpful to organize “non-volume” shutdowns by duration: short, long,
and permanent. Short shutdowns are due to brief model changeovers or a supply shortage. In the
data, I classify a shutdown as “short” if it lasts no more than two months. To accommodate these
in the regression analysis, I generate a single dummy variable equal to one if a plant experiences a
brief shutdown in a given month and zero otherwise.

Long, but strictly temporary, shutdowns are often associated with the conversion of a plant from
car to light truck or van production. As a result, it is often not possible to assign models to these
plants for the period in which it is shut downm It is necessary, then, to simply drop these months
from the sample. In fact, in some cases, I drop the entire contract in which the shutdown occurs.
To be specific, I drop a plant for an entire contract if it was shut down for at least one-fourth of the
length of a (three- or four-year) labor agreement. In the most extreme case, it may be arithmetically
impossible for a plant to place its workers on L weeks of inventory-induced layoff over the short
time it is in operation over the life of that labor agreement. More generally, if plant is open for
such an abbreviated period, it is not subject to the same constraints under the JOBS program as
other facilities.

Permanent shutdowns occur if the firm closes the facility and indefinitely lays off all workers. In
these cases, I drop the entire contract in which the closure occurs. This means that the estimates
I present should be interpreted as the effects of L_; and 7 on the decision of how many weeks
to operate per month, conditional on the choice to keep the plant open for the duration of the

agreement.

2.7.2 The One Plant-One Product Assumption

The model of Section 3 assumed that one plant produced on (differentiated) product. There
are three features of the plant-level data in particular that are at odds with the theoretical model
presented in Section 3 and with the regression specification motivated by it. They are:
multi-product plants; model turnover within plants; and overlap across plants in terms of vehicles

produced.

73This problem does not arise if a plant is shutdown for a month to prepare for a new vintage of the same model.
This is what we see in “short” shutdowns discussed above.
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The presence of multi-product plants, by itself, does not pose a significant challenge. Multi-
product facilities may be reconciled with the theory if we re-interpret z as a “bundle” of products.
They also do not raise any difficulties for the empirical analysis if each plant is the sole producer
of its bundle. In that case, the sum of (lagged) inventory across models may be taken as a measure
of I_; and paired with that facility (and likewise, for sales).

Rather, it is the interaction between multi-product plants and overlap of production that poses
the greatest challenge. To incorporate overlap, one must drop the artifice of a “bundle” and model
the production of individual products. This complicates the analysis even if plants are assumed
to continue to act independently (despite the presence of overlap). The reason is that each plant
faces a distinct demand for each product and must carry separate inventories to meet sales of each
product. As a result, the state space of the plant’s problem equals the number of products under
production, which in the data can be as high as four or five. In addition, if plants do coordinate
— or, equivalently, if there is a central actor that assigns production schedules to each facility
— the problem becomes substantially harder@ Unfortunately, the theoretical extensions needed
accommodate product overlap lie outside the scope of this paper.

I would stress, however, that while overlap is a real presence in the data, it is not overwhelming.
Slightly more than half of the plant-month observations involve no overlap at all, and the vast
majority of observations involve overlap across no more than two plants. This may alleviate some
concern regarding the construction of the inventory and sales series for each plant, as outlined
above. But it does remain likely that simple aggregation across models introduces noise into the
measured regressors.

I now turn my attention to model turnover within plants. Table A.2 depicts this turnover, as
it reports all of the models produced at each assembly plant throughout the period October 1990
- September 2007. On average, a plant makes four vehicles over the time it spends in the sample.
That there is turnover is evidence enough that there is an omitted margin of adjustment — namely,
product selection — from our analysis of the plant’s problem. Since that analysis motivated the

estimation equation, this raises the concern that (2.15)) is mis-specified.

741f there are just a handful of actors, the market resembles a dynamic differentiated oligopoly, which can quickly
turn into a computationally intractable problem. If these central actors are assumed to act monopolistically, there
is still no free lunch: it remains likely that the actor’s choice of layoffs for any plant j will depend on the inventory
of each model under that plant’s production and on the inventory of each model under production at plants whose
product portfolio overlaps with plant j. The intuition for this is straightforward. Suppose there is a manufacturer
that makes three products across two plants. In particular, assume plant 7 makes models one and two and plant k
makes models two and three. Assume that each plant either operates in a given week or shuts down for that period.
Now imagine the start-of-period inventory of model three is very high. The firm’s optimal response is to shut down
plant k£ and run plant 5 so that the latter compensates for the lost production of model two.
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To assess this, it is useful to ask how we might amend the theoretical model to accommodate
turnover and what that would mean for . Assume that, in any period, a plant is, in principle,
able to adopt a new model. In particular, imagine the plant may select a “better” distribution from
which to draw zs, where, by “better”, I mean a distribution with a higher mean, u. The selection of
a new model involves, however, a number of costs. First, assume the plant may select a new model
now but it cannot begin production until D periods later. This delay reflects the time needed to
convert the plant to a different model. Assume the plant foregoes all revenue while it is down for
conversion. In addition, suppose the plant must pay an adjustment cost (over and above foregone
revenue) that is proportional to the increase in p, which reflects research and development costs
associated with the introduction of a better model[?]

The plant’s decision process would likely proceed as follows: (i) for given model and given ¢,
select I; (ii) then, for given model, select ¢; and, finally, (iii) select the model. This suggests that
the form of the optimal inventory and layoff policies of section 3 hold for a given model. Moreover,
the presence of a time delay indicates that model turnover, in an econometric sense, is weakly
exogenous with respect to weeks on layoff per month. These two observations appear to justify the
estimation of augmented with model effects. Nonetheless, the policy rule governing model
selection will depend, in part, on L_; and 7: if the expected presented discounted costs of the
JOBS program are large, the plant is more likely to undertake a model changeover in order to avoid
triggering JOBS. Therefore, when the plant’s problem is fully solved out, one anticipates that the
optimal response of layoffs to L_; and 7 will reflect this, that is, the coefficients on these objects
in the reduced-form specification would be affected. In other words, while the form of the policy is
preserved, the coefficients of the reduced-form solution will reflect new information impounded in
the optimal model selection policy. For this reason, the effect of model turnover is ultimately an
empirical question: if the effect of the JOBS program were minimal, model selection might provide

one interpretation of that result.

2.8 Appendix B: Proof of Proposition

Throughout, I assume the following.
Assumption 1 The transition function F' has the Feller property.
Assumption 2 Let z € Z and I € Z, where Z and Z are compact sets.

Assumption 2 requires that one impose some upper limit on the range of feasible inventory

750ne should also include an additional term in the adjustment cost that reflects the price paid to acquire and
install the new machines needed to produce a new vehicle. But it is not needed for this discussion.
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levels. This is a standard way to bound an otherwise unbounded domain. To be more rigorous,
one may introduce depreciation into the model, which ensures the existence of a maximal (finite)
maintainable level of inventory, I. From the law of motion for inventory, this level is defined by
I = (1—94)I+max{y}, where d is the depreciation rate, max {y} corresponds to four weeks worked
per month, and sales, =, are set to zero so as to maximize inventory. This yields I = max {y} /4.
While this provides a foundation for Assumption 2, it adds little economic content to the problem
and is unnecessary from a practical point of view. The numerical solution of the model requires
that some bounds be placed on inventory. Provided these are selected so that they bind rarely, if
at all, the enforcement of boundedness does not affect the calculation of the optimal policy.

The proof of the proposition may now be stated.

Proof of Proposition The proof is inductive. Begin with the terminal period of an

agreement, in which case the value of the plant is

Vr(z,1-1,L-1) = (Mv)(2,1-1,L1,T)

= max {mlax [W(I,z; z,Ll)—w(4,0)+ﬁ/v(z',1)dF (z'|z)]}.

Under the recursion hypothesis, v is bounded and (piecewise) continuous. Under Assumptions 1
and 2, boundedness and continuity are preserved under expectation. It follows that the function
to be maximized is bounded and continuous. Its maximum, V7, is therefore bounded, and by the
Theorem of the Maximum, it is also continuous. As one moves to period T' — 1, this argument is
repeated, where V7 takes the place of v. Inductively, it follows that the operator, M’ maps the
space of bounded and continuous functions into itself.

It remains to verify Blackwell’s conditions for a contraction. Mononicity is apparent, since the
maximized value of a function must rise if the function to be maximized is uniformly higher. Dis-
counting follows from the fact that, for a constant ¢, (MT (v+ c)) (z,1_1,L_1,T) = (MTU) (z,1_1,L_4,T)+
pre < (MT) (z,1-1,L-1,T) +c.
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CHAPTER III

Marginal Jobs, Heterogeneous Firms, and Unemployment
Flows

3.1 Introduction

The study of the macroeconomics of labor markets has been dominated by two influential
approaches in recent research: the development of search and matching models (Pissarides, 1985;
Mortensen and Pissarides, 1994) and the empirical analysis of establishment dynamics (Davis and
Haltiwanger, 1992)E| This paper provides an analytical framework that unifies these approaches by
introducing a notion of firm size into a search and matching model with endogenous job destruction.
The outcome is a rich, yet analytically tractable framework that can be used to analyze a broad set
of features of both the cross section and the dynamics of the aggregate labor market. In a set of
quantitative applications we show that the model can provide a coherent account of a) the salient
features of the distributions of employer size, and employment growth across establishments; b) the
amplitude and propagation of cyclical fluctuations in flows between employment and unemployment;
c¢) the negative comovement of unemployment and vacancies in the form of the Beveridge curve;
and d) the dynamics of the distribution of employer size over the business cycle.

A notion of firm size is introduced by relaxing the common assumption that firms face a linear
production technologyEI Though conceptually simple, incorporating this feature is not a trivial
exercise. The existence of a non-linear production technology, and the associated presence of multi-
worker firms, complicates wage setting because the surplus generated by each of the employment
relationships within a firm is not the same—“the” marginal worker generates less surplus than
infra-marginal workers. In section 1, we apply the bargaining solution of Stole and Zwiebel (1996)

to derive a very intuitive wage bargaining solution for this environment, something that has been

1This chapter was co-written with Michael Elsby.

2In its simplest form, this manifests itself in a one firm, one job representation, as in Pissarides (1985) and
Mortensen and Pissarides (1994). For the present paper, we remain agnostic on the source of diminishing returns,
which may arise due to decreasing returns to scale, short-run fixed factors of production, or imperfect product market
competition. For a model with the latter feature, but with exogenous separations, see Rotemberg (2006).
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considered challenging in recent research (see Cooper, Haltiwanger and Willis, 2007; and Hobijn
and Sahin, 2007). The solution is a very natural generalization of the wage bargaining solution in
standard search and matching models. The simplicity of our solution is therefore a useful addition
to the literatureF]

The wage bargaining solution enables us to characterize the properties of the optimal labor
demand policy of an individual firm in the presence of idiosyncratic firm heterogeneity. We demon-
strate that the labor demand solution is analogous to that of a model of kinked hiring costs in
the spirit of Bentolila and Bertola (1990), but where the hiring cost is endogenously determined
by frictions in the labor market. This yields an analytical solution for the optimal labor demand
policy, summarizing microeconomic behavior in the model.

In section 2, we take on the task of aggregating this behavior to the macroeconomic level.
This is a challenge because the presence of a non-linear production technology and idiosyncratic
heterogeneity imply that a representative firm interpretation of the model doesn’t exist. To address
this, we develop a method that allows us to solve analytically for the equilibrium distribution of
employment across firms (the firm size distribution). In turn, this allows us to determine the level
of the aggregate (un)employment stock, which is implied by the mean of that distribution. We
also provide a related method that allows us to solve for aggregate unemployment flows (hires and
separations) implied by microeconomic behavior. Together, these characterize the aggregate steady
state equilibrium of the model economy.

In section 3 we explore the dynamics of the model by introducing aggregate shocks. A difficulty
that arises in the model is that, out of steady state, individual firms must forecast future wages,
which involves forecasting the future path of the distribution of employment across firms, an infinite-
order state variable. A useful feature of our analytical solution for optimal labor demand is that
it allows us to simplify part of this problem. In particular, we are able to derive an analytical
approximation to a firm’s optimal labor demand policy in the presence of aggregate shocks, obviating
the need for a numerical solution. Using this, we employ an approach that mirrors the method
proposed by Krusell and Smith (1998) to solve for the transition paths for the unemployment stock
and flows in the presence of aggregate shocks.

These results form the basis of a series of quantitative applications, which we turn to in section

3Bertola and Caballero (1994) solve a related bargaining problem by taking a linear approximation to the marginal
product function and specializing productivity to a two-state Markov process. The present paper relaxes these
restrictions. More recent research that models endogenous separations has set worker bargaining power to zero in
order to derive wages (Cooper et al., 2007; Hobijn and Sahin, 2007). In the presence of exogenous separations,
Acemoglu and Hawkins (2006) characterize wages, but focus instead on a time to hire aspect to job creation, which
leads to a more challenging bargaining problem. The wage bargaining solution for models with exogenous job
destruction has been characterized by Smith (1999), Cahuc and Wasmer (2001), and Krause and Lubik (2007).
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4. An attractive feature of the model is that, by incorporating both a notion of firm size as well
as idiosyncratic heterogeneity, it delivers important cross sectional implications. We show that
the model can be used to match key features of the distribution of firm size, and of employment
growth across establishments. This is achieved through two aspects of the model. First, due to
the existence of kinked hiring costs, optimal labor demand features a region of inaction whereby
firms choose neither to hire nor fire workers. This matches a key property of the distribution of
employment growth—the existence of a mass point at zero establishment growth—moted at least
since the work of Davis and Haltiwanger (1992)E| Second, informed by the well-known shape of
the distribution of firm size, we adopt a Pareto specification for idiosyncratic firm productivity. A
surprising outcome of this approach is that the Pareto specification also provides a very accurate
description of the tails of the distribution of employment growth, something that cannot be achieved
using more conventional lognormal specifications of heterogeneity.

We then use these steady-state features of the model to provide a novel perspective on the
cyclical dynamics of worker flows implied by the model. It is well-known that the cyclical amplitude
of unemployment, and of the job-finding rate in particular, relies critically on the size of the surplus
to employment relationships (Shimer, 2005; Hagedorn and Manovskii, 2007). Intuitively, small
reductions in aggregate productivity can easily exhaust a small surplus, and lead firms to cut back
substantially on hiring. The presence of large and heterogeneous firms in our model opens up a new
approach to calibrating the payoff from unemployment, and thereby the match surplus. Because the
model is capable of matching the observed cross-sectional distribution of employment growth, we
obtain a sense of the plausible size of idiosyncratic shocks facing firms. Given this, a higher payoff
from unemployment implies a smaller surplus, so that jobs will be destroyed more frequently, raising
the rate of worker turnover. We discipline the model by choosing the payoff from unemployment
that matches the empirical rate at which employed workers flow into unemployment.

Applying this approach to an otherwise standard calibration reveals that our generalized model
can replicate both the observed procyclicality of the job finding rate, as well as the countercycli-
cality of the employment to unemployment transition rate in the U.SEI We show that this is a
substantial improvement over standard search and matching models. As shown by Shimer (2005),
these are unable to generate enough cyclicality in job creation. To overcome this, the standard

model must reduce the size of the surplus, which in turn yields excessive employment to unem-

4Earlier work by Hamermesh (1989), which analyzed data from seven manufacturing plants, also drew attention
to the “lumpy” nature of establishment-level employment adjustment.

5For evidence on the countercyclicality of employment to unemployment flows, see Perry (1972); Marston (1976);
Blanchard and Diamond (1990); Elsby, Michaels, and Solon (2007); Fujita and Ramey (2007); Pissarides (2007);
Shimer (2007); and Yashiv (2006).



90

ployment transitionsﬁ The generalized model does not face this tension between reproducing the
cyclicality of job creation and the rate of worker turnover. Due to the diminishing marginal product
of labor, the model generates simultaneously a large average surplus and a small marginal surplus
to employment relationships. The former allows the model to match the rate at which workers flow
into unemployment, the latter the volatility of the job-finding rate over the cyclem

A potential concern in models that incorporate countercyclical job destruction, such as the
model in this paper, has been that they often cannot generate the observed procyclicality of vacan-
cies (Shimer, 2005; Mortensen and Nagypal, 2007b). Importantly, we find that our model makes
considerable progress in this regard: Our calibration of the model generates most of the observed
comovement between vacancies and output per worker. As a result, it reproduces a key stylized fact
of the U.S. labor market: the negative comovement between unemployment and vacancies in the
form of the Beveridge curve. The model therefore provides a coherent and quantitatively accurate
picture of the joint cyclical properties of both flows of workers in and out of unemployment, as well
as the behavior of unemployment and vacancies.

A less well-documented limitation of the standard search and matching model relates to the
propagation of the response of the job finding rate to aggregate shocks to labor productivity. The
job finding rate is a jump variable in the standard model, responding instantaneously to aggregate
shocks, while it exhibits a sluggish response in U.S. data. An appealing feature of the generalized
model is that it delivers a natural propagation mechanism: The job finding rate is a function of
the distribution of employment across firms, which we show is a slow-moving state variable in our
model. Simulations reveal that this aspect of the model can help account for the persistence of the
decline in job creation following an adverse shock.

In the closing sections of the paper, we push the model harder by evaluating its implications for
a number of additional cross-sectional outcomes. First, recent literature has emphasized empirical
regularities in the cyclical behavior of the cross-sectional distribution of establishment size: While
the share of small establishments with fewer than 20 workers rises during recessions, the shares of

larger firms decline (Moscarini and Postel-Vinay, 2009). The model replicates this observation: For

6This formalizes the intuition of recent research that has argued that the average surplus required for the standard
model to match the observed cyclicality of the job finding rate is implausibly small (Mortensen and Nagypal, 2007a).
A small average surplus also jars with widespread evidence for the prevalence of long term employment relationships
in the US economy, which researchers have taken to imply substantial rents to ongoing matches (Hall, 1982; Stevens,
2005).

7One might imagine that a symmetric logic holds on the supply side of the labor market if there is heterogeneity
in workers’ valuations of leisure so that “the” marginal worker obtains a low surplus from employment. Interestingly,
Mortensen and Nagypal (2007a) argue that this is not the case. They show that if firms cannot differentiate workers’
types when making hiring decisions, they will base their decision on the average, rather than the marginal, valuation
of leisure among the unemployed. The same is unlikely to be true of the model studied here, since firms presumably
know their production technology when making hiring decisions.
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each establishment size class considered, it broadly matches the comovement with unemployment
over the business cycle observed in U.S. data. Given that these implications of the model are
venturing farther afield from the moments it was calibrated to match, we view these results as an
important achievement.

In our final quantitative application, we evaluate the model’s ability to account for the obser-
vation that workers employed in larger firms are often paid higher wages—the employer size-wage
effect (Brown and Medoff, 1989). A distinctive attribute of the model is that, by incorporating large
firms with heterogeneous productivities, it can speak to this empirical regularity. The magnitude of
the size-wage effect implied by the model is mediated by two competing forces, as noted by Bertola
and Garibaldi (2001). On the one hand, the existence of diminishing returns in production might
lead one to anticipate a negative relation between employer size and wages. On the other, larger
firms also tend to be more productive. Quantitatively, the latter dominates, generating one quarter
of the empirical size-wage effect.

The remainder of the paper is organized as follows. Section 1 describes the set-up of the
model, and characterizes the wage bargaining solution together with the associated optimal labor
demand policy of an individual firm. Given this, section 2 develops a method for aggregating this
microeconomic behavior up to the macroeconomic level, and uses it to characterize the steady state
equilibrium of the model. Section 3 introduces aggregate shocks to the analysis. It presents an
approach to computing the out of steady state dynamics of the model through the use of analytical
approximations. We then use the model in section 4 to address a wide range of quantitative

applications. Finally, section 5 summarizes our results, and draws lessons for future research.

3.2 The Firm’s Problem

In what follows we consider a model in which there is a mass of firms, normalized to one, and a
mass of potential workers equal to the labor force, LE| In order to hire unemployed workers, firms
must post vacancies. However, frictions in the labor market limit the rate at which unemployed
workers and hiring firms can meet. As is conventional in the search and matching literature,

these frictions are embodied in a matching function, M = M (U,V), that regulates the number

8 Assuming a fixed number of firms is important for the model to depart from the standard search model. Free
entry would yield an economy of infinitesimal firms that converges to the Mortensen and Pissarides (1994) limit. In
principle, one could allow for costly firm entry as a middle ground. We abstract from this in part for simplicity.
But our choice is also informed by evidence in Davis and Haltiwanger (1992). They find that, in manufacturing,
while births and deaths account for around 15 percent of establishment growth, they account for a very small
fraction of employment growth. The simple reason is that births and deaths are dominated by the behavior of small
establishments that account for a small fraction of total employment. For models that explore the impact of firm
entry on job creation, see Garibaldi (2006) and Hobijn and Sahin (2007).
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of hires, M, that the economy can sustain given that there are V vacancies and U unemployed
workers. We assume that M (U, V) exhibits constant returns to scaleﬂ Vacancies posted by firms
are therefore filled with probability ¢ = M/V = M (U/V,1) each period. Likewise, unemployed
workers find jobs with probability f = M/U = M (1,V/U). Thus, the ratio of aggregate vacancies
to aggregate unemployment, V/U = 0, is a sufficient statistic for the job filling (¢) and job finding
(f) probabilities in the model. Taking these flow probabilities as given, firms choose their optimal

level of employment, to which we now turn.

3.2.1 Labor Demand

We consider a discrete time, infinite horizon model in which firms use labor, n, to produce
output according to the production function, y = pzF (n) where F' > 0 and F” < 0. The latter
is a key generalization of the standard search model that we consider: When F” < 0, the marginal
product of labor will decline with firm employment, and thereby will generate a downward sloped
demand for labor at the firm level. p represents the state of aggregate labor demand, whereas x
represents shocks that are idiosyncratic to an individual firm. We assume that the evolution of the
latter idiosyncratic shocks is described by the c.d.f. G (2'|z).

A typical firm’s decision problem is completely analogous to that in Mortensen and Pissarides
(1994), and is as follows. Firms observe the realization of their idiosyncratic shock, x, at the
beginning of a period. Given this, they then make their employment decision. Specifically, they
may choose to separate from part or all of their workforce, which we assume may be done at zero
cost. Any such separated workers then join the unemployment pool in the subsequent period.
Alternatively, firms may hire workers by posting vacancies, v > 0, at a flow cost of ¢ per vacancy.
If a firm posts vacancies, the matching process then matches these up with unemployed workers
inherited from the previous period. After the matching process is complete, production and wage
setting are performed simultaneously.

It follows that we can characterize the expected present discounted value of a firm’s profits,

I (n_1,x), recursively asm

n,v

(3.1) I (n_1,z) = max {pxF (n) —w(n,z)n —cv+ B/H (n,2')dG (:r’|x)} )

9See Petrongolo and Pissarides (2001) for a summary of empirical evidence that suggests this is reasonable.

10We adopt the convention of denoting lagged values with a subscript, _1, and forward values with a prime, ’.
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where w (n, x) is the bargained wage in a firm of size n and productivity . A typical firm seeks a
level of employment that maximizes its profits subject to a dynamic constraint on the evolution of
a firm’s employment level. Specifically, firms face frictions that limit the rate at which vacancies
may be filled: A vacancy posted in a given period will be filled with probability ¢ < 1 prior to

production. Thus, the number of hires an individual firm achieves is given by:
(3.2) Anlt = qu,

where An is the change in employment, and 17 is an indicator that equals one when the firm is
hiring, and zero otherwise. Substituting the constraint, , into the firm’s value function, we

obtain:
(3.3) I (n_1,r) = max {me (n) —w(n,z)n — 2An1+ + ﬂ/H (n,2')dG (m’m)} :

Note that the value function is not fully differentiable in n: There is a kink in the value function
around n = n_j. This reflects the (partial) irreversibility of separation decisions in the model.
While firms can shed workers costlessly, it is costly to reverse such a decision because hiring (posting
vacancies) is costly. In this sense, the labor demand side is formally analogous to the kinked
employment adjustment cost model of the form analyzed in Bentolila and Bertola (1990), except
that the per—worker hiring cost, ¢/q (), is endogenously determined.

In order to determine the firm’s optimal employment policy, we take the first-order conditions

for hires and separations (i.e. conditional on An # 0):
(3.4) pzF' (n) —w (n,z) —w, (n,x)n — §1+ + BD (n,z) =0, if An #0,

where D (n,z) = [1II,, (n,2’) dG (2'|z) reflects the marginal effect of current employment decisions
on the future value of the firm. Equation is quite intuitive. It states that the marginal
product of labor (pxF’(n)) net of any hiring costs (31'*‘)7 plus the discounted expected future
marginal benefits from an additional unit of labor (8D (n, z)) must equal the marginal cost of labor
(w (n,x) +wy, (n,z)n). To provide a full characterization of the firm’s optimal employment policy,
it remains to characterize the future marginal benefits from current employment decisions, D (n, ),

and the wage bargaining solution, w (n, z), to which we now turn.



94

3.2.2 Wage Setting

The existence of frictions in the labor market implies that it is costly for firms and workers to
find alternative employment relationships. As a result, there exist quasi-rents over which the firm
and its workers must bargain. The assumption of constant marginal product in the standard search
model has the tractable implication that these rents are the same for all workers within a given
firm. It follows that firms can bargain with each of their workers independently, because the rents
of each individual employment relationship are independent of the rents of all other employment
relationships.

Allowing for the possibility of diminishing marginal product of labor F” (n) < 0, however,
implies that these rents will depend on the number of workers within a firm. Intuitively, the
rent that a firm obtains from “the” marginal worker will be lower than the rent obtained on all
infra—marginal hires due to diminishing marginal product. An implication of the latter is that the
multilateral dimension of the firm’s bargain with its many workers becomes important: The rents
of each individual employment relationship within a firm are no longer independent.

To take this into account, we adopt the bargaining solution of Stole and Zwiebel (1996) which
generalizes the Nash solution to a setting with diminishing returnsH Stole and Zwiebel present
a game where the bargained wage is the same as the outcome of simple Nash bargaining over the
marginal surplus. The game that supports this simple result is one in which a firm negotiates with
each of its workers in turn, and where the breakdown of a negotiation with any individual worker
leads to the renegotiation of wages with all remaining workersE

In accordance with timing of decisions each period, wages are set after employment has been
determined. Thus, hiring costs are sunk at the time of wage setting, and the marginal surplus,

which we denote as J (n,x), is equal to the marginal value of labor gross of the costs of hiring:

(3.5) J(n,x) =pxF' (n) —w(n,z) —wy, (n,x)n+ BD (n,z).

The surplus from an employment relationship for a worker is the additional utility a worker obtains

from working in her current firm over and above the utility she obtains from unemployment. The

HThis approach was first used by Cahuc and Wasmer (2001) to generate a wage equation for the exogenous job
destruction case.

12The intuition for the Stole and Zwiebel result is as follows. If the firm has only one worker, the firm and worker
simply strike a Nash bargain. If a second worker is added, the firm and the additional worker know that, if their
negotiations break down, the firm will agree to a Nash bargain with the remaining worker. In this sense, the second
employee regards herself as being on the margin. By induction, then, the firm approaches negotiations with the nth
worker as if that worker were marginal too. Therefore, the wage that solves the bargaining problem is that which
maximizes the marginal surplus.
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value of employment in a firm of size n and productivity z, W (n, z), is given by:
(3.6) W (n,z) =w(n,z) + BE[sU" + (1 — s) W (n',2") |n, 2] .

While employed, a worker receives a flow payoff equal to the bargained wage, w (n,z). She loses
her job with (endogenous) probability s next period, upon which she flows into the unemployment
pool and obtains the value of unemployment, U’. With probability (1 — s), she retains her job and
obtains the expected payoff of continued employment in her current firm, W (n’, z’). Likewise, the

value of unemployment to a worker is given by:
(3.7) U=b+BE(1—- U + fW (n',2")].

Unemployed workers receive flow payoff b, which represents unemployment benefits and/or the value
of leisure to a worker. They find a job next period with probability f, upon which they obtain the
expected payoff from employment, W (n/, 2’).

Wages are then the outcome of a Nash bargain between a firm and its workers over the marginal

surplus, with worker bargaining power denoted as 7:
(3.8) (L=n) W (n,z) =U] =nJ (n,z).

Given this, we are able to derive a wage bargaining solution with the following simple structure:

Proposition 1 The bargained wage, w (n,x), solves the differential equationﬁ
c
(3.9) w(n,z) =n pxF’(n)—wn(n,x)n—&-ﬁf; +(1—mn)b.

The intuition for is quite straightforward. As in the standard search model, wages are
increasing in the worker’s bargaining power, 7, the marginal product of labor, pzF’ (n), workers’
job finding probability, f, the marginal costs of hiring for a firm, ¢/q, and workers’ flow value of
leisure, b. There is an additional term, however, in w,, (n,z)n. To understand the intuition for
this term, consider a firm’s negotiations with a given worker. If these negotiations break down,
the firm will have to pay its remaining workers a higher wage. The reason is that fewer workers

imply that the marginal product of labor will be higher in the firm, which will partially spillover

13 An interesting feature of this solution is its similarity to the solution obtained by Cahuc and Wasmer (2001) for
the exogenous job destruction model. It is also consistent with Acemoglu and Hawkins’ (2006) Lemma 2, except
that it holds both in and out of steady state.
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into higher wages (w,n < 0). The more powerful this effect is (the more negative is w,n), the
more the firm loses from a given breakdown of negotiations with a worker, and the more workers
can extract a higher wage from the bargain.

In what follows, we will adopt the simple assumption that the production function is of the
Cobb-Douglas form, F'(n) = n® with @ < 1. Given this, the differential equation for the wage
function, , has the following simple solution:

pran®1

(3.10) w(n,z)=n T—ni=a)

+5f§ F(1—n)b.

Setting a = 1 yields the discrete time analogue to the familiar wage bargaining solution for the

Mortensen and Pissarides (1994) model.

3.2.3 The Firm’s Optimal Employment Policy

Now that we have obtained a solution for the bargained wage at a given firm, we can combine
this with the firm’s first-order condition for employment and thereby characterize the firms opti-

mal employment policy, which specifies the firm’s optimal employment as a function of its state,

n(n_1,z). Thus, combining (3.4) and (3.9)) we obtain:

pron®!

(3.11) (1-17) Toni o)

—b| —npfE — S1t 1 8D (n,x) = 0.
q q

Given (3.11]) we are able to characterize the firm’s optimal employment policy as follows:

Proposition 2 The optimal employment policy of a firm is of the form

R;Y(x) if >R, (n_q),

(3.12) n(n_i,z) = n_y if x€[R(n_1),R,(n_1)],
R~ (z) if z<R(n_q),

where the functions R, (-) and R(-) satisfy

(03

pR, (n)an*~t 7 c N "
PR N o] <0 + 5D (0. ey )

)

(3.13) 1) [

c
q

pR (n) an®1

(3.14) (1-n) {1—77(1—04)

= b} *nﬁfg +BD (n, R(n)) = 0.
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The firm’s optimal employment policy will be similar to that depicted in Figure 1. It is
characterized by two reservation values for the firm’s idiosyncratic shock, R (n_1) and R, (n_1).
Specifically, for sufficiently bad idiosyncratic shocks (z < R(n_1) in the figure), firms will shed
workers until the first-order condition in the separation regime, , is satisfied. Moreover, for
sufficiently good idiosyncratic realizations (z > R, (n—1) in the figure), firms will post vacancies
and hire workers until the first-order condition in the hiring regime, , is satisfied. Finally,
for intermediate values of x, firms freeze employment so that n = n_;. This occurs as a result
of the kink in the firm’s profits at n = n_1, which arises because hiring is costly to firms, while
separations are costless.

To complete our characterization of the firm’s optimal employment policy, it remains to deter-
mine the marginal effect of current employment decisions on future profits of the firm, D (n,z). It

turns out that we can show that D (n,z) has the following recursive structure:

Proposition 3 The marginal effect of current employment on future profits, D (n,x), is
given by
Ry (n)
(3.15) D (n,z) =d(n,z) + 3 D (n,2")dG (2'|z),
R(n)
where

(3.16) d(n,x)Z/Rv(n){(l—n) {pxlanal)—b} —nﬂf;}dG(x’x)+/oo C4G (o'|z) .

R(n) I-n(l-a Ro(n) 4

FEquation is a contraction mapping in D (n,-), and therefore has a unique fized point.
The intuition for this result is as follows. Because of the existence of kinked adjustment costs (costly
hiring and costless separations) the firm’s employment will be frozen next period with positive
probability. In the event that the firm freezes employment next period (2’ € [R(n), R, (n)]), the
current employment level persists into the next period and so do the marginal effects of the firm’s
current employment choice. Proposition 3 shows that these marginal effects persist into the future
in a recursive fashion. Propositions 2 and 3 thus summarize the microeconomic behavior of firms
in the model[™]

To get a sense for how the microeconomic behavior of the model works, we next derive the
response of an individual firm’s employment policy function to changes in (exogenous) aggregate

productivity, p, and the (endogenous) aggregate vacancy—unemployment ratio, . To do this, we

M1t is straightforward to show that equations (3.10) to (3.16)) reduce down to the discrete time analogue to the
Mortensen and Pissarides (1994) model when o = 1.
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assume that the evolution of idiosyncratic shocks is described by:

, x with probability 1 — A,
(317) = ~cd.f. = ,~ . e
T '~ G (Z) with probability .

Thus, idiosyncratic shocks display some persistence (A < 1) with innovations drawn from the
distribution function G. Given this, we can establish the following result:
Proposition 4 If idiosyncratic shocks, x, evolve according to , then the effects of

the aggregate state variables p and 6 on a firm’s optimal employment policy are

OR OR OR OR
ap“ <0 o <0; =2 >0; and — >0 <= n is sufficiently large.

(3.18) 50 20

The intuition behind these marginal effects is quite simple. First, note that increases in aggregate
productivity, p, shift a firm’s employment policy function downwards in Figure 1. Thus, unsurpris-
ingly, when labor is more productive, a firm of a given idiosyncratic productivity, x, is more likely
to hire workers, and less likely to shed workers. Second, increases in the vacancy—unemployment
ratio, #, unambiguously reduce the likelihood that a firm of a given idiosyncratic productivity will
hire workers (R, increases for all n). The reason is that higher 6 implies a lower jobfilling proba-
bility, ¢, and thereby raises the marginal cost of hiring a worker, ¢/q. Moreover, higher 6 implies
a tighter labor market and therefore higher wages (from ) so that the marginal cost of labor
rises as well. Both of these effects cause firms to cut back on hiring. Finally, increases in the
vacancy—unemployment ratio, 8, will reduce the likelihood of shedding workers for small firms, but
will raise it for large firms. This occurs because higher 6 has countervailing effects on the separa-
tion decision of firms. On the one hand, higher 6 reduces the jobfilling probability, ¢, rendering
separation decisions less reversible (since future hiring becomes more costly), so that firms become
less likely to destroy jobs. On the other hand, higher # implies a tighter labor market, higher
wages, and thereby a higher marginal cost of labor, rendering firms more likely to shed workers.
The former effect is dominant in small firms because the likelihood of their hiring in the future is

high.
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3.3 Aggregation and Steady State Equilibrium

3.3.1 Aggregation

Since we are ultimately interested in the equilibrium behavior of the aggregate unemployment
rate, in this section we take on the task of aggregating up the microeconomic behavior of section
1 to the macroeconomic level. This exercise is non—trivial because each firm’s employment is a
non-linear function of the firm’s lagged employment, n_1, and its idiosyncratic shock realization,
. As aresult, there is no representative firm interpretation that will aid aggregation of the model.

To this end, we are able to derive the following result which characterizes the steady state
aggregate employment stock and flows in the model:

Proposition 5 If idiosyncratic shocks, x, evolve according to , the steady state c.d.f.

of employment across firms is given by

(3.19) H(n) = _
Thus, the steady state aggregate employment stock is given by

(3.20) N = /ndH (n),

and the steady state aggregate number of separations, S, and hires, M, 1is equal to
(3.21) S = A/ - H (1) G[R(n)dn = )\/H (n) (1 —G[R, (n)]) dn = M.

Proposition 5 is useful because it provides a tight link between the solution for the microeconomic
behavior of an individual firm and the macroeconomic outcomes of that behavior. Specifically, it
shows that once we know the optimal employment policy function of an individual firm (that is,
the functions R (n) and R, (n)) then we can directly obtain analytical solutions for the distribution
of firm size, and the aggregate employment stock and flows.

The three components of Proposition 5 are also quite intuitive. The steady state distribution of
employment across firms, , is obtained by setting the flows into and out of the mass H (n) equal
to each other. The inflow into the mass comes from firms who reduce their employment from above
n to below n. There are [1 — H (n)] such firms, and since they are reducing their employment,
it follows from that each firm will reduce its employment below n with probability equal
to Priz < R(n)] = AG[R(n)]. Thus, the inflow into H (n) is equal to A[1 — H (n)] G [R (n)].
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Similarly, one can show that the outflow from the mass is equal to AH (n) (1 - G|[R, (n)]) Setting
inflows equal to outflows yields the expression for H (n) in E Given this, the expression for
aggregate employment, , follows directly.

The intuition for the final expression for aggregate flows in Proposition 5, , is as follows.
Recall that the mass of firms whose employment switches from above some number n to below n is
equal to A[1 — H (n)] G[R (n)]. Equation states that the aggregate number of separations
in the economy is equal to the cumulative sum of these downward switches in employment over n.
To get a sense for this, consider the following simple discrete example. Imagine an economy with
two separating firms: one that switches from three employees to one, and another that switches
from two employees to one. It follows that two firms have switched from > 2 employees to < 2
employees, and one firm switched from > 1 to < 1 employee. Thus, the cumulative sum of
downward employment switches is three, which is also equal to the total number of separations in

the economy.

3.3.2 Steady State Equilibrium

Given (3.19), (3.20), and (3.21), the conditions for aggregate steady state equilibrium can be

obtained as follows. First note that each firm’s optimal policy function, summarized by the
functions R (n) and R, (n) in Proposition 2, depends on two aggregate variables: The (exogenous)
state of aggregate productivity, p; and the (endogenous) ratio of aggregate vacancies to aggregate
unemployment, V/U = 0, which uniquely determines the flow probabilities ¢ and f.

In the light of Proposition 5, we can characterize the aggregate steady state of the economy for
a given p in terms of two relationships. The first, the Job Creation condition, is simply equation
, which we re—state here in terms of unemployment, making explicit its dependence on the

aggregate vacancy—unemployment ratio, 6:
(3.22) U@®),,=1L- / ndH (n;0).

(13.22) simply specifies the level of aggregate employment that is consistent with the inflows to
(hires) and outflows from (separations) aggregate employment being equal as a function of §. The

second steady state condition is the Beveridge Curve relation. This is derived from the difference

15This mirrors the mass-balance approach used in Burdett and Mortensen (1998) to derive the equilibrium wage
distribution in a search model with wage posting.
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equation that governs the evolution of unemployment over time:
(3.23) AU =S(0)—-f(O)U.

(3.23) simply states that the change in the unemployment stock over time, AU’, is equal to the
inflow into the unemployment pool — the number of separations, S — less the outflow from the
unemployment pool — the job finding probability, f, times the stock of unemployed workers, U.
In steady state, aggregate unemployment will be stationary, so that we obtain the steady state

unemployment relation:

(3.24) U(0) e = o’

The steady state value of the vacancy—unemployment ratio, 6, is co—determined by (3.22) and
(13.24)).

3.4 Introducing Aggregate Shocks

The previous section characterized the determination of steady state equilibrium in the model.
However, in what follows, we are interested in the dynamic response of unemployment, vacancies
and worker flows to aggregate shocks. To address this, we need to characterize the dynamics of
the model out of steady state. The latter is not a trivial exercise in the context of the present
model. Out of steady state, firms in the model need to forecast future wages and therefore, from
equation , future labor market tightness. Inspection of the steady state equilibrium conditions
and reveals that, in order to forecast future labor market tightness, firms must predict
the evolution of the entire distribution of employment across firms, H (n), an infinite order state
variable.

Our approach to this problem mirrors the method proposed by Krusell and Smith (1998). We
consider shocks to aggregate labor productivity that evolve according to the simple random walk:

p+o, w.p. 1/2
(3.25) P = ? /

p—op, w.p. 1/2.

Following Krusell and Smith, we conjecture that a forecast of the mean of the distribution of

employment across firms, N = [ndH (n), provides an accurate forecast of future labor market
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tightness. We then exploit the fact that shocks to aggregate labor productivity, denoted by o,
in equation (3.25)), are small in U.S. datam This allows us to approximate the evolutions of
aggregate employment, N, and labor market tightness, 8, around their steady state values N* and

0* as follows:

N =~ N'4vy(N-=N)+uv, @ —p),

(3.26) o

Q

0*+0n (N —N*)+6,( —p),

for 0, & 0. Under these conditions, we can approximate the optimal employment policy of
an individual firm out of steady state. To see how this might be done, note from the first order
conditions and that to derive optimal employment in the presence of aggregate shocks,
one must characterize the marginal effect of current employment decisions on future profits, D (-),
out of steady state.

Proposition 6 If a) aggregate shocks evolve according to ; b) a forecast of N provides
an accurate forecast of future 0; ¢) aggregate shocks are small (o, = 0); and d) idiosyncratic shocks

evolve according to , then the marginal effect of current employment on future profits is given

by
(327) D(nvx‘;vaao-p) %D(Thx;N*ap)O) +D7V (N_N*)a

where D}, is a known function of the parameters of the forecast equation and the steady
state employment policy defined in and .

Proposition 6 shows that, in the presence of aggregate shocks, the forward looking component
to the firm’s decision, D (n,z; N,p, 0,), is approximately equal to its value in the absence of ag-
gregate shocks, D (n,z; N* p,0), plus a known function of the deviation of aggregate employment
from steady state, D4 (N — N*). Practically, Proposition 6 allows us to derive analytically an
approximate solution for the optimal policy function in the presence of aggregate shocks, for given
values of the parameters of the forecast equation .

To complete our description of the dynamics of the model, we need to aggregate the microeco-
nomic behavior summarized in the employment policies of individual firms. A simple extension

of the result of Proposition 5 implies that the aggregate number of separations and hires in the

16Examples of other studies that have exploited the fact that aggregate shocks are small include Mortensen and
Nagypal (2007) and Gertler and Leahy (2008).
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economy at a point in time are respectively given by:

S(N.p) = A / 1~ H_y (n_1)] G R (n_y; N, p)dn_1,

(3.28) M(N,p) = A / H_y (1) (1= G [Ry (ny:N.p)]) dn_s,

where H_1 (n_1) is the distribution of lagged employment across firms. Notice that the timing is
emphasized in the out of steady state case.
A number of observations arise from this. First, the aggregate flows depend on the level of

aggregate employment, N. Recalling the accumulation equation for IV yields:
(3.29) N=N_;+M(N,p)—S(N,p).

It follows that, to compute aggregate employment, all one need do is find the fixed point value of
N that satisfies equation (3.29). This allows us to compute equilibrium labor market tightness by

noting that
(3.30) f(@)=M/(L-N).

A second observation from equation is that, in order to compute the path of aggregate
unemployment flows, and hence employment, we need to describe the evolution of the distribution
of employment across firms, H (n). It turns out that the evolution of H (n) can be inferred by
a simple extension of the discussion following Proposition 5. Recall that the change in the mass
H (n) over time is simply equal to the inflows less the outflows from that mass. Following the logic

of Proposition 5 provides a difference equation for the evolution of H (n):
(3.31)  H(n)=H_1(n)+AG[R(m;N,p)][1 — H_1 (n)] — A (1 — G R, (n; N,p)]) H_1(n).

This allows us to update the aggregate flows S (N,p) and M (N, p) over time, and hence derive the
evolution of equilibrium employment.

The previous results allow us to compute the evolution of aggregate employment and labor
market tightness for a given configuration of the parameters of the forecast equations . This
of course does not guarantee that those parameters are consistent with the behavior that they

induce. To complete our characterization of equilibrium in the presence of aggregate shocks, we
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follow Krusell and Smith and iterate numerically over the parameters {vn,vp,0n,60,} to find the
fixed point. In the simulations of the model that follow, the fixed point of the conjectured forecast

equations in (3.26)) provides a very accurate forecast in the sense that the R?s of regressions based

on ([3.26]) exceed 0.999.

3.5 Quantitative Applications

The model of sections 2 and 3 yields a rich set of predictions for both the dynamics and the
cross-section of the aggregate labor market. In this section we draw out these implications in
a range of quantitative applications, including the cross sectional distributions of establishment
size and employment growth, the amplitude and propagation of unemployment fluctuations, the
relationship between vacancies and unemployment in the form of the Beveridge curve, the dynamics

of the distribution of establishment size, and the employer size-wage effect.

3.5.1 Calibration

Our calibration strategy proceeds in two stages. The first part is very conventional, and mirrors
the approach taken in much of the literature. The time period is taken to be equal to one week,
which in practice acts as a good approximation to the continuous time nature of unemployment
flows. The dispersion of the innovation to aggregate labor productivity o, is set to match the
standard deviation of the cyclical component of output per worker in the U.S. economy of 0.02.

We assume that the matching function is of the conventional Cobb-Douglas form, M = plU?V1=¢,
with matching elasticity ¢ set equal to 0.6, based on the estimates reported in Petrongolo and Pis-
sarides (2001)@ A weekly job finding rate of f = 0.1125 is targeted to be consistent with a monthly
rate of 0.45. As in Pissarides (2007), we target a mean value of the vacancy—unemployment ratio of
6 = 0.72. Noting from the matching function that f = uf'~?, the latter implies that the matching
efficiency parameter = 0.129 on a weekly basis.

Vacancy costs ¢ are targeted to generate per worker hiring costs ¢/q equal to 14 percent of
quarterly worker compensation. This is in accordance with the results of Silva and Toledo (2007),
who use the Saratoga Institute’s (2004) estimate of the labor costs of posting vacancies. In the
context of the model, this implies a value of ¢ approximately equal to 0.27 of the average worker’s

wagem

17 An issue that can arise when using a Cobb-Douglas matching function in a discrete time setting is that the flow
probabilities f and g are not necessarily bounded above by one. This issue does not arise here due to the short time
period of one week.

18We want to equate the per worker hiring cost c/q to 14 percent of quarterly wages, 0.14 - [12 - E (w)]. Note that
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To pin down worker bargaining power n we target the elasticity of average wages of newly hired
workers with respect to output per worker to be equal to 0.94, based on the results of Haefke et
al. (2007)@ Inspection of the wage bargaining solution in reveals that increased worker
bargaining power leads to greater comovement between the bargained wage and aggregate labor
productivity, and hence more cyclical wages.

The production function parameter « is determined by targeting an aggregate labor share based
on the estimates reported in Gomme and Rupert (2007). These suggest a labor share for market
production of 0.72. To complete the first part of our calibration, we choose the size of the labor
force L to match a mean unemployment rate of 6.5 percent. Given the remainder of the calibration
that follows, this is equivalent to choosing the labor force to match a weekly job-finding rate of

0.1125.

Idiosyncratic Shocks and the Value of Unemployment A more distinctive feature of our
strategy is the calibration of the evolution of idiosyncratic firm productivity and the flow payoff
from unemployment to a worker. For the former, we modify slightly the production function in
sections 2 and 3 to incorporate time invariant firm specific productivity, denoted by ¢, so that
y = ppxF (n). Firm specific fixed effects ¢ are introduced to reflect permanent heterogeneity in
firm productivity that is unrelated to the uncertainty that individual firms face over time in the
form of the innovation x.

An important feature of the model of sections 2 and 3 is that it allows a flexible specification
of the distribution of shocks. This is useful because conventional parameterizations, such as log-
normal shocks, fail to capture the well-known Pareto shape of the cross sectional distribution of firm
size. Reacting to this, we set ¢ ~ Pareto (pm, k,) and x ~ Pareto (xm,, l%)m The minimum value
of the fixed effect ¢,, is chosen to yield a minimum establishment employment level of one worker,
and its shape coeflicient %, is chosen to match a mean establishment size of 17.25, based on data

from the Small Business Administration for the years 1992 to 2006@ Innovations to idiosyncratic

the implied weekly job filling probability is given by ¢ = uf~% = 0.129-0.7279-6 = 0.16. Piecing this together yields
¢/E (w)=0.16-0.14 - 12 = 0.27.

19We target the elasticity of the wages of newly hired workers rather than the elasticity of wages of all workers for
two reasons. First, it is well known that it is the flexibility of wages of new hires that is relevant to the cyclicality
of the job finding rate implied by search and matching models of the labor market (Shimer, 2004; Hall, 2005; Hall
and Milgrom, 2008). Second, it is also well known that the wages of workers in ongoing relationships are rigid (see
among others Card and Hyslop, 1997), which is at odds with the assumption of Nash wage setting that we employ
here. Our target of an elasticity of 0.94 lies at the upper end of the range of estimates presented in Haefke et al. Our
choice to target this number is therefore conservative, in the sense that it limits the amplitude of the cyclicality that
the model can generate.

20 A Pareto distributed random variable z is parameterized by a minimum value z,, and a “shape” parameter k,
and has a density function given by szn /zFtL

21The data can be obtained from http://www.sba.gov/advo/research.
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productivity x are normalized so that the mean innovation is equal to one. This implies that
= 1—k;!. Given this, we solve for firms’ optimal employment policy using the results in
sections 2 and 3 above (see Appendix A for details). An important outcome is that we can derive
the steady state distribution of employment growth:
Proposition 7 For a given time-invariant productivity, o, the steady state density of

employment growth, § = Alnn, across firms is given by:

A[enG' [R [ ! (e‘sn)] dH (n|y) if 6<0,
(3.32) ha (8le) = Af( ~G[R(n )}) dH (nlp) if §=0,
A[enG' [R [ ! (e‘sn)] dH (n|p) if >0,

where H (n|y) is the distribution of employment n conditional on fized firm productivity ¢ derived
in Proposition 5. The unconditional employment growth density is ha (6) = [ ha (6|¢)d® (p),
where ® s the (known) c.d.f. of .

Proposition 7 provides us with a novel approach to calibrating the remaining parameters of the
process of idiosyncratic shocks, A and k.. There is abundant evidence on the properties of the cross
sectional distribution of employment growth ha (9) since the seminal work of Davis and Haltiwanger
(1992). Empirically, this distribution is characterized by a dominant spike at zero employment
growth, with relatively symmetric tails corresponding to job creation and job destruction (see, for
example, Figure 1.A in Davis and Haltiwanger, 1992). Note that this is exactly the form of the
employment growth distribution implied by the model in Proposition 7.

In practice, we choose A to match the spike at zero in this distribution, and k, to match
the dispersion of employment growth. Intuitively, the cross sectional distribution of employment
growth is a manifestation of the idiosyncratic shocks x across firms. The more often these shocks
arrive (the higher is A in the model), the more likely a firm is to alter its employment, and the
smaller is the implied spike at zero employment growth. Likewise, the greater the dispersion of the
innovations z the larger the implied adjustment that firms will make, hence determining the tails
of the distribution. In practice, we target an annual spike of 37.2 percent and an annual standard
deviation of employment growth of 0.416 based on data for continuing establishments from the
Longitudinal Business Database for the years 1992 to 2005@

The latter calibration of the process governing the evolution of idiosyncratic shocks is crucial

for our calibration of workers’ flow payoff from unemployment b. Since the work of Hagedorn and

22Thanks to John Haltiwanger, Ron Jarmin, and Javier Miranda for providing us with the tabulations from the
LBD that allowed us to make these calculations.
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Manovskii (2007), it has been recognized that the value of b plays a central role in determining
the cyclical volatility of aggregate unemployment, and specifically the job-finding rate. Intuitively,
higher values of b lead to a smaller surplus to employment relationships. As a consequence, small
reductions in aggregate productivity can easily exhaust that surplus, and lead firms to cut back sub-
stantially on hiring. Since one of the quantitative applications we consider is the cyclical volatility
of worker flows, the parameterization of b is key.

Our model suggests a novel approach to calibrating the payoff from unemployment: For a given
level of dispersion in idiosyncratic shocks implied by our calibration of the evolution x, a higher
value of b reduces the surplus and implies that jobs will be destroyed more frequently, raising the
inflow rate into unemployment s. Thus, we choose b in such a way as to yield employment rents
that match the empirical unemployment inflow rate of s = 0.0078 on a weekly basis, consistent
with estimates reported in Shimer (2007).

The parameter values implied by our calibration are summarized in Table 1. In what follows,
we summarize the implications of the calibrated model for a range of cross-sectional and aggregate

outcomes.

3.5.2 Establishment Size and Employment Growth Distributions

An important component of our calibration strategy is to match key properties of the cross-
sectional distributions of employment and employment growth across firms. The model’s impli-
cations for these two outcomes are summarized in Propositions 5 and 7 above. In this section, we
compare the steady-state distributions implied by the model with their empirical counterparts.

Figure 2 plots the distribution of establishment size in the calibrated model and recent data.
Both axes are on a log scale to emphasize the Pareto shape of the distributions. The dots plot the
empirical establishment size distribution using pooled data from the Small Business Administration
on employment by firm size class for the years 1992 to 2006. The dashed line indicates the analogue
implied by the calibrated model. Figure 2 reveals that the model accounts well for the empirical
establishment size distribution. While this outcome is not surprising given the Pareto shocks fed
through the model, it does highlight the benefit of using a flexible form for the distribution of
idiosyncratic productivity in the model of sections 2 and 3.

What is perhaps more surprising is that the model also does a remarkable job of matching the
distribution of employment growth across establishments. The dotted line in Figure 3 illustrates

the empirical employment growth distribution using data for continuing establishments from the
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Longitudinal Business Database. As noted above, this displays the classic features of a mass point at
zero employment growth, and relatively symmetric tails. The dashed line overlays the employment
growth distribution implied by the calibrated model. This bears a very close resemblance to the
empirical distribution. This is more noteworthy than it might at first appear: While the use of
Pareto shocks was informed by the character of the establishment size distribution in Figure 2, the
message of Figure 3 is that it also provides a remarkably good account of the employment growth

distribution, something that has not been emphasized in the literature on establishment dynamics.

3.5.3 The Cyclicality of Worker Flows

It is now well-known that standard search models of the aggregate labor market cannot gener-
ate enough cyclical amplitude in unemployment, and in particular the job finding rate, to match
that observed in U.S. data (Shimer, 2005). A natural question is whether the generalized model
analyzed here can alleviate this problem. To address this, we feed through a series of shocks to
aggregate labor productivity using equation , and simulate the implied dynamic response of
the model using the results of section 3. Following Mortensen and Nagypal (2007a), we then use
these simulated time series to compute the model-implied elasticities of labor market stocks and

flows with respect to output per worker, and compare them with their empirical counterparts.

Model Outcomes Panel A of Table 2 summarizes the results of this exercise. Outcomes in
brackets are moments that the model is calibrated to match: The mean levels of the job-finding rate
f, the unemployment inflow rate s, and the vacancy-unemployment ratio §. The aim of the exercise
is to draw out the implications of the model for the outcomes that the model is not calibrated to
match, i.e. the cyclical elasticities of these outcomes with respect to output per worker.

The results in Table 2.A are remarkably encouraging: On all dimensions, the model-implied
elasticities lie in a neighborhood close to the cyclicality observed in the data. Specifically, the
model implies an elasticity of the job finding rate of 2.75, a little above its empirical analogue of
2.65@111 addition, the model-generated cyclical elasticity of the unemployment inflow rate of —1.68

lies only a little below the magnitude observed in the data.

Comparison with Mortensen and Pissarides (1994) These results make substantial

progress relative to the standard Mortensen and Pissarides (1994) model. To see this, panels

23The cyclical elasticities reported in Table 2 differ slightly from those implied by Shimer (2005) and Mortensen
and Nagypal (2007a) as a result of revisions to U.S. GDP data.
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B and C of Table 2 provide two comparison exercises@ First, taking as given the process for
idiosyncratic shocks implied by the distribution of employment growth derived above, we calibrate
the standard model to match the mean levels of the job finding rate f and the unemployment inflow
rate s, as well as the elasticity of s with respect to output per worker implied by the generalized
model in panel A. This allows the model to speak to the implied elasticity of the job finding rate,
and thereby the elasticities of vacancies and labor market tightness. The outcomes in panel B
confirm what Shimer (2005) demonstrated: that the standard model is unable to generate enough
cyclicality in job creation The model-implied elasticity of the job-finding rate is 1.29, less than
one half of the empirical elasticity. In contrast, the generalized model studied in the present paper

can account for all of the observed cyclical comovement between f and output per worker.

The Role of the Payoff from Unemployment  Panel C of Table 2 provides a new perspective
on the standard model’s inability to match the cyclicality of unemployment flows. In this case,
we again take as given the process for idiosyncratic shocks implied by the empirical distribution
of employment growth. However, instead of targeting the mean level of the inflow rate into
unemployment s, we now allow the standard model to match the elasticity of the job finding rate
f generated by the model of sections 2 and 3, and then draw out the implications for s. Panel
C reveals that the model must dramatically overstate the magnitude of unemployment inflows in
order to match the cyclical comovement of f: The implied weekly inflow rate of 0.0185 is more than
double that observed in the data.

This result sheds light on a recent debate in the literature. In order to match the cyclical
variation in the job finding rate, the standard model requires a small surplus to employment re-
lationships, a point emphasized by Hagedorn and Manovskii (2007) and Mortensen and Nagypal
(2007&)@ Mortensen and Nagypal further argue that the required surplus is unrealistically small.
The results of Table 2 formalize this intuition: For realistic variation in idiosyncratic shocks to
firms, a surplus small enough to match the cyclicality of f implies an employment to unemploy-
ment transition rate that is more than double what is observed empirically. Intuitively, a small

surplus implies that small idiosyncratic shocks to employment relationships are enough to exhaust

24In practice, we use the version of the Mortensen and Pissarides model developed by Mortensen and Nagypal
(2007b). This modifies the original model to allow for a distribution of idiosyncratic shocks without an upper bound,
such as the Pareto shocks we use in the generalized model.

25Shimer’s (2005) calibration of the standard model with exogenous job destruction yields an elasticity of f equal
to 0.48. Mortensen and Nagypal (2007a) favor a different calibration that yields an elasticity of f equal to 1.56 (see
their section 3.2). Pissarides’ (2007) calibration of the standard model with endogenous job destruction obtains an
elasticity of f equal to 1.54.

26 A common diagnostic for the size of the flow surplus is the ratio between worker’s payoff from unemployment,
b, and the average product of labor. For panel A of Table 2, this ratio equals 0.514; for panel C, it equals 0.632.
Thus, the Mortensen and Pissarides model demands a smaller surplus to match the volatility of the job finding rate.
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the surplus and lead to destruction of a match. Consequently, realistic dispersion in idiosyncratic
shocks generates excessive worker turnover.

Thus, the Mortensen and Pissarides model faces a tension: To match plausible levels of unem-
ployment inflows, the model must generate a sufficiently large surplus at the expense of matching
the cyclicality of the job finding rate. Conversely, to generate the cyclical variation in the job find-
ing rate, the surplus must be small, which in turn yields excessive employment to unemployment

transitions.

Understanding Amplification  The results in Table 2 raise the question of why the generalized
model yields amplification of the response of job creation to cyclical shocks. The following result
provides a sense for where this amplification comes from by approximating the steady-state response
of job creation to a change in aggregate labor productivity:

Proposition 8 For small X, the shift in the Job Creation condition induced by a

change in aggregate productivity p is given approximately by

dlné N 1-n)p

(3.33) dlnp |, wo[(1—n) (5 —b) —nBeh] +nBco’

where w is the steady state employment share of hiring firms, and p = papl + (1 — p) mpl where

apl and mpl are respectively the average and marginal product of labor of the average-sized firm,

and p = %
Corollary The elasticity of the vacancy—unemployment ratio to aggregate productivity in

the a =1 case (Mortensen and Pissarides, 1994) is approximately equal to

dlnf (I-n)p
dlnp ~ ¢[(1—n) (p—b) — nBcb] +nBch’

(3.34)

Equation echoes results presented in Mortensen and Nagypal (2007a,b): The cyclical
response of the vacancy-unemployment ratio 6 is amplified when the average flow surplus to em-
ployment relationships, p — b, is small. Equation generalizes this result to the model studied
here. Inspection of and reveals that there are two channels through which the gen-
eralized model yields amplification of the cyclicality of labor market tightness. First, the effective
surplus that matters for amplification is now given by p — b, a weighted average of the average and
marginal flow surpluses. This lies below the average flow surplus as a result of the diminishing

marginal product of labor in the model.
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This provides a sense for why the generalized model is able simultaneously to match the rate at
which workers flow into unemployment s, as well as the volatility of the job-finding rate f over the
cycle: The former requires a large average surplus; the latter requires a small marginal SurpluleI
The standard Mortensen and Pissarides model cannot achieve this because of its inherent linearity.

Equation also suggests that there is an additional effect at work in the form of the variable
w, the steady state employment share of hiring firms. To understand the significance of this term,
note that in the standard Mortensen and Pissarides model where av = 1, w is equal to one: With a
linear technology, a firm that reduces its employment will shed all of its workers since, if one worker
is unprofitable at a firm, all workers are unprofitable. As a result, all surviving firms at a point in
time are hiring firms in the standard model. In contrast, in the generalized model, shedding firms
do not reduce their employment to zero because reducing employment replenishes the marginal
product of labor. Hence w will be less than unity, and inspection of and reveals that
this will lead to greater amplification relative to the standard model@ Intuitively, it is as if the
economy has to rely on a smaller mass firms to hire workers from the unemployment pool, which

in turn leads to a larger increase in unemployment in times of recession.

3.5.4 The Beveridge Curve

Until now, we have been concentrating on the cyclicality of worker flows implied by the general-
ized model. Readers of Shimer (2005), however, will recall that the standard search and matching
model also fails to match the observed cyclical volatility in the vacancy rate in the U.S., and
especially so if one allows job destruction to move countercyclically.

Table 2 reiterates this message: While vacancies are markedly procyclical, with an empirical
elasticity with respect to output per worker of 2.91, calibration of the Mortensen and Pissarides
model yields a countercyclical vacancy elasticity@ Shimer (2005) has emphasized that this feature
of the standard search and matching model in turn leads to a dramatic failure to account for a key
stylized fact of the U.S. labor market: the negative relation between vacancies and unemployment,

known as the Beveridge curve.

27Mortensen and Nagypal (2007a) favor an average flow match surplus of [b/ (Y/N)] 71 =1 = ﬁ —1 = 37 percent.

The corresponding value implied by our calibration is ﬁ — 1 = 64 percent. The worker’s surplus in our simulation
is also substantial: Workers obtain a (E[w] — b) /b = 18 percent flow surplus from employment over unemployment.
28The reader may worry whether (1 —n) (5 — b) — nBcf is positive or not. To see that it is, note that we can

a—1
rewrite it as (1 —n) ( 2222~ —b) — nBch, and observe from equations (3.13) and (3.14) that it is, in fact, the
1-n(1-a)

marginal flow surplus of a firm, and therefore must be positive.

29This arises because countercyclical job destruction leads to an offsetting increase in hires in times of recession to
maintain balance between unemployment inflows and outflows, and thereby stymies the procyclicality of vacancies
(Shimer, 2005; Mortensen and Nagypal, 2007b).
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Figure 4 plots the Beveridge curve relation from model-generated data (the hollow circles), and
compares it with the empirical analogue using vacancy data from the Job Openings and Labor
Turnover Survey (the dots). While the model-generated Beveridge curve has a slightly shallower
slope, it nonetheless lies very close to the array of observations witnessed in recent data. This can
be traced to the results in Table 2: The cyclicality of vacancies in the model lies very close to its
empirical counterpart, with a cyclical elasticity of 2.75 lying only a little below the value of 2.91 in
the data.

What emerges from Table 2 and Figure 4 is a coherent and quantitatively accurate picture of
the joint cyclical properties of both flows of workers in and out of unemployment, as well as the
behavior of unemployment and vacancies. In addition to providing a plausible mechanism for the
cyclical amplitude of the job-finding rate, the model also presents an environment in which this can

be reconciled with the cyclical behavior of job destruction and vacancy creation.

3.5.5 Propagation

A less well-documented limitation of the standard search and matching model relates to the
propagation of the response of equilibrium labor market tightness to aggregate shocks to labor
productivity. In the Mortensen and Pissarides model, the vacancy-unemployment ratio is a jump
variable and therefore moves contemporaneously with changes in labor productivity. Empirically,
however, the vacancy—unemployment ratio displays sluggish behavior, and is much more persistent
than aggregate labor productivity, a point emphasized by Shimer (2005) and Fujita and Ramey
(2007).

An appealing feature of the model presented in sections 2 and 3 is that it admits a natural channel
for the propagation of the response of the vacancy-unemployment ratio to aggregate shocks. The
determination of 6 over time depends on the evolution of the distribution of employment across
establishments H (n). Inspection of equation , the law of motion for the distribution of
employment across firms, reveals that H (n) is not a jump variable, but is instead a slow moving

state variable in the model. In particular, rewriting (3.31)) yields
(3.35) H(n) = H_y(n) = =9 (n)[H-1(n) - H* (n)],

where 9 (n) = A (1 ~G[R, (n)]+GI[R (n)}) and H* (n) is the steady state distribution that sets

30For notational simplicity, we suppress the dependence of R, Ry, and H on the aggregate state variables N and
p.
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H (n)—H_1(n)=0.

Equation provides an important source of intuition for what factors are likely to drive
propagation in the model. In particular, the rate of convergence to steady state 9 (n) is determined
by two factors. First, less frequent idiosyncratic shocks, as implied by a lower value of A, will
cause fewer firms to adjust employment, and thereby slow the reallocation of employment across
firms. Second, the size of adjustment costs will determine the gap between R, (n) and R (n) in a
firm’s optimal employment policy function in Figure 1. Larger adjustment costs will widen this
gap, reducing ¥ (n) in equation , and slowing the dynamics of H (n). This suggests that the
magnitude of labor adjustment costs has important implications for the propagation of the response
of unemployment to aggregate shocks.

Figure 5 plots the dynamic response of unemployment, labor market tightness, the job-finding
rate, and the unemployment inflow rate following a permanent one percent decline in aggregate
labor productivity using simulated data from the model. This confirms that the generalized model
yields some propagation of the response of unemployment and labor market tightness (and thereby
the job-finding rate). It takes around 20 months for unemployment to adjust to the shock in the
model, and 9 months for the response of § and f to dissipate.

This is a substantial improvement over the instantaneous response of 6 and f implied by the
standard search model. However, the magnitude of the propagation implied by the model is not
quite enough to account fully for the persistence of the vacancy-unemployment ratio observed in
the data. In their detailed analysis of the empirical dynamics of labor market tightness, Fujita and
Ramey (2007) show that 6 takes around five quarters, or 15 months, to adjust to an impulse to
aggregate labor productivity in U.S. data.

An additional message of Figure 5 concerns the dynamics of the unemployment inflow rate
s. Panel D reveals that s spikes upward instantaneously following a reduction in aggregate labor
productivity, subsides in the immediate aftermath of the shock, and then converges toward a new
steady state value over the course of the next two years. In the wake of a recessionary shock a
discrete mass of jobs becomes unprofitable and is destroyed immediately, mirroring the implications
of the standard Mortensen and Pissarides model (Mortensen, 1994). Following the shock, the inflow
rate begins rising again as firms receive productivity shocks at rate .

Viewed together, the joint dynamics of the job-finding and inflow rate in the model bear a
remarkable resemblance to the qualitative features of the response of f and s over the cycle: Reces-

sions are characterized by a wave of inflows which then recedes and is accompanied by persistent
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declines in rates of job-finding, just as observed in empirical worker flows in U.S. data (see, for

example, Elsby, Michaels and Solon, 2009).

3.5.6 Extensions

The previous sections have shown that the model derived in sections 2 and 3 can account for
many of the cross-sectional and cyclical features of the U.S. labor market. In this section, we push
the model harder. We consider two additional outcomes which the model can speak to, but was not
designed to account for: the cyclical dynamics of the cross-sectional distribution of establishment

size, and the employer size-wage effect.

Cyclical Dynamics of the Employer Size Distribution Until now, we have focused sep-
arately on the implications of the model for the cross section of employers and for the aggregate
dynamics of labor stocks and flows. Recent literature, however, has sought to understand the joint
dynamics of the cross section. Moscarini and Postel-Vinay (2009) in particular emphasize empirical
regularities in the cyclical behavior of the cross-sectional distribution of establishment size: The
share of small establishments rises during recessions, while the shares of larger firms decline. Figure
6 reiterates this finding. It uses annual data from County Business Patterns for the years 1986 to
2007 on the number of establishments by employer size, and plots the log deviations from trend
of the establishment size shares against the unemployment rate. The dots plot the data, and the
dot-dashed lines the corresponding least squares regression lines. The share of establishments with
1 to 19 workers rises with unemployment, while the shares of establishments with more than 20
employees decline as unemployment rises.

The blue dashed lines in Figure 6 plot the analogous relationships implied by simulations of the
model of sections 2 and 3. The results are very encouraging: The model replicates the observation
that the share of establishments with fewer than 20 employees increases in times of recession, while
the shares of the larger size classes decline. In addition, the model also provides a reasonable
account of the magnitude of the cyclicality of the establishment shares. It comes very close to
replicating the cyclical sensitivities for the 20 to 99 employee and the 1000+ employee groups, and
implies around one half of the cyclical sensitivity of the 1 to 19 and 100 to 999 employer size classes.

The observation that the share of smaller establishments rises in a recession in both the model
and the data is not in itself a surprising fact, since aggregate employment, the mean of the distri-
bution of establishment size, falls during recessions. What is noteworthy about the model is that it

replicates the position in the distribution—at around 20 employees—at which this effect takes hold,
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as well as the magnitude of the cyclicality in some of the size classes. Given that these implications
of the model are venturing even farther afield from the moments it was calibrated to match, we

view the results of Figure 6 as an important achievement.

Employer Size-Wage Effect Our final application relates to the observation that workers
employed in larger firms are often paid higher wages—the employer size-wage effect noted in the
influential study by Brown and Medoff (1989). An attractive feature of the model is that, by
incorporating a notion of employer size, and by modeling the wage bargaining process between a
firm and its many workers, it can speak to such issues.

Casual inspection of the wage equation is not heartening in this respect, however: Due to
the diminishing marginal product of labor in the model, one might anticipate that the model predicts
a negative correlation between wages and employer size, in direct contrast to Brown and Medoff’s
observation. Further consideration of equation , though, reveals that such a conclusion would
be premature: While the diminishing marginal product of labor does set in for larger employers,
it is also the case that larger employers will be those with higher idiosyncratic productivity .
The implications of the model for the employer size-wage effect depend on which of these forces
dominates P

Figure 7 illustrates the relationship between average log wages and log employment implied by
the model. It takes simulated data based on the calibration in Table 1, and plots the results of a
nonparametric locally weighted (LOWESS) regression of log firm wages on log firm employment.
This reveals that the model does in fact predict a positive employer-size wage effect, qualitatively
in line with the results of Brown and Medoff. As it turns out, the effect of higher idiosyncratic
productivity outweighs the effect of diminishing marginal product.

Figure 7 also provides a sense of the magnitude of the size-wage effect. Brown and Medoff (1989)
report that, controlling for observable and unobservable measures of labor quality and for differences
in workplace conditions, a worker moving from an establishment with log employment one standard
deviation below average to an establishment with log employment one standard deviation above
average would receive a wage increase of around 10 percent. As shown in Figure 7, the counterpart
implied by the model is a wage premium closer to 2.5 percent.

Thus, while the model yields a positive size-wage effect, it generates only around one quarter

31Bertola and Garibaldi (2001) also include a discussion of this point. Their model is somewhat less general than
that presented in this paper, however. Like Bertola and Caballero (1994), the authors analyze a linear approximation
to the marginal product function. In addition, a more restrictive process for productivity shocks is used: It is assumed
that, if a firm receives a negative disturbance, its productivity reverts to the minimum of the distribution’s support.
Since these transitions are the only means by which the model generates inflows into unemployment, all firms that
receive a negative shock must shed workers; inaction is, by assumption, never an optimal response for these employers.
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of the magnitude of the effect observed in the data. We do not view this necessarily as a problem,
however. The mechanism that accounts for the size-wage effect in the model—the interaction of
surplus sharing with heterogeneity in employer productivity—is only one of a large number of
proposed channels. Oi and Idson (1999) present a summary of these, including efficiency wages,
market power, specific human capital, among others. In a model of wage posting, Burdett and
Mortensen (1998) demonstrate that on-the-job search in the presence of labor market frictions also
can generate a positive employer size-wage effect, as higher-paying firms recruit and retain more
workers. The results of Figure 7 suggest that the model presented in this paper leaves room for

these additional explanations.

3.6 Summary and Discussion

In this paper, we have introduced a notion of firm size into a search and matching model with
endogenous job destruction. This yields a rich, yet analytically tractable framework. In a series
of quantitative applications, we show that the model provides a useful laboratory for analyzing
the salient features of both the dynamics and the cross section of the aggregate labor market.
Specifically, a calibrated version of the model provides a coherent account of the distributions of
establishment size and employment growth; the amplitude and propagation of the cyclical dynam-
ics of worker flows; the Beveridge curve relation between unemployment and vacancies; and the
dynamics of the distribution of firm size over the business cycle.

A number of avenues arise naturally in the light of this. First, the model has a well-defined
concept of a firm and so lends itself to estimation using establishment level data. As a result, the
analytical framework developed here will complement recent research efforts that have sought to
solve and estimate search models using numerical methods (e.g. Cooper, Haltiwanger and Willis,
2007).

Second, our interpretation of the standard search and matching model as a model of kinked
adjustment costs raises the question of the aggregate implications of other forms of adjustment costs
in the labor market. Recent research has emphasized the importance of fixed adjustment costs in
explaining the empirical properties of labor demand at the micro level (see for example Caballero,
Engel, and Haltiwanger, 1997, and Cooper, Haltiwanger, and Willis, 2004). Incorporating these
adjustment costs into the model will provide a unification of the joint insights of the two dominant
approaches to the modelling of aggregate labor markets—the search and matching framework, and

models of adjustment costs.
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A final extension relates to the nature of wage setting. An attractive feature of incorporating firm
size into models of the labor market is that an assessment of the multilateral dimension to wage
bargaining between a firm and its many workers becomes feasible. This has been of particular
interest in recent literature that has emphasized the importance of rigidities in the structure of
wages within a firm, as well as of individual wages over time, for determining the volatility of
unemployment (Bewley, 1999; Hall, 2005). While the wage bargaining solution derived in the
present paper seeks to improve upon approaches in previous work, it is in many ways an idealized
environment in which the wages of all workers can be renegotiated costlessly. This idealized setting,
however, provides a fruitful benchmark for analyzing the implications of rigidities in renegotiation

of wages within a firm, as well as across time.
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Table 3.1: Calibrated Model Parameters

Parameter Meaning Value Reason
¢ Matching elasticity 0.600  Petrongolo and Pissarides (2001)
H Matching efficiency 0.129  Pissarides (2007)
a F(n)=n" 0.590  Labor share = 0.72
yi) Discount factor 0.999  Quarterly interest rate = 0.012
b Value of leisure 0.385  Mean inflow rate = 0.0078
c Flow vacancy cost 0.120  Hiring cost = 14% quarterly wage
n Worker bargaining power 0.443  Cyclicality of new hire’s wage
L Labor force 18.50  Mean job-finding rate = 0.1125
A Arrival rate of x 0.043 LBDdata: Pr(AlInn=0)=0.372
X Mean of x 1.000  Normalization
o, Std. dev. of x 0.250 LBD data: o(Alogn)=0.416
7] Mean of ¢ 1.177  Mean employment = 17.25
” Std. dev. of ¢ 1.015  Minimum employment = 1

NOTE: Consistent with the timing of the model, flow parameters are reported at a weekly
frequency. First and second moments of fixed firm productivity ¢ and the innovation to firm
productivity x are reported (rather than the parameters of the respective Pareto distributions) for
ease of interpretation.



119

Table 3.2: Cyclicality of Worker Flows: Model vs. Data

Model / Outcome Mean Level Elasticity w.r.t. output per worker
Data Model Data Model

A. Generalized

Job Finding Rate, f [0.1125] [0.1125] 2.65 2.75

Inflow Rate, s [0.0078] [0.0078] -1.89 -1.68

Vacancies, V - - 291 2.75

Tightness, 8 = V/U [0.72] [0.72] 6.44 6.88

B. MP (i)

Job Finding Rate, f [0.1125] [0.1125] 2.65 1.29

Inflow Rate, s [0.0078] [0.0078] -1.89 [-1.68]
Vacancies, V - - 291 -0.478
Tightness, 6 = V/U [0.72] [0.72] 6.44 2.29

C. MP (ii)

Job Finding Rate, f [0.1125] [0.1125] 2.65 [2.75]
Inflow Rate, s [0.0078] 0.0184 -1.89 [-1.68]
Vacancies, V - - 291 -0.032
Tightness, 0 = V/U [0.72] [0.72] 6.44 3.76

NOTE: Outcomes reported in brackets are calibrated. Non-bracketed outcomes are implied by
the respective model. Flow outcomes are reported on a weekly basis. Empirical elasticities for f
and s are computed using quarterly averages of the job-finding rate and the unemployment
inflow rate from 1948Q1 to 2007Q1 derived in Shimer (2007). Following Shimer (2005), series
are detrended using a Hodrick-Prescott filter with smoothing parameter 10°. Following
Mortensen and Nagypal (2007a), elasticities with respect to output per worker are obtained by
regressing the log deviation from trend of f and s on the log deviation from trend of non-farm
business output per worker obtained from the Bureau of Labor Statistics. Outcomes for the
Mortensen and Pissarides model in panels B and C are generated from Mortensen and Nagypal’s
(2007b) modification of the model to allow for unbounded idiosyncratic shocks.
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Figure 3.1: Optimal Employment Policy of a Firm
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NOTE: The dots plot data on the shares of firms in successive employment
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plots the steady state distribution of employment across firms implied by
the generalized model using the parameters reported in Table 3.1.

Figure 3.2: Employer Size Distribution: Model vs. Data
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Figure 3.3: Employment Growth Distribution: Model vs. Data
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from the model. Series are plotted as deviations from their temporal means.

Figure 3.4: Beveridge Curve: Model vs. Data
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NOTE: The solid line plots the mean log wage, conditional on employer
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steady state of the model using the parameters reported in Table 3.1.
Simulated data were generated for 208 periods (four years); plotted series
are based on the final period.

Figure 3.7: Employer Size-Wage Effect implied by the Model



127

3.7 Appendix

3.8 Solution of the Simulated Model

Here we present technical details of the solution to the model in sections 2 and 3 for the purposes
of the quantitative applications in section 4. For simplicity, we present the solution approach for a
given fixed firm productivity ¢, so we supress this notation in what follows. Aggregation across ¢

is achieved simply by integrating over the known distribution ¢.

Steady State Optimal Employment Policy Idiosyncratic shocks evolve according to (?7?)
with x ~ Pareto (1 — k1 kT) Denoting the distribution function of x as G, we can rewrite the

recursion for the function D (n,z) in Proposition 3 as:

Ry (n) 0o
Dn,z) = (1-X\x(z)+A X (&) dG (z') + A CaG (')
R(n) Ry(n) 4
Ry(n) N
(3.36) +8(1—=XN)D(n,x)+ ﬂ)\/ D (n,2")dG (2'),
R(n)

where x (z) = (1 —1n) [% - b} —nBfg. We conjecture that the function D (n,z) is of the
form D (n,z) = do +dyx (). Substituting this into the latter, and equating coefficients, we obtain

the following solution for D (n,z):

1-A

D(n,z) = mX(v’U)
A G[R, ()] - G[R(n)] "
TR a6 ) - GlRG)
(3.37) + 1-— é [R'u (TL)] )\E
1—5(1—/\)—6>\(~[Rv(n)]—é[R(N)]) a4

where Q (n) = E(x (2') |2’ € [R(n), Ry (n)]). Substituting into the first order conditions for hires
and separations (3.13]) and (3.14) yields two nonlinear equations in the optimal employment policy
R (n) and R, (n) that are straightforward to solve numerically. The aggregate employment stock

and flows are then obtained directly from applying the results of Proposition 5.
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Average Product and Average Marginal Product The average product of labor implied

by the model is given by APL = F [pxna_l}. Note that:

E [zn®71] :/ deG (m|n)} n®"YdH (n).

Moreover, the optimal employment policy implies that, given n,  must lie in the interval [R (n) , R, (n)],
but is otherwise independently distributed. Thus:

f;”(n) xdG (z)

_ (n) _ 1
(3.38) =6 o) = G e = 2

[R (n) + Ry (n)],

where the last equality follows from the assumption of uniform idiosyncratic shocks in the simula-

tion. Thus:

1
(3.39) APL = E [pan®~'] = p/ 5 [R(n) 4+ R, (n)]n>"dH (n).
The average marginal product of labor is simply given by E [MPL] = E [pran®~'] = aAPL.

Average Wages It follows from equation (3.9)) that the average wage across firms is given by:

_ n c
3.40 Wy = ———<E[MPL|+n8f-+(1—n)b.
To obtain the average wage across workers, which we denote w,,, note that w,, = F [%w (n, x)}
where w (n, x) is the wage in a given firm defined in (3.9). That is, it is the employment-weighted

average of wages across firms. Thus:

_ n 1 o c
(3.41) “’w:1_n(1—a)E(n)E[pm” ]+nﬁf§+(1—n)b-

This has a very similar structure to the average wage across firms. It follows that:

(3.42) = T s | 5 R+ R (]ndH () + 0 + (1 =)

Finally, the average wage of new hires, which we denote w,,, is equal to a hiring—weighted average

of wages across hiring firms. Noting from (3.12) that idiosyncratic productivity of hiring firms is
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given by = R,, (n), we have that:

dG [Ry (n)]

—1 — G[RU (n_l)] dH (TL,l) .

(343) wp =E[E(wn,z)|n>n_1,n_1)] = // w (n, Ry (n))

3.9 Proofs

Conjecture The optimal employment policy function is of the form specified in .
We will later verify in the proof of Proposition 2 that the Conjecture is consistent with the

solution for the wage equation obtained in Proposition 1.

Proof of Proposition 1 Note first that, under the Conjecture, we can write the marginal

surplus to a firm recursively as:

00 R, (n)
(3.44) J (n,x) = pxF' (n) —w (n,z) —w, (n,z)n+ gdG (') + J(n,2")dG (z').
Ry (n) R(n)

In addition, we can write the value to a worker of unemployment as:

(3.45) U—b+ﬂ{(1f)U/+f/ooo h W(va(x’),x/)l_dé;(%dH(n)}.

Ry, (n)

Upon finding a job, which occurs with probability f, the new job must be in a firm which is posting
vacancies. This implies that the idiosyncratic productivity of the firm, ' > R, (n), and that the
level of employment in the hiring firm, n’ = R ! (2’). Moreover, since firms differ in size, there is a
distribution of employment levels, H (n), over which an unemployed worker will take expectations

when evaluating the expected future benefits of being hiredm It is useful to rewrite the worker’s

value of unemployment as:

(346)  U=b+p {U’ + f/ooo /:(n) W (R (o), o) — U] %dH (m} .

Then note that, due to Nash sharing, the worker’s surplus in an expanding firm, W (R; L'y, ) —

U' = 114 J (R, (2'),2'), and moreover that, by the first-order condition for a hiring firm (see

(3.4)), J (R;* (2'),z) = ¢/q. Thus, we obtain the simple result:

v

(3.47) U=b+6U’+6f%§.

32The reader may wonder why the integral in (3.45)) is not taken over the joint distribution of n and z’. The reason
is that, conditional on =’ > R, (n), n provides no additional information on z’; see the optimal employment policy

function (3.12)).
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The value of employment to a worker can be written as:

R(n)
3M&p,x) = w(n,z)+p {/0 [5U'+ (1—35)W (R " (2),2")] dG (')

R,,,(n) o0
+/ W (n,2") dG (2") +/ W (R, (2'),2') dG (:z:’)} :

R(n) Ry (n)

An employed worker’s expected future payoff can be split into three regimes. If the firm sheds
workers next period (z' < R(n)) then the worker may separate from the firm. We denote by
§ the probability that a worker separates from a firm conditional on the firm shedding workers.
If the worker separates, she transitions into unemployment and receives a payoff U’.  Other-
wise she continues to be employed in a firm of size n’ = R™'(z’). Note that Nash sharing
implies that W (R_l («') ,x’) -U = ﬂ—nJ (R_l (a") ,m’), and that, by the first-order condition,
J(R7'(2'),2') =0. Thus, W (R™!(2’),2’) = U’. In the event that a firm freezes employment
next period (2 € [R(n), Ry (n)]) then Nash sharing implies that W (n,2’) — U’ = 1.J (n, ).

Finally, in the event that the firm hires next period, W (R;* (2/) ,2’) = U’ = =-<. Thus, we have

c
-nq

that:

0o Ry, (n)
(3.49) W (n,z) =w(n,z) + BU' + f—1— / $dG (') + B—1— / J (n,2')dG (z) .
1 Ry (n) 4 L= Jrm)

Subtracting the value of unemployment to a worker from the latter, we obtain the following de-

scription of the worker’s surplus:
(3.50)

W(na:)—U:w(n:c)—b—&—BL/oo Cacy s [ Fnatyde @) - gr .
’ ’ L=nJr,mn) 4 L= Jrm) ’ 1—ngq

Under Nash, this must be equal to ﬁJ(n,x), where J (n,xz) is as derived in 1D so that we

have:
(351) wlna) = |poF (n) = w, () -+ 57 + (0=,

as required.

Proof of Proposition 2 Given the wage function in (3.9), it follows that the firm’s
objective, (3.3), is continuous in (n_1,x) and concave in n. Thus, it follows from the Theorem of

the Maximum that the firm’s optimal employment policy function is continuous in (n_1,z). Given
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this, it follows that the employment policy function must be of the form stated in Proposition 2.

This verifies that the Conjecture stated at the beginning of the appendix holds.

Proof of Proposition 3 First, note that one can re-write the continuation value condi-

tional on each of the three possible continuation regimes:

I (n,2’) if 2/’<R(n),
(3.52) M(n,2) =4 M°(n,2’) if 2’ e[R(n),R,(n),
It (n,z’) if 2> R,(n),

where superscripts ~/%/* refer to whether their are separations, a hiring freeze, or hires tomorrow.

Thus we can writdok

R(n) Ru(”) oo
(3.53) /H (n,2')dG (z'|x) = / I~ (n,2')dG + / ° (n, 2') dG + / 0t (n,2') dG.
0 R(n) Ry (n)

Taking derivatives with respect to n, recalling the definition of D (-), and noting that, since II (n, 2’)
is continuous, it must be that I~ (n, R(n)) = II° (n, R (n)) and II° (n, R, (n)) = I (n, R, (n)),

yields:

R(n) Ry (n) 00
(3.54) D (n,x) = / I1,, (n,2') dG + / 2 (n,2") dG + / I} (n,2') dG.
0 R(n) R,(n)

Finally, using the Envelope conditions in Lemma 1 below, and substituting into (3.54) we obtain

(3-15) and (3.16) in the main text:

D(nz) — /R“(n){u—n) [p“"_a)—b} ~ s dci (o)

R(n) L—n(1
[e%s) c R, (n)
+/ G (2']z) + B D (n,2) dG (2'])
Ry(n) 4 R(n)

(3.55) (CD) (n,x).

To verify that C is a contraction mapping, we confirm that Blackwell’s sufficient conditions for a
contraction hold here (see Stokey and Lucas, 1989, p.54). To verify monotonicity, fix (n,z) = (i, T),
and take D > D. Then note that:

(3.56)

Ry(n) R, () Ry(n)
/ D (7, 2') dG (2/|7) / D (,a') dG ('|7) = / [D(3.2") ~ D (3.2)] dG (a']7) > 0.
R(n) R(n) R(n)

33Henceforth, “dG” without further elaboration is to be taken as “dG (z'|x)”.
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Since (7, T) were arbitrary, it thus follows that C is monotonic in D. To verify discounting, note

that:

3.57)  [C(D+a)](n,z) = (CD)(n,z) + Ba[G (R, (n) [x) — G (R (n)[z)] < (CD) (n,z) + fa.

Since 8 < 1 it follows that C is a contraction. It therefore follows from the Contraction Mapping

Theorem that C has a unique fixed point.

Lemma 1 The value function defined in has the following properties:

(3.58) I, (n,2’) = 0,
/ a—1
H’IQL n,x/ = 1_77 M_b —775f£+5D TL,LU/,
() = - | © 43D (1)
I (n,2') = c¢/q.
Proof of Lemma 1 First, note that standard application of the Envelope Theorem implies

that 11, (n,2’) = 0 and II} (n,2’) = ¢/q. It is only slightly less obvious what happens when
An’ = 0, i.e. when the employment is frozen next period. In this case, n’ = n and this implies

that:

(3.59) 1° (n,2') = pz' F (n) —w (n,2")n + B / I (n,z")dG (2" |2) .

It therefore follows that:

(3.60) 1 (n,2') = pr' F' (n) —w (n,2') —wy, (n,2')n + B / I, (n,2") dG (2" |x") .

Since, by definition D (n,z") = [II,, (n,2”) dG (2" |z'), the statement holds as required.

Proof of Proposition 4 First note that if & evolves according to (3.17), then we can

rewrite the recursion for D (n,z) as:

Y A Ry(n) 5
IR S SR S PN 2 SR N
(3.61) +1/3(1A)/Rv<n>qu(x)+1/3(1A)/R<n) D (n,2")dG (2'),

1

where x () = (1 —n) [% - b} —npch. It follows that the LHS of the first—order conditions,
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and are increasing in x, because y (x) is increasing in z. Thus, to establish that
OR,/0p < 0 and OR/Jp < 0, simply note that the function D (n, z) is also increasing in p and thus
the LHS of and are increasing in p.

To ascertain the marginal effects of § we first need to establish the marginal effect of 6 on the
function D (n,z). Rewriting f/q =60 and ¢ = ¢ () in , differentiating with respect to 6, and
using the first—order conditions, and , to eliminate terms we obtain:

1—A (1 —po) cq (0) ApT

(3.62) Dezﬂﬂcl_ml_Ml_po” g g 1=B0=-X(1-pO)]

where p° = G (R, (n)) — G(R(n)), pt =1 -G (R, (n)), and p~— = G[R(n)]. Note that Dy is
independent of z. Differentiating the first—order condition for a hiring firm, (3.13f), with respect to

6 we obtain:

npBe cq' (0) 1-B(1-Xp7)

T FA-A0I-2 "¢ ¢ T-BL-ra—p ="

63 —nper ST 4 g, -

since ¢’ (f) < 0. Thus it follows that OR,/90 > 0. Likewise, differentiating the first—order
condition for a shedding firm, (3.14]), with respect to 6 we obtain:
nBe cq' (6) Apt

(3.64) —UBC‘F/BDG:_l_ﬁ[l_)\(l_pO)] —5(1 q 1—5[1—)\(1_1?0)].

Thus, OR/90 >0 <= n > R;'G™! (1 1 L{) where ¢,9 = 410

€q6 = dn6-

Proof of Proposition 5 Proof of and : See main text.
Proof of : First note that a necessary condition for a firm to shed workers is that it

receives an idiosyncratic shock, which occurs with probability A. In this event, the number of
separations in a firm that is shedding workers is equal to n_; — R™! (z), since separating firms set
employment, n = R™! (z). Now imagine, counterfactually, that all firms shared the same lagged

employment level, n_;. Then, the aggregate number of separations in the economy would equal:

R(n_1) B
(3.65) An_y) =X [n_y — R (2)] dG (z),

ZLmin

where Zni, is the lower support of idiosyncratic productivity. Using the change of variables,
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z = R (n), and integrating by parts:

dn

min Mmin

(3.66) A(n_y) = A/nfl (n_y—n) GO 3 [ G R ()] an.

Now, of course, the true aggregate number of separations is equal to S = [ A (n_1) dH (n_1), where
H (+) is the c.d.f. of employment. Denoting ny.x as the upper support of H (), further integration

by parts reveals that:
(3.67) S = A () — A / G (R (n_1)) H (n_y) dn_, = A / 1~ H (1)) G[R (n)] dn,

as required. A similar method reveals that the aggregate number of hires in the economy, M =

A [ H (n) (1 —G[Ry (n)]) dn. It follows from the steady state condition for the distribution for

employment, (3.19)), that separations, S, are equal to hires, M.

Proof of Proposition 6 Given that aggregate shocks evolve according to (3.25)), and
denoting the forecast equations for N and 6 in (3.26) as N’ (N,p) and 6’ (N’, p) respectively, we

can write the marginal effect of current employment on future profits as

1 1
(368) D(n’vavp;o—;D) = id(nax,N/ (N7p+0p)ap+ap) + id(nax,N/ (Napfo-p)apfa-p)a

where
Rv(n,N’,p') o &
d(n,z, N'(N,p),p") = / X(n,x’,N’,p')dG(x’|x)—|—/ cl0" (N, p))” dG («'|x)
R(n,N’,p") Ry (n,N',p")
Ru(n,N',p’)
(3.69) +3 D (n,2',N' (N,pr),p")dG (2'|z),
R(n,N’,p")

a—1
and x (n, @, N,p) = (1= ) [ 225525 — b| = nBeB 0" (N, 1) [p) = xo + xapz + 2B 0' (N, /) [p).

Taking a Taylor series approximation to D (n,z, N, p;o,) around o, = 0 we obtain
(3.70) D (n,z,N,p;0,) = D (n,z, N*,p;0) + Dy, (n,z, N*,p;0) 0, + Dy (N — N¥),

where Dy = Dy (n,2, N*,p;0). It is straightforward to show that Dy, (n,z, N*,p;0) = 0, and
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that D} = dn' (n,2z, N*,p) vn. Under the conjectured forecast equations in (3.26)), we can Writ@

Rz,(n,N/,p/)
dN’ (mx,N’ (N,p/),p/) = / XN’ (n,x/,N/,p/) dG((El‘.’IJ)
R(n,N’,p")

+ /R oy O OV O (V) G )
w(n,N’",p’

Rv(n, /’p/)
(3.71) 49 [ Dy (n,a/, N’ (N.5f) .1') dG ('|).
R(n,N’,p")

Evaluating at N = N* and p’ = p, and noting that xn/ (n,z, N',p) = x20nvy, and 0y, (N*,p) =

0, we obtain

Ry(n,N*,p) o1 [
dy' (n,z, N*,p') = x20nvN / dG (z'|z) + cpfnO* / dG (z'|x)
R(n,N*,p) R, (n,N*,p)
Rv(nvN*ap)
(3.72) +6 Dy (n,2', N*,p) dG (z'|z) .
R(n,N*,p)

Recall from above that D} = dn’ (n,z, N*,p) viy. Putting this together yields

o0

dG («'|z) + coOnvnd / dG (2'|z)

Ry (n,N*,p)

Ry (n,N™,p)

Dy = X29NV12v/
R(n,N*,p)

Ry(n,N™,p)
(3.73) +Bun / Dy (n,2', N*, p;0) dG (2'|z) .
R(n,N*,p)

Under the form of idiosyncratic shocks in (idiosync. eq.) we obtain:

(1= + A (GIR; ()] - G IR (n)])
1= By [(1=X) + (G [R; ()] - G R (n)])]
1 G[R; ()
1= Buy [(1=X) + (G R ()] - G IR ()]) |

Dy = GNVJQVXQ

(3.74) +OnvNAcHd™

where R, (n, N*,p) = R} (n) and R (n, N*,p) = R* (n) summarize the steady state employment

policy function.

Proof of Proposition 7 Consider the c.d.f. of employment growth for a given lagged

34Note that the effects of N’ on the limits of integration will cancel by virtue of the first order conditions for
optimal hiring and firing.
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employment level, n_1, and for the case where employment growth is negative:

Pr(Alnn <6ln_1,6 <0) = Pr(lnR'(z)—Inn_; <dn_4)
= Pr (x <R (e5n_1) |n_1)

(3.75) = MG [R(e’n_1)].
It follows that the unconditional c.d.f. of employment growth, given that Alnn < 0 is equal to:
(3.76) Ha () =Pr(Alnn < d) = /\/é (R (e‘sn_l)] dH (n_q),

It follows that the density of employment growth is given by ha (8) = HA (6) = A [ G’ [R' (e°n_1)] e®n_1dH (n_y),
as stated in the Proposition. A similar method reveals that, in the case where Alnn > 0:
(3.77)

—)\/G enl]dH(n 1), and ha (0 —)\/G’ R'(en 1)]en 1dH (n_q).

Finally there is a mass point at zero employment growth. Clearly that is given by:

(678 ha(0)=Ha (0) ~ Ha (07) = A [ (GIR, (n2)] = G IR (n-1)]) dH (n_a).

Lemma 2 If idiosyncratic shocks evolve according to , and the matching function is
of the form M (U,V) = pU®V1=%  then the marginal firm surplus defined in is given by

_ ypan>! BAp°
R (VA U B IO e Vi
N (L-m)b 5 nf =t
1=B(1 =X =8N “ql—-B(1—X\)—pBApY

(3.79)

and the marginal effects of n, p and 6 on J are given by

o= %pﬁa gfk) ["” T1-3 <1B—A§§ myyvd (")}
o 0
= ;% {z = 6(16—/\1;) - mpog(”)}
(380) R e e v
where § = =gl € (n) = E (/| € [R(n), R, (n))), and p°, p* are as defined in the Proof
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to Proposition 4.
Proof of Lemma 2 Since firms only receive an idiosyncratic shock with probability A each

period, we can use the recursion for J (n,z), (3.44), to write:

J(n,z) = m [wpzanafl 7(1777)17777609}
BA_ ¢ . BA e dC
(3.81) +15(1>\)‘Z/Rv(n)dG+1ﬂ(1)\)/R(n) J(n,2")dG.

We then conjecture that J (n,z) is of the form jy + jiz. Substituting this assumption into the

latter, and equating coefficients yields:

(L—mb  c nf—Ap*F BAP°

L R e e R T R
(3.82) o= %..

Solving for jo we obtain the required solution for J (n,x). Likewise, we can obtain recursions for

the marginal effects of n and 6:

B 1 1-a - BA B (n) )
Jn (nyz) = _1_6(1_)\) " Ypran +1_B(1_)‘)/R(n) Jn (n,2') dG,
_ 1 a—1 B/\ Ro(m) ’ ~
Jp (n,.’lf) = mwl‘an + m /};(n) Jp (n, xr )dG,
nBc+ 5/\q%q/ (0) fRU(n) dG BA Ro(n) ,
(3.83) Jo(noz) = — Ty 1—6(1—A)/R<n> Jo (n,2') dG.

Again using the method of undetermined coefficients, and noting that the Cobb Douglas matching

C

function implies ¢ = pf~? = q—zq’ (0) = %, yields the required solutions for J,,, J, and Jy.

~

Proof of Proposition 8 Total differentiation of the Job Creation condition, U (¢) =
L — N (0), yields df/dp = — (ON/0p)/(ON/06). Indexing firms by ¢, we can write aggregate
employment as N = E (n) = [n(n_1 (i),z (i);£) di, where n (n_1, ;&) is the employment policy
function that is common to all firms, which in turn depends on some parameters £ (which includes

p and 6). Differentiating yields:

(3.80) ON _/[871 on on_1] ..

875— 8754‘8”71 85 di.

Note from the form of the employment policy function in (3.12)) that On/9¢ = 0 if An (i) =0, and
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On/On_; =1 iff An (i) = 0. Substitution and separation of integrals yields

oN / n di + / o144 / on
85 :An; >0 3§ An; >0 2:An; =0 85 :An; <0 85

+ on 0 on_, - on
(3.85) = pE(af‘An>0)+pE<a£)+p E(@f

di
An; <0

An<0>,

where pt,p°, and p~ respectively denote the steady-state probabilities of raising, freezing, and
cutting employment. Note further that in steady state E (On_1/0¢) = E (On/0¢) = ON/IE, so
that we obtain the result that:

ON on
(3.86) o =F <ag

An>0)4+(1-mFE on An<0),
2
where 7 = p*/ (1 - po). Thus, we can rewrite the marginal effect of a change in p on 6 as:

a B (%]An>0)+(1-mE (% an<0)

dp TE (22| An>0)+(1—m)E (23| An<0)

(3.87)

Then note that the first-order conditions for optimal labor demand set the marginal firm surplus,

J (n,z) as follows:

c¢/q(0) if An >0,
(3.88) Jnay=1 710
0 if An <0.

It is immediate from Lemma 2 that n/0p = —J,/J, = 1 (n/p) regardless of whether An > 0

or An < 0. It remains to derive 9n/00 in each case. Log-linearizing the function J around n, p, z,

and 6, we obtain:

(3.89) log J =~ e, logn + e, (logp + log ) + € 59 log 6 + const.

Using this and totally differentiating the first-order conditions for optimal labor demand with

respect to n and 6, we obtain:

—dlogq(0) if An >0,
(3.90) ejndlogn + € j9dlog O =

0 if An<0.

Given the Cobb Douglas matching function assumption, ¢ (6) = uf~?, and it follows that dlog q () =
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—¢dlogd. Thus:

(3.91) on _dlognn | “rg i An>0,
09 dlogt 0 —mn i Ap <0,

Substituting this into (3.87), we obtain:

dlog¥ N 1 EJn
dlogp JCN l—awp—cgo’

(3.92)

where w = 7F (n|An > 0) /E (n) is the steady state share of employment in hiring firms. In
what follows, we evaluate the approximation (3.89) to the marginal surplus around mean em-

ployment, N = E (n), and mean productivity conditional on mean employment, x = £ (N) =

E (2’|’ € [R(N),R, (N)]). Thus, using the results of Lemma 2 it follows that we can write:

1 (1-a)ypaNot

= TNTo BN - A

E(N),

and:

g YpE (N)aN~t — (1 —n)b— B [nf — ApT]
B 1=B(1=X)—BAp° ’

(3.93)
where ¢ = (1 —n) /[1 —n (1 — «)]. Substituting back into the aggregate elasticity of § with respect

to p, we obtain:

dlog 6
dlogp

YpE (N) aN*—1

(3.94) Jo ~ we [Yp€ (N) aN*—t — (1 —n) b —npBcl] +nfct — (1 — w) ¢B§>‘p+.

Noting that the marginal product of labor in the average-sized firm is equal to p€ (N) aN*~! and

assuming A is sufficiently small, we obtain:

dlog6
dlogp

(1-n)p

(3.95) s @ol(L—n) (B —b) —nBeh] + npeh

where p = pp€ (N) N*L 4+ (1 — p)p&€ (N)aN*~t and p = an/[1 —n (1 — a)], as required.
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CHAPTER IV

The Analytics of Fixed Adjustment Costs and Myopic Rules
of Thumb

4.1 Introduction

The last twenty years have seen a breakthrough in the analysis of establishment-level employ-
ment dynamicsﬂ Hamermesh (1989) documented long periods of inaction, in which employment at
individual plants remained fixed, punctured by bursts of large changes in the number of workers.
It was apparent that a common assumption in the literature up to that time — employers make
small and frequent adjustments because they face a strictly convex cost of changing the size of the
workforce — may have induced plausible aggregate, but not microeconomic, dynamicsﬂ Davis and
Haltiwanger’s (1992) analysis of employment adjustment across tens of thousands of U.S. manufac-
turers confirmed that this lumpy behavior is pervasive at the plant level.

One source of such lumpiness is a fixed cost of adjustment. The simplest fixed cost is a lump
sum charge, C, that a plant pays whenever it makes any (net) change to the size of the workforce.
Since the adjustment cost “jumps” from zero to C for even the slightest change in employment, it
gives rise to the infrequent adjustment observed in plant-level data.

Our focus in this paper is the analytics of labor demand in the presence of a fixed adjustment
cost. We introduce a new method to solve an optimal labor demand problem that often serves as
the backbone of larger-scale models and which has, in previous research, generally been solved only
numerically. The principal payoff of this is that the solution allows us to look through the “black
box” that generally envelopes the numerical analysis of such problems.

In particular, the paper shows precisely how the solution to the dynamic problem nests the

corresponding static policy rule as a special case. Put differently, we demonstrate how to decompose

I This chapter was co-written with Michael Elsby.

2Caballero, Engel, and Haltiwanger (1997) argue that non-smooth adjustment frictions are necessary to fully
account for aggregate employment growth as well. See Cooper and Willis’ (2004) critique and Caballero and Engel’s
(2004) rebuttal.
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the solution to the dynamic programming problem into static and forward-looking components. The
first represents the contemporaneous effect of the adjustment friction on the optimal policy that
emerges even in a static setting, while the second summarizes the effect that expectations of the
future exert on the choice of current labor demand. Since the static model is straightforward and
well-known, this result goes a considerable way toward simplifying, and clarifying, what is often
thought to be a complicated optimization problem.

Moreover, we find that the forward-looking component of the optimal policy is, under certain
calibrations, quantitatively unimportant. The myopic, or static, rule serves as a reasonable “rule
of thumb” in the sense of generating paths of employment growth that match very closely those
induced by the true policy. This suggests that the myopic rule may be a good guide to understanding
the mechanics of rich dynamic models.

What lies behind this approximation result is the interaction between sufficiently small adjust-
ment frictions and sufficiently high uncertainty. It is commonly thought that a fixed cost raises the
return to being forward-looking because the firm can avoid costly-to-reverse errors by considering
the future consequences of its behavior. Of course, the strength of this effect is declining in the size
of the friction. A perhaps less appreciated point in this literature is that, if the distribution of future
outcomes is sufficiently diffuse, it is hard to improve upon the static policy since the firm’s forecast
of the future is relatively uninformative. In other words, a great deal of uncertainty over whether
today’s decision will be reversed effectively reduces the benefit of forming a state-contingent plan
to avoid such reversals. Critically, the estimates in the literature do point to frictions that are small
relative to the degree of idiosyncratic uncertainty.

The remainder of this paper is organized as follows. Section 2 presents the plant’s optimiza-
tion problem and solves for the optimal policy function under a certain regularity condition on
the stochastic process for idiosyncratic productivity. It delineates the relation between the static
and forward-looking policy rules and argues that the former is likely to serve as a very good ap-
proximation if the adjustment friction is relatively small and the magnitude of idiosyncratic risk
is substantial. In Section 3, we relax the regularity condition on idiosyncratic productivity, which
means that the forward-looking policy derived in Section 2 now functions more as an approximately
optimal rule. We conduct simulation exercises to explore the quality of this analytical approxima-
tion and it usefulness as a guide to the properties of the model. The section finds that it performs
very well. This raises, in turn, the question of whether the myopic rule, which bears a strong re-

semblance to the analytical approximation, also replicates the behavior the true forward-looking
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policy function. The section finds that, under the baseline calibration, it does. In Section 4, we
explore the robustness of this result to alternative calibrations and stochastic processes for produc-
tivity. While certain parameter configurations do challenge the quality of the myopic rule along
some dimensions, it still performs quite well on average. Section 5 concludes and outlines avenues

for related research.

4.2 The Plant’s Problem

4.2.1 Environment

The model is set in discrete time. At the beginning of the period, the plant’s idiosyncratic
productivity, x, is revealed. The plant must then decide the level of employment, n, and hours
per worker, h. We assume that hours per worker are costless to adjust, in which case the hours
decision is a straightforward intra-temporal problemﬂ In contrast, the plant faces a “disruption
cost” if it adjusts n: if the plant makes any change to the size of the workforce, it loses a fraction,
0 < 1— X< 1, of that period’s revenue. More precisely, if we let y (z,n, h) represent revenue (or

output), then the plant pays a cost
(4.1) c(z,n,h)=(1—ANy(z,n,h) for any An # 0.

Notice that this cost applies to net, rather than gross, changes in the number of workers. Thus, the
disruption cost is perhaps best thought of as induced by changes in the number of jobs rather than
the number of workers per seE| This formulation, which is actually just a variant on the conventional
fixed cost of adjustment, has been adopted by several authors who analyze employment dynamics
under non-convex adjustment frictions (see, Cooper, Haltiwanger, and Willis, 2005; Bachmann,

2009; and Bloom, 2009)

3To our knowledge, Sargent (1978) and Shapiro (1986) represent the only attempts to estimate the cost of adjusting
hours per worker. Both find that it is economically negligible and statistically insignificantly different from zero.
Given the available data at the time of their writing, each paper carries out estimation within a representative-
plant setting. We are not aware of any work that revisits this question using recently made available plant-level
data. Without further insight on this point, we follow the rest of the literature (see, e.g., Caballero, Engel, and
Haltiwanger, 1997; Cooper, Haltiwanger, and Willis, 2005; and Bloom, 2009) in assuming it is costless to adjust
hours per worker.

4To be sure, there are sources of gross adjustment costs, such as the cost of recruiting and training new hires (see
Barron, Berger, and Black 1997) and, in the case of layoffs, the taxes owed under “experience-rated” unemployment
insurance (UI) systems (see Anderson 1993). But these strike us as better modeled as costs that grow linearly in
An, rather than as a fixed cost, which is the subject of this paper.

5In Hamermesh and Pfann’s (1996) taxonomy of adjustment cost functions, the fixed adjustment cost is simply
a lump-sum charge that employers pay whenever they make a change to the size of the workforce. But since large
establishments “outgrow” any lump-sum cost, recent work has amended this formulation. Specifically, the dependence
of the disruption cost on the level of the current workforce does not change the essential character of the cost — it
remains discontinuous at the origin (An = 0) — and yet it guarantees that the cost remains quantitatively relevant
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Disruption costs are motivated in a variety of ways in the literature. When a plant reduces
its workforce, it may need to reassign the specific tasks once performed by separated workers to
those who remain at the plant. This reorganization may disrupt the normal flow of work and lead
to a slowdown in production. Alternatively, when the plant adds new jobs, those tasks must be
incorporated into the production process. The assimilation of these jobs into the normal pattern
of work may involve a good deal of “trial and error” that leads to reduced output initially.

The remainder of the plant’s environment consists of a production technology, a wage agreement,
and the law of motion for idiosyncratic productivity. The plant combines man-hours to produce

output, y, subject to a decreasing-returns-to-scale technology given by
(4.2) y (z,n,h) =z (nh)",

with 0 < a < 1E|
We assume that, when the plant selects hours and workers, it takes the compensation agreement
as given. This agreement relates labor input to the plant’s wage bill and is assumed to take the

form,
(4.3) W (n,h) =n (b+wh).

Notice that compensation is independent of the realization of idiosyncratic productivity, . Cooper,
Haltiwanger, and Willis (2007) show that this outcome emerges from a contracting problem between
a risk-neutral plant and a risk-averse worker. In this context, b may be viewed as unemployment
compensation and wh¢ as the disutility of labor supply, where w > 0 and ¢ > 1. Bloom (2009) also
adopts this formulation.

Lastly, it is necessary to specify the stochastic process of productivity. We assume that z follows
a geometric autoregressive process where the innovations are drawn from a uniform distribution

centered about zero:

(4.4) loga’ = p+plogx +¢&', & ~Ul—s,sg].

even for large establishments. To see that the discontinuity is present, note that y (z,n,h) =y (x,n_1 + An,h) #0
even if An = 0 (provided n_1,h > 0). Therefore, the adjustment cost, which is proportional to y if An # 0, is not
continuous at the origin: liman—0 [(1 —A) y (z,n—1 + An, h)] # 0. This generates the same “jump” in the cost of
adjustment observed in the lump-sum case.

SEquation may be generalized to treat the elasticity of hours and workers separately. While this may be
advisable in quantitative work (see Shapiro, 1986), it is not necessary for our purposes in this paper.
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Notice that the bounds on the innovation, &, imply bounds on the realization z’ for a given z. In

particular,

(4.5) z’ € [xPel ™5, aPelt].

This feature of the stochastic process will play an important role in what follows.
The assumption of uniform innovations has generally been defended on grounds of tractabilitym
To see why, it is helpful to inspect the conditional probability density function associated with (4.4]).
We begin with the CDF, which is given by
_logaz’ —p—plogz + s

! =Pr(X / =
G| 2) =Pr(X <a'| 2) - 7

and differentiate to obtain the probability density function:

(4.6) g(a'lx) =

2sx!”

This states that, despite the persistence in the stochastic process, the conditional pdf is actually
independent of this period’s x. This dramatically simplifies calculation of expected values. In
addition, while tractability is the motivation for the use of uniform innovations, we work in Sections
3 and 4 to demonstrate that quantitative analysis of the plant’s problem is not sensitive to this
assumption; the performance of the myopic rule is similar if, for instance, we assume lognormal
disturbances.

We are now prepared to state the plant’s problem. The value of the plant is given recursively
by the Bellman equation,

II(z,n_1) = max {x(nh)a — W (n,h) — (1 = X))z (nh)* x 1[An # 0] + B/H(x’,n) dG (x’|x)} ,

n,h

where 1 [An # 0] is an indicator function equal to one if the expression in brackets is trueﬁ Specif-
ically, if the plant adjusts employment, then it pays a cost equal to 1 — X of revenue, which leaves
it with receipts equal to z (nh)® — (1 — X) z (nh)® = Az (nh)®. Otherwise, it earns = (n_1h)“.

For reasons that will become apparent, it is helpful to re-write the Bellman equation as follows.

"Danziger (1999) and Gertler and Leahy (2008) both make use of the law of motion, . (They set p = 1,
but this is not necessary.) These authors analyze a price setter’s problem in the presence of a fixed cost of price
adjustment. Gertler and Leahy note that it is very difficult to solve such a problem for alternative distributions.

8The notation here follows Cooper, Haltiwanger, and Willis (2005).
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Let IT» (z) represent the value of adjusting employment, and let TI° (z,n_;) denote the value of

setting n = n_y, i.e., the value of “doing nothing”. Then II (z,n_1) is seen to be
II(z,n_1) = max {HA (z), II°(z,n_1)},
where
T2 () = max {x (nh)* =W (n,h) — (1 =Xz (nh)" + ﬁ/H (',n)dG (a:’x)}

and

1 (z,n_1) = max {x (n_1h)® =W (n_1,h) + ,B/H (@',n_1)dG (gc’|x)} .

4.2.2 Hours Per Worker

The choice of hours per worker is a simple intra-temporal problem. This allows us to solve
for the optimal choice of hours and substitute h out of the dynamic program. Since the cost of
adjustment is proportional to total output, it is apparent that the optimal choice of hours depends

on whether the plant adjusts employment. Specifically, the first order conditions for hours per

worker are
Aza\ =
(4.7) An#0:h= (if") n-t=a
w
1
{—a _l-a
(4.8) An=0:h= (Zg) n_s“.

These state that, for a given number of workers, the plant selects a lower level of hours per worker
if An # 0. The reason is that the disruption cost acts to diminish productivity, x, which lowers the
marginal product of labor (man-hours) and deters greater hours worked.

Substitution of the hours policy rule into the plant’s revenue function helps to illuminate the
nature of the disruption cost. Plugging and into the adjustment cost function , we

obtain

(4.9) c(z,n) = (1-2A) <M>Mx‘ana§‘i

Il
_
|
>~
S~—
N
‘>/
Q

o =1
> xT= (n_1+ An)*<==



149

The cost of adjustment, shown graphically in Figure 1, is (i) concave in n and (ii) discontinuous
at zero net employment growth i.e., ¢(z,n) = ¢(z,n_1 + An) # 0 if An = 0. It shares (ii) with
the conventional formulation of a fixed cost as a lump-sum charge, as discussed in Hamermesh and
Pfann (1996). This feature induces infrequent employment adjustments. Feature (i) affects the size
of the adjustment in the event that the plant decides to change employment. A plant subject to
a lump-sum fixed cost faces a marginal cost of adjusting of zero, conditional on An # 0. Here,
that is not true, but the concavity of ¢ (z,n) still encourages substantial changes, conditional on
adjusting. Consider a plant that debates whether to set employment at n or n + An. The cost to
add an additional An is relatively low because the cost function is concave. As a result, the plant
might find it optimal to hire additional workers now in order to avoid the expected discounted cost
associated with a small upward adjustment in the future when n and z (and thus ¢ (z,n)) may be
higher. Conversely, a plant that debates whether to set employment at n or n — An may opt for the
latter since a marginal decrease in employment generates a relatively large reduction in the cost of
adjustment due to the concavity of ¢ (z,n).

When we substitute the policy rule for hours into the Bellman equation, we obtain a dynamic

program expressed only in terms of n. Specifically, we have

1

= —bn+5/H($',n)dG<$/|$)}’

(4.10) 2 () = max {A (\z)T= pot

n

o

where A = C—Ta (&) e Analogously, the value of inaction is given by

¢ ¢—1

(4.11) 0 (z,n_1) = AzTan" s ® —bn_y + 8 [ I (2',n_1)dG («'|z) .

It remains to solve for optimal employment. This is the task to be completed over the remainder

of this section.

4.2.3 The Optimal Policy: A Conjecture

We will solve the plant’s problem by the method of undetermined coefficients. That is, we
conjecture,and then verify, the form of the optimal policy. The motivation for the conjecture is
derived from an analysis of the problem in the special case where 8 = 0. It is straightforward to show

in this context that the plant follows an Ss-like strategy: for # within a band, [L, (n—1), U, (n—1)],
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where L, and U, are continuous monotone functions, the plant does not adjust employment. If x
falls outside of this region, it resets n. In addition, one may show that the “triggers”, L, (n_1) and
U, (n_1), are log-linear, as is the optimal reset policy, which is often conveniently expressed as an
inverse demand function, = x, (n). In particular, L, (n_1) = Lﬁonljla; U, (n_q1) = Z/lonljlo‘; and
r = x(n) = xo,n'~%, where L,, U,, and Y, are constants.

Our conjecture is that the form of the policy in the dynamic enviroment is identical to that in

the one-period problem. It is presented graphically in Figure 2.

Conjecture Conditional on adjustment, the plant sets n according to an optimal reset
policy function, x (n), that solves the mazimization problem embedded in . The plant adjusts
n only if x ¢ [L(n_1), U(n_1)], where L(n_1) and U (n_1) are the “triggers” that satisfy the

following value matching relations,

(4.12) °(L(n_y),n_q) = II*(L(n_1))

° (U (n_1),n_1) = HO*U(n_1)).

Otherwise, if © € [L(n—1), U(n_1)], then n = n_1. Lastly, the functions that constitute the

optimal policy take a log-linear form,

(4.13) x(n) = anfa
L(n_y) = Ln'®
U (n_l) = L{nl__la,

where x, L, and U are constants such that L <x<U.

One significant implication of the Conjecture is that the reset policies of the dynamic and static
solutions are perfectly correlated. That is, conditional on adjustment, the elasticity of n with
respect to x is identical across the two solutions and equal to ﬁ Of course, the time path of
employment derived from the two solutions will differ at least to some degree since, in general,
U#U, and L # L,. Still, the Conjecture suggests the possibility that the optimal policy function

in a rich, dynamic problem is actually quite straightforward. The next two sections verify this

Conjecture.
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4.2.4 The Choice of Employment Conditional on Adjustment

Conditional on An # 0, the choice of n must satisfy the first order condition,

(4.14) ag_;;A (\2)T% =85 — b+ BD (2,n) = 0,

where D (x,n) is the expected future marginal value of employment:
(4.15) D (z,n) = / 1, (+/,n) dG (z')z) .

To uncover the optimal policy of the plant, we evidently must solve for D (x,n). The next propo-

sition indicates that, under certain circumstances, the solution to D (x,n) is quite simple.

Proposition 1 If log x follows and if the lower and upper triggers, L (n) and U (n),

respect the bounds on idiosyncratic productivity given in , then

Q%A'PO(C*% - bPy

D (z,n) = 57, = constant,
where
Lol & =
PC T2 ¢ |:GU GL }
1 Gy
=—1 —
PO 2s 8 (GL>
and

Gu=U/x, GL=L/x.

That D is independent x is follows directly from the two assumptions stated in the proposition,
namely, that the innovations are uniformly distributed and the boundaries of idiosyncratic produc-
tivity, z°e#~* and ze”**, do not bind on the inaction region, [L (n),U (n)]. As we saw from ,
the uniform distribution implies that the probability density function of 2’ is independent of this
period’s z. As a result,  matters only insofar as it determines the support of the distribution,
as shown in (£5). Suppose now that the inaction region spanned by L (n) and U (n) lies within
this support. The plant, when it selects n this period, is only concerned with the marginal value
of employment for values of x’ within this inaction band; if x’ falls outside of that region, it will

reoptimize. Thus, the plant has to forecast the marginal value of labor for 2’ € [L (n), U (n)]. Asa
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result, the upper and lower bounds of the support of z’ are not relevant. This implies that x plays
no role in the formation of the expected marginal value of labor.

This raises the question of whether the boundaries of x should be expected to bind on the
inaction space. Intuitively, for A sufficiently near one, the inaction region will be small relative to
the variance of z, and Proposition 1 will apply in forceEI But we do not want to restrict A. Thus,
it is possible — and, in the simulations, we do find this — that one of the triggers extends beyond a
boundary of z. In this case, the effective trigger is in fact the limit of the feasible range (zet~* if
L(n) < zPer5 and aPet ™5 if U (n) > zPe#T5). As a result, the solution that we propose in this
section is better thought of as an approximate guide to the true solution of the dynamic program.
If the triggers violate the bounds infrequently, and only modestly, then the approximate solution
we derive here will function as a very good approximation. Indeed, this is what we find belowB

Returning to the first order condition, we substitute in D (z,n) and apply the Conjecture,

x (n) = xn'~%. This expression then becomes a nonlinear equation in three unknown constants,
{x.Gu,GL}:

%=
(4.16) X=|— : coabl

AT=a + 4 ('Pg —)\C—%Po) ¢— la

where b = b/A. To gain some insight into this result, consider first re-writing it in the following

way,
(—a
¢

X = o X {1+ﬂ(7>§>\‘c—%—790)}_ ,

where

C—a
_y—1 C_CVB :
Xo =A lg—m] '

The term, x,, is the solution to first order condition if 5 = 0. Equivalently, x, solves the one-period,
or static, version of the plant’s optimization problem. Therefore, this formulation decomposes the
solution into two parts: a contemporaneous component, x,, and a forward-looking one. The latter
remains somewhat hard to penetrate, though. To attack this, we note that, up to a first order,
P=Pc=Py= % (where the expansion is taken around Gy = G, = 1). This is a reasonable

approximation if A is not too far from one. In that case, the inaction band will be sufficiently small,

91n a price-setting problem with p set to one and quadratic revenue, Danziger (1999) derives an explicit condition
on the menu cost of adjustment needed to ensure that the triggers do not breach the bounds of x.

10That D is independent of n is almost equally convenient but economically less interesting. It essentially follows
from the log-linearity of the revenue function and the optimal policy, x (n) = xn!~®. It turns out that, after
substituting in this conjecture and collecting powers in n, the exponent on employment collapses to zero.
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and alternative measures of the size of that band, such as P and Py, will converge. This yields

(4.17) NIV [1+ﬁ7> (Av—% —1)]_%&.

This expression reveals the relation between the static and forward-looking policies more clearly.
In particular, it indicates that a forward-looking plant, conditional on adjusting, sets n higher than
its myopic (8 = 0) counterpart. To see this, simply note that, since A < 1, it must be that x < x,-
Letting n, represent the optimal level of employment that solves the static problem, this means
Ny = (J:/)(o)ﬁ < (ac/x)ﬁ = n. Intuitively, a forward-looking plant that is adjusting this period
recognizes that, while the current marginal product is degraded by A, the future marginal product,
conditional on not adjusting, will be higher. Formally, this intuition operates through the forward-
looking component P ()\74% — 1). Recall that P represents the probability of not adjusting next
period. Therefore, when either P is large or A small, the discrepancy between current productivity
and expected future productivity is sizable. As a result, a forward-looking plant accumulates a
greater stock of workers now[M]|

It follows, then, that if the adjustment friction is relatively small (A is large) and the probability
of adjusting sufficiently high, the importance of being forward-looking declines. To gauge the
quantitative difference between the forward-looking and myopic rules, consider a calibration that
is consistent with the literature and on par with what we implement in Section 3. In particular,
set A=0.92, ¢ = %, and o = % Note that the value of A, on which there is some agreement in the
literature, is in fact not far from one. Next, suppose Gy — G = %, which is broadly consistent with
the simulations conducted in the next section. Lastly, we set the standard deviation, o, of € to %
The form the forward-looking component in indicates that choice of the standard deviation
is also likely to be critical: when o is large, the probability of adjusting again next period is high
(P is small), and so the wedge between current productivity and expected future productivity is
diminished. For uniformly distributed innovations, o = s/4/3, in which case it follows that s = @

Under this calibration, we calculate

11 As this discussion suggests, it is the interaction of foresight and the disruption cost that generates labor hoarding
relative to the static model. This result does not generalize to alternative forms of fixed adjustment costs. For
instance, suppose the establishment pays a lump-sum charge to change employment. In this case, the adjustment
cost does not impinge on the first order condition and, in particular, does not degrade the productivity of the
employer while adjusting. Consequently, the reset policy function in this model is, to a first order, identical to that
in the static version of the problem.
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1 ,
&y x 1+>\‘3(1—>\3} ~ v, % 0.95.
XX [ 7 ) X

That is, the myopic solution is right to within 5 percent.

S

We next consider the decision to adjust. To preview the discussion, we again find that the

myopic rule is quite accurate.

4.2.5 The Decision to Adjust

The decision of whether to adjust is made by comparing the value of adjusting, II®, with the

value of inaction, II. Define the gap between these as

A(z,n_y) =T () —=1I° (z,n_1).

We develop a recursion in A (z,n_1) that may be solved by the method of undetermined coefficients,

just as we solved D (z,n). Substituting in using (4.10) and (4.11)), we first obtain the following;:

-1
¢ ¢ g8t adsl
AzT=a |ATant=a —n_ 57| —bn+bn_y

(4.18) A(z,n_q) = max
+B [T (2',n)dG (2'|z) — B [II(2',n_1) dG (z'|z)

The key to formulating the recursion now lies in re-writing the forward integrals. Fortunately, the

Conjecture implies that

/H(:E’,n) dG (2'|z) —/H(m’,n,l)dG (2 |z)

U(n) U(n_1)
- _/ NG dG(x’|x)+/ A2 n_1)dG (@']7) .
L(n) L(n-1)

The top line represents the “excess return” to adjusting this period: it is the difference between the
expected value of beginning next period with a re-optimized level of employment as opposed to the
level of employment inherited at the start of this period. The bottom line provides an alternative
way to express this. It states, first, that the difference in continuation values depends only on the
values of A within the inaction regions associated with n and n_;. Outside of these bands, the
plant will re-set employment, and the size of the workforce with which it began the period will have
no implication for the value of the plant going forward. But why do the As appear? On the one
hand, if the net value of bringing n_; forward and adjusting next period is relatively high, then

the net value of implementing that adjustment this period is also relatively high. This is why the
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term, A (2/,n_1), enters positively in this expression. On the other hand, if it is profitable to bring
forward a new level of employment (n) and then do nothing next period, then the net value of
adjusting now must be relatively large. This is why the net value of adjusting, A (z,n_1), increases
in —A (z/,n) =1° (2/,n) — TIA (2).

Combining the forward integrals with the top line of 7 substituting in the policy rule

n = (x/X)ﬁ, and making use of the Conjecture concerning the triggers U (n) and L (n), the

recursion in (4.18) becomes

¢—1 1

4.19 A(x,n_1) = bn_, _Aniﬁxc—% + A)\C*%XC% —b X_ﬁa:E
1

(%)= U(n-1)
,5/ A (2',n)dG ('|z) + 8 A(z',n_1)dG (z'|x).
(%)= L(n-1)

The form of this expression suggests the following guess for a solution to A:

—1
= <
“xTa 4 foxrT-a,

I~

(4.20) A(z,n_1) = don_1 + 61n"

=y

where the ds are constants. The next proposition states that this conjecture may be verified and

provides the solutions for the unknown coefficients.

Proposition 2 Under the Conjecture , and given the law of motion for logx in ,
the solution to A (x,n_1) is given by with

5, = —A
b+ B[ ATEP = P (T
6 = A
0 1+ BP1 — Po]
b+ B [ATEPL - P (T
1 < ¢ 1 ¢l X
52 = AX 1-a )\(—WXC—Q —

1+ﬁ[731—730] ’

where

We are now able to complete the solution for the optimal policy. Recall that the triggers, L (n_1)
and U (n_1), satisty the value matching conditions, A (L (n_1),n_1) = A(U (n_1),n_1) = 0. That

is, if g (n—1) represents an unknown function, the triggers are the roots of

¢—1

« _< _1
0=0don_1+0n_i “g(n_1)T= +d2g(n_1)T=.
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The Conjecture states that g (n_;) is of the form, gnljla (where g = L£,U). Substituting this in,
we find

0=080+ O xTaGTT 4 Sy T G5,

where G = g/x. Proposition 2 and the reset policy, (4.16)), allow us to write this as:

(4.21) 0 = [()\Xo)“%—l;q

[
Q
=
| [~
Q
|
Q|
|
Q
Q
f
R
_|_
o
Q

where .
148 (AP~ Py)
1= T B (P —P0)
¢
AP Py
l-qg=-B— ¢~ "1
1= BT B, =Py

Setting ¢ = 1 (equivalently, 5 = 0), this expression collapses to the value matching condition in the
static, or myopic, problem.

Equation is a cumbersome nonlinear expression. It is straightforward to solve it numer-
ically, and, when we do so, we have invariably found two, distinct real-valued roots with one less
than one and the other greater than one (G and Gy in terms of the notation introduced above).

But it is difficult to prove this in the context of (4.21)). To make progress, we must rely on an

GL

approximation introduced in Section 2.4, namely, P = P¢ = Py = GU;s . Moreover, up to a first

order, it is also true that P; & GU27*SGL Thus, we have that P = P, = P; = Py . Substituting this

(—a

into the definition of ¢, using y, = A ~* [%g} o , and re-arranging gives

1-a 1 1
(4.22) 0= (f“+) GTe — A Ta G + (1-)

& &
where & = aé_;i < 1 is the returns to scale in employment (after concentrating out hours worked)
and
1—6a/ __¢
(4.23) = p_ (A = 1) P
a

1—éa / __¢ 1 o
= —=(x <fa—1)02—ﬁ[GU—GL]=¢[GU—GL]

represents the forward-looking component of the value matching conditionB That is, setting

12Note that b vanishes from this expression. This indicates that, for a sufficiently small disruption cost (in which
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recovers the value matching condition associated with the static (8 = 0) problem. It is possible to

characterize the solution of (4.22]).

Proposition 3 There exist two distinct, real-valued roots to equation , where one

root, G, is less than one and the other, Gy, greater than one.

Since G, = L/x and Gy = U/x, the proposition verifies the existence of the triggers that
constitute the optimal policy — to the extent, that is, that serves as a satisfactory approx-
imation to the true value matching condition. We will find in the next section that the critical
approximation needed to derive , namely P =P, = P; = Py, does work reasonably well in

practice. Therefore, the proposition may be seen as confirming the conjecture stated in (4.13]).

We see the same term, ()\74*% — 1) P, in (4.23)) which governed the importance of the forward-

looking component in the optimal reset policy of Section 2.4. Why would this be? Remember that
the forward-looking term encouraged an employer who adjusted to hire more than if it behaved
myopically. Intuitively, this same motive should drive employers to modify their rules for when to
adjust. For instance, if expected future productivity is high relative to productivity this period, an
employer may be more willing to raise employment over a wider range of xs: by doing so, he “locks
in” those future gains. Now suppose a forward-loooking employer receives an x that would trigger
a reduction in the workforce at a myopic establishment. The former may choose not to adjust
precisely because it is not nearly as far away from the upper trigger as its myopic counterpart; the
gain from adjusting downwards is diminished if the probability of reversing oneself is high. Thus,
the forward-looking employer actually freezes over this lower range of xs when a myopic plant
would reduce n. In short, the same reasoning behind our analysis of the reset policy leads one
to suspect that triggers of a forward-looking plant would shift down relative to those of a myopic
establishment. We will see in the next section that this is true[]

To conclude this section, we would now like to gauge the quantative importance of forward-
looking behavior on the choice of triggers. Even within the context of , this is slightly difficult
to do since is a function of Gy and G . However, under the calibration used in the prior subsection,
it turns out that is relatively insensitive to plausible variations in the gap, Gy — G . The simple
reason is that A is not too far from one (0.92) and o is relatively large (1). As a result, the

2
coefficient, ¢, pre-multiplying Gy — G, in (4.23) is fairly small, ¢ = 0.1065. Therefore, variation

case the first order approximation of the Ps is satisfactory), the fixed component of the wage, IA), has virtually no
effect on the choice of the triggers. It does, of course, affect the reset policy.

13A complete analysis of comparative statics remains difficult since P depends on G, and Gy. Therefore, we
restrict ourselves here to outline the intuition and then revisit this matter numerically in Sections 3 and 4.
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in Gy — G, from 0.6 to 1.2 (which summarizes the relevant range) shifts from 0.064 to just 0.128.

Contrast this with the other coefficients that appear alongside in , namely, 1;(& = % and 1,
and it appears that relatively little is lost if we regard Gy — G as approximately fixed for the
purposes of this discussion.

With this approximation, a few calculations reveal an important result. Given the calibration of

the last subsection (8 =1, A =0.92, ( = %, o= %, o= %, and Gy — G = %), the value matching

condition associated with the dynamic problem becomes

0=1.33 x GT5% — 2.585 x GT&7 + 0.919,

whereas the corresponding condition in the static version of the model is

0=1.25x GTs — 2585 x GTa + 1.

Figure 3 graphs each of these expressions. The forward-looking component appears to exert rela-
tively little influence on the solution. The logarithmic gap between the G s (the smaller of the two
solutions) and the Gys (the larger of the two) is only about five points each. As we will show when
we turn to simulation analysis, this translates into minor differences in the paths of employment
induced by the myopic and true policy rules.

The effect of the forward-looking component may be seen another way. Re-arranging , we

obtain,

1-a 1 1
(4.24) 0=-—_2@Ts - xTe@TE 414 (Gm - 1) .
&
We note that, again to a first order,

Glf"‘*l:m(Gfl).

Substituting this in, the forward-looking component of (4.24)) becomes

(6 -1) = 2@ -an@-
_ ¢ [(Gu —1)(G—-1)+(1-GL)(G-1)].

11—«
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This expression suggests that the foresight effect is second-order given a first-order friction. That
is, if 1 — G =2 e = Gy — 1, then the expression in brackets becomes 2¢2. This is what lies behind

the calculations regarding the effect of the forward-looking componentlEI

4.3 Simulations

This section has two principal goals. The first is to investigate how well the log-linear form in
the Conjecture, which is exact locally in the range [L (n),U (n)] € [zPe! ™, xPelT#], fits the global
policy function. The second is to ask whether the analytical results derived under the assumption of
uniform innovations serve as a good guide to models in which the firm faces alternative stochastic
processes. Many authors assume, for instance, that = follows a first-order Markov process with

lognormal innovations. We investigate this process in particular in this and the next section.

4.3.1 Log Uniform Productivity

Analytical solutions are unavailable once we allow that the bounds on z may bind with regard
to the inaction space. Therefore, we must turn to numerical analysis. Specifically, we solve the
model by value function iteration. We fix a calibration and use it throughout this section and defer
sensitivity analysis until Section 4.

The baseline calibration is reported in Table 1. In large part, these values are drawn from
Cooper, Haltiwanger, and Willis (2005, CHW hereafter). CHW estimate a model that is very similar
to that presented in Section 2. The only difference is that they replace the uniform distribution in
with the Gaussian. We find below, however, that the salient moments of the data are largely
insensitive to the choice of the distribution function, and so we proceed on the basis of CHW’s

calibration since their model is the closest in substance to oursE

14To derive these results, we have had to confine ourselves to a model where innovations to log z are drawn from
a uniform distribution. It is possible to show that the quality of the myopic approximation is actually robust to any

Markov process for  when the adjustment cost takes the form ¢ (z,n) = Cx1-«. Note that c is independent of n but
remains a function of x, so large employers do not “outgrow” it. This is the form of the cost adopted by Gertler and
Leahy (2008). Under this alternative assumption on ¢, one may prove the equivalence, up to a first order, between
the static and optimal policies. The proof follows directly by differentiation of and with respect to C' .

This result does not hold in our case. This may be most easily illustrated by appealing to the first order condition.
This says, loosely, that the optimal reset policy (x (n)) depends on the contemporaneous marginal product and
the expected future marginal product, conditional on not adjusting next period. The presence of A\ drives a wedge
between these two components, since the productivity of labor is not degraded in the future if the employer does not

adjust. This wedge makes the forward term salient even for A\ near one. In contrast, under c(z,n) = Cmﬁ, the
adjustment cost appears nowhere in the first condition. As a result, for sufficiently small C, the forward term exerts
only a second-order influence on the choice of employment.

15Tt should be noted that the model of Bloom (2009), whose estimate of ¢ is referenced in Table 1, is substantively
different from that presented in Section 2. Bloom’s model includes disruption, kinked, and quadratic adjustment
costs on both capital and labor. Whether the analysis of Section 2 extends to a model with such a rich array of
frictions is a question we defer for future work.
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CHW?’s report an estimate of A = 0.919, which implies a loss of roughly eight percent of quarterly
revenue whenever an adjustment is undertakenm This is consistent with Bloom’s (2009) estimatem
We set ¢, which (partially) determines the elasticity of compensation with respect to hours, to
1.59, which is the midpoint between CHW and BloomlEI The remainder of the parameters — the
persistence of productivity (p), the standard deviation of the innovation (o), and the returns to
scale () — are simply taken from CHW. We essentially lift these parameters from the literature
since our objective in this paper is not to re-estimate the model, but to explore the implications of
the literature’s findings.

We first assess how well the analytical approximation of the policy rule derived in Section 2
“fits” the globally valid policy function. The latter must be obtained numerically via value function
iteration. The result is shown in Figure 4. Given z_; = E[z], the dashed lines bound the range in
which x this period must lie. Within this range, the approximate and true policy rules lie virtually
on top of one anotherE Evidently, while the global policy rule is not necessarily log-linear, it
appears to be very nearly so. We have confirmed that the quality of the approximation does not
deteriorate as x_, falls or increases away from E [z].

The log-linearity of the global policy rule suggests that, even if the boundaries of x bind on
the inaction region, [L (n_1), U (n_1)], the approximation errors are likely to be small. This is a
critical result. In the simulations to which we turn next, the boundaries of x do in fact bind on the
zone of inaction roughly 10-15 percent of the time, although the violations are relatively modest
(in the sense that U (n_1) (L(n_1)) does not exceed zPef** (ze”~*)) by more than 5 percent
on average). Yet the approximate policy rule performs very well. This is in part due to the fact

that the fundamental log-linear structure of the static model is apparently inherited by the global

16CHW augment the model of Section 2 with a quadratic adjustment cost. They find a modest improvement in
the goodness of fit, and the estimated value of A increases to 0.976. We abstract from quadratic adjustment costs in
this analysis. As Table 3b of CHW illustrates, the most critical adjustment friction, as measured by its contribution
to the model’s ability to fit the data, is the disruption cost. In the interest of tractability, then, we narrow our focus
to the disruption cost and set A accordingly. We should note that this choice is conservative in the sense that the
myopic approximation improves considerably as A nears one (and the adjustment friction approaches zero).

17In Bloom, the disruption cost is given by C[Ij y, where y is output (or revenue). Comparing this with , and
noting that Bloom’s data are annual rather than quarterly, we see that the mapping from Cf to A is Cf =g (1=X).
Inverting this, and using Bloom’s estimate of Cf = 0.021, gives A = 0.916.

I8CHW find that ¢ = 1.09 and Bloom estimates ¢ = 2.093. A lower value of ¢ raises the flexibility of hours since
compensation is relatively insensitive to adjustments on the intensive margin. As a result, a low value of { expands
the region of inaction and increases the degree of inertia in plant-level employment.

This does raise an important technical point. Because { 22 1 generates a very wide zone of inaction, the bounds of

that inaction region frequently reach beyond the feasible range of x, [m’ile“_s, z’ile““'s] . This degrades the quality

of the approximation of the analytical solution obtained in Section 2. While this issue does merit further work, it is
important to note that ¢ = 1.59 remains on the low end of the range of values found in the literature. In this sense,
it is still a relatively conservative choice. Indeed, in separate work that analyzes a dynamic labor demand model
with job search, CHW (2007) calibrate ¢ to be 2.9.

19Since we solve the dynamic program by discretizing the state space, there is inevitably some error in the calcula-
tion of the “true” policy rule. Nonetheless, for the sake of brevity, we will refer to the policy rule obtained by value
function iteration as the true policy.
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forward-looking policy rule.

Next, we simulate the approximate and true policy rules and compare their implications for
the cross-sectional and time series properties of employment and hours@ To begin, we simulate
two panels of employment and hours data: in one panel, the plants observe the true policy and,
in the other, all plants implement the approximate policy. Thus, each plant in the first panel
has a counterpart in the second panel that faced the same sequence of xs but implemented the
approximate rule. We calculate a quarterly time series of employment growth at the plant level
. For each pair of plants (one observes the true policy and the other follows the approximation),
we compute the correlation of the employment paths, and then take the average of the pairwise
correlations across establishments. The results are reported in Table 2. The policy rules generate
very similar paths of quarterly employment growth; the average correlation is almost 0.99.

The similarity across these simulated panels indicates that the two policy rules likely induce
very similar empirical moments. For instance, the cross-sectional standard deviation of quarterly
employment growth (where the latter is measured by Alog (n)) induced by the approximate policy
rule is within 0.2 percent of the standard deviation generated by the exact rule@ Another salient
feature of the cross-sectional distribution is the share of establishments in each quarter that do
not adjust employment. These establishments form a “spike” in the quarterly employment growth
distribution at Alog(n) = 0. Table 2 indicates that the two policy rules generate virtually the
same mass point at zero.

When we turn to the intensive margin, the two policy rules still yield similar results, though some
discrepancies emerge. On a positive note, the cross-sectional distribution of hours growth induced
by each policy rule is nearly identical, as shown in Table 2. However, the correlation between the
simulated paths of hours growth at the plant level is 0.9262@ To see why this is relatively low,
consider a pair of plants — one of them observes the true policy and the other implements the
approximate rule — in which each adjusts employment this period. There will be some discrepancy
between the two plants’ choices, in part because of approximation error in the analytical policy

function and in part because the true policy rule is actually slightly contaminated by numerical

20We follow CHW and simulate the employment decisions of 1000 plants for 400 quarters each. Each plant is
simulated for so many quarters in order to reduce the influence of initial conditions (i.e., n—1 and z_1).

21We focus on the standard deviation induced by one policy rule relative to that induced by another, rather than
the point estimate itself. CHW do not actually target moments of the employment growth distribution in their
simulated method of moments exercise. (They are more interested in the co-movement of employment and hours
changes, and their selection of moments reflects this.) Thus, we do not expect the model to perform well along these
dimensions. Instead, we only seek to demonstrate that, given a calibration, the approximate policy rule generates
moments that are very similar to those induced by the exact rule. Future work will take up the task of re-estimating
the model.

22We further document this apparent discrepancy between cross-sectional moments and plant-level time series
behavior in the sensitivity analysis of Section 4 and defer a full discussion of the issue until then.
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error (see footnote 17). This discrepancy is not large relative to the typical change in employment
(conditional on adjusting). But hours worked is appreciably less variable than employment under
the baseline calibration, and so relatively small differences in Alogn are translated into slightly
larger discrepancies in hours growthﬁ

Lastly, we find that each policy rule implies similar co-movement in hours and employment
growth. The contemporaneous correlation induced by the approximate policy is within 7 percent
of that generated by the exact policy function. The dynamic relationship between intensive and
extensive adjustments that emerges from each of the simulations is also very similar. CHW summa-
rize the dynamics with a bivariate first-order VAR in employment and hours growth. We estimate
the VAR on the simulated data. With one exception, the coefficients from these regressions are
very similar across the two policy rules. The exception relates to the response of Alog(h) to
Alog (n_1), but the point estimate of this coefficient under each policy rule is less than 1073. We
claim, then, that the discrepancy observed in the table is largely due to sampling variation and
has no meaningful implication for the quality of the analytical approximation to the true policy
function.

We conclude that, for this calibration, the analytical approximation derived in Section 2 is a
very good guide to the “true” solution. This finding motivates us to ask whether the myopic policy
rule, which bears a strong resemblance to the analytical solution of the dynamic model, also serves
as a reasonable approximation to the exact solution of the dynamic problem. Figure 5 compares
the two policy rules graphically. The myopic rule appears to fit the exact dynamic rule remarkably
well. (As above, we set z_; = E[z], but the goodness of fit is unaffected by variations in x_;.) This
is consistent with the calculations presented in the prior section. It follows that the myopic rule
induces empirical moments that correspond very closely with those generated by the exact policy
rule. This is shown in the right-hand column of Table 2.

The ability of the myopic policy rule to approximately replicate the key moments of plant-level
employment suggests that the profit lost due to myopia is likely very small. This is confirmed in the
final row of Table 2. In the course of the simulations, we calculate average contemporaneous profit
generated by all three policy rules (the myopic, the approximate dynamic, and the true dynamic
policy rules). A myopic firm earns just 0.6 percent less profit than a firm that solves the exact

dynamic labor demand problem.

23CHW actually find that hours growth at the plant level is nearly as variable as employment growth. This fact
is likely behind their estimate of ( = 1.09, which implies that compensation is relatively insensitive to variations in
hours worked. In this paper, we split the difference between CHW'’s estimate and Bloom’s finding of { = 2.093. This
choice of ¢ substantially reduces the variability of hours growth. In future work that re-estimates the model, we will
return to this question of how to reconcile disparate estimates of ¢ in a manner consistent with data on hours growth.
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4.3.2 Lognormal Productivity

Section 2 assumed that logx follows an AR(1) process with uniform innovations in the interest
of tractability. This section assesses whether the principal result derived under the assumption of
uniform innovations — the near optimality of myopic behavior — extends to models with alternative
assumptions on the stochastic process of x. Perhaps the most common assumption in the literature
is that x follows a geometric Gaussian autoregressive process. Indeed, CHW assume that logx
is given by the AR(1) representation in equation but with uniform innovations replaced by
Gaussian ones. This section adopts CHW’s specification of the law of motion of x and evaluates
the performance of the myopic policy function relative to the optimal rule. The calibration of the
structural parameters is unchanged (see Table 1)@

As above, we first compare the policy rules graphically. Since the innovation, €, in may lie
anywhere on the real line, the support of log x is independent of log z_;. This differs from the log
uniform process, and implies, as a result, that the policy rules shown in Figure 6 are valid for any
history of past zs.

The figure suggests that at least some of the key properties of the optimal policy under uniform
innovations extend to the model with Gaussian innovations. For instance, under uniform innova-
tions, we found x < x,. This implied that an employer which resets n selects a higher level of
employment if it is forward looking. This finding appears to generalize to the model with Gaussian
disturbances. The figure indicates, for instance, that a firm which receives the mean value of x
(log (E [z]) = 0.14), and resets employment according to the forward-looking policy, selects a level
of n that is 22.5 log points higher than that chosen by a firm that follows the myopic policy. This
should not be too surprising: the intuition behind y < x, was that a forward-looking firm accumu-
lates additional workers in anticipation of the marginal product increasing once the adjustment is
complete. This finding was never obviously related to any assumption on the distribution of shocks.

In addition, under uniform innovations, we found that % and % were approximately the same,
as were % and % Since x < Xo, it followed that U < U, and L < L,. These results implied
that one might obtain the thresholds governing the decision to adjust in the dynamic model by
essentially shifting down the myopic thresholds. This qualitative finding is also evident in Figure
6. As a result, and as we found in the case of uniform innovations, the myopic and dynamic policy

rules appear to be parallel to one another. This suggests that firms which follow different rules will

24Since analytical results of any kind are unavailable under Gaussian innovations, there is no analogue in this
subsection to what we have referred to as the approximate dynamic policy function and which was derived under
the assumption of uniform innovations. Therefore, in this section, whenever we refer to the dynamic policy rule, we
mean the policy function solved for numerically via value function iteration.
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select different employment levels at any point in time but the two employment paths will likely
co-move very closely. This impression is confirmed in the simulations, to which we now turn.

We simulate the plant’s behavior under the myopic and dynamic policy rules. The results
are collected in Table 3, which is exactly analogous to Table 2 discussed in the prior subsection.
Specifically, we compare simulations of quarterly employment growth under each policy rule. The
correlation across the two policy rules is, again, 0.99. The myopic policy rule also replicates key
features of the employment growth distribution induced by the dynamic rule. For instance, the
myopic rule generates virtually the same probability of adjustment. The dispersion in employment
growth induced by the myopic policy function is, on the other hand, slightly greater than that
generated by its dynamic counterpart. Still, the standard deviation of Alog(n) under the myopic
rule is within three percent of that under the “true” policy function. The myopic rule also performs
quite well with respect to the behavior of hours worked. The correlation of hours growth across
the two policy rules is actually slightly greater than that observed in the model with uniform
innovations, and the dispersion in hours growth is virtually the same in the two simulations.

In some instances, the two policy rules do generate appreciably different outcomes with respect to
the relationship between hours and employment growth. The contemporaneous correlation between
hours and employment growth is —0.04 under the true policy and —0.106 under the myopic rule.
These two results are far apart in log terms (as indicated in the table). Whether this difference
is economically meaningful depends on what it portends for structural inference: does it suggest,
for instance, that a myopic rule would require a different configuration of structural parameters in
order to replicate the empirical correlation? We defer such questions for future work that explicitly
tackles structural estimation. In regards to the simulated VAR, the major discrepancy relates to
the response of Alogh to Alogn_;. Again, however, the point estimates under each policy rule are
small (—0.0109 under the true policy, —0.014 under the myopic rule) and appear to be economically
insignificant.

To conclude this subsection, we consider the losses, in terms of foregone profit, from myopia.
As in the model with uniform innovations, the losses are slight: myopia costs the firm less than one

third of one percent relative to the profit obtained under the true, forward-looking policy.

4.4 Sensitivity Analysis

In this section, we evaluate the performance of the myopic policy rule under alternative calibra-

tions. To frame this discussion, it is helpful to revisit the forward-looking components of the reset
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policy (4.17)), restated here as

[L+s(xy==-1)p] °,

and of the threshold policy (4.23),

5((2—1) (y== )P,

where P EGU;S G — GZUL;\/%L. Since the gap Gy — G, is endogenous, the comparative statics here

are not straightforward. But it remains useful, if only heuristic, to consider the effect of changing
parameters holding Gy — G, fixed. These thought experiments will guide our simulation analysis
in this section, as they suggest where the results of Section 2 may be sensitive to perturbations in
the structural parameters.

Each of these expressions suggests that the importance of the forward-looking component is
declining in A and o. The effect of lowering A is to increase expected future productivity relative to
current productivity, which raises the payoff to taking into account expected future developments
in deciding n this period. Why does an in increase in ¢ reduce the payoff to foresight? When the
environment becomes volatile, the odds of re-optimizing next period increase, and so the benefits
of choosing n this period with an eye toward the future diminish.

In addition, since 1/& — 1 = %1?70‘ , it is also straightforward to verify that each component
is decreasing in (. Intuitively, when ( is low, the establishment relies more heavily on changes in
hours per worker to absorb movements in x (since the elasticity of compensation with respect to
hours is small). As a result, the establishment must prepare itself to maintain its current level of
employment for up to several quarters, raising the payoff from being forward looking in selecting
n

Notice one parameter that is not present in these expressions, namely, p. This reflects the fact
that the probability density function of x is independent of x_;. This feature of the stochastic
process , we recall, is precisely what enabled us to obtain a quasi-analytical solution to the
problem. But it also implies that the persistence of productivity does not affect the determination

of the optimal policy. On this score, the model with uniform innovations diverges from the model

with Gaussian disturbances.

25TInspection of these expressions reveals that the effect of « is actually ambiguous: a higher o lowers 1/& — 1 but

__<
raises A ¢—« — 1 (since A < 1). In the interest of space, and since most applied work generally does not differ on
the choice of «, we do not explore the effect of varying this parameter.
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Motivated by this discussion, we now explore the effect of alternative calibrations of A, o, and
¢ on the quality of the approximation afforded by the myopic policy rulem We also vary the

persistence parameter, p, when we turn to the analysis of the model with Gaussian shocks.

4.4.1 Log Uniform Productivity

We first perturb A and leave the remainder of the calibration unchanged. The results are
presented in the top panel of Table 4. (The bottom panel relates results under Gaussian innovations,
which we set aside for now.) We consider values in the neighborhood of the baseline estimate,
varying A from 0.9 to 0.94. These are actually relatively sizable variations in light of the standard
error (0.005) estimated by CHW. The correlation between the employment path induced by the
myopic rule and the path generated by the optimal rule does decline slightly as A falls further away
from one. This deterioration is reflected, and amplified, in the correlation between the hours growth
paths induced by the two policy rules. It is also reflected in the fact that the loss of profit due to
myopic behavior is larger, although it remains on the order of just one percent.

The only real surprise in the top panel of Table 4 relates to the co-movement of hours and
employment growth. The contemporaneous correlation induced by the myopic rule is too low when
A falls to 0.9 and too high as A climbs to 0.94. It is important to keep these numbers in perspective,
though: when A = 0.9, the correlation generated by the optimal policy is —0.0571, whereas the
correlation induced by the myopic rule is —0.0841. The log difference between these simulation
results likely overstates the economic content of this discrepancy. Still, in future work that re-
estimates the model, we will have to pay particular attention to how well the myopic rule is able
to replicate the empirical correlation between hours and employment.

Reductions in ¢ and ¢ also appear to have the hypothesized effect on the quality of the myopic
approximation. When each of these parameters is reduced, the myopic rule’s implied paths for
employment and hours deviate more appreciably from those induced by the optimal policy function,
as reported in top panels of Tables 5 and 6. Nonetheless, the additional loss of profit is very
modest. Note that the co-movement between hours and employment growth, as summarized by the
contemporaneous correlation and the VAR estimates, continues to present the greatest challenge
for the myopic rule in terms of its ability to replicate the optimal policy.

Across all of the comparative statics, though, it appears that plant-level discrepancies in the

paths of employment and hours growth do not, in general, undermine the ability of the myopic rule

26Since the approximate dynamic rule and the myopic rule coincided so closely under the baseline calibration, we
simply focus our attention on the myopic rule here. We have verified, moreover, that the two do induce virtually
identical moments even under the alternative calibrations considered in this section.
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to replicate the salient cross-sectional moments. For instance, a myopic plant adjusts employment
just as frequently as a plant that implements the optimal rulelZ] This result is due to the fact,
noted in relation to Figures 4-6, that the optimal policy functions — L (n),x (n), and U (n) — are
essentially parallel to their myopic counterparts. Thus, the myopic plant may adjust at slightly
different times, since a given realization of x will not breach its thresholds whenever it breaches
the triggers of the forward-looking plant. But the myopic establishment will, over the course of
many years, still adjust approximately as often as its foresighted counterpart since the size of the
inaction space is roughly the same. The same logic lies behind why the myopic rule induces virtually
the same cross-sectional standard deviation of employment growth. The degree of cross-sectional
dispersion depends on the size of the mass point at An = 0 and on the typical size of adjustment,
conditional on An # 0. The form of the policy function, as seen in Figures 4-6, indicates that
the typical size of adjustment be similar across the myopic and forward-looking plants since the
distances between £ and x and between U and x are roughly the same across the two policy rules,

even though the individual components of the policy function differ.

4.4.2 Lognormal Productivity

This subsection investigates the performance of the myopic across various calibrations in the
context of a model with Gaussian innovations to logz. The results are reported in the bottom
panels of Tables 4-6 so as to facilitate comparison with the case of uniformly distributed shocks.

In some important ways, the behavior of the Gaussian model across different choices of A parallels
that of the model where log x is struck by uniform innovations. In particular, the fit of employment
and hours growth under the myopic rule deteriorates for smaller A, and the loss of profit increases
modestly. In addition, the failures of the myopic rule, in both models, are concentrated around the
moments that involve the co-movement of hours and employment growth. For instance, the myopic
rule dramatically overstates the contemporaneous correlation between hours and employment in
each case. However, it should be noted that it does perform comparatively well in the Gaussian
model with regard to the dynamic response of Alogh to Alogn_;.

The story is much the same when we turn to the comparative statics on o and (. Reductions
in these parameters degrade the quality of the myopic approximation, although the profit losses
remain negligible. Again, the static and dynamic responses of hours growth to employment growth
prove to be the most elusive moments to match. The robustness of the conclusions across the two

models should not necessarily surprise us, since the economic mechanisms behind these comparative

27The exception to this is the case of ¢ = 0.6. Further investigation of this calibration will have to be undertaken.
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statics — outlined in the introduction to this section — did not depend in any material way on the
stochastic process of productivity. We view the simulation results as largely confirmatory of the
intuition provided above.

To conclude the sensitivity checks, we now vary the persistence of productivity. In general, the
results reported in Table 7 suggest that variations in the persistence does not present any systematic
challenge to the quality of the myopic rule. The correlation of employment growth across the myopic
and forward-looking rules, for instance, hovers around 0.99 across p = 0.39 to p = 0.79, and the
loss in profit stays in the neighborhood of one third of one percent. Interestingly, the myopic rule
does appear to induce patterns of co-movement between hours and employment growth that more

nearly match those under the true, forward-looking policy when p is relatively high.

4.5 Conclusion

This paper has investigated the analytics of dynamic labor demand in the presence of a fixed
cost of employment adjustment. Researchers generally resort to numerical analysis to solve this
problem. We find that, given a particularly tractable driving force for idiosyncratic risk, it is
possible to obtain quasi-analytical solutions. The results suggested that the substantially simpler
policy rule of the corresponding static problem may serve as a remarkably good approximation, or
rule-of-thumb, to the true, forward-looking policy function. We then investigated this finding more
exhaustively using simulation analysis. The simulation exercises indicated that this key insight
appears to largely survive variations in the structural parameters and in the form of the stochastic
process governing the evolution of idiosyncratic productivity.

These results throw open the door to two avenues for further research. The first revisits the
estimation of the plant’s problem presented in Section 2. In this paper, we have taken the parameter
estimates as given from the literature. However, as we have suggested elsewhere (see footnote 20),
the simulated method of moments results may be sensitive to the targeting of alternative, but
equally salient, moments of the data. It would be valuable to re-estimate both the static and
dynamic models and document the implications of myopia for structural inference under various
moment-matching criteria. Does estimation of the static model in fact recover approximately the
same parameter estimates? This would be another way to investigate the quantitative implications
of myopic rule-of-thumb behavior.

Another avenue to pursue is to enrich the model of Section 2 and then conduct additional

simulation exercises to explore the quality of the myopic rule as an approximation to optimal
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behavior. The model considered in this paper admittedly omits additional adjustment frictions on
employment and abstracts entirely from capital accumulation and price setting. It is important to
determine whether the results presented here are robust to these extensions of the baseline model.
If so, that holds open the possibility of developing accurate rules of thumb to guide our evaluation

of a rich class of structural models.
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Table 4.1: Baseline Calibration

Parameter Description Value Source
A Adjustment friction 0.92 CHW
Elasticity of compensation w/ CHW and

C 1.59
respect to hours Bloom
a Returns to sgale in total labor 0.64 CHW

input

p Persistence of productivity 0.39 CHW
Standard deviation of innovation 05 CHW

to productivity

NOTE: The values drawn from Cooper, Haltiwanger, and Willis (CHW) are from the
row labeled "Disrupt” in their Table3a. The value of  is the midpoint between CHW and
the estimate given in Bloom (see the column labeled "All" in his Table 3).
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Table 4.2: The Baseline Calibration with Uniform Productivity Innovations

The approximate dynamic policy rule The myopic policy rule

Corr( Alog(n?), Alog(n)) 0.9875 Corr( Alog(n™), Alog(n)) 0.9873
Standard deviation of Alog(n) / Standard deviation of Alog(n) /
o a 1.0022 . m 1.0023
Standard deviation of Alog(n®) Standard deviation of Alog(n™)
Prob(Al =0) / Prob(Al =0) /
(Alog(m)=0) 1.0023 (Alog(®)=0) 1.0021
Prob(Alog(n”)=0) Prob(Alog(n™)=0)
Corr(Alog(h), Alog(h%)) 0.9262 Corr( Alog(h), Alog(h™))
0.9251
Standard deviation of Alog(h) / Standard deviation of Alog(h) /
o a 0.9980 . m 0.9978
Standard deviation of Alog(h®) Standard deviation of Alog(h™)
Corr(Al , Alog(h))/ Corr(Al , Alog(h))/
( Og(nz og( )3 1.0684 ( Og(nrg og( ); 1.0695
Corr(Alog(n®), Alog(h%) Corr(Alog(n™), Alog(h™))
BAn,An / BaA nAnN 10068 BAn,An / BmA nAnN 10068
Banah /' Banan 0.9740 Banan / B anan 0.9744
Banan / Banan 0.3385 Banan / B ahan 0.3380
Banah / Banan 0.9995 Banan /' Bahan 0.9994
log( E[n*]/ E[n]) -0.0018 log( E[x™]/ E[x]) -0.0063

NOTE: This compares the moments induced by alternative policy rules. The superscript "a" refers
to the analytical approximation to the dynamic policy rule, whereas the superscript "m™ refers to
the myopic policy rule. The absence of any superscript means that the moment was generated by
the "true™ forward-looking policy rule, which was solved numerically by value function iteration.

In many of the rows, what is presented is the ratio of the moments associated with two policy
functions. For instance, the second row in the left-hand column presents the ratio of the standard
deviation of employment growth induced by the "true" forward-looking policy to that induced by
the analytical approximation to the forward-looking rule.

The terms, By, A, and By, A are the coefficients from a regression of Alog(n) on the first lag of
employment and hours growth, respectively. Similarly, the terms, B,,,, and Bap A, are the
coefficients from a regression of Alog(h) on the first lag of employment and hours growth,

respectively.

The term E[x] refers to the average flow profit calculated over the simulations.
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Table 4.3: The Baseline Calibration with Gaussian Productivity Innovations

Corr( Alog(n™), Alog(n)) 0.9908
Standard deviation of Al /
o og(n) 0.9736
Standard deviation of Alog(n™)
Prob(Al =0)/
(Alog(n)=0) 0.9994
Prob(Alog(n")=0)
Corr( Alog(h), Alog(h™)) 0.9451
Standard deviation of Alog(h) /
- m 1.0009
Standard deviation of Alog(h™)
Corr(Al Alog(h)) /
( og(nm), og( )r)n 0.3716
Corr(Alog(n™), Alog(h™))
BAn,An / BmA nAnN 10326
BAn,Ah / BmA nAh 09667
Banan / B anan 0.7848
Banan / B anan 0.9968
log( E[x"] / E[xn] ) -0.0028

See Note to Table 4.2.
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Table 4.4: Sensitivity Analysis to Variations in the Size of the Adjustment Cost

2=0.9 2=0.92 2=0.94
Uniform productivity innovations
Corr( Alog(n™), Alog(n)) 0.9616 0.9873 0.9909
Standard deviation of Alog(n) /
. m 0.9890 1.0023 1.0034
Standard deviation of Alog(n™)
Prob(Al =0
rob(Alog(n)=0) / 0.9970 1.0021 1.0053

Prob(Alog(n™)=0)
Corr( Alog(h), Alog(h™)) 0.8242 0.9251 0.9204
Standard deviation of Alog(h) /

Standard deviation of Alog(h™) 0.9842 0.9978 1.0062

Corr(Alog(n), Alog(h))/

Corr((Alogg(i’z), A1og;(132*)) 0.6798 1.0695 1.3029
Banan /' B anan 1.0224 1.0068 1.0183
Banan / B anan 0.9453 0.9744 0.8965
Banan / B ahan 0.4444 0.3380 2.3478
Banan / B anan 0.9931 0.9994 1.0056
log( E[z"™] / E[x] ) -0.0119 -0.0063 -0.0029

Gaussian productivity innovations

Corr( Alog(n™), Alog(n)) 0.9674 0.9908 0.9928

Standard deviation of Alog(n) /

Standard deviation of Alog(n™)
Prob(Alog(n)=0) /
Prob(Alog(n™)=0)

Corr( Alog(h), Alog(h™)) 0.8195 0.9451 0.9338

Standard deviation of Alog(h) /

0.9462 0.9736 0.9751

1.0121 0.9994 1.0083

Standard deviation of Alog(h™) L0157 1.0009 1.0109

Corr(Alog(n), Alog(h))/

Corr((Alogi(nnz), Alog;(gzq)) 0.0881 0.3716 0.1658
Banan I Banan 1.0225 1.0326 1.0263
Banan / B snan 0.9997 0.9667 0.9566
Banan / B ahan 1.0168 0.7848 0.7423
Banan / B anan 0.9910 0.9968 0.9988
log( E[x™] / E[x] ) -0.0073 -0.0028 -0.0019

NOTE: This compares the moments induced by alternative policy rules for a range of
values of the adjustment cost parameter, A. The notation follows that of Table 4.2. The
top panel concerns the model with uniformly distributed productivity; the bottom panel
relates results for the model with Gaussian shocks.
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Table 4.5: Sensitivity Analysis to Variations in the Degree of Uncertainty

0=0.4 6=0.5 0=0.6
Uniform productivity innovations
Corr( Alog(n™), Alog(n)) 0.9294 0.9873 0.9836
Standard deviation of Alog(n) /
. m 0.9813 1.0023 1.0137
Standard deviation of Alog(n™)
Prob(Al =0
rob(Alogm)=0)/ 0.9993 1.0021 0.9520

Prob(Alog(n™)=0)
Corr( Alog(h), Alog(h™)) 0.7987 0.9251 0.8430
Standard deviation of Alog(h) /

Standard deviation of Alog(h™) 1.0116 0.9978 0.9683

Corr(Alog(n), Alog(h))/

Corr(‘AlO;ﬁlﬁ), Alogg((h)%)) 0.7137 1.0695 1.7830
Banan I B anan 1.0152 1.0068 0.9678
Banan / B anan 1.0171 0.9744 1.1191
Banan / B anan 0.9099 0.3380 0.0588
Banan / B anan 1.0072 0.9994 1.0197
log( E[x"™] / E[x] ) -0.0074 -0.0063 -0.0052

Gaussian productivity innovations

Corr( Alog(n™), Alog(n)) 0.9574 0.9908 0.9956
Standard deviation of Alog(n) /
Standard deviation of Alog(n™)

Prob(Alog(n)=0) /
Prob(Alog(n™)=0)

Corr( Alog(h), Alog(h™)) 0.8509 0.9451 0.9488

Standard deviation of Alog(h) /

0.9462 0.9736 0.9751

0.9960 0.9994 1.0088

Standard deviation of Alog(h™) 09920 1.0009 10187

Corr(Alog(n), Alog(h))/

Corr(ilogirz)’ Alog;a?‘)) 0.2677 0.3716 0.0869
Banan | B"anan 1.0516 1.0326 1.0291
Banan / B anan 0.9413 0.9667 0.9373
Banan / B anan 0.8598 0.7848 0.6512
Banan / B anan 0.9767 0.9968 0.9998
log( E[x™] / E[x]) -0.0049 -0.0028 -0.0031

See Note to Table 4.4.
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Table 4.6: Sensitivity Analysis to Variations in the Disutility of Labor

Corr( Alog(n™), Alog(n))
Standard deviation of Alog(n) /
Standard deviation of Alog(n™)

Prob(Alog(n)=0) /
Prob(Alog(n™)=0)

Corr( Alog(h), Alog(h™))
Standard deviation of Alog(h) /
Standard deviation of Alog(h™)

Corr(Alog(n), Alog(h))/

Corr(Alog(n™), Alog(h™)

BAn,An / BmA nAnNn
BAn,Ah / BmA nAh
BAh,An / BmA h,A n
BAh,Ah / BmA h,A h

log( E[x"] / E[n] )

Corr( Alog(n™), Alog(n))
Standard deviation of Alog(n) /
Standard deviation of Alog(n™)

Prob(Alog(n)=0) /
Prob(Alog(n™)=0)

Corr( Alog(h), Alog(h™))
Standard deviation of Alog(h) /
Standard deviation of Alog(h™)

Corr(Alog(n), Alog(h))/

Corr(Alog(n™), Alog(h™)

BAn,An / BmA nAnN
BAn,Ah / BmA nAh
BAh,An / BmA hAn
BAh,Ah / BmA hAh

log( E[x"] / E[] )

See Note to Table 4.4.

(=1.34 =1.59 (=1.84
Uniform productivity innovations
0.9674 0.9873 0.9816
0.9679 1.0023 1.0019
1.0113 1.0021 1.0011
0.8657 0.9251 0.8781
1.0127 0.9978 0.9854
0.3600 1.0695 1.1000
1.0202 1.0068 1.0222
0.9670 0.9744 1.0225
0.7941 0.3380 12.5000
0.9871 0.9994 1.0145
-0.0085 -0.0063 -0.0055

Gaussian productivity innovations

0.9734

0.9364

1.0070

0.8747

1.0069

0.0561

1.0536
0.9406
0.8648
0.9734
-0.0054

0.9908

0.9736

0.9994

0.9451

1.0009

0.3716

1.0326
0.9667
0.7848
0.9968
-0.0028

0.9910

0.9786

0.9983

0.9307

0.9850

0.3615

1.0295
0.9754
0.7447
0.9944
-0.0025
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Table 4.7: Sensitivity Analysis to Variations in the Persistence of Productivity

p=0.39 p=0.59 p=0.79
Gaussian productivity innovations
Corr( Alog(n™), Alog(n)) 0.9908 0.9846 0.9927
Standard deviation of Alog(n) /
L m 0.9736 0.9647 1.0132
Standard deviation of Alog(n™)
Prob(Al =0) /
rob(Alog(n)=0) 0.9994 1.0045 0.9987

Prob(Alog(n™)=0)
Corr( Alog(h), Alog(h™)) 0.9451 0.9023 0.9471
Standard deviation of Alog(h) /

Standard deviation of Alog(h™) 1.0009 1.0111 1.0105
Corr(Alog(n), Alog(h))/

Corr((Al Ogg(fqm)), Alog;(}fr)n» 0.3716 0.3888 1.2549

Banan / B nAn 1.0326 1.0761 0.9967

Banan / B anan 0.9667 0.9687 1.0469

Banan /' B ahan 0.7848 0.7171 1.0259

Banan / B anan 0.9968 0.9890 1.0149

log( E["]/ E[x]) -0.0028 -0.0038 -0.0032

NOTE: This compares the moments induced by alternative policy rules for a range of
values for the persistence, p, of the productivity shock. It relates results solely for the
model with Gaussian innovations since the persistence parameter does not affect the
results in the case of uniformly distributed shocks (see the main text for more).
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Adjustment Cost

o ‘

n, Employment

NOTE: This displays the adjustment cost function. It equals zero if employment does not change, i.e.,
employment this period is set to n,, which is the level of employment carried over from last period.
Otherwise, the adjustment cost is a fraction of the firm's current-period revenue. The latter is, in turn, a
concave function of employment.

Figure 4.1: The Adjustment Cost Function



178

Iémploymenf (n)

NOTE: This displays the conjectured form of the optimal policy. The thick line traces out the optimal labor
demand function: for a range of x within [L(n_), U(n_;)], the plant maintains employment at n_,. Outside of

this band, it sets employment according to x=y(n).

Figure 4.2: The Optimal Policy Function
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—&—(ynamic problem  ——static problem

< WL O©WNIOLWO®OILWHLW LW NLW®MILW S WWILWLW O W~ LW

o Yo ¥Ywo®ococ ™No®R o @ © o g N M 4 9 40 59 4~

o o o o o o — — — — — — — —
Trigger (G)

NOTE: This displays the solutions of the value matching relation in the dynamic and static labor demand
problems. The ratio of the larger root to the smaller root equals the ratio of the upper trigger (U) to the lower
trigger (L) (see Figure 4.2). Thus, the smaller of the two solutions is associated with the policy rule for
reducing employment. The larger of the two roots is associated with the policy rule for raising employment.

Figure 4.3: Solving the Value Matching Condition in the Dynamic and Static Problems
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0.8

0.6

04 Approximate: circles /
: Exact: lines O/

min{x}

4 45 5 55 6 6.5 7 7.5 8
log(n)

NOTE: This displays the policy function for the model with uniformly distributed productivity innovations.
The approximate forward-looking policy function of the dynamic model, derived analytically in Section 4.2,
is shown in circles. The exact forward-looking policy function associated with the dynamic model, which
was solved numerically in Section 4.3, is shown in lines. The dashed lines at the top and bottom of the figure
show the upper and lower bounds on productivity, given the parameters of the uniform shock process.

Figure 4.4: Approximate and Exact Dynamic Policy Rules under Uniform Innovations
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0.8

----------------------- (y' === === =~
0.6 0.2 ©
0.4 Myopic: circles A O/ 9/
. Exact: lines |Og U(n) y y
0.2 o2 ©

NOTE: The policy function that solves the myopic model is shown in circles. The exact forward-looking
policy function of the dynamic model with uniformly distributed productivity innovations is shown in lines.
The dashed lines at the top and bottom of the figure show the upper and lower bounds on productivity, given
the parameters of the uniform shock process.

Figure 4.5: Myopic and Optimal Policy Rules under Uniform Innovations
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1.25
0.75

Myopic: circles

Exact: lines
0.25
-0.25
-0.75
-1.25

4 45 5 55 6 6.5 7 7.5 8
log(n)

NOTE: The policy function that solves the myopic model is shown in circles. The exact forward-looking
policy function of the dynamic model with Gaussian distributed productivity innovations is shown in lines.

Figure 4.6: Myopic and Optimal Policy Rules under Gaussian Innovations
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4.6 Appendix: Proofs

Proof of Proposition 1 Under the Conjecture, and given the restriction [L (n),U (n)] C

[xPel ™8, xPelT5] | it is possible to decompose the expected future value of the plant as follows:

U(n)

I (z',n)dG (z'|x) = o 2 (2') dG (o' |x)+
/ /

1° (z',n) dG ($’|z)+/ 12 (') dG (' |z) .
L(n)

U(n)

Differentiating with respect to n, and applying the value matching conditions (4.12)), yields

U(n)
/Hn (z',n)dG (z'|z) = / 0 (', n) dG (2'|z) .
L(n)

Forwarding (4.11]) one period and differentiating I1° (z’,n) with regard to n then gives

U(n)
D(zn) = /L() 10 (o, n) dG («/|2)

U(n) L Un)
= / {dA:c’cfan_Ccfa — b} dG (¢'|z) + ﬁ/ D (2',n)dG (2'|z),
L(n) L(n)

where & = ag;l.
—

Since innovations to logx are uniformly distributed, it is straightforward to calculate the first

integral. There are two parts to it:

vim , 1¢—a < <
/L(n)xcadG(a:J;):ZS - [0 ()& — L ()]

and

/Lt::) dG (z'|z) = 2%9 log (TIJ:((Z))) .

Under the Conjecture, these expressions become, respectively,

s ) () e
o Ao MO

1
A
=<
=
T
Q
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and

s (5tn) -5 (6) =

where Gy = U/x and G, = L/x. Substituting these results into the recursion for D, and using

the Conjecture x (n) = yn'=2, yields

U(n)
(4.25) D (z,n) = GAPXT= — bPy + B D (2',n)dG («')z).
L(n)

Notice that, under the Conjecture, P: and Py are constants. This suggests that a natural guess for

the forward term is D (z,n) = d =constant. We substitute this into (4.25)) and rearrange to obtain

CAVA’PCXC—% —bPo
1—BPo ’

D (z,n) =

which is in fact independent of x and n.

Proof of Proposition 2 Using the conjecture (4.20]), we solve the forward integrals in the

recursion (4.19), obtaining

U(n_1) U(n-1) al=l . 1
/ A(z',n_1)dG (2'|x) / [50n1 +on_§ 2’ + 52x’1a} dG (z'|x)
L(n_1) L(n-1)

< 1
[50730 + 01 Pex s + 527)1X1*‘*} n_i

and

—

xI<

S~—
8

/( A (' ,n)dG (z'|z) = /((;{)I [6on(x)+51n(x)a%z'<% +52x’ﬁ} dG (2'|z)

5)1;
X

x
S—
8

_a (-1 1
= {50770X_ﬁ + 01 Pex T + 52771} rTw .

Substituting these results into (4.19)), we now have

—1 < 1
Trxl-a 4 JoxToa

I~

A (;v,n,l) = don_1 + 51ni

=
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[

¢—

¢
1

=4qb+ 0 (60Po+ 51’P4X4—% + (52fP1Xﬁ n_y —An"
{pra

(arTmxT —p) o

+ . W o1 Ti-o,
B (50770X7m +01Pex e + 52771)

Equating coefficients yields

80 = b+ 53 (8P + 81 PeXTT + 0;Pix T )
b= —A

5y = (Axﬁxc—% - b) X -8 (507>0X—ﬁ + O P T 4 52791)
To simplify these expressions, define
Q= 6Py + 51’PQX<*% + 52731Xﬁ.

Then inspection reveals that

0o =b+ 60

from which we obtain

Substituting this into the expression for &g yields

B-‘rﬁ {)\ﬁpl —Pg} X&
L+ B[P1—Pol

=4

Since &y, 01, and Jo are constant coefficients, this verifies the conjecture.

Proof of Proposition 3 To begin, we recapitulate equation (4.22]),



186

0=2(G)= (1;a+) G — %A—c—%ac—ﬁ +(1-).

Take the first order condition of z (G), and let G* denote the value of G that satisfies 2’ (G) = 0.
The strategy of the proof is to show that, at G*, z is negative (2 (G*) < 0) and then to verify that

z increases as one moves away from G* in either direction, i.e., that

(4.26) Z(G) < Oforalg<G*

Z'(G) > O0forall G>G*.

Together, these statements imply that G* is the global minimum and that z (G) crosses zero twice.

To proceed, we solve the first order condition to find that G* is given by

¢ R
AT« 1—a) ©
G* = X .
<1—d+é¢ CC—a)

Substituting this into z (G), and introducing the auxiliary terms,

a(—a
C = C _’17

we obtain the following expression for z (G*):

1—& 1-&
1—a \ & [1-a\ & ey
Z<G*>—( d%) ( &a) AER

To show that this is negative, it is sufficient to show that

1—& 1—&
=6\ /1—a\ & _axs
—( AO‘> ( AO‘> AT E41<0
[0 Q

since > 0 and & < 1. This inequality, in turn, requires

which holds since A < 1 and O‘Tﬁé > 1.
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Next, we need to show that the derivative of z,

1f0‘+ 1 Glfa_i)\—g_% ¢ fete=
Q 11—« a (—a

satisfies (4.26]). Letting G = £G*, for some positive scalar £, this becomes

{gf% - 1}75&’

o

where v = (33%4) (L G*Ts = é)\_c—% C_%G*c—% holds by virtue of the first order condition.

The term in brackets is negative for £ < 1 and positive for & > 1.

To conclude the proof, we show that one root is less than one and one root is greater than one.
To do so, it is sufficient to verify that z (1) < 0. Since z is increasing as one moves away from G*
in each direction, it must be that, if z (1) < 0, the smaller of the two roots lies to the left of G =1

and the larger lies to the right. Plugging in G = 1, we see that z is negative iff

1</\*<%a,

which holds since A < 1 and C*La > 1.
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CHAPTER V

Conclusion

This dissertation has explored the empirical and theoretical implications of a rich array of
employment adjustment frictions. The adjustment costs varied from the readily observable JOBS
Bank program, which operated within the U.S. motor vehicle industry, to the harder-to-quantify,
though no less important, costs associated with recruiting workers and integrating them into the
ebb and flow of operations at a plant. Just as the nature of these costs varied, so did their effects
on labor demand.

Chapter 1 considered the consequences of the JOBS Bank. It showed that JOBS exerted an
influence on labor demand by generating an option value of production: a plant wanted to safeguard
the layoff weeks it was allotted for a contract in case vehicle demand declined before the labor
agreement expired. The structure of the provision provided several testable predictions. Specifically,
weeks of layoffs at a plant should decline as its accumulated stock of past layoffs approached the
allotment. In addition, for any given level of past layoffs, the plant should defer downtime until later
in the contract when the uncertainty over vehicle demand is largely resolved. This “wait-and-see”
approach would allow it to conserve its allotment in case layoffs are needed when vehicle demand
declines. The chapter tested these predictions on a comprehensive panel dataset that spans all
assembly plants of the Detroit Three manufacturers.

The analysis found little, if any, effect of the JOBS Bank on weekly layoff behavior. Simulations
of the structural model indicated what may have been behind this result. They showed that the
strength of the option-value effects relied in large part on the persistence of vehicle demand shocks.
The reason was straightforward: if a plant expects demand to remain subdued for some time after
an adverse shock, it has an incentive to defer layoffs now and instead “wait and see” if it will need its
allotment later in the contract should another negative disturbance arrive while demand is already
low. The estimation results indicated that fluctuations in vehicle demand were in fact relatively

short-lived, which thus weakened the JOBS Bank effect.
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The second and third chapters contributed theoretical analyses of adjustment frictions that
are commonly found in the literature but whose implications are often difficult to fully develop
analytically. Chapter 2 presented a model that rests on three pillars: (i) firms face a cost of recruiting
new hires; (ii) there are diminishing returns to labor (at least in the short run); and (iii) firms face
both idiosyncratic and aggregate risk. When the model was evaluated quantitatively, it was shown
to provide a coherent account of several salient features of the U.S. labor market. In particular,
it replicated the distributions of employer size and employment growth across establishments; the
amplitude and propagation of cyclical fluctuations in flows between employment and unemployment;
the negative comovement of unemployment and vacancies; and the dynamics of the distribution of
employer size.

The third chapter considered the effect of a fixed cost of adjustment on a firm’s optimal labor
demand rule. It uncovered an unexpected result: although a fixed cost is often thought to substan-
tially complicate the firm’s problem, the optimal forward-looking policy rule is, under reasonable
parameterizations, quantitatively indistinguishable from the labor demand rule associated with the
corresponding static, or myopic, model. This is surprising because the fixed cost generates an
optimal degree of inaction, meaning that the firm will occasionally leave the size of its workforce
unchanged in response to fluctuations in business conditions. As a result, the firm is in a long-term
relationship with its workers. And yet, the employment adjustment friction does not have the effect
that is often ascribed to it, that is, it does not seem to appreciably raise the importance of being
foresighted. That the losses associated with myopia are small indicates that one may be able to
summarize the key qualitative and quantitative features of a rich class of dynamic models with rela-
tively simple myopic “rules of thumb”. This would represent quite an advance in our understanding

of the implications of employment adjustment costs.
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