
Verification and Anomaly Detection for

Event-Based Control of Manufacturing Systems

by

Lindsay Victoria Allen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2010

Doctoral Committee:

Professor Dawn M. Tilbury, Chair
Professor Stephane Lafortune
Associate Professor Jionghua Jin
Associate Research Scientist James R. Moyne

c© Lindsay Victoria Allen
All Rights Reserved 2010

This work is dedicated to Bobby and my family, for all their love and support.

ii

ACKNOWLEDGEMENTS

I would like to thank Rackham Graduate School, the NSF Engineering Research

Center for Reconfigurable Manufacturing Systems, NSF grants EEC 95-92125 and

CMS 05-28287, and the NSF EAPSI Fellowship program for each providing financial

support at some point during my doctoral work. This very worthwhile pursuit would

not have been possible without this generosity.

I am grateful for Professor Dawn Tilbury’s guidance as my PhD advisor. She

pushed me to do better and be stronger than I thought I could, and yet encouraged

my independence.

Numerous thanks go to my student and research colleagues, from whom I have

learned so much, both academic and otherwise. The RFT students were always

willing to be a sounding board when I got stuck and made work enjoyable even when

things got tough. I thank James Moyne for always reminding me of the industry

perspective, and Kiah Mok Goh for helping me see the commonalities in research

and people, regardless of the part of the world.

Finally, I want to express my deep appreciation to Bobby, my family, and my

friends. Without you, I would not have had the passion, persistence, nor sanity to

reach this goal.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Research Approaches . 4

1.2.1 Verification . 4
1.2.2 Detection Solution . 6
1.2.3 Detection Application . 7

1.3 Contributions . 7
1.4 Summary . 9

II. Background and Related Work . 10

2.1 Discrete Event System (DES) Models . 10
2.1.1 Finite State Machine (FSM) . 11
2.1.2 Petri Nets . 12
2.1.3 System Identification for DES . 14

2.2 Logic Controllers . 15
2.2.1 IEC 61499 . 16
2.2.2 ECA MFSM . 17

2.3 Handling Faults in DES . 19
2.3.1 Verification . 19
2.3.2 Fault Detection and Diagnosis . 20

III. Verification of Input Order Robustness . 22

3.1 Related Concepts . 23
3.2 Logic Controllers and Networks of Controllers 25

3.2.1 Logic Controllers . 25
3.2.2 Network of Controllers . 27

3.3 IOR Theory . 30
3.3.1 Input Order Robustness . 31
3.3.2 Pairwise Input Order Robustness of a Single Controller 33

iv

3.3.3 Input Order Robustness of a Network of Controllers 34
3.4 IOR Verification Procedure . 39

3.4.1 General Procedure . 39
3.4.2 Example System for Verification . 41
3.4.3 First Steps of Verification Example 44
3.4.4 ECA MFSM Verification . 46
3.4.5 IEC 61499 Verification . 46

3.5 Application to IEC 61499 . 47
3.5.1 Open Execution Semantics Issues 47
3.5.2 Application of Verification to IEC 61499 Network of Controllers . . 51

3.6 Computational Complexity . 55
3.7 Conclusions . 56

IV. Anomaly Detection for Event-Based Systems Without Pre-Existing For-
mal Models . 57

4.1 Description of Small Manufacturing Cell . 58
4.2 System of Processes That Interact Through Shared Resources 60

4.2.1 Intuition and Examples for SPSRs 60
4.2.2 Formal Definitions for SPSRs . 62

4.3 Petri Net Models for System of Processes that Interact Through Shared
Resources . 64

4.4 Problem Statements . 74
4.5 Model Generation . 75

4.5.1 Steps for Set-Up . 75
4.5.2 α+ Algorithm . 76
4.5.3 Model Generation Algorithm . 80
4.5.4 Theory . 87

4.6 Performance Assessment . 89
4.7 Anomaly Detection . 91
4.8 Application of Solution to Simulated RFT Cell 93
4.9 Conclusions . 97

V. Application of Anomaly Detection to Industrial Manufacturing Line . . . 99

5.1 Description of Machining Cell . 99
5.2 Initial Application of Solution . 102
5.3 Inconsistencies Between Academic Assumptions and Industry Realities . . . 104

5.3.1 Observable Events to Acquire/Release Resources 105
5.3.2 String of Ordered Events . 107
5.3.3 Consistent Mapping Between Event and Meaning 109
5.3.4 System Starts in Initial State for Each Event Stream 111
5.3.5 Separate, Labeled Event Streams 112

5.4 Barriers to Application to Machining Cell . 113
5.5 Conclusions . 114

VI. Application of Anomaly Detection to Simulated Systems 115

6.1 Multiple Bit Change (MBC) Inconsistency 115
6.1.1 Handling Combination Events in DES 118
6.1.2 MBC Algorithm . 119
6.1.3 Application of MBC Decision Algorithms to Small Manufacturing

Cell . 122
6.1.4 Limitations of Heuristic MBC Algorithms 126

v

6.2 Initial State Inconsistency . 127
6.2.1 Model Producing Event Stream From Unknown Initial State 127
6.2.2 Theory and Algorithms . 130
6.2.3 Application of Initial State Algorithms to Small Manufacturing Cell 134

6.3 Results for Simulated RFT Cell . 138
6.4 Conclusions . 141

VII. Conclusions and Future Work . 142

7.1 Verification Contributions . 142
7.2 Anomaly Detection Contributions . 143
7.3 Future Work . 145

VIII. Appendix: List of Acronyms . 150

Bibliography . 152

vi

LIST OF TABLES

Table

3.1 Events for Cell 1 Controller . 42

3.2 Verification of Event Pairs: P = cannot occur nearly same time, D = order should
matter, S = need to verify . 44

3.3 States Removed by Restrictions R1 - R3 where • = any valid value 45

3.4 Event Modifications for Application to IEC 61499 47

3.5 IEC 61499 Execution Open Issues . 51

4.1 Events in Manufacturing Cell . 59

4.2 Resource information for Manufacturing Cell . 60

4.3 Comparison of Petri net formalisms that use resources 67

4.4 Comparison of Sound SWF -nets and TP s . 68

4.5 Event Pair Occurrences in Example . 78

4.6 Ordering Relations for Event Pairs in Example . 78

4.7 Ordering Relations Due to Resources for Event Pairs in Process 1 85

4.8 Relationships from Event Log Minus Relationships Due to Resources for Process 1 85

4.9 Unique Models Generated from Algorithm for Given Log 94

4.10 Performance Results in Percentage for Each Model Generation Event Log, Where
Num is the number of events in the stream and the results are expressed as Max,
Min, and Mean . 96

5.1 Physical and Data Events That Acquire and Release Cell’s Resources With Unob-
servable Events in italics . 104

5.2 Inconsistencies and Their Resolutions, Where Responsible Party is Either Academia
or Industry . 113

6.1 Ordering Relations for Event Pairs in MBC Example 125

vii

LIST OF FIGURES

Figure

1.1 Closed loop system consisting of plant and controller that exchange events. 2

1.2 Illustration of input order robustness error for Part 1 arriving 4

2.1 FSM that describes simple machine. 12

2.2 Petri net that describes simple machine. 14

2.3 IEC 61499 controller for Cell 1 of RFT. 16

2.4 ECC for Cell 1 FB. 17

2.5 Schematic ECA MFSM for cell controller . 18

3.1 Simple network of controllers where πA ⊆ {a, c}, πB ⊆ {gA2(πA, xA), b} and the
outputs of Component A are segmented into outputs to the environment and to
Component B, gA(πA, xA) = gA1(πA, xA) ∪ gA2(πA, xA) 29

3.2 Network of controllers with no feedback loops, which means it can be labeled using
partial ordering. 30

3.3 Left: Network of controllers with two feedback loops, Right: Equivalent network
of controllers where components have been combined to eliminate feedback loops . 38

3.4 Cell controller’s decision-making . 43

3.5 Fixture and carriage network example (based on [11]) 53

3.6 Fixture and carriage ECCs (based on [11]). 54

4.1 Illustration of manufacturing cell, where dashed lines show possible movements of
the robot and milling machine, and their associated events (in italics) 58

4.2 Example S2PR from [21] where resources represented by places r2, r3, and r4 . . . 65

4.3 Example S2PR from [21] modified to have different resource usage 67

4.4 TP from process 1 of example manufacturing cell 70

4.5 TPR Model, Generated for Process 1 with NotR2, m1 causes d1 72

viii

4.6 TPR Model Generated for Process 2 of Manufacturing Cell Example [TPCR Model
for Process 2 of Assembly Ex] . 73

4.7 Example STPR, Whole Model From Combining Third Process 1 Model and Sole
Process 2 Model . 75

4.8 Model result from applying α+ algorithm to example system 79

4.9 Models Generated for Process 1 Before Decisions Added 85

4.10 Models Generated for Process 1 . 86

4.11 Example STPR for Cell 1 (composed of TPR for Part 1, TPR for Part 2, and
TPCR for Empty) with resource places Pallet Stop, Robot, Empty, M1, M2,
NotM1, and NotM2. 95

5.1 Machining cell that consists of two gantries (G1, G2) operating in serial and six
CNCs (M1-M6) operating in parallel . 100

5.2 Data collection set-up for machining cell . 101

5.3 An MBC where two bits change per event and the three options are: keep it as a
unique event, or split it into one of two possible sequences 109

6.1 Small MBC Manufacturing Cell . 125

6.2 Model created by model generation for MBC RFT cell 140

ix

ABSTRACT

Many important systems can be described as discrete event systems, including a

manufacturing cell and patient flow in a clinic. Faults often occur in these systems

and addressing these faults is important to ensure proper functioning. There are

two main ways to address faults. Faults can be prevented from ever occurring, or

they can be detected at the time at which they occur. This work develops methods

to address faults in event-based systems for which there is no formal, pre-existing

model. A primary application is manufacturing systems, where reducing downtime

is especially important and pre-existing formal models are not commonly available.

There are three main contributions.

The first contribution is formalizing input order robustness - inputs occurring in

different orders and yielding the same final state and set of outputs - and creating a

method for its verification for logic controllers and networks of controllers. Theory

is developed for a class of networks of controllers to be verified modularly, reducing

the computational complexity. Input order robustness guarantees determinism of

the closed-loop system.

The second contribution is an anomaly detection solution for event-based systems

without a pre-existing formal model. This solution involves model generation, per-

formance assessment, and anomaly detection itself. A new variation of Petri nets

was created to model the systems in this solution that incorporates resources in a

less restrictive way. The solution detects anomalies and provides information about

x

when the anomaly was first observed to help with debugging.

The third contribution is the identification and resolution of five inconsistencies

found between typical academic assumptions and industry practice when applying

the anomaly detection solution to an industrial system. Resolutions to the inconsis-

tencies included working with industry collaborators to change logic, and developing

new algorithms to incorporate into the anomaly detection solution. Through these

resolutions, the anomaly detection solution was improved to make it easier to apply

to industrial systems.

These three contributions for handling faults will help reduce down-time in man-

ufacturing systems, and hence increase productivity and decrease costs.

xi

CHAPTER I

Introduction

1.1 Motivation

Many systems that are essential parts of our functioning society can be described

as discrete event systems (DES). A discrete event system has a set of discrete states

(x ∈ X) that it transitions among due to the asynchronous occurrence of events

(e ∈ E), where the system’s next state is entirely dependent on its current state and

the event. For example, the operation of a machine can be modeled as a DES. The

events could include start, finish, break, and repair and the states would be IDLE,

BUSY, and BROKEN, where for instance, the machine would transition from state

BROKEN to state IDLE when the event repair occurs. Patient flow through a clinic

could also be modeled as a DES. Events could include start app’t, doctor available,

and get test with possible states such as WAITING, CONSULTATION, WAITING

FOR DIAGNOSIS where, for example, from state CONSULTATION the event get

test would transition the patient to the state WAITING FOR DIAGNOSIS. One

type of discrete event system is a logic control system, which consists of a plant

(something physical to be controlled) and a logic controller, as illustrated in Figure

1.1. Sometimes these physical systems have faults (behave improperly) or anomalies

(behave in a way other than expected), and these faults and anomalies must be

1

2

Plant

Controller

Events

PlantPlant

ControllerController

Commands Responses

References

Figure 1.1: Closed loop system consisting of plant and controller that exchange events.

addressed for the systems to work well.

The Reconfigurable Factory Testbed (RFT) is a small-scale manufacturing line

at the University of Michigan that is used for research and instructional purposes

[44]. It experienced a reoccurring fault that served as motivation for much of this

research. The system includes two processing cells, a conveyor to connect them,

and an RFID system to track parts and pallets and update tables that maintain the

queue for each processing cell. In operating the testbed, there were some intermittent

errors that caused incorrect operation of the system and were difficult to diagnose.

Correct operation of the system requires that when a pallet arrives at a processing

cell, the cell receives information about which part the pallet has on it and treats

the pallet appropriately. An empty pallet has a completed part loaded on it if one

is waiting, waits if a part is being machined, and otherwise is simply released. A

pallet with an unfinished part is unloaded if a machine is available to process it and

otherwise is released. Most of the time, the system operated correctly. Occasionally

and unpredictably the cell would release a pallet with an unfinished part, as if it were

empty, and then treat the next pallet as if it had an unfinished part. This erroneous

behavior did not trigger any fault flags but resulted in a part not being processed

and another pallet being treated incorrectly.

In part because of its intermittent, infrequent nature and lack of fault response,

3

this error was difficult to diagnose. Eventually, the root cause was found – a controller

that was not properly programmed. The controller was designed expecting some

inputs to occur in a particular order, but occasionally network delays or the order

in which certain control modules were executed would cause the inputs to occur in

a different order, and this different order resulted in different commands to the cell

about what to do with the pallets and incorrect operation. When a pallet arrived

at the Cell 1 pallet stop, the conveyor controller notified the high-level controller,

which queried the RFID tables to determine which part that pallet carried, and set

the appropriate LoadPartw (LPw) input high (where w = 1, 2, or 0 for part 1, 2,

or empty) and PartReady (PR) input high to indicate that a pallet with part w

had arrived. These two inputs traveled different paths through the Cell 1 controller.

LPw went through two control modules before reaching the main module, whereas

PR went through a different module and then directly to the main module. The

main module of Cell 1’s controller expected the LPw to be set high and, in the same

scan or shortly thereafter, PR to also be set high. The module’s state and outputs

for this sequence are shown in the top trajectory of Figure 1.2, where we assume w =

1. When the error occurred, however, the PR input reached the main module before

the LP1 input, causing the controller module to believe that it had no information

on the part present and thus assume that it was empty and release the pallet, as

shown in the bottom trajectory of Figure 1.2. When LP1 eventually arrived, the

controller held this information until it next received PR for the subsequent pallet,

and hence treated the subsequent pallet as if it were the first.

This error was addressed by modifying the controller’s main module so that the

inputs {LP1, PR} could arrive in either order and produce the same outcome –

treating each pallet correctly. Once the source of the error was found, it was easily

4

IDLE

Store
Part1 Info

Process
Part 1

No Part
Info

Store
Part1 Info

PR
LP1

≠

PR

LP1

Output: Release Pallet

Output: Load Part 1

Figure 1.2: Illustration of input order robustness error for Part 1 arriving

remedied, but finding the source was a time intensive and difficult manual process. To

address this problem and problems like it in systems that can be modeled as discrete

event systems, two different approaches were developed – verification to prevent this

type of problem from ever occurring, and anomaly detection to determine when such

a problem has occurred and help determine the root cause.

1.2 Research Approaches

1.2.1 Verification

Verification checks that a system possesses a certain property or class of properties.

If the system does have a certain property, then any faults associated with not having

that property are guaranteed to be avoided, and if the system does not have it, then

some possible faults are known and a decision can be made about whether, if possible,

the system should be modified to possess the property. For discrete event systems,

properties that are commonly verified include controllability, language specifications,

absence of deadlock, and diagnosability. Controllability is the property that a system

modeled by a DES could be controlled to meet a given specification using a controller

also implemented in DES. Language specifications are restrictions on the desired

behavior of a controlled system. Deadlock is the property where there are one or

5

more states that can be reached from which no transitions to other states are defined.

Diagnosability is the property of being able to determine that a particular fault has

occurred when the fault is described by an unobservable event. Lack of a particular

property was identified as the root cause for the RFT cell fault.

Logic controllers receive inputs from their environment, process these inputs, and

produce outputs. If the environment is non-deterministic, then two or more inputs

may arrive at nearly the same time or can arrive in any order. In such cases, the

behavior of the logic controller – its final state and set of outputs – may depend on

the order in which the inputs arrive. A logic controller that behaves this way is not

input order robust for this set of inputs. If a logic controller should be input order

robust for a set of inputs but is not, then it can cause faults in the controlled system

that are difficult to debug. The RFT cell is an example of a logic controller that was

not input order robust. Note that input order robustness only requires that the set

of outputs be the same, not the order of those outputs.

Input order robustness is an important property for a controller to possess because

then the closed-loop behavior of the controller with its environment is deterministic,

so the closed-loop behavior can be predicted, and thus checked as to whether it meets

desired specifications. To the author’s best knowledge, there is currently no proposed

formal procedure for such verification. In Chapter III, input order robustness is

formally defined and a verification method for it developed. Input order robustness

verification consists of identifying which sets of inputs can occur in different orders

and should have the same behavior regardless of the order, and then simulating

the system to check if these different orders actually produce the same behavior.

Theory is developed to support this verification method for both logic controllers and

networks of logic controllers, and examples of both are illustrated. The relationship

6

between input order robustness verification and open execution semantics for IEC

61499, a particular logic control formalism, are also explored. By verifying that a

system is input order robust, faults associated with a lack of input order robustness

are prevented from ever occurring. A disadvantage of this verification approach is

that it checks only input order robustness. In general, verification can only check

known properties, but there can be many types of faults and anomalies.

1.2.2 Detection Solution

As another approach to addressing the type of fault found in the RFT cell, Chapter

IV develops an anomaly detection solution that could also help address faults not

related to input order. In discrete event systems (DES), streams of events represent

the behavior of the system, and some faults that occur may be evident in the event

stream. For example, there could be a fault in the interaction of a machine and

controller that causes a part to not be properly processed, even if no fault alarm is

triggered. Detecting and debugging these faults efficiently is important to keeping

complex systems, such as those in manufacturing, running well and reducing their

downtime.

One of the main challenges in this detection problem is that the RFT cell, as well

as many industry systems, does not have a pre-existing formal mathematical model.

Thus, this solution consists of model generation using observed event streams that do

not have faults, followed by anomaly detection for observed event streams that may or

may not have faults and then fault detection to determine whether the anomalies are

actually faults. An anomaly is an unusual occurrence in the behavior of the system,

and some anomalies may be faults, while others may be infrequent yet correct system

behavior. This research proposes a solution to the anomaly detection problem based

on model generation; fault detection based on these anomalies is left for future work.

7

Anomaly detection on its own can provide insight into possible problems in a system

by highlighting where observed behavior differs from the no-fault behavior described

by the models. The main disadvantage to this approach over verification is that it

provides information about an anomaly (possible fault) once it has already occurred,

rather than preventing it from ever happening. Detection also requires that the

system is already operating.

1.2.3 Detection Application

The anomaly detection solution from Chapter IV was applied to an industrial

machining cell. In the process of that application, a number of inconsistencies were

found between academic assumptions and industry realities. Chapter V presents this

industrial application and the academic versus industry inconsistencies, including

resolutions found to address them. This set of inconsistencies is not all-inclusive but

several of the inconsistencies addressed would typically be faced in most industry

systems. Although a few continuing barriers prevented completion of the industrial

application, the inconsistencies’ resolutions have been tested through application

to simulated systems that have been developed to mimic the industry conditions

described in Chapter V.

1.3 Contributions

The first main contribution is input order robustness verification. Input order

robustness is defined and a verification procedure developed so that the closed-loop

behavior of logic control systems can be guaranteed as deterministic and prevent

faults associated with the lack of this property. The theory generated to support in-

put order robustness verification makes use of modularity to improve the verification

procedure’s scalability. Additionally, the role of input order robustness in mitigating

8

some of the problems associated with open execution semantics in the IEC 61499

standard is demonstrated.

The second main contribution is development of an anomaly detection solution

for event-based systems without a pre-existing formal model, which is a significant

step toward fault detection for such systems. A model generation algorithm was

developed to estimate models of the system’s behavior that extended an existing

algorithm by creating additional model variations and incorporating resources. A

variation of a resource based Petri net was created that is less restrictive to use as

the modeling formalism for this model generation. The anomaly detection algorithm

was created and it incorporates performance assessment of the models to improve its

own performance on detecting anomalies.

The third main contribution is identification and resolution of five inconsistencies

between academic assumptions that are common in DES and related areas and in-

dustry realities of the systems they are trying to model and analyze. Resolutions to

some of these inconsistencies produced recommendations for industry partners in the

design of data collection to make analysis using DES easier. Other resolutions re-

quired developing significant academic contributions in the form of both theory and

algorithms. A heuristic algorithm was developed to decide how to split multiple bit

changes, a common occurrence in programmable logic controller (PLC) data, based

on the bits’ relationships. A necessary condition was developed for a DES to produce

a stream of events starting from an unknown state; this condition was implemented

in an algorithm.

9

1.4 Summary

To address faults that occur in systems that can be modeled by discrete event

systems (DES), two different approaches were developed. Some faults can be pre-

vented by verifying that the logic controller or network of controllers is input order

robust, and resolving any violations of that property. Alternatively, faults can be

detected in the system through anomaly detection using model generation. These

two approaches are associated with two of the main areas of contribution, with the

third area being identifying and resolving inconsistencies between common academic

assumptions and industry practice found during industry application of the anomaly

detection solution.

CHAPTER II

Background and Related Work

This chapter reviews work related to input order robustness verification and

anomaly detection. The informal description of discrete event system in Chapter I is

formalized, examples presented, and modeling formalisms discussed in Section 2.1.

Logic controllers are defined and two of their modeling formalisms, IEC 61499 and

Event-Condition-Action Modular Finite State Machine (ECA MFSM), are described

in Section 2.2. Section 2.3 discusses two main approaches to addressing faults – ver-

ification and detection/diagnosis.

2.1 Discrete Event System (DES) Models

Definition 1 (Event). An event is something that occurs instantaneously and tran-

sitions a system from one state to another.

Definition 2 (Discrete event system). A discrete event system (DES) is a discrete-

state, event-driven system, that is, its state evolution depends entirely on the occur-

rence of asynchronous discrete events over time [9]. Each DES has a set of events

E, a set of discrete states X, and a function that describes how the events cause the

system’s state to change.

Definition 3 (Event stream, prefix of event stream). An event stream σ is a finite

10

11

ordered sequence of events drawn from event set E, σ = e1e2...em. If an event stream

σ′ is equal to e1...ek for some 1 ≤ k ≤ m, then σ′ is a prefix of σ and is denoted by

σ̂.

When a DES operates, it generates an event stream and a corresponding sequence

of states. As mentioned in Chapter I, many systems can be modeled as a DES

such as the operation of a machine, patient flow through a clinic, and traffic at an

intersection.

Discrete event systems should not be confused with the similar sounding discrete-

time systems. A discrete-time system is one in which values, such as inputs and

outputs, are sampled at discrete times, but in general these values are from a con-

tinuous signal in contrast to events that occur asynchronously.

DES can be modeled using a number of formalisms. The idea of a DES is often best

understood through an example modeled by a finite state machine (FSM), which is

presented in Section 2.1.1. Another modeling formalism for DES is Petri nets. Petri

nets can model a broader class of systems, often with a more concise representation,

and are introduced in Section 2.1.2. Some systems that can be modeled by a DES

do not have such a model available, but system identification can be used in some

cases to create such a DES model (Section 2.1.3).

2.1.1 Finite State Machine (FSM)

For a finite state machine (FSM), sometimes called a finite state automata, each

state is represented by a circle, generally containing the name of the state, and each

event is represented by a name, where arcs connect states and each arc is labeled with

the name of the event that causes that transition. More detail on this formalism is

given in Chapter 2 of [8]. An example DES is illustrated in Figure 2.1 that describes

12

the behavior of a simple machine. This system has three discrete states – IDLE,

BUSY and BROKEN – represented by the circles, and four events – start, finish,

break, and repair – each of which label a transition between states. The unconnected

arrow to the state IDLE indicates that this is the initial state. In this system, the

machine starts in the initial state IDLE and remains in that state until the event

start occurs, at which point the machine transitions to the state BUSY as it is busy

processing a part. From BUSY, either the machine finishes processing the part (finish

occurs) or the machine breaks (break occurs), which transition the system to IDLE

and BROKEN respectively. From BROKEN, the machine can return to idle only

when the event repair occurs. Although this formalism has the advantage of being

easy to understand and model for smaller systems, it is less expressive and can be

more difficult to use for larger systems. Another common DES modeling formalism

that avoids some of these drawbacks is Petri nets, which are used in the anomaly

detection method and thus are described next.

IDLE BUSY

BROKEN

start

finish

break
repair

Figure 2.1: FSM that describes simple machine.

2.1.2 Petri Nets

A common and more expressive DES formalism is Petri nets, of which a brief

overview is provided here. A more in-depth treatment is available in Chapter 4 of

13

[8].

Definition 4 (Petri net, Marked Petri net). A Petri net N is a graph (P ,T ,F), where

P is a finite set of places, T is a finite set of transitions, and F ⊆ (P × T)∪ (T ×P)

is a set of arcs from places to transitions and from transitions to places. A marked

Petri net N =(P ,T ,F ,M) is a Petri net (P ,T ,F) with M as a marking of the set of

places P that represents the Petri net’s state. The initial marking M0 of a Petri net

corresponds to the initial state.

The marking M is the number of tokens in each place. M(pi) refers to the number

of tokens in place pi. The notation •p refers to all transitions t that put a token in p

when they fire ((t, p) ∈ F), whereas p• are the transitions that remove a token from p

to fire ((p, t) ∈ F), and similarly for •t and t•. A transition t is enabled when ∀p ∈ P

such that (p, t) ∈ F , M(p) ≥ 1. When transition t fires, the Petri net has a new

marking M ′ based on removing tokens from the places that feed t (•t) and adding

tokens to the places that receive from t (t•). An example Petri net is illustrated in

Figure 2.2 that represents the same simple machine as in Figure 2.1. If the places

are ordered as [IDLE, BUSY, BROKEN] then the initial marking is [1 0 0], and the

only transition that can fire is start. Once start occurs, the marking is [0 1 0] and

either finish or break can fire next. For this Petri net, the places correspond directly

to the states of the finite state machine representation. One of the advantages the

Petri net formalism can be understood by considering if there were two such identical

machines. For the Petri net, the only change required to Figure 2.2 is to add another

token so that the initial state was [2 0 0]. For the finite state machine, however,

there would need to be a state for each combination of the machines’ statuses, i.e.

one state for both machines idle, one state for one machine idle and the other busy,

etc., which would make the representation much larger.

14

repair

breakfinish

start

BROKEN

BUSY

IDLE

Figure 2.2: Petri net that describes simple machine.

For a Petri net, a firing sequence is a set of transitions t1t2t3...tn that fire in the

given order. Starting in the initial marking M0, if there exists a firing sequence that

leads the Petri net to a marking M , then M is reachable (M ∈ R(N,M0)). The

incidence matrix A of a Petri net is a |P | × |T | matrix where the (i, j)th entry, a(i,j),

is equal to the net change in tokens in place pi when transition tj is fired.

2.1.3 System Identification for DES

If a formal DES model is not available for a system, it may be created by observing

its behavior. The resulting model can be used for fault or anomaly detection. This

general approach is used in [35] [54] and in the anomaly detection solution proposed

in Chapter IV. A variety of DES techniques are available for identification of DES,

but none of them, including those used in [35] and [54], are applicable to the type

of systems focused on for the proposed anomaly detection solution, as described in

Section 4.2.1.

Some system identification techniques use linear programming. Integer program-

ming is used to identify free labeled Petri nets, assuming that the number of tran-

sitions and maximum number of places is known, in [7]. The identification problem

is solved for DES where all of their events are observable, as well as at least part of

15

the state, first in the case where the places are unknown and then unknown, using

integer programming in [19]. An interpreted Petri net is created in [42] to describe

a discrete event system where each measurable place in the interpreted Petri net

is associated with a sensor. This approach, however, cannot identify behavior of a

shared resource in a mutual exclusion situation and assumes sensor signals are ob-

served instead of events, where sensor signals might provide some state information.

In [35] and [54], a non-deterministic autonomous automaton is created to model the

DES using input/output binary vectors. This solution assumes non-deterministic

behavior, and can only handle concurrency when the concurrent activities are distin-

guishable through prior knowledge. Additionally, none of these DES solutions can

incorporate a priori information about the system itself.

Workflow mining also provides techniques for DES system identification. A field

of computer science, workflow mining is the technique of observing a workflow in

order to create a model of it. One such technique is the α+ algorithm [16] which

creates a model similar to a Petri net, and is used as the basis of the model gen-

eration algorithm developed in Chapter IV. In contrast to the DES techniques,

workflow mining assumes very little information about the system – only observed

event streams, which may not include all possible streams that the system can gener-

ate [60] [14]. A disadvantage to the workflow mining techniques is that they are not

able to incorporate any other system information besides observed event streams.

2.2 Logic Controllers

Logic controllers are the controller part of the closed-loop system illustrated in

Figure 1.1. Various formalisms have been developed to implement logic controllers.

One such formalism is the IEC 61499 standard which makes use of some existing,

16

traditional logic control formalisms used by industry. Another logic control formalism

is Event-Condition-Action Modular Finite State Machine (ECA MFSM) which was

developed in academia and makes use of modularity. Both of these formalisms are

used in applying the verification work developed in Chapter III.

2.2.1 IEC 61499

IEC 61499 [32] is a distributed control standard developed by the International

Electrotechnical Commission to provide an implementation-independent standard

based largely on methods already used in industry, such as ladder logic, that are

part of the IEC 61131 standard. A thorough introduction to modeling controllers

using IEC 61499 is provided by [36], while [61] gives a practical introduction to using

IEC 61499 controllers in industry settings and a particular IEC 61499 software tool

called FBDK [23]. The primary unit of IEC 61499 is the function block (FB), as

shown in Figure 2.3. A function block has two kinds of inputs and outputs – events

Figure 2.3: IEC 61499 controller for Cell 1 of RFT.

and data, such as Arr and PartA, respectively. Within the function block is an

execution control chart (ECC), such as in Figure 2.4, and a set of algorithms written

in IEC 61131 languages. When an input event ocurrs, the ECC can transition to a

new state and, associated with that state, execute an algorithm that processes the

data inputs and produces data outputs and an event output. A transition occurs

when its guard condition (GC) is satisfied, where the guard condition is an input

17

event and/or any associated conditions on data and internal variables. For example,

starting from initial state START, when input event Arr occurs and input data

PartA = 0, the ECC transitions to state EArrival. Data are associated with events,

as shown by the vertical lines in Figure 2.3, such that when an input event arrives

its associated data is read and an output event is only produced once its associated

data is ready.

Figure 2.4: ECC for Cell 1 FB.

Basic function blocks, like that in Figure 2.3, can be combined by connecting

outputs of one function block to inputs of another to form composite function blocks

or networks of function blocks. Such networks can be used to control complicated

systems in a modular fashion.

2.2.2 ECA MFSM

Event-Condition-Action Modular Finite State Machine (ECA MFSM) is a logic

control formalism based on ECA rules that describe the control behavior [5]. An ECA

rule consists of an event (E) which triggers the rule, checking certain conditions (C)

and, based on those conditions, sending output events called actions (A). The event

and action are input and output, respectively, while the condition is a function of the

internal state. Each ECA MFSM consists of interconnected modules, as shown in

18

Figure 2.5, where a module is an encapsulated trigger-response finite state machine.

An ECA MFSM has two types of modules – a single MAIN module and a finite

number of peripheral modules, in this case four. The MAIN module consists of

a set of ECA rules that represent the behavior of the controller, where there is

one rule for every incoming event, whereas the peripheral modules each hold state

information about the environment or controller. The MAIN module handles all

external communication (input and output) and is connected to each peripheral

module.

Empty

pallet

present

Empty

pallet

present

Empty

pallet

present

Parts

ready to

unload

Empty

pallet

present

Fault
Empty

pallet

present

Cell

status

MAIN

Inputs Outputs

Figure 2.5: Schematic ECA MFSM for cell controller

The ECA MFSM for the RFT cell controller, shown in Figure 2.5, has one MAIN

module and four peripheral modules, where the names indicate what state informa-

tion they hold. The peripheral modules are: empty pallet present, parts ready to

unload, fault and cell status. MAIN is connected, through its inputs and outputs, to

the hardware of the cell and other controllers. An example of a rule in MAIN is when

the event Arr1 arrives, MAIN checks the associated conditions from the peripheral

modules – whether there is already a part 1 being processed (cell status) and if there

is a fault (fault) – and if neither of these conditions are true, takes the action of LD1

(loading the part), and otherwise takes the action of Rel (releasing the part).

19

2.3 Handling Faults in DES

Faults and anomalies in discrete event systems can be handled in one of two

primary ways. The system can be verified to possess certain properties in advance

of its use to guarantee that certain types of faults and anomalies will not occur.

Alternatively, if the system is operating, then fault detection and diagnosis can be

used, respectively to determine whether a fault has occurred and what kind of fault.

Verification has the advantage of preventing faults from ever occurring, whereas fault

detection and diagnosis have the advantage of not being limited to handling faults

whose root causes are related to particular properties that are known to be important

and can be verified.

2.3.1 Verification

In the field of discrete event systems (DES), verification work has included check-

ing controllers or controlled systems for particular properties, including controlla-

bility, language specifications, and diagnosability, among others [51]. Research has

been done studying how to verify each of these properties in different circumstances

and through different means, of which a sampling is provided here. Verification of

controllability by means of counter-examples was developed in [6]. The complexity of

verifying language specifications has been studied [53]. Means of checking diagnos-

ability for partially observed systems have been created [64]. The user requirements

for IEC 61499 systems can be checked through model checking [34].

There are several main techniques for DES verification. One of the most common

is test and simulation, which has the benefit of simplicity but can only provide in-

formation about the specific scenarios simulated. Model checking is often used for

checking controllability with respect to a specification [13]. Model checking produces

20

a “yes” or ‘no” answer but can have problems with state space explosion, although

this issue has been somewhat addressed by the development of symbolic model check-

ing and abstraction [39]. Traditional model checking techniques, such as described

in [12], are applicable to formalisms such as automata and Kripke structures but

are not applicable to formalisms that have a distinct output event structure, such as

ECA MFSM and IEC 61499, which are the formalisms of focus in the verification

in Chapter III. If the model checking techniques were extended to apply to such

formalisms, then model checking could be used for verifying input order robustness

in place of simulation in the procedure described Chapter III. Theorem proving

techniques validate desired properties by building upon already known or verified

properties and rely heavily on the user to perform often repetitive steps [33]. Com-

positional verification [17] proves a particular property for various components of

the system given certain assumptions and then extends that property to the entire

system.

If one had a formal model of the plant to be controlled by the logic controller,

then a number of options would be available, including using model checking to verify

input order robustness and guaranteeing input order robustness through synthesis of

supervisory control [51]. From the current state of the art of logic control verification,

no previous verification procedure exists for input order robustness – neither with

nor without a formal model of the plant.

2.3.2 Fault Detection and Diagnosis

There are several existing fault detection and diagnosis solutions in the field of

DES. In one such solution, observers are used to detect specific event-based faults in

systems that can be modeled by finite state automata [57]. This solution assumes

that the system components that comprise the plant either have pre-existing finite

21

state automata models or such models can be created reliably and correctly. In

another solution, additional modeling can be added to an existing Petri net model

of a plant to perform event-based diagnosis [27]. Partially observed Petri nets are

diagnosed in [55], where faults are unobservable transitions and a belief on faults is

calculated. These fault detection solutions, and many other similar ones, require the

plant to be modeled in a specific mathematical formalism, such as Petri nets. Such

pre-existing formal models are not usually available for large-scale industrial systems

and creating them solely through an expert’s knowledge is often very labor-intensive

and prone to error.

CHAPTER III

Verification of Input Order Robustness

A logic controller is input order robust (IOR) if, for every set of inputs that may

occur in different orders and whose order should not affect the logic controller’s final

state nor set of outputs, the logic controller produces the same final state and set of

outputs regardless of the order of the set of inputs. This is an important property for

a controller to possess because then the closed-loop behavior of the controller with

its environment is deterministic, so the closed-loop behavior can be predicted, and

thus checked as to whether it meets desired specifications. Communication networks

are increasingly being used to transmit control information in manufacturing systems

[45]. The inherent variation in network delivery time may be significant; for example,

in Ethernet, the standard deviation of the network time may be close to half the

communication time itself [48]. Therefore, logic controllers that rely on information

transmitted via networks should be verified as input order robust for all relevant

input sets to make the closed-loop system operate predictably. To the author’s best

knowledge, no proposed formal procedure for such verification exists.

To clarify the concept of input order robustness, it will be distinguished from

other related concepts in Section 3.1. Formal definitions for logic controller and

network of controllers, along with their notation, are given in Section 3.2. These

22

23

definitions serve as foundation for the theory, which is discussed in Section 3.3, and

includes a formal definition of input order robustness, a lemma for pairwise checking

of input order robustness, and a theorem describing a sufficient condition for the

verification of networks of controllers. Section 3.4 describes the verification procedure

and provides an example application of it to a system in the ECA MFSM and IEC

61499 formalisms. The relationship between input order robustness verification and

the IEC 61499 formalism is the focus of Section 3.5, which discusses how input

order robustness relates to some open execution semantic issues for IEC 61499 and

applies the verification procedure to a network of controllers implemented in IEC

61499, where this verification involves the open execution semantic issues. Finally,

computational complexity of input order robustness verification is highlighted in

Section 3.6. The work presented in this chapter is from the papers [3] and [1].

3.1 Related Concepts

Input order robustness is related to the previously-defined concepts of indepen-

dence and confluence, both of which address the order in which events in DES occur.

Two events a and b in a DES are said to be independent [12] if, for every state s in

the DES in which both a and b can occur, then 1) a is also enabled in b(s) and b

is enabled in a(s) and 2) a(b(s)) = b(a(s)), where a(s) is the state reached when a

occurs in state s. A comparable concept to (event) independence in active database

management systems is called confluence. A rule set is confluent if, from any initial

database state, the final state does not depend on the order in which the rules are

processed [49]. The term confluence has also been used in DES research, but with a

different meaning — all control command choices can eventually lead to states with

the same future solely through additional commands [18] [40].

24

There are two major differences between these existing concepts and input order

robustness as defined in this paper. Most importantly, input order robustness takes

an external perspective of a system interacting with its environment, with inputs

possibly arriving in different orders. These inputs will cause changes of state and

outputs, that could go to other systems or back to the environment. The environment

is not explicitly modeled; rather, the focus is on validating the internal consistency

of the controller. The second difference is that (event) independence and confluence

were defined for standard automata models, which do not have some properties of

the systems considered here (see Definition 5), such as explicit outputs and discrete

variable inputs and outputs. While it may be possible to extend those concepts to

systems considered here, the extensions that would be needed to consider networks

of controllers are not as immediately apparent.

Input order robustness should not be confused with other concepts that may seem

similar in name or meaning but are quite different in practice. Traditionally, robust

control considers the situation where the actual plant may be somewhat different

than the model of the plant, and shows that some desirable properties, such as

stability and disturbance rejection, can be preserved. Robust control [65] generally

is applied to to continuous state space controllers, rather than discrete state space

controllers, such as DES. There are some similarities, however, between robustness

and input order robustness. Input order robustness can be thought of as robustness

to non-determinism in the environment, rather than lack of knowledge about the

plant, and the property to be preserved is closed-loop determinism. A race condition

in hardware design occurs when a single input causes two internal changes which then

“race” to see which completes first, as that may affect the outputs of the system [63].

Some work has been done to create logic circuits that are guaranteed to be race-free

25

[50]. In contrast to race conditions, input order robustness is a property of logic

controllers and considers the case of processing multiple inputs in different orders,

rather than the case of a single input causing multiple responses.

3.2 Logic Controllers and Networks of Controllers

Input order robustness is a property for logic controllers and although they were

informally defined and some modeling formalisms discussed in Section 2.2, formal

definitions and notation are required to develop input order robustness theory. First

logic controllers themselves are defined, then networks of controllers, which is a

particular means of combining logic controllers modularly.

3.2.1 Logic Controllers

Definition 5 (Logic Controller). A logic controller (or simply controller) L =

{X, I,O, f, g} is a deterministic function or program that has an internal state set

X = {x1, x2, ...xr}, receives input events in the set I = {i1, i2, ...ip} from the envi-

ronment, and computes output events in the set O = {o1, o2, ...oq} which it sends to

the environment. The controller acts upon an input event i and the logic controller’s

state x to deterministically change the logic controller’s state x′ = f(i, x), and send

a set of control outputs o = g(i, x) ⊆ O to the environment.

Individual elements of a logic controller’s set of outputs are given by an indexed

o, such as o1, but an o without a subscript is an un-ordered subset of all the possible

outputs; o = g(i, x) may contain more than one output, such as o = {o1, o3}. Occa-

sionally, particularly for some controllers implemented in IEC 61499, the next state

may also be dependent on the previous output, in which case x′ = f ′(i, x, o). For

convenience, the effect of applying multiple inputs sequentially will be expressed in

shorthand, which can be understood iteratively. Given that a sequence of events s

26

occurs followed by another input i, f(si, x0) = f(i, f(s, x0)). For the same sequence

and subsequent input, g(si, x0) = g(i, f(s, x0))∪g(s, x0). Note that g(si, x0) includes

all of the outputs produced from applying the input sequence si from the initial state

x0. If f(s`, x) is undefined for a given s` = i`1i`2 . . ., then f(s`sm, x) is undefined for

any sm = im1im2

This definition of logic controller is similar to a DES [9] that has explicit outputs

and no time component, but differs from DES in that discrete variable inputs and

outputs are allowed as well. Such logic controllers can be implemented in formalisms

including ECA MFSM and IEC 61499, which are the focus of this work, as well as

others such as Mealy machines and some forms of Petri nets.

Any non-empty subset of the controller’s inputs I can be expressed by π ⊆ I.

We define Π to be the set of all possible subsets π. Note that for inputs and out-

puts, capital variables are used to indicate sets, whereas lowercase variables indicate

individual elements. Exceptions are o = g(i, x) and π which are sets.

Logic controllers are of two main types – event-based and scan-based – although

some control formalisms are a hybrid of these types, such as IEC 61499, which

uses both events and variables. An event-based logic controller is activated when

an input event arrives at the logic controller, triggering processing that can then

produce output events and change the state. Inputs and outputs of event-based logic

controllers are events. In contrast, a scan-based logic controller (sometimes called

a run-to-completion controller) is one that, at pre-determined time intervals, reads

its inputs and acts upon changes in the inputs’ values to produce new output values

and change state. One complete cycle is called a scan. Within a scan time, if any

inputs change value, these changes will not be processed until the next scan. Inputs

and outputs of scan-based logic controllers are discrete variables. For conciseness, in

27

this paper we will discuss inputs arriving and outputs being sent. This terminology

applies to scan-based controllers where events are changes in inputs and outputs. The

logic controller’s dynamic behavior is not further specified to keep the discussion of

input order robustness theory more general and not specific to a particular modeling

formalism, as the internal behavior of the logic controller is not as relevant for the

purposes of input order robustness.

3.2.2 Network of Controllers

In many practical scenarios, a monolithic controller is impractical because it would

be too large so a distributed controller is preferred. A major advantage of a dis-

tributed controller is that it has inherent modularity, which can be used to reduce

the computational complexity of verification as demonstrated in Section 3.6. A par-

ticular definition of distributed controller, called network of controllers, is presented

here.

Definition 6 (Network of controllers). A network of controllers N is a logic con-

troller that is composed of c component controllers or simply components. Each

input to N is an input to at least one of the components, and each output of N

is an output from one of the components. In addition, component outputs can be

connected to component inputs, so that they are internal events within N . The state

set of N is the cross-product of the state sets of its components X = X1 × ...×Xc.

For networks of controllers, a superscript index is used for component controllers

since there are multiple ones to consider, and the network itself is referred to without

a superscript. For example, component j has input set Ij and state xj. The inputs

of a particular component j from the environment are Ij
0 where 0 references the

environment. The outputs of component k that are inputs to component j are Ij
k,

28

which are also called intermediate inputs/outputs because they are outputs from one

component and inputs to another. When the network receives the input set π, the

input set received by component j is referred to as πj.

A network of controllers is said to have no feedback loops if its structure is a

directed acyclic graph, where the nodes of an acyclic graph have a partial ordering

function [28]. In this case, no component controller sends outputs to a component

whose own output has a path, possibly through additional components, back to the

original component’s input. The partial ordering allows levels to be defined. The

environment is Level 0 and a component is in Level m if it receives inputs only from

components in Levels 0 through m− 1 and has at least one input from Level m− 1.

Because the number of components c is finite, the highest level m̄ ≤ c is also finite

(m̄+1 = total number of levels including the environment). Without feedback loops,

we can define Lm = {components `|Level(`) < m}, which implies that Lm̄+1 = {all

components}. A component j in Level m only receives intermediate inputs from

components in Lm. Using this notation, the levels for the components can be found

recursively starting with the environment as Level 0 and finding those components

that only receive input from L1 and labeling them as Level 1, then those components

that only receive input from L2 and labeling them as Level 2, and so on.

Several conclusions can be drawn from these definitions and this notation. First,

note that all of the inputs to component j are either from the environment or from

another component, and hence Ij = ∪c
k=0(I

j
k). Second, recognizing that all inputs to

the network are inputs to at least one component controller, I = ∪c
j=1I

j
0 . Thus when

a set of inputs to the network π ⊆ I occurs, each component controller j will receive

a set of inputs πj that is the union of inputs from the environment and intermediate

inputs from other components, such that πj = ∪c
k=0(π

j
k) where the intermediate

29

a, c Comp A

x0
A

Comp B

x0
B

b
gB(,x

B)B
π

gA1(,x
A)

A
π

gA2(,x
A)

A
π

Figure 3.1: Simple network of controllers where πA ⊆ {a, c}, πB ⊆ {gA2(πA, xA), b} and the
outputs of Component A are segmented into outputs to the environment and to Component B,
gA(πA, xA) = gA1(πA, xA) ∪ gA2(πA, xA)

inputs from other components depend on the state of those components.1 For a

network of controllers without feedback loops and a component j in Level m, Ij =

∪c
k=0(I

j
k) can be reduced to Ij = ∪k∈Lm(Ij

k), and similarly, πj = ∪c
k=0(π

j
k) can be

reduced to πj = ∪k∈Lm(πj
k).

A simple network is illustrated in Figure 3.1, where there are two components, A

and B. In this example, I = {a, b, c} and X = XA ×XB, where xA and xB are the

states of the component controllers. For the individual components, IA = IA
0 ={a, c}

and IB = IB
0 ∪ IB

A such that IB = {b}∪ gA2(π
A, xA) for any xA ∈ XA, πA ⊆ IA. The

set of outputs is O = gA1(π
A, xA)∪gB(πB, xB), where xA, xB can be any states in XA,

XB respectively. For π = {a, b, c}, the components receive the subsets πA = {a, c}

and πB = {b, gA2(π
A, xA)}, where πB may depend on xA ∈ XA. A more complicated

network of controllers is shown in Figure 3.2. This network of controllers has no

feedback loops, so a partial order on the components exists and the components

can be partially ordered into Levels. Component A receives input only from the

environment (Level 0), so it is in Level 1. Next, components B and D are Level

2 because they receive input only from Levels 0 and 1. Component E is Level 3

because it receives inputs only from Level 2. Likewise, Component F is Level 4 and

1This notation assumes the set of inputs to component j will be the same regardless of the order in which the
inputs in π occur, which is proved for input-order robust controllers in Section 3.3.

30

Comp. A

Level 1

Comp. D

Level 2

Comp. B

Level 2

Comp. E

Level 3

Comp. F

Level 4

Comp. C

Level 5

Figure 3.2: Network of controllers with no feedback loops, which means it can be labeled using
partial ordering.

Component C is Level 5.

The overall behavior of a network of controllers – its interaction with the envi-

ronment – can be event-based or scan-based, just like the logic controller behavior

described in Section 3.2.1. Because of synchronization issues, a scan-based network

of controllers can only be implemented on a single device (such as a PLC), whereas

an event-based network of controllers can be on one device or spread across multiple

devices (different components on different devices). For either event-based or scan-

based execution, the network of controller’s components may process sequentially or

in parallel. Regardless, when a network receives a set of inputs, the components have

to process not only the external inputs but also the intermediate inputs generated

by other components during the process. Similarly to logic controllers, the dynamic

behavior of networks of controllers is not further specified to keep the theory more

general.

3.3 IOR Theory

An informal definition of input order robustness was provided in discussing the

motivating example in Section 1.2.1; a formal definition is provided here. Addition-

ally, a lemma shows how pairwise checking of all inputs is a sufficient condition for

31

input order robustness. Conditions for input order robustness of a network of con-

trollers are proposed and proved. These theoretical results are presented without

reference to a particular modeling formalism for the logic controller or network of

controllers to provide broader results. For a given modeling formalism, the theory

could be developed in more depth in future work. Because input order robustness

is related to the arrival of discrete event inputs, it is not applicable to continuous

systems – systems described by the evolution of continuous variables in continuous

or discrete time – and therefore they are not discussed.

3.3.1 Input Order Robustness

Definition 7 ({π, x0}-input order robust). For a logic controller L = {X, I, O, f, g},

a subset of its inputs π = {i1, . . . , ik} ⊆ I, and an initial state x0 ∈ X, the controller

L is {π, x0}-input order robust if for any possible permutations s` = i`1 . . . i`k
and

sm = im1 . . . imk
of the inputs in π, g(s`, x0) = g(sm, x0) and f(s`, x0) = f(sm, x0).

In words, a logic controller is {π, x0}-input order robust if whenever it starts in

initial state x0, it produces the same set of outputs and final state after all of the

inputs in π have occurred, regardless of the order in which the inputs in π occur.

Note that {π, x0}-input order robustness only requires that the set of outputs be

the same, not the order of those outputs. Requiring that the output order, not just

the set of outputs, be the same regardless of input order would be a more restrictive

property, and thus a subset of the logic controllers that are {π, x0}-input order robust

would also have this property.

The conditions for {π, x0}-input order robustness can be satisfied even if g(s`, x0) =

g(sm, x0) = ∅ or f(s`, x0) = f(sm, x0) = undefined. A counter-example of this prop-

erty is the motivating example in Chapter I, where the set of inputs {LP1, PR}

32

occurring from initial state IDLE in either order results in different final states and

sets of outputs, indicating that the logic controller is not {{LP1, PR},IDLE}-input

order robust.

Definition 8 (Xπ). For a logic controller L = {X, I, O, f, g}, and a subset of its

inputs π = {i1, . . . , ik} ⊆ I, the set of valid initial states is Xπ = {x0 ∈ X| ∃ i ∈ π,

f(i, x0) is defined}.

If π = πA ∪ πB, then Xπ = XπA
∪XπB

. The set of valid initial states for π is all

states in which there is a transition defined for at least one input in π. For some π

it may be the case that Xπ = X; however, for many controllers and possible π, Xπ

may be significantly smaller in size than X.

Definition 9 (π-input order robust). For a logic controller L = {X, I,O, f, g}, and

a subset of its inputs π = {i1, . . . , ik} ⊆ I, the controller L is π-input order robust if

it is {π, x0}-input order robust ∀x0 ∈ Xπ.

A logic controller is π-input order robust if whenever it starts in an initial state

x0 in which at least one input in π could occur, it produces the same set of outputs

and final state after all of the inputs in π have occurred, depending only on x0 and

not on the order in which the inputs in π occur. Note that if f(a, x0) and/or f(b, x0)

is defined, then x0 ∈ X{a,b}. Additionally, if f(ab, x0) is also defined, but f(ba, x0)

is not, then the logic controller assumes that a will occur before b and therefore is

not {π, x0}-input order robust, nor π-input order robust, for π = {a, b}. If f(a, x0)

is defined, and both f(b, x0) and f(ab, x0) are undefined, then the logic controller is

{{a, b}, x0}-input order robust because neither ab nor ba can execute from x0.

Definition 10 (Πcheck). For a logic controller L = {X, I,O, f, g}, the set of π for

which L should be verified as π-input order robust is Πcheck = {π ⊆ I| all i ∈ π

33

can arrive in any order and their order should not affect the final state, x, or set of

outputs, o}.

For some logic controllers, it may be the case that Πcheck is every possible subset

of inputs; however, in many cases there may be significantly fewer input sets in

Πcheck than in Π. If an environment produces inputs in non-deterministic orders, a

controller that is π-input order robust for every π ∈ Πcheck will make the closed-loop

system deterministic. If a set of inputs π cannot physically arrive in different orders,

then it does not matter if the logic controller is π-input order robust, and hence

π 6∈ Πcheck. If the order of occurrence of a set of inputs π should affect the final state

and/or output, then the controller should not be π-input order robust, and again

π 6∈ Πcheck.

3.3.2 Pairwise Input Order Robustness of a Single Controller

The theory for verifying input order robustness of a single controller is provided

here, while a method for such verification is given in Section 3.4. We note that

π-input order robustness can be verified in a pairwise manner.

Lemma III.1. For a logic controller L and a subset of inputs π ⊆ I, if the logic

controller is π2-input order robust for every π2 = {i1, i2} ⊆ π, then logic controller

L is π-input order robust.

Proof. Suppose π = {a, b, c}, and assume that L is π2-input order robust for every

subset of π with two elements, but there are two sequences of three inputs that result

in different states (or outputs). If x ∈ X{a,b,c} then x is a valid initial state for at

least one input of a, b, and c, and we can write

f(abc, x) = f(c, f(ab, x)) = f(c, f(ba, x)) = f(bac, x) =

f(ac, f(b, x)) = f(ca, f(b, x)) = f(bca, x)) = . . .

34

and thus by pairwise switching the order of the inputs we can achieve any permu-

tation. This switching does not require checking whether events are enabled in a

given state, for example whether ac and ca are defined in f(b, x) to determine that

f(ac, f(b, x)) = f(ca, f(b, x)), because either at least one event in the pair (a or c) is

enabled and thus input order robustness holds, or neither event is enabled and thus

both lead to an undefined state. Note that for a given initial state x, these state

functions may evaluate to be invalid (the state undefined), but in that case they will

all evaluate to be invalid because of pairwise switching, and thus still all be the same.

The same result can be shown for the output functions. This result for three events

can be generalized to any finite number of events [10].

Pairwise input order robustness, as described in Lemma III.1, is a sufficient, but

not necessary condition for input order robustness of a set of size greater than two.

Consider the set π = {a, b, c}. There may exist a logic controller with initial state

x0 for which f(a, x0), f(b, x0), and f(c, x0) are all defined and f(s, x0) are equal for

all s that are permutations of π, but for which f(ab, x0) 6= f(ba, x0). Thus, the logic

controller is {a, b, c}-input order robust, but not {a, b}-input order robust. Hence,

Lemma III.1 only provides a sufficient condition.

3.3.3 Input Order Robustness of a Network of Controllers

As mentioned in Section 3.2.2, a network of controllers has inherent modularity.

In this section, we will show how that modularity can be leveraged to make the

verification of input order robustness modular for networks of controllers without

feedback loops.

We first consider those components in Level 1 (only receive input from the envi-

ronment), and then proceed to higher Levels. From Section 3.2.2, for a network N

35

without any feedback, the set of inputs received by a component j in Level m can be

expressed as πj = ∪k∈Lm(πj
k). For a component j in Level 1 this can be simplified to

πj = ∪k∈L1(π
j
k) = πj

0 = π∩ Ij where π is the input received by the network N , which

is the same regardless of the order in which the inputs in π arrive at the network.

Thus, for a network N without any feedback and initial state x0 = (x1
0, .., x

c
0), if

it receives input set π, then each of its components j in Level 1 can be verified as

{πj, xj
0}-input order robust because each πj is known. Now consider how to verify

components in Level 2.

Lemma III.2. Let N be a network of c component controllers with no feedback loops,

π ⊆ I be a subset of the inputs to N , and x0 = (x1
0, .., x

c
0) be the initial state of N .

Let N ’s highest Level be m̄ = 2. If every component k in Level 1 is {πk, xk
0}-input

order robust, j is a component in Level 2, and the network receives input π, then

there exists a unique set πj such that for every ordering of events in π, the set of

inputs received by component j is equal to πj.

Proof. Suppose we are given a controller that meets the required conditions, but that

there exists a component j in Level 2 such that πj depends on the order of π. We

know that πj = πj
0 ∪ (∪k∈Level 1(π

j
k)) and that πj

0 = π ∩ Ij, which means that πj
0 is

independent of the order of π. Thus, the dependency on the order of π must come

from ∪k∈Level 1(π
j
k). For each k ∈ Level 1, πj

k = gk(π
k, xk

0) ∩ Ij. However, Ij and xk
0

are fixed, and gk is deterministic, which means that the dependency in order must

be due to πk, but that violates input order robustness of component k. Hence, such

a component j cannot exist and we have shown how πj can be calculated using the

given information.

Because components in a given Level cannot influence components in lower Levels,

36

we can extend Lemma III.2 to networks with higher Levels by calculating πj and

verifying {πj, xj
0}-input order robustness level by level. This extension is described

in Corollary III.3.

Corollary III.3. Let N be a network of c component controllers with no feedback

loops, π ⊆ I be a subset of the inputs to N , and x0 = (x1
0, ..., x

c
0) be the initial

state of N . For a given Level m + 1 ≤ m̄, if each component k in Levels 1 . . . m is

{πk, xk
0}-input order robust then the set of inputs πj received by each component j

in Level m + 1 can be calculated for the initial state x0, and does not depend on the

order of π.

Theorem III.4. If a network of controllers N is composed of c component controllers

that do not have any feedback loops among them and that are each {πj, xj
0}-input order

robust, then the network is {π, x0}-input order robust, where π = ∪c
j=0(π

j) ∩ I and

x0 = (x1
0, ..., x

c
0).

Proof. Using πj = π∩Ij for components in Level 1 and Corollary III.3 for components

in higher Levels, we can calculate πj for each component j starting with components

in Level 1 and working up through the higher Levels, and none of the πj depend

on the order of π, only on x0. Because each component j is {πj, xj
0}-input order

robust and will receive the same set of inputs πj regardless of the order of π, each

component’s final state xj = fj(π
j, xj

0) and set of outputs oj = gj(π
j, xj

0) will be the

same. Because o ⊆ ∪c
j=0(o

j) and x = (x1, ..., xc), the set of outputs and final state of

the network will be the same when the initial state is x0 regardless of the order of π,

hence the network is {π, x0}-input order robust.

Similar to the proof of verifying input order robustness for a logic controller,

verification of a network of controllers occurs level by level. To verify {π, x0}-input

37

order robustness for a network N , first confirm that there are no feedback loops

among the components. Then determine πk = π ∩ Ik for each component k in

Level 1 and check that each component k in Level 1 is {πk, xk
0}-input order robust.

In the process, determine the set of outputs produced when πk occurs from initial

state xk
0. Next, determine πj = (π ∩ Ij) ∪{k∈Level 1} Ij

k for each component j in

Level 2 and check that it is {πj, xj
0}-input order robust and calculate the outputs

that it produces. Repeat this process for all of the levels. Thus, {π, x0}-input order

robustness of the network can be verified.

For illustration of verification, recall the simple network shown in Figure 3.1. We

can check whether the network is {π, x0}-input order robust for π = {a, b} and a

given x0. This network does not have any feedback loops, and Component A is in

Level 1, while Component B is in Level 2. Starting with Level 1, Component A has

πA = {a}, so it does not need to be verified as input order robust because it receives

only one input, and thus will produce outputs gA(a, xA
0) = gA1(a, xA

0) ∪ gA2(a, xA
0).

For Level 2, Component B has input set πB = {b, gA2(a, xA
0)} and we can verify that

Component B is {πB, xB
0 }-input order robust. Thus if Component B is {πB, xB

0 }-

input order robust, then the network as a whole is {{a, b}, x0}-input order robust.

Because a network of controllers is also a logic controller in its own right, Def-

initions 8 and 9 are applicable, so a network of controllers is π-input order robust

if it is {π, x0}-input order robust ∀x0 ∈ Xπ. However, the calculation of Xπ for

a network of controllers may not be readily apparent. For simplicity, we assume

that the components have been numbered such that components 1 through `1 are

in Level 1, `1 + 1 through `2 are in Level 2, and so on. Initially, we can assume

Xπ = Xπ1 × ...×Xπ`1 ×X`1+1 × ...×Xc because we know πk for k ∈ 1...`1 (compo-

nents in Level 1), and hence Xπk , and for components in higher levels, we assume the

38

entire state space. In verifying that components in Level 1 are πk-input order robust,

we do not use the portion of the network state associated with the other component

controllers, but we do calculate πj for each component controller j in Level 2, and

thus can determine the valid initial states for the Level 2 components, Xπj and use

them to replace Xj. Thus, in verifying π-input order robustness for a network, the

set of valid initial states Xπ is determined during the verification itself and does not

need to be known in advance.

Note that if a network of controllers has feedback loops among its components,

then it can be verified for input order robustness if the components in the feedback

loops are combined so that each feedback loop becomes a single component and that

single component is tested for input order robustness. The network of controllers

illustrated on the left of Figure 3.3 has two feedback loops – one between Components

A and B, and the other among Components C, E, and F. To verify input order

robustness for this network, we would need to combine Components A and B, and

combine Components C, E, and F to produce the equivalent network illustrated on

the right in Figure 3.3. Exactly how the components are combined depends on the

Comp. A/B

Level 1

Comp. D

Level 2

Comp. C/E/F

Level 3

Comp. A

Comp. D

Comp. B

Comp. E Comp. F

Comp. C

Figure 3.3: Left: Network of controllers with two feedback loops, Right: Equivalent network of
controllers where components have been combined to eliminate feedback loops

formalism in which the logic controllers are implemented, but the main idea is that

the combination has the same interaction with the other components in the network

as the components making up the combination. It is important to note, however,

39

that combining components may be computationally intensive or complex depending

on the number and size of components being combined.

Particular execution semantics – event-based versus scan-based and sequential

versus parallel – are not assumed in the proof of Theorem III.4, which relies on

absence of feedback loops and components’ input order robustness to show that each

component will receive the same set of inputs and therefore produce the same set of

outputs. The differences between event-based and scan-based execution only limits

what is considered a network of controllers, as discussed in Section 3.2.2. Parallel

execution only affects when inputs are processed and outputs produced, not what

those inputs and outputs are. Thus, under the assumptions of Theorem III.4, a

network is input order robust regardless of whether the component controllers take

turns processing (sequential) or process available inputs at the same time (parallel).

3.4 IOR Verification Procedure

3.4.1 General Procedure

π-input order robustness can be verified using simulation to check that the order

of inputs in π does not affect the set of outputs nor final state, for any x0 ∈ Xπ.

Simulation, however, cannot determine which subsets should be verified for input

order robustness, π ∈ Πcheck nor their set of initial states Xπ, and for a closed-loop

system to be deterministic, the logic controller must be π-input order robust for all

π ∈ Πcheck. As such, this section details a verification procedure that consists of

two portions – determining the system information (Πcheck in Step 1, Xπ for each

π ∈ Πcheck in Step 2), and performing simulation (Step 3). Note that input pairs

can be verified rather than input sets because of Lemma III.1, so Step 1 determines

Π2,check = {π ∈ Πcheck| |π| = 2}.

Step 1a: Of all the possible pairs of inputs, {a, b} where a, b ∈ I, identify those

40

that could arrive in either order. Based on the controller and environment, there

may be some inputs that cannot arrive at the controller in close time proximity or

in either order. For example, if there are two mutually exclusive processes such that

one cannot be started until notification is received that the other has finished, then

an input indicating that one process has just finished cannot arrive in close time

proximity to another input indicating that the second process has just finished.

Step 1b: Of the remaining pairs of inputs, identify those whose order should not

affect the final state and/or set of outputs, and include them in Π2,check. For some

input pairs, their order should matter, resulting from common physical scenarios such

as: two inputs both trigger the exclusive use of the same resource; the processing of

one input starts a particular process and the processing of another input prevents

that process from starting until further notification; one input triggers the use of

a resource that can only handle one job at a time and another input triggers the

release of this resource from its current job.

The input pairs identified in Step 1 are the ones in Π2,check. If a controller has

p inputs, then there are p(p − 1)/2 unique different-element pairs (for pairs {a, b}

where a = b, they are trivially {a, b}-input order robust). In many cases, Π2,check

may have significantly fewer pairs than p(p − 1)/2, and thus fewer pairs that need

to be checked to guarantee determinism.

For each such pair of inputs {a, b} ∈ Π2,check:

Step 2: Determine the initial states of the controller for which the arrival of a is not

physically possible or represents an error. All other states of the controller are valid

initial states for input a, x ∈ Xa. Repeat for input b. X{a,b} = x ∈ Xa ∪Xb

Now that the system information (Π2,check and Xπ for each π ∈ Π2,check) is deter-

mined, the simulation is performed:

41

Step 3: For each x ∈ X{a,b}, simulate the logic controller for ab and ba. Compare

the final states, f(ab, x) and f(ba, x), and the sets of outputs, g(ab, x) and g(ba, x),

and if they are the same, then the controller is {a, b}-input order robust.

This procedure is described in a general manner so that it is applicable to con-

trollers implemented in a variety of formalisms, although it is especially useful for

those with an explicit output event structure, such as ECA MFSM and IEC 61499.

To illustrate how the procedure is applied, an example system is described in Sec-

tion 3.4.2, the system information determined (Steps 1 and 2) in Section 3.4.3 and

the simulation is performed for an ECA MFSM implementation and an IEC 61499

implementation in Sections 3.4.4 and 3.4.5. An example network of controllers im-

plemented in IEC 61499 is described and verified for input order robustness later, in

Section 3.5.

3.4.2 Example System for Verification

The verification procedure will be illustrated through a set of examples encoun-

tered in verifying a controller that performs some of the control for one processing

cell of the Reconfigurable Factory Testbed (RFT). An RFT processing cell has one

robot and two computer numerical controlled (CNC) machines that mill parts and

can work in parallel. Pallets and a conveyor are used to bring unprocessed parts to

the cell and remove processed parts from the cell. The robot interacts with parts on

pallets only at one location – the pallet stop. There are two types of parts, called

part 1 and part 2, both processed by this cell but on different CNCs.

The plant (robot, machines, machine-level controllers, rest of the RFT, etc.) and

the cell controller interact through exchanging events, which are listed and described

in Table 3.1. All of these events are either input to the cell controller or output from

the controller, where inputs (first column) cause the cell controller to check certain

42

Table 3.1: Events for Cell 1 Controller
Input Output
Arr0: empty pallet arrives Rel: release pallet (w/ or w/out part)
Arr1: part 1 arrives LD1: load part 1
Arr2: part 2 arrives LD2: load part 2
UR1: part 1 unload req UL1: unload part 1
UR2: part 2 unload req UL2: unload part 2
FT: fault occurs

conditions, and depending on those conditions, possibly produce an output (second

column). The uncontrolled cell behavior is as follows: a) when a part arrives, it is

either loaded into a machine for processing or released unprocessed; b) when a part is

finished being processed by a machine, it either waits in the machine or is unloaded

on an empty pallet and released; c) when an empty pallet (called part 0) arrives, it

has a finished part unloaded on to it, waits at the pallet stop, or is released. The

cell controller decides which of these possible behaviors (i.e. load a part or release it

unprocessed) is correct in a given situation, where its decision-making is illustrated in

Figure 3.4. When the fault event occurs, the only effect is that the fault boolean is set

true. This cell controller can be implemented in different formalisms, as illustrated

by a simplified example of this processing cell described here and implemented in

ECA MFSM in Section 3.4.4 and in IEC 61499 in Section 3.4.5.

The general expression of state for this controller is (Empty Pallet Present (true

or false) × Parts Ready to Unload (neither, one, both in either order) × Fault (true

or false) × Cell Status (neither, one, or both)):

T

F

×

0

1

2

12

21

×

T

F

×

0

1

2

12

43

if Arr1

if Fault, then Rel

else

if Cell Status == 1 or 12, then Rel

else, LD1

else if Arr2 … (comparable to Arr1)

else if UR1

if ~Fault

if Empty Pallet Present, then UL1

else, add 1 to unload queue

else if UR2 … (comparable to UR1)

else if Arr0

if Fault, Empty Pallet Present set true

 else

if Parts Ready to Unload == 0

if Cell Status == 0, then Rel

else, Empty Pallet Present set true

else if Parts Ready to Unload == 1 or 12, UL1

else if Parts Ready to Unload == 2 or 21, UL2

Figure 3.4: Cell controller’s decision-making

The Empty Pallet Present component indicates whether there is an empty pallet

waiting at the cell’s pallet stop. Parts Ready to Unload is a queue of the completed

parts that are waiting to be unloaded, and the queue is ordered such that if Parts

Ready to Unload is 12 then Part 1 will be unloaded first, whereas if it is 21 then

Part 2 will be unloaded first. Fault indicates whether an external fault has been

set, which affects the proper system behavior. Cell status indicates which part or

parts are currently being processed (loaded, machined, and/or unloaded) in the cell,

where 0 indicates no parts and 12 indicates both parts. Some combinations of the

component states are not valid states because they represent incorrect behavior of

the system due to conflicting or incompatible states of the various components. For

example, Parts Ready to Unload cannot be 1 if Cell Status is 0. Due to these

incorrect combinations, the system has 34 states instead of 80 (= 2× 5× 2× 4).

44

Table 3.2: Verification of Event Pairs: P = cannot occur nearly same time, D = order should
matter, S = need to verify

Arr0 Arr1 Arr2 UR1 UR2 FT
Arr0 P P P S S D
Arr1 P P P S S D
Arr2 P P P S S D
UR1 S S S P D D
UR2 S S S D P D
FT D D D D D P

3.4.3 First Steps of Verification Example

Because determining the system information (Steps 1 and 2) only involves knowl-

edge about the plant to be controlled and the proper controller behavior, it can be

done the same regardless of controller implementation. In Step 1 of the verification

procedure, we can eliminate some pairs of inputs from consideration {a, b} 6∈ Π2,check.

For example, the arrival of a part 1 and the arrival of an empty pallet {Arr1, Arr0}

cannot occur at nearly the same time since only one pallet can be at the pallet stop

for Cell 1 at a time. Additionally, for the events request unload part 1 and request

unload part 2 {UR1, UR2} the order should affect the controller’s state and outputs

since both inputs request the same shared resources – the robot and an empty pallet.

All the possible input pairs are listed in Table 3.2, and associated with each pair is

a P , meaning they cannot occur in either order, a D indicating their order should

create different results (final state and/or output set), or an S showing that the input

pair is in Π2,check. With 6 input events, there are p(p − 1)/2 = 15 unique different-

element pairs, which means the maximum size of Π2,check is 15. From Table 3.2, we

see that there are only 6 such pairs, making the computational complexity of the

verification significantly less than maximum. See Section 3.6 for further discussion

of computational complexity.

Consider the input pair request unload part 1 and empty pallet arrives {UR1,

45

Arr0}. The valid initial states for these inputs, X{UR1,Arr0}, must be determined.

When UR1 occurs, the cell controller follows if-else statements for UR1 in Figure 3.4,

and likewise, when Arr0 occurs, the cell controller follows the if-else statements for

Arr0. Thus, regardless of which order these inputs arrive in, the controlled outcome

is that the finished part 1 is loaded on to the empty pallet (UL1) if no other parts

were waiting.

There are some initial states that are not valid for both inputs of this pair, and if

x 6∈ XUR1 and x 6∈ XArr0, then x 6∈ X{UR1,Arr0}.

• Restriction 1 (R1): An empty pallet already waiting in the cell is not a valid

initial state for the input indicating an empty pallet has arrived, as there is only

one location within the cell where a pallet can wait. (x 6∈ XArr0)

• Restriction 2 (R2): Likewise, a part 1 cannot already be waiting for unloading

when the input indicating that a part 1 is ready to be unloaded arrives, because

only one part 1 can be processed at a time. (x 6∈ XUR1)

• Restriction 3 (R3): All initial states in which there is no part 1 in the cell are

invalid for this input pair because having a part 1 ready for unloading requires

that a part 1 is present in the cell. (x 6∈ XUR1)

The states removed by these restrictions are summarized in Table 3.3, where • means

any valid value of that component state. Considering these restrictions, of the 34

states, only 25 states are in X{UR1,Arr0}. The remainder of this verification example

is discussed for the ECA MFSM and IEC 61499 formalisms in Sections 3.4.4 and

3.4.5.

Table 3.3: States Removed by Restrictions R1 - R3 where • = any valid value
Empty Unload Fault Status

R1 and R2 T {1,12,21} • •
R1 and R3 T • • {0,2}

46

The system information can be extracted from information from the design pro-

cess. In [43], constraints on the plant – preconditions required for movements and

forbidden system states – are developed during the design process, and these con-

straints can provide the system information. Alternatively, the system information

can be generated from Relation of Operations [52] created during the design process.

3.4.4 ECA MFSM Verification

Recall the ECA MFSM formalism introduced in Section 2.2.2. The ECA MFSM

for the cell controller example used for verification is the ECA MFSM illustrated

in Figure 2.5 and described in Section 2.2.2. Steps 1 and 2 are completed in Sec-

tion 3.4.3, and summarized in Tables 3.2 and 3.3. Starting in each x0 ∈ X{UR1,Arr0},

the controller is simulated for UR1Arr0 and for Arr0UR1 and the resulting final

states and output sets are compared and found to be the same. Thus, the logic

controller is {UR1, Arr0}-input order robust.

3.4.5 IEC 61499 Verification

The example discussed in Section 3.4.2 can be implemented as a function block,

as illustrated in Figure 2.3. Because in IEC 61499 events can be associated with

data, the events are generalized and associated with data that provides the specific

information, as shown in Table 3.4. The state is also modified for IEC 61499, where

the fault information is kept as input data instead of stored as state, and the Cell

Status is stored in two internal boolean variables, Part1In and Part2In. Thus, for

example, Cell Status = 2 is equivalent to Part1In = false, Part2In = true. State is

therefore expressed as (Empty Pallet Present × Parts Ready to Unload × Part1In

× Part2In). This example involves transitions to the ECC states EArrival and

PartReady, and their associated algorithms, as shown in Fig. 2.4, when an empty

47

pallet arrives or a part 1 is finished, respectively. To demonstrate a case in which a

controller may not be input order robust, suppose that the fault input was only added

after the function block was completed, and that the designer included this additional

functionality only in the PartReady algorithm, and not in the EArr algorithm.

Table 3.4: Event Modifications for Application to IEC 61499
Original Events IEC 61499

Event
IEC 61499 Data

Arr0, Arr1, Arr2 Arr PartA = 0, 1, 2
UR1, UR2 UR PartR = 1,2
FT (none) Fault
Re, UL1, UL2 UL PartU = 0, 1, 2
LD1, LD2 LD PartL = 1, 2

With the example implemented as a function block, Step 3 can be performed. The

controller is simulated for x ∈ X{UR1,Arr0}, for each order UR1Arr0 and Arr0UR1,

and the final states for the different orders are found to be different in the case

when there is a fault because the EArr algorithm ignores the fault input. Thus

this controller, with the fault input not properly included, is not {UR1, Arr0}-input

order robust.

3.5 Application to IEC 61499

3.5.1 Open Execution Semantics Issues

The execution semantics are not completely specified by the IEC 61499 stan-

dard, and hence, different researchers have assumed somewhat different execution

semantics in studying and modeling IEC 61499 controllers [25], [11], [24], [59] and

[20]. Different IEC 61499 runtime environments often assume different execution

semantics, which can lead to difficulties when a system is moved from one runtime

environment to another [11]. For each open execution semantic issue, the verification

is either applicable for any possible execution option or only applicable for certain

possible execution options, and it is important to know which is the case for each

48

issue. Five such execution semantic issues are discussed herein.

The first open execution semantic issue is function block scan order. Function

block scan order is one of the two major execution semantic options discussed in

[24], which lists the options as not fixed and fixed. The not fixed option we interpret

to mean that the function blocks are scheduled based on receiving events, i.e. if FB2

receives an event and the others are idle, then FB2 will be scheduled to execute next.

The fixed option requires setting a complete ordering of all of the function blocks

in advance. Either option is applicable for input order robustness verification. A

well-chosen FB scan order could avoid some problems associated with lacking input

order robustness (see the example in Section 3.5.2), but a poorly-chosen scan order

could cause consistently incorrect behavior.

Another major issue is whether the IEC 61499 standard allows multi-tasking.

Both [25] and [24] pose the question of whether the standard allows multi-tasking,

i.e. multiple function blocks within a network running at the same time. [59] offers

three possible options by discussing thread assignment – how function blocks are

distributed among the execution threads. The three possibilities are: only one thread

for the entire network (no multi-tasking allowed), one thread per function block, or

a subset of the function blocks within the network are assigned to each thread.

Whether multi-tasking is permitted and how threads are assigned only affect when

events are processed by a function block and not what output events and data are

produced. Thus, input order robustness verification of a network does not require

a particular option for the issue of multi-tasking because, as noted in Section 3.3,

the only requirements are that the component function blocks are input order robust

and that they do not have any feedback relationships.

The next execution semantic issue considered is that of how contiguous events are

49

handled, meaning what happens when two or more events arrive in quick succession

such that the function block must decide which to process first or has not finished

processing the first event before the next event arrives. A discussion of different op-

tions for handling contiguous events and which options have been used by particular

IEC 61499 software is provided in [11]. According to that discussion, the runtime

environment ISaGRAF 5.0 may drop events that arrive at a function block when its

ECC is still processing a previous event (no queue), whereas the runtime environ-

ment Fuber reports all incoming events to the ECC in the order in which they arrived

(FIFO queue). Another possible interpretation of how contiguous events could be

handled is that of a priority queue, where events are processed based on the order in

which their transitions are declared in the code. This interpretation could be prob-

lematic, however, because as [59] points out, the function block may be generated

graphically, making it difficult for the engineer to specify the priority. If there is no

queue and some contiguous events are dropped, then the system will not be input

order robust because the order of event arrival will have the severe impact of allowing

one event to be processed and completely dropping the other. Using a priority queue

may seem to be an easy way to guarantee input order robustness because the same

processing order is always enforced for events that arrive simultaneously or during

the same scan cycle. Unfortunately, violations of input order robustness may still

occur with a priority queue. Consider the case where there are only two events, a

and b and the priority is such that a will be processed first. If the two events can

arrive simultaneously or at least very close in time, it would be possible for event b

to arrive just before a but still have b processed earlier if they arrive right near the

end of one scan cycle and the beginning of another. Thus, input order robustness is

not applicable without an event queue, but is applicable and should be verified for

50

systems with an event queue, regardless of what type of queue it is.

Another open issue is which transition is fired when multiple guard conditions are

satisfied. [20] discusses this issue, and based on interpreting the standard, determines

that transitions are evaluated in the order in which they appear in the XML code

(top to bottom) or in the graphical representation (left to right), and that the first

transition evaluated to be satisfied is what will be fired first. As this order may

not always be clear, the IOR verification procedure assumes that only one guard

condition will be satisfied at a time. Extending the procedure to be applicable to

[20]’s interpretation would likely be feasible.

Also discussed in [20] is how guard conditions consume events. For example, if

an event occurs that causes a GC to be satisfied and its transition to fire, and in the

new state, there is another transition’s GC that is satisfied if the event still holds,

will both transitions occur or does the first transition’s GC consume the event and

thus only it will occur? Also, what about guard conditions that do not involve events

and only consist of data variables – when are these executed? Three possible options

for event consumption are: a single guard condition consumes the event; a single

guard condition consumes the event but other transitions whose GCs are satisfied

without the event are allowed to execute; or multiple GCs can be satisfied with the

one event, and transitions can continue occurring based on that event until no more

GCs are satisfied. The second option is the one assumed by the verification work

presented here, however it could relatively easily be extended to be applicable to

the third option as well. The first option would be difficult to accommodate in IOR

verification because, at the beginning of a scan cycle, before any events had arrived,

there could be a satisfied GC and thus a transition occurs without an event arriving.

51

Table 3.5: IEC 61499 Execution Open Issues
FB
Scan
Order

Multi-
tasking

Contiguous
Events
Handling

Multiple
Guard
Cond. (GC)
Satisfied

How GC Con-
sume Events

IOR Ver
-Event
occur-
rence

-None -Prioritized
queue

-Not allowed -Single GC plus
others without
event

Applicable -Fixed a
priori

-1 thread
per FB

-FIFO queue

-Subset of
FBs per
thread

IOR Ver Not
-Dropped -Priority from

code*
-Single GC

Applicable -Not until last
satisfied*

All of these execution semantics issues and their possible options are summarized

in Table 3.5, along with whether the verification is applicable or not applicable to

the particular options. Options for which the current verification is not applicable,

but could be feasibly modified to be applicable, are noted by an asterisk (*). Input

order robustness verification is applicable for a variety of execution semantics – either

function block scan order implementation, any of the multi-tasking options listed,

and any type of queue for contiguous events. Additionally, the verification could

easily be extended to be applicable for different options of when multiple GC are

satisfied and when an event is consumed. Thus, input order robustness verification

avoids many difficulties associated with verifying properties for IEC 61499 function

blocks due to different execution semantics and runtime environments.

3.5.2 Application of Verification to IEC 61499 Network of Controllers

Recall that Theorem III.4 requires that the components are input order robust

and do not have any feedback loops in order for the network to be input order

robust. For example, any network that contains the function block described in

Section 3.4.5 will not be input order robust because Arr0 and UR1 could arrive in

52

either order and cause different output sets from the function block, and hence the

network. In IEC 61499, such networks would be applications, systems, and even

composite function blocks if the composite is treated as a transparent container.

These IEC 61499 networks are often self-contained with initiating blocks, such as

E RESTART, or have few inputs which are unlikely to arrive at almost the same time

or in either order. Therefore, one might think that input order robustness is not a

significant issue for most IEC 61499 networks, when, in fact, meeting the conditions

of network input order robustness can resolve some of the issues associated with

different execution semantics. An example application of input order robustness to

a network of controllers is described, first performing the verification procedure and

then discussing how this application relates to the open execution semantic issues.

In this example, which is based on a network from [11], there is a fixture for

holding a workpiece and a carriage for transporting the workpiece, where the fixture

has a clamp to hold the piece in place during processing and a part that pushes the

completed piece off the workspace and onto the waiting carriage. The network to

control this application is illustrated in Figure 3.5, and the execution control charts

for the carriage and fixture are shown in Figure 3.6. The networks of logic controllers

considered here have inputs and outputs, thus the example network considered is that

of the fixture and carriage function blocks only, with the inputs EI and EI1 and the

output EO (from the fixture block).

To verify {π, x0}-input order robustness for this network for π = {EI, EI1} and

x0 = {IDLE, IDLE}, first check whether there are any feedback loops among the

logic controllers and in this example there are none. Then verify that the logic

controllers, carriage and fixture, are input order robust for their corresponding π

and x0. The carriage function block is Level 1 because it only receives input from

53

Figure 3.5: Fixture and carriage network example (based on [11])

the environment, whereas the fixture function block is Level 2 because it receives EI2

from the carriage function block. Thus, the carriage function block is verified first.

For π = {EI,EI1}, πcarriage = {EI} so the carriage function block is input order

robust trivially.

Next, verify the fixture function block where for π = {EI,EI1} and x0 =

{IDLE, IDLE}, πfixture = {EI1, EI2} and x0fixture = IDLE. In Step 1a, the

inputs EI1 and EI2 could occur in either order because, from knowledge of the

system, it is known that they will occur at the same time and that it is unknown

the order the function blocks will be executed in. In Step 1b, the inputs EI1 and

EI2 should be able to occur in either order and yield the same result because EI1

is the instruction to process a workpiece and EI2 is the notification that the car-

riage is ready for the part, so it should not make a difference whether the workpiece

or the carriage is ready first. In Step 2, we note that the IDLE state is valid

for EI1 and x1 state is valid for EI2. In Step 3, IDLE and x1 are valid for at

least one of the inputs, and therefore we can go ahead with checking input order

robustness for x0fixture = IDLE. The function block is simulated for both orders

of EI1 and EI2 from the IDLE state, and find that the final states and outputs

are different. If EI1 occurs followed by EI2, the final state is the IDLE state and

54

the outputs are those associated with running the OpenClamp and PushOut algo-

rithms, which result in processing and releasing a workpiece. If the inputs occur in

the other order, then either the final state is IDLE and there are no outputs (if

having EI2 occur in IDLE stops the function block from processing) or the final

state is x1 and the output is only that from OpenClamp. Thus, the fixture function

block is not {{EI1, EI2}, IDLE}-input order robust, and hence the network is not

{{EI, EI1}, {IDLE, IDLE}}-input order robust.

Figure 3.6: Fixture and carriage ECCs (based on [11]).

If the execution semantics have a pre-determined order for function block scanning

that dictates the fixture function block be executed before the carriage function block,

then for the fixture FB to be IOR, it does not need to be {EI1, EI2}-input order

robust because Step 1a will identify that EI1 and EI2 will not occur in either order

and thus do not need to be verified. If, however, the function block scanning has the

carriage FB execute first, or the order varies from one time to another, then there

may be incorrect behavior caused by the lack of IOR. In a small example, such as

this one, it may be easier to identify this problem and schedule the function blocks to

avoid it. For larger-scale systems, however, determining the function block scanning

order that results in correct behavior may be quite difficult. If the conditions for

network input order robustness are met, then different execution semantics can be

used and still result in correct behavior, which means that moving the network to a

55

different runtime environment is less likely to cause problems.

3.6 Computational Complexity

The logic controller and network of controllers examples from Sections 3.4 and

3.5 are relatively small in size, but some of the issues associated with applying this

verification to larger and more complicated systems can be highlighted through dis-

cussing the verification’s computational complexity. Discussed here is the computa-

tional complexity of verifying {π, x}-input order robustness for all π ∈ Π2,check, and

their associated valid initial states x ∈ Xπ, not finding these pairs and states. The

computational complexity of verifying {π, x}-input order robustness where |π| = 2

is that of the two simulations (one for each input order), which is generally propor-

tional to the size of the state space 2|X|. The number of input pairs that need to

be verified to guarantee deterministic closed-loop behavior is |Π2,check|. The com-

putational complexity of the verification is O(|Π2,check||X{a,b}||X|) where |X{a,b}| is

the maximum size of initial states for any π ∈ Π2,check. The maximum number of

simulations is p(p−1)|X| and the estimated complexity is O(p(p−1)|X|2) where p is

the number of inputs. If a system has very large values for either p or |X|, its input

order robustness verification may not be feasible. Some such large systems, however,

may be able to be described by a network of controllers and this may reduce the

computational complexity to make verification feasible.

An advantage to using a network of controllers is that the computational complex-

ity of its verification may be less than that of a comparable single logic controller.

If there is a network that has c components, each of which has r states and p in-

puts, then the maximum computational complexity of performing its input order

robustness verification is cr2(p2 − p). In contrast, if that same network is composed

56

into a single logic controller, even if we assume it only has as many inputs as one of

the components from which it was created (p inputs), the maximum computational

complexity of performing its input order robustness verification is r2c(p2− p), which

is exponentially larger than that of the network. The computational complexity of

verifying a network as input order robust may be further reduced in the case that

some of its components have already been verified for other networks, thus reducing

the number of simulations required for the current verification.

3.7 Conclusions

In this verification research, the concept of input order robustness was formalized

and a verification procedure created for both logic controllers and networks of con-

trollers. Theory was proven for conditions under which a network of controllers can

be verified modularly, and the procedure for doing so described. This verification

procedure involves identifying the sets of inputs that need to be checked, performing

simulations, and comparing the results. The input order robustness verification was

applied to ECA MFSM and IEC 61499 logic controllers, and the effect of input order

robustness on several open execution semantic issues for IEC 61499 analyzed. The

computational complexity of this verification procedure was discussed. Input order

robustness verification provides a means for faults associated with a lack of input

order robustness to be found so they can be remedied prior to a logic controller or

network of controllers being used. Thus, such verification can reduce downtime of

the system due to faults.

CHAPTER IV

Anomaly Detection for Event-Based Systems Without
Pre-Existing Formal Models

To help detect faults in systems without pre-existing formal models, such as the

motivating RFT example, we developed an anomaly detection solution [4]. This

solution is a form of supervised learning for binary classification. Given a set of

data that belongs to one of two classes, a classifier (a black box decision-maker or

function) is learned. The classifier can then be used to classify future data produced

from the same system [56] [29]. Our proposed solution has four main steps:

1. Solution Set-Up (see Section 4.5.1)

2. Model Generation (see Section 4.5.3)

3. Performance Assessment (see Section 4.6)

4. Anomaly Detection (see Section 4.7)

The first step prepares the inputs – knowledge about the system’s events and re-

sources and a set of labeled event streams that describe some of the system’s be-

havior. These inputs are used in the model generation step, where the labeled event

streams are used to learn a set of models of the system’s behavior that can act as

classifiers. The third step is performance assessment, which consists of using labeled

event streams to assess the models’ performance on detecting anomalies. Finally,

57

58

C1

Entrance

C2

Entrance

C1

Queue

C2

Queue

C1 Done

(exit)

Milling Machine (R2)

Robot

(R1)

g1 m1
q1

d1

g2 q2

Figure 4.1: Illustration of manufacturing cell, where dashed lines show possible movements of the
robot and milling machine, and their associated events (in italics)

anomaly detection itself is done in the fourth step, where unlabeled event streams

are classified based on the models’ agreement or disagreement with the streams. First

in Section 4.1 a small manufacturing cell is described that will be used throughout

this chapter as a running example. Next, the types of systems to which this solution

is applicable and their modeling formalism are presented in Sections 4.2 and 4.3. The

specific problems addressed by this solution are described in Section 4.4, and then

the four steps of the solution will be described in detail in Sections 4.5 through 4.7.

Results are presented from applying this anomaly detection solution to an abstracted

version of the RFT cell in Section 4.8. Application of the solution to an industrial

system is the focus of Chapter V. The work presented in this chapter is from [4].

4.1 Description of Small Manufacturing Cell

A small example system will be used to illustrate the type of system for which our

anomaly detection solution is applicable and the steps of the solution. A manufac-

turing cell, illustrated in Figure 4.1, interacts with two different components, called

C1 and C2, and performs machining. The cell has two resources – a robot (R1)

to transport components, and a milling machine (R2) to mill components. When a

59

component C1 arrives at the cell, the robot will get it, and if the milling machine

is available, place it in the milling machine for further processing, after which the

milling machine pushes it out of the cell. If the milling machine is not available, the

robot will place it in a queue for C1 components waiting to be processed. When a

component C2 arrives at the cell, the robot will get it and place it in a queue for C2

components, where removal from this queue is outside the context of this cell. Thus,

the process performed by this cell is naturally broken down into two processes, one

for the handling of each component.

The cell’s events are listed in Table 4.1 and illustrated in Figure 4.1. Resource

information is summarized in Table 4.2, including the interaction between resources

and events. The observed streams for this cell are

σ1 = g1m1g1d1m1d1g1m1g1q1g1q1g2d1q2g1m1g2d1q2

σ2 = g2q2g1m1g1q1d1g2q2g2q2g1m1g2q2g1d1m1g1d1

σ3 = g2q2g1m1g2d1q2g2q2g2q2g2q2g1m1g1q1g2d1q2

σ4 = g2q2g1m1d1g2q2g1m1g1d1m1g2q2d1g1m1g1d1q1

Streams σ1 - σ3 are labeled “no-fault” and σ4 is labeled “fault.”

Table 4.1: Events in Manufacturing Cell
Name Process Description
g1 1 Get C1
m1 1 Put C1 in Machine, begin processing it
d1 1 C1 is Done
q1 1 Put C1 in Queue
g2 2 Get C2
q2 2 Put C2 in Queue

A variation on this example is also considered, where the cell performs assembly

in addition to machining. In the assembly cell, C2 is not a separate component, but

rather a sub-component that is joined with C1 to form a final product after C1 has

been machined. Thus C2 is a resource that is created, where the events that acquire

60

Table 4.2: Resource information for Manufacturing Cell
Name Type Acquire Events Release Events
R1 (robot) A (Always) g1, g2 m1, q1, q2

R2 (machine) A (Always) m1 d1

it are q2 and d1 and the event that creates (releases) it is g2. When C1 arrives at

the assembly cell, it is queued if R2 is unavailable, and otherwise it is machined and

then waits for a C2 to arrive to be assembled. When C2 arrives at the assembly cell,

it can be assembled with a C1 if available or can be queued.

4.2 System of Processes That Interact Through Shared Resources

To further constrain the problem’s scope, a set of assumptions have been made

about the type of system considered and the information assumed known about it.

We consider systems of processes that interact through shared resources, or SPSRs

for short. First an informal description of an SPSR and example SPSRs will be

presented, then the formal definitions.

4.2.1 Intuition and Examples for SPSRs

Each process in an SPSR consists of a set of events and a set of resources that

interact deterministically. The state of a process is the availability of the resources

and their current use. A process may, but is not required to, execute concurrent

instances of itself. It also may exhibit mutual exclusion where two events are possible,

but a choice about which event to execute (or at least execute first) is made based

on resource availability.

We assume that each event is associated with exactly one process, but that a

resource can be associated with one or more processes. Each resource has at least

one event that acquires it and at least one event that releases it. Each event may

acquire and/or release any number of resources, including none, although it may not

61

both acquire and release the same resource. Resources may be always present (A)

or created (C). An always present resource is available whenever it is not busy with

another task, whereas a created resource is created and then consumed, making it

unavailable until another instance is created.

We further assume that we know which process each event belongs to, which if

any resources it acquires, and which if any resources it releases. An SPSR has a set of

labeled event streams – streams of events recorded from the system running, where

each stream has a label indicating whether it represents no-fault or fault behavior of

the system. The set of labeled event streams includes only a proper subset of all the

possible no-fault streams because it is assumed that not all of the system behavior

has been recorded. We also assume that a formal mathematical model of the system

is not available, nor any information about such a model other than the event and

resource information described herein.

One example SPSR is a manufacturing cell, like the motivating RFT example, that

machines more than one type of part, where each part type has a process associated

with its machining, and these processes interact only through shared resources, such

as material handling devices and milling machines. Each part that arrives at the cell

causes a new instance of its associated process to begin. Each event is associated

with the machining of a particular part type, i.e. part type 1 arrives, start machining

part type 2, etc. Some resources, such as pallet stops, empty pallets, and robots are

shared resources among the different processes, while others, such as CNCs, may be

used by only one process. Most of the resources are type A, such as the robot and

CNCs. The empty pallet, however, is a type C resource meaning that it is created

(by arriving at the cell) and consumed through use (a part put on it, making it

no longer empty). We know which events acquire and release each resource, such

62

as starting to load part type 1 acquires CNC1 and finishing unloading part type 1

releases CNC1. Another example SPSR is patient flow through a clinic, where there

are two processes – one for patients with appointments and one for patients that

are walk-ins – that interact through shared resources such as receptionists, nurses,

physicians, equipment, and rooms. Each patient that arrives is associated with a new

instance of either the appointment or walk-in process. Each event is associated with

treating a particular patient, i.e. a patient with an appointment arrives, a walk-in

patient has their need evaluated, etc.

4.2.2 Formal Definitions for SPSRs

The problem of interest and our solution are related to events, resources, processes,

and systems of processes that interact through shared resources (SPSRs). Events, as

specified in Definition 1, are discrete occurrences or messages such as OPC tags or bit

changes on a PLC. As an example, the small manufacturing cell’s event set (Definition

2) is E = {g1,m1, d1, q1, g2, q2}, and σ1 - σ4 are some of its event streams (Definition

3). As mentioned in the introduction to his chapter, because our anomaly detection

is a form of supervised learning, we need a set of classified or labeled examples of

our system’s behavior, so we extend Definition 3.

Definition 11 (Labeled event stream). A labeled event stream σ is an event stream

that has an associated binary label (0 or 1). If the labeled event stream is provided for

model generation, then 1 indicates that it is no-fault behavior, and 0 indicates fault

behavior. If the labeled event stream is labeled by the anomaly detection solution,

then 1 indicates normal behavior and 0 indicates abnormal behavior.

Definition 12 (Event log). An event log Σ is a finite set of event streams, where all

streams are generated by the same system, all are either labeled or unlabeled, and

63

they may be of different lengths.

In the manufacturing cell, each of the event streams σ1 - σ4 are labeled as either no-

fault or fault, and Σ = {σ1, σ2, σ3, σ4} is an event log. In addition to event definitions,

we also will define resource and process in order to give a formal definition of SPSR,

which was described informally in Section 4.2.1.

Definition 13 (Resource). A resource is a physical object that is acquired by an

event ea for use and released by an event er when its use is complete. Resources can be

of two types – either Always present (A) or Created (C). A type A resource is available

whenever it is not busy with another task, whereas a type C resource is created and

then consumed (the type C equivalent of released and acquired, respectively).

The manufacturing cell’s resources are the robot (R1) and machine (R2), with

their information about type and events that acquire and release them given in

Table 4.2.

Definition 14 (Process). A process Q consists of a set of events E and a set of

resources R that interact deterministically to accomplish a goal, and in doing so,

produce a stream of events σ.

The goal may be accomplished in more than one way or multiple times, leading to

different event streams that can be produced. A process may, but is not required to,

execute concurrent instances of itself where the maximum number of such instances

may not be known in advance. Decisions about how a goal is accomplished can be

determined by resource availability or randomly. A resource may be used multiple

times and in different ways during the course of running the process, and multiple

resources may be used together. The manufacturing cell has two processes – one for

each component, C1 and C2. Two instances of the process for C1 may execute at

64

the same time because one C1 may be machined while another C1 is being picked up

by the robot. The decision about what to do with a C1 depends on the availability

of the milling machine, R2. A process may be split into several smaller processes,

or several processes may be combined into one larger process. The example system

as a whole can be considered an SPSR, where the system is the set of two processes

that interact through the shared robot R1.

Definition 15 (System of Processes That Interact Through Shared Resources (SPSR)).

A system of processes that interact through shared resources, or SPSR, is a set of pro-

cesses Qi i = 1...n with disjoint event sets Ei∩Ej = ∅ ∀i 6= j and non-disjoint resource

sets Ri where ∀i = 1...n ∃j 6= i such that Ri ∩Rj 6= ∅ and each process is connected

to every other process, either directly through shared resources or indirectly through

other processes. The event and resource sets for the SPSR, Ei and Ri for i = 1...n,

are known as well as which events acquire and release each resource.

4.3 Petri Net Models for System of Processes that Interact Through
Shared Resources

To generate models for systems of processes that interact through shared resources

(SPSRs), a modeling formalism needs to be selected or created. Some formalisms

specifically incorporate resources into processes modeled by Petri nets. In [21], a

special type of Petri net called a simple sequential process (S2P) is used to describe

the behavior of flexible manufacturing systems. This definition is expanded to include

special resource places (simple sequential process with resources S2PR), where the

token is removed from a resource place when the resource is put into use and the token

is replaced when the resource is no longer in use. An example S2PR is illustrated in

Figure 4.2. Systems of S2PRs, called S3PRs, are composed of S2PRs that interact

through shared resources. In [31], these definitions were modified to create a different

65

Figure 4.2: Example S2PR from [21] where resources represented by places r2, r3, and r4

type of resource Petri net, one that has beginning and ending transitions rather than

an idle place, such as p′ in Figure 4.2. These resource Petri nets include EWF -net,

EWFR-net, and MEWFR-net, which are comparable to S2P , S2PR and S3PR,

respectively. Another modeling formalism derived from a variant of S3PR is the

Gadara net [62] which is created to model multithreaded programs.

These existing resource-based Petri net formalisms (those from [21], [31], and

[62]) cannot completely describe SPSRs as defined by Definition 15, with properties

inherited from Definition 14. The definitions from [21] require that there be a process

idle place (p0, marked as p′ in Figure 4.2) such that to start an instance of the process

(t1′ to occur in Figure 4.2), a token must be drawn from this place and to end an

instance (t4′ to occur in Figure 4.2), a token must be put back. Having such a place

requires that the number of instances of a process that can occur at the same time be

limited to some fixed number (the initial marking of the idle place, M0(p
0)), which

violates the requirement in Definition 14 that the number of concurrent instances

may not be known. For example, in Figure 4.2 the process is arbitrarily limited to

66

having only three concurrent instances because M0(p
′) = 3, even though there are

enough resources to allow five instances. None of these existing formalisms allow

resources to be created – they are present initially, unavailable when in use, and

available again as soon as their use is completed, whereas an SPSR can have resources

that are created. If the example SPSR included modeling the pallets on which the

components leave the system (type C resources), then the existing formalisms could

not model it. Negated resources are not allowed by the existing formalisms, which

makes it difficult, if not impossible, for them to abide by the condition in Definition

14 that decisions may be made based on resource availability. In fact, Gadara nets

specifically prohibit that if/else decisions are made based on resource availability. In

the manufacturing cell example, whether C1 is processed depends on the availability

of resource R2 but making that decision in a Petri net requires having a negated

resource. Additionally, the formalisms from [21] and [31] incorporate resources but

require that there is a one-to-one relationship between tasks and resources, meaning

that each task uses exactly one resource and each resource is used by only one task,

but in an SPSR resources may be used by different tasks within a process or may

be used continuously through a set of tasks. A variation of the system from Figure

4.2 is shown in Figure 4.3 where the resource usage has changed to illustrate some of

the expanded possibilities allowed by SPSR. These existing formalisms also require

that the individual process (i.e. S2P or EWF -net or sub-net of Gadara net) be a

state machine, which means that it can exhibit competition but not concurrency

(a transition feeding two non-resource places), and although excluding concurrency

is not prohibited for SPSRs, it unnecessarily restricts the systems that could be

considered SPSRs. Hence, in this paper new formal definitions have been created for

a formalism called System of Transition Processes with Resources (STPR) that are

67

Figure 4.3: Example S2PR from [21] modified to have different resource usage

based on those from [21], [31], and [62] but can describe SPSRs and avoid these overly

restrictive properties. A summary comparison of these resource Petri net formalisms

is given in Table 4.3.

Table 4.3: Comparison of Petri net formalisms that use resources
Attributes S3PR [21] MEWFR-net

[31]
Gadara nets [62] STPR

Has basic, with re-
sources, and com-
bined versions of
formalism

Yes (S2P ,
S2PR,
S3PR)

Yes (EWF -net,
EWFR-net,
MEWFR-net)

Yes, but not for-
mally defined

Yes (TP , TPR and
TPCR, STPR)

Initiates and ter-
minates basic pro-
cess

idle place,
p0

one beginning,
one ending
transition

one beginning,
one ending tran-
sition

sets of beginning
and ending transi-
tions

Num. concurrent
process instances

≤ M0(p0) constrained by
system

constrained by
system

constrained by sys-
tem

Resources can be
created

No No No Yes

Negated resources
can be used

No No No Yes

Resources per
task

1 1 ≥ 1, ≤ num. re-
sources

≥ 1, ≤ num. re-
sources

Tasks per resource
for basic process

1 1 ≥ 1, ≤ num.
tasks

≥ 1, ≤ num. tasks

Petri net type for
basic process

state ma-
chine

state machine state machine free choice Petri net

Another relevant Petri net formalism is the sound SWF -net from [60]. A com-

parison is provided between sound SWF -net and TP – the comparable model from

68

our definitions – because an algorithm that creates sound SWF -nets is modified

in Section 4.5 to create a set of models that may include TP s. The comparison is

summarized in Table 4.4. The TP formalism is different than sound SWF -nets pri-

marily in having a set of beginning and ending transitions instead of a single input

place and single output place, and in only being bounded (allowing a finite number

of tokens per place), rather than safe (allowing only one or fewer tokens per place)

when resources are added to make it a TPR. Due to the single input and single out-

put places, where the input place initially has one token, SWF -nets cannot model

concurrent instances of a process, and thus cannot model SPSRs.

Table 4.4: Comparison of Sound SWF -nets and TP s
Attributes Sound SWF-net [60] TP

Starting and ending Input place i, output place o Set of beginning transitions, end-
ing transitions

Petri net type Free choice Free choice
Implicit places Not allowed Not allowed (but is in TPR)
Boundedness 1-boundedness (safeness) re-

quired
Guaranteed when restricted by re-
sources (TPR)

Our new resource-based Petri net formalism, called STPR, is modularly con-

structed. An STPR consists of processes that are described by Transition Processes

with Resources (TPRs) and/or Transition Processes that Create Resources (TPCRs)

that interact through shared resources. Each TPR is made from a Transition Pro-

cess (TP) to which resources have been added. For all levels of this formalism, the

set of transitions T corresponds exactly to the set of events E.

Definition 16 (Transition Process TP). A transition process (TP) is a marked Petri

Net N = {P, T, F, M0} where

1. the set of transitions consists of three types T = TB ∪ TM ∪ TE, where TB =

{t ∈ T | • t = ∅, t• 6= ∅} are transitions that begin an instance of the process,

TM = {t ∈ T | • t 6= ∅, t• 6= ∅} are transitions in the middle of the process,

69

TE = {t ∈ T | • t 6= ∅, t• = ∅} are transitions that end an instance of the process,

and TB 6= ∅, TE 6= ∅

2. N ′ = {P ∪ p0, T, F ′} is a strongly connected free choice Petri net where F ′ =

F ∪{(p0, tb)|∀tb ∈ TB}∪{(te, p0)|∀te ∈ TE} and p0 is added to test this condition

by connecting the beginning and ending transitions

3. ∀t ∈ T, t • ∩ • t = ∅

4. ∀p ∈ P,M0(p) = 0

5. there are no implicit places

From item 1, the set of transitions consist of beginning transitions (TB) that initi-

ate an instance of the process without requiring any tokens, intermediate transitions

(TM) that both require tokens and produce tokens, and ending transitions (TE) that

end an instance of the process and do not produce tokens. Item 2 states that, with

the addition of an extra place connecting the beginning and ending transitions, the

net is strongly connected free choice which means that it allows both concurrency

and conflict, just not at the same time, and all of the nodes are connected. Loops

of length 1 (one event that can repeat itself) are prohibited by Item 3. Item 5 pro-

hibits implicit places, which are places that do not affect the behavior of the Petri

net. A TP is not a process, as defined in Definition 14, because it does not have

resources. From the manufacturing cell described in Section 4.1, the associated TP

for processing C1 is shown in Figure 4.4 where it has four events, two places, and

exhibits conflict but not concurrency. If resources are added to a TP , then a TPR

can be created.

Definition 17 (Transition Process with Resources (TPR)). A transition process

with resources (TPR) is a marked Petri net N = {P ∪ PR, T, F,M0} such that

70

Figure 4.4: TP from process 1 of example manufacturing cell

1. The subnet generated by N ′ = {P, T, F ′,M ′
0} is a TP , where F ′ = {(p, t1), (t2, p) ∈

F |p ∈ P, t1, t2 ∈ T} and M ′
0 is M0 restricted to the places in P

2. PR = PA ∪ PC ∪ PNA ∪ PNC

3. ∀r ∈ PA ∪ PNC , 1 ≤ M0(r) < ∞ and ∀p ∈ (P ∪ PC ∪ PNA), M0(p) = 0

4. The four following statements are verified:

a. ∀r ∈ PA ∪ PNA r• 6= ∅, •r 6= ∅ and •r ∩ r• = ∅

b. ∀r ∈ PC , r• 6= ∅, •r = ∅ and ∀r ∈ PNC , r• = ∅, •r 6= ∅

c. Each r ∈ PNA is associated with a unique resource r′ ∈ PA where the arcs for

r are the exact opposite of the arcs for r′ plus possibly decision arcs that go

both directions between r and an event; same for each r ∈ PNC with respect

to r′ ∈ PC

d. For each r ∈ PA, there exists a unique minimal-support p-semiflow yr such

that ||yr|| ∩ (PA ∪ PNA) = r, ||yr|| ∩ (P ∪ PC) 6= ∅ and ∀p ∈ P ∪ PC , ∃r ∈ PA

such that p ∈ ||yr||

5. ∀tB ∈ TB, tB • ∩PR = ∅, and ∀tE ∈ TE, •tE ∩ PR = ∅

6. ∃ at least one event stream σ = t1t2...tk, where k finite, such that when σ fires

in N with initial marking M0, the resulting marking Mσ = M0

71

7. N has no dead transitions

From item 1, the subnet of the TPR that includes only the process places P is a

TP . Item 2 means that resources fall into four categories: resources that are Always

present or Created as mentioned in Section 4.2.1, and the negation of each, NA and

NC. Type A resources are initialized with at least one token to represent their initial

availability. The negation of a resource is associated with a unique resource and

shows the opposite of the resource’s availability – it has the exact opposite arcs (if

the resource has an arc to a place, then the negation has an arc from that place), plus

possibly decision arcs (an arc both to and from a given transition) as explained in 4c.

These negation places are used only for making decisions, i.e. when one place feeds

two transitions and we need to know which transition (event) should occur. Item

4a expresses that for each A and NA resource, at least one event releases it and at

least one event acquires it, and these events cannot be the same for a given resource.

For each C resource, at least one event releases it and no events acquire it, and the

opposite for each NC resource, as described in Item 4b. Item 4d states that there

is a p-semiflow for each for each type A resource and that this p-semiflow’s support

does not contain any other type A or NA resources but does contain at least one

non-resource or type C place. This item guarantees that when a type A resource is

acquired, it will eventually be released because the TPR is conservative with respect

to the minimal supports for the type A resources. Each non-resource place and type

C place is a member of at least one p-semiflow’s support, also according to Item

4d, which implies that every step in the process requires a type A resource, and

thus these resources limit what the process can do and how much concurrency it can

exhibit. Item 5 says that no beginning transitions release resources and no ending

transitions acquire resources. Item 6 states that the TPR must have at least one

72

event stream σ that returns the net to its original marking. Finally, according to

Item 7, the TPR cannot have any dead transitions, which are transitions that cannot

be reached by a marked Petri net. From Items 3, 4d, and 4e, and the property that

yT M = yT M0 for all reachable markings M , we can conclude that the TPR must be

bounded. A TPR can model some processes, where process is as given by Definition

14. Non-resource places (p ∈ P) are also called process places.

An example TPR is illustrated in Figure 4.5. The TPR in Figure 4.5 comes from

adding resources R1, R2, and NotR2 to the TP from Figure 4.4. A TPR can use

type C resources (acquire them) but not create them (as reflected in Item 4b). In

contrast, a Transition Process that Creates Resources TPCR only creates a type C

resource and does not have any process places.

Figure 4.5: TPR Model, Generated for Process 1 with NotR2, m1 causes d1

Definition 18 (Transition Process that Creates Resources (TPCR)). A transi-

tion process that creates resources (TPCR) is a marked Petri net N = (PR, TB ∪

TE, F, M0) where all of the places are resources, PR = PA ∪ PC , and !∃r ∈ PC such

that ∀b ∈ TB, (b, r) ∈ F and ∀e ∈ Te, (r, e) ∈ F ; and M0(p) = 1 only for p ∈ PA.

A TPCR can model some processes, specifically those that only create a type

C resource. The assembly variation of the manufacturing cell has a TPCR for the

process associated with C2. This TPCR is illustrated in Figure 4.6 where place

73

(g1, q1) is re-labeled as C2, as shown in brackets. Processes can be described by

TPRs and TPCRs, and when they are combined through shared resources, describe

SPSRs using STPRs. First we define the composition of a set of processes, then

STPRs.

Figure 4.6: TPR Model Generated for Process 2 of Manufacturing Cell Example [TPCR Model
for Process 2 of Assembly Ex]

Definition 19 (Composition of TPRs and/or TPCRs). The composition of TPRs

and/or TPCRs Ni = {Pi∪PRi, Ti = TMi∪TBi∪TEi, Fi,M0i} for i = 1...m is defined

as follows: 1) P = ∪Pi, 2) PR = ∪PRi, 3) TB = ∪TBi, TM = ∪TMi, TE = ∪TEi,

T = ∪Ti 4) F = ∪Fi, 5) M0(p) ≥ 1 ∀p ∈ PA ∪ PNC and M0(p) = 0 ∀p 6∈ (PA ∪ PNC)

and 6) Items 4d and 4e from Definition 17 also hold for the composition of Ni and

the resulting P and PR

Given these requirements, the process models can be composed into a single model

by taking the union of the places, transitions, and flow functions, and setting the

marking based on the initial resource availability.

Definition 20 (System of TPR (STPR)). A system of TPR (STPR) is defined

recursively as follows:

1. A TPR or TPCR is an STPR.

2. Let {Ni} i ∈ {1, 2, ...m} m < ∞, where Ni = {Pi ∪ PRi, Ti = TMi ∪ TBi ∪

TEi, Fi,M0i}, be a set of TPRs and/or TPCRs such that

74

a. Pi ∩ Pj = ∅ for i 6= j; for every i ∈ {1...m} ∃ at least one j 6= i such that

PRi ∩ PRj 6= ∅; each process i is connected to every other process j, either

directly through shared resources or indirectly through another process

b. for all i 6= j Ti ∩ Tj = ∅

c. ∀r ∈ PCi ∪ PNCi, ∃i ∈ {1, 2, ...m} such that •r ∩ Ti 6= ∅ and r • ∩Ti 6= ∅

then the net N = {P ∪ PR, TB ∪ TE ∪ T, F,M0} resulting from the composition

of Ni for i = 1...m is an STPR.

A TPR or TPCR can be an STPR on its own, as stated in Item 1. Item 2 lists

requirements for the process models that make up the STPR. None of the process

models share any process places, but they are all connected by sharing resources

(Item 2a). None of the TPR and TPCR models share any transitions (Item 2b).

For every type C and type NC place, there exists a process model that creates and

consumes the resource (Item 2c). Given the requirements of Item 2, the TPRs and/or

TPCRs can be composed into an STPR. These resource-based Petri net formalisms,

from TP through STPR, are used in our model generation algorithm. The TPRs

for the example manufacturing cell are combined into an STPR and illustrated in

Figure 4.7. For the example assembly cell, the only difference would be in re-naming

place (g2, q2) to C2 and adding an arc from the place for C2 to the transition d1, as

a sub-component would be required to finish processing a C1 component.

4.4 Problem Statements

With the definitions available, the problems addressed by this anomaly detection

solution can be formalized.

Problem 1. Given an SPSR as in Definition 15, including its processes’ events Ti,

resources Ri, and the mapping between resources and the events that acquire and

75

Figure 4.7: Example STPR, Whole Model From Combining Third Process 1 Model and Sole
Process 2 Model

release them, TaRi
and TeRi

for i = 1... number of processes, and at least one event

log Σ whose event streams are all labeled as no-fault, generate a set of STPR models

that describe the behavior of the SPSR.

Problem 2. Given a set of STPR models, a labeled event log ΣN of no-fault streams,

possibly a labeled event log ΣA of fault streams, and an unlabeled event stream σ,

provide a metric indicating how well the STPR models’ behavior matches that of ΣN

and ΣA and use the results of this metric and how well the STPR models’ behavior

matches the unlabeled event stream σ to determine whether σ likely contains an

anomaly.

4.5 Model Generation

4.5.1 Steps for Set-Up

Given the definitions, Problems 1 and 2, and the proposed solution from the

introduction of Chapter IV, we can now describe the four steps for the set-up of our

solution:

S1) Using knowledge about the system, list all processes, events, and the association

between them

S2) Using knowledge about the system, list all resources and, for each resource, its

76

type, which events acquire it, and which events release it

S3) Collect event streams from the running system where each stream starts from

the system’s initial state and is labeled as no-fault or fault (1 or 0, respectively)

S4) Create three event logs: put all of the fault streams into one log (to use in

performance assessment), and randomly divide the no-fault streams into two

separate logs (one for model generation, another for performance assessment),

such that neither of these logs is empty.

The set-up is applied to the manufacturing cell described in Section 4.1.

S1) The process and event information is listed in Table 4.1 and illustrated in Figure

4.1.

S2) The resource information is given in Table 4.2.

S3) The event streams available are σ1, σ2, σ3, and σ4.

S4) The event streams are split into logs Σ1 = {σ1, σ2} for model generation, and

Σ2 = σ3 and Σ3 = σ4 are the no-fault and fault, respectively, for performance

assessment.

4.5.2 α+ Algorithm

The α+ algorithm, developed in [60] and [16], is a workflow mining algorithm

that creates a sound SWF-net model based on an observed event log. Although

the α+ algorithm was developed to create sound SWF-nets, parts of this algorithm

can also be used in our model generation algorithm to create a set of models, some

of which may be TP s, that are used to create whole process models for anomaly

detection purposes. The α+ algorithm calculates statistics about the pairs of events

that occur sequentially in the event log and then uses these statistics to develop

event relationships and create a model. The main steps of the α+ algorithm are:

77

α1) Determine the events for the given log, Σ, and the events that occur first and

last in the streams in Σ

α2) Calculate the ordering relations between event pairs using Definition 21, which

is modified from [60] and [16] to fit the notation used here

Definition 21 (Ordering Relations for Event Pairs). Given two events, a and b ∈ T ,

that occur in the event log Σ, the ordering relation for the event pair a and b is

• a > b if and only if ab ∈ σ ∈ Σ

• a∆b if and only if aba ∈ σ ∈ Σ

• a ¦ b if and only if a∆b and b∆a

• a → b if and only if a > b and b 6> a

• a]b if and only if a 6> b and b 6> a

• a||b if and only if a > b and b > a

Intuitively, a ¦ b implies that a and b are in a two event loop, a → b implies that a

causes b, a]b implies that a and b have no causal relationship, and a||b implies that

a and b can occur in either order.

α3) Using the event pair ordering relations, create places – if a ¦ b, then create one

place connecting a to b and another place connecting b to a; if a → b then create

one place connecting a to b.

α4) Combine places as much as possible – two places can be combined if all of the

source events for the two places have a → or ¦ relationship with all of the sink

events of the two places, and none of the source events are related to one another

(]) and likewise none of the sink events are related to one another (]).

α5) Add initial place and final place – add a place that is initially marked and

is connected to the initial events (those that occur first in a stream), and an

78

unmarked final place that is connected to the final events (those that occur last

in a stream).

The basics of the α+ algorithm can be illustrated through the manufacturing cell

example described in Section 4.1.

α1) For the given log Σ1 = {σ1, σ2}, the events are listed in Table 4.1, the events

that occur first in the streams are g1 and g2, and the events that occur last in

the streams are q2 and d1.

α2) The ordering relations for the event pairs are determined by first finding the

event pair occurrences, which are totaled in Table 4.5. For example, the entry

for (m1,g1) is 4, indicating that in the event streams in Σ1, there were four

occurrences of m1 followed by g1. Based on these event pair occurrences, the

ordering relations using Definition 21 are illustrated in Table 4.6, where the

row event is first and the column event is second such that (i, j)th entry is the

relationship from event i to event j.

Table 4.5: Event Pair Occurrences in Example
g1 m1 d1 q1 g2 q2

g1 0 5 3 3 0 0
m1 4 0 1 0 2 0
d1 1 2 0 0 1 2
q1 1 0 1 0 1 0
g2 0 0 2 0 0 4
q2 4 0 0 0 1 0

Table 4.6: Ordering Relations for Event Pairs in Example
g1 m1 d1 q1 g2 q2

g1] || || ¦] ←
m1 ||] ||] →]
d1 || ||] ← || →
q1 ¦] →] →]
g2] ← || ←] ¦
q2 →] ←] ¦]

79

α3) The places created from the ¦ and > relationships are: (g1,q1), (q1,g1), (m1,g2),

(d1,q2), (q1,d1), (q1,g2), (g2,q2), (q2,g1), and (q2,g2)

α4) Through combining, the places become (g1,q1), (d1,q2), ({m1,q1,q2},g2), ({q1, q2},g1),

(q1,d1), and (g2,q2)

α5) The initial place, input, is added with initial marking of 1 and connected to the

initial events g1 and g2; the final place, output, is added and has connections

from the final events d1 and q2

The resulting Petri net model is illustrated in Figure 4.8. This model does not reflect

the system’s behavior, as it cannot even produce the event streams from which it

was created. As mentioned in Section 4.3, the sound SWF-nets produced by the

α+ algorithm assume a single input place and a single output place which means

that the process will occur exactly once and then terminate. In the example system,

however, multiple parts may be processed and those processes interwoven (i.e. a part

1 being machined while a part 2 is picked up). Also this algorithm cannot use any

prior knowledge of the system such as information about the resources. Thus, the

α+ algorithm cannot be directly used to generate models for this type of system.

Figure 4.8: Model result from applying α+ algorithm to example system

80

4.5.3 Model Generation Algorithm

Given the information from the set-up in Section 4.5.1, the model generation

solution produces a set of STPRs that approximate the system’s behavior, along

with a set of event statistics about the event pairs that appear in the event streams

used as input. The event statistics can later be used to determine how certain

a particular relationship in a model is, i.e. whether a behavior has been observed

many times or only a few times when deciding which places to create.

The model generation, described in Algorithm 1, uses Steps α2–α4 of the α+

algorithm. In Step M1, we determine the event relationships (Step α2), as given by

Definition 21. In Steps M2 and M3, we create a set of models for each process. If

the process is a TPCR, then a single TPCR model is made in Step M2 using just

the information about acquiring and releasing resources. Otherwise, a set of TPR

models is made for the process in Step M3, which is the bulk of the algorithm.

In Step M3.a, the event relationships are determined (using Step α2) for the

events in the process. These relationships may be different than those from Step

M1 because the event log is projected onto the process’ event set. Because of this,

alternate process event relationships are determined in Step M3.b that take into

account the relationships from Step M1. Steps α3 and α4 of the α+ algorithm are

used to create a set of models – one based on the relationships from M3.a (the basic

model) and, if there are alternate relationships from M3.b, one or more based on

those (some variations) – in Step M3.c.

In Step M3.d, variations of the models from Step M3.c are made where the event

relationships due to resources are subtracted from the event relationships based on

the log. Using only the information about which events acquire and release each

resource, a set of event relationships that abide by Definition 21 can be created.

81

Model Generation Algorithm:

Given: information stated available in Problem 1

M1) Find relationships among events in whole process event log (α2)

M2) For each TPCR process, create TPCR model based on resource information

M3) For each TPR process,

M3.a) Determine the process-specific event relationships (α2)

M3.b) Find alternate process-specific event relationships based on the whole

process event relationships

M3.c) Create all models (α3- α4) possible from the original and alternate process-

specific relationships

M3.d) Create versions of the models (α3- α4) thus far where the event

relationships due to resource use have been subtracted

M3.e) Find implicit relationships, create models (α3- α4) with them

M3.f) For each process model, add the resource information to model

M3.g) For each process model, determine whether any decisions in process are

made based solely on resources, and if so, add use of negated resources

and their associated connections

M3.h) Check whether each process model is a TPR

 M4) Create all possible whole models from combinations of the process models (TPRs

and TPCRs)

 M5) Combine the resource places of the processes so that the resources are properly

shared; makes them STPRs

Outputs: set of deterministic whole models (STPRs), frequency statistics of the event

pairs used to determine the relationships among events

Algorithm 1: Model Generation Algorithm Including Its Use of the α+ Algorithm

These relationships due to the resources can then be subtracted from the event

relationships based on the log, using Definition 22, to create other variations of the

the event relationships.

Definition 22 (Subtracting Event Relationships). Given two events, a and b ∈

T , that occur in the event log Σ, and two different event relationships have been

determined for this pair, then subtracting one relationship from the other is defined

as:

• Given → and subtract → results in]

• Given ← and subtract ← results in]

• Given || and subtract → results in ←

• Given || and subtract ← results in →

• Given || and subtract || results in

82

•] if both a and b have causal relationships

•] if both a and b are beginning events (a, b ∈ TB)

•] if a has a causal relationship and b is a beginning event, or vice versa

• → if b does not have a causal relationship nor is a beginning event but a

either has a causal relationship or is a beginning event, ← if vice versa

• ¦ if neither a nor b have causal relationships nor are beginning events

• For any other subtraction combination, the result is the same as the original

relationship.

Most of this subtraction definition is intuitive. For example, if event log has a||b

then there are occurrences of ab and ba, but if the resources have a → b then they

could account for the ab occurrences, leaving only the ba occurrences which means

that a ← b (or equivalently, b → a). When subtracting || from ||, the result depends

on whether the two events involved have causal relationships and are beginning

events (e ∈ TB) because each event that is not a beginning event should have at least

one other event that causes it. The interaction of resources with events can both

hide possibly correct causal relationships as well as suggest possibly incorrect causal

relationships which is why this model variation is created.

In Step M3.e, all implicit relationships whose inclusion would reduce the number of

places in the models made thus far are found, and models are made that include these

relationships. An implicit relationship is one that does not affect the system behavior.

For example, if a → b and b → c, then a → c is an implicit relationship. Additionally,

if there were two places (a, b) and (d, {b, c}) and there was the implicit relationship

a → c, then the two places could be combined into a single place ({a, d}, {b, c}) if

a]d.

83

Once this set of models is created for a process, additional modifications are made

to each model. The resources are added to each model in Step M3.f – the places that

represent each resource and the arcs that connect them with the events that acquire

and release them. With the resource places added, the algorithm considers whether

any of the resource places supersede existing places, as given in Definition 23.

Definition 23 (Superseding place). Given two places, p1 and p2, in an STPR N ,

p1 is said to supersede p2 if •p2 ⊂ •p1 and p2• ⊆ p1•, or •p2 ⊆ •p1 and p2• ⊂ p1•.

If a resource place pR supersedes an existing place p in the model, then the existing

place p is removed from the model. In Step M3.g, the algorithm determines whether

any decisions about which event to execute are made based solely on resource avail-

ability, and if there are such decisions, adds the necessary negated resource place

and connections to make this decision. This step is accomplished by determining the

resources used at each point in the event streams, and checking if there is a resource

whose availability always correlates to making a particular decision between conflict-

ing events (one place leading to more than one event). If there is such a resource,

then the negation of this resource is added, along with arcs both to and from the

event that should execute when the resource is unavailable. If removing an existing

place because it is superseded causes a non-source event (e 6∈ TB) to not have any

causal relationships, then variations of the model are created where each causal re-

lationship that was removed for that event due to superseding is included. Finally,

Step M3.h checks whether the model is a TPR. One common reason the model may

not be a TPR is that it does not have a process place for each intermediate transition

(event), which makes the underlying TP not strongly connected. In most cases, if

the process does not create a resource, at least one or more of the models created

is a TPR. All of the models, TPR and not TPR, are used in the remainder of the

84

algorithm.

After making the process models, whole models are created from making all pos-

sible combinations of the process models (TPRs and TPCRs) in Step M4. For each

whole model, the resource places of the processes are combined so that the processes

properly share the resources, making each whole model a STPR in Step M5. This

model generation algorithm is implemented as a set of Matlab programs.

The manufacturing cell example is again used, this time to illustrate our model

generation algorithm.

• Step M1: The event relationships from Σ are summarized in Table 4.6.

• Step M2: Skipped because both Processes 1 and 2 are TPRs, not TPCRs

• Step M3: A set of TPRs is created for each Process, 1 and 2, which we will

illustrate for Process 1.

• Step M3.a: The process-specific relationships for Process 1 are the same as the

shaded part of Table 4.6.

• Step M3.b: Because the process-specific relationships are the same as those for

the whole process, there are no alternate process-specific relationship.

• Step M3.c: One process model is created that has three places, each of which

connect a pair of events – (g1, q1), (q1, g1) and (q1, d1).

• Step M3.d: The relationships due to the resources used by this process (R1

and R2) are summarized in Table 4.7. For example, because R1 is released by

m1 and acquired by g1 and R2 does not interact with either of these events,

the relationship between the resources m1 and g1 is m1 → g1. Subtracting

the resource relationships from the relationships based on the event log results

in the set of relationships shown in Table 4.8. These relationships produce

85

another version of the Process 1 model, which has two places: (g1, {m1, q1})

and ({m1, q1}, d1).

Table 4.7: Ordering Relations Due to Resources for Event Pairs in Process 1
g1 m1 d1 q1

g1] ←] ←
m1 →] ←]
d1] →]]
q1 →]]]

Table 4.8: Relationships from Event Log Minus Relationships Due to Resources for Process 1
g1 m1 d1 q1

g1] → || →
m1 ←] →]
d1 || ←] ←
q1]] →]

• Step M3.e: No implicit places are found that reduce the number of places in

either Process 1 model.

• Step M3.f: The resource information for R1 and R2 from Table 4.2 is added to

each of the Process 1 models, resulting in the two models in Figure 4.9.

(a) Original Model (b) Model Where Resource Relationships
Considered

Figure 4.9: Models Generated for Process 1 Before Decisions Added

• Step M3.g: The first Process 1 model (Figure 4.9 (a)) does not have any decisions

made based on resource availability, but the second model (Figure 4.9 (b)) does

86

– if R2 is available when g1 has occurred, then m1 will occur, otherwise q1 will

occur. In words, if the machine is available to process a C1, then it will process

it, otherwise it will put C1 in the queue. Thus the negated resource, NotR2,

is included with this model. The NotR2 resource place supersedes one of the

existing places in Figure 4.9 (b), which means all causal relationships for d1 are

removed. Thus, variations of this model are created that include one of the

removed possible causal relationships: q1 → d1, m1 → d1, and {q1,m1} → d1.

These four Process 1 models (the first model and the three variations of the

second model) are shown in Figure 4.10. The first model is not a TPR, because

the associated sub-net TP is not strongly connected since m1 is only connected

to resource places. The other three models are TPRs.

(a) Model without NotR2 (b) Model with NotR2, Q1 causes D1

(c) Model with NotR2, M1 causes D1 (d) Model with NotR2, Q1 and M1
cause D1

Figure 4.10: Models Generated for Process 1

87

• Step M2 for Process 2: This same procedure is repeated for Process 2, which

results in a single model, shown in Figure 4.6 where the place is (g2, q2) because

we are considering the manufacturing cell, not the assembly cell.

• Step M4: The resulting models of the entire process are created, where an

example of these, made by combining the third Process 1 model with the sole

Process 2 model, is shown in Figure 4.7.

• Step M5: The shared resource places of the process models (in this case only

R1) are combined in each whole model in Step 4, resulting in the final set of

whole models.

4.5.4 Theory

Under ideal conditions, a model generation algorithm should create at least one

model that is identical to the underlying model that produced the event data.

Creating an STPR through Algorithm 1 is a deterministic procedure, and thus

will be the same as the underlying model if the underlying model is a STPR and if

the process models from which the STPR is created, TPRs and/or TPCRs, are the

same as the underlying process models. Each TPCR model is created based solely

on the resource information, and each TPR is created from adding the resources to

a TP , so if the resource information is correct and the underlying TP is also correct,

then each of the process models created (TPR or TPCR) will be the same as the

underlying process models. Thus, if the resource information provided is correct,

then the only thing that needs to hold for the STPR created to be the same as the

underlying STPR model is for our model generation algorithm to create the correct

TP s.

In Steps M3.a - M3.e of Algorithm 1, a set of models are created using the α+ al-

88

gorithm, where some variations are made on the event ordering relationships (Steps

M3.b, M3.d-e) so that several models may be created. With some additional re-

quirements, we give a theorem for a case in which the TP model is guaranteed to

be re-created. First we define a loop-complete event log, based on the loop-complete

workflow log (Definition 3.1) of [16].

Definition 24 (Proper event log, complete event log, loop-complete event log). Let

N = (P, T, F, M0) be a TP . Σ is a proper event log of N if and only if Σ ∈ T ∗,

every stream σ ∈ Σ is a firing sequence of N that starts and ends in N ’s initial state

(marking) M0. Σ is a complete event log of N if for any proper event log Σ′ of N ,

Σ′’s event relationships are a (possibly proper) subset of Σ’s event relationships, and

for any e ∈ Σ there is a σ ∈ Σ such that e ∈ σ. Σ is a loop-complete event log of N if

and only if it is a complete event log and for any two-event loops that are possible,

then there is a σ ∈ Σ such that σ shows that two-event loop.

Using this definition, we can give our theorem and proof.

Theorem IV.1 (Re-creation of TP). Let N = {P, T, F, M0} be a TP , Σ be a loop-

complete event log of N , and N ′ be a modified version of N : N ′ = {P ′, T, F ′,M ′
0}

where P ′ = {P ∪ pinput ∪ poutput}, F ′ = {F, {(pinput, tb) ∀tb ∈ TB}, {(te, poutput) ∀te ∈

TE}} and M0 = [M010]T . If N ′ is

1. safe – for all reachable markings M of N ′, each place has no more than one

token

2. live – for every reachable marking M of N ′ and transition e ∈ T , there is a state

Me reachable from M such that e is enabled

3. has no transitions that are connected by multiple places in the same direction

i.e. 6 ∃e1, e2 ∈ T such that | • e1 ∩ e2 • | > 1

89

then the model generated in Steps M3.a and M3.c of Algorithm 1 is identical to N .

Proof. A similar result for sound SWF -nets is given in [16], where Theorem 3.7 states

“Let N = (P, T, F) be a sound one-loop-free SWF -net and let W be a loop-complete

workflow log of N. Then α(W) = N modulo renaming of places.” This theorem relies

on Theorem 3.6, also from [16], as well as a number of theorems and results from

[60]: Theorems 4.1, 4.5, 4.6, 4.8, and 4.10 and Property 4.4. A comparison of sound

SWF -nets and TP s is provided in Table 4.4. All of the properties of sound SWF -

nets and the event log used in these theorems and their proofs are either already

required for TP s or are explicitly required as additional conditions for N ′ in this

theorem.

Given these restrictions, the TP can be properly re-created. The variations of the

TP created in our model generation algorithm are made so that when some of these

restrictions are relaxed, such as not having all of the event streams to make up a

loop-complete event log, one of these variations may still be the correct underlying

TP .

4.6 Performance Assessment

The next step after model generation is performance assessment. To determine the

models’ performance, a performance assessment algorithm is used which determines

and updates the performance but does not change the models themselves (Algorithm

2). The inputs to this algorithm are the whole models, a labeled event stream that has

not only an overall label but also a label for each event in the stream, and the current

performance of the models. If each event in a stream is labeled as no-fault, then the

entire stream is labeled no-fault, and if at least one event in a stream is labeled fault,

then the entire stream is labeled fault. For each model, the algorithm determines

90

whether the model accepts each event in the event stream based on whether the

event could occur in the model in its current state. If a model accepts an event,

then the model’s state is updated to indicate that event has occurred and the event

is labeled normal, whereas if the model does not accept the event, then its state is

not changed and the event is labeled anomalous. The algorithm compares the label

assigned by the model with the event label. For each event, if the model labeled it

correctly (no-fault as normal or fault as anomalous), then the model’s performance

is updated to be better, and if incorrectly, then its performance is updated to be

worse. In the current implementation of the algorithm, a correct labeling of an event

adds a value of 1 to the model’s performance and an incorrect labeling subtracts 1.

Thus, performance of a model is the overall sum of the number of events correctly

labeled minus the sum of the number of events incorrectly labeled. This performance

can be normalized to percent of events labeled correctly.

This type of performance assessment is typical for supervised learning, where some

data is used to develop the learning algorithm (in this case, the models) and other

data is used to assess its performance [56]. The particular metric used here, adding

one for correct labels and subtracting one for incorrect labels, is sufficient for this

anomaly detection solution, but that does not mean it is the best metric when the

solution is applied to industry systems. Other metrics that could be used for such

performance assessment include the percentage of event streams or events correctly

classified [56], and the squared or absolute error between the given classification and

the learned classification of events [29]. The output of the algorithm is the model’s

updated performance using our simple metric.

This performance assessment is illustrated through the example manufacturing

cell. Using the models produced in Section 4.5, and the two event logs for per-

91

Performance Assessment Algorithm:

Given: information available for Problem 2, current performance of whole models

(optional, can be null)

For each whole model

For each event in labeled event stream

Determine whether the model accepts the event, and if agrees with event label

If the model and label agree, increase the model’s performance by 1

Else, decrease the model’s performance by 1

Outputs: updated performance of whole models

Algorithm 2: Performance Assessment Algorithm

formance assessment Σ2 and Σ3, from Section 4.5.1, the performance assessment

algorithm was run. Each event stream, Σ2 = σ3 and Σ3 = σ4, had 20 events mean-

ing the best possible performance would be 40 (all labeled correctly) and the worst

would be -40 (all labeled incorrectly). The first two models had a performance of 8,

which translates to labeling 60% of the events correctly, and the last two models had

a performance of 40, which means they labeled 100% of the events correctly.

4.7 Anomaly Detection

Once the models have been generated and their performance determined, the

anomaly detection algorithm can be run (Algorithm 3) to label an unlabeled stream.

For each event in the unlabeled stream, this algorithm adds the performances of the

models that label the event as normal and subtracts the performances of the models

that label it anomalous, and if this value is greater than a threshold (currently using

0), then the event is labeled as normal, otherwise it is labeled anomalous. The

models’ states are updated in the same way as in Algorithm 2. The output of the

algorithm is a label of normal or anomalous for each event in the stream, where

an anomalous label indicates that an event is anomalous. A stream is labeled as

normal only if none of the events in the stream are labeled as anomalous, otherwise

the stream is labeled anomalous. The idea of comparing observed behavior to a

model to determine possible faults has been used previously [47] [30], but these

92

approaches have used one model known to be correct, rather than a set of models

whose performance has been determined.

By incorporating performance assessment, the anomaly detection algorithm can

make improvements online. If a new set of event streams labeled as no-fault becomes

available, Algorithm 2 can be run again using those streams to update the models’

performance and thus lead to better anomaly detection. If all of the models have

poor performance on these new labeled event streams, then an offline improvement

to the anomaly detection can be made by running the model generation algorithm

again but this time including all of the new, no-fault event streams. Thus the new

models generated will better incorporate the behavior represented by these new event

streams.

Anomaly Detection Algorithm:

Given: information available for Problem 2, performance of whole models

1) For each event in unlabeled stream

a. Determine whether each model accepts this event, and if a model accepts

this event, then update the model’s marking to reflect the event occurring

b. Sum the performance of the models that accept the event and subtract the

performance of the models that do not; if the result is greater than 0, label

the event “normal” and otherwise label it “anomalous”

2) The entire stream is labeled “normal” if all of the events in it are labeled

“normal”; otherwise it is labeled “anomalous”

Outputs: whole models with updated marking, label for event stream and each event in it

Algorithm 3: Anomaly Detection Algorithm

Returning to the example manufacturing cell, the anomaly detection algorithm

was run on the generated models with their performances for an unlabeled event

stream that had not been introduced before,

σ5 = g1m1g2d1q2g1m1g1q1g2d1q2g1m1g2q2g1d1m1g1

that was no-fault behavior. The weighted voting of the models correctly identified

the entire stream as normal. This stream was then modified to include some fault

behavior and run through the anomaly detection algorithm to see if it could detect

93

the anomalies associated with the fault. The stream was changed so that the second

to last event was switched from m1 to q1, which in this sequence would mean that a

part 1 was put in the queue in spite of R2 being available, and thus fault behavior.

The results from the anomaly detection algorithm indicated that all events were nor-

mal except the one changed, which was anomalous, thus correctly finding the fault.

Another anomalous stream was created by taking the initial stream and deleting the

first occurrence of d1. In this case, the anomaly detection algorithm results identified

the 6th and 7th events in that stream (m1 and g1, which were the 7th and 8th in

the original) as anomalous. Although these events were not actually the problem,

the anomaly was manifested there since d1 would represent the end of processing a

part 1 and m1 should not be able to occur again until d1 has occurred. The anomaly

labeling disappeared after these two events because then an entire cycle (g1, m1, and

d1) of processing a part 1 had been dropped and the system seemed normal again.

This result indicates that the anomalous events found by our algorithm may not

always be the actual anomaly or fault.

4.8 Application of Solution to Simulated RFT Cell

In this section, model generation and performance assessment are further illus-

trated with a larger example. This example system is an abstracted version of a

cell of the Reconfigurable Factory Testbed (RFT), the system that motivated this

research. There are two types of parts, called part 1 and part 2. The abstracted

version of this cell has the same basic behavior as the actual cell but with only 20

events.

The process that occurs in the machining cell can be divided into three processes:

1) process part 1, 2) process part 2, and 3) arrival/release of part 0 (empty pallet).

94

Table 4.9: Unique Models Generated from Algorithm for Given Log
Logs Part 1

Models
Part 2
Models

Part 0
Models

Whole
Models

Σ1 = One 10000 event stream 4 4 1 16
Σ2 = One 500 event stream 6 6 1 36
Σ3 = Five 100 event streams 8 10 1 80

Each of the first two processes has 9 events and 4 resources – robot, CNC, pallet

stop, and empty pallet. The third process has 2 events and 2 resources – pallet stop

and empty pallet. The robot, CNC, and pallet stop are type A resources, while the

empty pallet is a type C resource. The pallet stop and empty pallet resources are

shared among all three processes, while the robot is shared between the first two

processes, and each of the CNCs is used only by a single process.

The event log Σ for model generation of this example was created from simulating

a model of the abstracted cell. Three different model generation logs were created –

Σ1 has a single event stream with 10000 events, Σ2 has a single event stream with

500 events, and Σ3 has 5 streams each with 100 events for a total of 500 events.

The event logs (both no-fault and fault streams, Σ4 and Σ5 respectively) used for

performance assessment were created to specifically highlight the variety of behavior

allowed by the cell. Most of these event streams are short, on average only 6 events,

because each stream illustrates one particular behavior of the cell. These event logs

have a total of 10 event streams, 5 of which are no-fault (in Σ4) and 5 of which are

fault (in Σ5), with 60 events among the 10 streams.

The model generation algorithm was run for the machining cell for each of its

three event logs. Each run of the algorithm results in a set of whole models – a Part

1 model, a Part 2 model, and a Part 0 model – that interact through their shared

resources. The results of these runs are summarized in Table 4.9.

For a given model generation event log – Σ1, Σ2 or Σ3 – approximately the same

95

number of models are generated for the Part 1 process as for the Part 2 process,

which makes sense because the Part 1 and Part 2 processes are identical other than

naming. The event log with a set of short streams, Σ3, yields more models than

either log with one long stream, Σ1 or Σ2, because the event relationships are not

as well known and thus more model variations are created. Only one Part 0 model

is generated for each event log because the Part 0 process is a TPCR. An example

of one of the whole models generated using both Σ1 and Σ2 is illustrated in Figure

4.11.

Figure 4.11: Example STPR for Cell 1 (composed of TPR for Part 1, TPR for Part 2, and TPCR
for Empty) with resource places Pallet Stop, Robot, Empty, M1, M2, NotM1, and NotM2.

The models’ performance is assessed using Σ4 and Σ5, and the normalized results

of that assessment are summarized in Table 4.10. For each stream, the number

of events in it is listed. Of the models generated for each event log, the maximum,

96

minimum, and mean performance for each event stream is given in percentage correct.

In general, the performance of the models generated from one longer event stream,

Σ1 and Σ2, is better than that from the set of short event streams, Σ3. The best

maximum performance is the total number of events in the two training logs, Σ4 and

Σ5, which is 100%. Perfect performance was achieved by at least one model generated

from Σ1 and at least one model generated from Σ2, but not by any models generated

from Σ3. These results illustrate that an event log with a single long stream, such as

Σ2, may perform better than an event log with the same number of events split into

more streams, such as Σ3. We observed that even though Σ1 has more events than

Σ2, the models generated based on Σ1 do not yield better mean performance than

those based on Σ2. The max performance for the models created based on Σ1 and

Σ2, however, are the same and because anomaly detection is based on the models’

labeling but weighted by their performance, the max performance of a set of models

can be more important than the mean performance. The STPR in Figure 4.11 is

the one with the best performance and exactly matches the model that was used to

simulate the abstracted cell and create the event logs used for model generation.

Table 4.10: Performance Results in Percentage for Each Model Generation Event Log, Where Num
is the number of events in the stream and the results are expressed as Max, Min, and Mean

σ All 1 2 3 4 5 6 7 8 9 10
Num 60 9 5 10 2 6 6 3 2 6 11

Σ1

(16
models)

Max 100 100 100 100 100 100 100 100 100 100 100
Min 13 11 0 10 50 17 17 0 50 17 9
Mean 55 47 50 55 75 58 58 50 75 58 55

Σ2

(36
models)

Max 100 100 100 100 100 100 100 100 100 100 100
Min 13 11 0 10 50 17 17 0 50 17 9
Mean 63 59 63 62 83 73 56 50 83 73 59

Σ3

(80
models)

Max 87 56 100 90 100 83 100 100 100 83 91
Min 13 11 0 10 50 17 17 0 50 17 9
Mean 35 17 12 38 58 25 65 60 58 25 39

To see how well the anomaly detection solution scales with system size, the solu-

tion was applied to a simulated system similar to the previous example, but much

97

larger in size. This system consists of five cells, each like the cell in the previous ex-

ample, which collectively machine six parts that are assembled into two final products

in a final assembly cell. There are 17 processes, one for each part in each machining

cell (3 ∗ 5 = 15) plus one for each final assembly (2). The system has 104 events

and 37 resources. A simulated model of this example was used to generate a set

of 20 no-fault streams each with 5000 events. These streams were used for model

generation.

The model generation algorithm was able to create models for each process, where

the models for the machining cells were similar to those produced for the previous

example. Combining these process models into all possible whole models, however,

was not possible because it resulted in too many whole models. Each process had

between 1 and 12 models, and all possible combinations would yield more than 200

million models.

This problem is due in part to the number of models per process, and in part

due to the number of processes. One means of reducing the number of models per

process, and thus the number of whole models, is to do performance assessment of

the models of a given process and discard all those that perform below a certain level.

The idea behind this approach is that if a process model performs very poorly at

predicting just the process’ behavior, then it will also contribute to poor performance

of a whole model.

4.9 Conclusions

Taking the approach of handling faults once they occur, this research developed

an anomaly detection solution for event-based systems without pre-existing formal

models. For the model generation step, an algorithm was created that builds upon

98

the α+ algorithm [16] to create a set of Petri net models that explicitly incorporate

resources to describe the underlying no-fault behavior of the system. These models’

performance in detecting anomalies is assessed using labeled event streams, and

anomaly detection is performed on unlabeled event streams on the basis of these

models and their previous performance. A variation of Petri nets that incorporate

resources in a less rigid manner, called STPRs, was developed for use with the

model generation algorithm. The applicability of the solution was demonstrated on

a simulated version of the motivating RFT example.

CHAPTER V

Application of Anomaly Detection to Industrial
Manufacturing Line

The anomaly detection solution from Chapter IV was designed to be applicable

to industrial event-based systems, which is why it assumes there is no pre-existing

formal model and only limited information available about the system. Thus, a sig-

nificant test of the applicability of the anomaly detection solution was to apply it to

a real system, in this case an industrial machining cell used by Ford Motor Co. The

cell is described in Section 5.1, and in Section 5.2, we describe a number of incon-

sistencies that were found between the assumptions that were made in the solution

approach and the realities that we found on the plant floor. These inconsistencies are

presented, along with their resolutions, in Section 5.3. A couple of persistent barriers

prevented completion of the industrial application (Section 5.4), so the resolutions

of these inconsistencies have been tested through application to simulated systems

that have been created to mimic the industry conditions (see Chapter VI). The work

presented in this chapter appeared in [2].

5.1 Description of Machining Cell

The Ford machining cell under investigation takes partially machined parts and

performs further machining on them. Illustrated in Figure 5.1, the cell has two

99

100

gantries (G1-G2) that operate in serial and six CNCs (M1-M6) that operate in par-

allel. Parts arrive at the entry (point 1), where the first gantry (G1) picks them up

one at a time and puts two parts at the hand-off location (point 2). Once two parts

are available at the hand-off location, the second gantry (G2) picks up the two parts

together and, if necessary, waits until a CNC (M1-M6) has finished processing its

parts and requests an unload. Then the second gantry (G2) moves to that CNC,

unloads the processed pair of parts and loads its new unprocessed parts. While G2

departs to take the pair of processed parts to the exit (point 3) if they are good, or

to the reject station (point 4) if they are not, the CNC begins to process its new pair

of parts. This completes one cycle of the process.

G1 G2 M1 M62 3

4

1

Entry Hand-off

Reject

Exit

Figure 5.1: Machining cell that consists of two gantries (G1, G2) operating in serial and six CNCs
(M1-M6) operating in parallel

The machining cell collects data from each of its eight machines (two gantries and

six CNCs). The data collection is illustrated in Figure 5.2, where there is a PLC

for each machine that sends data to the IT system. Each PLC has driving logic

written by the machine supplier that provides some of its status information to a

special function block (FB) designed by Ford to standardize how machines interact

with the data collection system. At each point where data is passed, it is filtered

and processed.

Each PLC can report up to 40 words of data, although only the first 20 of them

are currently used. This data is reported to IT only when certain key bit changes

101

IT system

PLC

Driving

logic

FB

PLC

Driving

logic

FB

Figure 5.2: Data collection set-up for machining cell

occur. Some words are used for numbers, such as the last cycle time, part ID, and

transaction/message counter. Other words are broken down into individual bits.

Words 4 and 5 have bits that express the machine’s status, such as the start and end

of the cycle (Cycle End, Cycle Start), the type of cycle (Good, Bad, Non-Continuous,

Dry), whether there is currently any abnormal status (Manual Intervention, Bypass,

In Fault, etc.), and whether it is interacting with another machine (Wait Aux),

starved, or blocked. Words 14-20 are also split into bits that express fault and

warning codes, where these codes are specific to the particular type of machine.

Some of the most important bits for understanding normal operation are Cycle End,

Wait Aux, Blocked and Starved. Cycle End is generally pulsed high when a machine

has completed one cycle, whether that is a CNC having finished processing a pair of

parts or G2 dropping off a pair of parts at the exit or reject. Wait Aux is generally

high for a machine when it is waiting for another machine, such as when G1 is waiting

to drop off a part at the hand-off location because G2 is currently there. This bit

is also used for some secondary purposes, such as during routine tests to check

the machine’s functionality. Blocked and Starved are used when a machine cannot

perform further operation because it is prevented by the operation just downstream

102

or just upstream. For example, a CNC is blocked when it is done processing parts

and has to wait for the finished parts to be unloaded, and it is starved when it is

waiting for raw parts to process.

In summary, the information known about this machining cell is its physical set-

up, including its machines, its data structure, and design information about how the

data bits are supposed to be used. Information not available for this cell includes a

formal DES model of its correct operation and a complete log of all possible no-fault

event streams.

This machining cell generally operates correctly. Occasionally and unpredictably,

however, the second gantry (G2) will wait holding unprocessed parts for a minute

or two as if there are no CNCs available to unload and reload, even though one

or more CNCs are actually Blocked, indicating that they are ready to unload and

reload. Eventually, G2 will move to one of the waiting CNCs and the cell will resume

operation, but it is not clear what is causing this fault nor why it resolves itself. The

fault needs to be debugged so that the underlying issue can be fixed and production

time will no longer be lost.

5.2 Initial Application of Solution

To apply the anomaly detection solution requires event streams (data) observed

from the cell. A data set from this cell includes the data messages sent by each

machine in the cell to the IT system over some period of time. Two such data

sets were provided for this application. The first data set was approximately 6.5

days long, during which time there were over 190,000 messages from the machines

to the IT system and more than 9600 parts were processed through the cell. The

second data set was 2 days long, during which time there were approximately 83,000

103

messages and over 2000 parts processed.

Prior to applying this solution, information known about the cell must be inter-

preted to satisfy the information that the solution requires about the system. More

than one interpretation is possible for some of the information. The cell’s entire be-

havior could be considered as a one process, or there could be one process per CNC

and one process for both gantries, or one process for each of the eight machines. The

resources for the cell are the two gantries six CNCs, and the buffer.

Because the problem with the cell is in the interaction among the machines, the

bits that should be included as events are some of those from Words 4 and 5, which

relate to the machine’s status. The most important bits to include in a model for

this problem are Cycle End, Good Cycle, Wait Aux, Starved, and Blocked. The

association between events and processes is evident due to each event being a bit

change in a machine’s PLC, so each event is associated with the process to which its

machine belongs.

The last set of information to determine for the cell is which events are associated

with acquiring and releasing each resource. A description of physical events associ-

ated with acquiring and releasing each resource is given in Table 5.1, where BF is

the buffer between G1 and G2, and only one CNC is listed because all six operate

the same way. The data events in this table will be discussed in Section 5.3.1. G1

is acquired when it goes to pick up a raw part and released when it finishes moving

that part. G2 is used for two different purposes – to load raw parts and to unload

processed parts. In loading raw parts, G2 is acquired when it picks up a pair of raw

parts and released when it finishes loading those parts. In unloading processed parts,

G2 is acquired when it begins to unload the pair of parts and released when it drops

off the pair at the Exit or Reject locations. To apply the solution, these physical

104

events that acquire and release the resources should be associated with particular

bit changes in the data streams. However, we found that was not the case.

Table 5.1: Physical and Data Events That Acquire and Release Cell’s Resources With Unobservable
Events in italics
Res Type Events That Acquire Events That Release

G1 Physical Starts picking up part from Entry Finishes placing part at Hand-off
Data Starts picking up 3 pairs from Entry

(G1 Good Cycle fall)
Finishes placing 3 pairs at Hand-off
(G1 Good Cycle rise)

G2 Physical Starts picking up pair of parts from
Hand-off

Finishes loading pair into CNC

Data Starts interacting with CNC (CNC
Wait Aux rise)

(CNC Wait Aux fall)

G2 Physical Starts unloading pair of parts from
CNC

Drops off pair at Exit or Reject

Data (CNC Wait Aux rise) (G1 Cycle End rise)

CNC Physical Starts loading pair of raw parts Finishes unloading pair of processed
parts

Data Raw part begun to be processed (CNC
Wait Aux fall)

(CNC Cycle End rise)

BF Physical Receives pair of raw parts from G1 Pair of raw parts removed by G2
Data Finishes placing 3 pairs at Hand-off

(G1 Good Cycle rise)
Starts interacting with CNC (CNC
Wait Aux rise)

This inconsistency between what the solution assumes from an academic viewpoint

and what was actually true for this industrial system was only one of several such

inconsistencies discovered while applying this anomaly detection solution. Five such

inconsistencies were identified that must be resolved to complete the application.

5.3 Inconsistencies Between Academic Assumptions and Industry Real-
ities

Five inconsistencies between academic assumptions made by the anomaly detec-

tion solution and realities of this particular industry system were identified. This

set of inconsistencies is not all-inclusive, but the academic assumptions and industry

situations are both widespread, which means that these inconsistencies are relevant

not only for the application of this anomaly detection solution to this machining cell,

but for application of other academic solutions to other industry systems. The first

105

academic assumption, made by any DES that explicitly uses resources, is that the

events associated with acquiring and releasing each resource are observable; however,

in an industry system these events may not be recorded at the level at which data

is collected. Another assumption is that the system produces a string of ordered

events, required for any DES, but many industry systems’ data is produced by PLCs

which may have multiple bits change within a single message. A consistent mapping

between events and meaning is assumed for modeling, whereas in any real system

there may be inconsistency in how events are used. Workflow mining, introduced in

Section 2.1.3, assumes that each event stream starts from the system’s initial state,

but industry systems often run continuously and, especially if they have any paral-

lelism, may not be in their initial state often. Finally, workflow mining also assumes

that separate, labeled (no-fault or fault) event streams are available from the system

even though industry systems often run continuously and may not have a means by

which to label their streams. These inconsistencies are discussed in detail and ideas

for their resolution presented in the subsequent sections.

5.3.1 Observable Events to Acquire/Release Resources

Some types of DES, such as the resource-based Petri nets proposed in [21] and

[31] and used in this anomaly detection solution, explicitly include resources in their

models. In these types of DES, resources serve an important role in determining

what behavior is allowed, and providing a modular structure by having sub-models

interact solely through the resources. For these DES, it is assumed that there are

specific observable events associated with acquiring and releasing each resource. In

industry systems, however, not all such events may be observable. For example, in

the machining cell, the second gantry (G2) picks up a pair of unprocessed parts from

the Hand-off location, but this physical event does not have a corresponding event

106

that is recorded in the data. Because the gantry receives a command from its PLC

to pick up the parts, the event is registered in the PLC and thus observable at some

level of the data, but this event was not originally chosen for upload to the IT system.

Another example is that the first gantry (G1) picks up one pair of unprocessed parts

at a time and puts them at the Hand-off location, but these physical events only have

corresponding events recorded in the data for every third pair, because the capacity

of the pallet on which the raw parts arrive is three pairs.

This inconsistency between theory and practice is difficult to address because

it is fundamentally about missing information in the form of certain events being

unobservable. The ideal way to address this inconsistency is for the desired events

to be sent to the IT system and recorded, but this would require changing the PLC

programming. If the ideal solution is not possible, then one approximate solution is

to find events that can serve as proxy for the unobservable events. A proxy event is

one that is used in place of the unobservable event. A good proxy event should always

occur shortly before or after the unobservable event, and never at any other times. If

the proxy occurs shortly after the unobservable event, that may be preferable because

then it is assured that the unobservable event has definitely occurred. Also it is best

if the proxy event is not associated with acquiring or releasing any other resources

because then the the two resource interactions will be incorrectly associated.

In the machining cell, one of the unobservable events is that for acquiring the G2

resource. The best proxy events available for this unobservable event are when a

CNC starts to interact with G2 to unload and load parts. This set of proxy events

always occurs after the G2 resource has been acquired (G2 has picked up raw parts)

and is not associated with acquiring any other resources. The difficulty with using

this set of proxy events is that it can mask the gantry waiting problem with the

107

machining cell. Because there is no event to directly indicate when G2 has parts

and is waiting, one can only know when it has already reached a CNC and by that

point, the problem has resolved. Thus, by using this set of proxy events, one only

knows when many of the CNCs are blocked, which could indicate the problem but

may also occur in other situations too. Thus, the use of proxy events is a less than

ideal solution.

In the machining cell, of the five events that acquire resources, four are unobserv-

able, and of the five events that release resources, two are unobservable, as shown

in Table 5.1. Based on this information, making such events observable is not stan-

dard practice. One recommendation for future design of industry systems would be

to make all events that acquire and release resources observable so that problems

like the gantry waiting can be more easily found and debugged. Because the use

of proxy events was insufficient and this inconsistency was preventing the successful

application of the anomaly detection solution to this system, our Ford collaborators

were willing to invest the time and effort required to change the PLC programming

such that all of the events that acquire and/or release resources are sent to the IT

system and recorded.

5.3.2 String of Ordered Events

This anomaly detection solution assumes a string of ordered, isolated events, a

common assumption in DES. At first glance, it may seem that this assumption can

hold for the machining cell example by making each bit change (rise and fall) a

separate event. Between subsequent PLC messages, however, there may be multiple

bit changes (MBCs) which makes the correlation between bits and events unclear.

An MBC event is one in which multiple bits have changed between one PLC message

and the next. Some causes of MBCs may be removed, such as by requiring that every

108

bit change causes a PLC message to be generated. However, if multiple bits change

within one PLC scan, MBCs cannot be prevented.

If MBCs cannot be prevented, one may wonder if they are infrequent enough

that they could be treated as noise or errors in the data. How often MBCs occur

depends on how the PLC is programmed, but to give an example illustration, the

occurrence of MBCs in data from the machining cell application was studied. Of all

of the events, 35% were MBC events, indicating that they are very prevalent and

cannot be easily dismissed. MBC events also account for the majority of unique

events – using 18 bits, there are 35 unique single bit change (SBC) events (note that

there would be 18*2=36 SBC events, but one of the bits only reported rising and

not falling, thus eliminating one event), but more than 250 unique MBC events.

Possible ways to address MBCs lie along a continuum. At one extreme, each MBC

is treated as a unique event, and at the other, each MBC is split into a sequence of

SBC events. If each MBC is treated as a unique event, then the number of unique

events in the system may be significantly larger, as illustrated with the sample data

where the number of unique events would jump from 35 to 285. If each MBC event

is split into a sequence of SBC events, it is unclear how the order of the SBC events

should be decided and there may be some MBC events that truly represent unique

events. For a simple, two bit change example, the possible options for how to handle

it are illustrated in Figure 5.3. Instead of choosing either extreme, the choice can be

made for each MBC. For example, if the bits in a particular MBC occur sequentially

in the data and have a causal relationship, then the MBC can likely be split into

SBC events whose order is determined by that causal relationship. If they occur

sequentially in either order, then their relationships to the events directly before

and directly after the MBC can be considered. Alternatively, if the bits in an MBC

109

0100
1000

{Rise,Fall,--,--} {Rise,--,--,--}

{--,Fall,--,--} {Rise,--,--,--}

{--,Fall,--,--}

}MBC
Unique

event
Seq 1 Seq 2

Figure 5.3: An MBC where two bits change per event and the three options are: keep it as a unique
event, or split it into one of two possible sequences

never occur sequentially, then the MBC should probably be kept as a unique event.

A heuristic decision algorithm was developed to handle MBCs – decide whether to

split them, and if so the order of the constituent SBCs. More detail on this algorithm

is provided in Chapter VI, where it is applied to a simulated system. In summary,

a recommendation to industry would be to have all the most important bits cause

a PLC message to be generated whenever they change to reduce the occurrence of

MBCs, and a recommendation to academia is to develop algorithms that can handle

MBCs.

5.3.3 Consistent Mapping Between Event and Meaning

This anomaly detection solution makes the relatively common academic assump-

tion that the system has a consistent mapping between events and their meaning,

based on design documents that dictate how bits should be used. In the example

application, though, the PLCs are programmed in a way that results in occasional

occurrences of inconsistent mapping in the data, in the form of bits being used in-

consistently with the design.

This machining cell’s original data had some infrequent instances of such incon-

sistent mapping. Some instances of this issue in the data are apparent from un-

derstanding which physical events are associated with bits. For example, the Cycle

110

End bit for G2 pulses high each time that G2 places a pair of processed parts at the

exit (point 3) or reject pile (point 4). Occasionally in the data, this bit pulses high

twice in a row even though it is not physically possible for G2 to drop off a pair of

processed parts and then drop off another pair without picking up parts in between.

Other instances of inconsistent mapping are due to bits being used inconsistently

with their intention, such as the Wait Aux bit being used for occurrences other than

interacting with another machine.

The most complete manner of addressing this inconsistency is to find all errors

in programming and use of bits other than intended, and to remedy these in the

programming and implementation of the PLCs and data collection systems. Another

possible way to address this inconsistency is to use knowledge of the system, such

as it not being realistic that G2 has Cycle End pulse high twice in a row, to pre-

process the data to eliminate the occurrences that do not match the mapping. Both

of these approaches were used to address this inconsistency. Some re-programming

was done of the PLCs, in part because it was already necessary to resolve the first

inconsistency. A simple script was also created that uses knowledge of the system and

some of its known inconsistencies to pre-process the data. Using system knowledge,

we determined certain patterns in the data that represent inconsistent mapping,

such as G2’s Cycle End pulsing high twice in a row, or a CNC’s Wait Aux rising

and falling without Cycle End rising in between. The script pre-processes the data

by taking these patterns as inputs, searching the data for the patterns and removing

each instance of the pattern. The script can also take replacement patterns as input,

if a particular pattern should be replaced rather than removed. The main limitation

to both of these approaches is that they can only resolve known issues with the

mapping between bit and meaning. Thus if additional mapping issues are found

111

or are created in the PLC re-programming, they must be identified in order to be

remedied.

5.3.4 System Starts in Initial State for Each Event Stream

The anomaly detection solution uses observed event streams to generate models,

compares other labeled event streams to these models to assess their performance,

and then compares an unlabeled event stream to the models to determine whether

it is likely an anomaly. In the second and third of these steps, the solution assumes

that each stream of data starts in the system’s initial state, which corresponds to

the typical workflow mining assumption of starting at the beginning of the process.

In the industry machining cell, however, the system is running continuously and has

a serial-parallel configuration, both of which contribute to the the system not often

being in its initial state. Therefore, only using streams that start from the initial

state is not realistic. This inconsistency needed to be resolved from the academic

side.

The models generated by our solution do not depend on the observed event

streams starting in the system’s initial state. The performance assessment and

anomaly detection steps, however, require comparing an observed stream to what

the models expect, which does require that the stream and models start in the same

state. For this comparison, the initial state of the event stream must be known so the

model can start in that same state. This state may not be known exactly, but a lower

bound for it can be calculated based on the events that occurred in the stream and

an upper bound can be calculated based on the shared resources. Thus, a necessary

condition for a model to accept an event stream is that this lower bound be less than

or equal to the upper bound. The theory for this necessary condition as well as its

algorithm implementation are developed in Chapter VI.

112

5.3.5 Separate, Labeled Event Streams

Workflow mining techniques are incorporated into the model generation portion

of the solution, and such techniques assume that separate, labeled event streams of

data are available for the system to be modeled, where the labeling indicates whether

the stream represents no-fault or fault behavior. The no-fault streams are used to

create a set of models of the system, and both no-fault and fault streams are used

to assess the models’ performance to see how well they match the system behavior.

Instead, the machining cell produces a continuous, unlabeled event stream because

the system is generally running all the time and has no mechanism for labeling.

The continuous industrial event stream can be split based on different criteria. For

this anomaly detection solution, an algorithm was created that implements several

splitting mechanisms and they were tried out on the machining cell example. An

event stream can be split based on certain key events, or after such events occur

a particular number of times. Another possibility is that the stream can be split

into streams of a particular size. Trying both approaches for the machining cell

data revealed that splitting based on key events makes anomalies more likely to be

missed if they tend to occur around that key event, whereas splitting into streams

of a particular size provides better results.

These split streams can be labeled by a system expert who can determine whether

the stream represents no-fault or fault behavior. Alternatively, if the fault behavior

is associated with particular symptoms or patterns in the data, then a program can

be written to label the event streams automatically based on whether it finds the

given symptoms. With the problem in the machining cell, the fault behavior is when

G2 has raw parts and is waiting to service a CNC, while at least one CNC has

completed parts that it is waiting to have unloaded and new parts loaded. If this

113

scenario can be associated with a given combination of bit values (symptoms), then

the event streams can be labeled via a program that keeps track of the bit values.

This automated labeling based on symptoms was added to the splitting algorithm.

5.4 Barriers to Application to Machining Cell

To complete application of the anomaly detection solution to the machining cell,

resolutions were found for the five inconsistencies identified. Some of these inconsis-

tencies were addressed by the Ford engineers through changing logic in the machine

controllers, while others were addressed by incorporating additional algorithms into

the anomaly detection solution. These resolutions are summarized in Table 5.2 along

with the responsible party (Academia or Industry).

Table 5.2: Inconsistencies and Their Resolutions, Where Responsible Party is Either Academia or
Industry

Inconsistency Resp. Resolution
1 Events that acquire/release resources

vs. not all such events recorded
I Changed logic to make available

2 Ordered string of events vs. multiple
bit changes per message

A Algorithm created to decide whether split
or keep unique

3 Consistent mapping between event
and meaning vs. inconsistent map-
ping

I, A Changed logic to address some, created al-
gorithm to filter some

4 Event streams start in system’s initial
state vs. start in a variety of states

A Determined necessary condition for feasi-
bility of stream, implemented in algorithm

5 Separate, labeled event streams vs.
continuous, unlabeled event stream

A Algorithm created to split streams and la-
bel automatically based on symptoms

Resolution of the first and third inconsistencies required logic changes, but the

machining cell is running production parts and therefore could not have such changes

made. A similar machining cell (a gantry that serves a set of CNCs) was identified

on which such logic changes could be made, and after these changes, more data was

collected. With this new data and the additional new algorithms in the solution,

application of the solution to the data was attempted. There still exist two main

barriers to successful completion of this application. The first barrier is that the ma-

114

chining cells for which the logic changes could be made are only running occasionally

for short test runs, and thus the quantity of data is much smaller – fewer than 600

parts. With this small amount of data, there are some two-event sequences that can

occur but do not in the data, yielding incorrect models. The second barrier is that

some new issues with mapping between event and meaning arose in the new data, in

large part because the resolution to this inconsistency only works on a case-by-case

basis. Some of the newly found mapping issues also will require logic changes, such

as some bits that are not being updated real time and thus causing incorrect event

relationships.

5.5 Conclusions

The research on anomaly detection for event-based systems without pre-existing

formal models was advanced through the application of the anomaly detection solu-

tion to an industrial system – a machining cell at Ford. Five inconsistencies between

common academic assumptions made by this solution and industry practice for the

machining cell were identified. A resolution to each inconsistency was developed –

either a required change to the logic of the machining cell or the creation of algo-

rithms to incorporate into the solution (several of which are discussed in detail in

Chapter VI). Further issues were found in the application of the anomaly detection

solution, including the inconsistency resolutions, to the Ford machining cell. These

inconsistencies can provide insight into the gap between academia and industry and

the resolutions give ideas about how to bridge at least part of that gap.

CHAPTER VI

Application of Anomaly Detection to Simulated Systems

Because of the barriers described in Section 5.4, the algorithms developed to

address some of the inconsistencies could not be tested on industrial data. As an

alternative, some simulated systems were modified to exhibit the inconsistencies that

had academic resolutions. First the background on handling multiple bit changes

(MBCs) and the decision algorithm developed for them is presented, along with

an example application to the small manufacturing cell from Chapter V. Next the

initial state inconsistency is addressed – existing work is discussed, the theory is

developed, algorithms described, and example application to the small manufacturing

cell is presented, thus completing the full application to this cell in the process.

Finally, the entire anomaly detection solution, including the academic resolutions to

inconsistencies, is applied to an abstracted, simulated version of the RFT cell, first

described in Chapter III.

6.1 Multiple Bit Change (MBC) Inconsistency

To address the multiple bit change inconsistency described in Section 5.3.2, a

heuristic decision algorithm was developed to pre-process the event logs prior to

their use for all steps of the anomaly detection solution. Prior to describing the

existing work, the algorithm, and its application, some foundation is laid. First,

115

116

recall the ideas of events, event sets, event streams, labeled event streams, and event

logs (Definitions 1, 2, 3, 11, 12), then some of these ideas will be used and/or built

upon.

Definition 25 (Combination event). A combination event eC is a finite set of events

{e1, ..., ek} 1 < k < ∞, all drawn from the same event set E, whose relative order is

not known. All possible combination events drawn from an event set E are designated

by the set EC . The events that are part of combination event eC are called its

constituent events. A multiple bit change (MBC) event is one type of combination

event where the events’ order is not known because the events occur in one scan.

Definition 26 (Basic event). A basic event e is a single event drawn from event set

E and can be a constituent event for combination events. A single bit change (SBC)

event is a type of basic event, and can be a constituent event for an MBC event.

Definition 27 (Unique events for an event log). The unique events for an event log

UΣ are the events u ∈ E ∪ EC that occur in the event log Σ.

These definitions are necessary because the original definitions related to events

assumed strings of ordered events rather than the possibility of combination events.

Due to combination events, an event can be represented in two ways, and this leads

to two corresponding representations for event streams and for event logs.

Definition 28 (Index representation of unique event, row representation of unique

event). An index representation of a unique event u ∈ UΣ is an integer between 1

and |UΣ| that corresponds to that particular unique event. A row representation

of a unique event u ∈ UΣ is a row of size (E ∩ UΣ) where each element is 1 if the

corresponding e ∈ (E ∩ UΣ) is a constituent event of u, and 0 otherwise. An index

representation of an event stream is an event stream whose events are represented

117

by indices, and a row representation of an event stream is an event stream whose

events are represented by rows. Similarly, an index representation of an event log

and a row representation of an event log are event logs whose event streams have the

corresponding representation.

For example, consider a set of unique events for an event log UΣ that has four

basic events. The index representation of u ∈ UΣ would be an integer between 1 and

the number of unique events (basic plus combination). The row representation of

u ∈ UΣ would be [1000], [0100], [0010] or [0001] if u is a basic event and otherwise,

if u is a combination event, it could be [1001] or [0111], for example, depending

on which combination events are part of UΣ. Suppose these are the only events in

the log, UΣ = {[1000], [0100], [0010], [0001], [1001], [0111]}. The index representation

is more compact and can more easily be associated to other aspects of the Petri

net formalism, such as the incidence matrix. An example event stream σ ∈ Σ in

index representation would be σ = 1 4 6 3. The row representation, however, allows

basic and combination events to be easily distinguished and the constituent events

of combination events to be easily identified. In row representation, this same event

stream σ is expressed as σ = [1000] [0001] [0111] [0010]. The unique event u5 can be

expressed either as u5 = [1001] or u5 = {u1, u4}. The set of basic events is split into

two classes.

Definition 29 (Stand-alone event, accompanying event). A stand-alone event is a

basic event that can occur on its own, whereas an accompanying event is a basic event

that only occurs as part of a combination event. Thus, E = ESA ∪ EA. A trigger

event is a stand-alone PLC bit event, and a non-trigger event is is an accompanying

PLC bit event.

118

With these definitions and associated notation, existing work and our MBC algo-

rithms can now be described.

6.1.1 Handling Combination Events in DES

Previous work has been done in discrete event systems to handle combination

events, in which they have been called simultaneous events. In [38], the vector DES

(VDES) formalism was extended to include simultaneous events and it was shown

how to create a non-deterministic controller that allows maximum concurrency in

the controlled system while still enforcing desired specifications. Supervisory control

of concurrent discrete event systems under partial observation to meet a specification

was developed in [58], with the motivation being concurrent operation of multiple

sub-systems. In both of these cases, the simultaneous events are generated by the

controller in circumstances where such simultaneity will not cause a specification to

be violated. In contrast, when describing the behavior of a system with simulta-

neous events from a PLC, it is not known whether these events are intended to be

simultaneous or sequential, and if sequential, then their proper order.

Some research related to handling simultaneous events has specifically considered

using events from PLCs. In [22], the simultaneity inherent in PLC data is discussed,

but again from the control rather than identification perspective. This work takes

the view that the scan-based nature of PLC execution makes simultaneous events

unavoidable, and thus the supervisor must be insensitive to the interleaving of events

which may occur simultaneously. Essentially, the issue of simultaneous events is

handled by assuring that they can be treated as sequential events whose order does

not matter. In contrast, the system identification in [35] and [54] assumes that the

difference between subsequent PLC messages (I/O vectors) are events, thus assuming

that each simultaneous (combination) event is a unique event instead of a sequence

119

of individual events.

This existing work illustrates the two main options of how to handle combination

(simultaneous) events from a PLC – treat each combination event as a sequence of

basic events or treat each combination event as a unique event. Each of these options,

however, has its drawbacks. If each combination event is treated as a sequence of

basic events, then the order of those events must be determined for the purpose

of modeling the system behavior. If each combination event is treated as a unique

event, then the number of events in the system’s model is much larger and may

become overly complicated. Instead of using either of these options exclusively, our

work develops a heuristic algorithm to determine which is the best option for a given

combination event.

6.1.2 MBC Algorithm

This algorithm makes a decision for each MBC event in the event log to either

leave it as a unique event or split it into its constituent SBC events (and also deter-

mine their order). For a given MBC, this decision is based on the constituent SBC

events, including the relationships among them, whether any of them do not trigger

a message, and their relationships with the events that occur just before and just

after this MBC in the given event log. This algorithm is implemented as a set of

three algorithms that are nested within one another.

The highest level algorithm, called MBC Decision Algorithm, implements this

decision-making for an event log. This algorithm takes as inputs an event log Σ

in row form and the set of non-trigger events, EA. The output of the algorithm

is Σ′, an updated version of Σ after applying the algorithm and changing to index

representation. The first step (D1.1) is to determine the unique events in the event

log UΣ and the relationships among these events, as defined in Definition 21. Next,

120

an updated event log Σ′ is created by going through each event e in each event

stream σ of the event log Σ (D1.2). If e is an SBC, then it is included in Σ′ as

is. If e is an MBC, then Algorithm 5 (Decision for Particular MBC Algorithm) is

called to determine whether e should be split, and if so, in what order, yielding σnew

which may be a single event or stream of events. After this process is completed for

every e in every σ of Σ, then the unique events are determined for the updated event

log UΣ′ (D1.3) because some MBC events in Σ may never occur in Σ′ due to being

split. Finally in Step D1.4, using UΣ′ , Σ′ is changed to index representation. This

algorithm is described in Algorithm 4.

MBC Decision Algorithm:

Given: event log Σ in row form and EA (events that do not trigger a message)

D1.1) Determine the unique events UΣ and their relationships in Σ

D1.2) Update Σ to Σ’ by making a decision for each MBC (Σ’ initialize as empty)

a. For each event stream σ in Σ, create updated stream σ’ (initialized as

empty)

i. For each event e in σ, create updated event or event sequence

1. If event is SBC (e ∈ E), then σ’ = σ’e

2. If event is MBC (e ∈ EC), call Decision For Particular

MBC Algorithm for e which will give result σnew; update

σ’ = σ’σnew

ii. Update Σ’ = { Σ’, σ’} to include σ’

D1.3) Determine the unique events UΣ’ in the updated event log Σ’

D1.4) Change Σ’ from row to index representation, using indices of UΣ’

Outputs: updated event log Σ’ in index representation

Algorithm 4: High level heuristic algorithm that decides how to split multiple bit change (MBC)
events

The middle level algorithm, called Decision For Particular MBC Algorithm, has

the main purpose of checking the number of bit changes in a given MBC, and treating

those cases appropriately. The inputs for this algorithm are an MBC event e ∈ EC ,

the events just before and just after this event in a particular event stream UΣ,

relationships among these events, and EA. The output is σnew, which may be one

or a sequence of events in which each constituent SBC of e is included exactly once,

121

either on its own or as part of an MBC event. Steps D2.1 through D2.3 are the

mutually exclusive cases of what to do if the MBC has two, three, or more than

three constituent SBC events, respectively. In D2.1 the low level Algorithm, called

Decision For Two-BC Algorithm, is called on the 2-BC (two-bit-change) event e to

produce σ2new which is set as σnew = σ2new. Step D2.2 checks whether the 3-BC

event e can be split into a 2-BC event e2BC and an SBC event eSBC , and if so, calls

Decision For Two-BC Algorithm on e2BC and combines its result σ2new with eSBC . If

it cannot be split this way, then σnew = eaebec where ea, eb and ec are the constituent

events of e and they appear in this order in UΣ. If e has more than three constituent

events, Step D2.3 splits it into its associated SBC events and their order is based

on the unique events, likewise to the case of three constituent events when they

cannot be split into a 2-BC event and an SBC event. This algorithm is described in

Algorithm 5.

The purpose of the low level algorithm, called Decision For 2-BC Algorithm, is

to make the MBC splitting decision for 2-BC events. The inputs to this algorithm

are the 2-BC itself e = {ea, eb}, the events that occur just before and just after this

2-BC event, UΣ and the relationships among its events, EA, and whether ea and eb

are in the same process. The output is σ2new, which can either be {ea, eb}, eaeb or

ebea. There are three cases based on the input. If the events have no relationship

(ea]eb), both trigger messages (ea, eb 6∈ EA) and are in the same process, then the

case is D3.1 and σ2new = {ea, eb}. If the ea and eb have a causal relationship or one

is a member of EA, then case D3.2 applies and σ2new = eaeb or ebea depending on

the direction of the causal relationship or which event is in EA. The final case, D3.3,

is if ea||eb (they can occur in either order) or are in different processes, and neither

is in EA, in which case their relationships with the previous and next events are

122

Decision For Particular MBC Algorithm:

Given: an MBC event e ∈ EC, the event just before it e-1, the event just after it e+1, the

unique events UΣ , the relationships among the events in UΣ, and the events that do not

trigger a message (EA)

D2.1) If e has two SBC events, call Decision For Two-BC Algorithm and result

σ2new from that algorithm will be the result σnew from this algorithm

D2.2) Else if e has three SBC events

a. Determine each possible 2-BC and SBC combination

b. For each such combination, check if this 2-BC exists in UΣ

c. If there exists a combination for which the 2-BC exists in UΣ

i. If (one of these) 2-BC(s) has a causal relationship with its SBC

event, then choose it; if multiple such cases, choose randomly

among these

ii. Otherwise, choose randomly among these 2-BCs in UΣ

iii. Call Decision for Two-BC Algorithm on this 2-BC event to get

σ2new, which is either the 2-BC event or its SBC events in a

particular order

iv. Result of this algorithm σnew = σ2newSBC or σnew = SBCσ2new,

depending on the relationship between the SBC and 2-BC

d. Else, σnew is the constituent SBC events in the order in which they occur in

UΣ

D2.3) Else if e has more than three SBC events, σnew is the constituent SBC events in

the order in which they occur in UΣ

Outputs: σnew, which may be one or a sequence of events up to the number of basic events

in the input event e

Algorithm 5: Middle level MBC algorithm that handles the cases of different numbers of bit-changes:
2-BC, 3-BC, >3-BC

considered to determine whether σ2new = eaeb or ebea. This algorithm is described

in Algorithm 6.

6.1.3 Application of MBC Decision Algorithms to Small Manufacturing Cell

This MBC decision algorithm is illustrated through applying it to a variation

of the small manufacturing cell described in Section 4.1 that has been altered to

include some multiple bit changes. This variation, called small MBC manufacturing

cell, differs from the original in two ways – it has an added event that does not

trigger a message, and its event streams are altered to reflect this non-trigger event

as well as allow some of the other events to occur within the same message. This

123

Decision For 2-BC Algorithm:

Given: a 2-BC event e = {ea,eb}, the event just before it e-1, the event just after it e+1, UΣ ,

the relationships among the events in UΣ, the events that do not trigger a message (EA),

and whether ea and eb are in the same process

D3.1) If the relationship between ea and eb is none, ea and eb are in the same process,

and ea, eb ∉ EA, then σ2new = e = {ea,eb}

D3.2) If ea causes eb or ea ∈ EA, σ2new = eaeb (or vice versa)

D3.3) If ea and eb can occur in either order, use their relationships among ea, eb, e-1,

and e+1 to decide whether σ2new = eaeb or σ2new = ebea

Outputs: the event or sequence of events, σ2new

Algorithm 6: Low level MBC algorithm that handles the case of 2-BC events

added event, e1, indicates when the machining of the part 1 has ended, which makes

sense that it might not trigger a message because it does not acquire nor release

any resources since the machine (resource 2) is not available again until the piece

is pushed out (associated with the event d1). Hence, EA = e1. Events g1 and d1

(getting a new part 1 and being done with a completed part 1) were set to be able

to occur in the same message. Based on these changes, events for this cell included

(in row representation): [0001001] and [1010000] where the events are expressed as

[g1,m1, d1, q1, g2, q2, e1].

The MBC Decision Algorithm was applied to a no-fault event stream consisting

of 5000 events created by this cell for use in model generation.

• Step D1.1: There are 11 unique events: all of the SBCs except that associated

with e1 and the following MBC events – {g1, e1}, {q1, e1}, {d1, e1}, {g1, d1},

and {g1, d1, e1}. The ordering relationships among these events are expressed in

Table 6.1. Note that the event e1 is included in the table even though it does

not occur in the log – it is included to highlight that its relationship with all of

the other events is] because these relationships are considered in the next step.

• Step D1.2: This log has only one stream, and this step will be demonstrated

using a few example MBC events from this stream. First consider the stream

124

σ1 = [1000000][0001001][0010000], where the middle event is an MBC. Call-

ing Algorithm 5 notes that there are two constituent SBC events (4 and 7,

or q1 and e1) and thus calls Algorithm 6. Because e1 does not trigger a mes-

sage (e1 ∈ EA), this event is handled by Step D3.2, which causes the event

to be split into the sequence of events σnew1 = [0000001][0001000] because

the non-trigger event e1 must have occurred first. Another example stream

is σ2 = [0001000][1010000][0100000], where the middle event is an MBC. Call-

ing Algorithm 5 notes that there are two constituent SBC events (1 and 3, or

g1 and d1) and thus, calls Algorithm 6. Because g1||d1, this event is handled by

Step D3.3. Looking at the previous and next events (q1 and m1, respectively),

g1 has relationship || with each of them, q1 → d1 and d1 → m1, so there is not a

preference for one order over the other, and so the MBC event is split and the

order randomly chosen.

• Step D1.3: For this updated log Σ′, the unique events UΣ′ are exactly the SBCs

(basic events) because every MBC was split.

• Step D1.4: Σ′ is changed from row representation to index representation. For

example, the two streams considered become σ1 = g1e1q1d1 and σ2 = q1g1d1m1,

respectively.

When Algorithm 4 was applied to this event stream (event log, but it has only

one stream), it created a new event stream whose unique events were all of the SBC

events and no MBC events, which is correct in this case because all of the SBC events

should stand alone and the only non-trigger event was known by the algorithm. To

evaluate the ordering decisions, the model generation algorithm (Algorithm 1) was

applied to the resulting new event stream to check if the event relationships were

correct, which requires the order of the constituent SBCs to be correct. There were

125

Table 6.1: Ordering Relations for Event Pairs in MBC Example
g1 m1 d1 q1 g2 q2 e1 g1, e1 q1, e1 d1, e1 g1, d1 g1, d1, e1

g1] || || ||] ←]] || ||]]
m1 ||] ←] →]] →] || ← ||
d1 || →] ← || ||] ← ←]]]
q1 ||] →] →]] ||] → → →
g2] ← || ←] ||]] ← ||]]
q2 →] ||] ||]] →] || → →
e1]]]]]]]]]]]]
g1, e1] ← → ||] ←]]]]]]
q1, e1 ||] →] →]]]]] →]
d1, e1 || ||] ← || ||]]]]]]
g1, d1] →] ←] ←]] ←]]]
g1, d1, e1] ||] ←] ←]]]]]]

two models generated, one of which was identical to the underlying model shown

in Figure 6.1 and the other was similar to the underlying model but had no causal

relationship between g1 and m1 because they can occur in either order and the effect

of the resource R1 on the event relationships was not considered. Thus, the MBC

Decision Algorithm worked well for this application.

(e1,d1)

e1

q2

g2

q1

d1

m1

g1

(g2,q2)

(m1,e1)

(g1,{m1,q1})

NotR2

R2

R1

Figure 6.1: Small MBC Manufacturing Cell

126

6.1.4 Limitations of Heuristic MBC Algorithms

Another application of the MBC Decision Algorithm is included in Section 6.3,

but because these are only two examples and this is a heuristic algorithm, some of

its limitations are discussed here. One of the main limitations of the MBC Decision

Algorithm is inherited from the anomaly detection solution – if there is not sufficient

data, then the event relationships may be incorrect, which would cause the algorithm

to possibly make poor MBC decisions. The other main limitations are related to cases

in which the MBC has more than two constituent events.

Making decisions for higher-bit change events in a rigorous way is much more

difficult because there are more options. For a 2-BC, there are three options – two

SBC orders, and leave as unique. In contrast, for a 3-BC there are 13 possible

options – there are six possible order of SBCs, six possible orders and combinations

for a 2-BC and a SBC, and one option to keep as a 3-BC. Thus, the limitations

of this algorithm for 3-BCs and higher are more significant. For 3-BC and higher

events, this algorithm will not keep them as unique events largely because that could

allow for too many events, but this limitation is lessened somewhat because, from

examination of the data, higher-bit changes are more uncommon. For 3-BC events,

if no two of its bits are present in the data as a 2-BC event, then this algorithm splits

the MBC and sets its order to the order in which the bits appear in a message (i.e.

bit 1, then bit 2, etc.). Also for 3-BC events, some factors that affect how the 3-BC

should be split are not considered, such as if its split into a 2-BC event and an SBC,

then only the relationship between these are considered even though the 2-BC may

be split into its SBCs.

127

6.2 Initial State Inconsistency

To resolve the initial state inconsistency described in Section 5.3.4, the problem

that had to be addressed was: given an event stream and an STPR model, deter-

mine whether there exists a sequence of states (markings) of the model such it could

produce this event stream. Note that this is only a necessary condition for a model

to produce an event stream, and not a sufficient condition. Thus, solving this prob-

lem will provide detection of some, but not necessarily all, anomalies. To address

this inconsistency, existing work is examined, some theory and a set of algorithms

are developed, and the algorithms are applied to the small manufacturing cell to

demonstrate their use.

6.2.1 Model Producing Event Stream From Unknown Initial State

It is common in academic work to assume that all observed event streams start

from the system’s initial state. For example, in the area of discrete event systems

(DES), system identification often assumes that the system’s behavior is cyclic and

that the observed event streams start and end in the initial state [35], [54], [42]. In

workflow mining, an area of computer science that also involves system identifica-

tion of some forms of DES, a similar assumption is made [60] [16]. Many industry

manufacturing systems run continuously, however, and thus observed event streams

may not start from the system’s initial state.

Several existing approaches were considered to determine whether an STPR could

have generated an event stream, starting from an unknown initial state. The set of

reachable states could be calculated [41] and then searched for sequences of valid

markings that would allow the event stream to occur. If at least one such sequence

of markings existed, then the model would accept that event stream, but if no such

128

sequence existed, then the model would not accept the event stream. A major

concern about this approach is the computational complexity of calculating the set

of reachable states, which in general takes exponential time [46], searching through

it, and keeping track of the different possible marking sequences thus far.

Another approach considered was also searching the reachable markings for a

sequence that allows the event stream, but calculating the set of reachable markings

in a simpler way. For some classes of Petri nets, the set of reachable markings can

be described concisely without reference to such a graph. One classification scheme

for Petri nets has asymmetric choice nets as its broadest category.

Definition 30 (Asymmetric choice net). An asymmetric choice net (AC net) is a

Petri net N where if two places, p1 and p2, feed the same transition (p1 • ∩p2• 6= ∅),

then either the transitions fed by p1 are a subset of those fed by p2 or vice versa

(either p1• ⊆ p2• or p2• ⊆ p1•) [46].

Another classification scheme for Petri nets has generalized trap-circuit nets (TCC

nets) and generalized siphon-circuit nets (SCC nets) as its broadest categories.

Definition 31 (TCC (SCC) nets). TCC nets (SCC nets) are Petri nets where each

directed circuit contains a trap (siphon) [46].

The type of Petri net used by this anomaly detection solution, STPRs, however,

are not AC nets because in STPRs there can be a choice between two events (p

feeds more than one transition, t1, t2 ∈ p•) where one of these events t1 acquires

a resource pR (t1 ∈ pR•) but this resource also is acquired by another transition

t3 (t1 ∈ p ∩ pR, p• 6⊆ pR and pR• 6⊆ p). STPRs also are neither TCC nets nor

SCC nets because some fundamental directed circuits, such as those for resources

used in multiple cases in a process or in multiple processes, do not contain traps but

129

instead must combine all circuits for a resource to make a trap. An STPR can be

a single TPR, which means that likewise TPRs are neither AC nets nor TCC/SCC

nets so the reachability cannot be determined for processes (TPRs) and then built

up to systems (STPRs). Reachability cannot be applied to TP s because they have

null initial marking and hence no reachable states. Thus, the existing results for

determining the set of reachable markings for Petri nets of these classes are not

applicable in solving this initial state problem.

Because the state from which an observed event stream starts is unknown, and

the set of reachable states cannot be easily described for STPRs, state estimation is

necessary. Considering that Petri nets are the modeling formalism being used, state

estimation is marking estimation. Some work in marking estimation, such as [15],

assumes the initial marking is known and estimates the current marking, where the

uncertainty is due to silent transitions. Other research estimates the initial marking

through observation of an event stream. In [26], a lower bound on the initial marking

of a Petri net is determined through observing a stream of events, where the lower

bound is updated after each observed event. In [37], the minimum initial marking

is calculated for the case in which transition labels are observed and the uncertainty

comes from the labels and transitions not having a one-to-one marking. In both of

these approaches, only a lower bound on the initial marking is determined, not a

lower bound on each of the markings associated with the event stream occurring,

and hence these approaches cannot be used directly. The idea of a lower bound on

the initial marking is used in developing the theory in the next section, although

extended to a lower bound on all the markings for producing an event stream.

130

6.2.2 Theory and Algorithms

The approach selected to address the initial state inconsistency determines a se-

quence of lower bounds on the markings necessary for the given model to have pro-

duced the given event stream and checks whether these lower bound markings violate

the upper bound marking restrictions caused by the conservation of resources. If the

lower bound of the markings does not exceed the upper bound marking restrictions,

then the model is said to accept the event stream (label as normal), whereas if the

any of these lower bounds exceeds the upper bound, the model is said to not allow

the event stream (label as anomalous) where the first event for which the upper

bound is violated is indicated as the first anomaly. If an anomaly is detected, its

effect is ignored for the remainder of the stream, and if other events that cause a

violation of the upper bound are found, they are labeled as anomalies as well and

their effect ignored. First, the theory for the lower bound markings is developed,

then for the upper bound marking restrictions based on the resources, and then their

combination.

Given an event stream and a model, a set of lower bound markings can be cal-

culated for that model to have generated that event stream. The theory builds up

from the simplest case – a single event.

Lemma VI.1. Given a Petri net and an event e that can occur in that Petri net,

the lower bound on the model’s marking prior to the event e occurring is MLB,0 = •e

and the lower bound after the event e has occurred is MLB,1 = e•.

This lemma is evident based on the definition of a Petri net. For an event e to

occur in a Petri net, it must be that M0 ≥ •e so that e is enabled. Likewise, when

an event e occurs it will necessarily produce e•, and thus M1 ≥ e•.

131

Lemma VI.2. Given a Petri net, a stream of events σ = e1...em where ei ∀i = 1...m

can occur in the Petri net, and a lower bound on the markings MLB,0...MLB,m−1 based

on events e1...em−1, the lower bound on the model’s markings when em is included

are M ′
LB,0...M

′
LB,m−1M

′
LB,m, where

• M ′
LB,i = MLB,i + NEm for i = 1...m− 1

• NEm = max((•em −MLB,m−1), 0)

• M ′
LB,m = M ′

LB,m−1 − •em + em•

and thus for i = 1...m MLB,i ≤ M ′
LB,i ≤ Mi.

NEm is the set of tokens required for em (•em) that are not explained by the

previous state (MLB,m−1), and thus need to be added to the previous lower bounds

(MLB,0...MLB,m−1) to update them (M ′
LB,0...M

′
LB,m−1) so that em could occur. The

lower bound marking for M ′
LB,m is then simply the previous marking M ′

LB,m−1 with

the effect of em included. This lemma was coded into Algorithm 7. The lower

bound markings associated with a stream of events can be calculated iteratively

using Lemma VI.1 to initialize the lower bound markings based on the first event

and Lemma VI.2 to update the lower bound markings for each subsequent event.

Calculate Lower Bound Marking Algorithm:

Given: previous lower bound (prevLB, matrix where each column is lower bound of a

marking, first column is lower bound of initial state), current event in stream (tc), the

places that feed the current event (•tc), and the places that are fed by the current event (tc•)

LB.1) Calculate the change required for tc: chngReq = •tc – prevLB(prevState)

LB.2) Calculate what is required for tc to occur that has not already been explained:

notExpln = max(chngReq, 0)

LB.3) Update prevLB by adding notExpln to each state in it

LB.4) Make newest entry to lower bound as newState = prevLB(prevState) - •tc + tc•

LB.5) Create newLB as concatenation of updated prevLB and newState

Output: new lower bound (newLB)

Algorithm 7: Algorithm that updates the lower bound markings due to a stream of events, given
the most current event

132

Next, the the upper bound marking restrictions based on the resources are deter-

mined. The general idea with these restrictions is that an STPR model has at least

some type A resources and because these resources are limited to known quantities

(i.e. number of robots in system), they impose restrictions on the markings. For

example, a single robot is used for exactly one thing at a time and this must be

reflected in the marking – a token associated with the robot is in exactly one place.

Because only a lower bound on the markings is known, this constraint which should

be an equality is instead relaxed to an inequality.

Theorem VI.3. Given an STPR (N,M0), the set of reachable markings R(N, M0)

is upper bounded by the resource constraint equations Σ
||P ||
i=1 yjM(pi) = cj for every

p-semiflow yj associated with a type A resource (j = 1...number type A resources),

where cj = Σ
||P ||
i=1 yjM0(pi).

Proof. As specified in Definition 20, in an STPR each type A resource is associated

with a p-semiflow. One important property of p-semiflows is that MT y = MT
0 y

for any given initial marking M0 and any M ∈ R(N,M0) [46]. For a given initial

marking M0 and p-semiflow yj, MT yj = Σ
||P ||
i=1 yjM(pi) and MT

0 yj is equal to constant

cj, which means that Σ
||P ||
i=1 yjM(pi) = cj. Thus from [8], the STPR N is conservative

with respect to each p-semiflow yj, and each of these p-semiflows enforces a restriction

on the marking expressed by the previous equation.

The resource conservation constraints developed in Theorem VI.3 are implemented

in Algorithm 8. Each resource constraint inequality is of the form

y1M(p1) + ... + y||P ||M(p||P ||) ≤ max (6.1)

where

max = y1M0(p1) + ... + y||P ||M0(p||P ||) (6.2)

133

where y1...y||P || are the elements of a p-semiflow y and also the coefficients of the

inequality, and y1M0(p1) + ... + y||P ||M0(p||P ||) is a constant and the maximum value

of the inequality. These lower and upper bound constraints can be used together to

create a necessary condition for a model to accept an event stream.

Calculate Resource Constraints Algorithm:

Given: model, events

RC.1) Calculate the p-invariants as solutions to A
T
y = 0

RC.2) Determine which p-invariants are p-semiflows (have all non-negative values)

RC.3) For each p-semiflow, create a resource constraint

a. Max value for constraint is p-semiflow times initial marking of model

b. Coefficients for constraint are p-semiflow

Outputs: resource constraints for model

Algorithm 8: Algorithm that calculates resource constraint equations based on the model

Theorem VI.4. If there exists a prefix σ̂ = e1...ej of an event stream σ = e1...em,

j ≤ m, for which any marking in its sequence of lower bound markings (MLB,0...MLB,j)

exceeds any of the resource conservation constraints of a model, then that model could

not have generated that event stream.

Proof. Using proof by contradiction, suppose the “if” conditions hold but the “then”

conditions do not. In other words, there is a violation of at least one of the resource

conservation constraints, but the model could generate the event stream and would

create a valid sequence of markings associated with it. Let σ be an event stream

and σ̂ be a prefix of σ such that for at least one MLB,i i = 0...j, there is at least

one p-semiflow yk such that MT
LB,iyk > MT

0 yk. Because yk is a p-semiflow, and

M0 is a marking, yk ≥ 0 and M0 ≥ 0, hence MT
0 yk ≥ 0. Similarly, MLB,i ≥ 0.

From Lemma VI.2, Mi ≥ MLB,i for each element. Combining this information

implies MT
i yk > MT

0 yk, which means that this marking is not valid, and hence a

contradiction.

This necessary condition is checked in Algorithm 9, which makes use of Algorithms

134

7 and 8. This condition is only necessary – there may be some event streams the

model cannot generate that do not violate these constraints, and thus will not be

found by checking this condition. In contrast to the other approaches, however,

this approach is valid for STPR models and avoids the computational complexity

of creating reachability graphs. The performance assessment and anomaly detection

algorithms (Algorithms 2 and 3) were updated so that whether a model accepts an

event stream is determined using Algorithm 9.

Find Anomaly in Stream Algorithm:

Given: (unlabeled) event stream (e1e2…em), resource constraints, e• and e• for each event

e for a particular model

FA.1) Initialize previous lower bound (prevLB) to [•e1 e1•]

FA.2) For each event, e2…em

a. Call Calculate Lower Bound Marking Estimate Algorithm to update

the lower bound (newLB)

b. For each resource constraint

i. Calculate the left-hand-side (LHS) of resource conservation

constraint using newLB and this resource constraint’s coefficients

ii. Compare the LHS to the max from the resource constraint and if

the LHS exceeds the max for at least one place, then anomaly

present and location recorded

c. If this event was not anomalous, then update prevLB to newLB

Outputs: whether anomaly is present, and if so, at what location(s) in event stream

Algorithm 9: Algorithm that checks whether a model accepts an event stream (does not find an
anomaly)

6.2.3 Application of Initial State Algorithms to Small Manufacturing Cell

These algorithms to address the initial state inconsistency are illustrated through

applying them to the small MBC manufacturing cell with event streams that do not

necessarily start in the initial state. A set of 35 event streams was generated from

this manufacturing cell – 25 no-fault and 10 fault – to use for performance assess-

ment and anomaly detection. These event streams start from a variety of states

and have MBCs, which are first addressed by applying the heuristic decision algo-

rithm described in Section 6.1.2. They are randomly assigned for either performance

135

assessment or anomaly detection, both of which use the Find Anomaly in Stream

Algorithm to test the necessary condition for a model to have produced the given

event stream. Thus, the Find Anomaly in Stream Algorithm will be demonstrated

for a particular stream and results of the performance assessment and subsequent

anomaly detection presented.

The sample event stream is g2q2e1q1, and we will check whether the model from

Figure 6.1 finds an anomaly in this stream. First the resource constraints must be

generated for this model using Algorithm 8.

• Step RC.1: The model’s incidence matrix is

A =

0 0 −1 0 0 0 1

0 1 0 0 0 0 −1

1 −1 0 −1 0 0 0

0 0 0 0 1 −1 0

−1 1 0 1 −1 1 0

0 −1 1 0 0 0 0

0 1 −1 0 0 0 0

where the places (rows) are ordered [P1 P2 P3 P4 R1 R2 NotR2]T and the

events (columns) are ordered as in Table 4.1, and based on that, its p-invariants

136

are

0

0

1

1

1

0

0

,

1

1

0

0

0

1

0

,

−1

−1

0

0

0

0

1

• Step RC.2: The p-semiflows are y1 = [0011100]T and y2 = [1100010]T .

• Step RC.3 for first p-semiflow: Max value for constraint is MT
0 y1 = [0000110] ∗

[0011100]T = 1, and coefficients are p-semiflow itself [0011100]T .

• Step RC.3 for second p-semiflow: Max value for constraint is MT
0 y2 = 1, and

coefficients are p-semiflow itself [1100010]T .

Next these resource constraints and g2q2e1q1 are used as input to Algorithm 9.

• Step FA.1:

prevLB = [•g2 g2•] =

0 0

0 0

0 0

0 1

1 0

0 0

0 0

• Step FA.2a for second event (q2): use Algorithm 7 to update lower bound

– Step LB.1: chngReq = •q2 − prevLB(:, 2) = [0000000]T

– Step LB.2: notExpln = max(chngReq, 0) = [0000000]T

137

– Step LB.3: updated prevLB = prevLB + notExpln

– Step LB.4: newState = prevLB(prevState) − • q2 + q2• = [0001000]T −

[0001000]T + [0000100]T = [0000100]T

– Step LB.5: newLB =

[updatedprevLB newState] =

0 0 0

0 0 0

0 0 0

0 1 0

1 0 1

0 0 0

0 0 0

• Step FA.2b for second event (q2): for each of the three states in newLB

[0000100]T , [0001000]T , [0000100]T

checked MT y1 ≤ 1 and MT y2 ≤ 1 for each state M .

• Step FA2.c for second event (q2): both constraints held, so the model may

be able produce the stream g2q2. Note that the uncertainty is because the

algorithms check a necessary, but not sufficient, condition for a model to produce

an event stream from an unknown initial state.

• Repeat Step FA.2 for third and fourth events (e1 and q1), and find that for fourth

event, the constraint for resource 1 (R1) is violated and thus the model may be

able to produce the stream g2q2e1, but cannot produce the stream g2q2e1q1.

Using Algorithm 9 to check whether a model finds an anomaly in a stream, the

updated performance assessment and anomaly detection algorithms were run. The

138

performance assessment was run on 16 event streams with a total of 312 events, yield-

ing a performance of 302 for the underlying model and 296 for the other model. The

anomaly detection was run on 19 event streams with a total of 410 events, resulting

in 100% of the event streams labeled correctly and 98% of the individual events la-

beled correctly. Having all of the event streams labeled correctly despite some events

being labeled incorrectly indicates that the incorrect event labels were associated

with identifying which event(s) were anomalous within an anomalous stream.

6.3 Results for Simulated RFT Cell

To demonstrate the use of the full anomaly detection solution, including the reso-

lutions to the inconsistences, the solution is applied to a version of the RFT cell from

Chapter IV that has been modified to have M1S and M2S as non-trigger events,

Arr1 and M1E possibly occur in the same message, Arr2 and M2E possibly oc-

cur in the same message, and event streams not necessarily start from the initial

state. A single long event stream with just under 5000 events is used for model

generation; 17 event streams, of which 4 are fault, ranging from just a few events

to almost 40 events are used for performance assessment; and 18 event streams, of

which 6 are fault, ranging from just a few events to around 30 events are used for

anomaly detection. The no-fault event streams used for performance assessment

and anomaly detection were created from longer event streams using the splitting

algorithm described in Section 5.3.5, although the labeling had to be done by hand

because the faults streams were made to have a variety of faults and thus did not

have specific symptoms to use for labeling. Thus, the separate, labeled versus con-

tinuous, unlabeled stream inconsistency was addressed. As mentioned in Chapter V,

the inconsistencies of not all resource events being observable and having an incon-

139

sistent mapping were addressed by industry rather than academia so they are not

considered here.

To implement the full anomaly detection solution required the following steps:

1. MBC Decision Algorithm for all event streams

2. Model Generation Algorithm applied to event log of no-fault event streams

3. Performance Assessment for mix of no-fault and fault streams, using necessary

condition for model accepting event stream

4. Anomaly Detection for unlabeled streams, using necessary condition for model

accepting event stream

After applying Algorithm 4, all the events were SBCs. Model generation produced

three different models for Process 1, similar models for Process 2, and one model for

Process 0, resulting in nine models of the system. The underlying model was among

the ones created and is shown in Figure 4.11. Another model created is illustrated in

Figure 6.2. This model is identical to the underlying one except it has two additional

places – P21 and P22 which connect RelU to Arr and ULS – that prevent any events

from Process 1 or Process 2 occurring. The third type of model created is similar,

but the places P21 and P22 only connects Rel1U to UL1S and Rel2U to UL2S,

respectively.

Applying performance assessment to these models yields perfect performance (328

out of 328) for all of the models. On first impression, this result seems erroneous

because clearly some of the models have unnecessary places that overly restrict the

system’s behavior. The performance assessment checks only if the necessary con-

dition is met (there exists a sequence of states in the model from which the event

stream could have been produced) and this necessary condition restricts the mark-

ing of places that represent or use resources, and these places do not. Additionally,

140

P22

P21

Rel1F

UL1E

UL1S

M1E

M1S

LPE1

Rel0

LPS1

Arr0

Rel2U

Rel2F

UL2E

UL2S

M2E

M2S

LPE2

LPS2

Arr2

Rel1U

Arr1

P9

P8

P7

P6

Empty

PalletStop

NotM2NotM1

P20

M2

P19

P18

P17

P16

P15

P14

P12

P11

P10

M1

Robot

Figure 6.2: Model created by model generation for MBC RFT cell

this necessary condition does not use the fact that all places other than type A and

type NC resources should not be initially marked. Thus, the performance assess-

ment on these incorrect models is identical to that of the underlying model because

under this necessary condition, the incorrect models could have as many tokens in

these additional places as necessary to allow the event stream to occur. Although

the necessary condition does not always distinguish between models that reflect the

underlying model of the system and those that do not, the necessary condition can

recognize the anomalies, which is the goal in this solution. Applying the anomaly

detection to these models, which have identical performance, results in 100% of the

anomaly detection event streams labeled correctly and 94% of the individual events

labeled correctly. Hence, even though some of the models do not represent the sys-

141

tem’s actual behavior, under the necessary condition used to check whether a model

accepts an event stream, these models still perform well and contribute to excellent

performance.

6.4 Conclusions

The research associated with both the anomaly detection solution developed in

Chapter IV and the academia-industry gap identified in Chapter V are advanced by

the complete resolution of two inconsistencies: (1) the string of ordered events versus

multiple bit changes, and (2) the event streams start in initial state versus other

states. The first inconsistency was resolved through the development of a heuristic

decision algorithm that makes a decision for each multiple bit change (MBC) event

about whether to split it and if so, the order of the resulting events. This decision

is made based on the relationships among the MBC’s constituent SBC events, their

relationships with the previous and next events, and other factors. The second

inconsistency was addressed by developing the theory and corresponding algorithms

for a necessary condition on an STPR model to generate a stream of events. Through

resolving these two inconsistencies, the anomaly detection solution is more easily

applied to not only the Ford machining cell but also other similar industrial systems.

Since these inconsistencies may arise in the application of other academic solutions

to other industrial systems, their resolutions can aid in these applications too.

CHAPTER VII

Conclusions and Future Work

This dissertation addressed problems inherent in many important systems that

can be described as discrete event systems. Keeping these systems functioning well

requires addressing faults that occur in them. There are two main ways to address

such faults – they can be prevented from ever occurring through verification or they

can be detected and resolved at the time at which they occur. This research devel-

oped means to address faults in event-based systems for which there is no formal,

pre-existing model. This limitation was motivated by industrial manufacturing sys-

tems for which formal models are not commonly available and may be difficult to

accurately develop, but for which unexpected downtime due to faults is very costly.

The main contributions of this research, as well as its future work, fall into two

categories – those related to verification and those related to anomaly detection.

7.1 Verification Contributions

The first contribution for verification is the identification and definition of the

input order robustness property. A procedure for verifying input order robustness was

developed for both logic controllers and networks of controllers. If a controller is input

order robust, the closed-loop system is guaranteed to be deterministic. Theory was

developed for a network of controllers using modular techniques, allowing the input

142

143

order robustness verification to be applied to large-scale systems. The application of

input order robustness verification to systems implemented in IEC 61499 illustrated

how some of the open execution semantics of the standard could be overcome if the

controller is input order robust. This a step toward different IEC 61499 tools being

used interchangeably and producing consistent results.

7.2 Anomaly Detection Contributions

An anomaly detection solution for event-based systems without pre-existing for-

mal models was developed that provides insights into anomalous behavior while only

requiring information that is likely available for industry systems. As part of this

solution, a model generation algorithm was created that expands upon the α+ al-

gorithm [16] to explicitly incorporate resources and generates variations of the α+

model that may provide for better anomaly detection performance. Theory was de-

veloped for conditions under which the model generation algorithm is guaranteed to

produce a model identical to the underlying model of the system, which provides

some surety of the model generation’s results. A variation on Petri nets that include

resources, STPRs, was defined based on removing some restrictions imposed by pre-

existing formalisms that prevent the modeling of some common behavior, such as a

task using more than one resource.

In the process of applying this anomaly detection solution to an industry system

(machining line), five inconsistencies were found between common academic assump-

tions made by the solution and the industry practice. Resolutions were developed

and implemented for each of these five inconsistencies. The inconsistency of all events

that acquire/release resources being observable versus some such events being filtered

at lower levels of data collection was addressed by our industry partner following our

144

recommendation to change the system’s logic so that these events were recorded.

Similarly, the inconsistency of having a consistent bit-meaning mapping versus an

inconsistent mapping was addressed on a case by case basis by our industry partner

changing logic and our pre-processing the data to filter out known mapping issues.

An algorithm was created that splits and labels continuous unlabeled event streams

to address the inconsistency of separate, labeled event streams versus a continuous,

unlabeled event stream, where the labeling is based on finding occurrences of symp-

toms that indicate a particular anomaly. To address the ordered stream of events

versus multiple bit changes per message inconsistency, a heuristic decision algorithm

was developed that decides how to treat each multiple-bit-change, and this algorithm

addresses two-bit-changes thoroughly. Finally, the inconsistency of each event stream

starting in the initial state versus most event streams not starting in the initial state

was addressed through developing theory for a necessary condition under which an

STPR model will generate an event stream that may not start in the initial state,

and implementing this theory in an algorithm. The heuristic decision and necessary

condition algorithms have the most significant impact on applying the anomaly de-

tection solution to industry systems because such systems often have PLCs, which

generate multiple-bit-change messages, and are not often starting in or returning to

their initial state. Additionally, because both the academic assumptions and indus-

try practice are not limited to this solution and industry system, respectively, these

inconsistencies and their resolutions can aid in the application of other solutions to

new industry systems.

145

7.3 Future Work

One direction of future work for input order robustness verification is further

developing its applicability for systems implemented in the IEC 61499 standard. An

advantage of IEC 61499 is that some commonly used function blocks can be developed

and re-used to aid in design and reduce verification, because they are verified once

and do not need to be verified each time they are used. Some such common function

blocks could be verified for input order robustness so that when they are used in

networks of controllers, they do not need to be verified each time. The verification

is applicable to only some of the execution semantics options, as described in Table

3.5, but could possibly be extended to include additional options.

Alternative approaches for achieving input order robustness is another area of

future work. Although the simulations required for the verification are automated,

determining the sets of inputs to be checked is not, as that is dependent on the

design information available. In Section 3.4.3, several approaches were mentioned

for how the system information, including the sets of inputs to be checked, can

be determined based on how the design information is structured. If a particular

approach for design information were selected, the input order robustness verification

could be more fully automated, making it easier to use without expert knowledge of

the system. Additionally, if a logic controller is found to be not input order robust,

then a method to modify the logic controller to enforce that property would mean

that the problem could not only be identified but also resolved automatically. Taking

a different perspective, instead of verifying input order robustness, the possibility

could be explored of developing conditions on a logic controller that would guarantee

input order robustness. Then these conditions could be incorporated into the design

146

so that the logic controller would be input order robust to begin with and would not

need to be verified and then potentially modified. Another related area of future

work would be to develop verification for the more restrictive property that is like

input order robustness but where the order of outputs, not just the set of outputs,

must be the same regardless of input order.

Another area of future work, already briefly mentioned in Chapter I, is extending

anomaly detection to fault detection. An anomaly is an unusual behavior whereas a

fault is an incorrect behavior. Generally, unless a system operates very poorly, faults

are also anomalies, and hence finding anomalies can find possible faults, but will also

find some anomalous, yet no-fault, behavior. One idea for such an extension is to

solicit feedback from the operator about whether detected anomalies are no-fault or

fault behavior, and incorporate this feedback to modify the models so they evolve to

reflect more no-fault behavior.

To further the goal of this anomaly detection solution being useful for industry,

an area of future work that would have more industry impact is making the solution

ready to install on a manufacturing plant’s network with an easy to understand in-

terface. Several tasks would be necessary to bring the anomaly detection solution to

this stage. Implemented in Matlab scripts, the solution has some error handling built

in, but that would need to be expanded so that less human interaction is required.

For example, single-event loops are not allowed for STPRs and in the solution’s

current implementation, if a single-event loop is found the program terminates with

some error information and a human then has to figure out why the single-event loop

occurred and what to do next. The method for interaction between the anomaly de-

tection solution and operator would need to be developed, including the format in

which information is provided to the operator, what information the operator can

147

provide to the solution (i.e., whether an anomaly was actually a fault), and which

tasks the operator can perform on the solution, such as having it re-do the offline

calculations or changing which bits the model includes. Given this operator inter-

action, the algorithms’ code would need to be packaged as an executable complete

with a GUI. The scalability of the anomaly detection solution would also need to be

further studied, beyond the example presented in Section 4.8, and improved, per-

haps through doing performance assessment on the process models and creating a

performance threshold for which process models are combined into models of the

whole system. The results of the anomaly detection solution may be significantly af-

fected by incorrectly labeled event streams used for model generation, and to a lesser

extent performance assessment, because then some faulty behavior may be treated

as normal and incorporated into the models or their performance. Means to reduce

this sensitivity to incorrect labeling could be explored, including using thresholds in

determining event relationships, i.e. a and b are only causal if ab occurs at least x

times and ba occurs fewer than y times where x is significantly larger than y.

In Sections 4.6 and 4.7, simple metrics are used to assess model performance and

detect anomalies based on models’ votes. Although these metrics were sufficient to

yield good results in the simulated systems (see Chapter VI), alternative metrics

could be explored to improve performance, particularly if there are other types of

systems for which these metrics do not yield good results. For example, the penalty

for false negatives could be different than the penalty for false positives, depending

on which incorrect labeling is more problematic. Models’ performance could instead

be based on its labeling of entire event streams, rather than of individual events

within those streams, especially because sometimes the anomaly is detected later

in the stream than where it actually occurred. Alternative voting methods could

148

include only counting the votes of the top few models or weighting their votes based

on the logarithm of their performance, so that the better performing models have a

disproportionately strong vote. Many other performance metrics could be tried from

the area of model assessment for statistical learning [29], and voting methods from

decision-making theory [56].

Although steps have been taken to reduce the computational complexity of our

anomaly detection solution, such as considering systems that can be modularly de-

composed, a formal complexity analysis could be done and the result compared to

other system identification and fault detection solutions. One of the challenges in do-

ing such an analysis is that the some factors that affect the computational complexity,

particularly of the model generation step, are difficult to quantify. For example, the

number of events in a process is assumed to be known, but how tightly connected

those events are (i.e. whether each event relates to only a few others or most of the

others) may be unknown and, even if known, hard to quantify.

The anomaly detection solution is based on certain assumptions about the system

and, implicitly, assumptions about how the solution itself should work. Relaxing

some of these assumptions and exploring their implications could be a very productive

area of future work. If the system does not have a pre-existing formal model, but some

or all of its processes do have such formal models, then the anomaly detection solution

could be modified to create models for processes that need them and only verify the

pre-existing models for processes that have them. The solution also assumes that

the no-fault behavior is modeled and faults are anomalous in comparison to this

no-fault (normal) behavior, but another option is that the solution could model fault

behavior and faults would be behavior that is consistent with these models. If there

is sufficient data (event streams) available of fault behavior to create such models,

149

they could be used instead of or in addition to the models of no-fault behavior in

order to detect possible faults.

CHAPTER VIII

Appendix: List of Acronyms

• CNC: computer numerical controlled (machine); used for drilling, milling, etc.

in manufacturing systems

• DES: discrete event systems; for general overview, see [9]

• ECA MFSM: event-condition-action modular finite state machine; type of dis-

crete event system modeling formalism; see [5]

• ECC: execution control chart for an IEC 61499 function block; see [32]

• EWF -net: enhanced workflow net; a special type of Petri net; see [31]

• EWFR-net: enhanced workflow net with resources; a special type of Petri net

that incorporates resources and is based on EWF − net; see [31]

• MEWFR-net: merged enhanced workflow net with resources; a special type of

Petri net that incorporates resources and is based on combining EWFR-nets;

see [31]

• FB: function block, two uses; 1) the primary component of IEC 61499 modeling,

see [32]; 2) part of the programmed logic in the PLCs used by Ford, see Section

5.5

• FIFO: first in first out; generally refers to type of queue

150

151

• FSM: finite state machine; a type of discrete event system modeling formalism;

see [9]

• GC: guard condition; refers to what is required for a transition to occur in IEC

61499 function block; see [32]

• IEC 61499: distributed control standard; see [32]

• IOR: input order robustness; property described and verified in Section 3.7

• MBC: multiple bit change; refers to the difference between two PLC messages or

an event; contrast with SBC; introduced in Section 5.5 and discussed in detail

in Section 6.4

• OPC: OLE process control; generally refers to OPC tags, which are like global

variables used for communication of control commands and responses in some

systems, especially manufacturing systems

• PLC: programmable logic controller

• RFID: radio frequency identification; RFID tags are used to track objects, such

as parts and pallets in a manufacturing system

• RFT: Reconfigurable Factory Testbed; small manufacturing testbed at Univer-

sity of Michigan [44]

• S2P : simple sequential process; a special type of Petri net; see [21]

• S2PR: simple sequential process with resources; a special type of Petri net that

incorporates resources and is based on S2P ; see [21]

• S3PR: system of S2PR; a special type of Petri net that incorporates resources

and is based on combining S2PRs; see [21]

• SBC: single bit change; refers to the difference between two PLC messages or

an event; contrast with MBC; introduced in Section 6.4

152

• SPSR: system of processes that interact through shared resources; see Definition

15

• STPR: system of TPR; a special type of Petri net that incorporates resources

and is based on combining TPRs and possibly TPCRs; see Definition 20

• SWF -net: structured workflow net; a special type of Petri net; see [60]

• TP: transition process; a special type of Petri net; see Definition 16

• TPCR: transition process that creates resources; a special type of Petri net that

incorporates resources; see Definition 18

• TPR: transition process with resources; a special type of Petri net that incor-

porates resources and is based on TP ; see Definition 17

• x-BC: x bits change in the same PLC scan; 1-BC is a SBC and x-BC where

x > 1 is a MBC; introduced in Section 5.5

• XML: extensible markup language; a text-based data format; for more informa-

tion, see http://en.wikipedia.org/wiki/XML

BIBLIOGRAPHY

153

154

BIBLIOGRAPHY

[1] L. V. Allen, K. M. Goh, & D. M. Tilbury. Closed-Loop Determinism for Non-Deterministic
Environments: Verification for IEC 61499 Logic Controllers. Proceedings of the 5th IEEE Con-
ference on Automation Science and Engineering, August 2009.

[2] L. V. Allen & D. M. Tilbury. Event-Based Fault Detection of Manufacturing Cell: Data Incon-
sistencies Between Academic Assumptions and Industry Practice. Proceedings of the 6th IEEE
Conference on Automation Science and Engineering, August 2010.

[3] L.V. Allen, K. M. Goh, & D. M. Tilbury. Input Order Robustness: Guaranteeing Closed-Loop
Determinism for Non-Deterministic Environments. Submitted for journal publication May
2009.

[4] L.V. Allen & D.M. Tilbury. Anomaly Detection Using Model Generation for Event-Based Sys-
tems Without a Pre-Existing Formal Model. Submitted for journal publication July 2010.

[5] E. E. Almeida, J. E. Luntz, & D. M. Tilbury. Event-condition-action systems for reconfigurable
logic control. IEEE Transactions on Automation Science and Engineering, 4: 167-181, 2007.

[6] B. A. Brandin, R. Malik, & P. Malik. Incremental Verification and Synthesis of Discrete-Event
Systems Guided by Counter Examples. IEEE Transactions on Control Systems Technology,
12:387-401, 2004.

[7] M.P. Cabasino, A. Giua, & C. Seatzu. “Identification of Petri Nets from Knowledge of Their
Language.” Discrete Event Dynamic Systems, 17: 447-474, 2007.

[8] C.G. Cassandras & S. Lafortune. Introduction to Discrete Event Systems. Massachusetts:
Kluwer Academic Publisher, 1999.

[9] C. G. Cassandras & S. Lafortune. Introduction to Discrete Event Systems – 2nd Ed. Springer,
2007.

[10] P. J. Cameron. Permutation Groups. Cambridge University Press: Cambridge, UK, 1999.

[11] G. Cengic, O. Ljungkrantz, & K. Akesson. Formal Modeling of Function Block Applications
Running in IEC 61499 Execution Runtime. 11th IEEE Conference on Emerging Technologies
and Factory Automation, 1269-1276, 2006.

[12] E. M. Clarke, O. Grumberg, & D. A. Peled. Model checking. MIT Press: Cambridge, MA,
1999.

[13] E. Clarke, O. Grumber, S. Jha, Y. Lu, & H. Veith. Progress on the State Explosion Problem
in Model Checking. In R. Wilhelm, editor, Informatics: 10 Years Back, 10 Years Ahead, vol.
2000 of Lecture Notes in Computer Science, 176-194, 2001.

[14] J.E. Cook & A.L. Wolf. “Discovering Models of Software Processes from Event-Based Data.”
ACM Transactions on Software Engineering and Methodology 7: 215-249, 1998.

155

[15] D. Corona, A. Giua, & C. Seatzu. Marking Estimation of Petri Nets with Silent Transitions.
Proceedings IEEE 43rd International Conference on Decision and Control, The Bahamas, 2004.

[16] A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, & A. J. M. M. Weijters.
“Process Mining: Extending the α-algorithm to Mine Short Loops.” Technical report: http:
//alexandria.tue.nl/repository/books/576199.pdf

[17] W. deRoever. The Need for Compositional Proof Systems: A Survey. In W. deRoever, H.
Langmaack, & A. Pnueli, editors, Compositionality: The Significant Difference: International
Symposium, COMPOS’97 vol. 1536 of Lecture Notes in Computer Science, 1-22, 1998.

[18] P. Dietrich, R. Malik, W. M. Wonham, & B. A. Brandin. Implementation Considerations
in Supervisory Control. In Synthesis and Control of Discrete Event Systems, edited by B.
Caillaud, P. Darondeau, L. Lavagno, & X. Xie, p. 185-201. Kluwer Academic Publishers, 2002.

[19] M. Dotoli, M.P. Fanti, & A. M. Mangini. Real time identification of discrete event systems
using Petri nets. Automatica 44: 1209-1291, 2008.

[20] V. Dubinin & V. Vyatkin. Towards a Formal Semantic Model of IEC 61499 Function Blocks.
INDIN ’06.

[21] J. Ezpeleta, J. M. Colom, & J. Martinez. A Petri Net Based Deadlock Prevention Policy for
Flexible Manufacturing Systems. IEEE Transactions on Robotics and Automation, 11, 173-184,
1995.

[22] M. Fabian & A. Hellgren. PLC-based Implementation of Supervisory Control of Discrete Event
Systems. Proceedings of the 37th IEEE Conference on Decision and Control, 3305-3310, 1998.

[23] FBDK tool, holobloc.com

[24] L. Ferrarini & C. Veber. Implementation approaches for the execution model of IEC 61499
applications. INDIN ’04.

[25] G. Frey & T. Hussain. Modeling Techniques for Distributed Control Systems based on the IEC
61499 Standard – Current Approaches and Open Problems. WODES ’06.

[26] A. Giua. Petri Net State Estimators Based on Event Observation. Proceedings of the 36th
Conference on Decision and Control, San Diego California, 4086-4091, 1997.

[27] C.N. Hadjicostis & G.C. Verghese. “Monitoring Discrete Event Systems Using Petri Net Em-
beddings.” Lecture Notes in Computer Science, 1639: 188-207, 1999.

[28] F. Harary, R. Z. Norman, & D. Cartwright. Chapeter 10 of Structural Models: An Introduction
to the Theory of Directed Graphs. Jon Wiley & Sons, Inc.: New York, 1965.

[29] T. Hastie, R. Tibshirani, & J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. New York, NY: Springer Science+Business Media Inc. 2001.

[30] L.E. Holloway & B.H. Krogh. Fault detection and diagnosis in manufacturing systems: a
behavioral model approach. Proceedings of Rensselaer’s Second International Conference on
Computer Integrated Manufacturing, 252-259, 1990.

[31] H. Hu, Z. Li, & A. Wang. Mining of Flexible Manufacturing System Using Work Event Logs
and Petri Nets. Lecture Notes in Computer Science, 380-387, 2006.

[32] IEC. IEC 61499-1: Function blocks part 1: Architecture International Electrotechnical Com-
mission, Tech. Rep., 2005.

[33] P. Inverardi & C. Priami. Automatic Verification of Distributed Systems: The Process Algebra
Approach. Formal Methods in System Design, 8:7-38, 1996.

156

[34] M. Khalgui. NCES-based modelling and CTL-based verification of reconfigurable embedded
control systems. Computers in Industry, 61: 198-212, 2010.

[35] S. Klein, L. Litz, & J-J. Lesage. Fault Detection of Discrete Event Systems Using an Identifi-
cation Approach. Proceedings of the 16th IFAC World Congress, 2005.

[36] R. Lewis. Modelling control systems using IEC 61499: Applying function blocks to distributed
systems. Institution of Electrical Engineers: London, UK (’01).

[37] L. Li & C. N. Hadjicostis. Minimum Initial Marking Estimation in Labeled Petri Nets. 2009
American Control Conference, St. Louis Missouri, 5000-5005, 2009.

[38] Y. Li & W. M. Wonham. Concurrent Vector Discrete-Event Systems. IEEE Transactions on
Automatic Control 40: 628-638, 1995.

[39] K. Loeis, M.B. Younis & G. Frey. Application of Symbolic and Bounded Model Checking to
the Verification of Logic Control Systems. 10th IEEE Conference on Emerging Technologies
and Factory Automation, 247-250, 2005.

[40] P. Malik. From Supervisory Control to Nonblocking Controllers for Discrete Event Systems.
PhD thesis, University of Kaiserslautern, Kaiserslautern, Germany 2003.

[41] E. W. Mayr. An Algorithm for the General Petri Net Reachability Problem. Proceedings of the
13th Annual ACM Symposium, 1981.

[42] M. E. Meda-Campana & E. Lopez-Mellado. “Incremental synthesis of Petri net models for
identification of discrete event systems.” Proceedings of the 41st IEEE Conference on Decision
and Control, 805-810, December 2002.

[43] T. Meftah, H. Gueguen, N. Bouteille, & V. Boutin. Constraint specification of the control logic
of automated manufacturing systems. 10th IEEE Conference on Emerging Technologies and
Factory Automation, 599-605, 2005.

[44] J. Moyne, J. Korsakas, & D. Tilbury. Reconfigurable Factory Testbed (RFT): A Distributed
Testbed for Reconfigurable Manufacturing Systems. Proceedings of 2004 Japan-USA Sympo-
sium on Flexible Automation, 1-8, 2004.

[45] J. R. Moyne & D. M. Tilbury. The Emergence of Industrial Control Networks for Manufacturing
Control, Diagnostics, and Safety Data. IEEE Proceedings, 95:1 29-47, 2007.

[46] T. Murata. “Petri Nets: Properties, Analysis and Applications.” Proceedings of the IEEE,
77(4): 541-580, 1989.

[47] D.N. Pandalai & L.E. Holloway. Template languages for fault monitoring of timed discrete
event processes. IEEE Transactions on Automatic Control 45, 868-882, 2000.

[48] J. T. Parrott, J. R. Moyne & D. M. Tilbury. Experimental Determination of Network Quality
of Service in Ethernet: UDP, OPC, and VPN. Proceedings of the American Control Conference,
2006.

[49] N. W. Paton, editor. Active rules in database systems. Springer: New York, NY, 1999.

[50] C. Piguet. Logic Synthesis of Race-Free Asynchronous CMOS Circuits. IEEE Journal of Solid-
State Circuits, 26:371-380, 1991.

[51] P. J. G. Ramadge & W. M. Wonham. The Control of Discrete Event Systems. Proceedings of
the IEEE, 77:81-98, 1989.

[52] J. Richardsson & M. Fabian. Modeling the control of a flexible manufacturing cell for automatic
verification and control program generation. International Journal of Flexible Manufacturing
Systems, 18:191-208, 2006.

157

[53] K. Rohloff & S. Lafortune. On the Computational Complexity of the Verification of Modular
Discrete-Event Systems. 41st IEEE Conference on Decision and Control, 16-21, 2002.

[54] M. Roth, J. J. Lesage, & L. Litz. “Distributed identification of concurrent discrete event
systems for fault detection purposes.” European Control Conference, August 2009.

[55] Y. Ru & C.N. Hadjicostis. Fault Diagnosis in Discrete Event Systems Modeled by Partially
Observed Petri Nets. Discrete Event Dynamic Systems, 19: 551-575, 2009.

[56] S. Russell & P. Norvig. Artificial Intelligence: A Modern Approach. New Jersey: Pearson
Education Inc., 2003, Chapter 18.

[57] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, & D.C. Tenketzis. Failure Di-
agnosis Using Discrete-Event Models. IEEE Transactions on Control Systems Technology, 4:
105-124, 1996.

[58] S. Takai & T. Ushio. Supervisory Control of a Class of Concurrent Discrete Event Systems
Under Partial Observation. Discrete Event Dynamic Systems: Theory and Applications 15:
7-32, 2005.

[59] K. Thramboulidis & G. Doukas. IEC61499 Execution Model Semantics. Innovative Algorithms
and Techniques in Automation, IET ’07.

[60] W. van der Aalst, T. Weijters, & L. Maruster. “Workflow Mining: Discovering Process Models
from Event Logs.” IEEE Transactions on Knowledge and Data Engineering, 16: 1128-1142,
2004.

[61] V. Vyatkin. IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design.
O3neida and Instrumentation Society of America (2007).

[62] Y. Wang, H. Liao, S. Reveliotis, T. Kelly, S. Mahlke, & S. Lafortune. “Gadara Nets: Modeling
and Analyzing Lock Allocation for Deadlock Avoidance in Multithreaded Software.” Joint 48th
IEEE Conference on Decision and Control, Shanghai, P. R. China, 2009.

[63] J. Webster (ed). Asynchronous Logic Design. Wiley Encylopedia of Electrical and Electronics
Engineering, John Wiley & Sons, 1999.

[64] T. Yoo & S. Lafortune. Polynomial-Time Verification of Diagnosability of Partially Observed
Discrete-Event Systems. IEEE Transactions on Automatic Control, 47: 1491-1495, 2002.

[65] K. Zhou, J. C. Doyle, & K. Glover. Robust and Optimal Control. Prentice Hall: Upper Saddle
River, New Jersey (1996).

