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ABSTRACT

This thesis is comprised of three major parts and is concerned with the theoret-

ical characterization of condensed phase systems within the framework of nonlinear

spectroscopy experiments, using both analytical models and numerical approxima-

tion schemes.

The first part focuses on the chirped-pulse mediated coherent control of elec-

tronic population transfer, and investigates the plausibility of control in the presence

of pure electronic dephasing. The molecular system is described by a same-frequency

shifted harmonic oscillator model, and population transfer was computed using split-

operator and direct diagonalization schemes. Dephasing effects were incorporated

using a stochastic model that is able to interpolate between the homogeneous and

inhomogeneous limits, and results with and without dephasing were compared as

functions of the linear chirp parameter and the field intensity. The numerical find-

ings were compared to and found to be consistent with several experimental studies

performed on the laser dye LD690 in liquid methanol.

The second part is a comparative study of several approximation methods used

for computing optical response functions, and is illustrated within the context of

two-dimensional electronic spectroscopy. A central theme is the development of a

benchmark model that can discriminate between different methods, and consists of

a different-frequency shifted harmonic oscillator model. Optical response spectra

were computed using four different approximation schemes, which include two dis-

xi



tinctly different second-order cumulant approximations, a Linearized Semiclassical

method, and a Forward-Backward Semiclassical method. Comparing the spectra as

a function of temperature and the oscillator frequency ratio assessed the accuracy

and robustness of the methods.

The final part concerned a method for computing ab initio optical response tensors

in the context of two-dimensional infrared spectroscopy, and was a collaborative

effort between the Geva and Kubarych groups. An excitonic Hamiltonian was used

to model the photo-active modes of a vibrational system, and a direct diagonalization

procedure, which utilized inputs from electronic structure calculations, was used to

compute the spectra. Preliminary results for the four-mode system Mn(CO)5 are

presented, and the methodology developed here was later continued and extended

by other members of the collaboration.
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CHAPTER I

Prologue

1.1 Introduction

A general way to learn about molecular systems is through their interactions with

light. In this thesis, the type of information we hope to extract about the molecular

system is divided into two broad classes, depending on whether the electromagnetic

field plays a passive or an active role. Here, “passive” describes the case where the

light is not intended to influence the dynamics nor the response of the system in a

direct manner, whereas “active” refers to the deliberate use of light to manipulate

the dynamics of the system. A useful way of illustrating these concepts is in the

context of nonlinear molecular spectroscopy, since it provides the framework for the

studies presented here.

Nonlinear spectroscopy is based on multiple interactions between induced molec-

ular electric dipole moments with the electric field component of the impinging radi-

ation fields, and experimental advances in ultrafast tunable laser sources have made

it possible to conduct measurements using carefully timed and tuned laser pulses.

In this context, a simple example of the active use of light is a so-called coherent

control experiment where a chemical reaction is steered into a pre-selected product

channel through the precise control of the time delay between two pulses. A simple

1
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example of the passive use of light is a standard absorption measurement, where a

first pulse serves to excite the molecular system which subsequently freely evolves

for some time, and then a second pulse is used to probe the resulting final state.

It should be noted, however, that any theoretical descriptions of quantum dynam-

ical systems in condensed phase environments are especially challenging compared

with their gas phase counterparts, since they necessarily involve large numbers of

different degrees of freedom (DOF), ranging from electronic to local and collective

nuclear degrees of freedom. Since the system is constantly interacting with a lo-

cal environment that changes with time, the transition frequencies of the molecule

fluctuate in time. These fluctuations will inevitably influence both the control and

response of a molecular system, and must be accounted for to some degree. To treat

the system plus its environment fully quantum mechanically is prohibitively expen-

sive due to the exponential scaling with the number of DOF. A common theoretical

approach is to separate the degrees of freedom (DOF) into both system and bath

contributions, where the influence of the bath is considered to be a source of relax-

ation in the dynamics of the system DOF. One way to account for the effect of the

bath is to perform a statistical averaging process over the bath DOF, which results

in a reduced dynamical description of the system. This is the approach taken in this

work, to various levels of sophistication.

1.1.1 Coherent Control

The earliest quantum control ideas began with the advent of the laser in the

1960’s, when it was considered an ideal tool for controlling chemical reactions. It

was thought that by tuning a monochromatic light source to match the local mode

frequency of a specific bond, that selective bond cleavage would be possible [1].

Experimentally, however, this goal remained out of reach due to the very rapid
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redistribution of intramolecular energy [2]. As laser technologies improved, new types

of control schemes based on using the coherence properties of light to manipulate

wave function interferences became possible. Such schemes are known as coherent

control.

In the 1980’s, two key coherent control paradigms emerged, one in the frequency

domain and another in the time domain [3, 4]. The frequency domain approach,

proposed by theoreticians Brumer and Shapiro [5, 6], was based on the principle

of quantum interference between two independent pathways leading to the same

final result. In this approach, the molecule is irradiated simultaneously with two

continuous wave laser beams at different wavelengths. It was found that constructive

and destructive interferences of the wave function could be selectively controlled by

varying the relative phase of the two beams. Another scenario, formulated in the time

domain and proposed by Tannor, Kosloff and Rice [7], was based on optimizing the

time delay between two sequential femtosecond pulses1. Assuming the bandwidth of

the first (pump) pulse is wide enough to cover multiple vibrational states, it creates

a vibrational wave packet on the excited state potential energy surface. Since the

wavepacket formed on the excited surface is not an eigenfunction of the Hamiltonian

for that surface, it propagates in time. At a carefully chosen later time the second

(dump) pulse returns the wave packet to a different region on the ground state

surface [8].

Both of the above control schemes are based on the optimization of a limited

number of parameters, the phase difference between the lasers in the former and

the time delay between the pulses in the latter, and were reasonably successful for

small molecules in the gas phase [9–12]. However, for the study of complex systems,
1The Tannor-Kosloff-Rice scheme is general enough to accommodate multiple pulses. The discussion is restricted

to two pulses and a single time delay for clarity.
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such as those with many coupled degrees of freedom and in the condensed phase, the

relative phases and time delays described above become insufficient as control pa-

rameters [1]. A more general type of control became possible with the seminal work

of Judson and Rabitz [13], who proposed an optimal control theory [8, 14, 15], that

the laser pulse itself should be treated as a parameter and tailored temporally and

spectrally to each problem [16]. The algorithm, known as a closed-loop genetic algo-

rithm (GA) [17], forms an ultrashort pulse, uses experimental data as feedback, and

iteratively improves the applied field to find the optimal solution given the experi-

mental constraints. An advantage of this method, when compared with theory-based

field-design methods that calculate the quantum dynamics as part of the optimiza-

tion scheme [8, 18, 19], is that knowledge of the full molecular Hamiltonian is no

longer required. Instead, the apparatus works as an input-output device capable of

measuring directly the action of the field upon the sample [13]. While the use of

GAs proved a substantial advancement in coherent control, a disadvantage is that

they do not necessarily lead to an understanding of the underlying physics [20].

As pulse-shaping technologies continued to improve with the introduction of de-

vices such as acousto-optical [21] and liquid crystal modulators [22], the field of

coherent control was further enhanced by combining shaped pulses with closed-loop

GA methods, especially for studies carried out in the condensed phase [4]. The

theoretical analysis of such condensed phase experiments is substantially more dif-

ficult compared with gas phase experiments, since solution phase experiments are

strongly influenced by relaxation processes whereas gas phase dynamics can usually

be treated within a relaxation-free framework [23]. The dephasing present in the

condensed phase reflects the system’s interaction with the surrounding solvent, and

it disrupts the coherences that coherent control aims to establish. Thus several the-
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oretical studies have focused on analyzing the influence of a solvent on the quantum

dynamics of a solute, and determining the conditions under which control is possible.

1.1.2 Multidimensional Spectroscopy

Multidimensional electronic and infrared spectroscopies have been established in

recent years as two powerful classes of techniques that are used to study fundamental

problems in chemistry, biology and physics. This is largely due to the fact that they

possess resolution features that are impossible to achieve with linear spectra [24–

27]. More specifically, by correlating electronic or vibrational transition dipoles in

two- or three-dimensions, features that would have been congested in the linear

spectrum often manifest themselves as off-diagonal peaks which are related to the

underlying molecular interaction mechanisms [28–31]. These methods are capable

of providing information on molecular structure and dynamics, electronic and vi-

brational couplings, and energy transfer, and have been applied to a wide range of

problems including protein structure and folding, vibrational solvation and relax-

ation dynamics, energy transfer in photosynthetic proteins, and carrier dynamics in

semiconductors [31–35].

The most common applications of multidimensional infrared and electronic spec-

troscopies are the two-dimensional versions, referred to as 2DIR and 2DE, respec-

tively. Although the interpretation of the 2D spectra is problem specific, the two

techniques have many features in common such as using nearly identical sequences of

femtosecond pulses and transforming the collected data in the same way [24]. How-

ever, there are significant differences in the implementation schemes of the 2DIR and

2DE versions, since achieving the required phase stability of visible lasers is much

more difficult than that of infrared lasers [36–38].

The basic pulse sequence for a 2D experiment is shown in Figure 1.1, where
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Figure 1.1: A 2D experiment with pulse sequence E1, E2 and E3, which stimulates the emission of
the third-order signal field E(3)

sig. The signal is a function of three time delays, (t1, t2, t3), where t1
is the time delay between the first and second pulses (evolution), t2 is the delay between the second
and third pulses (evolution), and t3 is the time delay between the third pulse and detection.

(E1, E2, E3) are the three incident fields, with associated wave vectors (k1,k2,k3)

and time delays (t1, t2, t3). The sequence of pulses stimulates the emission of a

third-order signal field E(3)
sig , which is detected in the background-free rephasing and

non-rephasing directions defined by kr = −k1 + k2 + k3 and knr = k1 − k2 + k3.

If heterodyne detected by a fully characterized local oscillator field, the amplitude

and phase of the signal can be reconstructed [39]. Then, Fourier transforming with

respect to t1 and t3 produces the frequency axes ω1 and ω3 of the 2D spectrum

(i.e., frequency correlation map), respectively, which may be studied as a function

of the waiting time t2. The diagonal peaks in the spectrum (|ω1| = ω3) resemble the

linear absorption, while the off-diagonal peaks (|ω1| (= ω3) generally reveal couplings

between different transitions [27, 40].

1.2 Model Systems

To model a molecular system subjected to excitation by a laser field, we consider

an overall Hamiltonian of the general form

Ĥ = ĤM + Ĥint (1.1)

where ĤM is the molecular (field-free) Hamiltonian and Ĥint is a light-matter inter-

action term. The system and radiation field are assumed to interact through a dipole
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coupling of the form

Ĥint = −
−→
µ̂ (Q̂) ·−→E (t), (1.2)

where
−→
µ̂ is the induced transition dipole moment, Q̂ is the set of nuclear coordinates,

and
−→E (t) is the classical electric field. The form of the molecular Hamiltonian ĤM

is application specific, and will be discussed in terms of electronic and vibrational

spectroscopies in §1.2.1 and §1.2.2, respectively.

1.2.1 Two-State Model for Electronic Spectroscopy

For the electronic spectroscopy applications presented in chapter 2 and chapter

3, we focus on a single transition between two electronic states, {|g〉 , |e〉}, where g

and e denote the ground and first excited states, respectively, and each is coupled to

a corresponding nuclear motion Ĥg/e. Due to the fact that the nuclei are nearly

three orders of magnitude heavier than the electrons, we make the usual Born-

Oppenheimer assumption that electronic excitation occurs on a timescale that is

rapid enough to exclude any substantial rearrangement in the nuclear geometry [41].

These considerations lead to the following molecular (field-free) Hamiltonian

ĤM = Ĥg |g〉 〈g| +
(
Ĥe + !ω0

eg

)
|e〉 〈e| . (1.3)

Here, Ĥg/e = T (P̂) + Vg/e(Q̂) are the adiabatic Hamiltonians, where T (P̂) is the

kinetic energy, Vg/e(Q̂) is the Born-Oppenheimer potential surface corresponding to

electronic configuration g/e, {Q̂, P̂} are the set of nuclear coordinates and momenta,

and !ω0
eg is the 0 → 0 transition frequency between the lowest vibrational level

on the ground electronic potential and that of the excited electronic potential (see

Figure 1.2). It should be noted that (1.3) only accounts for laser-induced couplings

between the potentials. i.e., all non-adiabatic surface couplings are ignored2. This
2The inclusion of non-adiabatic couplings is possible by adding additional terms to ĤM , or by choosing an

alternative electronic basis [41].
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assumption is justified provided population relaxation is slow relative to dephasing,

which is often the case in condensed phase systems.

Throughout this work, the following simplifications and assumptions are made

regarding the molecular Hamiltonian:

• For the sake of simplicity, this thesis focuses on a system with a single photo-

inactive DOF, whose coordinate and momentum operators are given by Q̂ and

P̂ respectively3.

• The electronic configuration has no effect on the shape of the nuclear potentials,

so that electronic excitation results only in a displacement between their minima

by an amount Qd [43, 44]. By further assuming that the nuclear motion is purely

harmonic with characteristic frequency ωg/e, the Born-Oppenheimer potentials

are modeled as quadratic functions of the nuclear coodinate:

Vg(Q̂) =
1

2
mω2

gQ̂
2 (1.4)

Ve(Q̂) =
1

2
mω2

e

(
Q̂ + Qd

)2

It should be noted that the “bare” transition frequency ω0
eg in (1.3) is not the same

as the vertical transition frequency ωver = ω0
eg + 1

2!ω2
eQ

2
d, due to the relative shift

between the potential minima.

The transition dipole moment coupling the two electronic states is given by

µ̂ = µ̂ge |g〉 〈e| + µ̂eg |e〉 〈g| , (1.5)

and two points should be noted regarding its form:

• The Condon approximation has been made by assuming that the dipole moment

is independent of the molecular displacement µ(Q̂) ≈ µ̂.
3The extension to the case of multiple photo-inactive DOFs is straightforward[42].
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Figure 1.2: Schematic of the two-state model. ω0
eg and ωver are the 0 − 0 and vertical transition

frequencies, respectively. Ve/g is the Born-Oppenheimer potential associated with the e/g electronic
state, and Qd is displacement between the minima. Each surface has associated vibrational states
labeled by {|n, g/e〉} for n = 0, 1, 2, . . ..

• µ̂ is a scalar since there is only a single electronic transition (which results in

optical response functions in the context of chapter 3).

It will prove useful in chapters 2 and 3 to express the transition dipole in terms

of a vibronic state basis. To this end, we first note that the vibrational (harmonic

oscillator) eigenstates {j} associated with a given electronic potential V̂g/e obey the

following closure and orthogonality conditions

∑

j

|j〉 〈j| = 1; 〈j|j′〉 = δj,j′ (1.6)

and, when inserted into (1.5), leads to

µ̂ = µ̂ge

∑

gj,ek

|g, j〉 〈gj|ek〉 〈e, k| + µ̂eg

∑

gj,ek

|e, k〉 〈ek|gj〉 〈g, j| . (1.7)

The states {|ζ, l〉 = |ζ〉 |l〉} (ζ = g, e) are the vibronic eigenstates of Ĥg/e which obey

Ĥg/e |ζ, l〉 = εζ,l |ζ, l〉 (1.8)

〈ζ, l|ζ ′, l′〉 = δζ,ζ′δl,l′

where {εζ,l} are the corresponding vibronic energy levels. Here, the index gj labels

vibrational states on the ground electronic surface, while the index ek labels vibra-
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tional states on the excited electronic surface. A similar convention will be used

where appropriate in chapters 2 and 3.

Finally, the overlaps 〈gj|ek〉 are between eigenstates of different potentials, so

that

〈gj|ek〉 ≡ Sgj,ek (= 0. (1.9)

The {Sgj,ek} are the Franck-Condon (F-C) factors, where Sek,gj = S∗gj,ek. For the

same frequency shifted harmonic oscillator model considered here, the F-C factors

assume a closed-form expression (see Appendix C)4

Sj,k =
1√
j!

1√
k!

exp
(
−mω

4! Q2
d

)



j∑

n=0




j

n




(
−

√
mω

2! Qd

)j−n
dn

dλn

(
λk

)




λ=
√

mω
2! Qd

1.2.2 Multistate Model for Vibrational Spectroscopy

For the vibrational spectroscopy application presented in chapter 4, the system

consists of many vibrational states whose energy levels are assumed to be organized

into bands as in Figure 4.2. The field-free Hamiltonian for such a system may be

characterized by an excitonic Hamiltonian of the form

ĤM =
∑

j

(!ω10 + ε1j) |1j〉 〈1j| +
∑

k

(!ω20 + ε2k) |2k〉 〈2k| + . . . (1.11)

where the zero of energy is defined to coincide with the ground state |00〉 and “. . .”

indicates the third and higher bands above the ground state which are not explicitly

shown in the Figure. Here, {|1j〉} and {|2k〉} are the first and second band of states,

respectively, above the ground state. The ground state “band” consists of only a

single, non-degenerate state. The energies {ε1j} and {ε2k} within each band are

measured relative to their respective lower band edges (see Figure 1.3), and ω10, ω20

4For more complicated potentials, a numerical evaluation of the F-C factors would be required.
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Figure 1.3: Schematic energy level diagram for a multi-state system with eigenstates and energy
levels {|mj〉 , εmj}. The index m = 0, 1, 2, . . . labels the band, where m = 0 corresponds to the
ground state, and j = 0, 1, 2, . . . labels the state within a given band.

and ω21 are the transition frequencies between the ground state and those lower band

edges.

In contrast to the single electronic transition considered in §1.2.1, there are now

multiple vibrational transitions between states within different bands. However,

vibrational selection rules restrict the transitions to those between states which differ

by a single quantum of energy. This leads to a transition dipole operator of the form

−→µ =
∑

j

[−→µ 00,1j |00〉 〈1j| +−→µ 1j,00 |1j〉 〈00|] +
∑

j,k

[−→µ 1j,2k |1j〉 〈2k| +−→µ 2k,1j |2k〉 〈1j|] + . . .

(1.12)

where the indices j and k label states within first and second bands above the ground

state, respectively. Thus the first set of terms
∑

j [. . .] represents transitions between

the ground state and the first band of states, while the second set of terms
∑

j,k [. . .]

represents transitions between the first and second bands of states.

Two points should be noted regarding the transition dipole operator:

• The Condon approximation in this context amounts to assuming that the {−→µ αi,βj}
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in (1.12) are constant vectors

• The fact that −→µ is a vector implies that the multiple allowed transitions have

associated directionalities. Consequently, the response of the system requires

an optical response tensor formalism.

1.3 Overview

This thesis is comprised of three major parts and is concerned with the theoret-

ical characterization of condensed phase systems within the framework of nonlinear

spectroscopy experiments, using both analytical models and numerical approxima-

tion schemes.

Chapter 2 focuses on assessing the robustness of a coherent control process in the

presence of pure electronic dephasing, by examining the role of dephasing under dif-

ferent conditions. The motivation originated with a series of experiments performed

by the Sension group on the laser dye molecule LD690 in liquid solution. More specif-

ically, those experiments and others were able to clearly establish that the control of

electronic population transfer in LD690 in solution was possible via phase-shaped or

“chirped” laser pulses. The efficiency of the transfer was sensitively dependent on

both the magnitude and sign of the linear chirp, and also to the pulse intensity. In

our theoretical study, the molecular system was described by a two-electronic state

model, where each state was coupled to a harmonic potential of the same shape,

and the interaction with light was via an electronic dipole interaction. The effects

of environmental fluctuations were accounted for by a stochastic model that is able

to interpolate between the homogeneous and inhomogenous limits. In the first part

of the study, the excited state populations was computed as a function of both the

linear chirp parameter and the field intensity without any dephasing. The second
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part of the study focused on varying both the amplitude and relaxation rate of the

environmental fluctuations, to understand how they affect the transfer efficiency.

Chapter 3 illustrates the development of a benchmark model that can be used

to make a systematic comparison of various quantum dynamical approximation

schemes. The benchmark model is a two-electronic state model similar to that used

in chapter 2, only the electronic states are coupled to harmonic potentials of dif-

ferent shapes. The aim was to choose the simplest possible benchmark model for

which both an exact solution was known and that could distinguish between the

different approximations. Linear and nonlinear response functions in the context of

a 2D experiment were computed using four different approximation schemes, and

compared as functions of temperature and parameters of the two-state model. The

four schemes consisted of two distinctly different second-order cumulant approxima-

tions and two semiclassical approximations. The emphasis of this chapter is to assess

the accuracy and robustness of the approximations under different conditions, and

not on the reproduction of optical spectra for a specific system. Environmental ef-

fects were accounted for phenomenologically in the context of Redfield theory in the

homogeneous limit, but were not the focus of this study.

Finally, chapter 4 introduces a method for computing the optical response in the

context of a 2DIR experiment, where the inputs are obtained from ab initio elec-

tronic structure calculations. This work was a collaborative effort between the Geva

and Kubarych groups, and the specific responsibilities of each member of the collab-

oration are clearly delineated in §4.1. In this case, the reduced system description is

given by an excitonic Hamiltonian which accounts for only a few vibrational modes

of interest. In contrast to the previous chapters where there was only a single elec-

tronic transition dipole moment, the multistate system considered in this chapter
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involves multiple direction-specific transitions and leads to a considerably more com-

plex calculation of the nonlinear response. The ultimate goal was to development

the necessary framework needed to study a metal carbonyl compound containing ten

coupled CO vibrations. As a first step, the general framework was established and

applied to a smaller compound containing five CO groups. Environmental effects

were accounted for in the same way as in chapter 3, and were not the focus of this

study. The main results presented in this chapter are preliminary in nature, but were

foundational to further studies performed by other members in the collaboration.



CHAPTER II

Coherent Control of Population Transfer in the Presence of
Dephasing

2.1 Introduction

As discussed in Chapter 1, the theoretical study of condensed phase coherent con-

trol is particularly challenging due to environmentally induced relaxation processes.

An interesting class of problems which lends itself to the study of the interplay be-

tween dephasing and control is the use of phase-modulated femtosecond pulses to

control population transfer of molecules in liquid solution. An example of phase

modulation is creating a pulse with a time-dependent frequency, or “chirp”, which

imposes a specific temporal ordering of its frequency components such that different

components reach the sample at different times. The parameters which characterize

the chirp serve as delicate and sensitive control parameters in the sense that tuning

them results in the ability to coherently superpose eigenstates to give constructive

or destructive interferences that may maximize or minimize population transfer [4].

For example, a number of studies involving systems that are well described by

two-electronic states [44–48] found that the sign of the chirp can be used to con-

trol population transfer. In the case of a linear chirp, the laser phase is a linear

function of time (see Eqn. (2.2)) whose sign determines the temporal ordering of

the pulse frequency components: for positive chirp, the low frequency components

15
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reach the sample before the high frequency components whereas for negative chirp

the order is reversed. The fact that positively chirped pulses were able to trans-

fer more population than negatively chirped pulses has often been explained as a

pump-dump process [49–51]. More specifically, the chirped pulse is described as a

single-pulse version of the “pump-dump” scheme of Tannor and Rice described in

§1.1.1. Further details regarding the single-pulse version are discussed in §2.6.1.

Since we are interested in control in a condensed phase environment, electronic

dephasing effects cannot be ignored. The aim of this work is to understand the

efficiency and robustness of chirped-pulse mediated population transfer in a two-

electronic state system as a function of the laser intensity and linear chirp, in the

presence of pure electronic dephasing. We focus on this type of relaxation mechanism

since it is assumed to be dominant in condensed phase systems. Importantly, we

choose to model the dephasing by a method that is able to interpolate smoothly

between the limits of fast and slow fluctuations of the electronic transition frequency

(i.e., the limits of homogeneous and inhomogeneous broadening, respectively). In

this context, several related theoretical studies of the control of population transfer

should be mentioned, the majority of which are based on quantum master equation

(QME) approaches with dephasing added in various ways. For example, Mishima

et al. [52] and Cao et al. [20] have both studied chirped-pulse control using the

same shifted oscillator as that presented in this work. They, too, considered only

pure dephasing, but included it in different ways and in the context of a quantum

master equation (QME) approach. In the former case, dephasing was incorporated by

solving a stochastic Liouville equation and introducing phenomenological dephasing

rate constants, while in the latter case it was introduced as a random stochastic

phase at the wave function level. However, both cases considered only the limit of
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homogeneous broadening where the fluctuations in the transition frequency are small

compared with the relaxation rate, making it possible to characterize the dephasing

by a single parameter T2. This scenario corresponds to a special case of the model

for dephasing presented in §2.5; the precise connection will be addressed in §2.6. A

separate master equation approach applied to a similar shifted oscillator model was

put forth by Fainberg and Gorbunov [53], who also studied dissipation effects on

population transfer. However, their focus was on modeling solvation effects leading

to vibrational dephasing, where environmental effects were included as a diffusion on

each electronic potential energy surface. While their work contained many interesting

results, it neglected electronic dephasing and as such has no direct comparison with

our model.

In addition to chirped-pulse control, other studies involving population transfer

via stimulated Raman adiabatic passage (STIRAP) in the presence of dephasing

have been carried out. Of particular relevance to the work presented here was that

by Demirplak and Rice [54], who solved a stochastic Schrödinger equation (SSE).

The dephasing was characterized by a Gaussian Markovian model1 that is able to

interpolate between the inhomogeneous and homogeneous limits. This is possible

since the fluctuations are characterized in terms of two parameters, the correlation

time τc and amplitude σ of the fluctuations. To our knowledge, no studies have

applied such a Gaussian Markovian and SSE approach to population transfer by way

of chirped pulses, which is the focus of the work presented here.

2.2 Chirped Laser Pulses and Control Parameters

Since the control experiments of interest utilize high power laser pulses (∼ 107−109

W/cm2 [45]), quantization of the electric field is unnecessary and the classical de-
1Similar to the Kubo theory of lineshapes.
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scription E(t) = 1
2 [E(t) + E∗(t)] = ,E(t) suffices. Further, to good approximation

we may assume that the field wavelength is much larger than any molecular dimen-

sions of interest, and ignore the spatial dependence of the field. To model a laser

pulse, we assume it has a smooth envelope and is well characterized by

E(t) = E0 exp

[
− t2

2τ 2

]
exp [−iφ(t)] , (2.1)

where E0 is a complex amplitude, τ is the pulse duration, and φ(t) is a time-

dependent phase. The product |E0| exp
[
− t2

2τ2

]
is known as the “pulse envelope”,

and will be referred to as such throughout the remaining discussion.

To characterize the chirp of the laser pulse, the phase φ(t) is expanded in a Taylor

series

φ(t) = φ0 + ω0t +
1

2
αt2 +

1

3!
βt3 + ... (2.2)

where φ0 is a physically irrelevant phase constant2, ω0 is the pulse central frequency,

and the coefficients α and β are chirp parameters. The instantaneous frequency

ωinst(t) ≡ dφ(t)
dt is the rate of phase advance. If the series in (2.2) is truncated at

second order, then the rate of phase advance is a quadratic function of time and the

rate of phase advance is linear in time ωinst(t) ∝ t. The parameter α, whose sign will

be crucial to the analyses presented later in this chapter, is referred to as the linear

temporal chirp. It should be noted, however, that although the results presented here

incorporate only linear chirp effects, the methodology presented is general enough to

allow the inclusion of higher order chirp if desired. (2.2)

To facilitate a frequency domain analysis more in line with experiments, the field

in (2.1) may be Fourier transformed to give

Ẽ(ω) = Ẽ0 exp

[
−(ω − ω0)2

2Γ2

]
exp

[
iα′

(ω − ω0)2

2

]
, (2.4)

2In fact, if E(t) is chosen as input, then the argument of the complex amplitude Arg{E0} may be included with
φ0 and subsequently ignored since its presence does not affect populations.
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where Γ and α′ are the bandwidth and linear spectral chirp, respectively. We take

Γ to have a fixed value, since in a realistic experimental situation the spectral chirp is

usually adjusted for a fixed power spectrum P (ω) = |Ẽ(ω)|2 = |Ẽ0|2 [−(ω − ω0)2/Γ2] [20].

The addition of spectral chirp to a pulse increases its duration according to

τ = τ0

√
1 + (α′Γ2)2, (2.5)

where τ0 = 1/Γ is the transform limited pulse duration (the shortest its spectral

bandwidth permits), and implies the following relations between the chirps and am-

plitudes

α = α′
Γ4

1 + (α′Γ2)2
(2.6)

Ẽ0 = E0

√
τ 2(1− iατ 2)

1 + (ατ 2)2
. (2.7)

It should also be noted that since the integrated intensity P0 = |E0|2τ is a conserved

quantity, chirping a fixed-bandwidth pulse necessarily leads to a decrease in its peak

intensity

I = I0
1√

1 + (α′Γ2)2
, (2.8)

2.3 Two-State Model in a Rotating Frame and the RWA

In this chapter, the Hamiltonian is that of the two-state model introduced in

§1.2.1 (see Eqns. (1.3)-(1.5))

Ĥ = Ĥg |g〉 〈g| +
(
Ĥe + !ω0

eg

)
|e〉 〈e|−

(
Ŵ |g〉 〈e| + Ŵ ∗ |e〉 〈g|

)
(2.9)

where Ŵ ≡ µ̂geE(t) and Ĥg/e = T (P̂ ) + Vg/e(Q̂). In this chapter, we choose the

potentials to be shifted but otherwise identical oscillators, with ωe = ωg ≡ ω, so that
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(1.4) becomes

V̂g =
1

2
mω2Q̂2 (2.10)

V̂e =
1

2
mω2

(
Q̂ + Qd

)2

In order to implement the numerical methods discussed in §2.4, it is useful to

transform the Hamiltonian to a rotating frame. Since the choice of rotating frame

is arbitrary3, we may choose a frame that is tailored to have properties which make

the transformed Hamiltonian easier to study. For the two-state model studied here,

it proves convenient to define the transformation by

Û = exp [−iω0t |e〉 〈e|] (2.11)

where ω0 is the pulse central frequency from (2.2). Following the procedure outlined

in Appendix B, (B.6) leads to the Hamiltonian in the rotated frame

H̃ = Û †ĤÛ − !ω0 |e〉 〈e|

= Ĥg |g〉 〈g| +
[
Ĥe + !

(
ω0

eg − ω0

)]
|e〉 〈e|

−
(
Ŵe−iω0t |g〉 〈e| + Ŵ ∗eiω0t |e〉 〈g|

)
. (2.12)

In addition to the appearance of the extra phase factors e±iω0t on the off-diagonals,

the transformation shifts the energy scale of the excited state potential by one photon

of energy !ω0 and effectively brings the two surfaces into resonance (or nearly so)

for some values of Q̂. By applying the rotating wave approximation (RWA) to the

off-diagonals, we can rewrite H̃ in a form which is more computationally convenient.
3Provided the transformation is unitary, which ensures norm conservation of the overall wave function.
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For the case of linear chirp, the upper off-diagonal term, for example, becomes

Ŵe−iω0t =
1

2
µ̂ge (E(t) + E∗(t)) e−iω0t

=
1

2
µ̂gee

−t2/2τ2 (
E0e

−iφ(t) + E∗
0e

iφ(t)
)
e−iω0t

≈ 1

2
µ̂geE0e

−t2/2τ2
e−iαt2/2. (2.13)

The last line follows from dropping all terms oscillating at 2ω0 compared with those

oscillating at ω0, since the rapidly oscillating terms would average to zero and thus

have no effect on results presented here. Further, since the frequency domain field

serves as a program input, it is advantageous in terms of algorithm implementation

to recognize that the off-diagonals can be written as the inverse Fourier transform

with respect to with respect to (ω − ω0) of the frequency domain field in (2.4) so

that

E0e
−t2/2τ2

e−iαt2/2 = F−1Ẽ(ω). (2.14)

Thus the rotating frame Hamiltonian becomes

H̃ = Ĥg |g〉 〈g| +
[
Ĥe + ∆

]
|e〉 〈e|

−
(
W̃ (t) |g〉 〈e| + W̃ ∗(t) |e〉 〈g|

)
(2.15)

where W̃ (t) ≡ F−1Ẽ(ω). Since the laser central frequency is assumed to be on reso-

nance with the vertical transition frequency ωver ≈ ω0, ∆ ≡ !
(
ω0

eg − ω0

)
= − 1

2!ω2Q2
d

is the so-called Huang-Rhys factor. This particular form for H̃ is advantageous from

a number of standpoints:

• An expression containing the frequency domain field is favorable since the re-

quired inputs become the bandwidth Γ and the spectral chirp α′, both of which

are parameters typically used in spectroscopic experiments. In addition, it ren-

ders the inclusion of higher order spectral chirp straightforward by eliminating
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the need to compute time-domain fields directly for input, which may be difficult

or impossible beyond the linear chirp regime.

• The introduction of the parameter ∆ eliminates the need for ωver and ω0 as

separate inputs. In addition, the definition of ∆ could easily be modified to

include detuning effects if desired.

2.4 Quantum Mechanical Calculations for Population Transfer

Time-dependent quantum mechanical methods are based on the solution of the

time-dependent Schrödinger equation (TDSE)

i!∂Ψ̃(t)

∂t
= H̃Ψ̃(t). (2.16)

In the case where the dynamics is governed by the Hamiltonian in (2.15), the TDSE

describing evolution on two coupled surfaces assumes a 2× 2 matrix form

i! ∂

∂t




ψ̃g(t)

ψ̃e(t)



 =




Ĥg −W̃ (t)

−W̃ ∗(t) Ĥe + ∆








ψ̃g(t)

ψ̃e(t)



 . (2.17)

where ψ̃g/e is the projection of the wave function onto the g/e electronic surface. The

population on the g/e electronic surface4, is then simply the integral over the square

of the probability amplitude

pg/e (t) =

∫ ∣∣∣ψ̃g/e (Q, t)
∣∣∣
2

dQ =

∫ ∣∣ψg/e (Q, t)
∣∣2 dQ. (2.18)

Probability conservation, which is equivalent to norm conservation of the overall

wave function Ψ̃(t), then requires that the total population at any time must sum to

unity

pg (t) + pe (t) = 1. (2.19)

4Synonymous with the probability for the molecule to be in the g/e electronic state.
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It should be noted that (2.18) implies that the populations are invariant under the

transformation to the rotating frame. Consequently, it is not necessary to transform

back to the original frame since the excited state population is the desired quantity

in this study.

To initiate our simulations, we assume that prior to the arrival of the pulse,

the molecular system is in the ground vibrational level of ground electronic state

with no amplitude in the excited state: pg = 1, pe = 0. After some time, the

pulse envelope becomes appreciable and electronic excitation occurs, followed by an

amount of amplitude transfer between electronic states. When the pulse envelope

is nearly zero, the transfer process ceases and the populations return to constant

values. All population maps presented in this chapter refer to the populations after

the pulse.

Below, two different computational frameworks for solving the TDSE are pre-

sented, where a key difference between them is the choice of representation. In the

Fourier Grid Method, the quantum dynamics are captured by discretizing a wave

packet and propagating it on a set of lattice points [41]. Importantly, grid methods

contain the Franck-Condon overlap factors, which play an imperative role in under-

standing the efficiency of population transfer, implicitly. Thus grid methods can be

particularly advantageous for problems with more complicated potentials where the

computation of the vibrational eigenstates, and hence the F-C overlaps, becomes

difficult. In contrast to grid methods is the Energy Eigenstate method, where the

wave function is expanded in a basis of eigenstates of the Born-Oppenheimer poten-

tials with time-dependent coefficients. In this case, the F-C factors appear as explicit

inputs, which have a simple closed-form expression for the shifted oscillator model

presented in §2.3. Thus the energy representation facilitates an understanding of
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population transfer in terms of the interplay between the F-C factors and laser pulse

characteristics such as intensity and chirp.

2.4.1 Wavepacket Propagation via Fourier Grid Methods

The first numerical method of solution for the TDSE is one in which the calcula-

tions are performed in a representation based on the time evolution of wave packets.

This representation will herein be referred to as the grid representation. The key

advantage of such methods is that they avoid explicit diagonalization [7]. We be-

gin with a general discussion of Fourier grid methods, followed by a more detailed

discussion of how to adapt such methods to study population transfer processes in

molecules using chirped laser pulses.

Due to the fundamentally nonlocal character of quantum mechanical (QM) sys-

tems, a major computational difficulty arises in how to construct a discrete Hilbert

space that can faithfully represent both the state of the system and the operators

associated with physical observables. As it turns out, this Hilbert space is intimately

connected with the QM representation of phase space and has important implications

in terms of numerical accuracy and efficiency [55]. A common approach is to repre-

sent the wave function and operators pointwise on a grid, along with an interpolation

scheme for finding the values between grid points. In Fourier methods [56], a set of

complex exponentials are selected for use as interpolating functions, which have the

desirable properties of being both global and orthogonal. Further, the interpolation

is performed by way of an orthogonal collocation method, which results in a highly

accurate representation possessing exponential convergence properties [55]. For ex-

ample, to represent the wave function, we choose the basis of interpolating functions



25

as

exp (2πikxj/L) , k = −(N/2− 1), . . . , 0, . . . , N (2.20)

where L is range of the spatial dimension and N is the number of equally spaced

sampling points xj = (j − 1)∆x. The wave function is then constructed as a linear

combination of the interpolating functions

Ψ(xj) ≈
N/2∑

k=−(N/2−1)

ck exp (2πikxj/L) , (2.21)

where k = p/! is the wavevector and the Fourier expansion coefficients ck are inter-

preted as the amplitudes of the momentum space wave functions. To estimate the

minimum volume such a Fourier representation covers in phase space, we multiply

spatial range L by the range in momentum extending from −pmax to +pmax to give

a volume of 2pmaxL. On the other hand, it is well known that any discrete repre-

sentation of phase space in QM requires that each point occupy a minimum volume

equal to Planck’s constant h [55], so that a grid of N points is has a volume of Nh.

Putting together these estimates for the minimum volume V = hkmaxL/π = Nh

leads to the Whittaker−Nyquist−Kotelnikov−Shannon sampling theorem [57–59]

kmax = π/∆x. (2.22)

This theorem is of paramount significance since it implies that interpolation between

sampling points may be carried out to any level of accuracy, and in turn guarantees an

accurate representation of the wave function. Another notable advantage of Fourier

methods is that they utilize a Fast Fourier Transform (FFT) algorithm [60–62], which

results in O(N log N) scaling properties.

With the above formalism in place, we must next consider how to numerically

propagate wave functions on a grid. We begin with the general solution to the



26

TDSE (see Appendix E)

Ψ̃(t) = Û(t, t0)Ψ̃(t0) = T̂ exp

[
− i

!

∫ t

t0

H̃(t′) dt′
]

Ψ̃(t0) (2.23)

where Û(t, t0) and T̂ are the time-evolution and time-ordering operators, respectively.

Direct numerical implementation of this formula is hindered by the facts that H̃

appears in an exponential and the construction of T̂ is often cumbersome.

To circumvent the time-ordering difficulty5, our strategy is to discretize the evo-

lution time interval into N points separated by ∆t = t/N , and assume that H̃ does

not change appreciably within a given segment so that the time ordering in (2.23)

may be ignored. This leads to a simpler evolution operator for each time step

Û ((n + 1)∆t, n∆t) ≈ exp

(
− i

!H̃∆t

)
(2.24)

as well as a factorization of the overall evolution operator

Û(t) ≈
N−1∏

n=0

Û ((n + 1)∆t, n∆t) . (2.25)

To derive the basic formula underlying the split-operator propagation scheme, we

assume that H̃ is free from any coordinate-momentum coupling terms and decompose

it into a sum of two two terms H̃ = T (P̂ ) + V(Q̂), where the first is a function only

of the momentum and the second is a function only of the coordinate6.

Applying the Baker-Hausdorff formula to (2.24) leads to

e−
i
!

eH∆t = eT̄ · eV̄ · e−
1
2 [T̄ ,V̄]+O(∆t3) (2.26)

where T̄ ≡ − i
!T (P̂ )∆t and V̄ ≡ − i

!V(Q̂)∆t. It can be shown [55] that by neglecting

the last factor in (2.26), the expression

e−
i
!

eH∆t ≈ eT̄ · eV̄ = eT̄ /2 · eV̄ · eT̄ /2 (2.27)

5The difficulty of having eH appearing in an exponential is addressed later in this sub-section.
6V(Q̂) contains both the potential energies from the molecular Hamiltonian and the dipole coupling terms.
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contains errors O(∆t3). The errors can be minimized by choosing ∆t sufficiently

small such that it is both a fraction of the smallest timescale inherent to the physical

problem and achieves converged results with respect to the population transfer maps

presented in §2.6.

The utility of this splitting is manifest in that each of the propagators appearing

on the right side of (2.27) may be performed in a local representation where they are

diagonal. Operating with such local operators on a wave function, then, amounts

to a simple multiplication by a complex number and a substantial gain in computa-

tional efficiency. The propagation of the wave function by a single time step can be

summarized as follows (momentum space and k−space are used interchangeably):

1. Fourier transform the coordinate space Ψ(Q, t = 0) to k space

2. Multiply pointwise by the diagonal matrix exp
(
−i P 2

2m
∆t
2!

)

3. Inverse Fourier transform Ψ(P ) back to coordinate space

4. Multiply pointwise by the diagonal matrix exp
(
−iV(Q)∆t

!
)

5. Fourier transform to k space

6. Multiply pointwise by the diagonal matrix exp
(
−i P 2

2m
∆t
2!

)

7. Inverse Fourier transform to coordinate space

It should be noted that although each propagation step requires multiple calls to an

FFT routine, the favorable O(N log N) scaling of such routines does not compromise

the gain in efficiency described above.

To adapt this methodology to the model Hamiltonian H̃ introduced in (2.15), we

write the overall wave function as a linear combination of wave packets on the two

electronic surfaces,

Ψ̃(Q, t) = ψ̃g |g〉+ ψ̃e |e〉 (2.28)
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The states ψ̃g/e(Q, t) are the vibrational wave packets on the ground and excited

potential surfaces V̂g/e, and are composed of a superposition of eigenstates of Ĥg/e.

For brevity, the Q dependence will be suppressed in what follows. For the case of

two electronic states considered here, the propagator in (2.27) becomes

exp



−
i∆t

!




Ĥg −W̃

−W̃ ∗ Ĥe + ∆







 =

exp



− i∆t
2!




T̂ 0

0 T̂







 exp



− i∆t
!




V̂g −W̃

−W̃ ∗ V̂e + ∆







 exp



− i∆t
2!




T̂ 0

0 T̂







 .(2.29)

Note that for a spatial grid {Q1, . . . , QN} and its associated Fourier (k space) grid

{k1, . . . , kN}, each of the operators T̂ , V̂g/e and W̃ are diagonal in a local representa-

tion. e.g., V̂g/e is diagonal in coordinate space while T̂ is diagonal in k space:

V̂g/e =





Vg/e(Q1) 0 . . . 0

0 Vg/e(Q2) . . . 0

...
...

. . .
...

0 0 . . . Vg/e(QN)





, T̂ =





T (k1) 0 . . . 0

0 T (k2) . . . 0

...
...

. . .
...

0 0 . . . T (kN)





(2.30)

Since it involves the exponentiation of a diagonal matrix, the kinetic energy propa-

gator appearing in (2.29) is also diagonal. Consequently, only storage of the diagonal

elements exp
(
− i∆t

2! T (kj)
)
, j = 1, N is required, and the kinetic energy propagation

reduces to a simple point-wise multiplication on the wave function. The potential

energy propagator, however, contains the exponential of a matrix that is not di-

agonal but consists of four diagonal blocks. This block structure makes the matrix

exponential amenable to the formal diagonalization procedure7 outlined in Appendix
7Expanding the matrix exponential in a power series for small ∆t is possible, but would compromise accuracy [41].
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A. Thus the matrix exponential may be recast as simple and more computationally

efficient product of matrices:

exp



−i
∆t

!




V̂g −W̃

−W̃ ∗ V̂e + ∆







 =

exp
[
−i∆t

4!V+

]
1̂




cos β + i sin β

2r V− iµge sin β
r W̃

iµge sin β
r W̃ ∗ cos β − i sin β

2r V−



 (2.31)

where V± ≡
(
V̂e + ∆

)
± V̂g, r = 1

2

√
V 2
− + 4|W̃ |2 and β ≡ rt

2!. It should be noted

that the block structure described above, where each block is diagonal, is a direct

consequence of working in a spatial representation. Consequently, the same proce-

dure for rewriting the matrix exponential cannot be used when working in an energy

eigenstate basis, as described in the next section.

2.4.2 Energy Representation

An alternative method by which to solve the TDSE is to find an expression for

the overall propagator e−i eHt/! in a vibronic basis of states. This basis was introduced

in §1.2.1, where it was shown how the Franck-Condon (F-C) factors, Sj,k arise. Fol-

lowing an analogous procedure leads to the rotating frame Hamiltonian expressed in

the vibronic basis

H̃ =

Ng∑

j=0

εg,j |g, j〉 〈g, j| +
Ne∑

k=0

(εe,k + ∆) |e, k〉 〈e, k|

−
Ng∑

j=0

Ne∑

k=0

(
W̃Sj,k |g, j〉 〈e, k| + W̃ ∗S∗j,k |e, k〉 〈g, j|

)
(2.32)

where Ng/e is an integer related to the number of vibrational states on a given

electronic surface to consider when constructing a finite representation of H̃. In

practice, few states play a role in population transfer, due to the modulation of

the transition frequencies by the F-C factors. For simplicity, we assume that an
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equal number of states on each surface are involved in the population transfer, so

that Ne = Ng. To assign a value to Ne, we first identify the excited vibronic state

which lies nearest to the vertical transition, and add a band of vibrational states

symmetrically around it. The width of the band is sensitively dependent upon the

displacement Qd, and the correct choice is dictated by convergence of the excited

state population maps. We choose to measure the energy levels
{
εg/e,l

}
relative

to the ground state of the g/e electronic surface, so that in the case of harmonic

potentials, εg/e,l = l!ω. The appearance of the F-C factors as explicit inputs in

(2.32) is one of the main advantages of working in the energy representation, as it

helps elucidate their importance in the population transfer process, in addition to

chirp parameters and field intensity.

It should be noted that the magnitude of Sj,k depends on the displacement Qd

of the oscillator minima, and is closely linked to which terms in (2.32) contribute

appreciably to H̃. In general, higher lying vibrational states on the excited state

potential become important for increasing values of Qd, since larger displacements

result in a larger vertical transition frequency.

In order to form the propagator in the vibronic basis, we must exponentiate the
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matrix

H̃ =





εg,0 0 0 · · · W̃S00 W̃S01 W̃S02 · · ·

0 εg,1 0 · · · W̃S10 W̃S11 W̃S12 · · ·

0 0 εg,2 · · · W̃S20 W̃S21 W̃S22 · · ·
...

...
...

. . .
...

...
...

...

W̃ ∗S∗00 W̃ ∗S∗01 W̃ ∗S∗02 · · · εe,0 + ∆ 0 0 · · ·

W̃ ∗S∗10 W̃ ∗S∗11 W̃ ∗S∗12 · · · 0 εe,1+∆ 0 · · ·

W̃ ∗S∗20 W̃ ∗S∗21 W̃ ∗S∗22 · · · 0 0 εe,2 + ∆ · · ·
...

...
... · · · ...

...
...

. . .





(2.33)

which has a block form similar to the potential energy propagator in (2.29), except

the off-diagaonal blocks are no longer diagonal. As before, we wish to rewrite the

matrix exponential as a product of matrices, but in the vibronic basis a numerical

diagonalization scheme will be required.

We begin by noting that since H̃ is Hermitian, it may be diagonalized by a unitary

transformation Û according to

ÛH̃Û † = D̂ (2.34)

where the columns of Û are the eigenvectors of H̃, and D̂ is a diagonal matrix whose

elements are the eigenvalues of H̃, {λj}. Using the Hermiticity property Û Û † = 1̂

and using the results from Appendix D leads to

exp

[
−i

∆t

! H̃

]
= Û exp

[
−i

∆t

! D̂

]
Û †

= Û





e−i∆t
! λ1 0

e−i∆t
! λ2

e−i∆t
! λ3

0 . . .





Û †. (2.35)
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Thus the propagator reduces to a simple product of three matrices, drastically sim-

plifying its computation. To summarize, the propagation of the wave function by a

single time step is as follows:

1. Construct the matrix representation of H̃ according to (2.33), where the F-C

factors are obtained from (1.10).

2. Numerically diagonalize H̃ to find its eigenvectors and eigenvalues, and from

them construct the transformation Û and the diagonal matrix D̂.

3. Compute the matrix propagator in (2.35), and multiply pointwise by it to ad-

vance the wave function by a single time step

It should be noted that to achieve converged results, the integers Ng, Ne in (2.32) are

chosen to have values between 12 and 22, which results in matrices of size 44 × 44

and smaller. Despite the fact that the diagonalization must be performed at each

time step, it does not create a computational bottleneck since a highly optimized

Fortran90 LAPACK routine is used8. Thus the generalization of the above procedure

to systems that require the inclusion of a greater number of states, which in turn

leads to larger matrices, is not problematic.

2.5 Dephasing Effects

The theoretical developments presented thus far in this chapter have essentially

described the dynamics of a molecule interacting with a laser field, but have not ac-

counted for any variation in the transition frequency. Such variations are unavoidable

in real transitions, whether in the gas or condensed phase, and always involve line

broadening9. If a solvent is present, fluctuations in the solvent environment induce

fluctuations in the instantaneous transition frequency of the solute molecule [63].
8For details, see zheev.f90 available at http://www.netlib.org/lapack.
9Even if Doppler broadening was absent in the gas-phase, lifetime broadening would necessarily be present since

the time-energy uncertainty relation implies that all radiation-induced excited states have a finite lifetime.
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To account for this, we take a phenomenological approach and describe the fluc-

tuations by a stochastic model analogous to that used in the Kubo theory of line

shapes [64]. Implicit to our method of implementation is the assumption that pure

electronic dephasing is the dominant relaxation mechanism, since it is typically the

fastest relaxation process in a condensed phase environment [20, 23, 54]. This leads

to a Stochastic Schrodinger Equation (SSE), whose solution will be discussed fur-

ther below. Of key importance to the analysis of the results will be the interplay

between the different timescales associated with the chirp rate, the system oscillator

frequency, and those inherent to the stochastic model.

2.5.1 Stochastic model for fluctuating energy levels

Since fluctuations in a real system possess a characteristic timescale which may

be fast or slow compared with any inherent system timescales, the choice of com-

putational scheme requires a statistical description general enough to include it. A

particularly advantageous choice is that of exponentially correlated Gaussian noise,

also known as Ornstein-Uhlenbeck noise [65–68], which is not only straightforward

to implement computationally but is also able to capture effects to help elucidate the

conditions under which dephasing is compatible with coherent control of population

transfer.

A Gaussian noise model is characterized by the properties outlined below, and

illustrated graphically in Figure 2.1:

• The initial random values ξ(t = 0) = ξ0 are sampled from a normal distribution

of width σ

P (ξ0) =
1√

2πσ2
exp

(
− ξ2

0

2σ2

)
(2.36)
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• The first statistical moment is finite, and can always be redefined to be zero

〈ξ(t)〉 = 0 (2.37)

• The correlation function decays exponentially10 with a correlation time τc, and

depends only on the time difference |t− t′| as opposed to t, t′ individually

C(t− t′) ≡ {〈ξ(t)ξ(t′)〉} = σ2 exp (−|t− t′|/τc) (2.38)

where {. . .} denotes averaging over the initial distribution in (2.36).

From a physical standpoint, the magnitude of the frequency (energy) fluctuations

σ relative to the rate of relaxation 1/τc is of crucial importance since it gives rise to

distinct dynamical regimes.

As mentioned in the introduction, for an isolated molecule the transition frequency

is unique, and in terms of a lineshape this would lead to an infinitely narrow line.

In the presence of a solvent, however, the modulation of the transition frequency

reflects interactions with the solvent DOF, and leads to a broadening of the spectral

lines. In particular, we are interested in the following cases:

• The limit of slow fluctuations, or inhomogeneous broadening. The transition

frequency is modulated on a timescale longer than τc, which implies that the

energy fluctuations are large relative to the relaxation rate σ . 1/τc. This

represents a static inhomogeneity in the solvent environment so that each so-

lute molecule in an ensemble experiences a different but constant transition

frequency, and leads to a broad spectral line.

• The limit of fast fluctuations, or homogeneous broadening. The transition fre-

quency is modulated on a timescale shorter than τc, which implies that the en-

ergy fluctuations are small relative to the relaxation rate σ / 1/τc. In this case,
10Guaranteed by the Doob theorem for any Gaussian distribution of fluctuations that generates a Markov pro-

cess [69].
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the spectrum of solute states becomes very narrow, since each solute molecule in

an ensemble essentially experiences an averaged transition frequency, with little

variation between different solute molecules. This also leads to a broadening

of the spectral line with respect to the solvent-free case, but to a lesser extent.

Since the line is narrowed with respect to the inhomogeneously broadened case

and the fluctuations in the solvent are very rapid, this case is also referred to

as motional narrowing.
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Figure 2.1: Energy fluctuation statistics for σ = 1. Sample noise trajectories for correlation times
(a) τc = 103× τ0 and (b) τc = 10× τ0, corresponding histogram (c) with FWHM is 2

√
2 log 2σ, and

(d) the noise correlation function C(t) = 〈ξ(t)ξ(0)〉 from (2.38).

2.5.2 Solving the Stochastic Schrödinger Equation

In this section, we follow an approach based on representing the state of the system

in terms of a wave function, whose dynamics is governed by a stochastic Scrhrödinger

equation (SSE). Since electronic pure dephasing is assumed to be the main relaxation

process, the energy levels within a given electronic surface are assumed to be fixed

relative to one another, while the electronic transition frequency fluctuates randomly

in time. As such, we consider the ground electronic manifold of states to be fixed, and
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allow the entire excited state manifold to fluctuate11. In order to incorporate such

effects into the vibronic Hamiltonian of (2.33), we first generate a noise trajectory ξ(t)

and subsequently modify the energy levels that appear on the diagonal [67]. Since

only the relative fluctuations between the ground and excited surfaces are of interest,

we assume without any loss of generality that the ground state surface remains fixed

while only the excited state surface fluctuates:

εg,l → εg,l

εe,l + ∆ → εe,l + ∆+ ξ(t) (2.39)

With this modified Hamiltonian, the TDSE is solved for each trajectory as described

in §2.4.2. In order to realize the proper statistical properties of the noise, the proce-

dure must be repeated for many distinct trajectories and the results averaged [54].

2.6 Results and Discussion

2.6.1 Dephasing-Free Population Transfer

This section presents an overview of dephasing-free population transfer by chirped

pulses, in order to provide a wave packet interpretation of the transfer mechanism

and to clearly establish our choice of parameters. In addition, the dephasing-free

case will serve as an important basis for comparison for the results in §2.6.2 and

§2.6.3 which include dephasing effects. It should be noted that the aim of this work

is to understand population transfer by way of high-power chirped pulses, ignoring

population relaxation effects. This should be contrasted to low-power excitation used

to study the vibrational coherences created by chirped pulses on both the ground

and excited states [45, 49].

The main results presented in this chapter are in terms of contour maps of the
11This is without any loss of generality, since we are only interested in the relative energy difference.
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excited state population transfer as a function of two control parameters. More

specifically, the height corresponds to the amount of population remaining in the

excited electronic state after the chirped pulse has been turned off, and the axes are

the spectral chirp α′ and the frequency domain field amplitude Ẽ0. Throughout the

following discussion, these will be referred to as “population maps”.

Dimensionless variables, denoted by an overbar, are used throughout this work

such that time, length, energy, and frequency are scaled as follows: t̄ = ωt, Q̄ =
√

mω/!Q, ε̄ = ε/!ω, Ω̄ = Ω/ω, where m and ω are the reduced mass and frequency,

respectively12. From here on, the overbars are dropped and all variables are assumed

dimensionless unless given explicitly with units. Throughout this work, a relatively

small value for the horizontal displacement was fixed at Qd = 1.

The calculations were performed using the energy representation method of §2.4.2,

since the inclusion of dephasing effects was more straightforward than in the grid

method of §2.4.113. The number of vibronic states used to construct the matrix

representation of the H̃ in (2.32) was chosen by convergence of the population maps.

In practice, this means that the minimum value of Ne is found by starting with a

small Ne value and repeating the calculation for successively larger values until the

results cease to change. For the value Qd = 1 used here, Ng = Ne = 10 is sufficient

and leads to a typical matrix size of (2Ne +1)× (2Ne +1) = 22×22. The bandwidth

is fixed at Γ = 1.27, and the transform limited pulse duration is defined as τ0 = 1/Γ.

The two variable inputs are the linear spectral chirp α′ ranging from −2 to 2, and

the frequency domain field amplitude Ẽ0 ranging from 0 to 10. In our calculations,

each variable was chosen to be a vector of Nmap points. The maps are generated on

a grid of Nmap × Nmap points, and as such require N2
map separate solutions of the

12For two oscillators with different frequencies, ωe $= ωg , variables are scaled with respect to one of the oscillators.
13The dephasing-free results were verified using the grid method. Also, the grid method may be more advantageous

for other applications, such as anharmonic potentials.
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Schrödinger equation. For the maps presented in this chapter, sufficient resolution

was achieved for Nmap = 33. Since the pulse duration increases with chirp according

to (2.5), the range of α′ studied here implies a maximum pulse duration of τ = 3.4×τ0.

The time-step was chosen to be a sufficiently small fraction of the smallest timescale

relevant to the problem. In the energy representation, the relevant timescales14 are

the pulse duration τ0 and noise correlation time τc, and the time-step was chosen as

∆t = min(τ0, τc)/200. The time-step was not adapted for different values of τ , since

it did not lead to a substatial savings in the number of required time-steps. For the

dephasing-free case, τc is irrelevant and the time step is based only on τ0. The initial

state was chosen to be the ground vibrational state on the ground electronic surface.

The excited state population pe(tf ) was calculated according to (2.18), where tf is

a time after the pulse is turned off, and is long enough such that pe has reached a

constant, asymptotic value.

Figure 2.2 shows a contour map of the final excited state population as a function

Ẽ0 and α′, where red and blue correspond to 100% and 0% transfer, respectively. For
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Figure 2.2: Final excited state population contour as a function of the frequency domain field
amplitude Ẽ0 and the linear spectral chirp α′, for an isolated molecule at 0K.

a large range of field amplitudes, there is an overall transfer asymmetry between the
14In a grid representation, however, the period of the wave packet motion must also be considered.
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positively chirped (PC) and negatively chirped (NC) regions. To understand this as

well as some of the finer map features, the interplay between the F-C factors and

resonance must be considered. In general, for a vibronic transition to occur between

Figure 2.3: Franck-Condon overlap factors (absolute value) for horizontal displacement (a) Qd = 1
used for the population maps presented in this chapter, and (b) Qd = 2 for comparison. Integers
jg and je label the ten lowest vibrational eigenstates of the ground and excited electronic states,
respectively, and the height of the bar corresponds to the absolute value of the overlap.

the electronic surfaces, the laser pulse must contain a frequency resonant with it.

Although necessary, this condition alone is not sufficient due to the appearance of

the F-C factors in the off-diagonal matrix elements of the Hamiltonian, W̃Sjk. The

F-C factors thus modulate the transition amplitudes, so that small overlaps result

in ineffective population transfer between a given pair of vibronic states. It should

be noted that the F-C factors are sensitive to the choice of Qd since the number

of vibronic states with appreciable overlaps changes with its value, as illustrated in

Figure 2.3. Thus in addition to chirp sign, both intensity and F-C factors will play

a role in the interpretation of the population map, as discussed below.

For small field amplitudes Ẽ0 ! 1.0, there is no asymmetry with respect chirp

sign. This is consistent with early experimental studies, which have shown that

population transfer is independent of the chirp in the weak field limit [73, 74]. In
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addition, for Ẽ0 ! 0.5, the field is so weak that there is negligable coupling between

the vibronic states, resulting in minimal population transfer.

For field amplitudes above Ẽ0 " 1.0, there is a large plateau of nearly perfect

transfer for positive chirp but not for negative chirp. This feature may be explained

at the gross level by an intuitive intrapulse pump-dump mechanism, which is a single

pulse version of the Tannor-Rice “pump-dump” scheme referred to in §2.6.

When the leading edge of a chirped pulse is incident upon the sample, excitation

is initiated by transferring probability amplitude from the ground electronic state

Vg to the excited state Ve [53]. This results in the creation of a wave packet on the

excited state surface by coherently superposing a set of vibrational eigenstates15. The

wave packet composition is determined by the vibronic transitions that have both a

frequency that lies within the pulse bandwidth and an appreciable F-C factor. The

largest F-C factor corresponds to the vertical transition, according to the Franck-

Condon Principle. Since this wave packet is not an eigenstate of the excited surface, it

begins to evolve in time, moving from a region of higher ωhigh to lower ωlow transition

frequency (see Figure 2.4). Since the mechanism described here does not rely on the

inclusion of dissipative effects, the overall energy of the the wave packet is considered

constant. Thus higher/lower frequency in this context refer to the instantaneous

energy gap between the ground and excited potentials, based on the instantaneous

position of the wave packet center16.

If the pulse is negatively chirped as in Figure 2.4, the blue edge containing the

high frequency components leads the red edge temporally, and as such may “follow”

the motion of the wave packet by transferring amplitude sequentially back to the
15The ordering of the frequency components in the case of the pump pulse is inconsequential for purposes of

creating the initial wave packet.
16For harmonic potentials the shape of the wave packet remains unchanged as it evolves, but the width may change

if the two potentials are of different frequencies. The qualitative picture is expected to be the similar for anharmonic
potentials.
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ground state via stimulated emission [44]. As a result, the amount of amplitude
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Figure 2.4: Intrapulse “pump-dump” mechanism between two electronic states Vg and Ve. The
top part of the figure represents a negatively chirped pulse, where the high frequency components
arrive earlier in time than the low frequency ones. Population is first transferred upward by the
blue edge of the pulse, followed by time evolution of the wavepacket for a time on the order of the
pulse duration ∼ tf − tqi, and finally population is tranferred downward by the red edge of the
pulse.

in the excited state is minimized and little overall population transfer results. If,

however, the second pulse is positively chirped so that the red edge leads the blue

edge, by the time the wave packet moves into the region of ωlow, the blue edge is

incident upon it but is out of resonance. Thus more amplitude remains trapped on

the excited state, resulting in enhanced population transfer.

This description should be contrasted with the widely used “sliding wave packet”

picture presented in many earlier papers [45, 50]. There, the motion of the excited

state wave packet is described as sliding down the potential surface from higher

to lower energies, resulting in a dynamic Stokes shift. Such a picture implies that

the asymmetry in the efficiency of population transfer with respect to chirp sign is

necessarily linked to dissipative effects, even though the theoretical description is
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dissipation-free. In fact, other theoretical studies have shown a marked asymmetry

with respect to chirp sign even when dephasing was absent [46, 75].

Although the portion of the map 1 ! Ẽ0 ! 4.5 clearly shows regions where PC

is more effective than NC, it becomes much less pronounced at higher intensities.

This fact may be ascribed to the form of the off-diagonal matrix elements, W̃Sjk,

since W̃ = F−1Ẽ(ω) is a monotonically increasing function of Ẽ0. For a given

vibronic transition, then, it is possible for a strong enough field to overwhelm even

an unfavorable F-C factor17.

The central portion of the map along the α′ = 0 line also deserves attention.

All points along this line correspond to transform limited pulses, since by (2.5) zero

spectral chirp implies that τ = τ0. In this limit, the pulse duration is much shorter

than the timescale of the vibrational motion, and the displaced harmonic system

responds to the laser pulse as a two-level system [20, 43, 76]. The laser pulse acts in

a manner analogous to a π pulse for a two-level system, where population is cycled

between the two vibronic states involved in the vertical transition (or very close to

it). This behavior is clearly seen in Figure 2.2, where minima occur at equally spaced

intervals of 2π.

To further understand the analogy to Rabi flopping in a two-level system, we

consider the two points in Figure 2.2 where |Ẽ0| = 3.7 and |Ẽ0| = 4.8, both for

α′ = 0, which correspond to a maximum and minimum in the population transfer,

respectively. Prior to arrival of the pulse, all population is in the ground electronic

state, so that pg = 1, pe = 0, and the probability density is that of the jg = 0

harmonic oscillator ground state. Figures 2.5(a) and 2.5(b) show that during the

pulse both populations exhibit oscillations at the Rabi frequency µge|Ẽ0| = 3.7, and

17Provided it is not identically zero.
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Figure 2.5: Ground and excited state populations and wave function probability densities for zero
chirp α′ = 0. Left panels: The pulse envelope |E(t)| (black dashed), ground state population pg(t)
(blue) and excited state population pe(t) (red). Right panels: Probability densities of the ground
state before the pulse (black), the ground state after the pulse at tf (blue) and the excited state
after the pulse at tf (red). Lower intensity |Ẽ0| = 3.7 is shown in (a) and (b), while higher intensity
|Ẽ0| = 4.8 is shown in (c) and (d).

after the pulse most of the population is left in the excited state. This fact is reflected

in the probability densities after the pulse as well, where the excited state density

is much larger than that of the ground state, indicating a large amount of transfer.

Figures 2.5(c) and 2.5(d) also exhibit oscillations at µge|Ẽ0| = 4.8, only now the

period is such that more population is left in the ground state. The probability

densities also reflect this.

2.6.2 The Limit of Slow Fluctuations

To place the discussion in a physical context, we first consider an ensemble of so-

lute molecules embedded in a solvent. At a given instant of time each solute will have

its own transition frequency, indicative of differences in its local environment [77].

Further, the dynamics of that local environment causes the transition frequency to
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fluctuate in time. If the timescale of these fluctuations is slow enough such that

the environment looks static over the experimental timescale, then the line shape of

the ensemble will reflect the distribution of frequencies [78]. This is referred to as

the slow modulation limit, and implies that the relaxation rate of the fluctuating

solvent is much smaller than the width of the distribution of frequencies visited by

the ensemble of solutes. In terms of the Gaussian Markovian noise model introduced

in §2.5.1, this situation amounts to choosing σ . 1/τc. It is this limit which is the

focus of the first part of this study.

The problem is essentially characterized by three timescales: τc and σ−1, which

describe the solvent dynamics, and τ0, the transform-limited pulse duration. In the

inhomogeneous limit, τc is very large, so we first focus on the interplay between τ0

and σ−1. To this end, we chose the numerical equivalent of the τc →∞ limit, which

means that it was chosen large enough such that further increases had no effect on

the population map, and computed the population map for increasing values of σ.

The main results are presented in Figure 2.6.

As discussed in §2.6.1, successful control of population transfer is intimately linked

to resonance. In the presence of a solvent, the resulting shift in transition frequency

essentially acts as a detuning away from resonance, so that the laser central fre-

quency is no longer directly on resonance with the vertical transition. As a result,

the initial wave packet created on the excited state will be a different superposition

of vibrational states for each realization of the stochastic process, and consequently

will exhibit different dynamics. This will inevitably lead to variations in the popu-

lation transfer, by either enhancing or diminishing it. By averaging over many such

variations, the contributions tend to cancel one another, and as a result an overall

decrease in transfer efficiency is expected. Here, “overall” refers to the fact that, for
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Figure 2.6: Population maps showing the approach to the inhomogeneously broadened limit. The
correlation time is τc = 104 × τ0, where τ0 = 0.79 is the transform limited pulse duration, and
increasing values of the fluctuation amplitude are shown in subfigures (a)-(f). All maps were
averaged over 2000 realizations of the stochastic process to ensure convergence.



46

a given σ, there is no reason to expect some portions of the map to be more affected

by the noise than others.

Since increasing σ increases the width of the distribution from which the detunings

are sampled, we expect the overall decrease in transfer efficiency to become more

pronounced as σ increases. This is indeed seen in Figure 2.6, where less population

transfer occurs the as the limit σ . 1/τc is realized more fully (the dephasing-free

case is included for comparison). From this, we conclude that in the inhomogeneously

broadened limit, the presence of pure dephasing disrupts the ability to selectively

control population transfer for σ " 2.

To assess the validity of this result in terms of a real physical system, we com-

pared this result to a series of experiments performed on the oxazine dye LD690

in various alcohol solvents. Bardeen and Shank [79] made a systematic comparison

of the effect of different solvents on the absorption spectrum, in order character-

ize both the fast and slow solute-solvent interactions. They found that the fastest

interactions depended sensitively on the solvent18, and modeled them by a solvent

correlation function using the formalism developed by Mukamel [81]. The solvation

mode parameters, including σ ≈ 200cm−1 and τc = 20fs for LD690 in methanol,

were determined by fitting experimental data to their model in the homogenously

broadened limit.

A separate experiment by Cerullo et al. [45] looked at the chirped pulse excitation

of LD690 in methanol, and observed a strong linear chirp dependence of the popula-

tion transfer. Since Raman data for LD690 shows at least 18 intramolecular modes

coupled to the lowest electronic transition as well as several solvent modes, modeling

each mode explicitly would be cumbersome if not impossible. Consequently, they
18MD simulations suggested that solvation occurs via rapid, librational-type motions of the -OH groups [80].



47

chose an oscillator model with a single, highly displaced low-frequency (170cm−1)

mode, which was meant to qualitatively capture the multimode dynamics. Although

their model was purely quantum mechanical, their interpretation was not. The re-

sults were explained in terms of an intrapulse pump-dump mechanism similar to that

described in §2.6.1, except that it included relaxation effects (i.e., dephasing) by as-

suming that wave packet loses energy as it evolves on or “slides down” the excited

state potential surface.

To make contact with these experiments, we took our shifted oscillator model

to coincide with the low-frequency oscillator model of Cerrullo et al., and used

ω = 170cm−1 as the frequency scale to convert our parameters into dimension-

ful quantities. This leads to a pulse duration and frequency distribution width of

τ0 = 25fs and σ = 340cm−1, respectively. These values are roughly on the order

of those used by Bardeen and Shank, τ0 = 10fs and σ = 200cm−1, and leads to a

comparison of time scales: In our case, σ/2πc ≈ 0.26 × 1/τ0, whereas in their case

σ/2πc ≈ 0.12× 1/τ0.

Although the numbers are close, this leads to an apparent inconsistency. Their

dephasing-free model suggests that control is possible, whereas using the same pa-

rameters in our model does not. Seeking to resolve this was our motivation for the

second part of this study, where we chose to explore the interplay between a different

pair of timescales, namely σ−1 and τc. These results are discussed in the next section.

2.6.3 The Limit of Fast Fluctuations

In contrast to the inhomogeneously broadened (slow modulation) limit, we now

discuss the case where the solvent fluctuations are sufficiently fast such that their

dynamics play a role on an experimental timescale. In this case, the lineshape re-

flects not only the distribution of frequencies due to local solvent environments, but
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also their time-dependent fluctuations [78]. In fact, the fluctuations are so rapid

that each solute experiences only an averaged transition frequency [77]. Further-

more, the averaged frequency does not change much from solute to solute, since the

fluctuations are statistically the same for each one19. This situation leads to a line

shape that is narrower than the distribution of frequencies, a phenomenon known as

“motional narrowing” [82, 83]. Thus the limit of homogeneous broadening, implies

that the relaxation rate of the fluctuating solvent is much larger than the width of

the distribution of frequencies visited by the ensemble of solutes, and corresponds to

1/τc . σ.

The line narrowing discussed above suggests that control may still be possible un-

der certain conditions. More specifically, as the solvent fluctuations become increas-

ingly more rapid, the solute has less time to sample different transition frequencies,

and the more narrow the line becomes. In the limiting case of infinitely rapid fluctu-

ations, the line shape would be infinitely narrow20, since all solutes would experience

the same unique transition frequency. Consequently, the underlying physics would

be identical to the dephasing-free case discussed in §2.6.1, where control was possi-

ble over a wide region of the (α′, Ẽ0) parameter space. Within the context of our

model, we chose as our starting point Figure 2.6e, where σ was clearly large enough

to appreciably diminish control. The aim was to then systematically decrease the

correlation time τc and to look for evidence of the motional narrowing limit and

hence a regaining of control. The main results are displayed in Figure 2.7.

For large correlation times, 79 ! τc ! 7900, the population maps continue to

resemble the inhomogeneously broadened case (Figure 2.6e) and can be understood

in terms of the detuning arguments given in §2.6.2. For τc = 7.9, both the transfer
19This is the origin of the term ”homogeneous”.
20Assuming no additional broadening mechanisms were at play.
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Figure 2.7: Population maps showing the approach to the homogeneously broadened (motional nar-
rowing) limit. The fluctuation amplitude is σ = 2, and decreasing values of the solvent correlation
time are shown in subfigures (a)-(f). All maps were averaged over 2000 realizations of the stochastic
process to ensure convergence.
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efficiency and the asymmetry between the positive chirp and negative chirp regimes

begin to increase. For smaller values 0.79 ! τc ! 0.016, the asymmetry becomes

increasingly more pronounced as the transfer efficiency increases, clearly illustrating

the approach to the motional narrowing limit and thereby restoring the ability to

control. It should be noted that this conclusion is not limited to the choice of σ = 2.

The same effect is seen for larger values of σ as well, only τc must be decreased

to a smaller value to see the emergence of the motional narrowing limit due to the

criterion 1/τc . σ.

Since Figure 2.7d is where control appears to re-emerge, we can check the ho-

mogeneous limit σ / 1/τc and compare it with the experimentally measured values

of Bardeen and Shank. The parameters in Figure 2.7d corresponds to τc = 25fs

and σ = 200cm−1, and lead to a weak version of the homogenous limit, since

σ ≈ 0.26 × (1/τc). The experimentally values τc = 20fs and σ = 200cm−1 also

lead to a weak version of the homogeneous limit, since σ ≈ 0.12× (1/τc). Although

there were slight differences in our calculation compared to those in Cerullo, such as

a longer pulse and a less shifted oscillator, the fact that the numbers above are sim-

ilar gives gives credence to the claim that at least some control of LD690 is possible,

even in the presence of dephasing. Also, our model has shown that the ability to con-

trol improves as τc is decreased. However, whether such small values are realizable

experimentally is expected to be highly sensitive to the nature of the solute-solvent

system under study.

2.7 Summary and Future Outlook

This chapter considered the coherent control of population transfer in the presence

of pure dephasing in both the inhomogeneous and homogeneous limits. In the inho-
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mogeneously broadened limit, σ . 1/τc, it was found that the solvent-induced shift

in transition frequency acted as a detuning of the laser from the vertical transition

frequency of the chromophore. As σ was increased, the effect became pronounced

and resulted in an overall decrease in the population transfer across the (α′, Ẽ0)

parameter space. In the homogeneous limit, where σ / 1/τc, it was found that,

even for a relatively large value of σ, control could be regained provided the solvent

correlation time τc was made small enough. This result suggested that at least some

control should be possible in the presence of dephasing. Importantly, these claims

were substantiated by comparison with experimentally measured values of σ and τc

for the oxazine dye LD690.

Although the two-state model used in this study involved harmonic potentials,

the methodology developed is general and easily lends itself to several future studies.

For example, the extension to anharmonic potentials, and higher order chirp are

straightforward, and would be useful for comparing to specific experimental systems.

Also, the solvent effects could be incorporated in an alternative manner by using

data attained by molecular dynamics simulations. Finally, the response function

formalism could be extended to include an additional laser pulse, in order to study

triggered 2DE experiments.



CHAPTER III

Methods for Calculating One- and Two-Dimensional Optical
Spectra

3.1 Introduction

Multi-dimensional optical spectroscopy has established itself over the last decade

as an extremely powerful and uniquely detailed probe of the structure and dynamics

of molecular systems [25, 84–86]. It is also widely accepted that molecularly detailed

and dynamically accurate models are necessary in order to take full advantage of these

capabilities. However, accomplishing this objective requires overcoming a number of

nontrivial theoretical and computational challenges, including the development of

self-consistent dynamical methodologies for calculating spectra in complex systems

which are both feasible and reliable.

Linear and nonlinear spectra are often expressed in terms of optical response

functions (ORFs) [84]. However, a quantum-mechanically exact calculation of these

ORFs is not feasible in most cases of practical interest. One approach for bypassing

this problem is based on a cumulant expansion of the ORFs which is truncated at

second order. Within this approach, one may cast the ORFs in terms of equilibrium

frequency-frequency correlation functions which are presumably easier to calculate,

either fully quantum-mechanically, semiclassically or classically.

Mixed quantum-classical methods, which are based on treating a small subset of

52
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the degrees of freedom (DOF) quantum-mechanically while the rest are treated in

a classical-like manner, represent another attractive strategy. However, as is well

known, taking the classical limit of the ORFs with respect to a subset of DOF in a

direct manner can lead to expressions which are not unique [42, 87–92]. Several ap-

proaches have been proposed in the past for obtaining self-consistent mixed quantum-

classical expressions for the ORFs. One such approach is based on linearizing the

path-integral forward-backward action associated with the photo-inactive DOF with

respect to the difference between the forward and backward paths [42, 91, 93–97].

Within this approach, one calculates the ORFs by propagating the classical DOF

forward in time along a classical trajectory that hops between potential surfaces

corresponding to various quantum states of the chromophore, as dictated by the Li-

ouville pathway associated with each ORF [42]. In what follows, we will refer to this

approach as the linearized semiclassical (LSC) method. Another approach is based

on replacing the product of quantum propagators that appears in the expressions

for the ORFs by a single forward-backward semiclassical propagator [42, 91, 93, 98–

103]. The partial cancellation of the forward and backward actions usually results

in only mildly oscillatory integrands, which makes the calculation of the ORFs more

manageable. In what follows, we will refer to this approach as the forward-backward

initial-value-representation (FB-IVR) method.

The main goal of this chapter is to provide a meaningful benchmarking of these

methods that will aid in assessing their robustness and reliability. To this end, we

employ a benchmark model that consists of a two-state chromophore with shifted

harmonic potential surfaces. For the sake of concreteness, we will assume that the

transition between the two states is electronic. All four approximate methods can

be shown to reproduce the exact results when the frequencies of the ground and
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excited harmonic surfaces are identical. However, allowing for the ground and excited

surfaces to differ in frequency leads to a more meaningful benchmark model for which

none of the four approximate methods is exact.

We present comparisons of one- and two-dimensional spectra calculated via the

above mentioned approximate methods to the corresponding exact spectra, as a

function of various parameters, including the ratio of excited state to ground state

frequencies, temperature, the displacement of the excited state potential relative

to the ground state potential and the waiting time (see Figure 1.1) between the

coherence periods in the case of two-dimensional spectra.

The remainder of this chapter is organized as follows. In §3.2, the theory of one-

and two-dimensional optical spectra is presented, and §3.3 presents the benchmark

model and its exact solution. In §3.4 and §3.5, two semiclassical approximations

are presented, and in §3.6 and §3.7, two distinctly different types of second-order

cumulant approximations are given. The results are presented and discussed in §3.8,

and a summary and future outlook are provided in §3.9.

3.2 Theory of Optical Response for a Two-State System

3.2.1 Linear Response

The measurement of one-dimensional (1D) spectra is based on detecting the time-

resolved linear response of the system to a single impulsive pulse at time t = 0. The

signal can be shown to be proportional to the following linear ORF involving two-

point time correlation functions of the transition dipole operator [84]:

J(t1) = Tr
[
µ̂ (t1) V̂ ρ̂eq

]
(3.1)

= |µ̂ge|2Tr
[
eiĤgt1/!e−iĤet1/!ρ̂g

]
,
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where the second equality follows from the assumption that the system is in its ground

equilibrium state prior to the arrival of the pulse, and by making the Condon approx-

imation. Here, the trace is over the photo-inactive DOF, µ̂ge is the transition dipole

moment (a constant within the Condon approximation), and ρ̂g = e−βĤg/Tr
[
e−βĤg

]

is the equilibrium ground state density operator, with β = 1/kBT . The linear ab-

sorption spectrum is then defined as the frequency-domain analogue of J(t1) [84]:

I(ω1) = Re

∫ ∞

0

dt1e
−iωt1J(t1) . (3.2)

3.2.2 Nonlinear Response

The measurement of two-dimensional (2D) spectra is often based on detecting the

time-resolved nonlinear response of the system to three sequential impulsive pulses

with wave vectors ka, kb and kc. The time delay between pulses a and b is denoted

t1, while that between pulses b and c is denoted t2. The signal field is detected at a

time interval t3 after pulse c, in the background-free directions kr = −ka + kb + kc

and knr = ka − kb + kc, corresponding to the rephasing and nonrephasing signals,

respectively [86]. Assuming once again that the system is in its ground equilibrium

state prior to the arrival of the first pulse and making the Condon approximation, the

nonrephasing and rephasing signals can be shown to be proportional to the following

third-order ORFs [84]:

Rnr(t3, t2, t1) = R1(t3, t2, t1) + R4(t3, t2, t1)

Rr(t3, t2, t1) = R2(t3, t2, t1) + R3(t3, t2, t1) (3.3)
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respectively. The third-order ORFs {R1, R2, R3, R4} are explicitly given by [84]:

R1(t3, t2, t1) = Tr [µ̂ (t1) µ̂ (t2 + t1) µ̂ (t3 + t2 + t1) µ̂ (0) ρ̂eq]

= |µ̂ge|4Tr
[
eiĤgt1/!eiĤet2/!eiĤgt3/!e−iĤe(t1+t2+t3)/!ρ̂g

]

≡ |µ̂ge|4F (t1, t1 + t2, t1 + t2 + t3, 0) , (3.4)

R2(t3, t2, t1) = Tr [µ̂ (0) µ̂ (t2 + t1) µ̂ (t3 + t2 + t1) µ̂ (t1) ρ̂eq]

= µ̂ge|4Tr
[
eiĤe(t1+t2)/!eiĤgt3/!e−iĤe(t2+t3)/!e−iĤgt1/!ρ̂g

]

≡ |µ̂ge|4F (0, t1 + t2, t1 + t2 + t3, t1) , (3.5)

R3(t3, t2, t1) = Tr [µ̂ (0) µ̂ (t1) µ̂ (t3 + t2 + t1) µ̂ (t2 + t1) ρ̂eq]

= µ̂ge|4Tr
[
eiĤet1/!eiĤg(t2+t3)/!e−iĤet3/!e−iĤg(t1+t2)/!ρ̂g

]

≡ |µ̂ge|4F (0, t1, t1 + t2 + t3, t1 + t2) , (3.6)

R4(t3, t2, t1) = Tr [µ̂ (t3 + t2 + t1) µ̂ (t2 + t1) µ̂ (t1) µ̂ (0) ρ̂eq]

= µ̂ge|4Tr
[
eiĤg(t1+t2+t3)/!e−iĤet3/!e−iĤgt2/!e−iĤet1/!ρ̂g

]

≡ |µ̂ge|4F (t1 + t2 + t3, t1 + t2, t1, 0) , (3.7)

where,

F (τ1, τ2, τ3, τ4) = Tr
[
e−iĤe(τ1−τ2)/!e−iĤg(τ2−τ3)/!e−iĤe(τ3−τ4)/!e−iĤg(τ4−τ1)/!ρ̂g

]
.

(3.8)

Finally, the 2D spectrum at a given value of t2 is defined as the absorptive part

of the frequency-domain analogue, with respect to t1 and t3, of Rnr(t3, t2, t1) and

Rr(t3, t2, t1) [86, 104, 105]:

I (ω3, t2, ω1) ≡ Re

∫ ∞

0

dt1

∫ ∞

0

dt3
{
ei(ω1t1+ω3t3)Rnr(t3, t2, t1) + ei(−ω1t1+ω3t3)Rr(t3, t2, t1)

}
.(3.9)
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3.3 Benchmark Model and Exact Solutions

The main goal of this chapter is to provide a systematic analysis of the accuracy

of the approximate methods discussed above. To be meaningful, the analysis has to

be performed in the context of a benchmark model for which the exact quantum-

mechanical ORFs are known and do not coincide with any of the approximations

under discussion. A model that satisfies these requirements consists of a two-state

chromophore where the ground and excited surfaces are harmonic but differ in fre-

quency:

Vg(Q̂) =
1

2
ω2

gQ̂
2 ; Ve(Q̂) = !ωeg +

1

2
ω2

e(Q̂ + Qd)
2 . (3.10)

Here, ωg and ωe are the harmonic frequencies that correspond to the ground and

excited surfaces, respectively, Qd is the horizontal displacement of the excited state

surface relative to the ground state surface and ωeg is the minimum to minimum

transition frequency between the ground state and excited state.

We first consider the special case where ωe = ωg, which corresponds to the one-

dimensional version of the popular Brownian oscillator model [84]. As it turns out,

this case does not lend itself as a benchmark for the problem at hand. This is because

the ground and excited potential surfaces have the exact same shape and therefore

induce the same dynamics. As a result, the linear and third-order ORFs produced via

all four approximations (FB-IVR, LSC, 2OC and 2OCa) can be shown to coincide

with the exact ones when ωe = ωg, regardless of the values of the temperature and

horizontal displacement (see Appendix H). Thus, choosing a model system with ωe (=

ωg is essential for obtaining a meaningful benchmark. It is important to note that

the ORFs in the case ωe (= ωg differ from those in the case ωe = ωg in two respects:

• The transition frequency is a quadratic rather than linear function of the coor-
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dinate of the photo-inactive mode:

Û = !ωeg +
1

2
ω2

eQ
2
d + ω2

eQdQ̂ +
1

2

[
ω2

e − ω2
g

]
Q̂2 . (3.11)

• The temporal behavior of Û(t) is sensitive to whether it is governed by the

ground or excited state potential surface, since the potentials in (3.10) lead to

Q̂g(t) = cos(ωgt)Q̂ +
sin(ωgt)

mωg
P̂ (3.12)

Q̂e(t) = Qd [1− cos (ωet)] + cos(ωet)Q̂ +
sin(ωet)

mωe
P̂ .

The exact quantum-mechanical ORFs when ωe (= ωg can be obtained in a variety

of ways. Rather than working with the expressions given in §3.2.1 and 3.2.2, in this

section we instead present the derivation in terms of an equivalent quantum Liouville

space formulation. For example, the linear response function given in (3.2) is related

to a more general response function by

S(1) (t1) ≡
i

!θ (t1) {J (t1)− J∗ (t1)} =
i

!〈〈µ̂|G (t1) µ |ρ̂eq〉〉 (3.13)

where bold symbols denote superoperators in the Liouville space, and capped symbols

represent operators in the corresponding Hilbert space. Here, G and µ are the field-

free retarded Green’s function and dipole superoperators1, respectively, and µ̂ is the

Hilbert space dipole operator defined as µ̂ =
∑

j $=k µjk |j〉 〈k|. While the derivation

below focuses on the exact linear ORF, the generalization to nonlinear ORFs is

straightforward.

Using the Liouville space closure relation
∑

m,n |m, n〉〉〈〈m, n| = 1, where |m, n〉〉 ≡

|m〉 〈n| and {|j〉} are energy eigenstates, the right side of (3.13) may be written as

〈〈µ̂|G (t1) V |ρ̂eq〉〉 =
∑

j,k,m,n

〈〈µ̂|m, n〉〉〈〈m, n|G (t1) |j, k〉〉〈〈j, k|µ |ρ̂eq〉〉.

1Superoperators in Liouville space may equivalently thought of in term of their Hilbert space analogues. For
example, µ ↔ [µ̂, ·]
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(3.14)

Each of the three factors on the right side may be separately computed by way of

Liouville space algebra as detailed in Appendix J. Using the equilibrium density

operator e−βĤ/Z and expressing the Hamiltonian in its eigenstate basis as Ĥ =

∑
j εj |j〉 〈j| leads to

〈〈µ̂|m, n〉〉 = µn,m

〈〈j, k|µ |ρ̂eq〉〉 =
∑

m

e−βεm

Z
(µjmδk,m − µmkδj,m) , (3.15)

while using the fact that G (t1) = exp (−iLt1), where L is the Liouville superopera-

tor, leads to

〈〈m, n|G (t1) |j, k〉〉 = exp [−i (εj − εk) t1] δm,jδn,k.

(3.16)

Thus (3.14) becomes

〈〈µ̂|G (t1) µ |ρ̂eq〉〉 =
∑

m,n,j,k

µnme−iωj,kt1δm,jδn,k

∑

m′

e−βεm′

Z
(µjm′δk,m′ − µm′kδj,m′)

=
∑

j,k

e−βεk

Z
µkjµjk

(
e−iωj,kt1 − eiωj,kt1

)

= J (t1)− J∗ (t1) (3.17)

where ωj,k ≡ (εj − εk) /! are the transition frequencies and

J (t1) =
∑

j,k

e−βεk

Z
µkjµjk exp (−iωj,kt1) . (3.18)

To adapt this expression to the benchmark model considered here, we must specify

the form of ρ̂eq and interpret the energy eigenstates as vibronic states. The two-state

dipole operator in the vibronic basis defined in (1.7) was

µ̂ = µ̂ge

∑

gj,ek

|gj〉 〈ek|Sgj,ek + µ̂eg

∑

gj,ek

|ek〉 〈gj|Sek,gj (3.19)



60

Further, for harmonic potentials and the assumption that the initial state is the low-

est vibrational state on the ground electronic surface, the energy levels and partition

function are given by εj = !ωg (j + 1/2) and Z−1 = 2 sinh (β!ωg/2), respectively, so

that the equilibrium density operator becomes

e−βεj

Z
= 2 sinh (β!ωg/2) exp [−β!ωg (j + 1/2)]

= exp (−β!ωgj) [1− exp (−β!ωg)] (3.20)

With these considerations, the exact linear ORF has the form

J(t1) = |µ̂ge|2
∑

j0,j1

P eq
gj0Sgj0,ej1Sej1,gj0 exp [−iωej1,gj0t1] (3.21)

where P eq
gj = [1 − exp(−!ωg/kBT )] exp(−j!ωg/kBT ) is the equilibrium probability

for being in state |gj〉, and ωaj,bk = ωeg[δ(a, e)− δ(b, e)] + [(j + 1/2)ωa− (k + 1/2)ωb]

are the vibronic transition frequencies.

Similarly, the expression for the exact nonlinear ORFs may obtained from the

general response function

S(3) (t3, t2, t1) ≡
(

i

!

)3

θ (t1) θ (t2) θ (t3)
4∑

α=1

{Rα (t3, t2, t1)−R∗
α (t3, t2, t1)} (3.22)

=

(
i

!

)3

〈〈µ̂| G (t3) µG (t2) µG (t1) µ |ρeq〉〉 ,
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and leads to

R1(t3, t2, t1) = |µ̂ge|4
∑

j0,j1,j2,j3

P eq
gj0Sgj3,ej1Sej1,gj0Sgj0,ej2Sej2,gj3× (3.23)

exp [−iωej1,gj3t3 − iωej1,ej2t2 − iωej1,gj0t1]

R2(t3, t2, t1) = |µ̂ge|4
∑

j0,j1,j2,j3

P eq
gj0Sgj3,ej2Sej2,gj0Sgj0,ej1Sej1,gj3× (3.24)

exp [−iωej2,gj3t3 − iωej2,ej1t2 + iωej1,gj0t1]

R3(t3, t2, t1) = |µ̂ge|4
∑

j0,j1,j2,j3

P eq
gj0Sej3,gj0Sgj0,ej1Sej1,gj2Sgj2,ej3× (3.25)

exp [−iωej3,gj2t3 − iωgj0,gj2t2 + iωej1,gj0t1] ,

R4(t3, t2, t1) = |µ̂ge|4
∑

j0,j1,j2,j3

P eq
gj0Sej3,gj2Sgj2,ej1Sej1,gj0Sgj0,ej3× (3.26)

exp [−iωej3,gj0t3 − iωgj2,gj0t2 + iωej3,gj0t1]

It should be noted that the ORFs above are purely oscillatory. However, in

reality, these ORFs are damped by processes such as electronic dephasing. In order

to account for pure electronic dephasing, we assume that ωeg is a stochastic quantity

whose dynamics is uncorrelated with that of the photo-inactive mode and can be

described as a Gaussian process in the limit of motional narrowing. Within these

assumptions,

J(t1) → exp (−Γt1) J(t1) (3.27)

Rj(t1, t2, t3) → exp[−Γ(t1 − t3)]Rj(t1, t2, t3) (j = 2, 3)

Rj(t1, t2, t3) → exp[−Γ(t1 + t3)]Rj(t1, t2, t3) (j = 1, 4)

where Γ is the electronic dephasing rate constant. Numerical implementation of

the above ORFs is straightforward, where the number of terms included in each

summation is determined by convergence of the corresponding spectra. Convergence

was typically obtained by allowing each index to range from 0 to 10.
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The fact the dephasing rate constant enters as a multiplicative damped expo-

nential can be substantiated on more mathematical grounds, and will be illustrated

in the context of linear response for the sake of clarity. Rather than starting with

(3.13), we begin the equivalent form of the linear response of a two-state system in

(3.2)

J(t1) = |µge|2〈Û †
g (t1)Ûe(t1)〉, (3.28)

where Ûg/e(t1) = e−iĤg/et1/! are the time evolution operators corresponding to the

time-independent Hamiltonians Ĥg/e in (1.3). If the energy gap between the elec-

tronic surfaces begins to fluctuate in time due to the interaction with the environ-

ments, then ωeg → ωeg(t) = 〈ωeg〉 + δωeg(t), where 〈. . .〉 corresponds to an average

over the distribution of δωeg. Assuming the stochastic process is stationary implies

that the average 〈ωeg〉 is time independent, and without loss of generality may be

chosen as 〈ωeg〉 = 0. Thus the Hamiltonian becomes explicitly time-dependent:

Ĥ = Ĥg |g〉 〈g| +
(
Ĥe + 〈ωeg〉+ δωeg(t)

)
|e〉 〈e| . (3.29)

The linear response still has the form of (3.28) with Ûg(t1) = e−iĤgt1/!, but now

Ûe(t1) = exp

[
− i

!

∫ t′

0

dt′
(
Ĥe + 〈ωeg〉+ δωeg(t

′)
)]

(3.30)

(see (E.7) of Appendix E) so that

J(t1) = e−i
R t1
0 dt′δωeg(t′)J(t1) (3.31)

Since δωeg(t) is a stochastic process, we must average over its realizations. Making

use of the second-order cumulant expansion in Appendix F leads to

〈e−i
R t1
0 dt′δωeg(t′)〉 = e−g(t1) (3.32)
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where g(t1) =
∫ t1

0 dτ (t− τ) 〈δωeg (τ) δωeg〉. In the case where the fluctuations are

exponentially correlated, 〈δωeg (t) δωeg〉 = σ2e−t/τc , where τc and σ are the correlation

time and fluctuation amplitude, respectively, and

g(t) = σ2τ 2
c

[
t/τc −

(
1− e−t/τc

)]
. (3.33)

For timescales that are long relative to τc,

J(t1) = e−g(t1)J(t1)
t/τc'1−→ e−σ2τct1J(t1) (3.34)

so that J(t1) decays exponentially with a time constant σ2τc. Thus the long time

behavior will dominate J(t1) when 1/σ2τc . τc, or σ / 1/τc and corresponds to the

limit of homogenous broadening (see §2.5.1).

Finally,

J(t1) = e−Γt1J(t1) (3.35)

where the dephasing rate constant2 is defined as Γ ≡ σ2τc. A similar procedure may

be applied for the nonlinear response functions, and leads to (3.27).

3.4 Forward-Backward Initial-Value Representation Method (FB-IVR)

Within the FB-IVR approximation, one assumes that the overall forward-backward

time propagators in Eqs. (3.2) and (3.4)-(3.7) can be replaced by the corresponding

single semiclassical Herman-Kluk propagator [106, 107], so that:

JFB−IV R(t1) = |µge|2
1

2π!

∫
dQ0dP0 D(P0, Q0)〈gP0,Q0|ρ̂g|gPf ,Qf

〉e i
! SJ (P0,Q0) , (3.37)

2The relation Γ ≡ σ2τc may be derived using Redfield theory in the homogeneously broadened limit.
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and

RFB−IV R
j (t3, t2, t1) = |µge|4

1

2π!

∫
dQ0dP0 D(P0, Q0)〈gP0,Q0|ρ̂g|gPf ,Qf

〉e
i
! SRj

(P0,Q0) , j = 1, 2, 3, 4 .

(3.38)

where {Qf , Pf} denote the position and momenta at the final time. Here, |gPjQj〉

is a coherent state of width γ which is centered at (Pj, Qj) and corresponds to the

wave function

〈Q|gPj ,Qj〉 =
(γ

π

)1/4

exp

(
−1

2
γ(Q−Qj)

2 +
i

!Pj(Q−Qj)

)
, (3.39)

D(P0, Q0) is the Herman-Kluk prefactor,

D(P0, Q0) =
1√
2

(
∂Pf

∂P0
+

∂Qf

∂Q0
− i!γ

∂Qf

∂P0
+ i(!γ)−1 ∂Pf

∂Q0

) 1
2

, (3.40)

and {SJ(P0, Q0), SRj(P0, Q0)} are the forward-backward actions which are explicitly

given by:

SJ(Q0, P0) =

∫ t1

0

dτLe(Qτ , Pτ ) +

∫ 0

t1

dτLg(Qτ , Pτ ) , (3.41)

SR1(Q0, P0) =

∫ t1+t2+t3

0

dτLe(Qτ , Pτ ) +

∫ t1+t2

t1+t2+t3

dτLg(Qτ , Pτ )

+

∫ t1

t1+t2

dτLe(Qτ , Pτ ) +

∫ 0

t1

dτLg(Qτ , Pτ ) ,

SR2(Q0, P0) =

∫ t1

0

dτLg(Qτ , Pτ ) +

∫ t1+t2+t3

t1

dτLe(Qτ , Pτ )

+

∫ t1+t2

t1+t2+t3

dτLg(Qτ , Pτ ) +

∫ 0

t1+t2

dτLe(Qτ , Pτ ) ,

SR3(Q0, P0) =

∫ t1+t2

0

dτLg(Qτ , Pτ ) +

∫ t1+t2+t3

t1+t2

dτLe(Qτ , Pτ )

+

∫ t1

t1+t2+t3

dτLg(Qτ , Pτ ) +

∫ 0

t1

dτLe(Qτ , Pτ ) ,

SR4(Q0, P0) =

∫ t1

0

dτLe(Qτ , Pτ ) +

∫ t1+t2

t1

dτLg(Qτ , Pτ )

+

∫ t1+t2+t3

t1+t2

dτLe(Qτ , Pτ ) +

∫ 0

t1+t2+t3

dτLg(Qτ , Pτ ) , (3.42)
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where Lg/e(Q, P ) = T (P )− Vg/e is the classical Lagrangian and T (P ) is the kinetic

energy. In the case of the linear ORF, Qτ and Pτ are calculated along a classical

trajectory that starts at Q0 and P0 at τ = 0, is propagated forward in time from

τ = 0 to τ = t1 on the excited state potential, and then backward in time from τ = t1

to τ = 0 on the ground state potential (see Eq. (3.2)). In the case of the third-order

ORFs, Qτ and Pτ are calculated along classical trajectories that start at Q0 and

P0 at τ = 0, and are propagated forward in time from τ = 0 to τ = t1 + t2 + t3

followed by backward propagation from τ = t1 + t2 + t3 to τ = 0. Importantly,

the system hops between the ground and excited potential surfaces throughout this

forward-backward time evolution in a manner implied by Eqs. (3.4-3.7). Since it is

well known that semiclassical propagators have rapidly oscillating phases [108–111],

a key advantage of the FB-IVR method is that the backward propagation step results

in extensive cancellation which leads to an action that is generally small. This results

in a semiclassical phase which is slowly varying and much more amenable to efficient

numerical calculation [112].

Obtaining expressions for JFB−IV R and RFB−IV R
j required the use of a computer

algebra system3, since the three factors appearing in the integrands of Eqns. (3.38)

and (3.37) are algebraically cumbersome to compute.

To illustrate the procedure, the calculation of each factor is outlined below, focus-

ing on RFB−IV R
2 for the sake of concreteness. Computing the total forward-backward

action appearing in the factor e
i
! SR2 (P0,Q0) requires propagating the classical trajec-

tories in four stages, as illustrated in Figure 3.1. For each stage, the propagation is

carried out on either the ground or excited state potentials, according to the appro-
3Wolfram Research, Inc., Mathematica, version 7.0, Champaign, IL (2009).
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Figure 3.1: Propagation pathway for classical trajectories of R2 in the FB-IVR method. For Stages
I and II, the trajectories are propagated forward in time, while for Stages III and IV they are
propagated backward in time. Stages I and III on on the ground state potential, while Stages II
and IV are on the excited potential.

priate solutions to Hamilton’s equations of motion, given by

Q(t) = cos(ωgt)Q0 +
sin(ωgt)

mωg
P0 (3.43)

P (t) = −mωg sin(ωgt)Q0 + cos(ωgt)P0,

for propagation on the ground state Vg, and

Q(t) = −Qd + (Qd + Q0) cos(ωet) +
sin(ωet)

mωe
P0 (3.44)

P (t) = −mωe (Qd + Q0) sin(ωet) + cos(ωet)P0.

for propagation on the excited state Ve. The sequential propagation implies that the

initial conditions for stages II-IV come from the position and momenta at the end

of the previous stage. It should also be noted that the time origin for the backward

propagation is chosen as in Figure 3.1, and consequently the equations of motion

for the backward stages are the same as those in (3.43) and (3.44) except t → −t.

Propagation of each classical trajectory proceeds as follows:
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1. Stage I: Propagate forward on Vg during the interval (0, t1)

QI(τ) = cos(ωgτ)Q0 +
sin(ωgτ)

mωg
P0 (3.45)

PI(τ) = −mωg sin(ωgτ)Q0 + cos(ωgτ)P0

Lg (QI(τ), PI(τ)) = T (PI(τ))− Vg (QI(τ))

where QI(τ)|τ=t1 and PI(τ)|τ=t1 serve as initial conditions for Stage II.

2. Stage II: Propagate forward on Ve during the interval (t1, t1 + t2 + t3)

QII(τ) = −Qd + (Qd + QI(t1)) cos [ωe(τ − t1)] +
sin [ωe(τ − t1)]

mωe
PI(t1) (3.46)

PII(τ) = −mωe (Qd + QI(t1)) sin [ωe(τ − t1)] + cos [ωe(τ − t1)] PI(t1)

Le (QII(τ), PII(τ)) = T (PII(τ))− Ve (QII(τ))

where QII(τ)|τ=t1+t2+t3
and PII(τ)|τ=t1+t2+t3 serve as initial conditions for Stage

III.

3. Stage III: Propagate backward on Vg during the interval (0, t3)

QIII(τ) = cos(ωgτ)QII(t1 + t2 + t3)−
sin(ωgτ)

mωg
PII(t1 + t2 + t3) (3.47)

PIII(τ) = mωg sin(ωgτ)QII(t1 + t2 + t3) + cos(ωgτ)PII(t1 + t2 + t3)

Lg (QIII(τ), PIII(τ)) = T (PIII(τ))− Vg (QIII(τ))

where QIII(τ)|τ=t3 and PIII(τ)|τ=t3 serve as initial conditions for Stage IV.

4. Stage IV: Propagate backward on Ve during the interval (t3, t3 + t2 + t1)

QIV (τ) = −Qd + (Qd + QIII(t3)) cos [ωe(τ − t3)]−
sin [ωe(τ − t3)

mωe
PIII(t3)

(3.48)

PIV (τ) = mωe (Qd + QIII(t3)) sin [ωe(τ − t3) + cos [ωe(τ − t3)PIII(t3)

Le (QIV (τ), PIV (τ)) = T (PIV (τ))− Ve (QIV (τ))
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Once the Lagrangians for each stage are known, the total action SR2 (Q0, P0) from

(3.41) may be written as4

SR2(Q0, P0) =

∫ t1

0

dτLg (QI(τ), PI(τ)) +

∫ t1+t2+t3

t1

dτLe (QII(τ), PII(τ))

−
∫ t3

0

dτLg (QIII(τ), PIII(τ))−
∫ t3+t2+t1

t3

dτLe (QIV (τ), PIV (τ)) (3.49)

The fact that Vg/e are harmonic potentials implies that SR2(Q0, P0) is a quadratic

function of the initial conditions {Q0, P0}, making e
i
! SR2 (P0,Q0) a Gaussian function

of those variables.

The Herman-Kluk prefactor is computed according to (3.40), using the position

and momenta at the end of the forward-backward propagation

D(P0, Q0) =
1√
2

(
∂PIV (t3 + t2 + t1)

∂P0
+

∂QIV (t3 + t2 + t1)

∂Q0
(3.50)

− i!γ
∂QIV (t3 + t2 + t1)

∂P0
+ i(!γ)−1∂PIV (t3 + t2 + t1)

∂Q0

)
1
2

The appearance of the complex square root in (3.50) deserves attention, since care

must be taken to ensure that the appropriate branch is chosen [113]. In our applica-

tion, it is sufficient to require the phase of the prefactor to be a continuous function of

the initial conditions {Q0, P0} [114]. The resulting function is quadratic in those vari-

ables, so that multiplication by the prefactor amounts to multiplying by a complex

Gaussian. It should also be noted that since the benchmark model considered here in-

cludes only a single photoinactive DOF, the resulting phase space is two-dimensional.

As a result, the prefactor does not create a substantial computational bottleneck.

However, for systems with more degrees of freedom, the prefactor has a more general

form involving the determinant of a stability matrix, D(P0,Q0) =
√

detM. Compu-

tation of the prefactor can become prohibitively expensive, especially when the DOF

are coupled [99].
4The minus signs and integration limits of the last two terms differ from those in (3.41) due to the choice of time

origin for the backward propagation. The two expressions are equivalent.
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The last step in forming the integrand in (3.37) is to find the matrix element of

the density operator between two coherent states. To this end, we use the coordinate

closure relation
∫
|Q〉 〈Q| = 1 to write

〈gP0,Q0|ρ̂g|gPf ,Qf
〉 =

∫
dQdQ′〈gP0,Q0|Q〉 〈Q| ρ̂g |Q′〉 〈Q′| gPf ,Qf

〉. (3.51)

Using the definition of the coherent state wavefunctions in (3.39), and the following

identity for the density operator matrix element [115]

〈Q| ρ̂g |Q′〉 = exp
[
−A

(
Q2 + Q′2) + BQQ′] , (3.52)

where A ≡ mωg

2! coth (β!ωg), B ≡ mωg

! sinh (β!ωg)
−1, and β = (kBT )−1 is the inverse

temperature, leads to

〈gP0,Q0|ρ̂g|gPf ,Qf
〉 = (3.53)

√
γ

π

∫
dQdQ′e−

1
2γ(Q−Q0)2− i

! P0(Q−Q0)e−A(Q2+Q′2)+BQQ′
e−

1
2γ(Q′−Qf )2+ i

! Pf (Q′−Qf ).

The integration is over Gaussian functions of Q and Q′, and results in another Gaus-

sian function of {Q0, P0}.

Thus, each of the factors in the integrand in (3.38) is a Gaussian function of the

initial conditions, rendering the phase space integrals analytically computable5.

3.5 Linearized Semiclassical Method (LSC)

The LSC approximation is based on writing the ORFs in a path integral form and

linearizing the path-integral forward-backward action with respect to the difference

between the forward and backward paths [42, 91, 94–97, 116–119]. It should be

noted that the same approximation has been previously derived via a variety of

other semiclassical approaches [88, 110, 111, 120–127]. This section provides an
5Numerical integration would be required in the case for anharmonic potentials.
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overview of the main features of the method, while Appendix I provides a more

detailed mathematical derivation.

Within this approximation, the linear and third-order ORFs are given by the

following expressions involving integrals over a classical-like phase space:

JLSC(t1) = |µge|2
1

2π!

∫
dQ0dP0 ρ̂g,W (Q0, P0) exp

{
i

∫ t1

0

dτU(Qτ )/!
}

, (3.54)

and

RLSC
j (t3, t2, t1) = |µge|4

1

2π!

∫
dQ0dP0ρ̂g,W (Q0, P0)e

−i
R t1
0 dτU(Qτ )/!e∓i

R t1+t2+t3
t1+t2

dτU(Qτ )/!

(3.55)

Here, + and − correspond to rephasing ORFs (R2, R3) and nonrephasing ORFs

(R1, R4), respectively, ρ̂g,W (Q, P ) is an operator in the electronic Hilbert space ob-

tained by the partial Wigner transform [128, 129] of ρ̂g with respect to the nuclear

DOF

ρ̂g,W (Q, P ) =

∫
d∆e−iP∆/!〈Q +

∆

2
|ρ̂g|Q−

∆

2
〉 , (3.56)

and U(Qτ )/! is the instantaneous value of the transition frequency,

U(Qτ ) = Ve(Qτ )− Vg(Qτ ) = ω2
eQdQ(τ) +

1

2

(
ω2

e − ω2
g

)
Q2(τ) (3.57)

Importantly, {Qτ} are classical trajectories whose initial conditions {Q0, P0} are

sampled from the ground state distribution ρ̂g,W (Q0, P0), and which “hop” between

potential surfaces as dictated by the Liouville pathway associated with each ORF.

This hopping reflects nonequilibrium dynamics on multiple potential surfaces [97],

and should be contrasted with several other methods which were limited to equilib-

rium ground state dynamics [42, 84, 88, 91, 101, 102, 130, 131].

In the LSC method, the trajectories are propagated forward in time from τ = 0

to τ = t1+t2 + t3, where the choice of potential surface used during a given time



71

interval is determined by the desired ORF. This is llustrated schematically in Figure

3.2, and outlined in the following prescription:

• In the case of J , the propagation takes place on the average potential surface,

Vge = (Vg + Ve)/2, during the interval (0, t1).

• In the case of R1 and R2, the propagation takes place on Vge during (0, t1),

on the excited state potential surface, Ve, during (t1, t1 + t2), and again on Vge

during (t1 + t2, t1 + t2 + t3).

• In the case of R3 and R4, the propagation takes place on Vge during (0, t1),

on the ground state potential surface, Vg, during (t1, t1 + t2), and again on Vge

during (t1 + t2, t1 + t2 + t3).
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Figure 3.2: Propagation (Liouville) pathways for classical trajectories in the LSC method, where
Stages I,II,III refer to the time intervals (0, t1), (t1, t1 + t2) and (t1 + t2, t1 + t2 + t3), respectively.
The pathways differ only in Stage II: Pathway 1 propagates trajectories on the excited state poten-
tial, whereas pathway 2 propagates them on the ground state potential.

Obtaining specific expressions for JLSC and RLSC
j required the use of a computer

algebra system6, and involved solutions to Hamilton’s classical equations of motion

on each of the three surfaces. For propagation on the ground state Vg,

Q(t) = cos(ωgt)Q0 +
sin(ωgt)

mωg
P0 (3.58)

P (t) = −mωg sin(ωgt)Q0 + cos(ωgt)P0,
6Wolfram Research, Inc., Mathematica, version 7.0, Champaign, IL (2009).



72

for propagation on the excited state Ve,

Q(t) = −Qd + (Qd + Q0) cos(ωet) +
sin(ωet)

mωe
P0 (3.59)

P (t) = −mωe (Qd + Q0) sin(ωet) + cos(ωet)P0,

and for propagation on the average potential Vge,

Q(t) = −Dd + (Dd + Q0) cos(Ωt) +
sin(Ωt)

mΩ
P0 (3.60)

P (t) = −mΩ (Dd + Q0) sin(Ωt) + cos(Ωt)P0,

where Dd ≡ ω2
eQd/

(
ω2

e + ω2
g

)
and Ω2 =

(
ω2

e + ω2
g

)
/2. The numerical evaluation

steps may be summarized as follows:

1. Using the equilibrium ground state density operator for a harmonic oscillator,

ρ̂g = Z−1
g e−βĤg = 2 sinh (β!ωg/2) e−βĤg , compute its Wigner transform:

ρ̂g,W (Q0, P0) =
1

2π!Z−1
g

∫ ∞

−∞
d∆e−iP∆/!〈Q0 +

∆

2
|e−βĤg(Q0,P0)|Q0 −

∆

2
〉 (3.61)

=
1

π! tanh (β!ωg/2) e−αP 2
0−γQ2

0

where α ≡ 1
m!ωg

tanh (β!ωg/2) and γ ≡ mωg

! tanh (β!ωg/2).

2. Stage I: Propagate for time interval (0, t1) on Vge

QI(τ) = −Dd + (Dd + Q0) cos(Ωτ) +
sin(Ωτ)

mΩ
P0 (3.62)

PI(τ) = −mΩ (Dd + Q0) sin(Ωτ) + cos(Ωτ)P0,

where QI(τ)|τ=t1 and PI(τ)|τ=t1 serve as initial conditions for Stage II.

3. Stage II (pathway 1): Propagate for time interval (t1, t1 + t2) on Ve

Q(1)
II (τ) = −Qd + [Qd + QI(t1)] cos [ωe(τ − t1)] +

sin [ωe(τ − t1)]

mωe
PI(t1) (3.63)

P (1)
II (τ) = −mωe [Qd + QI(t1)] sin [ωe(τ − t1)] + cos [ωe(τ − t1)] PI(t1),
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Stage II (pathway 2): Propagate for time interval (t1, t1 + t2) on Vg

Q(2)
II (τ) = cos [ωg(τ − t1)] QI(t1) +

sin [ωg(τ − t1)]

mωg
PI(t1) (3.64)

P (2)
II (τ) = −mωg sin [ωg(τ − t1)] QI(t1) + cos [ωg(τ − t1)] PI(t1)

where Q(1/2)
II (τ)|τ=t1+t2 and P (1/2)

II (τ)|τ=t1+t2 serve as initial conditions for Stage

III.

4. Stage III: Propagate for time interval (t1 + t2, t1 + t2 + t3) on Vge

Q(1/2)
III (τ) = −Dd +

[
Dd + Q(1/2)

II (t1 + t2)
]
cos [Ω(τ − t1 − t2)] (3.65)

+
sin [Ω(τ − t1 − t2)]

mΩ
P (1/2)

II (t1 + t2)

Using the path-dependent transition frequency U(Qτ ) from (3.57), the integrand

in (3.54) becomes

e−αP 2
0−γQ2

0 exp

[
− i

!

∫ t1

0

dτU (QI(τ))

]
exp

[
∓ i

!

∫ t1+t2+t3

t1+t2

dτU
(
Q(1/2)

III (τ)
)]

(3.66)

Since the argument of each exponential in (3.66) is a quadratic function of the

initial conditions {Q0, P0}, integration of their product over {Q0, P0} amounts

to evaluating Gaussian integrals, which can be computed analytically.

Thus appropriate choice of sign ∓ and pathway (1/2) in the right factor leads to

explicit expressions for the ORFs.

It should be noted that in the absence of nonadiabatic coupling, as in the bench-

mark model studied here, the LSC method is equivalent to a formulation of optical

response based on Mixed Quantum-Classical Liouville (MQCL) dynamics [132]. To

this end, let the state of the system be described by a density operator, ρ̂(t), whose

time evolution is dictated by the quantum Liouville equation:

d

dt
ρ̂(t) = − i

!

[
Ĥ(t), ρ̂(t)

]
. (3.67)
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Without any loss of generality, this equation may be recast in a Wigner represen-

tation by describing the state of the system as in (3.56), Wigner transforming the

Hamiltonian by

ĤW (Q, P ) =

∫
d∆e−iP∆/!〈Q +

∆

2
|Ĥ(t)|Q− ∆

2
〉 . (3.68)

This leads to the MQCL equation describing the dynamics of ρ̂g,W (Q0, P0; t)

∂

∂t
ρ̂W (Q0, P0; t) = − i

!

[
ĤW (Q0, P0; t) , ρ̂W (Q0, P0; t)

]

+
1

2

({
ĤW (Q0, P0; t) , ρ̂W (Q0, P0; t)

}
−

{
ρ̂W (Q0, P0; t) , ĤW (Q0, P0; t)

})
, (3.69)

where {f, g} denotes the Poisson bracket of the functions f (Q, P, t) and g (Q, P, t).

Further, we may project this equation onto a basis {|α (Q0)〉} where the electronic

states follow the nuclear DOF adiabatically, so that the matrix elements are given

by

ρα,α′

W (Q0, P0; t) = 〈α (Q0)| ρ̂W (Q0, P0; t) |α (Q0)〉 (3.70)

The resulting equations of motion [133–139] dictate that the phase space densities

ρα,α′

g,W (Q0, P0; t) associated with the the density matrix elements ρα,α′ are to be propa-

gated classically and independently from one another on the corresponding potential

surfaces. More specifically, for a two-electronic state system, the phase space den-

sities associated with ρge and ρeg are to be propagated on the average potential,

Vge = (Vg + Ve)/2. This method is advantageous in the sense that it provides a

rigorous route for deriving mixed quantum-classical expressions for the ORFs that

are able to capture the effects of nonequilibrium dynamics.
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3.6 Standard Second Order Cumulant Method (2OC)

The 2OC approximation can be derived by taking advantage of the following

identity [84]:

exp
[
iĤgt/!

]
exp

[
−iĤet/!

]
= exp+

[
− i

!

∫ t

0

dt′Ûg(t
′)

]
. (3.71)

Here, exp+ corresponds to a positively time-ordered exponential and

Ûg(t) = exp
[
iĤgt/!

]
Û exp

[
−iĤgt/!

]
(3.72)

where Û/! = is the transition frequency operator from (3.11).

Substituting (I.12) into (3.2) yields the following expression for the linear ORF:

J(t1) = |µge|2Tr

{
exp+

[
− i

!

∫ t1

0

dt′Ûg(t
′)

]
ρ̂g

}
≡ |µge|2〈exp+

[
− i

!

∫ t1

0

dt′Ûg(t
′)

]
〉g .

(3.73)

Importantly, the initial equilibrium state, ρ̂g, and the dynamics of Ûg(t) are both gov-

erned by the same Hamiltonian, Ĥg. Finding the 2OC approximation then amounts

to replacing the average on the right side of (3.73) by its corresponding second-order

cumulant expansion and truncating at second order.

To find the approximation, we begin by expanding the right side of (3.73) accord-

ing to the procedure outlined in Appendix F

〈exp+

[
−λ

i

!

∫ t

0

dt′Ûg(t
′)

]
〉g

= 1− λ
i

!

∫ t1

0

dτ1〈Ûg(τ1)〉g − λ2 1

!2

∫ t1

0

dτ2

∫ τ2

0

dτ1 〈Ug(τ2)Ug(τ1)〉g + . . .

= 1 + λC1 + λ2

(
C2 +

1

2
C2

1

)
+ . . . (3.74)

Equating powers of λ up to second order and using the fact that the equilibrium
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average 〈. . .〉g implies
[
e±iĤgt/!, ρ̂g

]
= 0 leads to7

C1 =
i

!

∫ t1

0

dτ1〈Ûg(τ1)〉g =
i

!〈Û〉gt1 (3.75)

and

C2 +
1

2
C2

1 = − 1

!2

∫ t1

0

dτ2

∫ τ2

0

dτ1 〈Ug(τ2)Ug(τ1)〉g (3.76)

= − 1

!2

∫ t1

0

dτ2

∫ τ2

0

dτ1 〈Ug(τ2 − τ1)Ug〉g

= − 1

!2

∫ t1

0

dτ (t1 − τ) 〈Ug (τ) Ug〉g

where the last line follows from a change of variables (τ1, τ2) → (τ1 − τ2, τ2). Thus

the expression for the linear ORF is

J2OC(t1) = |µge|2 exp
[
−i〈Û〉gt1/!− g(t1)

]
. (3.77)

Here

g(t1) =

∫ t1

0

dτ(t1 − τ)Cg(τ) , (3.78)

and Cg(τ) is the quantum-mechanical equilibrium ground-state frequency-frequency

correlation function:

Cg(τ) =
1

!2

[
〈Ûg(τ)Û〉g − 〈Û〉2g

]
. (3.79)

The fact that Cg (τ) is the only required input for computing J2OC(t1) implies that

the temporal behavior of the linear ORF within the 2OC approximation reflects

equilibrium fluctuations on the ground state surface. This behavior should be con-

trasted with the exact expression for J(t1) in (3.2), as well as the corresponding

FB-IVR and LSC approximations (Eq. (3.37) and (3.54), respectively), which are

clearly affected by nonequilibrium dynamics on the excited state surface. The dis-

crepancy can be traced back to the choice of Eq. (3.71) as the starting point for

7More generally,
h
f

“
Ĥg

”
, ρ̂g

i
= 0 where f is any analytic function of Ĥg .
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the second-order cumulant approximation. As will be shown in §3.7, an alternative

and equally valid identity may be used which leads to an alternative second-order

cumulant approximation that is sensitive to nonequilibrium excited state dynamics.

The 2OC approximations for the third-order ORFs can be obtained in a similar

manner. They can be conveniently expressed in terms of F (τ1, τ2, τ3, τ4), Eq. (3.8),

whose 2OC approximation is given by:[84]

F 2OC(τ1, τ2, τ3, τ4) = ei〈Û〉g(−τ1+τ2−τ3+τ4)/!× (3.80)

exp

{
− 1

!2
[g(τ1 − τ2)− g(τ1 − τ3) + g(τ1 − τ4) + g(τ2 − τ3)− g(τ2 − τ4) + g(τ3 − τ4)]

}

Thus, within the 2OC approximation, the temporal behavior of the third-order ORF

reflects the very same equilibrium fluctuations on the ground state surface as the

linear ORF.

Numerical implementation of the expressions J2OC and F 2OC required the use of

a computer algebra system8 to obtain the input g(t1), as outlined in the following

steps:

• Using the the time evolution of the position operator from (3.12), find the ground

state time evolution of the transition frequency operator

Q̂g(t) = cos(ωgt)Q̂ +
sin(ωgt)

mωg
P̂ (3.81)

Ûg(t) = ω2
eQdQ̂g(t) +

1

2

(
ω2

e − ω2
g

)
Q̂2

g(t)

8Wolfram Research, Inc., Mathematica, version 7.0, Champaign, IL (2009).
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• Compute the transition frequency average and time correlation function

〈U〉g /! =
1

2!
(
ω2

e − ω2
g

) [
B2(t)〈Q̂2〉g + C2(t)〈P̂ 2〉g

]

〈Ug (t) U〉g /!2 =

(
ω2

eQd

!

)2 [
B(t)〈Q̂2〉g + C(t)〈P̂ Q̂〉g

]

+
1

2!2

(
ω2

e − ω2
g

)





B2(t)〈Q̂4〉g + C2(t)〈P̂ 2Q̂2〉g

+B(t)C(t)
[
〈Q̂P̂ Q̂2〉g + 〈P̂ Q̂3〉g

]






(3.82)

where B (t) ≡ cos (ωgt) and C (t) ≡ sin (ωgt) /mωg. The temperature depen-

dence is contained in the expectation values 〈. . .〉g, whose explicit expressions

are given in Appendix G.

• Compute the time integrals in (3.78) (analytically) to obtain the input g(t1),

and find the time-domain linear response J2OC(t1) and nonlinear rephasing and

nonrephasing signals Rr(t3, t2, t1), Rnr(t3, t2, t1) according to (3.77) and (3.3).

Finally, it should be noted that J2OC and F 2OC are still fully quantum-mechanical,

since no semiclassical approximation has been employed. However, truncating the

cumulant expansion at second order represents a rather severe approximation which

can be expected to limit the accuracy of the resulting expression for the ORFs.

3.7 Alternative Second Order Cumulant Method (2OCa)

The second-order cumulant expansions in Eqs. (3.77) and (3.80) are not unique.

To see this, let us consider an alternative cumulant expansion based on the following

identity:

exp
[
iĤgt/!

]
exp

[
−iĤet/!

]
= exp−

[
−i

∫ t

0

dt′Ûe(t
′)/!

]
. (3.83)

Here, exp− corresponds to a negatively time-ordered exponential and

Ûe(t) = exp
[
iĤet/!

]
Û exp

[
−iĤet/!

]
. (3.84)
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Substituting (3.83) into (3.2) yields the following expression for the linear ORF:

J(t1) = |µge|2Tr

{
exp−

[
− i

!

∫ t1

0

dt′Ûe(t
′)

]
ρ̂g

}
≡ |µge|2〈exp−

[
− i

!

∫ t1

0

dt′Ûe(t
′)

]
〉g .

(3.85)

An alternative second-order cumulant approximation can then be obtained by per-

forming the cumulant expansion of the right side of (3.85)

〈exp−

[
−λ

i

!

∫ t

0

dt′Ûe(t
′)

]
〉g

= 1− λ
i

!

∫ t1

0

dτ1〈Ûe(τ1)〉g − λ2 1

!2

∫ t1

0

dτ2

∫ τ2

0

dτ1 〈Ue(τ1)Ue(τ2)〉g + . . .

= 1 + λC1 + λ2

(
C2 +

1

2
C2

1

)
+ . . . (3.86)

where the time ordering in the integrand of the λ2 term is opposite to that of the

(3.74). Equating powers of λ up to second order leads to

C1 =
i

!

∫ t1

0

dτ1〈Ûe(τ1)〉g (3.87)

C2 +
1

2
C2

1 = − 1

!2

∫ t1

0

dτ2

∫ τ2

0

dτ1 〈Ue(τ1)Ue(τ2)〉g

and yields the following expression for the linear ORF

J2OCa(t1) = |µge|2 exp

[
− i

!

∫ t1

0

dτ1〈Ûe(τ1)〉g (3.88)

− 1

!2

{∫ t1

0

dτ2

∫ τ2

0

dτ1〈Ûe(τ1)Ûe(τ2)〉g −
1

2

(∫ t1

0

dτ1〈Ûe(τ1)〉g
)2

}]
.

Importantly, while the initial equilibrium state, ρ̂g, is governed by the ground state

Hamiltonian, the dynamics of Ûe(t) are governed by the excited state Hamiltonian.

It should be emphasized that although the expressions for the linear ORF in

Eqs. (3.73) and (3.85) are equivalent, the corresponding second-order cumulant

expansions in (3.77) and (3.88) are not. More specifically, unlike 〈Û〉g/! and Cg(t)/!2

which correspond to the averaged transition frequency and fluctuations around it,
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respectively, at equilibrium on the ground state surface, the quantities 〈Ûe(τ1)〉g

and 〈Ûe(τ1)Ûe(τ2)〉g reflect the nonequilibrium dynamics of the transition frequency

on the excited state surface and its autocorrelation. In other words, unlike the

2OC approximation, and similarly to the FB-IVR and LSC approximations, the

2OCa approximation appears to be able to account for the signature of the inherent

nonequilibrium excited state dynamics on the linear ORF.

The 2OCa approximation for F (τ1, τ2, τ3, τ4), and thereby the third-order ORFs,

can be obtained in a similar manner:

F 2OCa(τ1, τ2, τ3, τ4) = exp [C1(τ1, τ2, τ3, τ4) + C2(τ1, τ2, τ3, τ4)] , (3.89)

where C1(τ1, τ2, τ3, τ4) and C2(τ1, τ2, τ3, τ4) are the first and second order cumulants,

explicitly given by:

C1(τ1, τ2, τ3, τ4) =
i

!

{
−

∫ τ1

0

dτ ′1〈Ûe (τ ′1)〉g +

∫ τ2

0

dτ ′2〈Ûe (τ ′2)〉g (3.90)

−
∫ τ3

0

dτ ′3〈Ûe (τ ′3)〉g +

∫ τ4

0

dτ ′4〈Ûe (τ ′4)〉g
}

and

C2(τ1, τ2, τ3, τ4) (3.91)

= − 1

!2

{∫ τ1

0

dτ ′1

∫ τ ′1

0

dτ ′′1 〈Ûe (τ ′′1 ) Ûe (τ ′1)〉g +

∫ τ2

0

dτ ′2

∫ τ ′2

0

dτ ′′2 〈Ûe (τ ′′2 ) Ûe (τ ′2)〉g

+

∫ τ3

0

dτ ′3

∫ τ ′3

0

dτ ′′3 〈Ûe (τ ′′3 ) Ûe (τ ′3)〉g +

∫ τ4

0

dτ ′4

∫ τ ′4

0

dτ ′′4 〈Ûe (τ ′′4 ) Ûe (τ ′4)〉g

+

∫ τ1

0

dτ ′1

∫ τ2

0

dτ ′2〈Ûe (τ ′1) Ûe (τ ′2)〉g −
∫ τ1

0

dτ ′1

∫ τ3

0

dτ ′3〈Ûe (τ ′1) Ûe (τ ′3)〉g

+

∫ τ1

0

dτ ′1

∫ τ4

0

dτ ′4〈Ûe (τ ′1) Ûe (τ ′4)〉g +

∫ τ2

0

dτ ′2

∫ τ3

0

dτ ′3〈Ûe (τ ′2) Ûe (τ ′3)〉g

−
∫ τ2

0

dτ ′2

∫ τ4

0

dτ ′4〈Ûe (τ ′2) Ûe (τ ′4)〉g +

∫ τ3

0

dτ ′3

∫ τ4

0

dτ ′4〈Ûe (τ ′3) Ûe (τ ′4)〉g
}

−1

2
C2

1(τ1, τ2, τ3, τ4) (3.92)
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Numerical implementation of the expressions J2OCa and F 2OCa is similar to that of

J2OC and F 2OC , only the algebra is substantially more cumbersome. The procedure

is outlined as follows

• Find the excited state time evolution of the position operator by solving Heisen-

berg’s equation of motion, and use it to find the time evolution of the transition

frequency operator:

Q̂e(t) = Qd [1− cos (ωet)] + cos(ωet)Q̂ +
sin(ωet)

mωe
P̂ (3.93)

Ûe(t) = ω2
eQdQ̂e(t) +

1

2

(
ω2

e − ω2
g

)
Q̂2

e(t)

• Compute the transition frequency average and time correlation function

〈Ue (t)〉g = −ω2
eQdA (t) +

1

2

(
ω2

e − ω2
g

) [
A2 (t) + B2 (t) 〈Q̂2〉g + C2 (τ) 〈P̂ 2〉g

]

〈Ue (τ1) Ue (τ2)〉g = f1 (τ1, τ2) + f2 (τ1, τ2) 〈Q̂2〉g + f3 (τ1, τ2) 〈P̂ 2〉g

+f4 (τ1, τ2) 〈Q̂P̂ 〉g + f5 (τ1, τ2) 〈P̂ Q̂〉g

+
1

2

(
ω2

e − ω2
g

)






B2 (τ1) B2 (τ2) 〈Q̂4〉g + C2 (τ1) C2 (τ2) 〈P̂ 2〉g

+B2 (τ1) C2 (τ2) 〈Q̂2P̂ 2〉g + C2 (τ1) B2 (τ2) 〈P̂ 2Q̂2〉g

+B (τ1) C (τ1) B (τ2) C (τ2)




〈Q̂P̂ Q̂P̂ 〉g + 〈Q̂P̂ 2Q̂〉g

+〈P̂ Q̂P̂ Q̂ 〉g + 〈P̂ Q̂2P̂ 〉g





+B2 (τ1) B (τ2) C (τ2)
[
〈Q̂3P̂ 〉g + 〈Q̂2P̂ Q̂〉g

]

+B (τ1) C (τ1) B2 (τ2)
[
〈Q̂P̂ Q̂2〉g + 〈P̂ Q̂3〉g

]

+C2 (τ1) B (τ2) C (τ2)
[
〈P̂ 2Q̂P̂ 〉g + 〈P̂ 3Q̂〉g

]

+B (τ1) C (τ1) C2 (τ2)
[
〈Q̂P̂ 3〉g + 〈P̂ Q̂P̂ 2〉g

]






(3.94)

where A (t) ≡ [1− cos (ωet)] , B (t) ≡ cos (ωet) and C (t) ≡ sin (ωet) /mωe,

where the expectation values 〈. . .〉g are given in Appendix G. The time-dependent
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coefficients f1 (τ1, τ2)− f5 (τ1, τ2) are given by

f1 (τ1, τ2) ≡ c2
1A

2 (τ1) A2 (τ2)− c1c2A
2 (τ1) A (τ2)

−c1c2A (τ1) A2 (τ2) + c2
2A (τ2) A (τ1)

f2 (τ1, τ2) ≡ c2
1A

2 (τ1) B2 (τ2) + 4c2
1A (τ1) B (τ1) A (τ2) B (τ2)

−2c1c2A (τ1) B (τ1) B (τ2) + c2
1B

2 (τ1) A2 (τ2)− c1c2A (τ2) B2 (τ1)

−c1c2A (τ1) B2 (τ2) + c2
2B (τ1) B (τ2)− 2c1c2B (τ1) A (τ2) B (τ2)

f3 (τ1, τ2) ≡ c2
1A

2 (τ1) C2 (τ2) + 4c2
1A (τ1) C (τ1) A (τ2) C (τ2)

−2c1c2A (τ1) C (τ1) C (τ2) + c2
1C

2 (τ1) A2 (τ2)− c1c2A (τ2) C2 (τ1)

−c1c2A (τ1) C2 (τ2) + c2
2C (τ1) C (τ2)− 2c1c2C (τ1) A (τ2) C (τ2)

f4 (τ1, τ2) ≡ c2
1A

2 (τ1) B (τ2) C (τ2) + 4c2
1A (τ1) B (τ1) A (τ2) C (τ2)

−2c1c2A (τ1) B (τ1) C (τ2) + c2
1B (τ1) C (τ1) A2 (τ2)

−c1c2A (τ2) B (τ1) C (τ1)− c1c2A (τ1) B (τ2) C (τ2)

−2c1c2B (τ1) A (τ2) C (τ2) + c2
2B (τ1) C (τ2)

f5 (τ1, τ2) ≡ c2
1A

2 (τ1) C (τ2) B (τ2) + 4c2
1A (τ1) C (τ1) A (τ2) B (τ2)

−2c1c2A (τ1) C (τ1) B (τ2) + c2
1C (τ1) B (τ1) A2 (τ2)

−c1c2A (τ2) C (τ1) B (τ1)− c1c2A (τ1) C (τ2) B (τ2)

−2c1c2C (τ1) A (τ2) B (τ2) + c2
2C (τ1) B (τ2)

(3.95)

where c1 ≡ ω2
eQd and c2 ≡ 1

2

(
ω2

e − ω2
g

)
.

• Compute the time integrals in (3.94) to find J2OCa(t1) via (3.88) and Rr(t3, t2, t1), Rnr(t3, t2, t1)

via (3.89) and (3.3).

3.8 Results and Discussion

Exact and approximate 1D and 2D spectra were calculated for ωe/ωg in the range

0.5−2.0 at T = 0.2!ωg/kB (low temperature) and T = 5.0!ωg/kB (high temperature)
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and for different values of the horizontal displacement Qd/
√

!/ωg = 0.5, 1.0, 1.5. The

2D spectra were also calculated at different values of t2. The electronic dephasing

rate constant used in all calculations was Γ = ωg/2.8 and the spectra are presented

so that the frequency origin is set at 〈ωeg〉, which corresponds to the average of the

stochastic ωeg(t).

3.8.1 Linear Spectra

The 1D spectra at T = 0.2!ωg/kB (low temperature) and T = 5.0!ωg/kB (high

temperature) are shown in Figs. 3.3 and 3.4, respectively, for Qd =
√

!/ωg and the

following four representative values of ωe/ωg: 0.6, 1.0, 1.4, 1.8.

Figure 3.3: The 1D spectra at T = 0.2!ωg/kB (low temperature) for Qd =
√

!/ωg and the following
values of ωe/ωg: 0.6, 1.0, 1.4, 1.8, as obtained via an exact quantum mechanical calculation, as well
as the FB-IVR, LSC, 2OC and 2OCa approximations.

As expected, the quantum-mechanically exact 1D spectra consist of peaks at the

various vibronic transition frequencies. The widths of these peaks are determined

by Γ and their intensities are determined by the thermal weight of the initial state
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Figure 3.4: Same as Fig. 3.3 at T = 5.0!ωg/kB (high temperature).

Figure 3.5: 1D spectra for Qd = (0.5, 1.5)
√

!/ωg, ωe/ωg = 1.4 and at T = 0.2!ωg/kB and T =
5.0!ωg/kB ,as obtained via an exact quantum mechanical calculation, as well as the FB-IVR, LSC,
2OC and 2OCa approximations.
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and the corresponding products of Frank-Condon coefficients (see Eq. (3.21)). The

following observations can be made based on these results:

• The 1D spectra obtained via FB-IVR were found to be in excellent agreement

with the exact results throughout the entire region of parameter space consid-

ered. It should be noted that the fact that the coherent state width parameter γ

was chosen to be constant (see Eq. (3.39)) implies that FB-IVR is not exact for

the system considered here. More specifically, by assuming that γ is constant,

FB-IVR neglects the fact that what is a coherent state on one surface corre-

sponds to a squeezed state on the other surface. However, the corresponding

changes of the width do not seem to affect the 1D spectra in a noticeable way

even when ωe and ωg are significantly different.

• Although LSC is not as accurate as FB-IVR, it is clearly able to reproduce the

main features of the 1D spectra rather well throughout a wide region of pa-

rameter space, and improves with increasing temperature. It should be noted

that the agreement between the LSC and exact results depends on the choice of

electronic dephasing rate constant, Γ. More specifically, the LSC approximation

is known to be over-damped in comparison to the corresponding fully quantum-

mechanical results, which can be attributed to the fact that it is based on purely

classical all-forward dynamics and therefore lacks the ability to account for co-

herent quantum dynamical effects [93, 97, 131]. As a result, the LSC approach is

particularly suitable for modeling spectra in cases where the physical dephasing

is faster than any nonphysical dephasing caused by this over-damping. This is

often the case in systems of practical interest and under ambient conditions. In

order to mimic this situation, the present study used a value of Γ large enough

so that the damping of the ORFs is dominated by it, rather than by the the
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nonphysical dephasing inherent to the LSC approximation.

• Although the 1D spectra obtained via 2OC coincide with the exact ones when

ωe = ωg, the agreement between them deteriorates rather rapidly once ωe is al-

lowed to deviate from ωg. Importantly, the deviations are qualitative in nature

in the sense that 2OC is unable to reproduce the overall asymmetry of the spec-

trum as well as the locations, relative intensities and widths of the peaks. These

deviations reflect the two major approximations underlying 2OC, namely that

the spectra reflect equilibrium ground state dynamics and that this equilibrium

dynamics can be described by a Gaussian process.

• The 1D spectra obtained via 2OCa coincide with the exact spectra and the

spectra obtained via 2OC when ωe = ωg. However, the 2OCa-based spectra are

seen to deviate significantly from both when ωe differs from ωg. At low temper-

atures, 2OCa appears to be somewhat better at predicting the peak locations,

which can be attributed to its ability to account for at least some of the spec-

tral signature of nonequilibrium excited state dynamics on the spectra. Unfor-

tunately, the low-temperature 2OCa-based spectra also becomes pronouncedly

negative in some regions, which is clearly nonphysical. At high temperatures,

the spectra obtained via 2OCa are seen to coincide with the envelopes of the

spectra obtained via 2OC, but lack the fine structure of the latter, which can

be attributed to over-damping generated by the nonequilibrium excited state

dynamics. Finally, the fact that the accuracy of two distinctly different second-

order cumulant approximations deteriorate so rapidly once we allow ωe to differ

from ωg suggests that this type of approximation can only be expected to be

reliable within a rather narrow region of parameter space.

In Fig. 3.5, we show the 1D spectra for two other values of Qd, namely Qd =
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(0.5, 1.5)
√

!/ωg, in the case ωe/ωg = 1.4 and at T = 0.2!ωg/kB and T = 5.0!ωg/kB.

It should be noted that the 1D spectra obtained via all four approximate methods

coincide with the exact ones when ωe = ωg, regardless of the value of Qd. However,

this is not the case when ωe/ωg (= 1. The 1D spectra obtained via FB-IVR are seen

to be in excellent agreement with the exact ones regardless of the value of Qd. As

expected, LSC also remains accurate at high temperature regardless of the value of

Qd. Interestingly, LSC is also observed to remain rather accurate even at the lower

temperature, although the level of accuracy is observed to diminish with increasing

Qd. Finally, the 1D spectra predicted by 2OC and 2OCa are seen to be significantly

different from the exact ones regardless of the values of Qd, and the deviations are

seen to increase with temperature.

3.8.2 Nonlinear Spectra

The exact 2D spectra at T = 0.2!ωg/kB (low temperature) and T = 5.0!ωg/kB

(high temperature)are shown in Fig. 3.6 as a function of t2, for Qd =
√

!/ωg and in

the special case where the frequencies of the ground and excited surfaces coincide,

namely ωe = ωg.

Figure 3.6: The exact 2D spectra at T = 0.2!ωg/kB (low temperature) and T = 5.0!ωg/kB (high
temperature) as a function of t2, for Qd =

√
!/ωg and ωe/ωg = 1.
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Figure 3.7: A comparison of the exact 2D spectra to the corresponding LSC, 2OC and 2OCa
approximations in the case where ωe/ωg = 0.6 at T = 0.2!ωg/kB (low temperature).

As expected, the 2D spectra consist of peaks at the various vibronic frequencies.

The widths of these peaks are determined by Γ and their intensities are determined

by the thermal weight of the initial state and the products of F-C factors (see Eq.

(3.26)). The peak pattern is also seen to change as a function of t2 as dictated by

Eqs. (3.26), and the number of peaks is seen to increase with temperature, which

reflects the larger number of initially populated ground vibronic states. However,

the fact that the vibronic wave functions become increasingly more localized at the

turning points with increasing energy implies that the corresponding F-C factors drop

rapidly. As a result, the intensity of peaks that correspond to transitions between

excited states tends to rapidly decrease the more excited the vibronic states are. As

for the 1D spectra, the 2D spectra generated via FB-IVR, LSC, 2OC and 2OCa all

coincide with the exact results when ωe = ωg (see Fig. 3.6).
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Figure 3.8: A comparison of the exact 2D spectra to the corresponding LSC, 2OC and 2OCa
approximations in the case where ωe/ωg = 1.4 at T = 0.2!ωg/kB (low temperature).

In Figs. 3.7-3.12, we present a comparison of the exact 2D spectra to the cor-

responding LSC, 2OC and 2OCa approximations in the case where ωe (= ωg. More

specifically, we compare 2D spectra at T = 0.2!ωg/kB (Figs. 3.7-3.9) and T =

5.0!ωg/kB (Figs. 3.10-3.12) for Qd =
√

!/ωg and at various values of t2. We have

also repeated the calculation for other values of Qd (not shown). However, we have

not found new trends with respect to the Qd dependence besides those noted in the

context of the 1D spectra (see Fig. 3.5). The 2D spectra generated via FB-IVR were

observed to be practically indistinguishable from the exact ones and are therefore

not shown. This implies that although strictly speaking the FB-IVR approximation

is not exact when ωe (= ωg, the 2D spectra are essentially insensitive to the difference,

at least for the model under consideration here.

Unlike the spectra generated via FB-IVR, there are visible deviations between
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Figure 3.9: A comparison of the exact 2D spectra to the corresponding LSC, 2OC and 2OCa
approximations in the case where ωe/ωg = 1.8 at T = 0.2!ωg/kB (low temperature).

the exact spectra and those obtained via LSC. However, those deviations remain

small throughout the region of parameter space considered, thereby testifying to the

robustness of the LSC approximation. In fact, while the accuracy of the LSC ap-

proximation at the high temperature is expected in light of the classical treatment

of the photo-inactive coordinate, the fact that it is also accurate at the low temper-

ature is somewhat surprising. The latter observation can probably be attributed to

the fact that all the potential energy surfaces involved are harmonic, as the pres-

ence of anharmonicities would have given rise to more pronounced quantum effects

at low temperatures. It should also be noted that the accuracy of LSC is better at

ωe/ωg < 1, compared to ωe/ωg > 1, since the lower frequency of the excited state

surface makes it more classical.

Finally, the 2D spectra generated via 2OC and 2OCa are seen to be highly inaccu-
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Figure 3.10: A comparison of the exact 2D spectra to the corresponding LSC, 2OC and 2OCa
approximations in the case where ωe/ωg = 0.6 at T = 5.0!ωg/kB (high temperature).

rate in almost every respect. More specifically, although the 2D spectra generated by

both the 2OC and 2OCa approximations coincide with the exact ones when ωe = ωg,

the agreement between the approximate and exact spectra deteriorates rather rapidly

once ωe is allowed to differ from ωg. At the high temperature, the predictions of 2OC

and 2OCa are seen to differ qualitatively from the exact results regardless of the value

of ωe/ωg. However, at the lower temperature, 2OC actually seems to perform rea-

sonably well for ωe/ωg = 0.6, while 2OCa fails. Nevertheless, the trend reverses for

ωe/ωg = 1.4, where it is actually 2OCa which is seen to be in reasonable agreement

with the exact results, while 2OC fails. This suggests the growing importance of

accounting for excited state dynamics when ωe > ωg, at least at low temperatures.

However, generally speaking, the second-order cumulant approximation, in either its

2OC or 2OCa renditions, is seen to be rather inaccurate and to lack robustness even
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Figure 3.11: A comparison of the exact 2D spectra to the corresponding LSC, 2OC and 2OCa
approximations in the case where ωe/ωg = 1.4 at T = 5.0!ωg/kB (high temperature).

in the case where the potential surfaces are harmonic, provided that they do not

have the same frequency.

3.9 Summary and Future Outlook

In this chapter, the accuracies of the FB-IVR, LSC, 2OC and 2OCa methods for

calculating 1D and 2D spectra within the context of a benchmark model of a two-

state chromophore with shifted harmonic potential surfaces were considered. It has

been shown that all methods reproduce spectra that coincide with the exact ones

when the frequencies of the two surfaces are the same, regardless of the temperature

or relative displacement of those surfaces. As a result, a meaningful benchmark

must be based on having the two surfaces correspond to different frequencies, and

the accuracy consequently becomes dependent on the frequency ratio.



93

Figure 3.12: A comparison of the exact 2D spectra to the corresponding LSC, 2OC and 2OCa
approximations in the case where ωe/ωg = 1.8 at T = 5.0!ωg/kB (high temperature).

The spectra generated via FB-IVR were found to be in excellent agreement with

the exact ones throughout the entire region of parameter space considered. Good

agreement was also observed between the spectra calculated via LSC and the exact

ones, provided that the exact ORFs decay on a time scale shorter than that of the

nonphysical over-damping inherent to the LSC approximation. Finally, the second-

order cumulant approximation, either in its standard form, 2OC, or alternative form,

2OCa, were generally found to be inaccurate and unreliable unless ωe ≈ ωg.

Although the FB-IVR method is superior to LSC in regard to accuracy, its com-

putational cost is also significantly higher. Thus, our results seem to point to LSC

as the method of choice for modeling 2D spectra in complex systems for which an

exact quantum-mechanical, or even the approximate but rather expensive FB-IVR

method, may not be feasible.



CHAPTER IV

Two-dimensional Infrared Spectra for Multistate Systems

4.1 Introduction

A major challenge in establishing a general computational scheme for vibrational

systems is that in order to derive information from the measured spectra, the vibra-

tional Hamiltonian needs to be newly identified for each system, making transfer-

ability of parameters between systems impractical if not impossible [28]. As a result,

many studies relied on the use of empirical fitting algorithms to extract informa-

tion from measured spectra, which often emplyed models with terms whose relative

importance was not well understood [31]. An alternative approach based on inputs

from ab initio electronic structure calculations is advantageous in that is allows for

the simulation and prediction of nonlinear vibrational spectra without having to rely

on experimental input parameters [140, 141].

An attractive candidate for testing ab initio methods was dicarbonylacetylaceto-

nato rhodium(I) (RDC), since the stretching vibrations of its two C≡O local oscil-

lators are sufficiently separated from other abosorption bands that their nonlinear

response can be measured without contributions from other modes. Measurement

and analysis of the 2D spectra of this compound have led to important insight into

how anharmonicity, mode−mode coupling, the tensorial nature of optical response,

94
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and rotational relaxation affect 2DIR spectra [142–145]. Ab initio methods have

been successful in capturing such effects [28, 146–151]. More specifically, Moran

and coworkers [28] have recently produced a 2DIR spectrum of RDC by computing

the 2D anharmonic potential energy surface in terms of the carbonyl stretch coor-

dinates up to fourth-order via Density Functional Theory (DFT) and numerically

diagonalizing the corresponding Hamiltonian. The aim of the work presented in this

chapter was to apply such ab initio methods to study the metal carbonyl compound

Mn2(CO)10 and its photoproducts Mn2(CO)9 and Mn(CO)5. Most of the effort was

spent establishing the necessary computational framework, both in terms of applying

the optical response tensor (ORT) formalism and coupling it to detailed electronic

structure calculations.

It should be emphasized that the results presented here were obtained as part

of an ongoing collaboration between the research groups of Prof. Eitan Geva and

Prof. Kevin Kubarych, both at the University of Michigan. More specifically, my

role was strictly in the development and implementation of the computer codes used

to manipulate the electronic structure data and compute the ORTs. Mr. Nicholas

Preketes, a former undergraduate in the Geva group, and Mr. Carlos Baiz, a current

graduate student in the Kubarych group, were responsible for the electronic structure

calculations. Two major points regarding the initial stages of this project should be

noted:

• A main focus of investigation was which normal modes to include in the cal-

culations. i.e., only the photo active CO stretches, both the photoactive and

photoinactive CO stretches, or all normal modes of the system (not only CO

stretches). The initial results generated for Mn(CO)5 included only the pho-

toactive carbonyl modes, which resulted in negative diagonal anharmonic peak



96

shifts, a trend that was contrary to other experimental and theoretical studies.

While this issue was not resolved during the timeline of my involvement with

the project, later studies performed by Mr. Baiz found that the qualitatively

incorrect anharmonic shifts could be traced back to neglecting the coupling be-

tween the photoactive and photoinactive CO stretching modes. The trend may

be clearly seen for Mn2(CO)10 results in Table 4.1 (reproduced from Ref. [142]).

The shifts obtained by considering only the IR active modes are highlighted in

red.

• Initally, a direct diagonalization procedure was implemented in Matlab to di-

agonalize the anharmonic Hamiltonian. Since convergence of the energy levels

requires a basis which is much larger than the subspace spanned by the number

of modes of interest (see the end of §4.3.1), there is an inherent limitation on

how many modes may be included since the matrices may become too large to

be diagonalized efficiently. Thus a computational bottleneck was reached when

transitioning from the study of Mn(CO)5 to Mn2(CO)9, and it was around this

time that my involvement in the project was finished1. Later work by Mr. Baiz

utilized an alternative perturbation theory approach to circumvent the prob-

lem [142].

The remainder of this chapter is organized as follows. In §4.2, the general theory

of ORTs is presented, where the overall response is separated into a product of vibra-

tional and rotational contributions. In §4.3, the full ab inito procedure is outlined.

First, a description of how to construct the anharmonic Hamiltonian as a Taylor se-

ries in the normal mode coordinates is presented, following by a discussion of how to

compute the transition dipole moment vectors. Then, an overview of the electronic
1Some preliminary work was performed with implementing sparse matrix algorithms, but was never carried to

completion.
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structure calculations used to obtain the second, third, and fourth-order force con-

stants is presented. In §4.4, the preliminary results obtained for the photoproduct

Mn(CO)5 are presented, following by discussion of future and ongoing work.

Table 4.1: Diagonal Anharmonic Shifts. ∆ = ω0→1 − ω1→2 for Mn2(CO)10 in cm−1, as
obtained using VPT2. Adapted from Ref. [142]

.

mode
all modes

3rd and 4th order
all modes

3rd order only
CO modes

3rd and 4th order
IR active CO modes

3rd and 4th order expl
1 5.2 10.2 4.3
2 5.3 10.2 4.3
3 6.5 12.8 5.4 -6.3 8.3
4 9.7 19.1 8.0
5 5.5 10.3 4.5 -4.7 6.5
6 5.5 10.3 4.5 -4.7 6.5
7 3.9 7.4 3.0
8 4.6 7.6 3.7
9 3.2 5.3 2.5 -2.1 4.4
10 3.4 5.0 2.6

4.2 Polarization-Selective Response: Optical Response Tensors

As introduced in ch. 2, the linear and third-order optical response functions can

generally be written terms of two-point and four-point time correlation functions of

the transition dipole operator. For example2,

J (t1) = Tr [µ̂ (t1) µ̂ρ̂eq] (4.1)

R1 (t3, t2, t1) = Tr [µ̂ (t1) µ̂ (t2 + t1) µ̂ (t3 + t2 + t1) µ̂ (0) ρ̂eq]

If only a single transition were involved and the dipole operators were scalars as in

Chapter 2, the response would be characterized by functions. However, to describe

processes involving several distinct transition dipoles, their vector nature requires

consideration and leads to a response characterized by tensors [143, 152]. What

was previously the n-order ORF becomes an (n+1)-rank tensor S(n)
bn+1,...,b1

(tn, ..., t1),

2The remaining third-order response functions R2 − R4 have a similar structure, but differ by permutations of
the time arguments.
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which gives the bn+1-th component of the polarization at time t in response to various

combinations of the field Cartesian components, bn, ..., b1, at previous times.

For example, in the case of linear response, the optical response tensor (ORT) is

of rank 2 and has nine components:

Jx′x′ (t1) , Jy′y′ (t1) , Jz′z′ (t1) , Jx′y′ (t1) , Jy′z′ (t1) , Jx′z′ (t1) , Jy′x′ (t1) , Jz′y′ (t1) , Jz′x′ (t1)(4.2)

which correspond to the x′, y′ and z′ components of the polarization in (linear)

response to the x′, y′ or z′ components of the driving field. Hence

Jb2,b1 (t1) = Tr [µ̂b2 (t1) µ̂b1 ρ̂eq] . (4.3)

Similiary, the third-order ORT is of rank 4 and given by: (4.3)

Rb4,b3,b2,b1;1 (t3, t2, t1) = Tr [µ̂b2 (t1) µ̂b3 (t2 + t1) µ̂b4 (t3 + t2 + t1) µ̂b1 (0) ρ̂eq]

Rb4,b3,b2,b1;2 (t3, t2, t1) = Tr [µ̂b1 (0) µ̂b3 (t2 + t1) µ̂b4 (t3 + t2 + t1) µ̂b2 (t1) ρ̂eq]

Rb4,b3,b2,b1;3 (t3, t2, t1) = Tr [µ̂b1 (0) µ̂b2 (t1) µ̂b4 (t3 + t2 + t1) µ̂b3 (t2 + t1) ρ̂eq]

Rb4,b3,b2,b1;4 (t3, t2, t1) = Tr [µ̂b4 (t3 + t2 + t1) µ̂b3 (t2 + t1) µ̂b2 (t1) µ̂b1 (0) ρ̂eq]

(4.5)

4.2.1 Orientational Averaging

In the above discussion, b1, ..., bn = x′, y′, z′ correspond to some specific choice of

a coordinate system. The laboratory frame is the natural choice for the driving field

and the detected signal. However, the dipole vector −→µ is most easily computed in

terms of a body-fixed coordinate system. Furthermore, unlike the laboratory system

which is stationary, the body-fixed coordinate system rotates with the molecule and

therefore changes over time. Denoting the body-fixed and lab frames by indices

b and a, respectively, the two coordinate systems are related by a time-dependent
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orthogonal transformation T [153] (see Appendix D):

µa (t) =
∑

b(t)

Ta,b(t)µb(t) (t)⇔ µb(t) (t) =
∑

a

Tb(t),aµa (t) (4.6)

where b(t) = {x′(t), y′(t), z′(t)} correspond to the explicitly time-dependent body

fixed coordinates.

The averaging procedure may be straightforwardly illustrated by applying the

transformations in (4.6) to the linear response tensor in (4.3):

Ja2,a1 (t1) = Tr [µb2 (t1) µb1 ρ̂eq]

= Tr




∑

b2(t1)

Ta2,b2(t1)µb2(t1) (t1)
∑

b(0)

Ta1,b1(0)µb1 (0) ρ̂eq





=
∑

b2(t1)

∑

b(0)

〈Ta2,b2(t1)µb2(t1) (t1) Ta1,b1(0)µb1 (0)〉eq (4.7)

The interpretation of the ORTs can be greatly simplified by separating different

degrees of freedom according to relative timescales. More specifically, if the rotational

motion is much slower than the vibronic dynamics then the ORT may be separated

into a product of a vibrational and orientational contributions [152]. Assuming that

the rotational motion may be treated classically3, the decoupling of vibrational and

orientational motions results in

Ja2,a1 (t1) =
∑

b2(t1)

∑

b(0)

〈Ta2,b2(t1)Ta1,b1(0)〉Cl
eq × 〈µb2(t1) (t1) µb1 (0)〉eq (4.8)

Thus the linear response in the lab frame and body-fixed frames are related by

Ja2,a1 (t1) =
∑

b2,b1

Y a2,a1
b2,b1

(t1) Jb2,b1 (t1) (4.9)

where

Y a2,a1
b2,b1

(t1) ≡ 〈Ta2,b2(t1)Ta1,b1(0)〉Cl
eq (4.10)

3The averaging procedure described here is not contingent upon this assumption. e.g., Ref. [152] treats the
orientational relaxation diffusively.
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A similar analysis for the third-order response, where j = 1, 2, 3, 4, results in

Ra4,a3,a2,a1;j (t3, t2, t1) =
∑

b4,b3,b2,b1

Y a4,a3,a2,a1
b4,b3,b2,b1

(t3, t2, t1) Rb4,b3,b2,b1;j (t3, t2, t1) (4.11)

where

Y a4,a3,a2,a1
b4,b3,b2,b1

(t2, t1) ≡
〈
Ta4,b4(t1+t2+t3)Ta3,b3(t1+t2)Ta2,b2(t1)Ta1,b1(0)

〉Cl

eq
. (4.12)

Eqns.(4.9) and (4.11) provide a convenient route to calculate the laboratory frame

polarization in response to a laboratory frame driving field, starting out with an ORT

which is given in terms the body-fixed coordinates. This will be particularly use-

ful when ab initio electronic structure inputs are used to describe the vibrational

motion, as described later in the chapter. However, the calculations require knowl-

edge of the (n + 1)-th rank orientational tensor Y an+1,...,a1

bn+1,...,b1
(tn, ..., t1), which in turn re-

quires input regarding the rotational motion of the molecule. Although Jb2,b1 (t1) and

Rb4,b3,b2,b1;j (t3, t2, t1) are sensitive to the vibrational dynamics relative to the body-

fixed coordinate system, the decoupling of the rotational and vibrational motions

implies that the body-frame ORTs may be computed once and used regardless of the

instantaneous molecular orientation. In other words, all the information on the rota-

tional motion of the molecule is contained in the tensor Y an+1,...,a1

bn+1,...,b1
(tn, ..., t1) [31, 152].

4.2.2 Optical Response Tensors for a Multistate Vibrational System

To derive explicit expressions for the body-frame tensors Jb2,b1 (t1) and Rb4,b3,b2,b1;j (t3, t2, t1)

given in (4.3) and (4.5), we begin with the dipole moment defined in (1.12), except

now there are limits on the summations. This is due to the assumption that the

magnitude of the transition dipoles are appreciable only for a set of n1 states in the

first band and n2 states in the second band:
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−→µ =
n1∑

j=0

[−→µ 00,1j |00〉 〈1j| +−→µ 1j,00 |1j〉 〈00|] +
n1∑

j=0

n2∑

k=0

[−→µ 1j,2k |1j〉 〈2k| +−→µ 2k,1j |2k〉 〈1j|]

(4.13)

In addition, we assume that β!ω10 . 1, so that the equilibrium density operator

corresponds to the ground state

ρ̂eq = |00〉 〈00| (4.14)

As an illustrative example, the linear response will be considered in detail. We start

by noting that all of the states described above, regardless of the band they belong

to, are orthonormal eigenstates of the molecular Hamiltonian, ĤM , such that

〈00|00〉 = 1; 〈1j1|1j2〉 = δj1,j2 ; 〈2k1|2k2〉 = δk1,k2 (4.15)

〈00|1j〉 = 〈00|2k〉 = 〈1j|2k〉 = 0

e±iĤt/! |1j〉 = e±iε1jt/! |1j〉 ; e±iĤt/! |2k〉 = e±iε2kt/! |2k〉

With the above considerations, along with the fact that (see (4.13)),

µb1 ρ̂eq =
n1∑

j1=0

µ1j1,00,b1 |1j1〉 〈00|, (4.16)
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the linear response in the body-fixed frame becomes

Jb2,b1 (t1) = Tr [µb2 (t1) µb1 ρ̂eq] = Tr
[
eiHt1/!µb2e

−iHt1/!µb1 ρ̂eq

]
(4.17)

= Tr






eiHt1/!





n1∑

j2=0

[µ00,1j2,a2 |00〉 〈1j2| + µ1j2,00,a2 |1j2〉 〈00|]

+
n1∑

j2=0

n2∑

k2=0

[µ1j22k2,a2 |1j2〉 〈2k2| + µ2k21j2,a2 |2k2〉 〈1j2|]




e−iHt1/!

×
n1∑

j1=0

µ1j1,00,b1 |1j1〉 〈00|






= Tr






n1∑

j1,j2=0

µ00,1j2,b2µ1j1,00,b1 |00〉 〈1j2| 1j1〉 〈00| e−iε1jt1/!

+
n1∑

j1,j2=0

n2∑

k2=0

µ2k21j2,b2µ1j1,00,b1e
iε2kt1/! |2k2〉 〈1j2| 1j1〉 〈00|






=
n1∑

j1=0

µ00,1j2,b2µ1j1,00,b1e
−iε1jt1/!

Thus according to (4.9), the linear response in the lab frame is

Ja2,a1 (t1) =
∑

b2,b1

Y a2,a1
b2,b1

(t1)
n1∑

j1=0

µ00,1j2,b2µ1j1,00,b1e
−iε1jt1/! (4.18)

A similar procedure leads to the third-order ORTs in the body-fixed frame

Rb4,b3,b2,b1;1 (t3, t2, t1)

=
n1∑

j1,j2=0

µ00,1j2,b2µ1j2,00,b3µ00,1j1,b4µ1j1,00,b1e
i(ε1j2−ε1j1)t2/!e−iε1j1 (t1+t3)/!

+
n1∑

j1,j2=0

n2∑

k=0

µ00,1j2,b2µ1j1,00,b1µ1j22k,b3µ2k,1j1,b4e
−iε1j1 t1/!ei(ε1j2−ε1j1)t2/!ei(ε2k−ε1j1)t3/!

≡ R(1)
b4,b3,b2,b1;1 (t3, t2, t1) + R(2)

b4,b3,b2,b1;1 (t3, t2, t1)

(4.19)
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Rb4,b3,b2,b1;2 (t3, t2, t1)

=
n1∑

j1,j2=0

µ00,1j1,b1µ1j2,00,b2µ1j1,00,b3µ00,1j2,b4e
iε1j1 t1/!+i(ε1j1−ε1j2)t2/!e−iε1j2 t3/!

+
n1∑

j1,j2=0

n2∑

k=0

µ00,1j1,b1µ1j2,00,b2µ1j1,2k,b3µ2k,1j2,b4e
iε1j1 (t2+t1)/!eiε2k3

t3/!e−iε1j2 (t3+t2)/!

≡ R(1)
b4,b3,b2,b1;2 (t3, t2, t1) + R(2)

b4,b3,b2,b1;2 (t3, t2, t1)

(4.20)

Rb4,b3,b2,b1;3 (t3, t2, t1)

=
n1∑

j1,j2=0

µ00,1j1,b1µ1j1,00,b2µ1j2,00,b3µ00,1j2,b4e
iε1j1 t1/!−iε1j2 t3/!

+
n1∑

j1,j2=0

n2∑

k=0

µ00,1j1,b1µ1j1,2k,b2µ1j2,00,b3µ2k,1j2,a4e
iε1j1 t1/!+iε2kt2/!+i(ε2k−ε1j2)t3/!

≡ R(1)
b4,b3,b2,b1;3 (t3, t2, t1) + R(2)

b4,b3,b2,b1;3 (t3, t2, t1)

(4.21)

Rb4,b3,b2,b1;4 (t3, t2, t1)

=
n1∑

j1,j2=0

µ1j1,00,b1µ00,1j1,b2µ1j2,00,b3µ00,1j2,b4e
−iε1j2 t3/!−iε1j1 t1/!

+
n1∑

j1,j2=0

n2∑

k=0

µ1j1,00,b1µ2k,1j1,b2µ1j2,2k,b3µ00,1j2,b4e
−iε1j2 t3/!−iε2kt2/!−iε1j1 t1/!

≡ R(1)
b4,b3,b2,b1;4 (t3, t2, t1) + R(2)

b4,b3,b2,b1;4 (t3, t2, t1)

(4.22)

The ORTs in the lab frame are then given by (4.11) for j = 1, 2, 3, 4

Ra4,a3,a2,a1;j (t3, t2, t1) =
∑

b4,b3,b2,b1

Y a4,a3,a2,a1
b4,b3,b2,b1

(t3, t2, t1)
[
R(1)

b4,b3,b2,b1;j (t3, t2, t1) + R(2)
b4,b3,b2,b1;j (t3, t2, t1)

]
,

(4.23)

and the rephasing and nonrephasing signals by

Ra4,a3,a2,a1;nr = R(1)
a4,a3,a2,a1;1 + R(1)

a4,a3,a2,a1;4 −
[
R(2)

a4,a3,a2,a1;2

]∗

Ra4,a3,a2,a1;r = R(1)
a4,a3,a2,a1;2 + R(1)

a4,a3,a2,a1;3.−
[
R(2)

a4,a3,a2,a1;1

]∗
(4.24)
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It should be noted that the the the rephasing and nonrephasing signals are similar

in form to (3.3), except for the appearance of the complex conjugate terms. The

extra contribution is due to the fact that the model in (1.11) contains a third band

of states, whereas the model in chapter 2 considered only two electronic states (if a

third state were added, it would be analogous to the third band and the signals in

chapter 2 would also contain the extra contributions).

Finally, as in the exact solutions for the two-state model in §3.3, the ORTs are

purely oscillatory. As a result, a pure dephasing rate constant Γ is introduced in a

similar manner (see the discussion following Eqn. (3.26)), only in chapter 2 it was

interpreted as electronic dephasing, and in the present case it is meant to represent

vibrational dephasing. Thus

Ra4,a3,a2,a1;j → exp[−Γ(t1 + t3)]Ra4,a3,a2,a1;j (4.25)

4.3 ab initio 2DIR Spectra

In this section, the procedure for calculating the nonlinear ORTs using ab initio

electronic structure inputs is outlined. First, §4.3.1 presents a method for construct-

ing the ab initio anharmonic potential energy surfaces that define the molecular

Hamiltonian, HM [28]. The energy levels of the HM serve as direct input to the

ORTs in (4.24), whereas its eigenvectors serve as indirect input by way of the tran-

sition dipole moment vectors. Second, §4.3.2 derives an expression for the transition

dipole vectors, where quantities obtainable from electronic structure calculations ap-

pear explicitly. (4.25)

4.3.1 Field-free Anharmonic Hamiltonian in Normal Coordinates

In general, the basis of harmonic oscillator Fock states {|m1, m2, . . . ,mn〉} is char-

acterized by the total number of quanta contained in n normal modes, where mj
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denotes the number of quanta in the j-th mode. If the basis is restricted to the

subspace spanned by a few normal modes with nearby frequencies, it may be conve-

niently divided into bands according to the total number of quanta:

• The ground state |0, ..., 0〉

• A “singly-excited” band of n states, each containing a single quanta {|1, ..., 0〉 , ..., |0, ..., 1〉}

• A “doubly-excited” band of n(n + 1)/2 states containing two total quanta,

{|2, ..., 0〉 , ..., |0, ..., 2〉 , ..., |1, 1, ..., 0〉 , ..., |0, ..., 1, 1〉}

• etc.

In what follows, this basis will be referred to as the “harmonic basis”, and the aim

here is to express the field-free multistate Hamiltonian of (1.11) in a such a basis.

For a system of N nuclei, the field-free Hamiltonian in the body-fixed coordinate

system may be generally written as:

H =
3N∑

i=1

p2
i

2
+ U (q1, ..., q3N) =

1

2
3p · 3p + U (3q) (4.27)

where, 3q = (q1, ..., q3N) and 3p = (p1, ..., p3N). If the potential energy is expanded in

a Taylor series around the equilibrium nuclear configuration, 3q = 30, the zero-order

term may be dropped without loss of generality, and the first order terms vanish

(∂U/∂qi)-q=-0 = 0 since 3q = 30 corresponds to a minimum of the potential energy

surface. Hence:

U (q1, ..., q3N) ≈ 1

2!

3N∑

i,j=1

U (2)
ij qiqj +

1

3!

3N∑

i,j,k=1

U (3)
ijkqiqjqk +

1

4!

3N∑

i,j,k,l=1

U (4)
ijklqiqjqkql + ...(4.28)

where

U (2)
ij ≡

(
∂2U

∂qi∂qj

)

-q=-0

, U (3)
ijk ≡

(
∂3U

∂qi∂qj∂qk

)

-q=-0

, U (4)
ijkl ≡

(
∂4U

∂qi∂qj∂qk∂ql

)

-q=-0

(4.29)

are the second-, third-, and fourth-order force constants. The transformation to

normal coordinates may be outlined in the following steps:
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• Express the second order term in matrix form

1

2!

3N∑

i=1

3N∑

j=1

U (2)
ij qiqj =

1

2
3qTU(2)3q =

1

2
(q1, q2, ..., q3N)





U (2)
11 U (2)

12 · · · U (2)
1,3N

U (2)
21 U (2)

22 · · · U (2)
2,3N

...
...

. . .
...

U (2)
3N,1 U (2)

3N,2 · · · U (2)
3N,3N









q1

q2

...

q3N





(4.30)

and identify U(2) as the Hessian matrix

• Find the orthogonal matrix A that diagonalizes the Hessian, and the corre-

sponding eigenvalues λj

A−1UA =





λ1 · · · 0

...
. . .

...

0 · · · λ3N




(4.31)

• Use the matrix A to find the normal mode coordinates

1

2
3qTU(2)3q =

1

2

(
A−13q

)T (
A−1U(2)A

) (
A−13q

)
=

1

2

3N−6∑

k=1

λkQ
2
k (4.32)

Qk =
3N∑

j=1

A−1
kj qj =

3N∑

j=1

A∗
jkqj;

and normal mode momenta

1

2
3p · 3p =

1

2

(
A−13p

)
·
(
A−13p

)
=

1

2
3P · 3P (4.33)

Pk =
3N∑

j=1

A−1
kj pj =

3N∑

j=1

A∗
jkpj

The 3N − 6 (or 3N − 5 in the case of linear molecules) upper limit of the sum

in the last term of (4.32) is because 6 (or 5 in the case of linear molecules) of

the components of A−13q would correspond to the center of mass and rotational

coordinates. However, these coordinates are stationary in the body-fixed coordinate
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system, and are therefore associated with zero eigenvalues. We conveniently assume

that the λ3N−5 = ... = λ3N = 0 correspond to those degrees of freedom.

The anharmonic terms can also be cast in terms of the normal mode coordinates:

Ĥ =
3N−6∑

i=1

1

2

(
P 2

i + ω2
i Q

2
i

)
+

1

3!

3N−6∑

i,j,k=1

φijkQiQjQk +
1

4!

3N−6∑

i,j,k,l=1

φijklQiQjQkQl + . . .

(4.34)

where λk ≡ ω2
k, and

φijk ≡
(

∂3U

∂Qi∂Qj∂Qk

)

-Q=-0

, φijkl ≡
(

∂4U

∂Qi∂Qj∂Qk∂Ql

)

-Q=-0

. (4.35)

The eigenfunctions and eigenvalues of the harmonic part of the Hamiltonian,

Hhar =
3N−6∑

i=1

1

2

(
P 2

i + ω2
i Q

2
i

)
(4.36)

are given by:

|n〉 = |n1, n2, ..., n3N−6〉

!Ωn = n1!ω1 + n2!ω2 + ... + n3N−6!ω3N−6

(4.37)

where n1, n2, ..., n3N−6 = 0, 1, 2, 3, . . ..

The numerical computation of the anharmonic Hamiltonian is facilitated by first

transforming it to second quantized normal ordered form, and writing the result in

the harmonic basis defined by (4.37). Using the bosonic creation and annhilation

operators,

Qk =

√
!

2mkωk

(
âk + â†k

)

Pk = −i

√
mk!ωk

2

(
âk − â†k

)
(4.38)
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leads to

Ĥ = Ĥhar +
Nmode∑

i,j,k=1

Uijk

[
âiâj âk + 3â†i â

†
j âk + 3â†i âj âk + â†i â

†
j â

†
k + 3

(
âi + â†i

)
δj,k

]

+
Nmode∑

i,j,k,l=1

Uijkl

[
âiâj âkâl + 4â†i â

†
j â

†
kâl + 6â†i â

†
j âkâl + 4â†i âj âkâl + â†i â

†
j â

†
kâ

†
l

+ 6
(
âiâj + â†i â

†
j + 2â†i âj

)]
(4.39)

where the summation limits 3N − 6 have been replaced by Nmode, where Nmode is

the number of modes explicitly accounted for in the computations4. In the above,

Hhar =
∑

k

(
â†kâk + 1/2

)
!ωk and

φ̃ijk ≡
φijk

3!
√

2ωi2ωj2ωk

, φ̃ijkl ≡
φijkl

4!
√

2ωi2ωj2ωk2ωl

. (4.40)

The second-order force constants, and hence the normal mode frequencies {ωk}, are

obtained directly from the electronic structure Hessian calculations, while the third-

and fourth-order force constants are calculated as described in §4.3.3. Once these

inputs are known, the matrix representation of Ĥ in the harmonic basis is easily

constructed using creation and annihilation operators





〈na|H |na〉 〈na|H |nb〉 · · · · · ·

〈nb|H |na〉 〈nb|H |nb〉 · · · · · ·
...

...
. . .

...
...

. . .









Cjna

Cjnb

...

...





= Ej





Cjna

Cjnb

...

...





(4.41)

Diagonalization then leads to the anharmonic energy levels, and corresponding eigen-

functions as linear combinations of the harmonic basis states,

|Ej〉 =
∑

n

Cj,n |n〉 . (4.42)

4Chosen as the number of photoactive modes in the preliminary work presented in this chapter.
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Figure 4.1: Schematic energy level structure for a three-mode system consisting of a ground state,
a band of singly-occupied states, and a band of doubly-occupied states. The harmonic basis states
{|n1, n2, n3〉} from (4.37) are show on the left, which the anharmonic basis states {|Ek〉} from (4.42)
are show on the right. The anharmonicity is assumed to not disrupt the gross band structure.

Since the anharmonic terms are usually relatively small, the energy levels of the

anharmonic Hamiltonian retain a similar band structure (Figure 4.1 illustrates a

three-mode example). Typically, only the first three bands of the anharmonic Hamil-

tonian contribute to the third-order signal. However, in terms of numerical diagonal-

ization, the energies of excited vibrational states do not converge with this minimal

set of basis states, since stabilization of the singly- and doubly-excited bands requires

coupling with higher states in higher bands [28]. Consequently, the number of ba-

sis states used in the numerical calculations was enlarged until convergence of the

singly- and doubly-excited energies was achieved. For example, the minimal number

of basis states needed for the the three mode system discussed later in this chapter

was 10, but the number required for convergence was 364.

4.3.2 Field-Matter Interaction: Polarized Transition Dipoles

In this section, an expression for the matrix elements of the vector transition

dipole moments in the basis of molecular eigenstates, in terms of electronic structure
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inputs.

For a neutral molecule consisting of Ne electrons and Nn nuclei,
Nn∑
α=1

ζα = Ne,

where ζα is the atomic number of the α-th nucleus, and for electronic and nuclear

position operators 3r = (3r1, ...,3rNe) and 3R =
(

3R1, ..., 3RNn

)
, respectively, the overall

dipole moment operator is given by:

−→µ
(
3r, 3R

)
= −→µ e (3r) +−→µ n

(
3R
)

. (4.43)

Here, −→µ e (3r) = −
Ne∑
j=1

e3rj and
Nn∑
α=1

ζαe3Rα are the electronic and nuclear contributions,

respectively. Within the Born-Oppenheimer approximation, the stationary wave

functions of the molecule are of the following form:

ψs,σ

(
3r, 3R

)
= ϕs

(
3r; 3R

)
χs,σ

(
3R
)

(4.44)

where ϕs

(
3r; 3R

)
is the s-th electronic wave function, which is parametrically depen-

dent on 3R, and χs,σ

(
3R
)

is the σ-th nuclear wave function associated with the s-th

electronic state. The matrix elements of the overall dipole moment operator in the

stationary state representation are given by:

〈ψs,σ′| 3µ |ψs,σ〉 =

∫
d3Rχ∗s,σ′

(
3R
)

χs,σ

(
3R
) ∫

d3rϕ∗s

(
3r; 3R

)−→µ e(
−→r )ϕs

(
3r; 3R

)

+

∫
d3Rχ∗s,σ′

(
3R
)−→µ n(

−→
R )χs,σ

(
3R
) (4.45)

In the Condon approximation, one neglects the parametric dependence of ϕs

(
3r; 3R

)

on 3R by assuming ϕs

(
3r; 3R

)
→ ϕs

(
3r; 3R0

)
≡ ϕs,0 (3r) (i.e., the nuclear configuration

is fixed as far as the electronic motions are concerned). Then, using the orthogonality

of the nuclear wavefunctions,

〈ψs,σ′| 3µ |ψs,σ〉 = 〈ϕs,0|µe (3r) |ϕs,0〉 δσ,σ′ + 〈χs,σ′|µn

(−→
R

)
|χs,σ〉 . (4.46)

The diagonal matrix elements correspond to the permanent dipole in a given vibra-

tional state, which is responsible for the Stark Shift of the energy levels. However,
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since this term is diagonal, it cannot induce transitions between the adiabatic states,

and will be assumed to be zero in this work. This assumption is true for a symmet-

rical molecule such as Mn2(CO)10, and amounts to ignoring the Stark shift in the

case of asymmetrical molecules.

If 3Rα is rewritten in the form 3Rα = 3Rα0 + 3δα, where 3Rα0 is the equilibrium

configuration and 3δα is the deviation from it, then the off-diagonal elements become

〈ψs,σ′| 3µ |ψs,σ〉 = 〈χs,σ′|−→µ n |χs,σ〉

=
Nn∑

α=1

ζαe
[
3R0α 〈χs,σ′| χs,σ〉+ 〈χs,σ′|3δα |χs,σ〉

]

=
Nn∑

α=1

ζαe 〈χs,σ′|3δα |χs,σ〉

(4.47)

It should be noted that the transition dipole moment in(4.47) does not include any

information on the electronic density. The charges on each atom therefore corre-

spond to the bare nuclear charges, rather than the effective charges. This is a result

of the Condon approximation, which assumes that the electronic density does not

change when the nuclear positions deviate from their equilibrium configuration. The

deviation may be defined as

3δα =





Xα

Yα

Zα




=

1√
Mα





q3α−2

q3α−1

q3α




(4.48)

where Xα, Yα, Zα are the Cartesian coordinates, and q3α−2 =
√

M1X1, q3α−1 =
√

M1Y1, q3α =

√
M1Z1, ... are the corresponding mass-weighted coordinates.

By assuming that s corresponds to the ground electronic state, and the nuclear

states |χs,σ〉 correspond to the eigenstates |Eσ〉 in (4.42), the dipole matrix elements
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become

〈ψs,σ′| 3µ |ψs,σ〉 =





〈ψs,σ′|µx |ψs,σ〉

〈ψs,σ′|µy |ψs,σ〉

〈ψs,σ′|µz |ψs,σ〉




=

Nn∑

α=1

ζαe√
Mα





〈Eσ′| q3α−2 |Eσ〉

〈Eσ′| q3α−1 |Eσ〉

〈Eσ′| q3α |Eσ〉




. (4.49)

Eqn. (4.49) is the main result of this subsection, where the matrix elements 〈Eσ′| ql |Eσ〉

are easily evaluated using creation and annihilation operators

〈Eσ′| ql |Eσ〉 =
3Nn∑

k=1

Alk 〈Eσ′|Qk |Eσ〉 (4.50)

=
3Nn−6∑

k=1

∑

n,n′

AlkC
∗
σ′,n′Cσ,n

√
!

2ωk

[√
n′kδ (n′k − 1, nk) +

√
n′k + 1δ (n′k + 1, nk)

]
,

where Cσ,n = 〈n|Eσ〉, and quantities in red indicate electronic structure inputs.

4.3.3 Electronic Structure Inputs

Geometry optimization and normal mode analysis for Mn(CO)5 was done at the

B3LYP[154–157]/LanL2DZ[158–160] level of theory using the quantum chemistry

software package Q-Chem 3.1 [161]. The normal mode analysis allowed for the de-

termination of the partial charges ζα, reduced masses Mα, normal mode frequencies

ωk and corresponding eigenvectors of the Hessian matrix A, all of which serve as

inputs for the transition dipole vectors in (4.49).

Third-order force constants, φijk, and semidiagonal fourth-order force constants,

φijkk were calculated in terms of the normal-mode coordinates via a finite displace-

ment method [162, 163]. Off-diagonal fourth-order force constants of the type φijkl

have been observed to lead to very small shifts of the energy levels (∼cm−1) and

are therefore neglected [164]. More specifically, the second derivatives of the poten-

tial energy with respect to the normal mode coordinates φij = ∂2U/∂Qi∂Qj were

calculated at the equilibrium geometry as well as at geometries slightly displaced
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relative to it. We obtained the displaced configurations by shifting the atoms rel-

ative to their equilibrium positions along all 3N-6 normal-mode coordinates in the

positive and negative directions. For a given displacement ∆Qk along the kth mode

coordinate, the third-order force constant is given by

φijk =

(
∂3U

∂Qi∂Qj∂Qk

)

-Q=-0

=
φ+

ij − φ−ij
2∆Qk

(4.51)

where φ+
ij and φ−ij represent the second-order force constants at the positively and

negatively displaced geometries, respectively. Similarly, the semidiagonal fourth-

order force constants are given by

φijkk =

(
∂4U

∂Qi∂Qj∂Qk∂Qk

)

-Q=-0

=
φ+

ij + φ−ij − 2φ0
ij

(2∆Qk)
2 (4.52)

where φ0
ij ≡ φ0

iiδi,j. The third- and fourth-order force constants obtained in this man-

ner, along with the normal mode frequencies ωk, serve as inputs to the anharmonic

Hamiltonian in (4.39).

The overall computational scheme may be summarized as follows:
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Figure 4.2: A summary of the computational scheme used for the ORTs in (4.24).

4.4 Application to Metal Carbonyl Compound Mn(CO)5

As mentioned in the chapter Introduction, the ultimate aim of this work was to

apply the ab initio procedure to the compound Mn2(CO)10, whose structure, along

with those of its photoproducts, are shown in Figure 4.3. As a first application,
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Figure 4.3: Photodissociation of Mn2(CO)10 into its photoproducts Mn(CO)5 and Mn2(CO)9. The
highlighted Mn(CO)5 structure is the focus of this section.

Figure 4.4: The three photoactive CO modes of Mn(CO)5. The Mn atom is shown in light blue,
while the C and O atoms are in green and red, respectively.

we applied the photoproduct Mn(CO)5. Although this system consists of five CO

stretching modes, three photoactive and two photoinactive, the results presented here

only account for the three photoactive modes. A schematic of the vibrations of these

three modes are shown in Figure 4.4.

4.4.1 Preliminary Results and Discussion

The procedure for calculating the vector transition dipole moment outlined in

§4.3.2 was general in that Eqn. (4.49) involved matrix elements between anharmonic

basis states, 〈Eσ′| ql |Eσ〉. As a first approximation, we instead chose to calculate the

dipoles in harmonic basis using 〈n′| ql |n〉, which is expected to be a reasonable

approximation provided the anharmonicities are relatively small. When applied to

Mn(CO)5, this resulted in transition dipoles that were either along the z direction,

or in the xy−plane. Figure 4.5 shows the anharmonic energy levels and all possible
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transitions between the three bands: the ground state, the three singly-excited states,

and the six doubly-excited states5.
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Figure 4.5: Directionality of transition dipole moments in Mn(CO)5. The left panel defines the
coordinate axes, with the z axis along the terminal CO group, and the x and y axes near the
equitorial CO groups (the equitorial groups are not exactly at 90 degrees to the terminal group).
The right panel shows

Figure 4.6 shows the absolute value rephasing spectrum, computed according to

(4.24), and is the main result of this section. As indicated in the Figure, the allowed

transitions may be correlated with the various peaks in the spectrum, as expected.

However, the most important feature of is that the anharmonic shift of the main

diagonal peak is upward, contrary to what other studies and found and to what

was expected. This is a direct consequence of neglecting the coupling between the

photoactive and photoinactive CO modes, as noted in the introduction. The same

trend is seen in studies on Mn2(CO)10, where ignoring the photoinactive modes6

results in negative diagonal anharmonic peak shifts (see the red highlighted portion

of Table 4.1 in the Introduction).

Although the preliminary results presented here were qualitatively incorrect due to
5The number of possible transitions depends on the number of modes included.
6In the case of Mn2(CO)10, four of the ten total CO modes are photoactive.



116

!!"

"#$

!#$ !#$ !#$

%$

&$ &$

 

E
1

 

E
4

 

E
3

 

E
2

 

E
5

 

E
7

 

E
6

 

E
9

 

E
10

 

E
8

!

"

!

"
"#$

!#$

%$

&$

 

!
3

 

!
1

!

"

 

!
3

 

!
1

Figure 4.6: Allowed transitions (left) between anharmonic energy levels {|Ej〉} and lab frame
spectrum (right) for Mn(CO)5. In the left panel, orange arrows indicate fundamental transitions,
red and dashed black arrows indicate allowed and forbidden transitions, respectively, between states
in the singly- and doubly-excited bands. The top right figure is the absolute value rephasing
spectrum in the zzzz polarization direction, and a dephasing rate constant of 3cm−1. The bottom
right figure is the same, where the labels indicate which allowed transitions contribute to each peak.

the neglect of the photoinactive modes, the framework established was an important

first step toward the computation of more accurate spectra, and was foundational to

the later work performed by others in the collaboration.



CHAPTER V

Summary

Chapter 2 focuses on the use of linear chirp to control population transfer between

two electronic states, and how control is affected by electronic dephasing. The moti-

vation originates from several experimental studies performed in liquid solution. Al-

though electronic dephasing is expected to be ultrafast and therefore non-negligible

on the experimental time scale, the interpretation of such experiments is usually

based on dephasing-free models. This chapter discusses the mechanism underlying

the control process, and the dephasing is modeled as a Gaussian-Markovian stochas-

tic process. An analysis of the sensitivity of the population transfer to the sign of

the linear chirp as a function of the amplitude and correlation time of the frequency

fluctuations is provided, along with the details of the simulation techniques used.

The key result is that some level of control may be achieved even in the presence of

relatively large frequency fluctuations, provided their correlation time is compara-

ble to or shorter than the pulse width in the time domain. Importantly, the results

suggest that the choice of methanol as a solvent in the actual experiment played

an important role in its success, since the rapid librations in this liquid lead to a

particularly short correlation time. Thus, the results reported in this chapter suggest

the interesting and rather surprising prediction that the same control strategy will

117
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not be as successful if an aprotic solvent would have been used.

Chapter 3 aims at benchmarking different quantum dynamics methods used for

calculating one- and two-dimensional optical spectra. The analysis was performed

in the context of a benchmark model that consists of a two-state chromophore with

shifted harmonic potential surfaces that differ in frequency. The exact one- and two-

dimensional spectra for this system were calculated and compared to spectra calcu-

lated via the following approximate methods: (1) The semiclassical forward-backward

initial-value representation (FB-IVR) method; (2) The linearized semiclassical (LSC)

method; (3) The standard second-order cumulant approximation which is based on

the ground-state equilibrium frequency-frequency correlation function (2OC); (4)

An alternative second-order cumulant approximation which is able to account for

nonequilibrium dynamics on the excited-state potential surface (2OCa). It is shown

that all four approximate methods reproduce the exact results when the frequencies

of the ground and excited harmonic surfaces are identical, which corresponds to a

popular benchmark model. However, by allowing for the ground and excited sur-

faces to differ in frequency one can obtain a more meaningful benchmark model for

which none of the four approximate methods is exact. To the best of my knowledge,

the results reported in this chapter represent the first ever comparison of one- and

two- dimensional spectra calculated via the above-mentioned approximate methods

to the corresponding exact spectra. The accuracy and robustness of the methods

are assessed by comparing the spectra as a function of the following parameters:

(1) The ratio of excited-state to ground-state frequencies; (2) Temperature; (3) The

horizontal displacement of the excited-state potential relative to the ground-state

potential; (4) The waiting time between the coherence periods in the case of two-

dimensional spectra. The FB-IVR method was found to predict spectra which are
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practically indistinguishable from the exact ones over a wide region of parameter

space. The LSC method was found to predict spectra which are in good agreement

with the exact ones over the same region of parameter space. However, the rather

popular 2OC and 2OCa approximations were found to be highly inaccurate unless

the frequencies of the ground and excited states were very similar. The significance

of these results lies in the fact that this is the first meaningful benchmark study of

its kind. The observations discredit the popular approach which is based on the 2OC

approximation and give credence to the use of the LSC method for modeling spectra

in complex systems, where exact or even FB-IVR-based calculations are prohibitively

expensive.

Chapter 4 presents my contribution to a collaborative project that involved an un-

dergraduate student (NickPreketes) and a graduate student from the group of Prof.

Kevin Kubarych (CarlosBaiz). The goal of this still ongoing project has been the

development of theoretical and computational tools for modeling two-dimensional in-

frared spectra of polyatomic molecules. My role in this collaboration was to establish

the necessary theoretical and computational framework, and subsequently compute

the spectra based on ab initio input provided by the collaborators. The development

was carried out in the context of the molecules Mn2(CO)10 and its photoproducts

Mn(CO)5 and Mn2(CO)9, which were studied by the Kubarych lab. As it turns out,

calculating the spectra of these molecules using a nonperturbative approach proved

to be prohibitively expensive, and it was therefore necessary to limit the calculation

to reduced models. Unfortunately, these reduced models proved to be too oversim-

plified, and consequently yielded nonphysical results. Later work by Mr. Baiz was

able to circumvent this problem by using a perturbative approach. Nevertheless, the

methodology presented in this chapter was foundational to the development of the
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project and to the work performed by other members in the collaboration after my

involvement with the project ceased.
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APPENDIX A

Matrix Exponentials as a Matrix Products

This appendix shows how to rewrite a matrix exponential, such as that appearing

in the quantum mechanical propagator, as a product of matrices which is easier to

implement numerically. The fact that the algebra differs iin the two cases discussed

below is a result of different matrix representations of the matrix in the exponent.

A.1 Exponential of a 2× 2 Block-Structured Hermitian Matrix

This section derives an expression for the time evolution operator exp
[
−iĤt/!

]

within the grid (spatial) representation. In §2.4.1 from the main text, the propagator

for a two-electronic-state system is expressed as a product of matrix exponentials.

Here, we focus on the potential energy part of the propagator, where the following

matrix appears in the exponent:

M ≡




V̂g −Ŵ

−Ŵ ∗ V̂e





= V̂g ⊗ |g〉 〈g| + V̂e ⊗ |e〉 〈e|− Ŵ ⊗ |g〉 〈e|− Ŵ ∗ ⊗ |e〉 〈g| (A.1)

It should be noted that each of the operators appearing in the four “blocks” of M

are diagonal in a position representation, which leads to algebraic manipulations

analogous to those of a 2× 2 matrix of numbers.
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We begin by noting that the three Pauli matrices plus the identity matrix 1̂ form

a basis for the Hilbert space of all 2 × 2 matrices, and for convenience we rewrite

them in the notation of the electronic state basis {|g〉 , |e〉} as

σ̂x =




0 1

1 0



 = |g〉 〈e| + |e〉 〈g|

iσ̂y =




0 1

−1 0



 = |g〉 〈e|−| e〉 〈g|

σ̂z =




1 0

0 −1



 = |g〉 〈g|−| e〉 〈e|

1̂ =




1 0

0 1



 = |g〉 〈g| + |e〉 〈e| . (A.2)

Expressed in this basis, M becomes

M =
V̂g + V̂e

2
1̂−,{W}σ̂x + 4{W}σ̂y +

V̂g − V̂e

2
σ̂z (A.3)

and finding the propagator amounts to finding the matrix exponential

exp [−iMt/!] = exp
[
−it

(
V̂g + V̂e

)
/4!

]
1̂ exp

[
−it

(
,{W}σ̂x + 4{W}σ̂y +

V̂g − V̂e

2
σ̂z

)
/2!

]

≡ exp
[
−it

(
V̂g + V̂e

)
/4!

]
1̂ exp [−itM ′/2!] (A.4)

We then interpret M ′ as a psuedo-vector in this space,

M ′ ≡Mxσ̂x + Myσ̂y + Mzσ̂z = rσ̃z (A.5)

where σ̃z defines a rotated coordinate system whose z-axis points in the direction of

M ′. The magnitude and direction of M ′ are then easily found from A.3 and A.5 as

r =
1

2

√(
V̂g + V̂e

)2

+ 4|W |2 (A.6)
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σ̃z =
M ′

r
= −,{W}

r
σ̂x +

4{W}
r

σ̂y +

(
V̂g + V̂e

)

2r
σ̂z (A.7)

Using the definitions in J.1, this leads to a matrix expression for second factor in

A.4,

exp [−itM ′/2!] = 1̂ cos β − iσ̃z sin β

=




cos β + i V̂e−V̂g

2r sin β i sin β
r (,W + i4W )

i sin β
r (,W − i4W ) cos β − i V̂e−V̂g

2r sin β



 (A.8)

and the full propagator is obtained from A.4 as:

exp [−iMt] = exp
[
−it

(
V̂g + V̂e

)
/4!

]
1̂

×




cos β + i V̂e−V̂g

2r sin β i sin β
r W

i sin β
r W ∗ cos β − i V̂e−V̂g

2r sin β



 (A.9)

A.2 Exponential of a General Hermitian Matrix

If Ĥ is a Hermitian matrix such that Ĥ† = Ĥ, then it may be diagonalized by a

unitary transformation U as

ÛĤÛ † = D̂ (A.10)

where the columns of Û are the eigenvectors of Ĥ and D̂ is a diagonal matrix whose

diagonal elements are the eigenvalues {λn} of Ĥ. A matrix exponential of the form

exp
[
−itĤ/!

]
may be rewritten by using the property Û Û † repeatedly:

exp

[
−i

t

!Ĥ

]
= Û Û † exp

[
−i

t

!Ĥ

]
Û Û †

= Û Û †{1̂− idt

! Ĥ +
1

2

(
idt

!

)2

Ĥ2 + . . .}ÛÛ †

= Û exp

[
−i

t

!

(
Û †ĤÛ

)]
Û † = Û exp

[
−i

t

!D̂

]
Û † (A.11)
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where the last line follows from (A.10). Then, exploiting the fact that D̂ is diagonal

leads to

exp

[
−i

t

!Ĥ

]
= Û exp




−i

t

!





λ1 0

λ2

0
. . .








Û †

= Û





λ1 0

λ2

0
. . .




Û † (A.12)
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APPENDIX B

Transformation of the Hamiltonian to a Rotating Frame

In solving quantum dynamics problems numerically, it is often convenient to trans-

form the Hamiltonian in the Schrödinger picture ĤS to an arbitrary but judiciously

chosen rotating frame where the problem becomes easier to solve. The procedure for

finding the Hamiltonian in the rotated from, H̃, is outlined below.

The dynamical equation satisfied by the wave function |ΨS〉 in the Schrödinger

picture is

i!∂ |ΨS〉
∂t

= ĤS |ΨS〉 (B.1)

and the tranformation to the rotating frame may be defined by way of a unitary

operator

Û = exp

[
− i

!Ôt

]
(B.2)

where Ô is any Hermitian operator. The wave function is transformed to the rotating

frame by

|Ψ̃〉 = Û |Ψ〉 (B.3)
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This transformation can be used along with (B.1) to find the Hamiltonian in the

rotated frame H̃

i!∂ |ΨS〉
∂t

= i! ∂

∂t

(
Û † |Ψ〉

)
= i!

(
∂

∂t
Û †

)
|Ψ〉+ i!Û † ∂

∂t
(|Ψ〉)

= −ÔÛ † |Ψ〉+ Û †ĤS |Ψ〉

=
(
−Ô + Û †ĤSÛ

) (
Û † |Ψ〉

)
(B.4)

where the last equality follows from the unitarity of the transformation, Û Û † = 1̂.

Thus the equation of motion for the wave function in the rotated frame is

i!∂ |Ψ̃〉
∂t

= H̃ |Ψ̃〉

(B.5)

where

H̃ = Û †ĤSÛ − Ô (B.6)
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APPENDIX C

Franck-Condon Coefficients for Shifted Harmonic Oscillator
Model

ground state

Ĥg |n〉 = (n + 1/2) !ω |n〉 (C.1)

The vibrational eigenstates of Ĥe are then given by:

exp

(
− i

! p̂x0

)
|n〉 (C.2)

Proof:

〈x| exp

(
− i

! p̂x0

)
|n〉 =

∫
dp exp

(
− i

!px0

)
〈x|p〉 〈p|x〉

=

∫
dp exp

(
− i

!px0

)
1√
2π!

(
i

!px

)
ψ̃n (p)

=
1√
2π!

∫
dp exp

(
i

!p (x− x0)

)
ψ̃n (p)

= ψn (x− x0) (C.3)

The FC coefficient is then given by:

Sn.n′ = 〈n′g|ne〉 = 〈n′| exp

(
− i

! p̂x0

)
|n〉

=
1√
n!

1√
n′!
〈0| ân′ exp

(
− i

! p̂x0

) (
â†

)n |0〉

=
1√
n!

1√
n′!
〈0| ân′ exp

[
ξ0

(
â† − â

)] (
â†

)n |0〉 (C.4)
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where ξ0 ≡
√

mω
2! x0 and the last equality follows from p̂ = i

√
mω
2!

(
â† − â

)
.

Further, the exponent in (C.4) may be rewritten according to the Baker-Hausdorff

theorem,

exp
(
Â + B̂

)
= exp

(
Â

)
exp

(
B̂

)
exp

(
−1

2

[
Â, B̂

])
(C.5)

for
[
Â,

[
Â, B̂

]]
=

[
B̂,

[
Â, B̂

]]
= 0 (C.6)

which leads to

Sn.n′ =
1√
n!

1√
n′!

exp

(
ξ2
0

2

)
〈0| ân′ exp (−ξ0â) exp

(
ξ0â

†) (
â†

)n |0〉

=
1√
n!

1√
n′!

exp

(
ξ2
0

2

) [
dn′+n

dηn′dλn
〈0| exp (ηâ) exp

(
λâ†

)
|0〉

]

η=−ξ0,λ=ξ0

(C.7)

Next consider

〈0| exp (ηâ) exp
(
λâ†

)
|0〉 = exp (λη) 〈0| exp

(
λâ†

)
exp (ηâ) |0〉

= exp (λn) (C.8)

Where we have used a |0〉 = 〈0| a† = 0 and exp
(
Â

)
exp

(
B̂

)
= exp

(
B̂

)
exp

(
Â

)
exp

([
Â, B̂

])

Hence,

dn′+n

dηn′dλn
〈0| exp (η) exp

(
λ†) |0〉 =

dn′+n

dηn′dλn
exp (λη) =

dn

dλn
λn′ exp (λη) (C.9)

As a final simplification, we may apply the Leibnitz rule

(f · g)(n) =
n∑

k=0




n

k



f (k)g(n−k) (C.10)

to find

dn

dλn
λn′ exp (λη) =

[
λn′ exp (λη)

](n)

=
n∑

k=0




n

k




(
λn′

)(k)

ηn−k exp (λη)

→ exp
(
−ξ2

0

) n∑

k=0




n

k



 (−ξ0)
n−k

(
λn′

)(k)

(C.11)
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Thus final form is

Sn.n′ =
1√
n!

1√
n′!

exp

(
−ξ2

0

2

)



n∑

k=0




n

k



 (−ξ0)
n−k dk

dλk

(
λn′

)




λ=ξ0

(C.12)
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APPENDIX D

Calculation of Orientational Tensor Elements

The transformation between the stationary laboratory coordinate system, {x, y, z},

and time-dependent body-fixed coordinate system {x′ (t) , y′ (t) , z′ (t)} is conveniently

given in terms of explicitly time dependent Euler angles Ωt = {αt, βt, γt} [153]:

Tx,x′ = cos γt cos βt cos αt − sin γt sin αt (D.1)

Tx,y′ = − sin γt cos βt cos αt − cos γt sin αt

Tx,z′ = sin βt cos αt

Ty,x′ = cos γt cos βt sin αt + sin γt cos αt

Ty,y′ = − sin γt cos βt sin αt + cos γt cos αt

Ty,z′ = sin βt sin αt

Tz,x′ = − cos γt sin βt

Tz,y′ = sin γt sin βt

Tz,z′ = cos βt

The orientational tensors can be computed in different ways:

• Numerically, by simulating the rotational motion. For example, one can com-

pute the tensor elements by following the motion of a body-fixed coordinate
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system throughout a molecular dynamics simulation or a stochastic simulation.

• Analytically, by assuming that the rotational motion is governed by a simple

diffusion equation. For example, for linear response:

Y a2,a1
b2,b1

(t1) =
〈
Ta2,b2(t1)Ta1,b1(0)

〉
eq

= 〈Ta2,b2 [Ω(t1)] Ta1,b1 [Ω(0)]〉eq

=

∫
dΩ0Peq (Ω0) G (Ω1, t1|Ω0, 0) Ta1,b1 [Ω0] Ta2,b2 [Ω1]

≡
2π∫

0

dα0

2π∫

0

dγ0

π∫

0

dβ0 sin β0
1

8π2
G (Ω1, t1|Ω0, 0) Ta1,b1 [Ω0] Ta2,b2 [Ω1]

(D.2)

If the conditional probability G (Ω1, t1|Ω0, 0) is known explicitly (e.g, see [152])

one can compute those integrals.
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APPENDIX E

Time-Evolution Operator for a Time-Dependent
Hamiltonian

The time evolution of the state vector |ψ(t)〉 is dictated by the time-dependent

Schrödinger equation:

i! d

dt
|ψ(t)〉 = Ĥ (t) |ψ(t)〉 (E.1)

where Ĥ (t) is the Hamiltonian operator, which must be hermitian and may or may

not be explicitly time-dependent. The time evolution operator is defined as the

unitary (norm-preserving) transformation between the state vector at time t0 to

that at time t as |ψ(t)〉 = Û (t, t0) |ψ (t, t0)〉, and upon substitution into (E.1) leads

to

i! d

dt
Û (t, t0) |ψ(t0)〉 = Ĥ (t) Û (t, t0) |ψ(t0)〉

(E.2)

Using the fact that this equation must hold for any initial state |ψ(t0)〉 leads to an

equation of motion for the time evolution operator:

i! d

dt
Û (t, t0) = Ĥ (t) Û (t, t0)

(E.3)
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Using the fact that Û (t0, t0) = Î, the solution to this equation yields

Û (t, t0) = Î − i

!

t∫

t0

dt1Ĥ (t1) Û (t1, t0) (E.4)

By repeatedly substituting the left side into the integrand on the right side, Eq.

(E.4) may be solved iteratively to give

Û (t, t0) = Î +
∞∑

n=1

(
− i

!

)n
t∫

t0

dtn

tn∫

t0

dtn−1 · · ·
t2∫

t0

dt1Ĥ (tn) Ĥ (tn−1) · · · Ĥ (t1)

≡ exp+



− i

!

t∫

t0

dt1Ĥ (t1)





(E.5)

Following a similar procedure, it may also be shown that Û † (t, t0) = exp−

[
i
!

t∫
t0

dt1Ĥ (t1)

]
.

Although (E.5) is the most general form of the time evolution operator, the following

two special cases of interest. First, if Ĥ is independent of time, the time-ordering is

inconsequential and

Û (t, t0) = exp

[
− i

!Ĥ (t− t0)

]
(E.6)

Second, if Ĥ(t) but commutes with itself at different times,
[
Ĥ(t1), Ĥ(t2)

]
= 0, then

Û (t, t0) = exp



− i

!

t∫

t0

dt′Ĥ (t′)



 (E.7)
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APPENDIX F

Second Order Cumulant Expansions

Consider ϕ (λ) = 〈exp (iλx)〉, where x is a random variable and λ is a book-keeping

parameter to be set to 1 at the end of the derivation. We assume ϕ (λ) may be

written as the exponential of an analytic function ψ (λ), so that

ϕ (λ) = exp [ψ (λ)] ≡ exp
[
ψ(1)λ + ψ(2)λ2 + ...

]

= 1 +
[
ψ(1)λ + ψ(2)λ2 + ...

]
+

1

2!

[
ψ(1)λ + ψ(2)λ2 + ...

]2
+ ...

= 1 + ψ(1)λ +

[
ψ(2) +

1

2

(
ψ(1)

)2
]

λ2 + ... (F.1)

where it should be noted that ϕ (λ = 0) = 1 implies that ψ(0) = 0. At the same time,

the fact that [dnϕ/dλn]λ=0 = in 〈xn〉 implies that

ϕ (λ) =
∞∑

n=0

in 〈xn〉
n!

λn = 1 + i 〈x〉λ− 1

2

〈
x2

〉
λ2 + ... (F.2)

Explicit expressions for ψ(n) can be obtained by comparing (F.1) and (F.2), order by

order:

ψ(1) = i 〈x〉

ψ(2) +
1

2

(
ψ(1)

)2
= −1

2

〈
x2

〉
⇒ ψ(2) = −1

2

(〈
x2

〉
− 〈x〉2

)

... (F.3)

Hence

〈exp (ix)〉 = exp

[
i 〈x〉 − 1

2

(〈
x2

〉
− 〈x〉2

)
+ ...

]
(F.4)
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APPENDIX G

Harmonic Oscillator Thermal Expectation Values

To derive expressions for the thermal expectation values that appear in the 2OC

and 2OCa approximations, we first express the position and momentum operators

in terms of creation and annihilation operators as â, â†

Q̂ =

√
!

2mωg

(
â + â†

)
; P̂ = −i

√
m!ωg

2

(
â− â†

)
(G.1)

By using the standard relations for the action of the creation and annihilation oper-

ators on the harmonic oscillator stationary states {|n〉}, â† |n〉 =
√

n + 1 |n + 1〉 and

â |n〉 =
√

n |n− 1〉 we may express the expectation values appearing in the cumulant

approximations in terms of 〈N̂〉 and 〈N̂2〉.

〈
N̂

〉
=

1

eβ!ωg − 1
;

〈
N̂2

〉
=

eβ!ωg + 1

(eβ!ωg − 1)2 (G.2)

Thus the quadratic terms are

〈Q̂2〉 =
!

2mωg

(
2〈N̂〉+ 1

)
;
〈
P̂ 2

〉
=

mωg!
2

(
2〈N̂〉+ 1

)
(G.3)

〈Q̂P̂ 〉 =
i!
2

; 〈P̂ Q̂〉 = −i!
2
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and the quartic terms are

〈
Q̂4

〉
=

(
!

2mωg

)2

3
(
2〈N̂2〉+ 2〈N̂〉+ 1

)
(G.4)

〈
P̂ 4

〉
=

(
mωg!

2

)2

3
(
2〈N̂〉2 + 2〈N̂〉+ 1

)

〈
Q̂2P̂ 2

〉
=

〈
P̂ 2Q̂2

〉
=

!2

4

(
2〈N̂2〉+ 2〈N̂〉 − 1

)

〈
Q̂P̂ Q̂P̂

〉
=

〈
P̂ Q̂P̂ Q̂

〉
=

!2

4

(
2〈N̂2〉+ 2〈N̂〉+ 1

)

〈
Q̂P̂ 2Q̂

〉
=

〈
P̂ Q̂2P̂

〉
=

!2

4

(
2〈N̂2〉+ 2〈N̂〉+ 3

)

〈
Q̂3P̂

〉
= i

3!2

4mωg

(
2〈N̂〉+ 1

)

〈
P̂ 3Q̂

〉
= −i

3mωg!2

4

(
2〈N̂〉+ 1

)

〈
P̂ Q̂3

〉
= −i

3!2

4mωg

(
2〈N̂〉+ 1

)

〈
Q̂P̂ 3

〉
= i

3mωg!2

4

(
2〈N̂〉+ 1

)

〈
Q̂2P̂ Q̂

〉
= i

!2

4mωg

(
2〈N̂〉+ 1

)

〈
P̂ 2Q̂P̂

〉
= −i

mωg!2

4

(
2〈N̂〉+ 1

)

〈
Q̂P̂ Q̂2

〉
= −i

!2

4mωg

(
2〈N̂〉+ 1

)

〈
P̂ Q̂P̂ 2

〉
= i

mωg!2

4

(
2〈N̂〉+ 1

)
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APPENDIX H

Linear response in the same-frequency case

In this appendix,we show that FB-IVR, LSC, 2OC and 2OCa all reproduce the exact

1D spectra when ωe = ωg ≡ ω. We start out by noting that in this case, the transition

frequency is linear in Q̂ (see Eqn. (3.11)): Û = !ωv
eg +

√
2S!ωQ̂ ≡ !ωv

eg + δÛ , where

ωv
eg = ωeg +ωS is the vertical transition frequency, δÛ ≡

√
2S!ωQ̂ is the fluctuation

relative to it, and S ≡ ωQ2
d/2! is the Huang-Rhys factor. In the Heisenberg pic-

ture, δÛg/e(t) =
√

2S!ωQ̂g/e(t), where Q̂g/e(t) is obtained by solving the Heisenberg

equations for the position operator on the ground and excited potential surfaces:

Q̂g(t) = Q̂ cos(ωt) +
P̂

ω
sin(ωt) , (H.1)

Q̂e(t) = Qd + (Q̂−Qd) cos(ωt) +
P̂

ω
sin(ωt) . (H.2)

As is well known, the 2OC approximation reproduces the exact result when ωe =

ωg:[84]

J(t1) = J2OC(t1) (H.3)

= |µge|2 exp

{
−iωv

egt1 − S

[
coth

(
β!ω

2

)
(1− cos(ωt1)) + i (sin(ωt1)− ωt1)

]}
.

However, it can also be shown that, in this case, J2OCa(t1) also coincides with

J2OC(t1), and hence the exact result. To this end, it can be easily verified that

〈δÛe(t)〉g = −2!ωS[1− cos(ωt)] (H.4)
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and

〈δÛe(t
′)δÛe(t

′′)〉g = 2S!2ω2 {2S[1− cos(ωt′)− cos(ωt′′) + cos(ωt′) cos(ωt′′)]

+
1

2
coth

(
β!ω

2

)
[cos(ωt′) cos(ωt′′) + sin(ωt′) sin(ωt′′)]

+
i

2
[cos(ωt′) sin(ωt′′)− sin(ωt′) cos(ωt′′)]

}
. (H.5)

Upon substitution of Eqs. (H.4) and (H.5) into Eq. (3.88), performing the integrals

explicitly and rearranging, one finds that J2OCa(t1) indeed reduces to Eq. (H.4).

The FB-IVR approximation is exact when ωe = ωg since the two surfaces share

the same set of coherent states. More specifically, starting with a coherent wave

packet on the ground state potential surface guarantees that it will remain coherent

even after hopping to the excited state potential energy surface, thereby reproducing

the exact result.

Although less obvious, the LSC approximation also turns out to be exact when

ωe = ωg. This can be verified explicitly by substituting the well known expression

for the Wigner distribution that corresponds to thermal equilibrium on the ground

state harmonic potential surface [165],

ρg,W (Q0, P0) =
1

π! tanh

(
β!ω

2

)
exp

{
− 2

!ω
tanh

(
β!ω

2

) [
P 2

0

2
+

1

2
ω2Q2

0

]}
, (H.6)

into Eq. (3.54), and solving for Qτ on the average potential energy surface, Vge(Q) =

1
2ω

2 (Q−Qd/2)2 + const., so that

∫ t1

0

dτδU(Qτ ) = −QdQ0ω sin(ωt1)−QdP0 [1− cos(ωt1)]+S [ωt1 − sin(ωt1)] . (H.7)

Substitution of Eqs. (H.6) and (H.7) into Eq. (3.54) followed by explicit integration

over Q0 and P0 is then found to reproduce the exact J(t1), Eq. (H.4), thereby

implying that the linearization of the forward-backward action is exact when ωe = ωg.
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Finally, although the derivation is significantly more cumbersome, it can be sim-

ilarly shown that, in the case ωe = ωg, FB-IVR, LSC, 2OC and 2OCa all repro-

duce the exact third-order ORFs, {R1, R2, R3, R4}, that underly the 2D spectra. It

should also be pointed out that FB-IVR, LSC, 2OC still produce the exact linear

and nonlinear ORFs when the model is extended to include an arbitrary number

of independent harmonic photo-inactive modes (which is equivalent to the popular

Brownian oscillator model[84]).
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APPENDIX I

The Linearized Semiclassical Approximation (LSC)

Consider the following general non-adiabatic two-time correlation function:

CAB(t) = Trn(ÂeiĤet/!B̂e−iĤgt/!). (I.1)

The correlation function in Eq. (??) is obviously of this type, with Â = V̂gee−βĤe/Ze

and B̂ = V̂eg. For the sake of simplicity, the direct linearization approximation will

be derived below for the case of a single particle of mass m, which moves in 1D.

The exact path integral expression for CAB(t) is given by

CAB(t) =
( m

2π!ε

)N
∫

dx+
0 · · ·

∫
dx+

N

∫
dx−0 · · ·

∫
dx−N〈x+

0 |Â|x−0 〉

〈x−N |B̂|x+
N〉ei(S+

N−S−N )/! . (I.2)

Here,

S+
N =

N−1∑

j=0

ε



1

2
m

(
x+

j+1 − x+
j

ε

)2

− Vg(x
+
j )



 ,

S−N =
N−1∑

j=0

ε



1

2
m

(
x−j+1 − x−j

ε

)2

− Ve(x
−
j )



 , (I.3)

are the forward and backward actions, respectively, and {0, ε, 2ε, . . . , Nε = t} corre-

sponds to the discretized time (the limit N →∞ will be imposed at a later stage).

The linearization approximation is based on the assumption that the most impor-

tant contributions to the path integral in Eq. (I.2) come from forward and backward
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trajectories which are infinitesimally close to each other. Thus, one may expand the

FB action, S+
N −S−N , to first order with respect to the difference between the forward

and backward trajectories. [110, 111, 121–127] To this end, we change the integra-

tion variables in Eq. (I.2) from x+
0 , . . . , x+

N , x−0 , . . . , x−N into y0, . . . , yN , z0, . . . , zN ,

such that

yj =
1

2
(x+

j + x−j ) , zj = x+
j − x−j . (I.4)

The linearization approximation is then introduced by expanding the FB action,

S+
N − S−N , to first order in z0, . . . , zN . This yields:

S+
N − S−N ≈ ε

N−1∑

j=0

[m

ε2
(yj+1 − yj)(zj+1 − zj)− V ′

av(yj)zj + U(yj)
]

= ε
N−1∑

j=1

zj

[m

ε2
(2yj − yj−1 − yj+1)− V ′

av(yj) + U(yj)
]

+εz0

[
−m

ε2
(y1 − y0)− V ′

av(y0) + U(y0)
]

+ εzN
m

ε2
(yN − yN−1) ,(I.5)

where,

Vav(y) =
1

2
[Vg(y) + Ve(y)] (I.6)

is the arithmetic average of the ground and excited electronic potential surfaces, and

U(y) = Ve(y)− Vg(y) (I.7)

is the difference between them.

Following the linearization, one can perform the integration over z1, . . . , zN−1

explicitly, by using the following identity:

∫
dzje

−iε[ m
ε2

(yj+1−2yj+yj+1)+V ′
av(yj)]zj/! =

2π!
ε

δ
[m

ε2
(yj+1 − 2yj + yj+1) + V ′

av(yj)
]

.

(I.8)
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It should also be noted that in the limit N →∞ (ε→ 0),

εz0

[
−m

ε2
(y1 − y0)− V ′

av(y0)
]
→ −z0p0 ,

εzN
m

ε2
(yN − yN−1) → zNpN , (I.9)

where p0/m = limε→0(y1 − y0)/ε and pN/m = limε→0(yN − yN−1)/ε. Changing the

integration variables y1, . . . , yN−1 into f1, . . . , fN−1, such that

fj =
m

ε2
(yj+1 − 2yj + yj−1) + V ′

av(yj) , (I.10)

and explicitly integrating over f1, . . . , fN−1, then leads to the following approxima-

tion:

CAB(t) ≈ 1

2π!

∫
dy0

∫
dyt

∫
dz0

∫
dzt

∣∣∣∣
∂p0

∂yt

∣∣∣∣ 〈y0 + z0/2|Â|y0 − z0/2〉

〈yt − zt/2|B̂|yt + zt/2〉e−ip0z0/!eiptzt/!ei
R t
0 dτU(τ) . (I.11)

It should be noted that in arriving to Eq. (I.11), we have explicitly incorporated

the limit N → ∞ (ε → 0), such that yN → yt, zN → zt and ε
∑N−1

j=0 U(yj) →
∫ t

0 dτU(τ), and made use of the following identity[115]

lim
N→∞

1

ε

(m

ε2

)N−1
∣∣∣∣
∂y

∂f

∣∣∣∣ =
1

m

∣∣∣∣
∂p0

∂yt

∣∣∣∣ (I.12)

(|∂y/∂f | is the determinant of the (N−1)×(N−1) matrix whose (i, j)-th element is

∂yi/∂fj). It should also be noted that yt = yt(y0, p0) in Eq. (I.11) follows a classical

trajectory which is dictated by the averaged potential (Cf. Eq. (I.8)) :

fj =
m

ε2
(yj+1 − 2yj + yj+1) + V ′

av(yj) = 0
N→∞−→ m

d2

dt2
y(t) = −V ′

av[y(t)] . (I.13)

Finally, changing the integration variable yt into p0, we arrive at the following direct

linearization (DL) approximation:

CAB(t) ≈ CDL
AB (t) = (2π!)−1

∫
dy0

∫
dp0AW (y0, p0)BW (yt, pt)e

i
R t
0 dτU(τ)/! , (I.14)
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where

AW (q, p) =

∫
d∆e−ip∆/!〈q + ∆/2|Â|q −∆/2〉 (I.15)

is the Wigner transform, and yt = yt(y0, p0) and pt = pt(y0, p0) follow a classical

trajectory which is dictated by the averaged potential

The DL approximation in Eq. (I.14) can be straightforwardly extended to the

case of a multi-dimensional system:

CAB(t) ≈ CDL
AB (t) = (2π!)−Nn

∫
dQ0

∫
dP0AW (Q0,P0)BW (Qt,Pt)e

i
R t
0 dτU(τ)/! ,

(I.16)
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APPENDIX J

Liouville Space Algebra for the Exact Linear ORF

This appendix derives the expression for the exact linear response function for the

shifted harmonic oscillator model, using Liouville space algebra, and will make use

of the following identities [81]

|m, n〉〉 = |m〉 〈n| (J.1)

∑

m,n

|m, n〉〉〈〈m, n| = 1 (J.2)

|A〉〉 =
∑

m,n

|m, n〉〉Am,n =
∑

m,n

|m, n〉〉〈〈m, n|A〉〉 (J.3)

〈〈A|B〉〉 = Tr
(
A†B

)
(J.4)

〈〈m, n|m′, n′〉〉 = δm,m′δn,n′ (J.5)

where A and B are Hilbert space operators, and the action of a superoperator O on

a Liouville space ket corresponds to a commutator of the Hilbert space operator

O |A〉〉 ↔ [O, A] . (J.6)

The linear response may be derived from the following expression

〈〈V̂ |G (t1)V |ρ̂eq〉〉 =
∑

j,k,m,n

〈〈V̂ |m, n〉〉〈〈m, n|G (t1) |j, k〉〉〈〈j, k|V |ρ̂eq〉〉,
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(J.7)

where the transition dipole operator has the form

V̂ =
∑

j $=k

Vjk |j〉 〈k| , (J.8)

and below each of the factors appearing on the right side will be computed separately.

Using the fact that V ∗
jk = Vkj and Tr (. . .) =

∑
k 〈k| . . . |k〉, the first factor is easily

found by

〈〈V̂ |m, n〉〉 (J.2)
= Tr

(
V̂ † |m〉 〈n|

)
= Tr

(
∑

j $=k

V ∗
jk |k〉 〈j|m〉 〈n|

)
(J.9)

= Tr

(
∑

k

V ∗
mk |k〉 〈n|

)
=

∑

k,l

V ∗
mkδl,kδn,l = Vnm

To find the second factor, we assume that the {|k〉} are eigenstates of the Hamiltonian

H, so that H |k〉 = εk |k〉 and

[H, |k〉 〈j|] =

[
∑

l

εl |l〉 〈l| , |j〉 〈k|
]

(J.10)

=
∑

l

εl(|l〉 〈k| δl,j − |j〉 〈l| δk,l) = !ωj,k

where ωj,k ≡ εj − εk is the transition frequency. Further, using the definition of the

field-free Green’s function superoperator, G (t1) = Θ(t1) exp (−iLt1), leads to

〈〈m, n|G (t1) |j, k〉〉 = 〈〈m, n|
{

1− 1

! it1L +
1

2!2
(it1)

2 L2 + . . .

}
|j, k〉〉

(J.6)
= 〈〈m, n|

{
1− it1ωj,k +

1

2
(it1)

2 ω2
j,k + . . .

}
|j, k〉〉

= exp (−iωj,kt1) 〈〈m, n|j, k〉〉 (J.5)
= exp (−iωj,kt1) δm,jδn,k. (J.11)

The first step in computing the last factor is to write the density operator as

|ρ̂eq〉〉
(J.3)
=

∑

m,n

〈m| e
−βH

Z
|n〉 |m〉 〈n| =

∑

m

e−βεm

Z
|m〉 〈m| , (J.12)
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so that

V |ρ̂eq〉〉
(J.6)↔

[
V̂ , ρ̂eq

]
=

[
∑

j′ $=k′

Vj′k′ |j′〉 〈k′| ,
∑

m

e−βεm

Z
|m〉 〈m|

]
(J.13)

=
∑

j′ $=k′,m

Vj′k′
e−βεm

Z
(|j′〉 〈m| δk′,m − |m〉 〈k′| δm,j′)

(J.3)
=

∑

j′ $=m

Vj′m
e−βεm

Z
|j′, m〉〉 −

∑

k′ $=m

Vmk′
e−βεm

Z
|m, k′〉〉.

Finally,

〈〈j, k|V |ρ̂eq〉〉 =
∑

j′ $=m

Vj′m
e−βεm

Z
〈〈j, k|j′, m〉〉 −

∑

k′ $=m

Vmk′
e−βεm

Z
〈〈j, k|m, k′〉〉

(J.5)
=

∑

j′ $=m

Vj′m
e−βεm

Z
δj,j′δk,m −

∑

k′ $=m

Vmk′
e−βεm

Z
δj,mδk,k′

=
∑

m

e−βεm

Z
(Vjmδk,m − Vmkδj,m) (J.14)
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[43] J. Somlói and A. Lörincz. Two-electron-state molecule in strong electric fields. Phys. Rev.
A, 43:2397, 1991.

[44] C.J. Bardeen, Q. Wang, and C.V. Shank. Femtosecond chirped pulse excitation of vibrational
wave packets in LD690 and bacteriorhodopsin. J. Phys. Chem. A, 102:2759, 1998.

[45] G. Cerullo, C.J. Bardeen, Q. Wang, and C.V. Shank. High-power femtosecond chirped pulse
excitation of molecules in solution. Chem. Phys. Lett., 262:362, 1996.

[46] V.S. Malinovsky and J.L. Krause. Efficiency and robustness of coherent population transfer
with intense, chirped laser pulses. Phys. Rev. A, 63:043415–1, 2001.

[47] O. Nahmias, O. Bismuth, O. Shoshana, and S. Ruhman. Tracking excited state dynamics
with coherent control: automated limiting of population transfer in LDS750. J. Phys. Chem.
A, 109:8246, 2005.

[48] A.C. Florean, E.C. Carroll, K.G. Spears, R.J. Sension, and P.H. Bucksbaum. Optical control
of excited-state vibrational coherences of a molecule in solution: the influence of the excitation
pulse spectrum and phase in LD690. J. Phys. Chem. B, 110:20023, 2006.

[49] S. Ruhman and R. Kosloff. Application of chirped ultrashort pulses for generating large-
amplitude ground-state vibrational coherence: a computer simulation. J. Opt. Soc. Am. B,
7:1748, 1990.

[50] C.J. Bardeen and Q. Wang and C.V. Shank. Selective excitation of vibrational wave packet
motion using chirped pulses. Phys. Rev. Lett., 75:3410, 1995.

[51] B.D. Fainberg. Nonperturbative analytic approach to the interaction of intense ultrashort
chirped pulses with molecules in solution: Picture of “moving” potentials. J. Chem. Phys.,
109:4523, 1998.

[52] K. Mishima and M. Hayashi and J.T. Lin and K. Yamashita and S.H. Lin. A numerical study
on vibronic and vibrational dynamics generated by chirped laser pulses in the presence of
relaxation processes. Chem. Phys. Lett., 309:279, 1999.

[53] B.D. Fainberg and V.A. Gorbunov. Coherent population transfer in molecules coupled with
a dissipative environment by an intense ultrashort chirped pulse. J. Chem. Phys., 117:7222,
2002.



152

[54] M.Demirplak and S.A. Rice. Optical control of molecular dynamics in a liquid. J. Chem.
Phys., 116:8028, 2002.

[55] R. Kosloff. Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys.
Chem., 92:2087, 1988.

[56] D. Gottlieb and S.A. Orszag. Numerical analysis of spectral methods: Theory and applica-
tions. SIAM, Philadelphia, USA, 1977.

[57] E.T. Whittaker. On the functions which are represented by the expansions of the interpolation
theory. Proc. R. Soc. Edinburgh, 35:181, 1915.

[58] H. Nyquist. Certain topics in telegraph transmission theory. Trans. AIEE, 47:617, 1928.

[59] C.E. Shannon. A mathematical theory of communication. Proc. IRE, 37:10, 1949.

[60] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Comput., 19:287, 1965.

[61] C.J. Temperton. Self-sorting mixed-radix fast Fourier transforms. J. Comput. Phys., 52:1,
1983.

[62] H.J. Nussbaumer. Fast Fourier transform and convolution algorithms. Springer Verlag,
Berlin, Germany, 1982.

[63] K.F. Everitt and J.L. Skinner. Molecular theory of three-pulse photon echoes for solutes in
non-polar fluids. Chem. Phys., 266:197, 2001.

[64] R. Kubo. Fluctuation, relaxation and resonance in magnetic systems. Oliver and Boyd,
London, UK, 1962.

[65] G.E. Uhlenbeck and L.S. Ornstein. On the theory of the Brownian motion. Phys. Rev., 36:
823, 1930.

[66] J. Luczka. Non-Markovian stochastic processes: Colored noise. Chaos, 15:026107, 2005.

[67] R.F. Fox and I.R. Gatland and R. Roy and G. Vemuri. Fast, accurate algorithm for numerical
simulation of exponentially correlated noise. Phys. Rev. A, 38:5938, 1998.

[68] L. Bartosch. Generation of colored noise. Int. J. Mod. Phys. C, 12:851, 2001.

[69] J.L. Doob. Stochastic Processes. Wiley, New York, 1953.

[70] M. Rigo and F. Mota-Furtado and P.F. O’Mahony. Continuous stochastic Schrödinger equa-
tions and localization. J. Phys. A: Math. Gen., 30:7557, 1997.

[71] D.E. Makarov and H. Metiu. Quantum dynamics with dissipation: A treatment of dephasing
in the stochastic Schrödinger equation. J. Chem. Phys., 111:10126, 1999.

[72] W.T. Strunz. The Brownian motion stochastic Schrödinger equation. Chem. Phys., 268:237,
2001.

[73] J.S. Melinger, S.R. Gandhi, A. Hariharan, D. Goswami, and W.S. Warren. Adiabatic popu-
lation transfer with frequency-swept laser pulses. J. Chem. Phys., 101:6439, 1994.

[74] M. Shapiro and P. Brumer. The equivalence of unimolecular decay product yields in pulsed
and cw laser excitation. J. Chem. Phys., 84:540, 1986.

[75] K. Misawa and T. Kobayashi. Wave-packet dynamics in a cyanine dye molecule excited with
femtosecond chirped pulses. J. Chem. Phys., 113:7546, 2000.



153

[76] B. Amstrup and A. Lörincz and S.A. Rice. Population inversion in a multilevel system: a
model study. J. Phys. Chem., 97:6175, 1993.

[77] H.M. Sevian and J.L. Skinner. A molecular theory of inhomogeneous broadening, including
the correlation between different transitions, in liquids and glasses. Theor. Chem. Acc., 82:
29, 1992.

[78] J.R. Schmidt and N. Sundlass and J.L. Skinner. Line shapes and photon echoes within a
generalized Kubo model. Chem. Phys. Lett., 378:559, 2003.

[79] C.J. Bardeen and C.V. Shank. Ultrafast dynamics of the solvent-solute interaction measured
by femtosecond four-wave mixing: LD690 in n- alcohols. Chem. Phys. Lett., 226:310, 1994.

[80] T. Fonseca, B.M. Ladanyi. Breakdown of linear response for solvation dynamics in methanol.
J. Phys. Chem., 95:2116, 1991.

[81] S. Mukamel. Principles of Nonlinear Optical Spectroscopy. Oxford University Press, New
York, 1995.

[82] J.G. Saven and J.L. Skinner. A molecular theory of the line shape: Inhomogeneous and
homogeneous electronic spectra of dilute chromophores in nonpolar fluids. J. Chem. Phys.,
99:4391, 1993.

[83] R. Kubo. A Stochastic Theory of Line Shape. Adv. Chem. Phys., 15:101, 1969.

[84] S. Mukamel. Principles of Nonlinear Optical Spectroscopy. Oxford, New York, 1995.

[85] D. M. Jonas. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem., 54:425,
2003.

[86] M. Khalil, N. Demirodoven, and A. Tokmakoff. Coherent 2D IR spectroscopy: Molecular
structure and dynamics in solution. J. Phys. Chem. A, 107:5258, 2003.

[87] S. Mukamel. On the semiclassical calculation of molecular absorption and fluorescence spec-
tra. J. Chem. Phys., 77:173, 1982.

[88] N. E. Shemetulskis and R. F. Loring. Semiclassical theory of the photon echo: Application
to polar fluids. J. Chem. Phys., 97:1217, 1992.

[89] J. G. Saven and J. L. Skinner. A molecular theory of the line shape: Inhomogeneous and
homogeneous electronic spectra of dilute chromophores in nonpolar fluids. J. Chem. Phys.,
99(6):4391, 1993.

[90] M. D. Stephens, J. G. Saven, and J. L. Skinner. Molecular theory of electronic spectroscopy
in nonpolar fluids: Ultrafast solvation dynamics and absorption and emission line shapes.
J. Chem. Phys., 106:2129, 1997.

[91] Q. Shi and E. Geva. A comparison between different semiclassical approximations for optical
response functions in nonpolar liquid solutions. J. Chem. Phys., 122:064506, 2005.

[92] B. J. Ka and E. Geva. A nonperturbative calculation of nonlinear spectroscopic signals in
liquid solution. J. Chem. Phys., 125:214501, 2006.

[93] W. H. Miller. Including quantum effects in the dynamics of complex (i.e. large) molecular
systems. J. Chem. Phys., 125:132305, 2006.

[94] Q. Shi and E. Geva. A relationship between semiclassical and centroid correlation functions.
J. Chem. Phys., 118:8173, 2003.

[95] Q. Shi and E. Geva. A semiclassical theory of vibrational energy relaxation in the condensed
phase. J. Phys. Chem. A, 107:9059, 2003.



154

[96] Q. Shi and E. Geva. Vibrational energy relaxation in liquid oxygen from a semiclassical
molecular dynamics simulation. J. Phys. Chem. A, 107:9070, 2003.

[97] Q. Shi and E. Geva. Nonradiative electronic relaxation rate constants from approximations
based on linearizing the path-integral forward-backward action. J. Phys. Chem. A, 108:6109,
2004.

[98] K. Thompson and N. Makri. Influence functionals with semiclassical propagators in combined
forward-backward time. J. Chem. Phys., 110:1343, 1999.
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[101] M. A. Sepúlveda and S. Mukamel. Semiclassical theory of molecular nonlinear optical polar-
ization. J. Chem. Phys., 102:9327, 1995.

[102] C. F. Spencer and R. F. Loring. Dephasing of a solvated two-level system: A semiclassical
approach for parallel computing. J. Chem. Phys., 105:6596, 1996.

[103] M. Ovchinnikov, V. A. Apkarian, and G. A. Voth. Semiclassical molecular dynamics com-
putation of spontaneous light emission in the condensed phase: Resonance Raman spectra.
J. Chem. Phys., 184:7130, 2001.

[104] J. R. Schmidt, S. A. Corcelli, and J. L. Skinner. Pronounced non-Condon effects in the
ultrafast infrared spectroscopy of water. J. Chem. Phys., 123:044513, 2005.

[105] M. Khalil, N. Demirodoven, and A. Tokmakoff. Obtaining absorptive line shapes in two-
dimensional infrared vibrational correlation spectra. J. Phys. Chem. A, 107:5258, 2003.

[106] M. F. Herman and E. Kluk. A semiclassical justification for the use of non-spreading wave
packets in dynamics calculations. Chem. Phys., 91:27, 1984.

[107] E. Kluk, M. F. Herman, and H. L. Davis. Comparison of the propagation of semiclassical
frozen gaussian wave functions with quantum propagation for a highly excited anharmonic
oscillator. J. Chem. Phys., 84:326, 1986.

[108] A. R. Walton and D. E. Manolopoulos. A new semiclassical initial value method for Franck-
Condon spectra. Mol. Phys., 87:961, 1996.

[109] M. L. Brewer, J. S. Hulme, and D. E. Manolopoulos. Semiclassical dynamics in up to 15
coupled vibrational degrees of freedom. J. Chem. Phys., 106:4832, 1997.

[110] H. Wang, X. Sun, and W. H. Miller. Semiclassical approximations for the calculation of
thermal rate constants for chemical reactions in complex molecular systems. J. Chem. Phys.,
108:9726, 1998.

[111] X. Sun, H. Wang, and W. H. Miller. On the semiclassical description of quantum coherence
in thermal rate constants. J. Chem. Phys., 109:4190, 1998.

[112] J. S. Shao and N. Makri. Forward-backward semiclassical dynamics without prefactors.
J. Phys. Chem. A, 103:7753, 1999.

[113] K. G. Kay. Numerical study of semiclassical initial value methods for dynamics.
J. Chem. Phys., 100:4432, 1994.

[114] Yl Elran and K. G. Kay. Semiclassical ivr treatment of reactive collisions. J. Chem. Phys.,
116:10577, 2002.



155

[115] L. S. Schulman. Techniques and applications of path integration. Wiley, New York, 1981.

[116] J. A. Poulsen, G Nyman, and P. J. Rossky. Practical evaluation of condensed phase quan-
tum correlation functions: A Feynman-Kleinert variational linearized path integral method.
J. Chem. Phys., 119:12179, 2003.

[117] Q. Shi and E. Geva. A semiclassical generalized quantum master equation for an arbitrary
system-bath coupling. J. Chem. Phys., 120:10647, 2004.

[118] B. J. Ka, Q. Shi, and E. Geva. Vibrational energy relaxation rates via the linearized semi-
classical approximations: Applications to neat diatomic liquids and atomic-diatomic liquid
mixtures. J. Phys. Chem. A, 109:5527, 2005.

[119] B. J. Ka and E. Geva. Vibrational energy relaxation of polyatomic molecules in liquid solution
via the linearized semiclassical method. J. Phys. Chem. A, 110:9555, 2006.

[120] B. D. Bursulaya and H. J. Kim. Effects of solute electronic structure variation on photon
echo spectroscopy. J. Phys. Chem., 100:16451, 1996.

[121] E. Pollak and J. Liao. A new quantum transition state theory. J. Chem. Phys., 108:2733,
1998.

[122] X. Sun and W. H. Miller. Mixed semiclassical-classical approaches to the dynamics of complex
molecular systems. J. Chem. Phys., 106:916, 1997.

[123] X. Sun, H. Wang, and W. H. Miller. Semiclassical theory of electronically nonadia-
batic dynamics: Results of a linearized approximation to the initial value representation.
J. Chem. Phys., 109:7064, 1998.

[124] H. Wang, X. Song, D. Chandler, and W. H. Miller. Semiclassical study of electronically
nonadiabatic dynamics in the condensed phase: Spin-boson problem with debye spectral
density. J. Chem. Phys., 110:4828, 1999.

[125] W. H. Miller. Generalization of the linearized approximation to the semiclassical initial value
representation for reactive flux correlation functions. J. Phys. Chem. A, 103:9384, 1999.

[126] J. S. Shao, J. L. Liao, and E. Pollak. Quantum transition state theory: Perturbation expan-
sion. J. Chem. Phys., 108:9711, 1998.

[127] J. L. Liao and E. Pollak. Quantum transition state theory for dissipative systems.
Chem. Phys., 268:295, 2001.

[128] E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749,
1932.
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