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CHAPTER I

Introduction

The brain is simultaneously one of the most familiar and yet the least understood

entities known. Sensory processing, consciousness, and planning comprise the bedrock

of our everyday existence, and yet the functional mechanisms of almost all aspects

of cognition continue to resist elucidation. Perhaps one of the major reasons for

this difficulty lies in the brain’s sheer complexity, both in numbers and in structure.

With the human brain containing roughly 1011 neurons each making thousands of

connections to other cells, any tractable method of study necessitates vast amounts

of approximation to the system. As a result, there exists a multitude of scales of

study and corresponding observational methods, ranging from full brain imaging to

probing single proteins or molecules of a neuron. Additionally, these different scales

are not independent of each other, but rather interact in complex and unpredictable

ways characteristic of a complex network, in contrast to systems in which internal

dynamics either average out (as with statistical mechanical systems) or completely

correlate (as with rigid bodies). Such network effects can be seen as due to the

internal dynamics between constituent units manifesting on multiple scales and are

widely believed to be the functional bases for cognition and information processing

[31, 23, 107].

Networks exist at virtually every scale in the study of neuroscience. At the cellular
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level, differences in local potential due to the spiking activities of separate neurons

converging at different points of the dendritic branch of a postsynaptic neuron interact

within the cell to determine if an action potential is generated. Single neurons in turn

form complicated circuits, the connectivity pattern of which heavily influence their

spiking patterns. It is also possible to examine the interactions between entire brain

regions, as it has been shown through neuroimaging processes such as functional

magnetic resonance imaging (fMRI) that different cognitive functions are correlated

with activation of localized areas of the brain [24, 28]. Each component acts as a

dynamical unit which behaves as a function of the way it’s connected within the

network. Although the physiological details differ at each scale, the mathematics and

analyses used to examine the networks of interactions remain the same. By focusing

on the networks rather than details of the components, we can elucidate mechanisms

of interaction which can be true at every scale and which are not observed when

studying single isolated components.

The tools we can use in this endeavor have been developed for centuries, begin-

ning with the mathematics of graph theory introduced by Leonhard Euler in 1736.

However, with the advent of the computer, recent decades have witnessed a resur-

gence in the science of network phenomena. Network science in general focuses on

the interactions between constituent elements when representing, characterizing, or

analyzing a system and draws considerably from the mathematics of graph theory. A

network is a representation of a given system highlighting the interactions between its

constituent elements. In the language of network science, the interactions are called

“connections” or “links,” and the elements are called “nodes.” For a more compli-

cated system, there may be more than one network representation because multiple

interactions can exist between elements. For instance, in a social network in which

people are the nodes, a variety of networks can be created depending on the types of

interactions studied, such as how often people speak on the phone, who they consider
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to be friends, and so on. Ecological food webs are another type of network which

have been extensively studied, in which the nodes are the animals and a directed

connection exists if one eats the other. The details of network science are beyond the

scope of this dissertation; for a good review please refer to [121].

These studies have typically focused on characterizing the structure of the network

at one or discrete points in time, especially if information about the network is not

continuously available or time-stamped. The growth of citation networks, in which

connections form if one journal article cites another, can be readily studied because

articles are dated, but in general it’s difficult to characterize changes in links over

time. Additionally, network elements do not usually display dynamics, or a temporally

evolving internal state, and thus they are considered “static networks.”

Brain systems can be represented as both a static and a dynamic network. A static

network representation only takes into account anatomical connectivity, such as the

existence of a synapse between two neurons. A neuron which is synaptically connected

to another neuron would thus exhibit a link to the other neuron, and the strength of

the synapse would define the weight of the link. A dynamic network representation

of the brain takes into account the time-varying internal states of the neuron, such

as action potentials or membrane voltages. Connections between two neurons then

can be characterized by rates of firing and temporal similarities or other correlational

relationships between their evolving states. The dynamic network specified in this

fashion can also be considered “functional” structure or connectivity because it is the

dynamics of the brain which underlies its function.

An important distinction between anatomical structure and functional structure

is that the former is relatively stable over time, even as the connections are able to

undergo experience-dependent plasticity. Functional structure, on the other hand,

can rapidly fluctuate due to transient changes in dynamics, possibly as a result of

external perturbation or task-driven information processing. The effects of anatomical
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structure on functional structure are far from clear, because the same anatomical

substrate can give rise to different functional connectivities depending on various

factors such as neuromodulatory factors or sensory input. Extensive research to

determine both types of networks – as well as how the two are related – is ongoing

and vital to making further progress in decoding the language of the brain.

One of the main drives of this dissertation is to relate anatomical connectivity to

functional structure and spatiotemporal patterns of neuronal dynamics in order to

understand cognitive functions such as memory, attention, and even consciousness,

which represent interactions across multiple temporal and spatial scales. Often it

is observed that how functional connectivity arises from anatomical structure is de-

pendent on instantaneous states of the system due to local and global modulatory

mechanisms which define different modes of function. In addition, correlated activity

is able to affect anatomical structure through plasticity and learning, completing a

feedback loop of information processing and interaction with external environments.

Utilizing theoretical, modeling, and experimental methods, I focus on exploring

the roles of these modulatory and plasticity systems in addressing the relation be-

tween functional and anatomical networks of learning and memory. In Chapter II, I

examine how global modulation of excitability can give rise to functional structure re-

flecting underlying heterogeneous connectivity associated with stored memory. This

mechanism, coupled with two different timescales of plasticity and inhibitory feed-

back, can mediate information transfer and memory consolidation. These dynamics

are matched with experimental data observed during behavioral learning. This work

has been published in Physical Review E with Gina Poe and Michal Zochowski [183].

In Chapter III, I further characterize how spatially varying topologies affect mem-

ory activation and retrieval. In particular, I focus on the importance of heterogeneous

inhibitory connectivity in increasing competition between linked memories as well as

the role of global modulation in optimizing memory retrieval. Such findings point to
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the importance of inhibitory-excitatory current balance on both a local and global

scale to information processing in neuronal networks. This was work done under the

advisement of Michal Zochowski and is currently under review for publication.

Having examined the theoretical underpinnings of network interactions, I sought

to explore how anatomical connectivity relates to functional structure in a real bi-

ological network. Chapter IV presents an investigation into the morphological and

dynamical characteristics of cultured networks of hippocampal cells. I relate the

growth of anatomical neuronal networks as well as the modulatory effects of a conflu-

ent glial network to changes in spiking activity, and find that all three are non-trivially

connected. This work is in review for publication with Sarah Feldt, Liz Shtrahman,

Rhonda Dzakpasu, Eva Olariu, and Michal Zochowski.

The rest of this introduction provides general background of neurobiology, learning

and memory, and the methodological tools utilized in this research.

1.1 Neurophysiology

Neurons are electrically excitable cells which act as the functional core components

of the brain and are the basis for information processing. Though they all share

the same basic structure, there exist hundreds of types of neurons, which can be

connected in any of a number of ways, allowing them to form anatomical circuits of

endless complexity. They are in general composed of a soma (cell body) and extruding

processes which can be categorized into dendrites (signal inputs) and one axon (signal

output) (see Figure 1.1). While neuron bodies usually range in the tens of microns in

diameter, the processes which extend from them vary greatly in size, especially axons,

of which the longest are meters in length. Neurons usually exhibit many dendrites

branching off the main body, forming a complex dendritic arbor which can extend in

many directions, but they only have one axon which extrudes directly from the soma,

although it can branch multiple times before synapsing onto other cells. Their unique
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cellular physiology allows neurons to both spatially and temporally integrate input

signal from other cells and then, based on numerous intrinsic and extrinsic factors,

transduct their own output signal to other neurons.

Figure 1.1:
Diagram of a neuron. Soma are the cell bodies of neurons, and their
processes include dendrites, which receive signals from other cells and
therefore function as input, and axons, which are capable of generating
and carrying action potentials. The propagation speed of action potentials
can be considerably increased if axons are further encased in dielectric
membranes called myelin sheaths. The connections between neurons are
called synapses, and they are the primary sites of neuromodulatory and
plasticity processes.

Neurons maintain a resting potential, or voltage, of around -65 mV with respect to

the extracellular environment. Ion channels allow for the passive and active transport

of various ions, the most prominent being sodium (Na+), potassium (K+), chloride

(Cl−), and calcium (Ca2+). Passive channels work to maintain the potential at

the baseline level, while active channels are gated and open in response to certain

voltage ranges (voltage-gated) or binding events (ligand-gated). Influx of sodium ions

across the cellular membrane causes depolarization, or an increase in the intracellular

potential. If this depolarization is larger than a specific threshold value, roughly −45

mV, a series of chain reaction events occur involving opening of additional voltage-

dependent sodium as well as calcium and potassium channels, which results in the

generation of an action potential [86].

Action potentials have a very distinct time trace, with a fast rising and falling
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phase followed by a short duration of roughly 5-10 ms, called the refractory period,

of hyperpolarization in which the voltage is lower than the resting potential and the

neuron is not excitable (Figure 1.2). They are typically generated in the axon hillock,

or the portion of the axon closest to the cell body, and are actively propagated via

the opening of additional ion channels (mainly Na+ and K+) down the length of the

axon to communicate with connected cells. Action potentials, which are also known as

spikes, tend to be stereotyped (similar in form) and all-or-nothing (boolean), and thus

they act as the primary mode of information coding, processing, and transmission.

One of the major drives in neuroscience is to understand this neural code and how

it translates raw sensory information into internal representations and further is able

to manipulate those representations in the act of thinking.

Figure 1.2:
Plot of a typical action potential. Neurons typically have an intracellular
resting potential of around -65 to -70 mV. Depolarization, or an increase
in this potential, occurs due to flow of charged ions into or out of the
cell. If this depolarization crosses a threshold value, roughly -45mV, a
positive feedback process is initiated resulting in the rapid increase (due
to the influx of Na+ across Na+ voltage-gated channels) and then rapid
decrease (due to the efflux of K+ across K+ voltage-gated channels) of
the membrane potential by about 100 mV and lasting for 1-2 ms. Action
potentials are actively propagated down the length of the axon to cause
the release of neurotransmitters into the synaptic cleft, or a small region of
space adjacent to another neuron’s input processes, typically its dendrites.
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Action potentials are transmitted from one neuron to the next via connections or

junctions called synapses, defined as a small region of space in which the one neuron

is in close proximity and can communicate information to the dendrite (or in some

cases the soma) of another neuron. Synapses can be either chemical or electrical.

Chemical synapses are defined as the small (20-40 nm) cleft of space between two

neurons within which neurotransmitters, or chemical messengers, can be released by

one neuron and bound to specific receptors located within the cellular membrane of

the other neuron. The receptors mediate the opening of ligand-gated ion channels

which affect the neuronal intracellular potential and can trigger a dendritic signal,

which is propagated to the cell body and integrated with other signals. If the net effect

of this input causes the soma membrane potential to rise above the threshold level,

an action potential is generated. Because of the leak current due to passive channels,

generation of an action potential is sensitive to the timing between dendritic inputs;

coincident inputs tend to result in a higher probability of postsynaptic firing.

Chemical synapses are by definition unidirectional since one only cell can release

neurotransmitters (presynaptic neuron) and only one can receive (postsynaptic neu-

ron), meaning that impulses can only be transmitted one way. However, in the case

of electrical synapses, also called “gap junctions,” connections are bidirectional since

neurons can directly affect each others’ intracellular potentials because they are elec-

trically connected through gap junction channels spanning the membranes of both

cells [86]. For the purposes of this dissertation, I will focus on chemical synapses

since they are much more numerous and involved in memory and plasticity processes;

therefore, from here on “synapse” will be understood to refer to only a “chemical

synapse.”
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1.2 Plasticity and neuromodulation

Synapses can be either excitatory, meaning that presynaptic firing causes depo-

larization of the postsynaptic neuron’s membrane potential and thus increases its

chance of firing, or they can be inhibitory, meaning that postsynaptic neurons are

hyperpolarized and less likely to fire as a result of a presynaptic signal. Excitatory

synapses are in general mediated by the neurotransmitter glutamate, while inhibitory

synapses are primarily mediated by γ-aminobutyric acid (GABA). Neurons can and

do receive a mixture of both excitatory and inhibitory input signals depending on the

types of receptors they exhibit, but their outputs are purely excitatory or purely in-

hibitory. We can thus refer to “excitatory neurons,” also known as principle neurons,

or “inhibitory neurons,” also known as interneurons.

An important aspect of synapses is that they are not constant, but instead are able

to be strengthened or weakened through activity-dependent or other processes, a phe-

nomenon known as “synaptic plasticity.” The strength of a synapse can be measured

as the amount of postsynaptic response to a presynaptic signal, typically an action po-

tential. The idea of activity-dependent plasticity was first explored by Donald Hebb,

who theorized that simultaneous activation of neurons tended to strengthen their con-

nection [77]. Since then, much experimental work has focused on the mechanisms of

plasticity, the most notable being long-term potentiation (LTP), or synaptic strength-

ening, and the closely associated long-term depression (LTD), or synaptic weakening.

This form of plasticity involves long-lasting changes to synaptic strength as a result

of paired activation of synaptically connected neurons [20, 19, 17], and experimental

evidence exists which point to it as the physiological basis for some forms of learning

and memory, especially within the hippocampus and amygdala [108, 26, 127].

Further investigations have shown that temporal ordering and precise timing re-

lationships of pre- and postsynaptic activity impact ensuing plasticity, a concept

termed spike timing-dependent plasticity (STDP) [101, 13, 52, 153]. In STDP, firing
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of the presynaptic neuron before the postsynaptic neuron leads to strengthening of

the synapse, while the reverse ordering leads to weakening. Additionally, the extent

of the change increases as the timings of the two spikes decreases, so that there is an

effective window within which plasticity can occur [1]. An important aspect of STDP

is that it allows for stabilization of firing rates by instituting a balance between LTD

and LTP, thereby preventing a runaway positive feedback loop between activity and

synaptic potentiation. Another form of plasticity which addresses this issue is home-

ostatic plasticity, in which neurons are able to regulate their synapses in response

to sustained changes in activity in order to maintain firing rates within an optimal

range [125, 169, 170]. This is achieved through processes such as synaptic scaling

[172, 140, 29], where all synapses convergent on a postsynaptic neuron are scaled by

a constant factor which is dependent on neuronal activity.

In addition to local modification of synapses, neuronal responses can also be al-

tered or modulated on a more global level by neuromodulators, acting in contrast

to neurotransmitters which directly mediate neuronal signaling. Neuromodulators

are a class of chemicals defined by their mode of influence on dynamics, and thus

many neurotransmitters are also considered neuromodulators, such as acetylcholine,

norepinephrine, serotonin, and dopamine. They are able to regulate spiking activity

of neurons by either altering synaptic efficacy or modulating excitability and intrin-

sic membrane properties, in both a more spatially diffuse as well as longer lasting

fashion than neurotransmitters [70, 100]. This allows for far more complex network

interactions than would exist with neurotransmitters alone. More importantly, due to

neuromodulators’ spatially and temporally extended range of action, they are ideally

suited for controlling transitions between different brain region states, since identical

anatomical circuitry can yield vastly different dynamics depending on the strength

and combination of different neuromodulators. For this reason, they have been linked

to various cognitive functions such as attention [193], cortical reorganization of sensory
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fields [110, 87], and – most relevant to this dissertation – memory in the hippocampus

and neocortex [71, 72, 27].

Neuronal signaling can additionally be modulated by other types of cells within

the brain, because they are intimately surrounded by a host of satellite cells called

glial cells, which outnumber neurons by at least 10 to 1. Glial cells act to support

neuronal growth and survival in a variety of ways, including providing nutrients,

structural support, neuronal repair, and axonal guidance during development [122].

More recently, it’s been shown that astrocytes, the most common type of macroglial

cells, also interact extensively with neurons to modulate synaptic transmission and

signaling [15, 16, 175]. Due to their close proximity with neurons, they are able

to uptake or release neurotransmitters within chemical synapses, thereby modulating

signal transmission between two neurons. Although they can’t generate action poten-

tials, astrocytes are capable of displaying sustained intracellular calcium oscillations

which propagate via gap junctions and are sometimes invoked by neuronal activity.

These oscillations can in turn elicit calcium changes in neurons, indicating a bidirec-

tional mode of communication with possible repercussions on information processing

[128, 119].

1.3 Network mechanisms of learning and memory consolida-

tion

Neuronal dynamics are clearly highly dependent on both global states as well as

local synaptic properties. Further, in attempting to understand the neural code un-

derlying behavior and cognition, it’s necessary to quantify relationships in activity

between neurons as a function of their placement within a complex network of inter-

actions. Because of the intricate nature and highly complex structure of the brain,

network analysis utilizing math and concepts from the field of graph theory seems
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particularly appropriate in the exploration of the functional bases of behavior. This

framework is especially suitable in examining learning and memory, which have been

shown to be particularly difficult to localize to specific and isolated brain regions and

are thus likely to be primarily network phenomena.

Memory and the act of remembering form the basis for our everyday life and even

our sense of self, as memory is the cumulative effect of the external environment

interacting with our internal states throughout our entire lives. We routinely engage

in multiple acts of remembering in even the simplest of tasks, such as dialing a phone

number, retelling a story, or even driving. Although no one clear classification scheme

exists, memory can be most intuitively divided up based on time of retention.

The shortest retention time belongs to sensory memory, which lasts hundreds of

milliseconds for visual stimuli and up to a second for auditory stimuli. An example

of sensory memory might be hearing a particular sound and maintaining it in sensory

memory for several seconds. It is by definition not contextual or processed, and is

unable to be rehearsed [37].

Short-term memory lasts on the order of minutes to hours, and is often used inter-

changeably or in close association with working memory, although the two concepts

emphasize different cognitive aspects – the former highlights retention capabilities

while the latter highlights attentional faculties. Short-term memory is limited in

capacity as well as duration, as was famously observed by Miller in his 1956 psycho-

logical study which showed that humans can retain “seven plus or minus two” distinct

items or concepts at a time in working memory [112].

Long-term memory refers to both facts and events we can actively recall, termed

“explicit” or “declarative” memory, and learned skills and reflexes which are not con-

sciously remembered, termed “implicit” or “procedural” memory. Explicit long-term

memory can further be divided into episodic, or memory of specific events located in

time and place, and semantic memory, which is knowledge of general facts and events.
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Episodic memories involve temporally coincident knowledge gleaned from many senses

so that it’s contextual, whereas semantic memories are context-free, general knowl-

edge gradually created over time from many different integrated experiences [167].

Long-term memory can persist indefinitely, and it’s capacity for storage is unknown.

Although the psychological aspects of memory have been explored since the 19th

century, it wasn’t until the landmark case of Henry Molaison, better known as Pa-

tient H.M., in the 1950s that the field saw extensive progress on the neurological

underpinnings of memory and the functional processes involved. Henry Molaison had

suffered from intractable epilepsy due to brain trauma suffered as a child; his condi-

tion was so serious as to be life-threatening. Not responding to standard medication

or treatment, his doctors proceeded to surgically remove extensive brain tissue from

both of his temporal lobes, including most of the hippocampus, the entorhinal cor-

tex, portions of the associational neocortex, and the amygdala [150] (see Figures 1.3

and 1.4).

Afterwards, though his epilepsy was significantly contained, he was left with severe

amnesia of two kinds: 1) retrograde amnesia, in which he lost significant portions of

his memory from the most recent years before his surgery, and 2) anterograde amnesia,

in which he was unable to form new long-term memories. Although he still maintained

the same general level of intelligence and had the ability to form short-term memories

lasting on the order of minutes, he was unable to retain anything beyond that. For

the last 5 decades of his life, he was unable to remember anything new. Further,

H.M.’s memory loss was different for different types of memory. For instance, he was

able to gain new skills and improve at solving puzzles at the same rate as controls,

even though he didn’t remember actually doing any of these tasks. This suggested

that the removed brain structures were important to the management of declarative

memories, especially in turning short-term memory into long-term memory, a process

known as “consolidation” [4].
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In order to understand this process, some general neurobiological background

must be given. On a cellular level, short-term memory has been linked to two sepa-

rate processes: 1) transient spatiotemporal dynamics such as persistent self-sustained

reverberating activity [185] or synchronization of oscillations among and between var-

ious neurologically significant frequency bands [166, 9], and 2) temporary changes in

synaptic efficacy due to facilitation and depression processes [59] or early phase pro-

tein synthesis-independent LTP [174]. The former is more closely associated with

the idea of “working memory,” or memory lasting on the order of minutes which is

being actively kept in consciousness, while the latter refers to reflex habituation or

the very first stages of long-term potentiation which involve synaptically “tagging”

neural circuits for later consolidation and can last for hours [58]. The primary brain

regions associated with short-term memory are the hippocampus, amygdala, entorhi-

nal cortex, and the prefrontal cortex. Because of the transient nature of short-term

memories, they’re quickly forgotten unless encoded into long-term memory stores via

gene expression, protein synthesis, and possibly axonal or dendritic growth in the pro-

cess of consolidation. The final storage site for long-term memory is the neocortex,

which is also the same region that first processes incoming stimuli.

This is no coincidence, because as H.M.’s case clearly shows, the hippocampus and

entorhinal cortex are vital to stabilizing and transferring short-term memory to long-

term memory and are therefore intimately connected to the neocortex. The neocortex

is the outermost layer of the cerebrum and is linked to higher cognitive functions such

as language, sensory perception, reasoning, and even consciousness (see Figure 1.3).

The hippocampus is a seahorse-shaped structure located deep in the medial tem-

poral lobe which supports spatial mapping and declarative, contextual memory. It

displays a very layered organization and as a result its connectivity pattern is one of

the most studied and well-known. The hippocampus consists of the dentate gyrus,

the cornu ammonis (CA) subregions, and subiculum. Its primary inputs are from
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Hippocampus

Neocortex

Figure 1.3:
Anatomy of hippocampus and neocortex. Adapted from
www.macalester.edu/psychology/whathap/UBNRP/ltp04 (left) and
pubs.niaaa.nih.gov/publications/arh284 (right).

the entorhinal cortex, which receives sensory information from the parahippocampal

and perirhinal cortices as well as the olfactory bulb. The entorhinal cortex projects

via the perforant path to the dentate gyrus and region 3 of the CA, or CA3, and to

CA1 via the temporoammonic path. The dentate gyrus passes signals to CA3, via

mossy fibers and is believed to be responsible for orthogonalizing and separating pat-

tern representation within that region [103, 92, 117]. CA3 is notable for containing

many recurrent connections, making it an attractive candidate for an autoassocia-

tive content-addressable memory store. It projects to area CA1 via a pathway called

Schaffer collaterals, which itself feeds into the subiculum. From there, the informa-

tion leaves the hippocampus and re-enters the entorhinal cortex, to be passed back

to the higher associational cortices of the neocortex.

Sensory information therefore converges and travels in a bidirectional feedback

loop from the neocortex to the hippocampus for processing and encoding and back

again via the entorhinal cortex, which gates both pathways (see Figure 1.4) [49, 89].

It’s believed that the hippocampus and neocortex function in a highly interactive
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Figure 1.4:
Circuit organization of hippocampal-neocortical memory pathway. a)
Depiction of a coronal, cross-sectional slice of the hippocampus. Image
adapted from groups.northwestern/edu/pruston. b) Sensory input is ini-
tially processed by various regions of the neocortex associated with the
different senses, which then transfers information to the entorhinal cortex
via the parahippocampal and perirhinal cortices. From there, the en-
torhinal cortex communicates with the dentate gyrus and the CA3 of the
hippocampus via the perforant path from its superficial layers, and also
projects into CA1 via the temporoammonic path. The dentate gyrus also
synapses into the CA3 via mossy fibers, which itself projects into the CA1
via Schaffer collaterals but also has extensive recurrent connections with
itself. CA1 feeds into the subiculum which subsequently feeds back into
the deep layers of the entorhinal cortex, which then relays information
back to the neocortex again. There is therefore a bidirectional feedback
loop between the neocortex and hippocampus via the entorhinal cortex.
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manner to both quickly encode declarative memory traces within the former and

slowly transferring these traces to associational long-term stores in the latter [106].

This mechanism is not well understood, but there is strong evidence to support that

it depends highly on sleep. Specifically, the type of memory which is consolidation

depends on the amount of time spent in each stage of sleep. The typical sleeping

person will cycle fully through all the stages in about 90 minutes, starting in non-

REM stages 1 and 2 and rapidly descending into slow-wave sleep (SWS), also known

as non-REM stages 3 and 4, before rising back through the stages. Instead of waking,

however, the sleeper begins rapid eye movement (REM) sleep, which is when most of

us tend to experience dreams (see Figure 1.5).

Stickgold, R. Nature, 2005

Slow-wave

     sleep

Figure 1.5:
The stages of sleep. The typical full night’s sleep for a human involves
roughly 5 90-minute cycles of non-REM sleep stages 1-4 followed by REM
sleep. Throughout the course of the night, the sleeper spends progres-
sively more time in REM and less in non-REM. Non-REM sleep stages
3-4 are also known as SWS, characterized by large, slow (0.5-4 Hz) oscil-
lations seen during EEG recording. REM sleep is characterized by rapid
eye movement, theta oscillations (4-10 Hz), and dreams. Adapted from
[161].

In declarative memory tasks, subjects generally experience enhanced memory re-

call as the amount of SWS increases, while procedural tasks are benefited from in-

creased REM sleep [42, 63, 161]. Consolidation has been shown to occur over the

span of hours, days, and even up to years [88, 106, 155]. There is still much contro-

versy over the neurobiological underpinnings of consolidation and the role of sleep;
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see [182] for a good review. Nevertheless, the general consensus is that sleep, and

particularly memory reactivation, are important to the stabilization of new memory.

Memory reactivation is the replay during sleep of previously activated neuronal cell

assemblies seen during awake learning. In declarative memory experiments with rats,

certain hippocampal cells which mark specific places with selectively high levels of

firing (“place cells”) are capable of firing in the same sequential order during REM as

during previous novel learning tasks [96, 191]. It is hypothesized that sleep plays an

important role in consolidation by allowing the memory traces to reactivate long after

the initial sensory stimuli to give enough time for long-term potentiation processes to

stabilize and encode the new memory into the neocortex [162].

Studies examining the time course of consolidation have shown experience-dependent

reactivation of hippocampal cells and, in particular, that the reactivation of a given

experience during sleep is greatest when the experience is novel and diminishes with

repeated exposure [129, 134]. They have also indicated a progressive shift of the phase

of place cell firing in CA1 during REM sleep as memories become gradually more fa-

miliar [134, 22]. This phase is relative to an overall hippocampal theta rhythm (4-10

Hz) in the population activity often observed during sleep and activity exploration

and which is thought to be crucial to mnemonic coding [40, 10]. Such a phase shift

could be due to a change in input driving from being dominated by intrahippocampal

CA3 excitation to extrahippocampal driving from the entorhinal cortex, resulting in

CA1 neurons switching from firing at the peak of hippocampal theta to firing at the

peak of cortical theta, which is 180 ◦ out of phase [22]. Firing at the hippocampal

trough could provide a possible mechanism for the erasure of old memories from the

hippocampus which have been consolidated into long-term neocortical stores.

In a later chapter, I examine the dynamical underpinnings of time-dependent

memory transfer from the hippocampus to the neocortex and classify how this dynam-

ics is modulated by stimulus novelty and especially inhibitory feedback from the neo-
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cortical input pathway which signals progressive familiarity. I hypothesize that net-

work structural heterogeneities are capable of mediating this novelty detection and the

eventual consolidation of memories, rendering them hippocampus-independent. Spe-

cific patterns of neural activation can also modify the network connectivity through

plasticity mechanisms to allow this pattern to be retrieved at a later time, completing

a feedback cycle between spatiotemporal dynamics and network architecture.

1.4 Memory storage and retrieval

As discussed in Section 1.2, synaptic plasticity and LTP are believed to be the

neurophysiological substrates of learning and memory. Therefore memory represen-

tations can be encoded through the patterns of synaptic weights within a network

which result in the increasingly associative activation of a subpopulation of neurons

as learning progresses. Recall of distinct memories consists of activation of distinct

patterns of neuronal activity which is in turn based on underlying connectivity.

Whether memories are encoded within the firing rates (rate coding) or the pre-

cise temporal timings (temporal coding) of neuronal spikes is still unknown, as evi-

dence exists for both. Working memory in particular is thought to function through

persistent activity of subpopulations of neurons which are either topographically or

functionally associated with each other [45, 184]. The hippocampal CA3 subregion is

known to be highly recurrent and is therefore thought to be an associative memory

store, capable of completing activity patterns when presented with an incomplete

input cue [102, 167, 118]. However, more recently, it’s been proposed that temporal

sequences of events making up episodic memory are encoded in the precise ordering

of neuronal spikes [48, 74].

In general, it seems reasonable to assume that a subset of neurons which are more

highly connected to each other would result in the stable persistent firing of the en-

tire ensemble, corresponding to the activation of a memory concept which cannot be
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temporally decomposed. In this way, memories and information are encoded through

inducing local variations in the densities of synapses and synaptic strengths, resulting

in a heterogeneous network topology which can exhibit subcommunity and hierarchi-

cal structure [43]. Such heterogeneities introduce spatially varying yet temporally

stable patterns of firing reflecting the underlying connectivity and which represent

attractor states of the network [167].

The entorhinal cortex receives input (either directly or indirectly, via the parahip-

pocampal and perirhinal cortices) from widely distributed higher sensory cortices and

projects back to nearly the same areas, leading to the idea that long-term memories

are encoded in the same areas they are first processed [4]. This is most likely so

that different aspects of a memory are associated with similar previously encoded

concepts, promoting a gradual integration of new knowledge with the old as well as

hierarchically organized experience and memory. Various models of the consolida-

tion process have theorized that memory encoding within the hippocampus serves to

bind together these disparate neocortical areas until they have formed strong enough

synaptic connections through LTP processes that they can activate independently of

the hippocampus [113, 105, 104].

It’s not too difficult to see how the progressive storage of experiential episodic

memory can lead to the formation of semantic memory (knowledge) because as various

experiences are encoded, overlapping concepts and commonalities eventually become

independent of their temporal and associated context as they become linked with so

many episodic experiences that they cease to offer information about the context.

Experimental evidence has linked episodic and semantic memory activation to the

same memory system and underlying anatomical circuitry [136, 30], with the two

representing different modes of functioning. Theoretical models have also been posed

suggesting that the hippocampus is responsible for relating distinct episodic memory

sequences and extracting common features for semantic representation [48].
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More complex concepts or memories will tend to share common features, which

would be encoded by the same sets of cell assemblies. For example, “green ball” and

“red ball” share the concept “ball,” while green ball and green grass share “green.”

With standard autoassociative memory models such as those of Hopfield [80] or Hebb

[77], this poses a problem because activation of one representation also activates all

associated representations simultaneously, resulting in the retrieval of an amalgam

of many memories instead of only one. Recurrent networks also frequently suffer

runaway synaptic modification as well as (and as a consequence of) uncontrolled

activity because novel inputs tend to also activate old memories and become encoded

as a part of them. Therefore additional inhibitory or competitive feedback drives

must be in place to facilitate single memory recall or completion.

Experimental evidence exists which shows that excitation is frequently balanced

on both a global and local level by inhibition, such as in the local dendritic branches of

hippocampal neurons [95] and in neocortical dynamics [68]. Theoretical models have

implemented inhibitory feedback as a mechanism of threshold control and stabiliza-

tion of activity [75], and have shown detailed excitatory-inhibitory current balance

to be vital to signal gating [177]. Inhibitory feedback therefore increases the dy-

namic range of the responsiveness of the network and allows for optimal information

processing under a variety of sensory input levels.

Uniformly global inhibitory feedback does not, however, address the issues of run-

away activity or learning in recurrent networks. Neuromodulation has been suggested

as a method of preventing runaway learning by separating the encoding phase from

the retrieval phase during consolidation [71]. Theoretical and experimental investiga-

tions have supported the notion of differential input drives throughout consolidation

[22, 134]. In the encoding phase, the hippocampus must encode new memory rapidly,

and thus its activity should be dominated by extra-regional input from the entorhi-

nal cortex. However, in the reactivation phase, the hippocampus must replay this
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previously stored activity and thus must be primarily governed by internal dynamics.

This neuromodulation is thought to be mediated by differential levels of acetylcholine

present during different sleep stages and wake-vs-sleep behavior [76, 72].

Physiologically, lateral inhibition in the visual [116, 18] and auditory [190] cor-

tices allows for selective tuning of receptor cells. It’s also been shown that pattern

separation within the CA3 can be achieved through inhibitory input or suppression

of excitatory input from the dentate gyrus (DG) [103, 92, 117]. However, little is

known about the actual pattern of this feedback inhibition, although it is clearly not

uniform.

In Chapter III, I focus on how overlapping concepts or semantic memories can

be optimally stored within a neural network and examine the role of topologically

structured inhibition in mediating competitive memory retrieval and activation. I also

investigate the role of a global excitability level corresponding to neuromodulatory

effects on the performance of the model in retrieving and replaying stored memories.

1.5 Methodological tools: Networks, modeling, and reduced

experimental systems

1.5.1 Network dynamics underlie information processing

Multiple statistical properties can be defined and calculated given a specific net-

work. For nodes distributed in a Euclidean space, such as with neuronal networks, we

can define a physical distance between two elements in addition to the link distance,

or the shortest route between any two elements in the graph counted in terms of how

many links separate them. Within the brain, there exist both short-range (spatially

close in a Euclidean sense) connections between neurons as well as long-distance con-

nections, where two neurons are connected synaptically despite being separated by

large distances. Networks with both short-range and long-range connections were
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first introduced as “small-world networks” (SWN) by Watts and Strogatz, who char-

acterized them as having both high clustering, or likelihood that the spatial neighbors

of a vertex are connected to each other, as well as a short path length, or average

number of links it takes to travel from any one element to another [188].

The dynamics of a network is heavily determined by its network properties because

these properties govern the effects which elements have on each other. A random

network exhibits connections between random pairs of elements regardless of their

physical separation and therefore shows the shortest path length; this allows for

maximum transmission of information across a neuronal network, but a weak ability

to form dynamically coherent clusters of neurons. A completely regular network,

where elements are only connected to their k nearest neighbors would display slow

information transfer but a high propensity for coherent cluster formation.

A small-world network is one in which random connections are added to or replace

links in a local network with a probability p, and varying this value allows for careful

tuning between the two extremes as well as quantitative representation of the network

topology, as shown in Figure 1.6. It has been shown that in small-world networks,

addition of relatively few shortcuts allows formation of coherent dynamics from local

synchronized clusters [56, 159]. Scale-free networks are another type of topology which

have been identified as having real-world relevance and practical importance. These

networks are characterized by a power law distribution in the number of connections

each node is likely to have. That is, the probability of a node having k connections is

given by P (k) ∝ k−γ, where γ usually ranges from 2 to 3. Such a structure necessarily

entails the existence of “hub nodes,” or nodes with very large numbers of connections,

alongside the vast majority of nodes which have few connections [11, 21].

Both small-world and scale-free networks have been identified in the brain. Small-

world networks have been discovered in the anatomical networks of in vitro neuronal

cultures [151] as well as in functional networks between entire brain regions using
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Figure 1.6:
Creation of a small-world network. Left-most graph shows a fully local,
regular 1-D lattice with periodic boundary conditions and k = 4 near-
est neighbor connections per neuron. By breaking a few of these local
connections and then randomly rewiring them, we’ve introduced some
long-range connections which link spatially distant portions of the net-
work. As the fraction of links rewired increases, denoted by the rewiring
parameter p, the network becomes increasingly random.

fMRI [149] and EEG [111] data. This could be an attempt by the brain to maximize

information flow across distances while minimizing the energetic costs of building

and maintaining connections [28]. FMRI has also been able to identify scale-free

correlations between different brain areas during task performance [47].

Small-world networks of oscillators are found to synchronize more easily than ran-

dom or local networks [12], while a largely heterogeneous distribution in number of

connections of each node tends to desynchronize systems [123]. Synchronization is a

uniquely network effect, defined by the existence of functional temporal correlations

in trajectory between two or more dynamic elements. Within the brain, synchroniza-

tion is theorized to serve as a mechanism of integrating distributed neural activity to

form coherent thought and organized cognitive processes [173]. Small-world networks

of integrate-and-fire neurons (a simplistic neuronal model with built-in refractory be-

havior, described in Chapters II and III) can exhibit bistable dynamic behavior which

switches between a quiescent state and persistent self-sustained activity depending

on the stimulation [148]. Persistence is due to re-injection of activity into distant

24



and recovered (i.e. no longer in a refractory period) areas of the network via a few

long-range connections, while most activity propagates locally via short-range con-

nections. This allows for the formation of reverberating loops and sustained high

activity levels. As the network moves closer to random topology, a higher probability

of failure occurs due to inability of the neurons to recover before being re-injected.

This self-sustained persistent elevation of selective neural firing is widely accepted

to be a neural correlate of working memory [184, 35, 36]. It has been theorized

that neurons and networks within memory structures form dynamical systems that

can exhibit bistable (or multi-stable) states of activity where high activation states

correspond to activation of a specific memory [44].

1.5.2 The role of modeling

Large-scale dynamics of the brain are not generally obvious or deducible from

the micro-interactions, so that they are emergent properties of the system. This

behavior is characteristic of a complex system, a relatively new term which has come

to (vaguely) define any collection of elements which interact in a nonlinear way to

result in macroscopic properties which can be self-organized or unpredictable. It is

this unpredictability which has necessitated exploration of new ways of thinking and

investigation.

For centuries, immense advances in our understanding of nature have come from

combining inspired theories with carefully conducted experiments. If measurements

matched with those predicted, then confidence in our mentally constructed concept

of the system grows. However, when a system grows complex enough, it becomes

necessary to augment natural human intuition with computational modeling power

in constructing sensible theories. This is true for two reasons: 1) The interrelated

nature of complex dynamic networks such as those in the brain make it difficult to

isolate, control for, and sometimes even identify single parameters in experiment and
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analysis, and 2) These networks often behave in counterintuitive and unexpected ways

due to the existence of multiple interacting forces and features, necessitating the use

of reduced models in comprehending distinct driving forces.

The bulk of experimental work in the sciences have operated under what is now

considered “reductionist” principles, or the practice of breaking a system up into

smaller and smaller components in order to understand its function. In some cases,

such as with high energy physics, characterization of the smallest components such

as quarks and gluons is the end goal. However, with the more applied sciences which

target function on the macroscale, implicit in this reductionist method is the idea that

properties of the constituent elements manifest on the macroscopic scale in a mostly

linear, superpositional way. This has brought forth great advances as it’s often the

case that interaction forces are either negligible in comparison to bulk behavior or can

be averaged in some manner to yield statistical information. Neither of these apply to

complex dynamic networks, in which multiple spatial and temporal scales interact to

create highly nonlinear interactions so that neither pure randomness nor pure order

is able to dominate. This makes it quite difficult to identify or experimentally alter

one physical feature of the system which would not affect others.

To be sure, this same weakness can exist in models of complex dynamic networks

as well. If a model of a system were designed which incorporated all the complexities

and nonlinear interactions of the real-life system, it’s unclear what can be learned

about its function by adjusting various parameters, despite immensely better control

over conditions and rules of interaction. Therefore the real power of creating a net-

work model lies in its ability to reduce and condense complex systems into something

already understood with the exception of one added component which we are inter-

ested in exploring. This can be seen as a different but analogous type of reduction as

compared to classical reductionism; instead of eliminating interaction effects between

components, we eliminate various layers of detail in the components themselves. The
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general strategy is then to elucidate and test individual theories of function which

can be incomprehensible if present all at once within a system.

Modeling can also offer insight into network effects gleaned through the process

of thinking through its construction. Along with the ability to examine the data in

arbitrarily close detail, constructing networks from the ground up instills and to an

extent requires intuition into workings of networks. Similar to how thermodynamics

can be understood most palpably if one has an intuition of how microscopic properties

of single molecules affect macroscopic properties of bulk matter, it’s important to

form an intuition of how complex micro-interactions at the single unit level affect

large-scale dynamics.

Of course, the major drawback of models is that they’re inherently decoupled from

reality. Therefore it’s vital to choose and construct models carefully and interpret

the results within the proper scope. Paired with data analysis and experiment, this

can yield great insight into the complex workings of neural coding and network in-

teractions underlying brain functions. It is within this framework that I explore the

neural correlates of learning and memory, making meaningfully chosen simplifications

in order to probe network functioning.

1.5.3 Neuronal models

The advent of the computer has allowed us to pose theories of much more complex-

ity than before. With models, we can test hypotheses of function with ease. However,

it is critical to determine the optimum amount of detail to incorporate into a model,

as this decision can drastically affect the way the results should be interpreted. Mod-

els range from the abstractly simple to the realistically detailed. Simplicity tends to

promote understanding, and thus the simpler models are useful for elucidating princi-

ples of function. Complex and detailed models risk inheriting the complications and

ambiguity of the objects they’re modeled after, but are useful for testing parameters
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and ranges of function. There is thus a trade-off between understanding and realism,

and the aim is always to maximize the amount of understanding given the sacrifice

in realism.

The simplest models of neural functioning are mathematical abstractions which

approximate the internal voltage of a neuron as a direct function of its summed

inputs, which is then usually thresholded to yield boolean values representing active or

nonactive states. The most famous memory model which made use of these artificial

neurons was implemented by Hopfield who connected them into a recurrent network

with weights that with proper training allowed the recovery of low-energy attractor

states as the units evolved over many iterative steps [80].

Biological neuronal models account for the explicit time dependence of input cur-

rents and membrane potentials. The simplest model incorporating these features is

known as the integrate-and-fire neuron, which evolves according to a single linear

differential equation linking the rate of change of the membrane voltage to input cur-

rent. There are several artificialities generally incorporated into this model to account

for the nonlinear nature of real neurons which cannot be captured by a single equa-

tion, such as a refractory period and the synaptic output current. The advantages of

integrate-and-fire neurons include their light computational requirements as well as

the ease of linking them into very large networks.

The most famous biological model explicitly accounting for voltage-gated ion chan-

nels is the Hodgkin-Huxley neuron, which is a set of four nonlinear differential equa-

tions describing the membrane potential, a voltage-gated Na+ channel conductance,

a voltage-gated K+ channel conductance, and a passive leak conductance [79]. The

biological realism of the Hodgkin-Huxley neuron allows for the exploration of a wide

range of complex ion channel-dependent neuronal dynamics, but its many coupled

equations make it difficult to implement into large-scale networks. Several simpli-

fications to this model have been developed which take advantage of the different
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timescales of the various ion channels and reduce the number of differential equations

to three [78] and two [54].

The most realistic neuronal models are concerned with the propagation of elec-

trical current across the spatial extent of a neuron, and incorporate features such as

dendritic branching or cross-sectional area and the active propagation of action poten-

tials down the length of the axon. Such systems are usually referred to as cable theory

or multi-compartmental neurons and are useful for examining the electrophysiological

properties of single neuron functioning.

The more detailed a model is, the more difficult it is to model neurons within a

network since the computational requirements increase exponentially as interactions

between neurons are incorporated. Since learning and memory are primarily functions

of the network interactions between neurons, the networks involved can be quite large.

Therefore, I implement the leaky integrate-and-fire model to highlight the effects of

network properties and topologies on the neuronal activity and to limit the number

of free parameters to manageable levels.

1.5.4 Experimental networks: in vitro cell cultures

As mentioned previously, complex networks are difficult to experimentally test

due to their interdependent nature, but a few biologically reduced systems can be

tractably studied to gain insight into the networks of the brain. One of these which

we study in our lab is the dissociated hippocampal cell culture, composed of neurons

and glial cells. These cultures are created by plating and growing rat hippocampal

cells which have been dissociated from each other to break all synaptic connections.

After plating, they are able to regrow processes and thus form biological networks as

well as exhibit spiking dynamics.

Dissociated cultures offer the advantage of clear unobstructed imaging, relatively

easy pharmacological and mechanical manipulation, and the ability to be grown on
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MEAs which allows for spatially extended electrical recording. Thus, anatomical

connectivity can be connected to firing dynamics to assess for the relationship between

network structure and dynamics.

Cultures are analyzed over various days of growth and in two conditions: high glial

and low glial growth levels. Glial cells are known to be vital to neuronal growth and

survival [122] in addition to modulating neurotransmission [15, 16, 175]. Glial cells

are connected to each other via gap junctions and can directly connect to neurons via

either gap junctions or chemical synapses [16]. However, they much more commonly

indirectly modulate neuronal activity. Morphological investigations show that astro-

cytes tend to surround the synapses of neurons, forming a ”tripartite synapse” [7] in

which they engage in bidirectional interaction with pre- and postsynaptic neurons via

Ca2+-dependent release of gliotransmitters such as glutamate and ATP. This allows

them to function as an active third partner in neuronal communication [131, 120].

I closely characterize various aspects of the anatomical structure with immuno-

cytochemistry and fluorescence labeling, including the density of synapses along the

neuronal processes, the extent of neuronal process growth, the extent of glial cell

growth, and the length and complexity of the processes of individual neurons. Im-

munocytochemistry involves the use of antibodies and antigens to label for specific

proteins in a cell. I utilize an indirect two-step labeling process which involves first

labeling with a primary antibody which binds to the target protein, followed by a

secondary antibody which binds to the primary antibody and is conjugated with a

fluorescence marker. Such a procedure allows for increased sensitivity over direct

labeling methods. I also use a diffusive carbocyanine membrane dye to individually

stain neurons so that entire processes can be visualized. Carbocyanine dyes are use-

ful because they are extremely bright and stable with low photobleaching. They are

lipophilic and so are able to diffuse through the entire cell membrane, staining all

processes while avoiding staining surrounding neurons, even synaptically connected
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ones.

These results are compared with analyses of their functional structure derived from

spiking dynamics, provided by Sarah Feldt. It is found that changes in the anatomical

structure of the neuronal network is linked to changes in functional connectivity, and,

further, the morphological characteristics of the glial network impacts the range of

neuronal signaling.
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CHAPTER II

Memory consolidation

2.1 Introduction

The memory formation process is founded upon synaptic reorganization and modi-

fication regulated by neural activity. When associative memories are first formed, cor-

tical sensory areas which project to the hippocampal associative network activate the

hippocampus and rapidly (within seconds) form a new network of synaptic weights en-

coding that memory. Over the span of days and weeks, rapidly formed novel memory

networks in the hippocampus are consolidated to the cortex in a time- and activity-

dependent fashion [88, 134, 22], eventually allowing memories to be independent of

the hippocampus altogether [106]. Recent studies [168] have shown that storage and

recall of spatial memory can occur independently of the hippocampus once schemas

have been formed. Moreover, studies investigating brain metabolism and activity-

related genes in mice suggest the decreasing importance of the hippocampus as time

passes after learning and the increasing importance of several cortical regions [57].

These and other findings [158] suggest that the hippocampus is a general-purpose

learner of new facts and events, both spatial and non-spatial [157], but that the cor-

tex handles long-term storage of memory. Electrophysiological [191, 135, 134, 139]

and genetic [142] studies have combined with behavioral and neurological case studies

[156, 181] to build a coherent cellular and behavioral theory of how the consolida-
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tion process occurs off-line (e.g. during sleep) through the reactivation of patterns of

neuronal activity observed during awake learning [96, 22, 55, 141].

From a dynamical perspective it is generally assumed that an enhanced spiking

activity in the form of persistent reverberation for several seconds is the neural cor-

relate of working memory [60, 61, 66]. The formation of these persistent activity

patterns has been studied extensively [64, 163, 164]. Some of this work concentrated

on investigating what intrinsic neuronal properties can support such activity patterns

[114, 178], while others focused on defining the exact activity matrix that would sup-

port attractors exhibiting localized, memory-specific, persistent activity [147, 34]. We

have shown recently that selective persistent activity during reactivation is an intrinsic

property of an inhomogeneous dynamic memory structure [83] and is due to recur-

rent excitation supported by the networks with Small-World (SW) topology [148].

Biologically, such heterogeneities are shown to exist [187]. Moreover, we showed the

network can regulate the stability of the persistent activity regime through change of

global parameter, namely excitation. This allows the networks to undergo a seamless

transition between activity regimes.

It remains unclear, however, what the dynamical underpinnings of time-dependent

memory transfer from the hippocampus to the cortex are and how this dynamics is

modulated by stimulus novelty. Experimental work has shown that the reactivation of

a given experience during sleep is greatest when the experience is novel and diminishes

with increased exposure [129, 134]. Moreover, hippocampal recordings indicate that

there is a significant phase shift of neural activity with respect to the hippocampal

theta rhythm during the consolidation process [134], which could indicate a difference

in input drives through the two hippocampal excitatory input pathways as consol-

idation progresses [22], as the firing of neurons in the hippocampal subfield CA1

switches from being aligned with the peaks of hippocampal theta oscillation to being

aligned with the peaks of cortical theta rhythm. However, basic questions remain
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concerning 1) how the stimulus novelty is assessed from changes in localized activ-

ity patterns, 2) how these changes are related to structural network modifications,

3) how the hippocampal-cortical interaction regulates memory storage and erasure

within hippocampus, and finally 4) how all these processes come together to generate

the experimentally observed, complex and novelty dependent memory management

scheme.

Here we show that this phenomenon can be easily explained through generic mod-

ifications of network structure which in turn evokes dynamical changes in network re-

sponse. Namely, our results indicate that the dynamic formation of localized network

inhomogeneities, coupled with basic anatomy of hippocampal-cortical structure, can

underlie both novelty detection within hippocampal and cortical networks, as well

as memory management processes based on this novelty assessment. To be able to

concentrate solely on the structural network underpinnings of the observed dynamics,

we use integrate-and-fire neurons; however the results apply to biologically detailed

neuronal models.

In order to more closely examine the network structural and dynamical underpin-

nings of these phenomena, we present each component of our model separately and

discuss their implications on the novelty detection and the memory management.

Both the hippocampus and the cortex were each modeled as a reduced assembly of

excitatory and inhibitory networks [Figure 2.1b] having periodic Small-World topol-

ogy per the Watts-Strogatz formulation [189]. This general topology was found to be

present in local and global brain networks [2, 154]. Dynamic Small-World topology

allows for simultaneous local propagation of activity as well as long-range re-injection

of current, promoting formation of ”on” states of persistent activity [148].

First, we show that a relatively small increase of connectivity in a discrete (i.e.

well-defined) network region can play two distinctly different roles, depending on the

network dynamical regime. When the network is in the low excitation regime, the
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changes of local network response to incoming sensory stimuli can act as familiar-

ity/novelty detection mechanism. However when the global network excitation is

increased, the same region will exhibit a persistent self-activation in the absence of

external input. Our results indicate that the evolution of these two dynamical states

correspond to observed neurobiological responses to a presentation of increasingly

familiar stimulus during animal wake state and to memory reactivation experienced

during sleep, respectively.

Further, we show that structural network inhomogeneities provide at the same

time a dynamical mechanism of intra-network novelty detection and inter-network

signaling of the level of discrete memory consolidation within the cortical network.

This last mechanism subsequently provides a self-regulated means for the hippocam-

pus to clear already consolidated memory traces. When implemented in conjunc-

tion with a simple learning rule, as well as the assumption of fast plasticity in the

hippocampus coupled with slow plasticity in the cortex, we can reproduce complex

memory management processes similar to that observed in behavioral data.

2.2 Model Structure and Methods

2.2.1 Intra-hippocampal/cortical network

The two brain structures were composed of a population of 500 excitatory neu-

rons coupled with a smaller population of 100 inhibitory neurons. The network size

ratios and connection densities used were chosen to grossly reflect biological distri-

butions and connectivity patterns in the hippocampus (Figure 2.1a); however, these

parameters are easily modifiable without loss of observed dynamical response.

We used leaky-integrate-and-fire neurons given by

τm
dV j

i/e

dt
= −αjV

j
i/e + Ii/e +

∑
k

wjkI
k
syn (2.1)
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Figure 2.1:
Diagrams of network structure. (a) Circuit diagram of anatomical con-
nectivity between hippocampal and cortical structures. Entorhinal cortex
layers II, III and IV-VI project through the perforant path (PP) to the
Dentate Gyrus (DG) and CA3, through the temporoammonic (TA) path
to the Subiculum (Sub) and CA1, and from the CA1 and Sub to the
deeper layers of the entorhinal cortex, respectively. MF=Mossy Fibers
and SC=Shaffer’s Collaterals. (b) Diagram of model used in simulations.
Single network (Hippocampus or Cortex): the network is composed of a
larger population of excitatory neurons and a smaller population of in-
hibitory neurons. Both inhibitory and excitatory networks comprise Small
World network having periodic boundary conditions. Feedback between
hippocampus and cortex: the excitatory hippocampal neurons locally in-
nervate the excitatory cortical network (e.g. the entorhinal cortex). The
cortical excitatory network suppresses the hippocampal excitatory net-
work through random inhibitory pathways.
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to represent the reduced dynamics of the network elements. The i/e denotes either

an inhibitory or excitatory neuron; V j
i/e is the membrane voltage of the j’th neuron;

αj is the membrane leak rate constant randomly distributed such that αj ∈ [1, 1.3];

τm = 30ms is the membrane time constant; Iksyn is the incoming current to the j’th

neuron from the k’th neuron; and wjk is the connection strength between neurons

j and k. For the global excitatory network the local connections are established

between cells such that the relative distance from one to another lies within the radius

Re = 5, peg = 0.15 is the rewiring parameter defining the fraction of the number of

local connections to the number of random, long-range ones, and the connections

are of strength wex = 2. Similarly, the global inhibitory interneuron subnetwork has

Ri = 1, pig = 1, and win = 10, forming a random graph network. Every inhibitory

cell receives input from nei = 5 neighboring excitatory neurons with strength wei = 4,

and every excitatory neuron receives input from nie = 10 random inhibitory ones with

strength wie = 2. Locality and relative distance were determined by considering a one-

dimensional lattice with periodic boundary conditions, done for graph visualization

purposes. Synaptic strengths were chosen to balance number of incoming connections

so that total possible input to all cells remains the same. The external current Ii/e

is uniform over the entire inhibitory/excitatory network and functions as a global

modulatory mechanism (control parameter) that mediates response transitions from

low-frequency random activity, to spontaneous activation of discrete network regions,

and finally to global bursting. This network architecture promotes global inhibition

driven by focal excitation that creates selective, persistent reactivation patterns. For

a detailed description, refer to [83].

When the membrane potential of a given cell assumes a maximum value of Vreset =

1, the neuron emits an action potential, its membrane potential is reset to Vrest = 0,

and the neuron enters a refractory period for τrefr = 10ms. The synaptic current
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emitted by spiking neuron (k) is of the form

Iksyn(t) = exp(
−(t− tkspike)

τs
)− exp(

−(t− tkspike)

τf
), (2.2)

where (t− tkspike) is the time since neuron k last spiked, τs = 1.5ms is the slow time

constant, and τf = 0.15ms is the fast time constant. Aside from the deterministic

input drive received from other cells, all neurons have a pfire = 10−3 probability of

firing spontaneously at any time step, defined as 0.5ms.

In this reduced model, the network heterogeneities are built into the excitatory

subnetworks of both the hippocampal network and the cortical network by adding

random connections to distinct non-overlapping subgroups of excitatory neurons, i.e.

neuron IDs 1-100, 101-200, 201-300, 301-400, and 401-500. The additional connections

increase the density of interconnectivity within these regions beyond the average

global connectivity density, allowing subgroups of neurons to recurrently innervate

and effectively increasing regional excitability. These subgroups can be thought of as

memory structures formed through long term potentiation (LTP) processes which are

known to occur readily during exploration of a novel environment [109, 50, 39, 124].

2.2.2 Inter-hippocampal-cortical feedback

In the brain, the cortex and hippocampus are connected via two main input

pathways: 1) the perforant path (PP) from layer II of the entorhinal cortex to the

dentate gyrus, to CA3, and then to CA1 (Figure 2.1a and modeled as ”input” in

Figure 2.1b); and 2) the TA pathway directly from layer III of the entorhinal cortex

to the inhibitory interneurons in the lacunosum-moleculare layer of the CA1 region

and on to the subiculum (represented as Higher Association Cortex excitatory to

Hippocampus inhibitory cell connections in Figure 2.1b) [6]. These two PP and TA

input pathways function separately to encode novel memories and serve as a con-
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solidation index for familiar memories, respectively [176]. It is the slowly building

familiarity index of the TA pathway that is the first step in memory consolidation

which is modeled herein. To model this neurophysiology, the model network hip-

pocampus and cortex were coupled through localized excitatory connections from the

hippocampus to the cortex, and also with diffuse feedback inhibition from the cortex

to the hippocampus (Figure 2.1b). This connectivity grossly reproduces the anatomic

connectivity (Figure 2.1a) between the two structures [6]. The one-to-one excitatory

mapping from the hippocampus to the cortex is instituted for visualization purposes

only; the qualitative results of this model would remain the same as long as the corti-

cal structures, representing the long-term consolidated memories, can effectively and

selectively affect hippocampal memory reactivation.

2.2.3 Activity-dependent synaptic modifications

In the last stage of our modeling, we introduce self-regulated formation of new

connections within the excitatory networks to show the progression of sequential

memory management: rapid memory formation in the hippocampus, its reactiva-

tion in hippocampus and consolidation in the cortex, and subsequent erasure in the

hippocampus. Hippocampal and cortical excitatory subnetworks are allowed to un-

dergo synaptic modification based on spiking activity of these cells. Subnetworks are

of Small-World topology, with a local radius of Re = 10 and a rewiring parameter

peg = 0.15, and are composed of 50% non-modifiable, homogeneous, active connections

with weight wex = 2 as well as 50% of modifiable, initially silent synapses, which are

connections initially with weight 0 but can modulate their strength between 0 and

wex = 2 as a function of neuronal activity [82].

The changes in synaptic strength are implemented based on a simplified neurobio-

logical rule of spike-timing dependent plasticity [13, 101, 17, 91]. The synapse strength

is incrementally increased when the pre and postsynaptic neurons fire together within
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a set interspike interval (ISI) of TL = 7.5ms, and, conversely, synaptic efficacy in the

modifiable group is decreased when the two cells do not activate congruously and

their ISI is above the set threshold TF = 15ms:

∆w∗
jk =



wex

τ
h/c
learn

if tj − tk < TL ;

− wex

τ
h/c
forget

if tj − tk > TF ;

0 if TL < tj − tk < TF .

(2.3)

The w∗
jk indicates the weight of modifiable synapses between neurons j and k,

wex = 2 is the strength of non-silent synapses in the excitatory network, tj − tk is the

ISI between neurons j and k, and τ
h/c
learn and τ

h/c
forget are the time constants of learning

and forgetting in the networks, where h/c denotes the hippocampal/cortical network,

respectively. The time constants of learning and forgetting are much larger in the

cortical network, reflecting slower learning (LTP) in the cortex [46, 137, 138]. We

have used τhlearn = 7.5ms, τhforget = 10ms, τ clearn = 25ms, and τ cforget = 200ms.

In this simplified model we concentrate on memory formation only within hip-

pocampal and cortical structures. In the brain, LTP occurs both within the hip-

pocampus, within the cortex, and between the two structures during learning. LTP

occurs readily in the trisynaptic pathway from layer II of the entorhinal cortex (EC)

to the dentate gyrus (DG). LTP is also easily produced in the Schaffer collateral (SC)

fibers from CA3 to CA1 as noted in vitro and in vivo [176, 81]. LTP in the direct

temporoammonic (TA) inputs to CA1 have not been well described, indeed it is only

recently that attention has been paid to this input pathway in models of hippocam-

pal function, mostly in reference to memory consolidation as we are considering here.

As was noted earlier, LTP in the TA pathway is more difficult to induce and would

therefore probably occur more slowly than LTP in the trisynaptic pathway [46, 138].
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2.2.4 Experimental procedures for biological recording and data analysis

The experimental procedures are thoroughly described in [134]. Briefly, rats were

anesthetized and implanted with a 14-tetrode drive above the hippocampus CA1

region in the brain. After surgical recovery, rats were food restricted to maintain 80-

95% of their free feeding weight, and were trained to run on a raised rectangular track

for food morsel rewards placed in food cups around the edges of the track. Rats ran

laps on this same track for 45 min each day to familiarize them with the environment,

procedure, and recording setup.

REM sleep was characterized by lack of movement and sustained large theta (5-

10 Hz) frequencies in the field potential following at least 3 min of non-REM sleep.

Cell spike, field potential and position data were recorded while the rat traversed

the familiar training track for 20 min, then traversed a similar track located in a

previously hidden area of the room for another 20 min, then returned for a final

20 min run on the familiar track. The same procedure of Familiar-Novel-Familiar

maze running followed by sleep recording was followed every day for a week while the

initially novel maze became familiar to the animal.

The relative amplitude of the spike peak and trough, and other waveform charac-

teristics were used to identify nearly 100 recorded pyramidal cells and interneurons

from the CA1 cell body layer. The spike times of each cell were then listed and

compared with the position of the animal at the time of firing, the state of the ani-

mal, and the phase of the field potential filtered for theta. Thirty-one of the recorded

CA1 pyramidal cells were selected for further analysis because they showed consistent

place-specific firing (place fields) on either the familiar maze only (n=12), or formed

a stable new place field on the novel maze (n=19). The firing rate of the familiar and

novel place cells during the exploration phase and during the subsequent 4 h sleep

period was calculated. The reactivation rate and theta pattern of cell firing during

REM sleep was compared with the activity rates and patterns of the same cells during
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the prior exploration period.

Theta phase and firing rate changes during running and REM sleep were first

reported in Poe et al [133].

2.3 Results

We show below that formation of structural network heterogeneities defined as

local variations of synaptic density can lead to dramatic changes in network dynam-

ics which may underlie stimulus novelty detection and regulate memory management

between the hippocampus and the neocortex. We ultimately show that this simple

mechanism modulating hippocampal activation through cortical feedback reproduces

the experimental data presented and, further, replicates the full process of hippocam-

pal memory management (i.e. hippocampal storage → hippocampal reactivation →

cortical storage → hippocampal deactivation). For clarity, in the sections below, we

discuss each dynamical component of the phenomena separately.

2.3.1 Single network mechanism can underlie novelty detection and mem-

ory reactivation

We have shown earlier [83] that network heterogeneity may underlie selective

network reactivation. Here we want to show that the structural network modifications

may play a twofold role during network dynamics. Random addition of relatively

few synapses (1-2% of total possible connections) to a selected network region can

dramatically change activity response of this region to stimulation when the network

is in its low global excitation state (i.e. low Ie), and at the same time it can lead to

formation of persistent activity state within the same region when the network is in

its high global excitation state (i.e. high Ie).

To illustrate these effects we first measured network responses to a focal external

drive (Figures 2.2a-c). The network shows preferential activation of the region with
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Figure 2.2:
Network response modulated by localized increases in connectivity den-
sity. (a) Activation of a network region, measured as a mean firing fre-
quency of neurons in the subnetwork (neuron IDs 300-400), in response to
stimulation of 6 cells (neuron IDs 315-320; global excitation Ie = 0.6; stim-
ulation current Istim = 0.7) as a function of number of added connections
to the subnetwork. Activation is averaged over 20 runs and over time.
Inset: sample time course of activation for 4 different connectivity densi-
ties (dashed line denotes onset of the stimulation). (b), (c) Sample raster
plots of the network response during alternating stimulation to illustrate
locality of response; neurons 315-320 are stimulated between the dashed
line and first dotted line, neurons 115-120 between the first dotted and
second dotted lines, and neurons 315-320 are finally stimulated between
second dotted line and end of run. (b) No heterogeneities are present. (c)
N = 400 connections are added to the neuron IDs 300-400 region of the
network. (d)-(f) Reactivation as a function of local connectivity density.
(d) Mean firing frequency as a function of added connections for different
values of global excitation . (e),(f) Sample raster plots depicting net-
work reactivation when (e) no heterogeneities are present, and f) N=400
connections are added to the region encompassing neuron IDs 300-400.
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added connections directly related to the magnitude of the structural network het-

erogeneity. Since the formation of the heterogeneity is the outcome of LTP processes

incurred during learning [109, 50, 39, 124], the changes in the intrinsic response of

the network to the stimulation can be directly linked to the novelty/familiarity of the

presented stimulus.

Furthermore, as we have shown before, these regions of network inhomogeneities

can be spontaneously activated when network’s global excitation level (Ie) is in-

creased. Figures 2.2d-f depict examples of spontaneous reactivation as a function of

connectivity density within the heterogeneous region. One can observe clear reactiva-

tion exemplified in the persistent activation of the neurons within the heterogeneous

network region. The reactivation itself is due to reciprocal feedback activity which

is mediated by the fact that SW topology provides a structurally random yet stable

re-injection mechanism supporting prolonged activation of neurons in spite of their

refractory time [148]. The discrete localization of the reactivating region is, on the

other hand, due to lowered threshold within the inhomogeneity for such dynamics to

occur as well as increased inhibition spreading randomly to other network regions.

Thus, we show that network structural inhomogeneity provides a dynamical mech-

anism mediating and modulating local, discrete network responses to stimulation,

while also able to self-activate under conditions of increased global excitation of the

network. Here, the network dynamics can be viewed during wake behavior as an un-

stable attractor that becomes activated only by stimuli of appropriate characteristics,

and yet during off-line consolidation becomes a stable attractor which can activate

spontaneously.
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Figure 2.3:
Changes of the hippocampal response as a function of structural proper-
ties of cortical network. The hippocampus has one stored memory (neu-
ron IDs 300-400), in the form of 400 additional network connections. (a)
Cortex is a homogenous network (i.e. no stored memory). Six neurons
in the hippocampus, IDs 315-320, are stimulated with input Istim = 4
and show strong activation, whereas the activation of the homogeneous
cortex due to input from hippocampus is limited. (b) The cortex has
a single network heterogeneity (memory) stored in the form of 400 ad-
ditional connections. The hippocampus, with the same memory stored,
is stimulated by the same input current, and subsequently triggers the
cortical memory, which activates strongly and depresses activation of the
hippocampus. (c) Mean activation of hippocampal and cortical networks
as a function of added connections. As the memory is progressively stored
in the cortex (i.e. becomes more familiar), cortical activation increases
while hippocampal activation is depressed.
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2.3.2 Modulation of hippocampal activation and reactivation by cortical

feedback

Having established a common mechanism modulating both network response to

stimulus based on its novelty as well as spontaneous reactivation during off-line pro-

cessing, we will proceed to apply this concept within an experimentally established

framework of hippocampal and cortical interactions. The underlying assumption that

we are making is that progressive storage (i.e. memory formation) of the presented

stimulus is achieved by the formation of network inhomogeneity first in the hippocam-

pus (i.e., fast, short-term storage) and then in the cortex (i.e., slower, long-term

storage). In order to highlight the effects that cortical storage has on hippocam-

pal activation and eliminate transient effects, we disallow synaptic modifications (i.e.

learning) and examine the network dynamics at various static points of cortical mem-

ory storage.

We investigated the changes in cortical and hippocampal activation patterns as a

function of the degree of regional inhomogeneity in the cortex (representing long-term

memory storage) when the external stimulus is present. The hippocampal network

(Figure 2.3) had a single structural heterogeneity, located at neuron IDs 300-400

and created by the addition of 400 random connections within this region, and was

driven by focal external stimulation applied as an additional input current (Istim = 4)

driving 6 cells (IDs 315-320). One can observe that when the cortex was homogeneous,

with no added connections, the stimulated region in the hippocampus was highly

activated (Figure 2.3a). However, in the presence of cortical structural inhomogeneity,

hippocampal activation was attenuated through diffuse inhibitory feedback stemming

from cortical feedback excitation of hippocampal interneurons (Figures 2.1a, 2.1b and

2.3b). In general, we see that hippocampal activation systematically decreased as

additional connections were added to the cortex, while cortical activity increased at

the same time (Figure 2.3c). Therefore, the level of long-term memory consolidation
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in the cortex is able to control activation of the same memory in the hippocampus,

serving as a novelty detection mechanism which can be utilized by the hippocampus

in the consolidation process.

2.3.3 Cortical modulation of hippocampal memory replay

As noted before, it is thought that memory reactivation observed during sleep

plays an important role in long-term memory storage as a possible memory replay

mechanism mediating memory consolidation into the cortex. In such a system, it is

important that consolidation, and thus reactivation, is regulated by stimulus novelty

(i.e. over-consolidation of a given memory may lead to disruption of other memories,

while lack of consolidation of novel memory will inhibit its storage). We postulate

that, toward this end, the cortex has a novelty-dependent and memory-specific regu-

lation of memory reactivation. We will show below that this mechanism becomes an

intrinsic property within the modeled cortical-hippocampal interactions.

2.3.3.1 Simulation Results

We demonstrate this mechanism in our hippocampal-cortical network, again in

the absence of learning in order to eliminate transient, time-dependent effects. Three

network regional inhomogeneities (neuron IDs 0-100, 200-300, 400-500) representing

memory structures were created in the hippocampal network and kept unchanged

during the simulation. At the same time, the cortical network was initially set to be

homogeneous, and then new connections were progressively added to a region match-

ing one of the hippocampal network heterogeneities (neuron IDs 200-300), to represent

the progressive consolidation of that cortical memory. Figure 2.4a depicts the regional

hippocampal activity in the three network regions of interest, normalized to their ac-

tivity when there are no additional connections present in the cortex. One can observe

a significant decrease of reactivation of the hippocampal network region (Figure 2.4a;
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”familiar” line), linked to the cortical region where structural inhomogeneity was

progressively formed. The reactivation ratios of the other two hippocampal regions

remained virtually unchanged (Figure 2.4a; ”novel 1” and ”novel 2”). This indicates

that, the cortex can selectively deactivate reactivation of a particular network region,

representing a single familiar memory, within the hippocampus while keeping the

reactivation of others virtually unchanged. Figures 2.4b-c depict an example of local-

ized hippocampal deactivation by the cortex. As soon as the ”familiar” hippocampal

region (IDs 200-300) started to reactivate, the linked cortical region immediately ac-

tivated, during which activity of the whole hippocampus was inhibited. After the

reactivation in the ”familiar memory” region was abolished in the hippocampus, the

cortex subsequently deactivated and other hippocampal regions (representing novel,

as yet cortically unconsolidated memory) were able to again reactivate.

2.3.3.2 Experimental Confirmation

To validate our results, we compared them with experimental findings [134]. Here

we concentrate on two basic aspects: the progressive cortical involvement in hip-

pocampal processing during memory consolidation, and changes in the off-line, au-

tonomous (i.e. not stimulus driven) hippocampal processing (i.e. reactivation).

We measure the progressive cortical involvement in hippocampal processing by

monitoring the phase shift in hippocampal neurons firing in relation to field potential

theta oscillation phase. The phases of theta oscillations in the hippocampus and

in the cortex are shifted with respect to each other by 180 degrees [22, 85]. In

addition, according to previous research [134, 22, 133], the firing pattern will be

aligned with the field potential theta oscillation phase of the dominant input structure

(i.e. hippocampal or cortical). The activity of hippocampal neurons in relation to

field potential theta oscillation phase over the time course of memory consolidation

is shown in Figure 2.4d. The strong progressive shift in the activity of hippocampal
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Figure 2.4:
Selective autonomous memory reactivation in the hippocampal-cortical
structure – simulations and experimental data. The hippocampus has
3 regions of network heterogeneities (IDs 1-100, 200-300, 400-500). One
memory structure (IDs 200-300) is stored in the corresponding region in
the cortex. (a) Average reactivation activity of familiar (neuron IDs 200-
300) versus novel (neuron IDs 1-100 and 400-500) memories as a function
of additional cortical connections. Activity was measured by normaliz-
ing total spike counts within a memory region for the total duration of
the run to total spike counts for the homogenous cortex run. Sample
raster plots for (b) hippocampus and (c) cortex. (d), (e) Experimental
data: (d) Phase locking of hippocampal neurons activity to local theta
oscillations as a function of days of exposure to the stimulus (i.e., stim-
ulus novelty). Solid black line (”Track”) denotes phase locking to CA1
layer theta peaks during active exploration; dashed gray line denotes the
same phase relation observed during REM sleep reactivation (”REM”).
(e) Frequency of hippocampal activity in novel and familiar environments
during exploration (left) and sleep reactivation (right).
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neurons to fire in the trough of the hippocampal theta cycle, i.e. in phase with

theta at the site of direct cortical inputs through the TA pathway, indicates that as

the reactivated memory becomes increasing familiar, the cortex plays a progressively

larger role in the hippocampal reactivation pattern. This supports directly our results

which show that as familiarity is increased, the cortical involvement in hippocampal

firing dynamics also increases.

We measure the progressive change in hippocampal off-line processing by moni-

toring the spiking frequency of the reactivating place cells. Once the consolidated cor-

tical TA pathway began to directly drive hippocampal reactivation (Figure 2.4d), the

spiking frequency of neurons encoding the (cortically) familiar environment decreased

significantly (Figure 2.4e, right), just as predicted by the simulations. The switch in

both theta phase and frequency of firing during reactivation can be explained by

the consolidated cortical memory network effectively suppressing hippocampal CA1

reactivation, possibly through projections to the opioid-sensitive inhibitory neurons

[46, 98, 180], just as we observed in our simulations.

2.3.4 Cortical-hippocampal memory management sequence

The hippocampus, being a short-term memory storage location [88], is thought

to perform three primary memory management tasks: store novel memory traces,

reactivate these traces during quiet waking and sleep for consolidation to the cortex,

and lastly erase them from itself to prevent saturation. We posit that these complex

memory management processes are autonomously controlled on the basis of their

familiarity. As the last part of this paper, we present the full model, with synaptic

plasticity (i.e. learning dynamics) and show that localized cortical activation together

with the modeled hippocampal-cortical feedback can act as a dynamical, autonomous

hippocampal memory management mechanism. Self-regulation of this process within

the hippocampal-cortical structure has the required and experimentally established
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phases (i.e., initial hippocampal learning during stimulus exposure, reactivation when

the stimulus is not present, inhibition of reactivation when cortical heterogeneity is

formed, and subsequent deactivation of the memory through deconstruction of the

hippocampal heterogeneity). To do so, we introduce self-regulating synaptic modifi-

cations (as described in the methods section).

During the simulation, a subset of neurons (IDs 200-300) in the hippocampal ex-

citatory network were injected with external current at times denoted as the shaded

time segments on the hippocampus raster plot on Figure 2.5a) to simulate a new sen-

sory experience, and both hippocampal and cortical networks were allowed to modify

their silent synapses starting at 1.5 s (dashed vertical line). The external stimulation

coupled with synaptic plasticity allowed for rapid formation of network inhomogene-

ity in the hippocampus, while synaptic modifications happened on a much slower

timescale in the cortex (Figure 2.5c). When the external stimulation was stopped,

the local structural changes created in the hippocampus drove its continued reac-

tivation, allowing for further activation and structural modifications in the cortex.

At a critical point, the cortical heterogeneity became large enough that its activity

blocked the reactivation in the hippocampus through the interneuronal feedback (Fig-

ures 2.5a-b). As the hippocampus shut down, its inhomogeneity started to clear out

due to its ability to quickly depotentiate the synapses, while the cortex maintained

its memory structure even in the absence of stimulation or activation.

Anatomically, this depotentiation occurs through TA inputs to interneurons which

have spike-blocking activity [46] and release depotentiation-enhancing peptides [180].

Concurrently, the hippocampus increases its sensitivity to the direct TA cortical in-

puts [98]. Upon repeated stimulation to the same hippocampal area (second shaded

blue region in Figure 2.5a), we see that reactivation in the hippocampal network be-

came shorter as the memory became progressively more familiar to the cortex and

direct cortical inputs to the hippocampus through the TA pathway became more
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Figure 2.5:
Memory management through hippocampal/cortical feedback. Raster
plots of activity in (a) hippocampus and (b) cortex. The hippocampus
is presented with the stimulus (represented by shaded region) in neu-
rons 200-300, immediately undergoing fast, local synaptic formation in
the stimulated region. Concurrently, cortical activity driven by the hip-
pocampus induces slower synaptic modifications in the cortex. Dashed
vertical line denotes start of learning for both networks. Formation of
local connections in the hippocampus allows spontaneous reactivation of
the network even when the external stimulation is terminated. Activa-
tion of the cortex eventually inhibits reactivation in the hippocampus
which promotes forgetting. Upon subsequent stimulation of this same
region in the hippocampus (second shaded portion, starting at 11.5 s),
the cortex immediately activates and further learns, strengthening its in-
hibitory feedback to the hippocampus. (c) Average synaptic weight of
silent synapses, normalized to maximum possible value, wex = 2. (d),
(e) Histograms of spiking frequency obtained from different time regions
of the simulation (denoted by the labeled black bars IS, IIS, IR, IIR)
for (d) hippocampus and (e) cortex. IS labels the first stimulation time
window, corresponding to novel exploration (Figure 2.4e); IIS labels the
second stimulation (familiar exploration); IR labels the first reactivation
time window (novel reactivation); IIR labels the second (familiar reactiva-
tion). The changes in frequency response in the hippocampus accurately
reproduce the experimental data (Figure 2.4e).
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active. Figures 2.5d and 2.5e compare observed spike frequencies from the behav-

ioral time points corresponding to the experimental data (Figure 2.4d). Here, one

can observe a slight increase of the hippocampal spike frequency during the second

stimulation period (labeled ”IIS”). This is due to the fact that the inhomogeneity

was not completely cleared from the hippocampus, and therefore the hippocampal

network activation due to the formation of network heterogeneity corresponding to

this memory was stronger than the simultaneous inhibition received from the cortical

network. At the same time the cortical feedback mediated dramatic shortening or

abolition of reactivation when the external stimulation ceased.

2.4 Discussion

In this paper we show that distributed network dynamics modulated by local

modifications in network structure can play a pivotal role in complex processes of

memory management. Specifically, we have demonstrated that structural network

heterogeneities created through local modifications of network connectivity can act

in two ways depending on the dynamical regime: they effect differential activation of

the network in response to the external stimulus, and they can mediate autonomous

reactivation of selective network regions. The former phase represents associative

memory processes during active exploration of the environment. We have shown that

differential activation during stimulation may serve as a novelty/familiarity assess-

ment of the incoming stimulus in the cortical network, which in turn may facilitate

self-controlled memory management in the hippocampal-cortical interaction. The

latter phase indicates memory reactivation observed during various stages of quiet

waking and sleep [88, 134, 22]. The transition from one phase to the other can

be self-regulated through adjustment of the global network excitation. In the brain,

such regulation is known to exist and is controlled through neuromodulatory processes

[62, 76, 160].
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By utilizing the structural network underpinnings of the dynamical network re-

sponse together with cortical feedback we can reproduce the sequential memory man-

agement stages that have been observed in the hippocampus. This mechanism is built

on several phenomena supported by experimental findings, which we have explored

in this paper: discrete activation and reactivation of heterogeneous structures within

hippocampal and cortical networks, cortical regulation of linked hippocampal memory

structures based on familiarity level, which acts as the basis for novelty discrimination

among parallel and concurrent memories, and finally spike-timing dependent plastic-

ity of the hippocampus and cortex which occur on different timescales. We simulate

hippocampal and cortical response to both novel and increasingly familiar stimuli

and show that, upon repeated exposure, hippocampal reactivation of the memory is

lessened due to increased feedback from the cortical memory region.

We have compared the obtained results with the available experimental data. Ex-

perimental findings show that the frequency of reactivating neurons in the hippocam-

pus coding familiar stimuli is significantly lower than the reactivation frequency while

encoding novel stimuli. Furthermore, the observed progressive theta phase shift in

activation of hippocampal CA1 neurons as a function of memory novelty (from in-

phase with the hippocampal theta rhythm to in-phase with the theta peaks at the

cortical input pathway) indicates a progressive increase in cortical driving, which is

observed in our model. This is also consistent with recent research which shows a

temporal correlation between cortical and hippocampal replay of consolidated mem-

ories, indicating a strong interaction between the two structures during sleep [84].

Neocortical up-down states have been shown to be phase-locked to hippocampal in-

terneurons [67], indicating that this temporal correlation is at least partly due to their

excitatory cortical drive, also in support of our model.

The increase in cortical firing rate after consolidation that is predicted in our model

(Figure 2.5e) could also be manifested as an increase in the functional connectivity
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between the cortex and hippocampus via a strengthening of the TA inputs to CA1.

This synaptic weight modification would have additional effect on the dynamics of

hippocampal-cortical interactions and the increase in firing rates during reverberation.

Thus, whether slow increases in cortical firing increases the TA inputs or LTP of the

TA inputs occurs slowly, the net effect on the network activity pattern is the same;

increased input strength to the hippocampal inhibitory cells would effectively shut

down hippocampal activity after consolidation, probably due to increased activation

of the opioid sensitive interneurons in the distal SLM layers [46, 98, 180]. Indeed,

the firing rate of hippocampal reactivation is reduced in familiar memory networks

(Figure 2.4e), and that shutdown occurs primarily at the phase of theta when the

CA1 cells are most depolarized and CA3 inputs should be most capable of causing

CA1 cells to fire.

The reduced model presented here is not meant to faithfully reproduce every

structural and dynamical aspect observed experimentally but to act as a tool to

elucidate the link between structural network modifications and its dynamics during

associative network storage processes — in essence, to highlight the role of network

processes and dynamics in memory formation. For the sake of visual simplicity, and

as a test of proof of principle, we implemented several artificial aspects into our

model, such as non-overlapping, localized memory structures. Further preliminary

work shows, however, that the qualitative results presented in this paper do not

change by implementing distributed, overlapping memories.

We have also not implemented any underlying oscillatory rhythms within our

model cortex and hippocampus. The comparison of our results with the phase locking

observed in the experimental data is only to highlight the increased role of cortical

input during progressing memory consolidation. Furthermore, it is important to note

that the cortical feedback itself is excitatory but that, in our model, it targets only

inhibitory interneurons of the hippocampal structure. Anatomically it is known that
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this excitatory feedback also targets the pyramidal cells [6] and could consequently

mediate the phase locking observed in the data.

Clearly, our model makes simplifying assumptions which do not wholly represent

the complexity of hipoccampal-cortical processing, but it nonetheless elucidates a

possible network dynamical mechanism mediating memory management and opens

interesting avenues of further research.
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CHAPTER III

Memory storage and recall

3.1 Introduction

The hippocampus is thought to be both the initial store and regulator of episodic

memory, with the CA3 region in particular computationally functioning as a content-

addressable memory with an ability to both store and complete patterns [102, 144].

Replay during sleep of activity patterns that were experienced during active explo-

ration within the hippocampus plays an important role in memory consolidation,

the process of forming hippocampus-independent memory schemas within the cortex

[96, 63]. Certain studies have shown that recurrent networks underlying working and

short-term memory models allow for focal persistent discharges, representing remem-

bered information, as a result of the network being bistable between a resting state

and a persistent memory activation state [5, 148]. This process can be mediated by

either slow-changing presynaptic buffer currents [114] or NMDA receptors coupled

with inhibition [35].

We’ve explored previously the interaction of heterogeneous structure in the anatom-

ical connectivity with global top-down signaling to produce three distinct functional

states: regime 1 – low-frequency, noisy firing, regime 2 – selective activation of single

population subsets reflecting the underlying structural heterogeneities, and regime 3

– global, synchronized bursting behavior [83, 183]. Heterogeneity in the anatomical
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structure is created through the addition of random connections to a discrete por-

tion of the network coupled with global inhibition. Additionally, patterns of activity

within cortical regions have been shown to exist as functionally discrete circuits [65].

In dealing with complex episodic memories which can comprise many hierarchies of

substructure and modular organization of concepts, an important issue in the storage

and retrieval process concerns how to deal with representations which are overlapped.

Correlation or overlap between patterns tends to degrade the selective retrieval of

single memories. As memories share an increasing fraction of neurons, the network

quickly loses the ability to activate and selectively replay single memories without

also coactivating linked memories. It has been suggested that inhibitory input from

the dentate gyrus (DG) via the mossy fiber recruitment of inhibitory interneurons

[103] serves as a mechanism for pattern separation within the CA3 [92, 117]. Loss of

inhibitory interneurons has been linked to brain disorders such as epilepsy [51] and

schizophrenia [14], and inhibitory cells hold significance in spatiotemporal organiza-

tion involved in binding or memory tasks [31]. Structured inhibition in the form of

layer-specific lateral inhibition has been shown to be important to cortical organi-

zation [3], and heterogeneity in pyramidal cell inhibition has been demonstrated in

the primary olfactory cortex [97]. However, little is known about how specifically

different connectivity topologies affect pattern retrieval in various brain states.

Here we examine the network mechanisms controlling both awake activation and

sleep reactivation of stored memory patterns and determine processes which promote

the quick pattern separation evident in episodic memory retrieval associated with

the hippocampus and long-term neocortical memory stores [126]. We have modeled

a memory storage and retrieval system loosely based on the functions of the hip-

pocampal CA3 region and associated neocortical memory stores [145]. We focus only

on retrieval dynamics in the absence of learning, as a first step in understanding the

complex role network topology plays in system dynamics. Memory retrieval was mod-
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eled as increased spiking frequency of regional subpopulations of excitatory neurons,

akin to attractor states, and storage of memories is denoted by increased density in

connectivity patterns between subpopulations of neurons, creating heterogeneities in

the network topology. We first examine how memory distribution as well as increased

overlap between two memories embedded within an excitatory-inhibitory network de-

grades single pattern retrieval in the cases of sleep reactivation and awake recall. Then

we characterize the abilities of different inhibitory-to-excitatory connection topologies

in counteracting this degradation, highlighting the role of inhibitory interneurons in

being able to regulate discrete and selective activations of stored memories. Through

simple rules of targeted inhibition, networks are able to achieve selective memory

replay even when memories are highly associated with each other.

Finally we show that by coupling network excitability to network activity, the net-

work is able to self-regulate its behavioral state and enhance single memory recovery.

We explore the role of global excitability self-modulation to bring the network into

the memory retrieval state, because as memories become increasing correlated, higher

densities of recurrent connections are created which increases the effective excitability

of the network and necessitates modulatory mechanisms to bring the network back

to optimal working states. This study is not meant to mimic the detailed biological

neural correlates of memory recall, but rather is an examination of the capacity of a

neural network to regulate its storage and activation capabilities through topological

changes and global network monitoring.

3.2 Methods

3.2.1 Network structure and dynamics

The network is composed of two subpopulations, an excitatory subnetwork and

an inhibitory subnetwork each composed of a single one-dimensional periodic lattice
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of neuronal units, both containing highly recurrent connections (Figure 3.1). The

excitatory network is a population of Ne = 1500 excitatory neurons with a uniform

0.5% chance of being randomly connected to each other. Excitatory neurons are

embedded with two memory structures, each of which are composed of C clusters

of size g = NM/C, where NM is the number of neurons per memory structure to

be stored in the network. Neuronal clusters are derived from the concept of cell

assemblies [69], which are subpopulations of neurons which can enervate and display

persistent coordinated activity (i.e. reverberation) without direct stimulation due to

highly recurrent connections within the assembly.

Inhibitoryhibito

ExcitatoryExcitatatoryry

Inhibitory

Feedback

   Local

Excitation

Ne = 1500

Ni = 300

External

Stimulation

Memory 1

Memory 2

Memory 3

Figure 3.1: Schematic of excitatory-inhibitory network. The network is composed of
an excitatory subpopulation and a smaller inhibitory subpopulation en-
ervated locally by the excitatory network, which is itself inhibited with
connections from the inhibitory layer. The excitatory network layer is em-
bedded with multiple memory structures in the form of localized increases
in connectivity density.

As memory structures become more distributed, the number of neurons in each

cluster, g, decreases so that a single memory is stored throughout the network in

smaller contiguous clusters rather than being localized. Within each cluster neurons
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are coupled in small-world fashion consistent with the Watts-Stogatz model [189],

with pex = 0.1, at 8% of maximum connectivity. Clusters are grouped into two sub-

populations (memories) composed of NM neurons by adding additional connections

randomly to these subpopulations at 4% of maximum connectivity, NM ∗ (NM − 1).

These subgroups can be thought of as memory structures formed through long term

potentiation (LTP) processes which are known to occur readily during exploration

of a novel environment [109, 50, 39, 124]. These additional connections increase the

density of interconnectivity within these regions beyond the average global connec-

tivity degree, allowing subgroups of neurons to recurrently innervate and effectively

increasing regional excitability. Memory structures are allowed to be both overlapped

and distributed (see Figures 3.2 and 3.4b), and assignment of clusters to memories

is done in a stochastic fashion. Overlapped memories share neuronal clusters, and

the amount of overlap L is defined as the percentage of total number of neurons in a

memory structure NM which are also shared with another memory.

The inhibitory neuronal subnetwork is composed of Ni = 300 neurons connected

randomly to each other so that each neuron is connected to 30 other neurons (Si =

10% of maximum connectivity). The excitatory subnetwork is connected to the in-

hibitory subnetwork in a local fashion, so that each inhibitory neuron receives con-

nections from 15 nearest excitatory neurons (Sei = 1% of total possible). Three

conditions of inhibitory-to-excitatory layer connections were tested to determine ef-

fects of inhibitory topology on replay performance (described in Section 3.2.2). The

network size ratios and connection densities used were chosen to grossly reflect bi-

ological distributions and connectivity patterns in the hippocampus; however, these

parameters are easily modifiable without loss of observed dynamical response.

We used leaky-integrate-and-fire neurons given by

τm
dV j

i/e

dt
= −αjV

j
i/e + Ii/e +

∑
k

wjkI
k
syn (3.1)
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Figure 3.2: Depiction of overlapped memory structures. Example network topologies
with 2 memory structures are shown with no overlap (top) and L=50%
overlap (bottom). Memory structures are composed of C clusters, which
are of size g and connected in small-world fashion with p = 0.1 and 8%
connectivity density. Neurons within a memory are randomly connected
to each other with a 4% probability. Increased overlap between memories
occurs when they share increased numbers of clusters.

to represent the reduced dynamics of the network elements. The i/e denotes either

an inhibitory or excitatory neuron; V j
i/e is the membrane voltage of the j-th neuron;

αj is the membrane leak rate constant randomly distributed such that αj ∈ [1, 1.3];

τm = 30 ms is the membrane time constant; Iksyn is the incoming current to the j-th

neuron from the k-th neuron; and wjk is the connection strength between neurons j

and k. The excitatory subnetwork is connected with connection strengths of we = 2

and the inhibitory subnetwork with wi = 2; the excitatory-to-inhibitory network con-

nections are of strength wei = 4 and inhibitory-to-excitatory network connections

wie = 3. Synaptic strengths were chosen to inversely scale with the number of incom-

ing connections so that total inhibitory current was roughly balanced with excitatory

current. The external current Ii/e is uniform over the entire inhibitory/excitatory
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network. Ii is held constant at 5; Ie is allowed to vary in the range 0-10 and func-

tions as a global modulatory mechanism (control parameter) that controls response

transitions from low-frequency random activity, to spontaneous activation of discrete

network regions, and finally to global bursting. Biologically, excitability represents

the responsiveness of neurons within the network to both recurrent activity and ex-

ternal input. Within a certain range of excitability, regions with high local density

of connections activate selectively while suppressing the rest of the network. This is

due to the fact that heterogeneities allow for additional synaptic transmission within

a localized region, amounting to higher effective excitability. This network archi-

tecture promotes regional inhibition driven by focal excitation that creates selective,

persistent reactivation patterns. For a detailed description, refer to [83, 183].

When the membrane potential of a given cell assumes a maximum value of Vt = 1,

the neuron emits an action potential, its membrane potential is reset to Vrest = 0,

and the neuron enters a refractory period for τrefr = 10ms. The synaptic current

emitted by spiking neuron k is of the form

Iksyn(t) = exp(
−(t− tkspike)

τs
)− exp(

−(t− tkspike)

τf
), (3.2)

where (t − tkspike) is the time since neuron k last spiked, τs = 3 ms is the slow time

constant, and τf = 0.3 ms is the fast time constant. Aside from the deterministic

input drive received from other cells, all neurons have a pfire = 10−3 probability of

firing spontaneously per millisecond.

To represent input from other cortical regions or external sensory information,

neurons within one memory is stimulated with a current Id. Because memory patterns

are already stored, this driving input may represent encountering a familiar object or

memory which recalls specific patterns while suppressing others.
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3.2.2 Topology of inhibitory-to-excitatory connectivity

The inhibitory network is connected to the excitatory network using one of four

connectivity conditions: 1) purely random with connectivity denoted by Sr, 2) purely

local with connectivity denoted by Sie, 3) part local and part random inhibition, and

4) local inhibition coupled with additional targeted connections with connectivity

denoted by Sa. Connectivities Sie and Sr are calculated as a percentage of the total

possible number of inhibitory-to-excitatory connections Ne ∗ Ni. Local inhibition

consists of lateral suppression of nearby clusters similar to Mexican hat inhibition in

visual [116] and other cortical network models [186]. The g excitatory neurons closest

to the inhibitory neurons remain active (are not inhibited) while nearby clusters of

excitatory neurons which are most likely associated with other memory structures are

suppressed. The connection probability between an inhibitory and excitatory cell is

represented by a Gaussian of standard deviation σ = g excitatory neurons, modified

with the center g neurons taken out (see Figure 3.3a), where g is the number of

neurons per cluster. Fully random connectivity assigns connections randomly between

inhibitory and excitatory cells according to a uniform probability.

Mixed connectivity topologies consist of both local and nonlocal connections. On

top of a baseline level of local connectivity Sie = 10%, networks also include ei-

ther additional random inhibitory-excitatory synapses (at connectivity Sr) or addi-

tional targeted synapses (at connectivity Sa) to test for the effect of selective inhi-

bition between memory structures. This feedback inhibition effectively counteracts

increased association which exists when two memories are overlapped and thus share

neurons. Inhibitory connections are added such that inhibitory neurons associated

with each memory structure (locally enervated by excitatory neurons within these

memory structures) will synapse randomly onto all other areas of the excitatory net-

work (see Figure 3.3b), so that activation of a single memory will globally suppress

the rest of the network and other memories. Reciprocally, excitatory cells of each
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Network to memory inhibition

Memory to network inhibition

g closest neurons

Probability of i→e 
      connection

   Distance from Excitatory Neuron

(in units of number of excit. neurons)

0
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with σ = g 
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(b)

Figure 3.3: Local and targeted inhibitory feedback. A) Formation of inhibitory synap-
tic connections onto excitatory neurons are determined by a Gaussian
probability function with the center g excitatory neurons taken out so
that surrounding clusters are suppressed. B) Targeted, additional in-
hibitory connections are created in the form of random connections from
inhibitory neurons associated with (enervated by) a memory structure
to the rest of the network as well as connections from inhibitory cells
associated with the rest of the network back to the memory structure it-
self. Amount of targeted inhibition is tuned by the parameter Sa which is
the fraction of total inhibitory connections possible between the memory
structure and the rest of the network.

memory structure receive the same number of (but not identical) inhibitory connec-

tions from non-associated areas of the inhibitory network. This inhibitory pathway

aids in the suppression of linked memories when a single memory is more strongly

activated than the rest of the network. We test various amounts of added inhibitory

connections, Sa = 0%, 2%, 4%, and 6%, where Sa is the percentage of total possible

connections between a single memory structure and the rest of the network, where

the total number of possible connections is given by NM ∗ (Ne −NM).
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Comparisons are made between runs which have the same total amount of in-

hibitory connections, the only difference being the topology of the connections.

3.2.3 Self-modulated excitability

Because the external current Ii/e acts as a global modulatory mechanism con-

trolling network activity states ranging from low-frequency noisy firing, to discrete

regional activation, and finally to global bursting, we examined if the network could

control this parameter to self-tune its state as a response to monitored global activity.

The importance of excitatory-to-inhibitory current balance has been shown before in

the generation of gamma frequencies [8], neocortical dynamics [68], and signal gating

[177]. Biological agents of global modulation could include acetylcholine; the impor-

tance of acetylcholine to memory and consolidation has been suggested in numerous

studies [73, 132, 72] and evidence exists for diffuse, volume transmission of acetyl-

choline [41]. In addition, self-regulatory mechanisms, such as homeostatic plasticity,

have been shown to be important to memory storage and the stability of recurrent

as well as feedforward neural networks [170]. We present a mechanism whereby the

number of neurons over threshold is maintained at a set level, determined by the av-

erage size of all stored memories. The network determines total number of excitatory

neurons Na with an integrated average activity above a set threshold of activation (8

times noise level), where activity is integrated over the last w = 20 ms. The network

then dynamically adjusts Ie by either incrementing or decrementing by an amount

depending on Na, so that the excitability Ie at time t is determined by the following

equations:

Ie(t+ 1) =


Ie(t) + α ∗D, |D| > ξ

Ie(t), otherwise

, (3.3)
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where α = 3 and D = (NM −Na)/NM is the relative difference between the number

of neurons per memory and the total number of active neurons Na, defined as the

number of excitatory cells at time t with spiking activity within the last 20 ms greater

than 8 times that expected from noise. Formally, Na(t) =
∑

n Rn(t), where Rn(t) is 1

if
∑t

i=t−20 Sn,i > 8∗
∑t

i=t−20 pfire and 0 otherwise, where Sn,i is 1 if neuron n spikes at

time i. ξ = 0.067 sets a tolerance for this relative difference so that small differences

due to noise do not cause adjustment of excitability. All simulations are run with a

time step of 0.1 ms.

3.2.4 Measures

Activity overlap. For a pair of memories u and v, we can define a memory ac-

tivation overlap Au,v from the activity traces Su/v(i) of the nonoverlapped neurons

(belonging to only one memory) in u and v. In other words, Su/v(i) is the summed and

binned activity time trace of each memory less the activity contributed by neurons

which are common to both memories as well as the baseline noise:

Au,v = 2 ∗ (1− 1

T

T∑
i

maxt{Su(i), Sv(i)}
Su(i) + Sv(i)

),where (3.4)

Sx(i) =
N∑

n∈x,n/∈y

(s(n, i)− b ∗ pfire), (3.5)

for x, y ∈ {u, v}. The total number of spikes s(n, i) fired by neuron n at time bin i

is calculated with a sliding window of b =20 ms with 50% overlap between successive

time bins, and T is the total number of time bins for the simulation.

Au,v has been normalized to a range of [0,1], where 0 denotes minimal overlap

between two memories. A = 0 would signify that the network activity is entirely due

to the activity of one memory, while A = 1 denotes that all memories are activating

simultaneously at the same amplitude. Activity overlap measure gives us an idea of

how exclusively the network is within one attractor state, as it is a measure of the
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degree of coactivation of embedded memories. Figure 3.5 presents five simulation

runs and depicts how the value A relates to memory co-activation as excitability is

increased. The dip in activity overlap is due to the network being in a noise regime

at low excitability, giving an activity overlap of 0.4, a value dependent on the noise

level pfire and the size of the window used to calculate activity levels. As excitability

increases, activity overlap dips drastically for the driven network, and less so for

the reactivation cases, until reaching full network bursting in which all memories are

co-activated and thus give an A of 1.

Table 3.1: List of key parameters and measures.

Parameter Variable Value range Default

Number of excitatory neurons Ne 200− 2000 1500

Number of neurons per memory NM 100− 1000 750

Number of clusters C 5− 50 5

Number of neurons per cluster g 15− 150 150

Ratio of memory size to excitatory network size f 0.05− 0.5 0.5

Memory overlap L 0− 40% 0%

Excitability Ie 0− 10 n/a

Driving current to one memory Id 0− 5 0, 2

Local inhibitory-to-excitatory connectivity Sie 0− 16% 10%

Random inhibitory-to-excitatory connectivity Sr 0− 16% 0%

Targeted inhibitory-to-excitatory connectivity Sa 0− 6% 0%

Measure Variable Value range

Activity overlap A 0− 1

Integrated activity overlap µ n/a

Integrated activity overlap. While the overall minimum value of A obtained over

the various excitabilities may not drastically change as parameters are varied, the

range of excitabilities for which reactivation dynamics is achieved is indicative of

the robustness of this state, or the ease with which the network can either enter
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or maintain single memory dynamics. Therefore in order to quantify the extent of

regime 2 dynamics, we define a measure µ which represents the area of the A versus

excitability curve under 0.4, illustrated in Figure 3.6. The higher µ is, the more robust

selective memory reactivation is for a particular network configuration. Excitability

ranges are chosen so that the network displays both regime 1 and regime 3 dynamics

at either end of this range.

3.3 Results

Previous work has highlighted the role of recurrent synaptic connections on rever-

berating patterns of activity [148], as well as the effect of global neuronal excitability

on network states. A recurrent network with regional heterogeneities, or localized

increases in connectivity densities, displays three regimes of behavior depending on

a global control parameter: excitability Ie [83]. Figure 3.4a illustrates three regimes

of behavior as excitability changes from low to high: regime 1 – low-frequency, noisy

firing, regime 2 – discrete activation of population subsets, and regime 3 – globally

synchronous bursting behavior. We associate regime 2 with memory reactivation

during REM, slow-wave sleep, or quiet waking. In the absence of driving, stored

memory traces activate spontaneously offline, as has been observed experimentally

to happen within the hippocampus during sleep or quiet waking states after previous

awake learning [96]. Similar dynamics are observed within the model network; in the

absence of external stimulation, activity patterns are able to spontaneously emerge

as the population falls into a single attractor state. During active exploration, it’s

possible to encounter familiar stimuli and preferentially activate the relevant memory

pattern in a process of recognition.

As overlapped memories share more and more neurons in common, it becomes

increasingly difficult to have one memory activate without causing coactivation of

correlated or overlapped memories. At high degrees of pattern overlap, two memories

69



1500

0

N
eu

ro
n
 I

D

Regime 1 - Noise

 Regime 2 - Single 

Memory Activation

Regime 3 - Global 

        Bursting

Increased pattern distribution

Increased memory overlap

1500

0

N
eu

ro
n
 I

D

Memory structures reactivate 

Excitability I
e

Whole network
reactivates 

1500

0

N
eu

ro
n

 I
D

1500

0

N
eu

ro
n
 I

D

1500

0

N
eu

ro
n
 I

D

0.50 Time (s)

0.50 Time (s)

(a)

(b)

Figure 3.4: Excitability and 3 network regimes. a) Raster plots of the three network
regimes – noise (Regime 1), single memory activation (Regime 2), and
global bursting (Regime 3) – as a function of increasing excitability Ie.
Two memories with C = 5 clusters each are embedded in a network
with clusters located in alternating fashion for visualization purposes.
b) Raster plots of networks for memories stored in C = 10 clusters, no
overlap (top) and C = 5 clusters, L = 40% overlap (bottom). Green
and blue colors represent neurons belonging to memory 1 and memory
2, respectively; gray color represents spiking activity of neurons coding
for both patterns. Black dots in raster plot correspond to neurons which
aren’t encoding either memory.

can be thought of as a single unified concept, at which point activation of both due

to stimulation of one could represent the brain’s natural ability to recall associated

concepts. However, at intermediate levels of overlap, the brain should still be able to

distinguish between two concepts and hold one in mind without activating the other.

Therefore, a mechanism is needed to suppress activation of the associated memory

while allowing full activation of the stimulated memory. Such a mechanism should

also help distinguish memories in cases of spontaneous memory reactivation.

In this paper, we implement a simple neural network memory model and explore
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the limits of the network’s ability to manage overlapped and distributed memories

(see Figure 3.4b) in both the offline and the active waking state, implementing various

inhibitory feedback topologies and examining self-regulating mechanisms to optimize

memory reactivation and recognition. We find that the topology of inhibitory feed-

back is important for maintaining pattern separation and that, further, the network is

able to self-regulate its dynamic regime through coarsely monitoring activity. In the

waking state, biasing one pattern over another activates inhibitory feedback pathways

which suppress the nonstimulated pattern even in cases of higher pattern overlap. In

comparison with reactivation, external stimulation of one memory allows for much

more robust regime 2 dynamics, as depicted in Figure 3.6. We focused on the case of

two memories because it was not the aim of the study to explore capacity but rather

how the network can manage increased overlap between pattern representations. We

want to understand how the cortex maintains hierarchical knowledge and concepts.

Increasing the number of memories to 3 and 4 does not significantly affect the results.
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3.3.1 Interplay between memory storage and inhibitory feedback topol-

ogy

In characterizing inhibitory feedback topology, we examine various conditions of

memory storage, including increased distribution (smaller clusters g or increased num-

ber of clusters C) and increased overlap in memory representation (L). Four types

of inhibitory feedback are tested: 1) local, modified-Gaussian, 2) random, 3) local

combined with random, and 4) local combined with targeted inhibition.

In the case of purely local inhibition, larger clusters tended to promote more single

memory activation, as shown in Figure 3.7 in the left column. For very distributed

memories (C = 50), the activity overlap versus excitability curve displays a prominent

rise before descending to the low values of regime 2 dynamics. This is due to a uniform

rise in activity level across the whole network (see Figure 3.5) and its inability to fall

into an attractor state, or simply remains in a uniform activation attractor state [192].

Such dynamics can be attributed to the diffuse nature of excitatory connections as

the number of clusters increases and size of the clusters decreases. As excitatory
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connectivity becomes increasingly global due to increased memory distribution, for

moderate levels of excitability Ie, current is unable to concentrate within any one

discrete area and contributes to a uniform rise in activity, possibility due to the

inability of such small clusters to maintain persistent activity [143].

Randomness in inhibitory topology can also induce such dynamics, regardless of

the size of clusters (see Figure 3.7, right column). For the random inhibitory feedback

case, this peak in activity overlap between regime 1 and regime 2 increases as cluster

size decreases, reaffirming the notion that random topology tends to impede the

network from falling into global attractor states.

The ability to activate or reactivate a single memory, as quantified by integrated

overlap µ, displays different functional relationships with the amount of inhibitory

feedback for the two cases, as shown in Figure 3.7c. For local inhibition, as the

number of inhibitory connections increases, µ generally increases, representing an

increase in robustness of regime 2 (single pattern recovery) dynamics across different

levels of excitability. However for highly random topologies, either excitatory (C = 50

cell clusters) or inhibitory, as with the random inhibition case, µ begins to fall for

higher values of inhibitory-excitatory connectivity, as dynamics are dominated by

uniform global increases in activity (see Figure 3.5 for a typical activity time trace)

and the range of excitability for which single memories can activate disappears. This

effect is especially striking with highly fragmented or distributed memories, C = 50,

in combination with random inhibitory feedback.

Next we examined the effects of increased overlap between memories in the case of

sleep reactivation (Id = 0) and external driving (Id = 2). Without external stimula-

tion, for both local and random inhibition, the network transitions directly from noise

to bursting dynamics without displaying single memory activity for all but 0% over-

lap, as illustrated in Figure 3.8 in the left column. It’s clear that as overlap increases,

co-activation of stored memories rise sharply, driven by activation of common neurons
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Figure 3.7:
Comparison of network performance between local inhibitory-excitatory
topology (left) and random, long-range inhibitory-excitatory topology
(right). Activity overlap plotted versus excitability for networks with
C = 3, 5, 15, and 50 clusters in the cases of (a) inhibitory connectivity
Sie = 10% (left), Sr = 10% (right), and (b) Sie = 16% (left), Sr = 16%
(right). (c) Plots of integrated activity overlap µ versus Sie and Sr for
different C, showing dependence of regime 2 robustness on the strength
of inhibition and distribution of patterns stored. Error bars represent
standard error of the mean, as for all subsequent figures.

which enervates more than one memory simultaneously. However, with the addition

of driving current to one subpopulation of neurons representing stimulation of a single

pattern, the network is able to display single memory activation for L = 20% over-

lap (see Figure 3.8, right column). In both driven (Id = 2) and nondriven (Id = 0)
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cases, as memory patterns become increasingly overlapped, purely random or local

inhibitory feedback becomes inadequate to maintain pattern separation, especially in

the absence of external driving.

Reactivation (Id = 0) External Stimulation (Id =2)
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Figure 3.8:
Activity overlap plotted versus excitability Ie for different amounts of
memory overlap L = 0%, 20%, 40%, and 60% with A) the local inhibitory
feedback and B) random inhibitory feedback. Reactivation dynamics are
shown in the left column; driving dynamics with Id = 2 shown in the
right column. All simulations run with C = 5 clusters and inhibitory
connectivity Sie/r = 10%.

Therefore we examine more complex connectivities: Sie = 10% local connectivity

combined with Sr = 6% random, and Sie = 10% local connectivity combined with

Sa = 6% targeted inhibitory connectivity. As shown in Figure 3.9, targeted inhibition

provides the best single memory activation (low A) for all tested ranges of pattern

overlap (L = 0 − 40%). In the non-overlapped case, although random inhibition

allows for a lower minimum activity overlap A, the large peak between the noise and

single memory regime results in a decrease the robustness of regime 2 dynamics. For
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the high overlap case, only targeted inhibition combined with baseline local topology

is able to recover single memory replay.

Besides the connectivity topology of inhibitory feedback, three other factors de-

termine the range of excitability for which regime 2 dynamics occurs: 1) density of

inhibitory feedback connections, 2) amount of overlap between the two memory rep-

resentations, and 3) amount of external sensory driving. Increased overlap between

pattern representations decreases the extent of single memory replay (Figure 3.10a),

but increased inhibitory feedback counteracts this effect by creating anti-correlations

in memory activation and thus resurrecting or broadening the single memory regime,

illustrated in Figure 3.10b. Similarly, increased external driving introduces a bias to

one of the memories which allows for more robust single memory activation than dur-

ing reactivation. However, the ability to separate activation of associated memories

is limited in the absence of additional targeted inhibition even with external driving

(see Figure 3.10c); a driving current of Id = 3 is required to recover single memory

activation with no additional inhibition, but with Sa = 2% only small driving current

is required, while with Sa = 4% no driving current is needed at all.

3.3.2 Varying size of memories

We next investigated the effect that the size of a memory NM has on network

recall. However, in changing memory size, various other parameters are also affected,

such as the fraction of the total network the memory comprises f = NM/Ne (and

subsequently the total size of the excitatory networkNe), the size of individual clusters

g, or number of clusters C. Three simulation conditions were run to assess the effects

of changing memory size when two parameters are held constant while varying NM :

1) fraction f = 0.5 and cluster size g = 50 held constant with varying total network

size Ne and cluster number C, 2) f = 0.5 and C = 5 held constant with varying Ne

and g, and 3) Ne = 2000 and g = 50 held constant with varying f and C. External
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Figure 3.9:
(a) Comparison of network performance for four different inhibitory-
excitatory connectivity patterns for the reactivation case: 1) local in-
hibitory connectivity Sie = 16%, 2) random connectivity Sr = 16%,
3) local ( Sie = 10%) combined with random (Sr = 6%), and 4) local
(Sie = 10%) combined with targeted (Sa = 6%). Left graph is for no
overlap, L = 0%, and right graph is with L = 40% overlap. All four
network topologies contain the same number of inhibitory-to-excitatory
connections. (b) Integrated activity overlap µ values for each case.

stimulation was held constant for different memory sizes by randomly stimulating

50 neurons in one memory with driving current Id = 2, allowing for the ability to

investigate the relative contributions of internally generated activity and external

driving on dynamics.

As shown in Figure 3.11a (left), with overlap L = 0%, targeted inhibitory connec-

tivity Sa = 0%, and driving current Id = 2, robustness of single memory activation

µ initially decreases with memory size and then rises. This initial decrease is due
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to the fact that for larger memories, the number of stimulated neurons becomes a

smaller fraction of the total memory. However, at a certain size, the external stim-

ulation results in generation of self-sustaining internal activity through excitatory

feedback loops. This is shown in Figure 3.11a (right), which depicts the mean ratio

R of internally generated activity (nondriven neurons) to stimulated activity (driven

neurons) when the network is displaying regime 2 dynamics (defined by activity over-

lap A < 0.3). We see that for memories of size NM = 500 and more, all neurons

within a memory are able to be activated despite direct stimulation of only a fraction

of the memory, signifying pattern completion. For memories of this critical size or

larger, the fraction of the network that the memory comprises f significantly affects
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Figure 3.11:
Effects of different memory sizes and ratio of memory to total net-
work size on network performance and single memory activation due
to partial stimulation. (a) Single memory activation and reactivation
as measured by integrated activity overlap µ and ratio of internal ac-
tivity to stimulated activity R shows different functional dependence on
memory size for three cases: constant cluster number C = 5 and ratio
f = NM/Ne = 0.5, constant cluster size g = 50 neurons and f = 0.5,
and constant g = 50 neurons and Ne = 2000 neurons. Integrated activ-
ity overlap µ (left) and ratio R (right) as a function of memory size NM

for overlap L = 0%, targeted inhibition Sa = 0%, and external current
Id = 2. (b) Comparison of effects of external driving and targeted inhibi-
tion on µ (left) and R (right) for overlap L = 40%, f = NM/Ne = 50%,
and g = 50 neurons per cluster. Driving current is fed to 50 randomly
chosen neurons in one memory.

the value of integrated activity overlap µ (light gray solid line versus black solid and

dotted lines). Specifically, as the fraction f increases and approaches 0.5, µ rises and

approaches the curves corresponding to the constant f = 0.5 cases. Low A and high

R values correspond to activity where stimulated memories are able to be completed,
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but there exists a high degree of coactivation of both memories. For all parameter

combinations tested, there is little significant difference between holding the cluster

size g constant and holding cluster number C constant, indicating that the overall

size of the memory and total network size both contribute more to single memory

activation than the distribution or cluster size.

In order to examine the individual effects of external driving and addition of

targeted inhibitory connections, we simulated memories overlapped with L = 40%,

making up f = 0.5 fraction of the excitatory network, and composed of g = 50

neurons. As shown in Figure 3.11b, when 50 neurons are driven in the absence of tar-

geted inhibition, single memory activity now decreases as memories get larger (black

dotted line) due to coactivation of linked nonstimulated memories. However, in the

presence of targeted inhibition but no driving (black solid line), larger memories per-

form better. When both are combined (light gray solid line), external driving appears

to dominate activity for smaller memories, while internally generated activity within

a single memory boosted by targeted inhibition is prominent for larger memories (see

Figure 3.11b, right). This shows that different mechanisms can contribute to single

memory recall or activation, and in varying degrees as a function of memory size and

other topological characteristics.

3.3.3 Self-modulated excitability as a mechanism for enhancing single

memory replay

Optimal memory recall or replay only occurs for a finite range of excitability

values, necessitating a self-regulatory mechanism which the network can employ to

quickly achieve single memory activation in a dynamic setting. It is assumed that

the network does not know a priori which neurons encode for which memories, but

is able to coarsely monitor the total number of active neurons and incorporate home-

ostatic feedback mechanisms to realize a target activity level. These assumptions
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are not unreasonable given evidence for the frequency-filtering capabilities of single

or small populations of neurons which are able to respond nonlinearly to certain

ranges of frequencies [31]. By coupling global excitability Ie to total number of high

activity neurons, the network is able to regulate its activity state and recover sin-

gle memory activation without needing to know beforehand the suitable ranges of

excitability. Self-regulation of excitability could represent neuromodulation through

various neurotransmitters such as acetylcholine, which has been shown to be responsi-

ble for suppressing or enhancing excitatory feedback and thus network responsiveness

during memory consolidation processes [72].

Figure 3.12a depicts a single run where the network is able to self-regulate ex-

citability based on total number of high activity cells, and shows quick convergence

to single memory activation in the case of L = 40% overlap and Sa = 4%. Although

there exists no a priori knowledge of which neurons code for which memories, all

neurons of a single memory become activated, corresponding to full pattern recall

with suppression of the linked second pattern. For low to moderate ranges of overlap,

0 < L < 40%, self-modulation in combination with targeted long-range inhibition is

able to recover values of A close to the minimum A values obtained from systemati-

cally incrementing excitability (see Figure 3.12b). Similar results are obtained in the

presence of external driving (data not shown).

3.4 Discussion

Within a single neural architecture coding for distinct memory representations,

increasing levels of commonality and excitatory association between memories leads

to increased coactivation. We have highlighted the importance of inhibitory feedback

topology in counteracting this coactivation for overlapped and hierarchically stored

memory patterns in both cases of sleep reactivation and awake recall. Additionally,

we have characterized the impact of memory size on pattern completion as well as
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Network performance with global self-modulation of excitability. Self-
modulation mechanism allows network to tune excitability and dynam-
ically optimize performance. (a) Top: Raster plot showing how self-
modulation mechanism brings network into regime 2 state given an arbi-
trary starting excitability. Middle: Memory activity trace. Color scheme
same as in Figure 3.4a. Bottom: Time traces of excitability Ie and the
ratio of the number of active neurons Na to total neurons per memory
NM . C = 5, L = 40%, Sa = 4%. (b) Color plots showing activity overlap
achieved with the self-modulation mechanism (left) and minimum activ-
ity overlap achieved by sweeping through different excitabilities (middle)
for various overlap L (0-60%) and targeted inhibitory connectivity Sa (0-
5%), C = 10. The difference between the two is depicted on the right.
All runs are for reactivation (Id = 0).

single memory activation.

We have shown that targeted inhibition is important to maintaining pattern sep-
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aration by increasing basins of attraction for single memories, while purely random

nontargeted inhibition tends to promote uniform reinjection of current which prevents

the network from falling into existing attractor states. We investigated the effects of

network architecture on dynamics by studying static states involving memory retrieval

independently of subsequent plasticity and information processing. However, it’s im-

portant to ask how targeted inhibitory connections can be created on the timescale

of memory formation in a biological context. The targeted inhibition presented in

this paper is simple enough to be implemented via straightforward activity-dependent

learning processes because inhibitory feedback is added only between single memo-

ries and the rest of the network, with no reference to other existing memories. For

instance, upon activation of a subset of neurons due to external sensory stimulation,

two simultaneous processes of plasticity are occurring: 1) long-term potentiation of

excitatory cells within the active region leading to formation of the memory structure,

and 2) potentiation of inhibitory synapses between the active region and the inactive

portions of the network, leading to increased mutual inhibition. Structured inhibi-

tion is created due to the active memory displaying high frequency mismatch with

rest of network, allowing for long-term depression of excitatory cells or potentiation

of inhibitory synapses. Through the course of learning multiple memories, preferen-

tial strengthening of interneuronal synapses leads to pattern separation of the final

embedded memory traces.

We have also observed that external driving results in substantially better single

memory activity than with no external input within our model, implying that the

existence of bias, whether due to external sensory information or input from other

brain regions, is important for accurate and specific memory retrieval. The neocortex

tends to store memories in an associated, hierarchical organization, while the hip-

pocampus must be able to maintain distinctions between episodic memories. Does

the neocortex play a role in ”priming” the hippocampus and leading to increased
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pattern separation during replay? Previous findings point to a feedback relationship

between the two during sleep [84] and suggest a progression from initial replay of dis-

crete episodes by the hippocampus during slow-wave sleep to more extended replay

of distributed memories by the neocortex in REM sleep [90]. Therefore the poorer

performance for the ”sleep reactivation” condition in our model could be due to the

lack of interregional interaction between the hippocampal and cortical areas existent

in biological networks.

Network transitions between three dynamical states - 1) noise, 2) single memory

replay or activation, and 3) global bursting - are controlled through a global ex-

citability parameter Ie, representing neuromodulatory mechanisms which uniformly

affect neurons’ probabilities of spiking. The capabilities of a recurrent network to

self-regulate its retrieval processes by controlling its network state are studied, using

methods of self-inhibition and global monitoring of frequency and rate relationships

among subpopulations of neurons. The increased effective excitation introduced into

the network due to additional excitatory connections is balanced by additional tar-

geted inhibitory connections. It’s postulated that this inhibitory-excitatory balance is

important to single memory activation, and the network might institute either global

mechanisms of current balance such as with the self-modulated feedback presented

in this paper, or more local detailed control through dynamic adjustment of synap-

tic weights [126]. We only considered global tuning of excitation in the absence of

dynamic plasticity in this report. Nevertheless, we are able to observe and charac-

terize complex interactions between both global and spatially patterned sources of

excitatory and inhibitory current in the context of pattern recovery. Further studies

incorporating learning and plasticity are needed to gain an even fuller understand-

ing of the roles of structure and excitatory-inhibitory current balance in information

processing and pattern retrieval.
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CHAPTER IV

Network morphology and dynamics in

experimental cell cultures

4.1 Introduction

In the previous chapters I’ve focused on exploring networks theoretically through

the use of modeling, showcasing the interrelationships between structural connectiv-

ity and the spatiotemporal patterning of neuronal spikes. I next wanted to examine

these same relationships in an experimental network. Although it’s not possible to

recreate an experimental analogue of the learning and memory systems I’ve discussed

so far, it is still possible to characterize certain network properties under different

conditions and relate these to a quantification of the dynamics. In this chapter I

present work relating the anatomical connectivity found in dissociated cell cultures

to the firing dynamics as well as the functional structure which can be inferred from

spiking dynamics. Functional structure describes the relationship of temporal corre-

lations in the activity of different dynamic units, which in the field of neuroscience

are neurons or brain regions. The pattern of their correlations form a network similar

to the underlying anatomical connectivity, but the relationship between the two is

far from clear. We therefore aim to explore how gross anatomical properties of in

vitro hippocampal mixed cultures influence or relate to cell spiking dynamics and
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functional network structure.

We examine a reduced system of hippocampal dissociated cell cultures from new-

born rats at various time points and in two growth conditions. In vitro cultures are

artificial in many ways because they’re essentially limited to 2-dimensional growth,

they’re grown in synthetic media, and all preexisting connections are severed before

plating. However, cultured neurons still manage to maintain basic neurobiological

properties and can sometimes display similar spiking dynamics to in situ environ-

ments as well as complex spontaneous bursting dynamics [171, 179, 33]. Hippocampal

cells are among the most plastic known, and therefore are particularly amenable to

culturing and the formation of networks, while still retaining basic biological proper-

ties.

The cultures we examine are primary, meaning that the comprising cells come

directly from an animal, and mixed, meaning they are a combination of both glial

cells and neurons. The hippocampus has two primary types of excitatory neurons,

pyramidal and granule, and many types of inhibitory cells, of which the most prevalent

are basket cells.

Glial cells are known to support neuronal growth and survival in a variety of ways,

including providing nutrients, structural support, neuronal repair, and axonal guid-

ance during development [122]. In situ, they are very closely packed with neurons and

can interact extensively with them to modulate synaptic transmission and signaling

[15, 16, 175]. Due to their close proximity, they are able to uptake or release neu-

rotransmitters within chemical synapses and the extracellular matrix, thereby mod-

ulating signal transmission between neurons. The most common type of glial cells

are astrocytes, which are capable of displaying sustained and long-range intracellular

calcium oscillations which propagate via gap junctions and are sometimes invoked by

neuronal activity. These oscillations can in turn elicit calcium changes in neurons,

indicating a bidirectional mode of communication with possible repercussions on in-
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formation processing [128, 119, 165]. Because calcium is known to be important for

LTP and other plasticity processes [99] as well as general neuronal signaling, glial

cells are believed to play active roles in computation and self-organization of brain

networks.

Because of their vital role in neuronal signaling, we explored the effects of either

a high glial growth or a low glial growth condition on neuronal spiking dynamics.

We also examined the evolution of morphology and dynamics over time as cultures

were allowed to mature. Electrical recordings were conducted by plating and growing

cultures on a MEAsetup, with 60 electrode channels which can monitor local elec-

trical activity (see Figure 4.1). Electrodes are spaced 200 µm apart and have a 30

µm diameter, allowing for the detection of action potentials from 1-3 neurons per

electrode. Recordings were done at 8, 11, and 13 DIV. Simultaneous cultures from

the same animals were plated on gridded dishes and fixed at the same time points for

immunocytochemical assay.

We are able to link the morphological evolution of anatomic network structure

to changes in spiking dynamics as cultures mature. In particular, we find increasing

branching complexity and neuronal process length over DIV, coupled with increas-

ingly global activity and the formation of a single dominant functional cluster. Addi-

tionally, changes in glial morphology are also correlated with differences in dynamics.

Specifically, low coverage, long, thin, and process-bearing glial cells are linked to

more local neuronal communication and fragmented functional clusters, while flat,

large glial cells with high coverage of the substrate are linked to global signaling.

The results of this chapter have been conducted in collaboration with Sarah Feldt,

who conducted the recording and analysis of neuronal dynamics, and submitted for

publication with Sarah Feldt, Elizabeth Shtrahman, Rhonda Dzakpasu, Eva Olariu,

and Michal Zochowski.
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4.2 Experimental methods and protocols

Figure 4.1:
Multi-electrode array (MEA) used to record electrical activity of in vitro
dissociated neuronal cell culture. (a) Example of a culture grown on
an MEA showing the spatial layout of the electrodes (black dots). The
distance between electrodes is 200 µm. (b) Example of electrical activity
recorded on each electrode from a culture displaying bursting dynamics.
Each window is 500 ms in length.
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4.2.1 Cell culture preparation

Dissociated cell cultures were prepared from neurons (and glia) obtained from

the hippocampus of P1 Wistar rats using a protocol modified from [17]. Briefly,

hippocampi were first chemically digested in a trypsin solution followed by mechanical

titration with a flamed pasteur pipette. Cells were centrifuged and re-suspended

in Neurobasal-A Medium supplemented with B-27, 5% heat activated horse serum,

0.5mM L-Glutamine, 0.5mM pen-strep, and 10mM HEPES. The cell density was

adjusted by the addition of media such that the density upon plating would be 1400

cells/mm2.

For electrical recording, the cell suspension was plated on MEAs (Multi Channel

Systems, Reutlingen, Germany) which had previously been coated with 0.05% poly-

ethylene-imine in borate buffer followed by 20 µg/mL laminin solution in media.

Cultures were maintained in a humidified incubator with a 95%O2/5%CO2 saturated

atmosphere at 37 ◦C. For fixation and staining, the cell suspension was plated on

culture dishes.

Between 24-36 hours after plating, cultures were split into high and low glial

groups. Neurobasal-A media supplemented with horse serum as described above was

added to cultures in the high glial group to allow for the proliferation of glial cells,

while the media of the low glial group was replaced with Neurobasal-A media that

had not been supplemented with horse serum. The sera-free media environment has

been shown to inhibit proliferation of glial cells [25]. Following this, half of the media

was replaced with the appropriate fresh media once each week.

4.2.2 Cell fixation and fluorescence imaging

Cultures used in staining studies were grown on culture dishes following the same

protocol as those used for recordings. The cultures were fixed using 4% paraformalde-

hyde in phosphate buffered saline (PBS) for 15 minutes at either 8, 11, or 13 DIV

89



to correspond to the days of recordings. Crystals of the lipophilic tracer DiI (1,1’-

dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate, Sigma) were dissolved

to a saturated solution in cod liver oil and micro-droplets of the solution were placed

on neuronal cell bodies using a picospritzer and micropipette apparatus. The dye

was allowed to diffuse through the cell membrane for 5 days, after which the neurons

were imaged on an Olympus IX71 inverted fluorescent microscope.

After DiI staining and imaging, cultures were immunolabeled for synapses by

standard immunocytochemical techniques. Samples were blocked with blocking solu-

tion (5% bovine serum albumin, 5% normal horse serum) for 30 minutes, followed by

incubation for 2 hours at room temperature with monoclonal anti-synaptophysin pri-

mary antibody (1:200 dilution, Sigma) in blocking solution, and finally incubation for

2 hours at room temperature with fluorescein-conjugated secondary antibody (1:200

dilution, Vector). Colocalization of synapses with neuronal processes was investigated

by imaging on a Zeiss LSM 510-META laser-scanning confocal microscope using a

63x water immersion objective.

After imaging, samples were stained for glial cells by permeabilizing (0.3% Triton

X-100 in PBS for 20 min) and then blocking (5% BSA, 5% normal goat serum, 0.1%

Triton X-100) for 30 minutes, followed by immunolabeling with astrocyte-specific anti-

glial fibrillary acidic protein (GFAP) primary antibody (1:100, Sigma) overnight at

4 ◦C, and finally incubation for 2 hours at room temperature with AMCA-conjugated

secondary antibody (1:100, Vector). Cultures were then imaged on a Deltavision-RT

fluorescent microscope with a 10x objective.

Immunolabeling of neurons was accomplished by incubation with neuron-specific

anti-β-III tubulin antibody (1:200, Millipore) for 2 hours at room temperature, fol-

lowed by incubation with fluorescein-conjugated secondary antibody (1:200 dilution,

Vector) or Cy5-conjugated secondary antibody (1:100, Millipore) for 2 hours at room

temperature.
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4.2.3 Fluorescent image analysis

To assess process length and complexity, Sholl analysis [152] was performed on

the arborization of imaged neurons by counting the number of process crossings with

concentric circles of increasing radii centered on the soma. The radius of the circle

which encloses half of all crossings (median crossing distance) is then calculated for

each neuron. The median crossing distance, total number of crossings, and longest

process length was then computed from the distribution of process crossings. For

cultures in the high glial group, this analysis was done on N = 9, 11, and 14 neurons

for DIV 8, 11, and 13, respectively, and on N = 10, 12, and 13 neurons for DIV 8, 11,

and 13, respectively, in the low glial group.

DiI-synaptophysin images were analyzed in ImageJ for synaptic density along neu-

ronal processes. Images were normalized for contrast and each channel was thresh-

olded to distinguish signal from background. The density of synapses was calculated

by dividing the number of co-localized areas of synapse and process by the total

area encompassed by processes, resulting in the number of synapses per unit area of

processes stained by DiI.

GFAP-labeled images were analyzed using ImageJ software to determine the ex-

tension of the glial layer over the substrate. Images were thresholded to separate

signal from background and the percentage of the image covered in glial cells, P was

measured. In order to compare between the different culture conditions, we compute

the normalized difference of P between the high and low glial groups denoted as PH

and PL respectively:

D =
[PH − PL]

[PH + PL]
. (4.1)

4.2.4 MEA recordings and spike detection

Recorded cultures were plated on 60-electrode MEAs which are able to observe

local electrical activity due to neuronal spiking. Cultures were recorded at 8, 11, and
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13 DIV for N = 5 cultures in the high glial group and N = 4 cultures in the low glial

group. For recordings, media was replaced with a recording buffer to maintain the

pH of the culture. Cultures were recorded at 25 kHz using a Multi Channel Systems

data acquisition card and MC-Rack software. During the recordings, cultures were

maintained at 37 ◦C and each recording lasted 5 minutes.

The local field potential potential recorded from each electrode was assessed for

spiking activity and active channels were selected for spike detection. Signals were

first filtered through a high pass Butterworth filter at 250 Hz. Spike detection was

done using a thresholding method, using 5 standard deviations of the baseline noise

as the threshold value. No attempt was made to distinguish between single neurons

recorded by the same electrode.

4.2.5 Functional clustering algorithm

Functional clustering was determined from the obtained spike train data using

a clustering method developed in our laboratory called the functional clustering

algorithm (FCA) [53]. Advantages of using this algorithm include that the clustering

is determined directly from the dynamics of the recorded neurons through a compar-

ison to surrogate data, meaning that clustering is based on statistically significant

similarities between firing patterns. The use of statistical significance to determine

clustering also means that the algorithm has a natural stopping point and no a priori

knowledge of the number of functional groupings is required. The algorithm is briefly

described below; for a complete description of the algorithm, please refer to [53].

The FCA can be summarized in the following 5 steps:

1. Choose a similarity metric and create a matrix of pairwise similarity values

between all spike trains.

2. Use surrogate data sets (see below) to calculate 95% confidence intervals for

each pairwise similarity. Use this to determine the level of statistical significance for
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each pairwise relationship.

3. Choose the pair of trains with the highest significance and group these trains

together, recording the significance between the trains. When grouping the two spike

trains, create a new train representing the joint activity by merging the spikes into a

single train.

4. Remove the trains which were joined from the data set, and recalculate the

similarity matrix for the new set of trains. Create new surrogate data sets, and

recalculate the pairwise statistical significances.

5. Repeat the joining steps (3 – 4), recording the statistical significance used

in each step of the algorithm until no pairwise similarity is statistically significant,

indicating that the next joining step is not statistically meaningful. At this point,

determine the resultant functional groupings by observing which spike trains have

been combined during the algorithm. The results of the clustering algorithm are

depicted using a dendrogram where the dashed line denotes the cutoff point of the

algorithm.

In order to assess similarities between firing patterns, we used the average mini-

mum distance (AMD) which is a new measure designed to detect synchronous events

in discrete event data [53]. To compute the AMD between two spike trains Si and Sj,

we calculate the distance ∆tik from each firing event in Si to the closest firing event

in Sj. We then define

Dij/ji =
1

Ni/j

∑
k

∆t
i/j
k , (4.2)

where Ni/j is the total number of spikes in Si or Sj, respectively. Finally, we define

the AMD to be

Θij =
Dij +Dji

2
. (4.3)
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Surrogate data sets used in the calculation of significance were created through

the addition of jitter to spikes. The jitter is drawn from a uniform distribution over

a given window. Here we used a jitter window of 70 ms, centered on each spike. This

time scale allows us to examine synchronization at the level of network bursts in the

culture.

To asses the level of statistical significance, we used 10,000 surrogate data sets

to create cumulative distribution functions (CDF) of AMD values and determine

95% pairwise significance levels. The scaled significance (Figure 4.15) is measured in

units defined as the distance from the midpoint of the CDF to the 95% significance

cutoff. Thus, a scaled significance greater or equal to 1 is deemed to be statistically

significant, while values below 1 are not.

The FCA was applied to the spike train data recorded from cultures in both groups

at 8, 11, and 13 DIV. In order to keep the total number of spikes used in the algorithm

below 50,000, a 3 minute window of data was used, with the exception of one 13 DIV

culture in the low glial group for which a 1 minute time window was used.

4.3 Results

We examine changes in the morphology and dynamics of glial and astrocytic

networks over time and in different glial growth conditions. Before a week in vitro,

there is little spiking activity recorded by electrodes, and after around 14 DIV cultures

exhibit globally synchronous bursts interspersed with periods of silence, behavior

which does not qualitatively change as cultures get older. In order to examine this

transition period from quiescence to spontaneous global bursting, cultures at 8, 11,

and 13 DIV are characterized. Changes in neuronal and glial structure are linked to

differences in spiking dynamics, and in particular the formation of functional networks

and correlated patterning.
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Figure 4.2:
Hippocampal neurons in increasing DIV and different glial conditions.
Fluorescence image immunolabeled with β-tubulin III primary antibody
and fluorescein or cy5 fluorophore.

4.3.1 Global neuronal and glial morphology

Although neurons do not multiply in number over time, they do form extensive

processes and connections with other neurons. As shown in Figure 4.2, neurons at
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Figure 4.3:
Glial cells in increasing DIV and different glial conditions. Fluorescence
image immunolabeled with GFAP primary antibody and AMCA fluo-
rophore.

8 DIV display dendritic and axonal processes, but do not appear to be extensively

connected with each other. In contrast, by 13 DIV, many processes can be seen,

and in fact few neuronal cell bodies can be distinguished due to the thick growth of
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processes. There appears to be little difference in neuronal arborization between the

two glial growth conditions.

Figure 4.4:
Zoomed image of glial cells, in low glial condition. Multiple morphologies
of astrocytes are present, including flattened epithelioid cells with few
extensive processes (white arrow), glia with a few long, thin processes
and distributed in a bipolar arrangement (red arrow), and star-shaped
glia with multiple extensive processes (green).

Astrocytes stained with anti-GFAP markers show a marked difference in morphol-

ogy between the two glial growth conditions, as illustrated in Figure 4.3. It has been

shown that neuronal cultures grown in Neurobasal-A medium supplemented with B-

27 inhibits the growth and proliferation of glial cells in the absence of supplementary

animal serum containing growth factors [25]. The presence of horse serum in the

media in the high glial growth condition results in the formation of mostly large, flat

cells with no or few short (10-50 µm) processes, typically clearly visible nuclei, and

a confluent, very high coverage of the underlying substrate. There is little difference

in qualitative morphology of glial cells over the different time points. The low glial

group astrocytes, on the other hand, contain mostly thin, long (60-150 µm) processes
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which do not cover very much of the substrate for earlier days, but over time appear

to either multiply or flatten to cover more of the surface. By day 13, astrocytes in

the two growth conditions are qualitatively similar in morphology.

Several different forms of astrocytes can be identified based on overall structure

and process features (see Figure 4.4). Flat, large epithelioid astrocytes can be found

predominantly in the high glial growth group over all days, while the thin, long pro-

cesses are characteristic of astrocytes found in young (8 DIV) and low glial growth

cultures. A third form midway between the two was also very common, but tended

to not be found in younger cultures, consisting of multiple shorter processes and a

flatter cell body (see Figure 4.4 green arrow), making them appear star-shaped. This

is consistent with that is known biologically, that astrocytes can display many mor-

phological forms and amount of differentiation depending on the presence of various

external cues or growth factors [93]. Specifically, the presence of animal serum induces

astrocytes within pure glial cultures to take on flat, epithelial shapes with no pro-

cesses, while removal of this serum causes differentiation of glial cells into multipolar,

process-bearing stellate cells which exhibit slow or no proliferation [115, 94].

Figure 4.5:
Difference in glial cell layer coverage between the high glial group and the
low glial group. The fraction of the culture surface covered by astrocytes
is calculated for both conditions, and then the difference between HS and
SF fractions is divided by the sum to give a normalized difference.
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Because of the many overlapping, complex processes, it is difficult to quantify the

exact numbers of astrocytes in order to determine if they were in fact more numerous

in the high glial growth condition. Nevertheless, a clear difference in morphological

structure is evident between the two cases. I quantified this difference by considering

the normalized difference in the fraction of the substrate covered by glial cells D (see

Methods section). As shown in Figure 4.5, the high glial growth group exhibits more

extensive glial cell coverage of the underlying substrate than the low glial group for

all time points analyzed, indicating that there are either more glial cells or they are

simply larger (or quite possibly a combination of both).

It was also of interest to consider how the neuronal and glial networks were spa-

tially arranged relative to each other. Immunostaining and imaging both glial cells

and neurons simultaneously allowed for the visualization of their relative locations.

As shown in Figure 4.6(a), while all three morphological forms of glial cells can exist

within one culture, their locations are not completely random but affected somewhat

by the neuronal network. Larger, flatter epithelioid astrocytes tend to be found where

there are fewer neurons, while glia with long, thin processes usually surround clusters

of neuronal soma. This is in line with studies which have shown that contact with

neurons can determine glial morphology; they remain flat and without processes in

absence of neurons, while radial and stellate glial cells predominate in areas with neu-

rons [38]. In addition, Figure 4.6(b) shows that astrocytes and neurons are closely

packed when in contact with each other, consistent with what is known about the

importance of glial cells to structural support of neuronal networks.

4.3.2 Single neuron structure and connectivity

Due to the high density of neurons and processes, in order to visualize characteris-

tics of dendritic and axonal arborization such as length or branching, it was necessary

to selectively label a single, entire neuron separately from those surrounding it. Im-
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Figure 4.6:
Fluorescent overlay of glial and neuronal layers. (a) Glial cells and neu-
rons form a mostly confluent layer for the high glial growth condition,
while for the low glial growth condition the glial layer displays low cover-
age of the underlying substrate. Glial cells not in the vicinity of neurons
tend to be flattened and larger than those close to neurons. (b) Confluent
layer of neurons and glial cells for the high glial growth condition, zoomed
in.

munocytochemical techniques tend to globally label all neurons, so I developed a

technique involving the manual application of the lipophilic fluorescent tracer dye

DiI to individual soma, which allows the dye to diffuse through the membrane of an

entire neuron while leaving surrounding cells unstained. Figure 4.7 depicts a typical

100



neuron labeled with this process. Large cell bodies (20-50 µm) were picked for la-

beling under optical microscopy in order to target pyramidal neurons. Cells which

displayed processes characteristic of pyramidal neurons were then picked for Sholl

analysis, which characterized dendritic and axonal morphology (see Figure 4.7).

Figure 4.8 shows typical DiI-stained neurons over different time points and glial

growth conditions. Over time, there is considerably more branching in structure,

but no discernible qualitative difference between the high glial and low glial group.

A quantification of arborization through Sholl analysis reveals that indeed the two

groups do not differ significantly in terms of the complexity of branchings or length of

processes, and further that there is a general trend toward longer processes and more

branchings as cultures get older (Figure 4.9). However, there is a somewhat significant

decrease in process length at 13 DIV for the low glial group, perhaps reflecting a

reorganization of dendritic and axonal patterning toward more local connectivity, as

opposed to the high glial group which grows more global over time.

Finally, simultaneous imaging of DiI and immunolabeling of synapses allowed

for the assessment of synaptic patterning on single neurons through colocalization

of the two fluorescence channels. It is found that synapses tend to be relatively

uniform in density along the length of processes as well as mostly constant over time

(Figure 4.10). This finding, combined with the observation that process complexity

increases as cultures mature, indicates that the total number of synapses on a neuron

increases over time and in direct proportion with the size of its processes. There is

also little difference in synaptic patterning between the two glial groups, although the

high glial group tends to exhibit synapses at a slightly higher density at 8 DIV.

4.3.3 Dynamics and functional connectivity

In order to relate the changes in anatomical structure and glial environment with

changes in dynamics, the electrical activity recorded at the electrodes at 8, 11, and
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Figure 4.7:
Single neuron morphology and Sholl analysis. (a) DiI fluorescence imaging
allows visualization of an entire single neuron. Sholl analysis is conducted
by drawing concentric rings of increasing size from the center of the soma
and counting the number of process crossings at each distance. (b) Plot
of the number of process crossings at increasing radial distances from the
soma, corresponding to the neuron shown in part (a).

13 DIV for cultures grown on MEAs are analyzed in various ways to determine global

and temporal statistics as well as functional connectivity. At 7 DIV, they begin

to display spontaneous bursting dynamics characterized by persistent, simultaneous
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Figure 4.8:
Visualization of single neurons in increasing DIV and different glial condi-
tions. Neurons are manually retraced to enhance and normalize contrast
for Sholl analysis. The bright spot at the center is not the soma, but
rather is a DiI-oil droplet applied to the cell body, which obscures visu-
alization of the soma itself.
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Figure 4.9:
Sholl analysis characterizing neuronal process complexity and morphol-
ogy. Sholl analysis is conducted on DiI-stained neurons by calculating
the number of process crossings as a function of radial distance (um)
from the soma. (a) The median crossing distance (radius of the circle
which encloses half of all crossings), (b) longest process length (radius of
the smallest circle which encloses all crossings), and (c)branching com-
plexity (corresponding to the total number of processing crossings) are
calculated as a function of DIV.
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Figure 4.10:
Simultaneous imaging of synapses and single neurons to characterize
synaptic density. (a, b) Two sample neurons stained with DiI (red) and
immunolabeled with synaptophysin-targeted antibody and fluorescein
(green). (c) Synaptic density on processes over DIV and for different
glial conditions. Synaptic density is calculated by dividing the number
of synapses colocalized with DiI-stained neuron and dividing by the total
area of the processes.

firing activity over many electrode channels, lasting for hundreds of milliseconds to

seconds. Bursting events are interspersed with quiescent periods in which almost all

electrodes are inactive (see Figure 4.11(a,b)).

We quantified the evolution of these dynamics by considering the ISI, or time
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between spikes, displayed in the different conditions. Cultures grown in the high

glial group tended to demonstrate shorter periods of quiescence and therefore a less

polarized distribution of ISIs than the low glial group (see Figure 4.11(c)). However,

over time, both groups evolved toward markedly different dynamics characterized

by changes in their interspike interval distributions. The low glial group especially

displayed an increasingly bimodal distribution reflecting global bursts followed by

long silent periods.

We next examined the spatial distribution of firing dynamics by considering the

number of active electrodes, defined as the number of electrodes from which spikes

could be consistently recorded. As shown in Figure 4.12(a), the dynamics of both

groups grew increasingly global as cultures matured, indicating the formation of long-

range connections and active synapses as processes extended. The high glial group

initially bore increased numbers of active electrodes over the low glial group, but the

difference became insignificant at 13 DIV. Cultures in both conditions demonstrated

increased spiking activity on each active electrode over DIV (Figure 4.12(b)), as is

expected as processes grow and networks of synaptic connectivity formed.

The functional connectivity of the cultures was assessed using a clustering algo-

rithm developed in our lab, the functional clustering algorithm [53]. This method

specifies a network architecture solely based on correlations in spiking dynamics by

clustering electrodes with similar firing patterns. By utilizing comparisons with surro-

gate data sets, this algorithm is able to functionally separate electrodes into different

network clusters with no a priori knowledge of the numbers of clusters.

As cultures mature, we see that they become increasingly dominated by a single

large functional cluster, although this is much more noticeable with the high glial

growth group, corresponding to its primarily global dynamics (Figure 4.13). The

dendrograms in Figure 4.13(a, c) are symbolic representations of the steps at which

the various electrodes were grouped into one cluster; vertical lines closer to the bottom
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Figure 4.11:
Analysis of spiking dynamics over time and glial conditions. (a, b) Ex-
ample raster plots of spike dynamics over time and in different glial
conditions, for the (a) high glial group and (b) low glial group. (c) His-
togram of interspike intervals for the high glial group (red shades) and
the low glial group (blue shades). Different shades of color represent
different trials, and the histograms are smeared horizontally for visual-
ization purposes.

indicate that the electrodes they connect were grouped at an earlier step in the process

and are therefore more strongly connected. As shown in Figure 4.14, the largest

cluster in both glial groups comprises a significant fraction of the active electrodes, a

fraction which increases over time. These results suggest a trend toward increasingly

global dynamics as processes extend and connect. However, the low glial group does

display more functional clusters over time, suggesting that local organization and

dynamics remain important.
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Figure 4.12:
Distribution of spiking dynamics over MEA. (a) Average number of
active electrodes. (b) Average number of spikes per electrode.

By continuous comparison with a distribution of surrogate data during the joining

steps, it was possible to further assess the degree of synchronization between the firing

dynamics of various electrodes by examining the scaled significance value (see Sec-

tion 4.2.5). As shown in Figure 4.15(a), the scaled significance declines as significantly

correlated electrodes are joined into functional clusters at each step of the algorithm.

Joining stops when the scaled significance falls below a value of 1 (dashed horizontal

line). The average of the scaled significance over significant joining steps gives an es-

timate of the overall level of synchronization within the detected functional clusters.

This value increases as cultures age, indicating more synchronized firing dynamics as

networks develop and connectivity increases (see Figure 4.15(b)). For later days, the
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Figure 4.13:
Examples of functional groupings obtained from the application of the
FCA to culture data. (a,c) Spatial representation of functional clusters.
Colored squares indicate active electrodes and squares of the same color
belong to the same functional group. (a) High glial group. (c) Low glial
group. The clustering becomes increasingly global over time for both
glial conditions, but is much more pronounced for the high glial growth
group. (b,d) Examples of the dendrogram corresponding to the spatial
maps in (a) and (c) at 8 DIV and 13 DIV.

high glial growth cultures display significantly higher average scaled significance than

the low glial growth cultures, possibly reflecting the higher level of global signaling

implied in the anatomical analyses.
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Figure 4.14:
Percentage of electrodes participating in the largest functional cluster
as a function of DIV. The percentage increases over time for the high
glial group indicating the spread of global synchronization. Although
we also see an increase in this number for cultures in the the low glial
group, the percentage remains smaller, as these groupings remain more
fragmented.

4.4 Discussion

We have examined through a reduced experimental neural system how anatomi-

cal connectivity is reflected in the functional network structure and spiking dynamics.

Although many studies have been conducted examining the spatiotemporal dynamics

[146, 171, 179, 33] or morphological structure [32, 130] of in vitro neuronal cultures,

few have quantified the exact effects of anatomical network structure on firing dy-

namics. We attempted to elucidate the functional consequences of certain network

characteristics and connectivity on spiking behavior, and further have linked the

astrocytic network to neuronal dynamics. Beyond being important for neuronal sur-

vival, glial cells are known to actively modulate neurotransmission and participate in

the creation and propagation of calcium waves [128, 119, 165]. It is evident from our

results that changes in the glial network is linked to differences in neuronal signaling.

Morphological characterization of the glial and neuronal networks of dissociated

mixed hippocampal cultures indicate a progressive shift toward increased connectivity
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Figure 4.15:
Scaled significance during joining steps of the FCA. (a) Example of the
scaled significance calculated over joining steps in the FCA, for day
11 cultures from the high glial growth group. (b) The average of the
scaled significance over significant joining steps for different DIV and
glial growth conditions.

as cultures mature, although local signaling appears to be more prevalent over time

for the low glial growth group and global signaling for the high glial growth group.

This is paired with findings of functional connectivity which shows the formation of

global functional clusters over time, although the low glial group still demonstrates

significant fragmentation of dynamics, indicating that networks have self-organized

local activity in addition to global structure.

We further find that among the functional clusters, synchronization of firing dy-

namics increases as cultures age and is generally higher for the high glial growth

111



condition. Therefore, these networks appear to self-organize over time to form func-

tional clusters which both spatially increase in size to include more electrodes as well

as exhibit more coherence in bursting dynamics. This self-organization appears to be

aided by more extensive coverage and proliferation of the glial network.

This suggests that changes in the glial network are able to affect neuronal network

dynamics. In particular, the existence of large, flat, epithelioid astrocytes promotes

global synchronization of activity, while thin, process-bearing astrocytes with slow

proliferation is correlated with the formation of localized clusters of activity. In-

creased localization of activity could explain the longer quiescent periods observed in

between bursts, as a decrease in long-range signaling would reduce the occurrence of

global spontaneous activity. It is also possible that the difference in culture media

(with horse serum versus without) between the two glial conditions directly and fully

accounts for the disparities observed in neuronal dynamics. However, while Sholl

analysis of single neuronal arborizations showed some differences in process length

between the two groups, these differences are not as great as is seen in the glial

network. Further, given the established neuromodulatory effect of glial cells on neu-

rotransmission, it’s reasonable to assume that changes in both cell groups affect and

result in the observed dynamics. Further work will need to be done to assess the

exact contributions from each population to shaping firing activity.
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CHAPTER V

Summary and significance

With the brain being the most complex structure known, it’s not immediately clear

exactly what “understanding” it entails. Cataloging every physiological property

of every neuron hardly amounts to a deep comprehension of the brain any more

than sequencing every gene in the human genome offers complete insight into how

the human body functions. This is due to the nontrivial interactions within and

between multiple spatiotemporal scales – from the physical workings of ion channels

and neurotransmitters which guide the detailed dynamics of single neurons, to the

intricate circuitry of neural connections which underlie information processing and

learning, and to the highest level inter-regional interactions thought to be responsible

for cognition and consciousness. Comprehension at each scale necessitates careful and

deliberate methods of simplification and approximation, geared toward condensing the

system down to key points of function which contribute to understanding the system

as a whole.

In order to understand cognitive processes, which are widely believed to be due to

network effects and interactions, I have aimed to investigate the brain at the network

level, utilizing computational simulation and reduced experimental preparations as

well as network analysis techniques. Due to the dynamic and temporally-evolving

nature of neuronal systems, it is possible and enlightening to define a functional
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connectivity dependent on the spatiotemporal patterning of activity as well as an

anatomical network. How functional structure arises from and is related to anatomical

structure is nontrivial and could prove imperative to decoding the language of the

brain. This relation is at least in part dependent on global or local neuromodulation

which defines different brain states and functional modes. Further, it is bidirectional

in that network dynamics can give rise to changes in anatomical connectivity through

plasticity mechanisms.

All of these relationships are considered in Chapter II in a simplified two-network

model of memory consolidation within the hippocampus and neocortex. Anatomi-

cal structure in the form of localized increases in excitatory connectivity density are

reflected in the functional connectivity within finite ranges of network excitability,

a global modulatory parameter controlling the probability of neuronal firing. These

localized heterogeneities, which can be thought of as memory stored due to plastic-

ity, underlie the persistent activation of neurons associated with the memory. When

coupled with inhibitory neocortical feedback and two different timescales of plasticity

in the hippocampal and neocortical networks, structural heterogeneities can mediate

two cognitive roles depending on the excitability regime: 1) familiarity or novelty de-

tection in the presence of direct stimuli in the low excitability regime, and 2) memory

consolidation or forgetting in the high excitability regime. Such findings are supported

by experimental data which show a shift in input dominance from hippocampal to

neocortical drives as familiarity increases [134]. These results predict that both an

increasing inhibitory contribution from long-term cortical memory systems as well as

distinctly different timescales of plasticity underlie this shift.

I more closely examine the role that heterogeneities play in optimizing memory

storage and recall by also considering structured inhibitory feedback topologies in

Chapter III. Memories which are overlapped when encoded are able to competitively

inhibit each other upon reactivation when excitatory heterogeneities are balanced with
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matching structural heterogeneities in the inhibitory feedback connectivity. This de-

tailed balance between excitatory and inhibitory current increases the dynamic range

of global excitability levels at which semantic memories and concepts can be recov-

ered, hence improving the robustness of network functioning to different modulatory

states. In addition, the network is able to self-regulate this memory recovery state

by coupling global neuronal activity patterns to global excitability. The link between

anatomical and functional structure is therefore intimately and profoundly influenced

by neuromodulatory effects and excitatory-inhibitory current balance.

These same explorations of functional structure are continued in a reduced biolog-

ical system: in vitro dissociated hippocampal cell cultures, discussed in Chapter IV.

Although these cultures cannot be said to realistically represent real brain networks,

they do retain the same ratios of cells and other neurobiological characteristics of the

hippocampus in vivo. Most importantly, cells are able to grow processes and con-

nect together to form networks which can be easily visualized and recorded. In this

way, morphological parameters and the physical anatomical network structure can

be compared to functional connectivity derived from spiking data. It is found that

network development and reorganization over time is reflected in spiking dynamics

and thus the functional structure. Specifically, as the cultures mature and develop

extended processes, bursting dynamics grow more coherent and global. Different glial

network conditions additionally modulate functional groupings, with more extensive

glial morphology associated with global neuronal signaling and higher synchronization

in firing dynamics.

As a whole, these studies aim to understand brain systems from a network per-

spective, in particular considering the interactions between functional and anatomi-

cal connectivity. The research discussed in this dissertation highlights the complex

dynamics which can arise as a result of interactions across multiple spatiotemporal

scales. Cognitive concepts such as learning and memory are considered in the contexts
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of information processing, storage, and recall within simplified neuronal networks. I

have illustrated how network dynamics can be modulated by global input or network

parameters as well as how network structure can in turn be modified as a result of

dynamics through plasticity. Combining these network analytical tools with neuro-

biological experiment and knowledge could provide new insights into the intricate

complexities of brain dynamics and, ultimately, a better understanding of cognitive

functioning.
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