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Abstract 
 

Environmental contexts help us set relevant goals and guide appropriate 

behaviors. In situations in which a single stimulus affords multiple responses, 

cognitive control processes allow us to establish the appropriate goal based on 

the present context and activate rules associated with the current goal. This 

enables execution of correct responses, even when those responses are 

inconsistent with alternative responses afforded by the same stimulus. The 

experiments in this dissertation use task-switching paradigms to examine how 

individuals respond to situations in which a single stimulus can afford two 

responses. These behavioral studies examine congruency effects, the 

performance differences between congruent trials, for which the same response 

is always appropriate, and incongruent trials, for which the appropriate response 

differs depending on the currently-relevant task. Experiments 1 and 2 examine 

the possibility that congruency effects observed in task switching are 

fundamentally similar to congruency effects in Stroop paradigms by comparing 

task-switching congruency effects in conditions with and without Stroop-like 

interference. In both experiments, congruency effects in task switching interact 

with Stroop-like congruency effects, suggesting a common mechanism. Based 

on the results in Experiments 1 and 2, I suggest that automatic activation of a 

category by attributes of the stimulus that have previously been relevant 

underlies congruency effects in Stroop and task-switching situations. This 

hypothesis is supported by findings in Experiments 3 and 4 that task-switching 

congruency effects are absent for conditions in which a stimulus is never 

assigned to different categories on different trials. Congruency effects across 

these paradigms can be accounted for by a generalized model of competition 

driven by repeated assignment of stimuli to competing categories. 



 
 

1 
 

Chapter I 
 

Introduction

In daily life, we often confront challenges when dealing with multiple 

potential response options. For example, when you hear your cell phone ring, 

your first instinct might be to press the “talk” button, but there are other possible 

responses for the phone-ring stimulus. If your cell phone rang while you were 

listening to a speech, answering the phone would be contextually inappropriate, 

and you would likely silence the ringer. However, if you noticed that the call was 

coming from your child’s school, you would need to resolve the conflict between 

two potential responses because each response corresponds to a different goal: 

during the speech, the appropriate response is silencing your ringer; for the call 

coming from school, the appropriate response is answering your phone. After a 

moment, you might resolve this conflict and respond by walking into the hall to 

answer your phone. 

In this dissertation, I interpret a series of experiments that examine the 

processing that occurs when we are faced with multiple response options. In 

particular, I am interested in what has been termed the Task Rule Congruency 

Effect (Meiran, 2005), or the increase in errors and reaction time (RT) that occurs 

when the current stimulus affords different responses according to different goals 

(phone ringing during speech  silence ringer; number is that of your child’s 

school  answer phone) as compared to when both goals lead to the same 

response (phone ringing during speech  silence ringer; number is that of a 

telemarketer  silence ringer). I hypothesize that the mechanisms generating 

conflict when we must contradict a strong, habitual response (as in Stroop tasks) 
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are the same as those creating conflict between newly-learned, arbitrary rules in 

task switching. 

In the laboratory, task-switching paradigms provide a method for studying 

how people deal with competition between multiple response options for a single 

stimulus. Many researchers have used task-switching paradigms to investigate 

how cognitive control can be exerted to alternate flexibly between tasks (e.g., 

Allport, Styles, & Hsieh, 1994; Rogers & Monsell, 1995, Rubenstein, Meyer, & 

Evans, 2001). Much of this work has focused on exploration of the switch cost, 

the finding that participants are slower and less accurate on trials for which 

the current task differs from that on the immediately-preceding trial (switch 

trials) than on trials for which the current task is the same as that on the 

immediately-preceding trial (nonswitch trials). Allport and colleagues argued 

that the cost associated with switching from one task to another was the result 

of task-set inertia, a type of proactive interference characterized by the 

stimulus-response pairing from the previous trial remaining active and 

interfering with the newly-appropriate stimulus-response pairing relevant for 

the current trial (1994). Though Rogers and Monsell (1995) provided evidence 

that much of the switch cost can be attributed to an endogenous task-set 

reconfiguration such that control is exerted to switch from one task to another 

prior to the onset of the stimulus, modern theories ascribe some portion of the 

switch costs to a carryover of stimulus-response associations from previous 

trials. This residual switch cost remains after long preparation intervals that 

allow more than adequate time for task-set reconfiguration (e.g., Sohn et al., 

2000). There is evidence that stimulus-response associations may not only 

persist from the previous trial, but may be reactivated by the stimulus even 

many trials later (Allport & Wylie, 2000). As I will describe below, the 

reactivation of past stimulus-response associations from previous trials may 

play a major role in congruency effects. 

Though competition has been evaluated mostly in the context of 

difficulty switching from one task to another, a potentially relevant, competing 

task set can impact performance even on nonswitch trials. Participants are 
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slower and more error-prone on incongruent trials in a mixed run, for which the 

rules associating the current stimulus to responses for each of the two available 

tasks indicate different responses, than they are on congruent trials, for which the 

rules associated with both tasks indicate the same response (Sudevan & Taylor, 

1987). Congruency effects in reaction time seem to be related specifically to 

competition that occurs after stimulus presentation as the magnitude of the 

congruency effect does not diminish with longer preparatory intervals. However, 

congruency effects do interact with residual switch costs, indicating that both 

occur at the same processing stage. This dissertation examines how stimulus-

driven associations influence the size and presence of congruency effects. 

 

Shared mechanisms of competition 
Meiran and colleagues (Meiran, 2000a; Meiran and Kessler, 2008) have 

proposed that longer reaction times on incongruent compared to congruent trials 

reflect time needed to resolve interference resulting from activated response 

category codes in long term memory. By this account, category codes exist in 

long term memory and become activated by preparation to use them and/or 

primed by their actual use during the first few mixed-run trials. When a stimulus is 

presented, it triggers the abstract categories associated with the attributes of this 

stimulus. On congruent trials, both categories lead to the same response, 

facilitating performance. On incongruent trials, the two activated categories lead 

to opposing responses, causing competition. Resolution of this competition 

requires additional time before executing a correct response. 

Task-switching procedures are not the only ones in which multiple 

response categories may be activated and in competition. Stroop procedures 

provide a classic and powerful demonstration of the effects of congruent vs. 

incongruent stimulus-response associations in a single-task context (Stroop, 

1935; See MacLeod, 1991 for a review). As in switching procedures, each 

stimulus is associated with multiple response categories held in long-term 

memory. In the case of Stroop procedures, the associations result from lifetime 

experience, whereas in task-switching, the associations are arbitrary and 
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experiment-specific. The explanation for slowed responses on incongruent 

Stroop trials is similar to that in task-switching. Kane and Engle (2003) argue that 

reaction time differences between congruent and incongruent Stroop trials are 

the result of increased time needed to suppress the responses that are 

automatically triggered by attributes of the presented stimulus. 

Despite the apparent parallels between congruency effects in the Stroop 

task and those in task-switching paradigms, Meiran and Kessler (2008) 

specifically argue that the congruency effects seen in task switching are 

fundamentally different from those that occur in Stroop tasks. Their argument for 

a difference between Stroop and task-switching congruency effects rests on two 

points. The first point is conceptual: they claim that congruency effects in task-

switching procedures are reliant on intermediate category-response mappings 

between the stimulus and the response (see Figure 1.1.1). These mappings are 

arbitrary and novel, existing only in the context of the experiment. In contrast, 

they describe Stroop effects as relying on direct stimulus-response mappings 

that are overlearned prior to entering the laboratory (see Figure 1.1.2). The 

second point is empirical: Meiran (2005) found that spatial-compatibility (Simon) 

effects were additive with task-switching congruency effects, suggesting 

independence between these effects. In later arguments he equates Simon and 

Stroop effects to argue that Stroop effects are likewise dissociable from task-

switching congruency effects. 
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1.1.1. Task-switching congruency effect 

 
 
1.1.2. Stroop effect 

 
1.1.3. Simon effect 

 

 
Figure 1.1. Meiran & Kessler model. Panel 1 replicates a figure from Meiran 
& Kessler (2008) while panels 2 and 3 are drawn based on descriptions of 
direct stimulus-response mappings. Task-switching congruency effects 
arise from a mediated pathway in which a stimulus is assigned to a 
category and each category leads to a response. Stroop and Simon effects 
arise from a direct stimulus-response mapping for the dominant task. 
Strong connections are represented by thicker lines and represent highly-
practiced associations.  
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Meiran and Kessler’s conceptual argument relates to the learning or 

automaticity of the associations that connect a stimulus to a particular response, 

and in particular, whether the connections between the stimulus and response 

are mediated by a category or are direct. In task-switching procedures, trials are 

often considered congruent or incongruent based on category-to-response 

mappings that are novel and experimentally-defined. That is, when presented 

with the number “7”, the assignment of the categories “even” and “higher than 5” 

to a left key press only exists in the context of the experiment. By contrast, 

Meiran argues that direct stimulus-response mappings in traditional Stroop tasks 

are overlearned prior to entering the laboratory. Seeing the word “red” elicits 

vocalization of the word automatically, regardless of the context. 

However, as described earlier, stimuli in task-switching contexts may also 

elicit past stimulus-response associations automatically, even when those 

associations oppose those belonging to the currently-active task (see Monsell, 

2003). Therefore, I contend that although the distinction between experimentally-

defined and pre-existing mappings may be an important factor in determining the 

magnitude of congruency effects, these effects in both task-switching and Stroop 

paradigms are due to simultaneous activation of two categories and subsequent 

competition between corresponding responses. In task-switching, this 

competition is experimentally created in the mixed-run context by presenting 

stimuli whose attributes lead to differential categorization by the two potentially-

relevant tasks. Repeated categorization of stimuli based on these attributes leads 

to automatic activation of the category in response to stimulus presentation. In 

the traditional color-word Stroop paradigm, competition arises even in the single-

task context, because the stimulus automatically activates a category and 

subsequent response. Responding to the non-dominant ink color attribute 

requires activating the appropriate response and suppressing the response that 

follows from automatic activation of the irrelevant category (compare Figure 1.1.2 

and Figure 1.2.2). Regardless of the source of the competition, simultaneous 

activation along these two mediated pathways in the incongruent case creates a 

need for resolution of competition between the two responses. 
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The second major component of Meiran and Kessler’s argument for a 

dissociation between Stroop and task-switching congruency effects is evidence 

that task-switching congruency effects are additive with Simon effects (Meiran, 

2005). This evidence was obtained using a paradigm that required participants to 

respond to the location of a stimulus presented in one of four spaces in a 2x2 

square. Participants responded by indicating where the stimulus appeared, either 

along a vertical dimension (up or down) or along a horizontal dimension (left or 

right). The critical manipulation with regards to the separation of task-switching 

and Simon congruency effects is the stimulus-response mapping. In one 

condition, the upper-left key indicated “up” and “left” and the lower-right key 

indicated “down” and “right”. A stimulus that appeared in the lower-left quadrant 

would thus be incongruent, and incongruency would be confounded with spatial 

stimulus-response incompatibility. In the other condition, the response-mapping 

was reversed, so that the upper-left key indicated “down” and “right.” This 

condition resulted in spatial stimulus-response incompatibility on all trials. 

Critically, the size of the task-switching congruency effect (e.g., the difference 

between an upper-left stimulus, for which both “up” and “left” were mapped to the 

same response, and a lower-left stimulus, for which “down” and “left” were 

mapped to different responses) remained the same regardless of the overall 

spatial stimulus-response compatibility. On this basis, Meiran argued that task-

switching congruency and Simon effects are independent. 

Meiran and Kessler (2008) went on to argue that both the Simon effect 

and the traditional Stroop effect are driven by pre-existing direct stimulus-

response mappings (see Figure 1.1.2). However, as there are fundamental 

differences between Stroop and Simon effects, it may be invalid to build an 

argument about Stroop based on Simon findings (Lu & Proctor, 1995; Kornblum, 

1992). The Simon effect results from difficulty selecting a response opposite to 

the side of stimulation, consistent with the argument that this effect occurs due to 

pre-existing, automatic stimulus-response association (Simon & Small, 1969). 

There is substantial evidence that Stroop effects may involve an intermediate 

step of encoding a stimulus according to one attribute rather than the other. Even 
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for the superficially similar spatial Stroop and Simon effects, distinctions have 

recently been observed in brain response (Liu et al., 2004). Greater activation in 

inferior parietal cortex, a region involved in biasing processing in favor of the 

task-relevant attribute, was found for incongruent relative to congruent trials for a 

spatial Stroop task but not for a Simon task. This suggests that spatial Stroop 

effects, but not Simon effects, involve competition based on different attributes of 

the stimulus beyond strict response competition. 

I propose that the Stroop effect is more similar to traditional task-switching 

congruency effects than to the Simon effect. Specifically, the Stroop effect relies 

on assignment of a stimulus to a semantic category based on some attribute of 

the stimulus rather than a direct mapping of stimulus to response. In the Simon 

effect, the irrelevant dimension (location) does not share a semantic category 

with the relevant dimension (often color; see Figure 1.2). That is, the color of the 

stimulus (“blue”) is completely orthogonal to the location of the stimulus (“left”); 

incompatibility occurs only between the side of the stimulus and the side of the 

response effector. In contrast, in Stroop tasks, the irrelevant dimension often 

makes use of the same semantic categories as the rel evant dimension. A color 

word can be semantically categorized as “red”, “blue,” or “green” based on either 

the relevant (ink color) or the irrelevant (word identity) dimensions. Incompatibility 

occurs between the two dimensions of the stimulus, at the level of assignment to 

a semantic category. 
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1.2.1 Task-switching congruency effect 

 
1.2.2 Stroop congruency effect 

 
1.2.3 Simon congruency effect 

 
Figure 1.2. Proposed model. Both task-switching and Stroop-like 
congruency effects arise from a mediated pathway. A stimulus is assigned 
to a category based on one attribute in accordance with the goal set by the 
cue. In the incongruent case, the irrelevant stimulus attribute also activates 
the competing category. Each category is mapped to a response. Strong 
connections are represented by thicker lines and represent highly-
practiced associations.  
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This distinction is important when thinking about comparisons between 

congruency effects. Meiran and Kessler (2008) provide excellent evidence that 

task-switching congruency effects arise from a mediated pathway, in which a 

given stimulus is assigned to a semantic category before being linked to a 

response. Specifically, congruency effects occur after training with completely 

novel stimulus-category associations, but do not exist even after substantial 

training of stimulus-response mappings if these mappings are direct and do not 

involve a categorical intermediate. I argue that Stroop effects involve a similar 

category-mediated pathway and are thus more similar to task-switching 

congruency effects than to Simon congruency effects. 

Figure 1.2 illustrates this idea. In task-switching procedures, the cue 

indicates which task should be applied to the stimulus on a trial-by-trial basis; this 

requires goal setting (goal shifting on switch trials or goal maintenance on 

nonswitch trials). In Stroop procedures, the goal or task remains constant across 

trials. However, in both cases, the goal is experimentally instructed and indicates 

which stimulus dimension should be the basis for categorization and subsequent 

response. The task-irrelevant stimulus dimension automatically activates a 

category and competes to control the response. 

Critically, in both task-switching and Stroop situations, the connections 

between the stimulus and each potential response are mediated by a semantic 

category judgment. The competition from the incorrect pathway is typically 

weaker in task-switching paradigms than in Stroop paradigms because the latter 

have strong, pre-existing stimulus-to-category mappings. However, the overall 

structure of the pathways leading to the correct response, and to interference on 

incongruent trials, is the same for task-switching and Stroop. Both rely on the 

assignment of a stimulus to a semantic category. This classification mediates the 

pathway between the stimulus and the response. 

In the Simon effect, the task goal again determines the semantic category 

by which the stimulus should be judged; in this regard, it is similar to the task-

switching and Stroop procedures. However, competition arises from a stimulus 

dimension (location) that is irrelevant to the nominal task and via direct stimulus-
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response mappings. In short, congruency effects in task-switching and Stroop 

occur because the mappings from the stimulus to both the correct and the 

incorrect response are mediated by a semantic category judgment. In Simon 

effects, the correct response is mediated by such a category judgment, but the 

incorrect, competing response follows a direct stimulus-response mapping 

without such mediation. The hypothesis that congruency effects in task-switching 

and Stroop are similar to each other in their reliance on a mediated pathway is 

the major point of departure between my model and that of Meiran & Kessler. 

There is some existing evidence for the idea that Stroop effects are reliant 

on a mediated pathway. In particular, Stroop color-word congruency effects are 

smaller but still robust when the response is manual rather than vocal (e.g., 

Nielsen, 1974). This result contradicts the Meiran model; an entirely direct 

stimulus-response mapping explanation of Stroop predicts that the effect would 

require a vocal response. The existence of interference when competition exists 

between semantic categories in the absence of overlearned category-to-

response mappings (e.g., mapping the category Blue to a left response key) is 

more consistent with a role for abstract category mediators. Conflict at the 

semantic level has also been demonstrated behaviorally and neurally with Stroop 

stimuli by contrasting a condition in which the color and word are the same (e.g., 

“blue” in blue ink) to a condition in which the color and word are different (e.g., 

“blue” in green ink) but mapped to the same effector for response (e.g., blue and 

green responses with the left hand, red and yellow responses with the right hand; 

De Houwer et al, 2003; Van Veen & Carter, 2005). Again, the presence of a level 

of semantic conflict separate from response conflict indicates a role for category 

mediators in Stroop-like tasks. De Houwer and colleagues showed that this effect 

was not likely to originate from a subvocal naming response as results were 

unchanged under an articulatory suppression condition. 

My model also makes explicit connections to previous task-switching 

models. Specifically, Rubenstein, Meyer, and Evans suggested that executive 

control may be exerted at two points to facilitate switching tasks. The first 

point involves goal shifting, the process of removing irrelevant goals and 
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inserting relevant goals into declarative working memory. A goal guides 

appropriate interpretation of a stimulus (e.g., when you are attending a speech, 

your goal is to pay attention to the speech. Deciding to prioritize your role as a 

parent would require updating the current goal to direct your interpretation of the 

ringing phone – as something requiring a response instead of something to 

ignore). Goal shifting is thought to be an endogenous process that can occur 

prior to the onset of the imperative stimulus if a cue indicating the upcoming task 

has been presented. The second point at which control is exerted is at rule 

activation, the process of enabling the current task’s rules and disabling the 

previous task’s rules in procedural working memory. A rule is a representation 

linking a stimulus to a response in the context of a given task (e.g., a rule might 

be “If the goal is to pay attention to the speech and the stimulus is your cell 

phone ringing with an unknown caller, then ignore the call”). The reduction in 

switch cost seen after long preparation intervals is the result of the ability to 

complete goal shifting prior to the imperative stimulus. The residual switch cost 

that exists even after a substantial preparatory interval is a reflection of rule 

activation. In accordance with this model and with evidence that task-

switching congruency effects interact with residual switch costs but not with 

length of the preparatory interval (e.g., Sudevan & Taylor, 1987; Meiran, 1996, 

2000, 2005), I have placed the mediated pathway leading to congruency 

effects in the rule activation phase.  

In this dissertation, I directly compare task-switching congruency effects 

Stroop-like congruency effects. Stroop-like conditions are those which, like the 

traditional color-word condition, involve a disparity in automaticity of processing 

the two possible stimulus attributes. Importantly, in Stroop-like conditions, this 

automaticity arises from extensive practice encoding a type of stimulus (e.g., a 

color word) according to one of the two attributes (e.g., word meaning rather than 

ink color). I focus specifically on addressing the first part of the Meiran and 

Kessler argument by comparing congruency effects in conditions with novel 

stimulus-category mappings to those in Stroop-like conditions in which stimulus-

to-category mappings are pre-existing and automatic. 
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Current Work 
I propose that congruency effects in both Stroop-like paradigms and task-

switching procedures arise generally from competition due to simultaneous 

activation of competing categories. In both cases, there is a currently-relevant 

and a currently-irrelevant attribute of the stimulus, each of which can be 

categorized to lead to a response. In the task-switching case, the currently-

irrelevant attribute actives a corresponding category because it has been 

relevant on some previous trial. In the Stroop case, the currently-irrelevant 

stimulus attribute activates a corresponding category because responding based 

on that attribute has been relevant on so many previous occasions that it has 

become overlearned and is automatically activated by the presence of any 

stimulus that affords such categorization. 

I propose that RT congruency effects, as a reflection of the need to 

resolve competition between responses, will vary in magnitude depending on the 

level to which a category is automatically activated in response to the currently-

irrelevant stimulus attribute. I expect congruency effects to be small in situations 

in which there is little prior experience linking the stimulus to one of the 

potentially-relevant categories (that is, when stimulus-to-category assignment is 

novel to the experimental context). I expect these congruency effects to be larger 

when the currently-irrelevant attribute activates a category more automatically 

due to recent practice or to overlearning outside of the experimental context. 

Prior evidence that guides these hypotheses includes the fact that task-

switching congruency effects are smaller in experiments that use stimuli that do 

not evoke an automatic response than in experiments with Stroop-like stimuli 

(e.g., Sudevan & Taylor, 1987, Allport et al., 1994, Cepeda et al, 2001). Similarly, 

congruency-related differences in brain activation tend to be small and unreliable 

when stimulus-category mappings are relatively novel to the experimental 

context (Gruber et al., 2009; Brass et al, 2009; Ruge et al., 2009). Congruency 

effects are large when stimuli are Stroop-like (Aarts et al., 2009; MacDonald et 

al., 2000). When congruency effects can be found in the absence of 

overlearning, they include activation differences in anterior cingulate cortex, 
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which also shows congruency-related differences with Stroop-like stimuli (Liston 

et al., 2006; MacDonald et al., 2000). 

This dissertation focuses specifically on comparing congruency effects in 

conditions in which stimulus-to-category associations are novel at the beginning 

of the experiment to Stroop-like conditions in which overlearning leads to 

automatic activation of a category when a stimulus is presented. The first 

experiment compares a task-switching procedure in which stimulus-to-category 

associations are novel to the experiment to two procedures that use (Stroop-like) 

stimuli with strong, pre-existing stimulus-category associations. Later 

experiments rule out potential confounds of stimulus properties and provide 

evidence that congruency effects that occur in task-switching procedures with 

experimentally-assigned stimulus-category associations occur after repeated 

categorization of a set of stimuli; eliminating this repetition can eliminate reaction 

time congruency effects. 
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Chapter II 
 

Relationship Between Task-Switching and Stroop-Like 
Congruency Effects 

 

Objective 
Congruency effects in many task-switching paradigms occur once the 

initial trials of the mixed run prime the categories associated with both tasks. 

Such effects occur even in the absence of switching behavior if switches are 

intended or expected (Yehene et. al., 2005). The magnitude of congruency 

effects in reaction time appears to be increased by extensive task practice 

(Meiran & Kessler, 2008). Practice may have this effect by strengthening 

stimulus-category associations. If strengthened stimulus-category associations 

increase congruency effects, I would expect that conditions in which 

categorization of one attribute of a stimulus is overlearned and very strong (e.g., 

in a Stroop-like task) would show larger RT congruency effects than conditions in 

which stimulus-category associations are arbitrarily introduced in the laboratory. 

This experiment compares congruency effects in a condition without pre-existing, 

overlearned associations to those in Stroop-like conditions in which one abstract 

category is automatically activated by one attribute of the stimulus. 

 

Method 
Participants. 

Forty-eight undergraduates (19 female; mean age = 19.06, SD = 1.33) 

participated for partial course credit. All spoke English as their first language or 

had learned it by age seven. 
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Stimuli. 

 
Figure 2.1. Experiment 1 conditions. There were two congruent and two 
incongruent stimuli repeated randomly throughout each condition. 
Stimulus color indicated the currently-relevant task. 

 

Figure 2.1 illustrates stimuli for the three conditions: Control, Numerical, 

and Spatial. For each trial, the current task was indicated by the color of the 

stimulus. Each task was assigned a unique color. Colors were not recycled 

across conditions. (1) In the Control condition, participants indicated the 

position of the larger shape or the position of the circle. (2) In the Spatial 

condition, participants responded to the meaning of the word or its position on 

the screen. (3) In the Numerical condition, participants responded to what 

number they saw or on how many digits they saw. Stroop-like stimulus-

category associations exist prior to experimental instruction for both the 

Numerical and Spatial conditions, but not for the Control condition. 
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2.2.1 Control 

 
2.2.2 Spatial 

 
2.2.3 Numerical 

 
Figure 2.2. Representation of proposed model for each condition in 
Experiment 1. This model differs from the proposed model in Figure 1.2 as 
the cue is embedded in the stimulus. Each stimulus is broken into 
component attributes. Color serves as a cue, allowing for goal setting. One 
stimulus attribute (e.g., number of digits) allows the stimulus to be 
assigned to a semantic category according to the current goal. The other 
stimulus attribute may also lead to the same semantic category (congruent 
trial) or the opposing category (incongruent trial). Each category is mapped 
to a behavioral response. Strong connections are represented by thicker 
lines and represent highly-practiced associations.  
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Procedure. 
For each condition, participants completed six runs of 33 trials each. The 

first trial of each run was excluded from all analyses. All runs of a condition were 

completed before moving on to the next condition. Rest periods were available 

after each run. Trials were self-paced with a 2000 ms upper limit, and were 

separated from each other by 360 ms of fixation. 

The first run for each condition was a pure run: Participants responded to 

all stimuli based on a single task (task A). The second run was a pure run for the 

other task (task B). The remaining four runs were “mixed” runs (task A and B 

intermixed). During mixed runs, half of the trials had the same task as the 

previous trial (nonswitch) and half had a different task (switch). Task changes 

were unpredictable and signaled only by a change in stimulus color. 

At least four completely self-paced practice trials preceded each pure run. 

At least eight practice trials preceded the mixed runs. Some participants chose to 

complete additional practice. Half of the trials in all conditions were congruent 

and half were incongruent. Condition order and task order within a condition (i.e. 

which task was identified as task A) were counterbalanced across participants. 

 

Results 
In these and all later analyses, reaction times were trimmed to include 

only accurate trials on which reaction time was greater than 200 ms and less 

than three standard deviations above the mean for each cell of interest for each 

participant. Trials immediately following errors were not analyzed for accuracy or 

response time as switch/nonswitch classification would be uncertain. Huynh-

Feldt corrections were applied when the sphericity assumption was violated 

resulting in non-integer degrees of freedom. Analyses throughout this 

dissertation focus on reaction time based on previous emphasis in the literature 

on reaction time as the measure of the interference resolution processes 

associated with incongruent compared to congruent trials (Kane & Engle, 2003; 

Meiren & Kessler, 2008). In all experiments presented throughout this 

dissertation, there was no evidence of a tradeoff between accuracy and reaction 
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time congruency effects in any condition; correlations between accuracy and 

reaction time congruency effects were never reliably negative (all p > .4). 

Correlations between reaction time and accuracy are presented in Appendix A. 

For completeness, means and statistics for congruency effects in accuracy, log-

transformed accuracy, and composite z-scores of reaction time and error rate are 

presented in Appendices B, C, and D, respectively. Complete reaction time 

results for Experiment 1 are shown in Table 2.1. 

 

  

Congruent Incongruent 

  

Pure Nonswitch Switch Pure Nonswitch Switch 

Control Shape 508 689 778 472 673 835 

 
 (73) (138) (141) (74) (101) (164) 

 
Size 438 683 831 413 701 829 

 
 (81) (163) (135) (67) (134) (119) 

Spatial Meaning 511 695 822 533 786 888 

  
(67) (123) (143) (66) (159) (149) 

 
Position 364 630 792 382 674 961 

  
(75) (150) (183) (108) (177) (167) 

Numerical Count 494 830 972 553 960 1094 

  
(87) (157) (155) (121) (149) (154) 

 
Identity 462 796 938 465 808 1067 

  
(63) (160) (138) (72) (161) (136) 

Table 2.1. Experiment 1 reaction time means and standard deviations for all 
conditions. Means and corresponding standard deviations are presented in 
milliseconds. 

 

Spatial and Numerical conditions show Stroop-like properties. 
The comparison of congruency effects in task switching with and without 

the presence of Stroop-like interference pre-supposes that only the Spatial and 

Numerical conditions show Stroop-like interference. Although in all three 

conditions, one task was more difficult than the other, only the Spatial and 
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Numerical conditions showed congruency effects consistent with Stroop 

interference. 

The tests for task difficulty and Stroop interference were conducted on the 

pure (single-task) trials. On these trials, all conditions showed significantly slower 

reaction times for one task than for the other (Control: F(1,47) = 44.95, p < .001; 

Spatial: F(1,47) = 134.52, p < .001; Numerical: F(1,47) = 27.60, p < .001). 

Reaction times were slower for the shape, meaning, and count tasks. Accuracy 

effects were consistent with those in reaction time demonstrating a consistent 

effect of difficulty in each condition (Control: F(1,47) = 18.26, p < .001; Spatial: 

F(1,47) = 14.91, p < .001; Numerical: F(1,47) = 3.61, p = .06). Though all 

conditions had a discrepancy between tasks in pure run difficulty, only the 

Numerical and Spatial conditions showed Stroop-like congruency effects in the 

single-task runs consistent with overlearning of one task. The Spatial condition 

showed a main effect of congruency, F(1,47) = 18.03, p < .001, which was 

present for both the meaning and position tasks (Task x Congruency effect, 

F(1,47) = .30, p = .59) indicating both a Stroop and Reverse Stroop effect. The 

Numerical condition also showed a main effect of congruency, F(1,47) = 32.92, p 

< .001, which was specific to the count task (Task x Congruency effect, F(1,47) = 

33.35, p < .001), indicating a traditional Stroop effect. The Control condition did 

not show Stroop-like interference. In fact, incongruent trials were significantly 

faster than congruent trials, F(1,47) = 57.71, p < .001. 

 
Task-switching and Stroop-like congruency effects are not additive. 

The primary question of interest in this experiment was whether the size of 

the congruency effect in reaction time was smaller in the Control condition (in 

which stimulus-to-category associations were arbitrarily assigned during the 

experiment) versus the Numerical and Spatial conditions (in which these 

associations were overlearned and largely automatic). Analyses comparing 

congruency effects across conditions focused on trials within the mixed runs. In 

the pure runs, there was no indication that both tasks were held in mind for the 

Control condition, making the congruency manipulation moot. Congruency 
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effects are consistently larger on switch trials (e.g., Meiran et al., 2005). The 

Condition x Congruency x Switch interaction was not significant here, F(2,94) = 

1.11, p = .33 due to the fact that the Congruency x Switch interaction was 

present for all three conditions (Control: F(1, 47) = 3.91, p = .05; Spatial: F(1, 47) 

= 12.95, p < .005; Numerical: F(1, 47) = 13.47, p < .005). As such, congruency 

effects were averaged across switch and nonswitch trials. Results supported the 

hypothesis that overlearned stimulus-category associations led to larger RT 

congruency effects (Figure 2.3). The Condition X Congruency interaction was 

significant, F(2, 94) = 27.85, p < .001. 

 

 
Figure 2.3. Congruency effects are larger in the presence of Stroop-like 
interference.  

 

Probes of the Condition X Congruency interaction showed a smaller 

congruency effect for the Control condition than either the Spatial or Numerical 

condition, F(1, 47) = 35.41, p < .001 and F(1, 47) = 48.35, p < .001. These 

interactions were stable across participants, as 38 out of 48 participants exhibited 

larger RT congruency effects in the Spatial condition than in the Control 

condition, and 41 participants displayed larger effects in the Numerical condition 

than in the Control condition. Since overall reaction time was slower for the 
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Spatial and Numerical conditions than for the Control condition, it is possible that 

RT congruency effects were larger for a majority of participants in the Numerical 

and Spatial conditions due to longer overall reaction time. This was not the case. 

When congruency effects were considered as a proportion of the overall reaction 

time for each condition, 37 participants still demonstrated larger congruency 

effects in the Spatial condition than in the Control condition, and 39 participants 

showed larger congruency effects in the Numerical condition than in the Control 

condition. 

The Condition x Congruency interactions were significant because 

congruency effects were present and of similar size in the Spatial condition and 

the Numerical condition, but not in the Control condition. Congruency effects did 

not reach significance for the Control condition, F(1, 47) = 2.69, p = .11. 

Congruency effects for the Spatial and Numerical conditions were much larger, 

F(1, 47) = 88.17, p < .001 and F(1, 47) = 80.74, p < .001, respectively. The main 

effects of congruency were stable across participants. While a slight majority of 

participants (30 out of 48) showed positive congruency effects in the Control 

condition, positive congruency effects were shown by almost all of the 

participants in the Spatial and Numerical conditions (45/48 and 46/48 

respectively). 

Though congruency effects in the Control condition were much smaller 

than those in the Numerical and Spatial conditions, proportional congruency 

effects in the Control condition were correlated with those in the Numerical 

condition, r(46) = .27, p = .07, almost as highly as congruency effects in the two 

Stroop-like conditions were correlated with each other, r(46) = .31, p < .05. This 

relationship between congruency effects across conditions may indicate the 

presence of a general interference resolution process supporting response 

selection when multiple responses are possible for the same stimulus. However, 

this connection is tenuous as there was no relationship between congruency 

effects in the Control and Spatial conditions (p > .8). The lack of consistent 

between-condition correlations in congruency effects seen here is similar to the 

lack of correlation between task-switching congruency effects observed in other 
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task-switching paradigms and the lack of reliable correlation observed between 

congruency effects in different Stroop-like tasks (Yehene & Meiran, 2007; 

Shilling, Chetwynd, & Rabbitt, 2002; Ward, Roberts, & Phillips, 2001).  

Lack of consistent correlation here does not necessarily indicate that there 

is no commonality in the interference resolution effect. Instead, it may indicate 

that the congruency effect is driven by the strength of stimulus-to-category 

associations, which likely differ across subjects depending on their previous 

experience with a certain set of stimuli and available tasks. There is little reason 

to expect that this would be consistent across different stimulus sets. For 

example, a child who is just learning to read may show smaller congruency 

effects in a traditional Stroop color-word paradigm than an older child who has 

overlearned word reading. However, there would be no reason to suspect that 

the younger child would show smaller congruency effects on a color-object 

Stroop-like paradigm than the older child (e.g., Prevor & Diamond, 2005). In the 

color-object Stroop, participants must name the picture color rather than naming 

an object (e.g., say “purple” rather than “carrot” for a picture of a purple carrot), 

and younger children tend to show larger interference effects than do older 

children. The congruency effects between color-word and color-object conditions 

would not be positively correlated because the congruency effect depends on the 

strength of specific stimulus-category sessions, which differ across conditions.  

The presence of similar sized congruency effects in both the Spatial 

condition and the Numerical condition supports the idea that overlearning of one 

task rather than other stimulus differences underlie the increase in congruency 

effects seen in the Stroop-like conditions. This result is consistent with our 

predictions based on the increased RT congruency effects observed after task 

practice in a previous session (Meiran and Kessler, 2008). 

 
Differences in the size of congruency effects are not driven by response 
slowing. 

Meiran (2005) has suggested that RT congruency effects may be 

exaggerated when overall responses are slower. However, it is unlikely that the 
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smaller RT congruency effects for the Control condition versus the Numerical 

and Spatial conditions are related to response slowness. The Condition X 

Congruency interactions described above remain significant even when the 

Control condition is only compared to the Spatial condition, which has similar 

overall RT in the mixed runs (752 vs 781 ms). Additionally, a large majority of 

participants showed larger congruency effects in the Spatial and Numerical 

conditions than in the Control condition even when congruency effects were 

considered as a proportion of overall reaction time in a condition. 

To further test the possibility that difficulty drove the differences in RT 

congruency effects, I divided participants into fast and slow groups (median split) 

based on their overall mixed RTs for the Control condition. Control mixed-run 

trials were then analyzed using a Speed (fast, slow) X Congruency (congruent, 

incongruent) ANOVA. If the previous findings of greater RT congruency effects in 

the Spatial and Numerical conditions occurred because those conditions were 

more difficult than the Control condition, RT congruency effects within the Control 

condition should be greater for slow participants. This was not the case. RT 

congruency effects did not differ significantly between fast and slow participants, 

F(1, 46) = 2.57, p = .12 and, in fact, were numerically smaller for slow 

participants. (See Figure 2.4.) 
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Figure 2.4. Congruency effects in the Control condition do not increase 
with overall reaction time. When separated by a median split on overall 
reaction time in the mixed runs, participants with relatively slow reaction 
times show smaller congruency effects than participants with fast reaction 
times. 

 
Reaction time congruency effects in the Control condition did not change 
significantly within the mixed runs. 

Though congruency effects were larger in the Spatial and Numerical 

conditions than in the Control condition, there was a small and nonsigificant trend 

towards an RT congruency effect in the Control condition. If practice drives the 

congruency effect, one might expect that this trend occurred due to learning 

across trials in the mixed runs. This was not the case, as there was no evidence 

of practice-related increases in congruency effects (see Figure 2.5). Reaction 

times from the mixed runs were separated into two-run epochs and submitted to 

a Time (1st half, 2nd half) x Congruency (congruent, incongruent) ANOVA to 

examine changes in the congruency effect across the mixed runs. Congruency 

effects in the first two mixed runs did not differ significantly from those in the last 

two mixed runs, F(1, 47) = 1.66, p = .20, The absence of practice-related 

increases across a single session is consistent with previous experiments 

(Meiran and Kessler, 2008). Meiran and Kessler argued that the absence of 
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practice-related gradual increase in congruency effects in a single session may 

be due to the fact that the abstract response codes must be consolidated in long-

term memory over a night’s sleep to create a congruency effect. Though 

consolidation may contribute to the size of the congruency effect, this reasoning 

does not explain the non-zero congruency effect in the Control condition. An 

interesting possibility is that congruency effects may appear after very few 

instances of assigning a particular stimulus to a category in the context of two 

available tasks. Such an explanation would be consistent with the existence of 

priming effects in task-switching after only a single instance of categorizing a 

stimulus (Waszak et al., 2003). This explanation would also predict that 

congruency effects might be substantially larger in the mixed runs than in the 

practice for the mixed run. Unfortunately, in this experiment, there were very few 

practice trials (eight self-paced trials before the first mixed run). 

 

 
Figure 2.5. Congruency effects in the Control condition do not increase 
across the mixed runs. The 1st half represents the first two mixed-task runs, 
while 2nd half represents the last two mixed-task runs for each participant. 
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Asymmetry in switch costs and congruency effects. 
Early research in task switching demonstrated asymmetry in switch costs, such 

that switch costs were paradoxically larger when switching to the dominant task 

(e.g., Allport et al., 1994). However, other authors have found a more intuitive 

pattern, with larger switch costs associated with switching to the more difficult 

task (e.g., Monsell et al., 2000; Rubenstein et al., 2001). The explanation for the 

paradoxical asymmetry observed by Allport and others was that the task-set for 

the dominant task was so strong that substantial inhibition was used to suppress 

that task-set, making it harder to switch back to that dominant task on a later trial. 

This argument has been supported by several studies of backward inhibition 

(e.g., Mayr et al., 2000). Rubenstein and colleagues argued that this pattern is 

specific to conditions in which the disparity in task difficulty is extremely large, as 

in Stroop-like conditions, in which stimulus-response rules associated with the 

dominant task are persistently active in long-term procedural memory. In the 

present experiment, there was no significant Switch (switch, nonswitch) x Task 

(shape, size) interaction for the Control condition, F(1, 47) = .62, p = .43. 

However, in both Stroop-like conditions, interactions between Switch and Task 

were significant, Spatial: F(1, 47) = 43.47, p < .001, Numerical: F(1, 47) = 5.65, p 

< .05. In both cases, switching to the dominant task was slower than switching to 

the nondominant task. These results are consistent with previous work indicating 

that strong disparities in automaticity between tasks lead to paradoxical switch 

cost asymmetry. 

Given the switch cost asymmetry described above, I examined the Switch 

x Congruency interaction for differences between tasks (Figure 2.6). If the 

differences in congruency effects between conditions presented earlier are due 

specifically to the overlearning of one task in the Stroop-like conditions, 

congruency effects might be different across tasks. Specifically, if the congruency 

effect is an indication of competition between responses and is influenced by 

overlearning of one task, the difference in congruency effects on nonswitch and 

switch trials should be larger for the dominant task. 
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This pattern was demonstrated in the present experiment. The 

Congruency x Switch x Task interaction was significant for both the Spatial, F(1, 

47) = 38.39, p < .001, and Numerical, F(1, 47) = 11.24, p < .005, conditions. 

These interactions exist because the congruency effect was larger on switch than 

on nonswitch trials only for the dominant task in both conditions. On nonswitch 

trials of the dominant task, the attribute that automatically activates a category 

due to overlearning is the same as the currently-relevant attribute according to 

task instructions and is also the attribute that was primed most recently on the 

previous trial. This results in quick responses even on incongruent trials. On 

switch trials to the dominant task, however, the currently-relevant stimulus 

attribute does not lead to automatic activation of the category because the 

components of the corresponding task set were strongly inhibited on the previous 

trial. This inhibition leads to increased response times when the activation of the 

pathway corresponding to this attribute must be increased above that of the 

attribute that was primed most recently on the previous trial. The Congruency x 

Switch x Task interaction was also significant for the Control condition, F(1, 47) = 

21.55, p < .001, but in this case, the congruency effect was larger on switch trials 

than on nonswitch trials for the more difficult shape task. This pattern is opposite 

that shown by the Stroop-like conditions in terms of task difficulty. 
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Discussion 
The present experiment suggests that overlearning of stimulus-category 

associations increases congruency effects in reaction time, due to automatic 

activation of the category associated with the dominant stimulus attribute. Both 

the Spatial and Numerical conditions showed Stroop-like single-task congruency 

effects, but the Control condition did not. Additionally, the Control condition 

showed a nonsignificant congruency effect in the mixed runs that was much 

smaller than the significant congruency effects observed in the Spatial and 

Numerical conditions. These differential congruency effects seem to be due to 

overlearning of one task in the Stroop-like conditions, as the effects in the Spatial 

and Numerical conditions were of similar size. These results stand in stark 

contrast to those presented by Meiran comparing task-switching congruency 

effects to Simon effects (2005). Meiran showed that Simon effects were additive 

with task-switching congruency effects while these results show that Stroop-like 

Figure 2.6. Switch difference in congruency effects is larger for 
the dominant task in Stroop-like conditions. The congruency 
effect is larger for switch trials than nonswitch trials only for the 
dominant task in the Spatial and Numerical condition. No such 
task separation is seen in the Control condition. 
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congruency effects are not additive with task-switching congruency effects. While 

Simon effects are fundamentally different from task-switching congruency effects, 

Stroop-like congruency effects appear to result from processing along the same 

kind of pathway as task-switching congruency effects. 

Stroop-like and task-switching congruency effects may be variations of the 

same phenomenon, with effects in reaction time indicating time needed to 

resolve competition resulting from categorization of two attributes of the same 

stimulus. In the Stroop context, one category is automatically activated due to 

overlearning while a different category is active due to its relationship to the 

currently-instructed task. In the task-switching context, two categories are active 

because each category relates to an attribute of the stimulus that can be 

categorized according to one of the potentially-relevant tasks recently presented. 

Though task-switching congruency effects in this experiment appeared to be 

influenced by overlearning, these effects did not differ across epochs within the 

mixed runs, mirroring previous work showing that within-session practice did not 

increase congruency effects (Meiran & Kessler, 2008). The present experiment 

was unable to determine whether small congruency effects in the Control 

condition appeared as a result of the first few instances of assigning a stimulus 

according to a rule associated with the opposing task. 

Asymmetric switch costs favoring the less dominant task were significant 

only for Stroop-like conditions, consistent with previous reports (Monsell et al., 

2000; Rubinstein et al., 2001). This result supports the idea that the pathway 

associated with the dominant task in Stroop-like conditions must be strongly 

suppressed to allow accurate response on non-dominant task trials. Carryover of 

this inhibition in trials that require switching to the dominant task results in 

particularly slow reaction times. The effect of switching on congruency effects 

was also modified by task. Congruency effects were larger on switch compared 

to nonswitch trials only for the dominant task in Stroop-like conditions. This 

pattern may be due to the dominant task being particularly strong on nonswitch 

trials, for which the category activated by the given stimulus for the current task 

instruction is the same as the category that is automatically activated due to 
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overlearning. This leads to relatively fast responses even on incongruent trials, 

as competition from the alternative category is relatively weak and easy to 

resolve. On switch trials, however, congruency effects are large because the 

attribute of the stimulus to be categorized is that associated with the strongly 

inhibited task set and not with the task set activated on the previous trial. This 

leads to substantial interference on incongruent trials, which must be resolved 

before responding. 

Although this experiment suggests that congruency effects are larger in 

the presence of Stroop-like interference, the comparison conditions differ from 

each other in potentially important ways unrelated to the presence of pre-existing 

associations. Both the Numerical and Spatial conditions use verbal materials and 

a single, integrated stimulus. The Control condition uses nonverbal materials and 

requires a judgment to be made across two separate spatial locations when 

considering which shape is larger. Furthermore, though these data indicate that 

response slowness does not drive the RT congruency difference here, a 

response slowing account cannot be completely ruled out since both the Spatial 

and Numerical conditions are at least somewhat slower than the Control 

condition. 

This experiment also cannot speak to the stage at which the congruency 

effect arises. Though I have presented a distinction according to overlearned 

stimulus-to-category associations based on the fact that increased congruency 

effects occur both in the Spatial condition and the Numerical condition, it is also 

clear that most Stroop-like conditions involve a level of automaticity in the 

category-to-response mapping. In the case of the traditional color word Stroop, 

the verbal response “blue” automatically comes about from the semantic concept 

of “blue.” Evidence for a role of strong category-to-response associations in the 

Stroop effect comes from the fact that congruency effects are larger when there 

is conflict both at the semantic level and the response level (“blue” in red ink 

when blue and red are mapped to different hands) than when there is conflict 

only at the semantic level (“blue” in green ink when blue and green are mapped 

to the same hand; De Houwer et al, 2003) 
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In the present experiment, I have presented the Spatial condition as 

having strong stimulus-category mappings and strong category-response 

mappings due to the fact that bimanual response is made using a left-hand key 

press (z) or a right-hand key press (/). I have presented the Numerical condition, 

by contrast, as having only strong stimulus-category associations, indicating that 

the stimulus-category link leads to the amplified congruency effect. However, this 

may be an oversimplification. For all participants “1” was assigned to the z key 

and “3” was assigned to the / key. Since numbers tend to be mentally 

represented on a number line and all participants were fluent English speakers 

used to reading left to right, it could be argued that the category-to-response 

mapping for 1 to the left hand and 3 to the right hand may also be overlearned 

(Dehaene et al., 1993). Future experiments will investigate the stage at which the 

congruency effect occurs and replicate the findings from this experiment with 

conditions in which stimuli are equated across the other dimensions mentioned 

above. 
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Chapter III 
 

Contribution of Overlearning to Task-Switching 
Congruency Effects 

 

Objective 
The present experiment attempted to address potential confounds in Experiment 

1 by comparing conditions which differed in the presence of pre-existing 

stimulus-category associations but did not differ in other stimulus properties or 

overall difficulty. It also uses nominally nonverbal stimuli, to demonstrate that the 

effects seen in E1 are not specific to verbal conditions. 

 

Method 
Participants. 

Twenty-four undergraduates (12 female; mean age = 18.81, SD = 1.28) 

participated for partial course credit. 

 

Stimuli. 

 
Figure 3.1. Experiment 2 conditions. There were two congruent and two 
incongruent stimuli repeated randomly throughout each condition. Color 
indicated the currently-relevant task. 
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Figure 3.1 illustrates stimuli for each condition: Nonverbal Control and 

Nonverbal Spatial. Current task was again indicated by the color of the stimulus. 

(1) In the Nonverbal Control condition, participants indicated which side of the 

shape was taller or which side had more bumps. (2) In the Nonverbal Spatial 

condition, participants responded to the direction the arrow was pointing or its 

position on the screen. The Nonverbal Control condition provides a conceptual 

replication of the Control from Experiment 1 using a single, spatially-integrated 

stimulus. The Nonverbal Spatial condition provides a conceptual replication of 

the Spatial condition from Experiment 1 using nonverbal stimuli. 
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3.2.1 Nonverbal Control 

 
3.2.2 Nonverbal Spatial 

 
Figure 3.2. Representation of proposed model for each condition in 
Experiment 2. Each stimulus is first broken into component attributes (e.g., 
color, height of each side of the shape, and number of bumps on each side 
of the shape for the Nonverbal Control condition). The color attribute 
serves as a cue, allowing for goal shifting/maintenance. One stimulus 
attribute (e.g., relative height of each side of the shape) allows the stimulus 
to be assigned to a position-based category according to the current goal. 
The other stimulus attribute may also lead to the same semantic category 
(congruent trial) or the opposing category (incongruent trial). Each 
category is mapped to a behavioral response. Strong connections are 
represented by thicker lines and represent highly-practiced associations.  
 

Procedure. 
The procedure was similar to that of Experiment 1 with a few exceptions. 

(1) Participants completed two additional mixed runs for a total of eight runs per 

condition. (2) Stimuli were on the screen for up to 3000 ms. (3) Participants 

received self-paced and timed trials of response mapping practice prior to each 
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new pure run and prior to the first mixed run. (4) Task practice was increased to 

at least sixteen trials before each pure run (eight self-paced and eight timed) and 

at least thirty-two trials (sixteen self-paced and sixteen timed) before each mixed 

run. 

 

Results 
Filters were applied as described for Experiment 1. Reaction times are 

presented here, but means and statistics for congruency effects in accuracy, log-

transformed accuracy, and combined z-scores of reaction time and error rate are 

presented in Appendices B, C, and D. Complete reaction time results for 

Experiment 2 are shown in Table 3.1. 

 

  

Congruent Incongruent 

  

Pure Nonswitch Switch Pure Nonswitch Switch 

Nonverbal 
Control 

More 476 628 780 451 654 831 

 (92) (122) (174) (73) (186) (185) 

Taller 463 627 762 444 667 836 

 (78) (112) (161) (72) (154) (179) 

Nonverbal 
Spatial 

Pointing 455 547 656 513 624 744 

 
(60) (112) (166) (148) (144) (172) 

Position 333 540 666 337 592 774 

 
(51) (112) (167) (66) (114) (186) 

Table 3.1 Experiment 2 reaction time means and standard deviations for all 
conditions. Means and corresponding standard deviations are presented in 
milliseconds. 
 

Nonverbal Spatial condition, but not Nonverbal Control condition, shows 
Stroop-like properties. 

As the current conditions are assumed to be conceptually equivalent to 

the conditions in Experiment 1, it was necessary to confirm that the Nonverbal 

Spatial condition but not the Nonverbal Control condition showed Stroop-like 

interference in the single-task (pure) runs. Only the Nonverbal Spatial condition 
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showed a disparity in automaticity between the two component tasks as 

responses were faster and more accurate for the position task (RT: F(1,23) = 

72.69, p < .001; Accuracy: F(1,23) = 8.32, p < .01). The two tasks in the 

Nonverbal Control condition did not differ significantly in difficulty (RT: F(1,23) = 

.57, p = .46; Accuracy: F(1,23) = 1.22, p = .28). Also like the conditions in 

Experiment 1, only the Nonverbal Spatial condition showed Stroop-like 

congruency effects in the single-task runs consistent with overlearning of one 

task. Specifically, the Nonverbal Spatial condition showed a main effect of 

congruency, F(1,23) = 8.16, p < .01, which was present only for the pointing task 

(Task x Congruency effect, F(1,23) = 6.42, p < .05). The Nonverbal Control 

condition did not show Stroop-like interference. In fact, as in the Control condition 

from Experiment 1, incongruent trials were significantly faster than congruent 

trials, F(1,23) = 12.25, p < .005, on both tasks (Task x Congruency effect, F(1,23) 

= .16, p = .69). Based on these results, I compared task-switching congruency 

effects in the Nonverbal Control and Nonverbal Spatial conditions based on a 

difference in the presence of additional Stroop-like interference. 

 

Task-switching and Stroop-like congruency effects are not additive. 
As in Experiment 1, the Condition x Congruency x Switch interaction was 

not significant, F(1,23) = .03, p = .86. The Congruency x Switch interaction was 

present for both conditions (Nonverbal Control: F(1, 23) = 4.19, p = .05; 

Nonverbal Spatial: F(1, 23) = 5.25, p < .05). Therefore, congruency effects were 

again averaged across switch and nonswitch trials. If the RT differences in 

congruency effects described in Experiment 1 were due to superficial stimulus 

differences, we would expect that making both sets of stimuli integrated and 

nonverbal would result in similar RT congruency effects in both conditions. This 

was not the case: The Condition X Congruency interaction was significant for 

reaction time, F(1,23) = 7.95, p < .05 (Figure 3.3). This interaction was present 

across participants as 18 out of 24 participants showed larger congruency effects 

in the Nonverbal Spatial condition than in the Nonverbal Control condition. 

Importantly, the congruency effect was much larger in the Nonverbal Spatial 
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condition, and the effect size for the RT congruency effect in the Nonverbal 

Spatial condition was even larger than that of the Spatial and Numerical 

conditions in Experiment 1 (Nonverbal Spatial η2
p = .79; Spatial η2

p = .65; 

Numerical η2
p = .63). 

Although the congruency effects were larger in the Nonverbal Spatial 

(Stroop-like) condition, they were present at significant levels for both conditions: 

Nonverbal Control condition, F(1, 23) = 12.78, p < .005, with 20 out of 24 

participants showing positive congruency effects; Nonverbal Spatial condition, 

F(1, 23) = 84.91, p < .001 with all 24 participants showing positive congruency 

effects. Correlations between congruency effects in the Nonverbal Control and 

Nonverbal Spatial conditions were weak (r(21) = .22, p = .32 after dropping one 

outlier, r(22) = .50, p < .05 with the outlier included). This again is consistent with 

previous findings of weak and inconsistent correlations between congruency 

effects across conditions in both task-switching (Yehene & Meiran, 2007) and 

Stroop (Shilling et al., 2002; Ward et al., 2001) procedures and supports the idea 

that congruency effects are dependent on the strength of stimulus-to-category 

associations which differ across conditions for each individual.  

Also similar to Experiment 1, RT congruency effects in the present 

experiment were not related to response slowness. Even though the responses 

in the Nonverbal Spatial condition were a bit faster overall in the mixed runs than 

those in the Nonverbal Control condition (643 vs. 723 ms), the congruency effect 

was much larger for the Nonverbal Spatial condition. Taken together, the 

congruency effects observed in Experiment 1 and 2 indicate that overlearned 

stimulus-to-category associations play an important role in the size of task-

switching congruency effects. 
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Figure 3.3. Congruency effects are larger in the presence of Stroop-like 
interference.  
 
The magnitude of the congruency effect is predicted by the magnitude of 
overlearning in the Stroop-like condition. 

Further evidence that overlearning contributes to the large congruency 

effects in the Nonverbal Spatial condition comes from individual differences in the 

automaticity of one task. Participants who showed large differences between 

single-task reaction time on pointing trials and single-task reaction time on 

position trials, indicating a stronger dominance of the position task, demonstrated 

larger congruency effects in the mixed task runs, r(22) = .61, p < .005. This effect 

remained significant once an outlier was removed, r(21) = .42, p < .05. (See 

Figure 3.4 for the correlation after outlier removal.) Consistent with the 

asymmetric congruency effects presented in Experiment 1, the relationship 

between relative dominance of the position task and magnitude of the 

congruency effect was only significant (after outlier removal) for trials that 

required a switch to the position task, r(21) = .45, p < .05. When the position task 

is highly automatized, strong inhibition of the corresponding task set on pointing 

trials leads to a higher level of interference when the position task becomes 

relevant following the pointing task. 
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Figure 3.4 Relative dominance of one task predicts congruency effects. The 
difference between reaction time on pointing trials and the reaction time on 
position trials in the single-task runs is correlated with the magnitude of 
the congruency effect (incongruent – congruent) on trials in the mixed-task 
runs. Effects are presented in milliseconds. 
 

Reaction time congruency effects did not change significantly within the 
mixed runs. 

As in Experiment 1, there was no evidence of practice-related increases in 

congruency effects across the mixed runs in the Nonverbal Control condition 

(Figure 3.5). Reaction times from the mixed runs were separated by pairs 

(excluding the middle two runs) and submitted to a Time (first third, last third) x 

Congruency (congruent, incongruent) ANOVA to examine changes in the 

congruency effect across the mixed runs. Congruency effects in the first two 

mixed runs did not differ from those in the last two mixed runs, F(1, 23) = .04, p = 

.85. In Experiment 1, I described two possible explanations for the absence of a 

gradual, practice-related increase in congruency effects in a single session. The 

first possibility is that abstract response codes must be consolidated in long-term 

memory over a night’s sleep to create a congruency effect (as proposed by 

Meiran). The second possibility is that congruency effects can appear quickly, 

after only a few instances of assigning a particular stimulus to a category in the 
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mixed-task context. The latter explanation would fit with results reporting that 

priming effects in task-switching may be present after only a single instance of 

categorizing a stimulus (Waszak et al., 2003). This explanation would predict that 

congruency effects would be substantially larger in the mixed runs than in the 

practice for the mixed runs during which participants first categorize individual 

stimuli in a multiple-task context. In other words, practice effects may have 

stabilized by the time that participants are in the mixed runs, and have no further 

effect on performance within those runs. However, such effects may be more 

evident when examining participants’ first exposure to the stimuli in the mixed-

task context – that is, during the practice for those runs. 

In the first experiment, there were too few practice trials to examine this 

possibility reliably. However, in this experiment, participants completed at least 

32 practice trials – 16 early practice and 16 late practice. When looking at all 

correct early practice trials, there was no positive effect of congruency. 

Potentially due to the variability in RT estimates for the practice, the congruency 

effect in the first third of the experiment was still not significantly larger than the 

congruency effect during initial mixed-task practice, F(1, 23) = .95, p = .34. It is 

important to note that these early practice trials were fundamentally different from 

task trials as they were self-paced with no time limit and provided feedback after 

every trial, but the results here suggest that congruency effects may appear after 

very few instances of categorizing a stimulus in the mixed-task context. 
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Figure 3.5. Congruency effects in the Nonverbal Control condition increase 
from initial practice to the mixed runs. Early practice trials are the first 16 
trials, in which stimuli are assigned to categories in the mixed-task context 
and are self-paced with no time limit. Late practice trials are the first set of 
16 timed practice trials. First third trials are from the first two mixed-task 
runs. Last third trials are from the last two mixed-task runs. 
 
Asymmetry in switch costs and congruency effects. 

In Experiment 1, significant paradoxical asymmetry was found in the 

Stroop-like conditions, but not in the Control condition. There was a significant 

task-based asymmetry in switch costs for the Nonverbal Spatial condition, F(1, 

23) = 8.09, p < .01, such that switch costs were larger for switching to the 

dominant position task. In contrast, there was no significant Switch x Task 

interaction for the Nonverbal Control condition, F(1, 23) = .60, p = .44. These 

results are consistent with previous work indicating that strong disparities in 

automaticity between tasks lead to paradoxical switch cost asymmetry (e.g., 

Allport et al., 1994; Yeung & Monsell, 2003; Koch, Prinz, & Allport, 2005). 

In Experiment 1, I showed that the Congruency X Switch interaction in the 

Stroop-like conditions was larger for the dominant task than for the nondominant 

task. The same comparison was examined here, for both the Nonverbal Control 

and Nonverbal Spatial conditions (Figure 3.6). As expected from the fact that the 
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Nonverbal Control condition did not have a dominant task, the Congruency x 

Switch x Task interaction for that condition did not approach significance, F(1, 

23) = .14, p = .72. Instead, the Congruency x Switch interaction was numerically 

present, but not statistically significant, for both tasks (More: F(1, 23) = 1.70, p = 

.21, Taller: F(1, 23) = 2.78, p = .11). In the Nonverbal Spatial Stroop-like 

condition, in which the position task was dominant, the Congruency x Switch x 

Task interaction did not reach statistical significance, F(1, 23) = 1.35, p = .26; 

however, the difference between congruency effects on nonswitch and switch 

trials was numerically larger for the dominant position task, similar to the pattern 

seen in the Stroop-like conditions in Experiment 1. In addition, the Switch x 

Congruency effect was significant for the position task, F(1, 23) = 8.79, p < .01, 

but not for the pointing task, F(1, 23) = .17, p = .68.  

 
Figure 3.6. The switch difference in congruency effects is larger for the 
dominant (position) task in the Stroop-like condition. 
 

Discussion 
The present results replicated the central finding of Experiment 1: the 

task-switching RT congruency effect was larger in the presence of an 

overlearned task. The congruency effect was present at a significant level even 

in the Nonverbal Control condition, but was significantly larger in the Nonverbal 



 
 

44 
 

Spatial condition, in which responding to the position dimension of the stimulus 

was highly automatic. This replication was important as it ruled out the possibility 

that the findings in Experiment 1 were due to superficial stimulus differences 

between the conditions of interest. The present experiment also provided support 

for the idea that exaggerated congruency effects were not the result of response 

slowing since responses were overall faster for the Nonverbal Spatial condition 

which showed larger congruency effects. The present experiment also extended 

the findings from Experiment 1 by showing that those individuals who showed 

larger differences in automaticity of the two tasks in the single-task runs also 

demonstrated larger congruency effects in the mixed runs, supporting the idea 

that larger congruency effects in the Nonverbal Spatial condition were related 

specifically to the overlearning of one task. 

The Nonverbal Control condition showed significant congruency effects 

even in the absence of a pre-experimentally overlearned task. Though these 

effects were similar across the mixed runs, arguing against a gradual increase in 

congruency effects as a function of increased practice, congruency effects were 

not present during initial practice on the mixed runs. This result is consistent with 

the idea that congruency effects arise when a particular stimulus must be 

assigned to a category based on one attribute after it has been assigned to a 

different category based on a different attribute on a previous trial (Kiesel et al., 

2007). The present experiment cannot address whether these effects are 

stimulus-specific. However, other authors have reported larger congruency 

effects for stimuli that are repeated more often (Kiesel et al, 2007). Larger switch 

costs have also been observed due to stimulus-specific priming from previous 

trials. Waszak and colleagues (2003) showed participants a series of line 

drawings of objects with the printed name of another object presented over the 

line drawing. Participants showed larger switch costs when reading the word if 

they had previously named the object, even if object-naming had occurred only 

once for a particular stimulus presented several minutes before the trial of 

interest. This finding suggests that participants may be showing congruency 
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effects due, at least partly, to previous experience categorizing a stimulus based 

on the currently-irrelevant attribute of the stimulus.
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Chapter IV 
 

The Source of the Task-Switching Congruency Effect 
 

Objective 
Meiran and Kessler (2008) argued that the activated codes in long-term 

memory underlying RT congruency effects in task-switching paradigms (but not 

Stroop or Simon paradigms) involve mediation through categories (See Figure 

1.1). That is, stimuli are assigned first to an abstract semantic category like “odd” 

or “larger than 5.” That abstract category is then linked to a specific motor 

response. Previous work has not specifically addressed whether RT congruency 

effects result due to assigning a stimulus to a semantic category or due to 

translating that category mapping into a response. Experiments 1 and 2 provide 

support for the idea that congruency effects in reaction time are influenced by 

overlearning in Stroop-like tasks. I have suggested that this overlearning may 

influence assignment of a stimulus to a category, a claim that is supported by the 

development of substantial congruency effects early in mixed-task practice for a 

condition with experimentally-defined stimulus-category relationships. 

In this experiment, I explore the effects of manipulating stimulus-category 

associations. If stronger stimulus-category associations contribute to larger 

congruency effects in RT, congruency effects should be smaller for conditions in 

which each trial involves assignment of a novel stimulus to the abstract category 

than for conditions in which a single stimulus may be assigned to different 

categories on different trials. The present experiment compares a condition with 

novel stimulus-category associations to one with overlearned stimulus-category 

associations. 
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Method 
Participants. 

Twenty-four undergraduates (19 female; mean age = 18.43, SD = 0.73) 

participated for partial course credit. None of the participants had previously 

participated in Experiment 1 or 2. 

 

Stimuli. 

 
Figure 4.1. Experiment 3 conditions. In the Spatial condition, two congruent 
and two incongruent stimuli are repeated randomly throughout the 
condition. In the Verbal Control condition, half of the stimuli are congruent 
and half are incongruent, but individual words do not repeat in the 
condition. 

 

Figure 4.1 illustrates stimuli for each condition: Verbal Control and Spatial. 

(1) In the Verbal Control condition, participants indicated whether the referent 

of a word was manmade or natural or whether it was larger or smaller than a 

computer screen. Importantly, this condition used unique words on each trial 

such that each stimulus was assigned only once and to a single abstract 

category. (2) The Spatial condition used stimuli identical to those in the Spatial 

condition in Experiment 1. This condition re-used the same two words and two 

spatial locations throughout the experiment requiring repeated assignment of 

single stimulus a position-based category. These two conditions thus provide 

a direct comparison between a situation with novel stimulus-category 

associations to one in which the stimulus-category and category-response 

associations are overlearned (See Figure 4.2). 
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4.2.1 Verbal Control 

 
4.2.2 Spatial 

 
Figure 4.2. Representation of proposed model for each condition in 
Experiment 3. Each stimulus is first broken into component attributes 
(color of the text, origin of the referent (e.g., an apple is natural because it 
grows on a tree), and size of the referent (e.g., an apple is small), for the 
Verbal Control condition). The text-color attribute serves as the cue for 
goal shifting/maintenance. One stimulus attribute (origin or size) is relevant 
to the goal and is supposed to serve as the basis for assigning the 
stimulus to the relevant semantic category and determining the response. 
The other stimulus attribute may lead to a category linked to the same 
response (congruent trial) or a category linked to the opposing response 
(incongruent trial). Each category is mapped to a behavioral response. In 
this experiment, stimulus-to-category mappings are novel for each 
stimulus in the Verbal Control condition, so stimulus-category connections 
are weak in that condition.  
 
 

Procedure. 
The procedure was identical to that of Experiment 2. 
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Results 
Filters were applied in the same way as described for Experiments 1 and 

2. Reaction times are presented here, but means and statistics for congruency 

effects in accuracy, log-transformed accuracy, and combined z-scores of reaction 

time and error rate are presented in Appendices B, C, and D, respectively. 

Complete reaction time results for Experiment 3 are shown in Table 4.1. 

 

 

Congruent Incongruent 

Pure Nonswitch Switch Pure Nonswitch Switch 

Verbal 
Control 

Origin 928 1020 1442 895 994 1478 

 (209) (233) (212) (162) (200) (244) 

Size 857 1095 1539 890 1103 1579 

 (164) (218) (213) (194) (211) (309) 

Spatial Meaning 502 694 816 516 757 878 

 
(105) (131) (144) (85) (162) (158) 

Position 336 598 780 335 651 901 

 
(42) (131) (123) (45) (161) (157) 

Table 4.1 Experiment 3 reaction time means and standard deviations for all 
conditions. Times are reported in milliseconds. 
 
Spatial, but not Verbal Control, condition shows Stroop-like properties. 

As with this condition in Experiment 1, the Spatial condition showed 

significantly slower reaction time on pure (single-task) trials for the meaning task 

than for the position task, F(1,23) = 123.91, p < .001 and a trend toward a 

Stroop-like congruency effect, F(1,23) = 2.28, p = .11 carried by the non-

dominant meaning task (Task x Congruency: F(1,23) = 3.59, p = .07). Similar to 

previously presented Control conditions, the Verbal Control condition showed a 

trend toward one task being less difficult as reaction times were faster for the 

size discrimination, F(1,23) = 2.78, p = .11, but no indication of a Stroop-like 

congruency effect, F(1,23) = .00, p = .98. 
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Task-switching congruency effects are minimal when stimuli are novel on 
each trial. 

As in the previous experiments, the Condition x Congruency x Switch 

interaction was not significant, F(1, 23) = .15, p = .71, due to the fact that the 

Congruency x Switch interaction was present for both conditions, though only 

significant for the Spatial condition (Verbal Control: F(1, 23) = 1.88, p = .18; 

Spatial: F(1, 23) = 4.85, p < .05). The primary evaluation of congruency effects 

was again collapsed across switch and nonswitch trials. 
If the differences in RT congruency effects described in Experiment 1 and 

2 were due to differences in experience with assigning a particular stimulus to a 

category, we would expect that the Verbal Control condition, in which stimulus-to-

category associations were novel and not repeated, would result in little or no RT 

congruency effect. This was indeed the case: The Condition X Congruency 

interaction was highly significant, F(1,23) = 8.91, p < .01 (Figure 4.3) with 17 out 

of 24 participants showing a larger congruency effect for the Spatial condition 

than for the Verbal Control condition. The congruency effect for the Verbal 

Control condition did not approach statistical significance, F(1, 23) = .61, p = .44, 

whereas the size of the RT congruency effect for the Spatial condition was 

consistent with that found for the same task in Experiment 1, F(1, 23) = 59.56, p 

< .001. Performance of individual subjects was consistent with the means 

reported. A slight majority of participants (14 out of 24) showed a positive 

congruency effect in the Verbal Control condition while every participant showed 

a positive congruency effect in the Spatial Condition. Congruency effects in the 

Verbal Control condition were not related to those in the Spatial condition (r(21) = 

.12, p = .57). 
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Figure 4.3. Congruency effects are small when stimuli are not repeated.  
 

The lack of a significant RT congruency effect in the Verbal Control 

condition supports the idea that RT congruency effects can arise from assigning 

a stimulus to a category. If the current stimulus assignment conflicts with a 

previous assignment of that same stimulus to a different semantic category, for 

example assigning the word “right” on the left side of the screen to the “right” 

category rather than the overlearned “left” category, additional time is required to 

resolve interference at the level of the category and subsequently at the level of 

the response. Participants must overcome the automatic reactivation of the 

category that results from presentation of the stimulus. However, in the Verbal 

Control condition, the use of unique stimuli on each trial means that there is no 

prior stimulus-to-category assignment to conflict with the currently-relevant one. 

The lack of an RT congruency effect in the Verbal Control condition is particularly 

compelling given the overall long reaction time in this condition, a further 

indication that size differences in RT congruency effects are not related to 

response time. 
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Congruency effects in the Novel Stimulus condition do not increase after 
practice. 

In Experiment 2, I observed a nonsignificant increase in Nonverbal Control 

congruency effects from initial practice to the first two mixed-task runs. (The 

congruency effect was only positive during the congruency effect in the mixed-

task runs.) Though the practice trials differed in timing from the mixed-task trials, 

this numerical difference suggests that congruency effects may arise after very 

little experience assigning a stimulus to a particular category in the mixed-task 

context. The same comparison was explored in the present experiment. Since 

stimuli are not repeated in the Verbal Control condition, categorization of a single 

stimulus is not repeated on different trials. If it were true that the numerical 

increase in congruency effects observed in the Nonverbal Control condition was 

due to experience assigning a stimulus to a category during the practice, we 

would expect that there would be no numerical increase in the congruency effect 

for the Verbal Control condition. 

The congruency effect differed significantly between initial practice and the 

first two mixed runs, F(1,23) = 9.97, p < .005, but that difference was due to a 

decrease in the congruency effect after initial practice (Figure 4.4). The large 

congruency effect seen in initial practice may seem surprising, but the Verbal 

Control condition was difficult for participants (as evidenced by the overall long 

reaction times for this condition and the fact that participants frequently chose to 

repeat the practice). Participants reported difficulty remembering which task was 

represented by each color in this condition, which could explain why participants 

showed particularly long reaction times on trials for which the response differed 

depending on the currently-relevant task. Evidence that this large initial-practice 

congruency effect was an artifact of difficulty acquiring the instructions 

associated with this condition comes from smaller congruency effects in later 

practice trials. Regardless of the source of large congruency effects in initial 

practice, the present results clearly do not demonstrate an increase in 

congruency effects as the result of initial practice like that shown by the 

Nonverbal Control condition in Experiment 3. These data give additional weight 
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to the argument that congruency effects arise, at least in part, from repeated 

assignment of a specific stimulus to a category. 

 

 
Figure 4.4. Congruency effects in the Novel Stimulus condition do not 
increase over time. Early practice trials are the first 16 trials, in which 
stimuli are assigned to categories in the mixed-task context and are self-
paced with no time limit. Late practice trials are the first set of 16 timed 
practice trials. First third trials are from the first two mixed-task runs. Last 
third trials are from the last two mixed-task runs. 

 

Asymmetry in switch costs and congruency effects. 
As in the first two experiments, there was no significant Switch x Task 

interaction for the Verbal Control condition, F(1, 23) = .03, p = .86. There was a 

significant task-based asymmetry in switch costs for the Spatial condition, F(1, 

23) = 60.84, p < .001, because switch costs were larger for switching to the 

dominant position task. 

 In Experiment 1, I showed that the Switch (nonswitch, switch) x 

Congruency (congruent, incongruent) interaction differed by task in the Spatial 

condition used here. In the present experiment, I replicated those results (Figure 

4.5). The Congruency x Switch x Task interaction was significant for the Spatial 

condition, F(1, 23) = 5.20, p < .05. The difference between congruency effects on 
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nonswitch and switch trials was larger for the dominant position task. The Switch 

x Congruency effect was significant for the position task, F(1, 23) = 7.94, p < .05, 

but not for the meaning task, F(1, 23) = .00, p = .95. Conceptually replicating the 

findings from the first two experiments, the Congruency x Switch x Task 

interaction was not significant for the Verbal Control condition, F(1, 23) = .21, p = 

.65. The Switch x Congruency interaction was not significant for either task 

(origin: F(1, 23) = 2.88, p = .10, size: F(1, 23) = .32, p = .58). 

 

 
Figure 4.5. Spatial condition shows characteristic asymmetry. Congruency 
effects were larger on switch trials for the dominant position task in the 
Spatial condition. 
 

Discussion 
The present experiment demonstrated that congruency effects are 

negligible when individual stimuli are not repeated across trials. This finding is 

consistent with the idea that congruency effects arise when the stimulus one is 

currently assigning to a category was previously assigned to a different category. 

Presentation of the stimulus automatically activates the previously-relevant 

category leading to competition between the categories and subsequent 

responses. The lack of a significant congruency effect in the Verbal Control 
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condition here, which used novel stimulus-to-category assignments on every trial, 

contrasts with the significant congruency effect found in the Nonverbal Control 

condition in Experiment 2. In the Nonverbal Control condition, significant 

congruency effects occurred even in the absence of pre-existing overlearning 

because the same set of stimuli were assigned repeatedly to competing 

categories. As support of this explanation, the congruency effect for the 

Nonverbal Control condition in Experiment 2 arose only after practice, whereas in 

the present experiment, congruency effects seen early in the session diminished 

after practice. The difference observed between these two control conditions is 

interesting given that in many other ways these conditions are conceptually 

equivalent (e.g., both show no significant single-task congruency effects). 

However, several factors limit the degree to which the present results can 

be used to argue that interference resulting from previously-learned (either prior 

to the experiment or in the context of the task-switching procedure itself) 

stimulus-category associations is the primary source of congruency effects. The 

Verbal Control condition in the present experiment and the Nonverbal Control 

condition in Experiment 2, differ in stimulus material (though previous 

experiments have demonstrated that the influence of overlearning on congruency 

effects does not appear to vary according to whether stimuli are verbal or 

nonverbal). Within the present experiment, the Verbal Control and Spatial 

conditions differ at the level of response execution. The abstract categories 

assigned to each key differ across the two tasks for the Verbal Control condition 

but not for the Spatial condition. That is, in the Verbal Control condition, if the 

goal was to identify the origin of the referent, the left key might indicate 

“manmade,” whereas if the goal was to identify the size of the referent, the left 

key might indicate “smaller.” In contrast, the keys have fixed (and overlearned) 

meanings of “left” and “right” for the Spatial condition regardless of the current 

task instructions. Changes in response meanings have non-trivial effects of their 

own, making the comparison of the Verbal Control and Spatial conditions less 

than ideal (Mayr, 2001; Meiran, 2000b). Specifically, due to the bivalent 

responses, competition may exist at the level of the category on both congruent 
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and incongruent trials in the Verbal Control condition, but only at the level of the 

response on incongruent trials. In the Spatial condition (and all conditions 

presented previously in this dissertation), responses were univalent – only one 

semantic category mapped to each response, so competition existed at the level 

of the category and subsequently at the level of the response only for 

incongruent trials. This distinction is important for our understanding of 

congruency effects as many studies of task-switching congruency effects use 

bivalent responses (e.g., Sudevan & Taylor, 1987, Rogers & Monsell, 1995). 

Experiment 4 was designed to address concerns about unintended differences 

between the Verbal Control and the Spatial Condition. 
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Chapter V 
 

Repeated Stimulus Assignment Leads to a Congruency 
Effect 

 

Objective 
Smaller RT congruency effects in the Verbal Control condition of 

Experiment 3 relative to both the Spatial condition and to the earlier control 

conditions support the idea that RT congruency effects may be related to 

repeated assignment of a specific stimulus to a category. This final experiment 

tests that hypothesis directly by comparing two conditions that differ only in 

whether stimulus-category assignments are repeated while holding all other 

factors constant. 

 

Method 
Participants. 

Twenty-four undergraduates (9 female; mean age = 18.63, SD = 0.65) 

participated for partial course credit. None of the participants had previously 

participated in this line of experiments. 
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Stimuli. 

 
Figure 5.1. Experiment 4 conditions. In the Spatial and Repeated Stimulus 
conditions, two congruent and two incongruent stimuli are repeated 
randomly throughout each condition. In the Novel Stimulus condition, half 
of the stimuli are congruent and half are incongruent, but individual words 
do not repeat in this condition. 
 

Figure 5.1 illustrates stimuli for each condition: Verbal Control: Novel Stimulus, 

Verbal Control: Repeated Stimulus, and Spatial. (1) The Novel Stimulus 

condition used stimuli identical to those used in Experiment 3. A novel word 

was presented for categorization on each new trial. (2) The Repeated 

Stimulus condition used the same tasks and cue colors as the Novel Stimulus 

condition, but presented the same four words (two congruent and two 

incongruent) repeatedly, to be comparable to the repeated stimulus-category 

assignment of our other conditions. (3) The Spatial condition used stimuli 

identical to those in the Spatial condition in Experiments 1 & 3 and was 

included as a within-subjects positive control for the presence of the RT 

congruency effect. Comparisons of these conditions in the context of the 

proposed model are shown in Figure 5.2. 
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5.2.1 Novel Stimulus Control 

 
5.2.2 Repeated Stimulus Control 

 
5.2.3 Spatial 

 
Figure 5.2. Representation of proposed model for each condition in 
Experiment 4. Each stimulus is first broken into component attributes (e.g., 
text color, origin of the referent (e.g., a daffodil is natural because it grows 
out of the ground), and size of the referent (e.g., a daffodil is small) for the 
Repeated Stimulus condition). The text-color attribute serves as a cue, 
allowing for goal shifting/maintenance. One stimulus attribute (e.g., origin 
of the daffodil) allows the stimulus to be assigned to a semantic category 
according to the current goal. The other stimulus attribute may lead to a 
same semantic category that activates the same response (congruent trial) 
or the opposing response (incongruent trial). Each category is mapped to a 
behavioral response. Stimulus-to-category mappings are novel for each 
stimulus in the Novel Stimulus condition, so stimulus-category 
connections are weak in that condition.  
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Procedure. 
The procedure was similar to that of Experiments 2 and 3 except that 

words were presented for up to 2.5 seconds and there was no separate 

response-mapping practice. 

 

Results 
Filters were applied as in previous experiments. Reaction times are 

presented here, but means and statistics for congruency effects in accuracy, log-

transformed accuracy, and combined z-scores of reaction time and error rate are 

presented in Appendices B, C, and D, respectively. Complete reaction time 

results for Experiment 4 are shown in Table 5.1. 

 

  

Congruent Incongruent 

  

Pure Nonswitch Switch Pure Nonswitch Switch 

Novel 
Stimulus 

Origin 812 871 1317 832 913 1335 

 (116) (142) (214) (141) (141) (203) 

Size 820 987 1361 846 1009 1406 

 (116) (137) (208) (106) (130) (190) 

Repeated 
Stimulus 

Origin 648 816 1156 634 989 1328 

 (134) (154) (281) (128) (211) (211) 

Size 617 797 1076 593 940 1290 

(90) (144) (236) (77) (163) (214) 

Spatial Meaning 477 623 767 494 664 826 

  
(52) (115) (159) (51) (127) (144) 

 
Position 325 536 735 323 580 869 

  
(45) (89) (135) (52) (111) (136) 

Table 5.1 Experiment 4 reaction time means and standard deviations for all 
conditions. Times are in milliseconds. 
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Neither Control condition shows Stroop-like effects. 
As observed with this condition in Experiments 1 and 3, the Spatial 

condition showed significantly slower reaction time on pure (single-task) trials for 

the meaning task than for the position task, F(1,23) = 221.41, p < .001 and a 

Stroop-like congruency effect, F(1,23) = 5.11, p < .05 carried by the non-

dominant meaning task (Task x Congruency: F(1,23) = 10.91, p < .005.). In the 

Repeated Stimulus condition, in which both tasks were practiced equally, the two 

tasks had similar response times overall in the single-task runs, though there was 

a small numerical trend toward the size judgment being easier (641 ms vs. 605 

ms, F(1,23) = 2.16, p = .16). These tasks showed a marginal congruency effect, 

F(1,23) = 4.25, p = .05, Consistent with the idea that the two practiced tasks were 

of approximately equal difficulty, the congruency effect was of equal size for both 

tasks (Congruency x Task interaction F < 1). The two tasks of the Novel Stimulus 

condition were also of equivalent difficulty (822 ms vs. 833 ms, F < 1, and did not 

show a significant congruency effect in the single-task runs, although there was a 

small numerical trend in this direction, F(1,23) = 2.30, p = .14. 

The presence of a congruency effect during the single-task runs for the 

Repeated Stimulus condition and the trend in that direction for the Novel 

Stimulus condition was not expected based on the absence of congruency 

effects during single-task runs in the control conditions in previous experiments. 

One potential explanation for this finding is that each participant completed both 

the Repeated Stimulus and the Novel Stimulus conditions. Thus, in many cases, 

the single-task trials were being completed after a set of mixed-task runs on 

another condition using the same tasks. 

To account for potential order effects on single-task run performance, I 

looked at Repeated Stimulus reaction times only for participants who completed 

the Repeated Stimulus condition first and at Novel Stimulus reaction times for 

only participants who completed the Novel Stimulus condition first. Removing 

these potentially confounding ordering effects yielded results more similar to 

those in the previous experiments. There was no significant difference in difficulty 

between the tasks in the single-task runs for either the Repeated Stimulus 
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condition, F < 1, or the Novel Stimulus condition, F(1,11) = 1.88, p = .20 

(numerical difference favoring categorization based on the size of the referent). 

Neither condition showed a Stroop-like congruency effect in the pure runs. The 

Repeated Stimulus condition showed a numerical difference in the opposite 

direction, Congruency: F(1,11) = 2.03, p = .18; this did not interact with task, 

Congruency x Task: F < 1. There was no suggestion of a Stroop-like congruency 

effect in pure runs for the Novel Stimulus condition, and no interaction with the 

task used in each run, both F < 1. These results suggest that neither the Novel 

Stimulus nor the Repeated Stimulus conditions demonstrate Stroop-like effects in 

the single-task context. Thus, any increased congruency effect observed in the 

Repeated Stimulus condition during the mixed runs is likely related to the 

difference in the number of times a single stimulus was assigned to a category 

rather than unpredicted development of a Stroop-like asymmetry. 

 
Task-switching congruency effects are nonexistent when stimuli are novel 
on each trial. 

The Condition x Congruency x Switch interaction was again not 

significant, F(1.61, 36.99) = 1.18, p = .31 even though the Congruency x Switch 

interaction was only significant for the Spatial condition, F(1, 23) = 11.55, p < 

.005 (Novel Stimulus: F(1, 23) = .00, p = .98; Repeated Stimulus, F(1, 23) = 1.38, 

p = .25). Thus, congruency effects are again evaluated collapsed across switch 

and nonswitch trials.  

In the mixed runs, the Condition x Congruency interaction comparing all 

three conditions (Spatial, Repeated Stimulus, Novel Stimulus) was significant, 

F(1.20, 27.58) = 20.72, p < .001 (Figure 5.3). Of particular interest to this 

experiment, congruency effects were larger for the Repeated Stimulus condition 

than for the Novel Stimulus condition, F(1, 23) = 13.45, p < .005, with 21 out of 

24 participants showing larger congruency effects in the Repeated Stimulus 

condition. This result supports the idea that task-switching congruency effects in 

reaction time are related to repeated assignment of a specific stimulus to a 

response category. Unlike the results in Experiment 3, there was a significant 
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congruency effect in reaction time in the Novel Stimulus condition, F(1,23) = 

8.11, p < .01. The congruency effect was larger for the Repeated Stimulus 

condition, F(1,23) = 40.10, p < .001, and the Spatial condition, F(1,23) = 64.99, p 

< .001. As I will describe below (see also Figure 5.4), the small congruency 

effects found in the Novel Stimulus condition were likely due to previous 

exposure to the Repeated Stimulus condition. 

Congruency effects were not reliably correlated between the Spatial 

condition and the Repeated Stimulus conditions, r(22) = -.04, p = .85 but were 

correlated between the Novel Stimulus and Spatial conditions, r(22) = .49, p < 

.05. Congruency effects in the Novel Stimulus and Repeated Stimulus conditions 

were significantly correlated, r(22) = .41, p < .05. This correlation between the 

Novel Stimulus and Repeated Stimulus conditions suggests that the re-use of the 

same tasks and types of stimuli across conditions may allow for correlations 

because the strength of the connection between a certain stimulus attribute and 

a category is consistent across conditions for each participant.  

 

 
Figure 5.3. Congruency effects are smaller when stimuli are not repeated. 
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These results suggest that congruency effects in reaction time occur at the 

level of assigning stimuli to a semantic category. When a stimulus appears, it can 

be classified based on either of two attributes. In the Novel Stimulus condition, 

the stimulus can be assigned and a response can subsequently be executed 

without interference due to previous assignment of that stimulus to a different 

category. In the Repeated Stimulus condition, the category appropriate for the 

currently-irrelevant task is activated by the stimulus if the stimulus has previously 

been categorized according to the currently-irrelevant task in a mixed-task 

context. 

Though the significant Condition x Congruency interaction reported here 

supports a role for assignment of a specific stimulus to a category, the strength of 

that inference is limited by the presence of a significant congruency effect in the 

Novel Stimulus condition. This effect was not observed in the previous 

experiment that used the Novel Stimulus condition, raising the possibility that 

exposure to the Repeated Stimulus condition affected processing in the Novel 

Stimulus condition. This appears to be the case (Figure 5.4). The Condition 

(novel, repeated) x Congruency (congruent, incongruent) x Order (repeated first, 

novel first) interaction was not significant, F(1,22) = 1.20, p = .29. However, an 

examination of congruent versus incongruent trials in the Novel Stimulus 

condition for participants who completed the Novel Stimulus condition before the 

Repeated Stimulus condition showed no effect of congruency, F(1,11) = .00, p = 

1.00, with only 7 out of 12 participants showing a positive congruency effect. The 

effect of congruency in the Novel Stimulus condition was significant for 

participants who completed the Repeated Stimulus condition first, F(1,11) = 

44.13, p < .001, with all 12 participants showing a positive congruency effect. The 

effect of congruency in the Repeated Stimulus condition was significant 

regardless of whether participants had previously completed the Novel Stimulus 

condition, F(1,11) = 14.02, p < .005 with 10 out of 12 participants showing a 

positive congruency effect, or not, F(1,11) = 28.88, p < .001 with 11 of 12 

participants showing a positive congruency effect. Means separated by the order 

of presentation of each condition are shown in Tables 5.2 and 5.3. 
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Figure 5.4. The difference in congruency effects between Novel and 
Repeated Stimulus conditions is larger when examined using a between 
subjects design. When only the first condition completed by each 
participant is considered, participants who completed the Novel Stimulus 
condition first showed no congruency effect in this condition. Participants 
who completed the Repeated Stimulus condition first showed large 
congruency effects. 
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Congruent Incongruent 

  

Pure Nonswitch Switch Pure Nonswitch Switch 

Novel 
Stimulus 

Origin 830 882 1357 821 904 1319 

 (124) (197) (256) (114) (169) (242) 

Size 791 1010 1391 805 987 1431 

 (81) (146) (244) (96) (149) (200) 

Repeated 
Stimulus 

Origin 643 774 1131 641 956 1275 

 (164) (171) (291) (160) (235) (174) 

Size 596 746 1053 567 895 1262 

 (61) (125) (269) (59) (170) (173) 

Spatial Meaning 476 622 776 485 643 840 

 
(58) (100) (145) (47) (120) (157) 

Position 310 527 741 308 550 848 

 
(36) (77) (142) (42) (85) (147) 

Table 5.2. Reaction time means and standard deviations for participants 
who completed the Novel Stimulus condition first. Times are in 
milliseconds. 
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Congruent Incongruent 

  

Pure Nonswitch Switch Pure Nonswitch Switch 

Novel 
Stimulus 

Origin 793 860 1277 842 923 1350 

 (109) (57) (162) (167) (114) (164) 

Size 850 963 1331 888 1031 1382 

 (141) (128) (171) (102) (109) (185) 

Repeated 
Stimulus 

Origin 653 857 1182 627 1022 1381 

 (104) (129) (281) (91) (187) (238) 

Size 638 848 1100 618 986 1318 

 (111) (150) (207) (87) (149) (254) 

Spatial Meaning 478 623 758 502 684 812 

 
(48) (133) (178) (57) (136) (136) 

Position 339 545 729 338 609 890 

 
(50) (103) (134) (58) (130) (126) 

Table 5.3. Reaction time means and standard deviations for participants 
who completed the Repeated Stimulus condition first. Times are in 
milliseconds. 
 

Taken together with the previous experiments, these data suggest that 

task-switching congruency effects in reaction time appear only after repeated 

assignment of a particular stimulus to a competing category. When the Novel 

Stimulus condition was presented first, participants showed no task-switching 

congruency effects in reaction time in this condition. However, in the Repeated 

Stimulus condition, participants consistently showed positive congruency effects 

regardless of when this condition was presented. When a stimulus is presented 

in the Repeated Stimulus condition, repeated mapping of a single stimulus to 

multiple categories can lead to automatic activation of those categories and 

subsequent competition at the level of the category and the response. 

The carryover of congruency effects from the Repeated Stimulus condition 

to subsequently create a positive congruency effect in the Novel Stimulus 
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condition was unexpected. Both the Novel Stimulus condition and the Repeated 

Stimulus condition used the same tasks, categories, and responses, but stimuli 

used in the Repeated Stimulus condition did not appear in the pure or mixed-task 

runs of the Novel Stimulus condition. Thus, even if congruency effects occur in 

response to the repeated assignment of a particular stimulus to a category, the 

interference represented by these congruency effects is not entirely stimulus-

specific. One possibility for this finding may be that repeated assignment of a 

single stimulus to a category leads to automatic activation of that category. In the 

Repeated Stimulus condition, each stimulus is assigned repeatedly to both 

possible categories. After a few trials of practice, these categories are both 

automatically activated by the presence of the stimulus, leading to competition 

when participants attempt to make a response. The activation of these categories 

seems to occur automatically, not only in response to presentation of a specific 

stimulus that has been categorized before, but in response to any stimulus that 

affords categorization according to the potentially-relevant tasks. 

 

Congruency effects increase after practice for Repeated Stimulus 
condition. 

In Experiment 2, I observed a nonsignificant increase in Nonverbal Control 

congruency effects from initial practice to the first two mixed-task runs when a 

small set of stimuli were repeated many times over the course of the experiment. 

In Experiment 3, I observed no such increase in the Verbal Control condition 

when stimuli were not repeated. The present experiment allowed for a direct 

comparison of the effect of stimulus repetition. If the increase in congruency 

effects between initial practice and the early mixed runs in the Nonverbal Control 

condition was due to repeated assignment of a stimulus to a category, we would 

expect that the same increase would exist in the Repeated Stimulus condition, 

but not in the Novel Stimulus condition. 

In the Repeated Stimulus condition, the size of the congruency effect was 

significantly larger in the first two mixed runs than in the initial practice, F(1,23) = 

5.22, p < .05, (Figure 5.5) with 19 out of 24 participants showing larger 
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congruency effects in the mixed runs. In the Novel Stimulus condition, the size of 

the congruency effect did not increase (F(1,23) = .01, p = .94; Figure 5.6). The 

pattern of increasing congruency effects from initial practice to the first two mixed 

runs was present in the Repeated Stimulus condition regardless of the order of 

presentation of the conditions (Novel first: -116 ms in initial practice vs. 161 ms in 

the first two mixed runs; Repeated first: 53 ms in initial practice vs. 156 ms in the 

first two mixed runs). The increase in congruency effects only in the Repeated 

Stimulus condition supports the idea that congruency effects appear after very 

little experience assigning a specific stimulus to a category in the mixed-task 

context. 

 

 
Figure 5.5. Congruency effects in the Repeated Stimulus condition increase 
over time. Early practice trials are the first 16 trials, in which stimuli are 
assigned to categories in the mixed-task context and are self-paced with no 
time limit. Late practice trials are the first set of 16 timed practice trials. 
First third trials are from the first two mixed-task runs. Last third trials are 
from the last two mixed-task runs. 
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Figure 5.6. Congruency effects in the Novel Stimulus condition do not 
increase over time. Early practice trials are the first 16 trials, in which 
stimuli are assigned to categories in the mixed-task context and are self-
paced with no time limit. Late practice trials are the first set of 16 timed 
practice trials. First third trials are from the first two mixed-task runs. Last 
third trials are from the last two mixed-task runs. 
 
Asymmetry in switch costs and congruency effects. 

As in previous experiments, there was a significant task-based asymmetry 

in switch costs for the Spatial condition, F(1, 23) = 20.45, p < .001, because 

switch costs were larger for switching to the dominant position task. There was 

no significant Switch x Task interaction for either the Repeated Stimulus, F(1, 23) 

= .62, p = .44, or the Novel Stimulus condition, F(1, 23) = 2.45, p = .13. 

In Experiment 3, I showed that the Switch x Congruency interaction 

differed by task in the Spatial condition but not in the Novel Stimulus condition 

used here. In the present experiment, I replicated those results (Figure 5.7). The 

Congruency x Switch x Task interaction was significant for the Spatial condition, 

F(1, 23) = 5.76, p < .05. The difference between congruency effects on 

nonswitch and switch trials was larger for the dominant position task. The Switch 

x Congruency effect was significant for the position task, F(1, 23) = 20.62, p < 

.001, but not for the meaning task, F(1, 23) = .57, p = .46. The Congruency x 
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Switch x Task interaction was not significant for the Novel Stimulus condition, 

F(1, 23) = .63, p = .44. The Congruency x Switch interaction was not significant 

for either task (origin: F(1, 23) = .46, p = .51, size: F(1, 23) = .25, p = .62). The 

Congruency x Switch x Task interaction was also not significant for the Repeated 

Stimulus condition, F(1, 23) = 1.72, p = .20, as the Congruency x Switch 

interaction did not reach significance for either task (origin: F(1, 23) = .00, p = 

.97, size: F(1, 23) = 3.76, p = .07). This pattern across conditions is consistent for 

both participants who completed the Novel Stimulus condition first (Table 5.2) 

and those who completed the Repeated Stimulus condition first (Table 5.3). 

 

 
Figure 5.7. The switch difference in congruency effects is larger for the 
dominant task only in the Stroop-like condition. 
  

Discussion 
Previous experiments in this dissertation suggested that task-switching 

congruency effects are larger in the presence of Stroop-like interference. The 

present experiment showed that large congruency effects can also be generated 

by strengthening stimulus–to-category links for a small set of stimuli. In the 

present experiment, congruency effects were even numerically larger for the 

Repeated Stimulus condition than for the Spatial condition, which involved 
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Stroop-like interference. This effect is counter-intuitive since one rule in the 

Spatial condition is overlearned before beginning the experiment. Stronger 

congruency effects in the Repeated Stimulus condition might occur because in 

this condition, the stimulus-to-category links are strengthened according to both 

tasks, instead of according to only one task as characterizes the Stroop effect. 

This would seem reasonable as the congruency effect would potentially occur 

only for trials corresponding to one task in the Stroop-like condition. However, 

there are only four potential stimuli in the Spatial condition, just as in the 

Repeated Stimulus condition. Any within-session increases in congruency in the 

Repeated Stimulus condition due to recent activation or recent practice might be 

expected to be the same for the Spatial condition. 

I propose instead that salience of the stimulus to be categorized may be 

the critical difference. In the Repeated Stimulus condition, the individually 

presented words are salient, concrete, and easy to remember. It is likely that 

participants attempt to intentionally create explicit category mappings for each 

stimulus according to each task (e.g., if “scissors” appears, it is a “small” item for 

the size task and a “manmade” item for the origin task). Though the Spatial 

condition has the same number of stimuli, representations of all relevant 

attributes of a single stimulus requires integration of the spatial location and the 

word meaning (e.g., “Left” on the right side of the screen.) It is likely that 

participants do not try to make explicit category mappings for each stimulus here. 

Instead, participants likely think of each stimulus dimension separately (as the 

word “left” or “right” for the meaning task or as a something on the left or right 

side for the position task). An argument could be made that participants are 

simply making explicit stimulus-to-response mappings in the Repeated Stimulus 

condition. However, direct stimulus-to-response mappings as a source of the 

congruency effect would not fit with previous work showing that direct stimulus to 

response mappings in a Simon task are additive with task-switching congruency 

effects and findings that congruency effects do not appear even after training of 

direct stimulus-response mappings (Meiran et al, 2005; Meiran & Kessler, 2008). 
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While congruency effects in the Repeated Stimulus condition were large 

and reliable in the mixed-task runs, they were much smaller in the Novel 

Stimulus condition and negligible if the Novel Stimulus condition was not 

preceded by the Repeated Stimulus condition. The absence of a congruency 

effect in the Novel Stimulus condition argues that congruency effects exist only 

after repeated experience assigning a stimulus to a category. However, the 

presence of a congruency effect in this condition after exposure to the Repeated 

Stimulus condition suggests that the congruency effect that is built up with 

practice in the Repeated Stimulus condition is carried over to the Novel Stimulus 

condition. Whatever competition is generated in the Repeated Stimulus condition 

to create a congruency effect must be flexible to exert its influence in a manner 

that is not entirely stimulus-specific. I have suggested that repeated assignment 

of a single stimulus to a category leads to activation of that category 

automatically when a stimulus is presented. Competition occurs between 

categories and subsequently between responses. The activation of these 

categories seems to occur automatically in response to presentation of a specific 

stimulus that has been categorized before and for which a participant has an 

explicitly-learned categorization. However, these categories are also activated to 

some extent by any stimulus that affords categorization according to the 

potentially-relevant tasks. 

The present results also support the suggestion of previous experiments 

that the congruency effect occurs after limited practice assigning a given stimulus 

to a category. The congruency effect increased from practice to the beginning of 

the mixed-task runs in the Repeated Stimulus condition. Such an increase did 

not occur in the Novel Stimulus condition, in which stimuli were not repeated. 

This is consistent with previous work showing that congruency effects are larger 

for stimuli that are frequently repeated than for stimuli that are infrequently 

repeated (Kiesel et al., 2007). Further they demonstrate that the emergence of 

congruency effects after practice does not rely on sleep-based consolidation of 

abstract response codes in long-term memory (c.f., Meiran & Kessler, 2008). 
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Chapter VI 
 

Discussion 
 

Stroop-like and task-switching congruency effects are related 
The experiments presented in this dissertation demonstrate that the 

presence of Stroop-like interference increases the magnitude of task-switching 

congruency effects. This fact, which was replicated across stimulus materials in 

different experiments, argues against previous arguments made by Meiran and 

Kessler (2008) that Stroop-like congruency effects are fundamentally different 

from task-switching congruency effects. However, it is consistent with previous 

neuroimaging studies. Task-switching congruency effects on brain activation are 

often small and unreliable unless they involve Stroop-like interference. 

Furthermore, task-switching congruency differences in brain activation overlap 

with those in Stroop paradigms, with larger activation in anterior cingulate on 

incongruent trials (Liston et al., 2006; MacDonald et al., 2000). Meiran and 

Kessler’s argument was based on previous work showing that task-switching 

congruency effects and Simon effects were additive and the assumption that 

Simon effects and Stroop congruency effects were comparable because both 

involve stimulus-response associations that exist before entering the laboratory. 

Though Simon and Stroop effects both involve some pre-existing tendency, it is 

likely that they are not equivalent for the purposes of comparison to task-

switching congruency effects. 

Kornblum (1992, 1994) also argued that Simon effects are fundamentally 

different from Stroop effects in terms of dimensional overlap. In particular, Simon 

effects occur only due to direct stimulus-response conflict (the irrelevant stimulus 

dimension overlaps with the response dimension but the relevant stimulus 
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dimension does not) while Stroop effects additionally involve conflict arising from 

the fact that the stimulus has multiple attributes, each of which affords a 

response according to the same categorical separation (both the irrelevant 

stimulus dimension and the relevant stimulus dimension overlap with the 

response dimension). 

In terms of the presented model of task-switching congruency effects, one 

could say that Stroop-like congruency effects, like task-switching congruency 

effects, involve a mediated pathway between stimulus and response in which 

stimuli are categorized according to their attributes before being linked to 

response. Simon effects do not rely on this category mediation between stimuli 

and responses. Neuroimaging results support this separation as greater 

activation in inferior parietal cortex, a region involved in biasing processing in 

favor of the task-relevant attribute, was found for incongruent relative to 

congruent trials for a spatial Stroop but not for a comparable Simon task (Liu et 

al., 2004). This distinction suggests that Simon effects should not interact with 

task-switching congruency effects but that spatial Stroop effects should interact 

with task-switching congruency effects. Indeed, Meiran and colleagues found that 

task-switching congruency effects were additive with Simon effects and I have 

presented here evidence that task-switching congruency effects interact with 

Stroop-like effects. 

The fact that spatial Stroop effects and Simon effects have been 

previously distinguished also supports the idea that the interactions between 

spatial Stroop and task-switching congruency effects demonstrated in the 

experiments here do not contradict the finding of additivity between the task-

switching congruency effect and the Simon effect. We can be especially certain 

that the interaction between the task-switching congruency effects and Stroop 

effects in the experiments in this dissertation are not due to an interaction 

between task-switching congruency effects and some Simon component of the 

Spatial condition, because the interaction occurs when comparing the Control 

condition in Experiment 1 to the Numerical condition in Experiment 1. 

Congruency effects were larger in the Numerical condition than in the Control 
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condition even though there was no Simon-like (or even spatial) component to 

the Numerical condition and the effects in the Control condition were not 

exaggerated by response slowing. 

Furthermore, we can assume that the interaction between task-switching 

congruency effects and Stroop-like congruency effects occur somewhere along a 

category-mediated pathway. In addition to the absence of interaction between 

Simon and task-switching congruency effects, Meiran and Kessler (2008) 

demonstrated that task-switching congruency effects did not develop even after 

several days of practice in situations in which stimuli were mapped directly to 

responses without an intermediate category, suggesting that task-switching 

congruency effects necessarily involve this categorical intermediate. Similarly, 

the Stroop effect appears to involve assignment of stimulus attributes to a 

category rather than simply a direct mapping between stimulus and response. In 

addition to the dimensional overlap account described above, there is evidence 

that smaller Stroop-like effects can occur when there is conflict at the level of the 

category even if both categories lead to the same response (De Houwer et al, 

2003; Van Veen & Carter, 2005). Furthermore, Stroop-like effects exist to some 

extent even when direct stimulus-response associations would be assumed to be 

novel (e.g., using the left index finger to indicate “Blue” in a traditional color-word 

Stroop; Nielsen, 1974). 

 

Congruency effects occur when stimulus-to-category mappings 
are repeated 

Given that task-switching congruency effects and Stroop congruency 

effects both involve a pathway mediated by categorization of the stimulus 

according to one of a set of possible attributes and that these effects interact, I 

examined which stage along this pathway might be the originating point for the 

task-switching congruency effect. Based on Experiments 1 and 2, in which all 

conditions involved category-to-response mappings that might be considered 

pre-existing (i.e., left hand response for “1” and “left”), it seemed that the 

difference between the Stroop conditions and the Control conditions may be 
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largely related to strength of the association between stimulus and category. In 

the Stroop-like conditions, these stimulus-to-category mappings were pre-

existing, while in the Control conditions, they were likely novel at the beginning of 

the experiment. To look at this question more specifically, in Experiment 3 and 4, 

I examined a condition in which each stimulus was assigned to a category only 

once in the course of the experiment. In this condition, participants showed 

drastically reduced task-switching congruency effects. In fact, participants 

showed no task-switching congruency effect in this condition in Experiment 4 if 

they had not previously encountered the tasks in this condition in the context of 

repeated stimulus-to-category assignment. 

Based on the absence of a congruency effect when stimulus-category 

associations were not repeated, it seems likely that repeated assignment of a 

particular stimulus to a category drives the task-switching congruency effect by 

creating competition between categories. Due to the fact that congruency effects 

are observed even in the case of bivalent responses (in which both congruent 

and incongruent stimuli result in competition between semantic categories, but 

only incongruent stimuli result in additional competition at the level of the 

response), it is clear that most measured congruency effects reflect competition 

either at the level of response alone (in the bivalent case) or at the level of the 

category and the response (in the univalent case).  

Meiran and Kessler (2008) previously argued that the congruency effect 

may occur due to stimulus-category associations; however, Meiran and Kessler 

argued that these associations exist in long-term memory and that congruency 

effects are not observed unless these associations have been consolidated into 

long-term memory after a night’s sleep. This claim was based on observations 

that congruency effects did not appear until the second session in a paradigm in 

which they had participants repeat stimulus-category assignments. My results 

contradict the results of Meiran and Kessler on this point as, particularly in 

Experiments 2 and 4, I have demonstrated significant congruency effects in 

conditions in which stimulus-to-category associations were novel at the beginning 

of the experiment. I propose that repeated assignment of a stimulus to a category 
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creates stimulus-category associations. These associations activate categories 

with subsequent presentation of these stimuli, leading to competition between 

categories and responses. 

It would be tempting to conclude that the reactivation of categories is 

stimulus-specific, and certainly the strength of reactivation may be related to the 

specific stimulus presented. However, the presence of a task-switching 

congruency effect in the Novel Stimulus condition when it followed the Repeated 

Stimulus condition argues that the stimulus-to-category associations developed 

during the Repeated Stimulus condition allow categories to be reactivated by any 

stimulus that affords categorization according to the tasks used in the Repeated 

Stimulus condition. I proposed that salience of the stimulus to be categorized 

may be the critical difference. In the Repeated Stimulus condition, the individually 

presented words are salient, concrete, easy to picture, and easy to remember. It 

is likely that participants attempt to intentionally create explicit category mappings 

for each stimulus according to each task (e.g., if “scissors” appears, it is a “small” 

item for the size task and a “manmade” item for the origin task). Though the 

Spatial condition has the same number of stimuli, representations of all relevant 

attributes of a single stimulus requires integration of the spatial location and the 

word meaning (e.g., “Left” on the right side of the screen.) It is likely that 

participants do not try to make explicit category mappings for each stimulus here. 

Instead, participants likely think of each stimulus dimension separately (as the 

word “left” or “right” for the meaning task or as a something on the left or right 

side for the position task). 

The description applied here to the Spatial condition could also apply to 

the Control condition in Experiment 1. Participants are less likely to make explicit 

mappings for “circle that is larger on the left side of the screen” than they are for 

“scissors.” The Nonverbal Control condition provides an interesting test of this 

proposal. In the Nonverbal Control condition in Experiment 2, the same four 

stimuli are repeatedly categorized resulting in a significant task-switching 

congruency effect but one that is smaller than that observed in the Repeated 

Stimulus condition in Experiment 4. The shapes used in the Nonverbal condition 
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are unique and integrated as a stimulus. It is possible that some participants 

make explicit stimulus-to-category links for these four shapes, but that the 

tendency to do so is not as great as it is in the Repeated Stimulus condition, in 

which the fact that the four stimuli are unique is much more obvious. 

 

Congruency effects appear after only a few trials of experience 
categorizing a stimulus 

The fact that repeated stimulus-to-category assignment seems to be a 

crucial factor in development of task-switching congruency effects and the fact 

that task-switching congruency effects are exaggerated under conditions of 

overlearning of one task led to questions about the role of within-session 

experience assigning a stimulus to a category. Contrary to the results reported by 

Meiran and Kessler (2008), but consistent with the results of Kiesel and 

colleagues (2007), I found larger congruency effects associated with within-

session practice associating a stimulus with a category. However, congruency 

effects tended not to appear gradually over the course of the mixed runs. 

Instead, congruency effects appeared at almost full strength after just a few trials 

of experience categorizing a small set of stimuli. This was true both for the 

Nonverbal Control condition and for the Repeated Stimulus condition (but was 

notably not true for the Verbal Control and Novel Stimulus conditions, in which 

individual stimuli were not repeatedly categorized). 

One possible explanation for this finding is that congruency effects result 

from associative learning. That is, the association between a stimulus and 

category is learned over practice and leads to automatic reactivation of that 

category whenever that stimulus (or to a lesser extent, another stimulus with 

similar properties) appears on a later trial. This effect appears to be long-lasting 

as it exists even after many trials with non-repeating stimuli when the Novel 

Stimulus condition follows the Repeated Stimulus condition. The long duration of 

these effects follows previous work showing that switch costs are greater when 

one attribute of a stimulus must be responded to when the other attribute of that 

same stimulus was previously responded to, even if that response occurred 
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several minutes before (Waszak et al., 2003). It also fits with earlier work on the 

congruency effect which showed that a patient continued to exhibit the 

congruency effect even in the absence of switching behavior for hundreds of 

trials after only a few dozen trials of responding according to both tasks (Yehene 

et al., 2005). 

Meiran and Kessler argued that they failed to find task-switching 

congruency effects in the first session in a condition with novel stimulus-to-

category associations because these associations must exist in long-term 

memory and require overnight consolidation. Though I do not object to the 

argument that stimulus-category associations in long term memory lead 

fundamentally to this effect, the data presented here showing within-session 

development of the task-switching congruency effect in response to repeated 

stimulus categorization argue against the need for overnight consolidation. One 

reason that Meiran and Kessler did not find reliable within-session increases in 

task-switching congruency effects may be related to the point about explicit 

stimulus-to-category links described above. Specifically, the stimuli that Meiran 

and Kessler used may not have been as easy to identify as unique. This may 

have made creating explicit stimulus-to-category associations more difficult. A 

stronger possibility is that they failed to find congruency effects in a single 

session because they presented 80% incongruent trials. Presenting a greater 

proportion of incongruent trials yields smaller congruency effects in Stroop-like 

conditions (e.g., Kane and Engle, 2003) and likely would have the same effect 

here given the similarity between Stroop and task-switching congruency effects. 

 

Congruency effects reflect strength of stimulus-to-category 
associations which may differ across conditions within an 
individual 
 In both the Stroop and task-switching literature, previous authors have 

failed to find reliable correlations between congruency effects in different 

paradigms (Yehene & Meiran, 2007; Shilling et al., 2002; Ward et al., 2001). 

While this lack of correlation could indicate that there is no interference resolution 
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mechanism common to multiple tasks, the results in the present series of 

experiments suggest an alternative explanation. Specifically, as shown by the 

larger congruency effects in conditions with overlearned stimulus-to-category 

associations, the magnitude of congruency effects is determined by the degree to 

which a particular category is elicited by a presented stimulus attribute. Strength 

of the association between a stimulus and a category is related to experience 

assigning that type of stimulus (and to a certain extent, that exact stimulus) to a 

category. Since these effects are specific to the types of stimuli and categories 

presented in a specific paradigm, it is unsurprising that differences in the degree 

to which a stimulus activates a category in one paradigm versus another within 

an individual wash out commonality in the strength of the interference resolution 

mechanism. Correlations between conditions in the experiments presented here 

provide additional support for this argument. Correlations in reaction time 

congruency effects across conditions tended to be small whether comparing 

Stroop-like conditions to each other or to Control conditions. In these cases, the 

experience that a participant had assigning a certain type of stimulus to a 

category likely differed substantially across conditions. However, the correlation 

between reaction time congruency effects in the Novel Stimulus and Repeated 

Stimulus conditions, which shared stimulus type and tasks, was significant. 

Similarly, these results would predict that congruency effects in a color-word 

Stroop with the stimuli “Red,” “Brown,” and “Green” would be significantly 

correlated with those effects in a color-word Stroop with the stimuli “Blue,” 

“Yellow,” and “Pink,” as both paradigms would exploit similar levels of 

overlearning of stimulus-to-category associations.  
 

Do congruency effects in reaction time and accuracy index 
different processes? 

Meiran and colleagues have proposed that congruency effects can be 

separated into two distinct components (Meiran, 2000a; Meiran and Kessler, 

2008). The first component has to do with accuracy: increases in error rate 

associated with incongruent trials vs. congruent trials are thought to reflect 
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incomplete selection of an appropriate task. The second component, an increase 

in reaction time on incongruent compared to congruent trials, is thought to reflect 

resolution of interference from activated response category codes in long term 

memory. By this account, when a stimulus is presented, it triggers the abstract 

categories corresponding to both tasks. On congruent trials, the response is the 

same according to the both tasks, facilitating performance. On incongruent trials, 

the two tasks require different responses. Resolution of this competition requires 

additional time and may reflect suppression of the currently-irrelevant task set 

(Arbuthnott, 2005). 

Meiran and Kessler’s account of congruency effects on accuracy and 

reaction time in task-switching procedures bears a strong similarity to theoretical 

accounts of congruency effects in Stroop paradigms. In particular, Kane and 

Engle (2003) presented a similar explanation for the Stroop effect, dissociating 

congruency effects in error rate from those in reaction time. They argue that 

accuracy differences are the result of failure to maintain the appropriate goal 

whereas reaction time differences are the result of increased time needed to 

suppress the automatic response even when the correct goal is firmly in mind. 

The dual-mechanism view of Stroop described by Kane and Engle has obvious 

parallels with the Meiran and Kessler account of congruency effects in task-

switching. Given the results presented here showing similarity between Stroop-

like and task-switching congruency effects in reaction time, it seems relevant to 

consider whether congruency effects in accuracy and reaction time are 

independent under these conditions. 

Some aspects of the data in this dissertation support this proposed 

distinction between congruency effects in accuracy and those in reaction time. 

Specifically, congruency effects in accuracy were present in all conditions 

regardless of the presence of Stroop-like interference or repetition of stimulus-to-

category assignment. In all conditions, there are two potentially-relevant tasks. 

Selecting the wrong goal would lead to an incorrect key press only on 

incongruent trials. According to the model presented here, this could be 

considered a failure in the all-or-none goal setting process leading to activation of 
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the wrong set of rules. Congruency effects in RT, however, were not found in a 

condition in which stimulus-to-category mappings were novel and not repeated 

over the course of the mixed runs. Congruency effects in reaction time occur 

when stimulus-to-category mappings have been repeated leading to automatic 

associative retrieval of categories when a stimulus is presented that affords 

categorization. Simultaneous activation of multiple categories results in 

competition. Resolution of this competition takes time, leading to a congruency 

effect in reaction time. The strength of competition is related to how strongly 

potential categories are activated by the presentation of a particular stimulus. 

One category is preferentially strongly activated in the case of the Stroop-like 

conditions while both categories may potentially be strongly activated in the case 

of repeated stimulus-to-category associations within the session, especially for 

conditions in which the stimulus-to-category associations can be formed explicitly 

or verbally as in the Repeated Stimulus condition in Experiment 4. Further 

argument for the distinction between accuracy and reaction time congruency 

effects comes from the fact that an examination of correlations between 

congruency effects in accuracy and those in reaction time showed no reliably 

negative relationships, arguing against a speed-accuracy tradeoff, and 

relationships were sometimes very close to zero (in the Nonverbal Control, 

Verbal Control, and Novel Stimulus conditions). See Appendix A for all 

correlations between RT and accuracy congruency effects. 

A few of the data presented here, however, are not entirely consistent with 

a separation between congruency effects in accuracy and reaction time. 

Specifically, even though accuracy effects were present in all conditions, 

congruency effects in accuracy tended to be larger in Stroop-like conditions just 

like congruency effects in reaction time. Relationships between accuracy and 

reaction time congruency effects within a condition tended to be positive, but 

were only occasionally statistically reliable and often heavily influenced by 

outliers. Though the Nonverbal Control, Verbal Control, and Novel Stimulus 

conditions show correlations very close to zero, other conditions tended to show r 

values between .2 and .5, with several conditions showing significant positive 
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correlations (Control and Numerical in Experiment 1, Spatial in Experiments 3 

and 4). 

These relationships make it difficult to make an argument that congruency 

effects in reaction time and those in accuracy are completely independent. An 

alternative explanation may be that some incorrect responses represent a failure 

to hold the current goal in mind, leading to differences between congruent and 

incongruent trials across all conditions. However, other incorrect responses may 

represent the same response competition that leads to the congruency effect in 

reaction time. This may occur through a mechanism based on that proposed by 

Ratcliff and more recently used to describe response selection in Stroop tasks 

(Ratcliff, 1978; Cohen, Dunbar, and McClelland, 1990). 

In such a model, a response is executed when activation at one of the 

response units exceeds some set threshold. Evidence in support of one 

response or another is accumulated over the course of each trial according to a 

random walk model. Reaction time is related to the number of cycles required to 

activate one of the response units to the threshold level. In the case of congruent 

trials, activation at one response unit reaches threshold quickly because all 

evidence accumulates in favor of one correct response leading to accurate 

responses with quick reaction times. In the case of incongruent trials, however, 

activation accumulates for both response units (because there is activation of 

both categories due to past experience). This leads to long reaction time on 

incongruent trials as it takes more cycles for a single response unit to reach the 

threshold necessary to execute a response. However, due to the fact that 

evidence is accumulating in favor of both responses and there is noise in the 

accumulation of evidence, sometimes the incorrect response unit reaches 

threshold first, leading to an incorrect response even when the correct task is 

held in mind. Incorrect responses would be particularly likely in Stroop-like 

conditions in which there may be substantial evidence for the incorrect response 

unit due to overlearning. An explanation such as this one, in which some aspect 

of accuracy is related to successful goal setting, but another aspect is related to 
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competition at a later stage would explain why congruency effects in accuracy 

and reaction time exhibit small and often unreliable positive correlations.  

 

Application to task-switching, Stroop, and broader contexts 
 Though task-switching paradigms almost always include both congruent 

and incongruent stimuli, investigations of cognitive control processes are usually 

restricted to examinations of the switch cost (see Monsell, 2003). The present 

series of experiments suggests that evaluating congruency effects as well as 

interactions between congruency effects and switch costs may inform our 

understanding of task switching and of cognitive control processes more broadly. 

These experiments demonstrated that task-switching congruency effects in 

reaction time are due to the time needed to resolve interference when the 

presented stimulus automatically activates a currently-irrelevant category, such 

that the response derived from that category is in conflict with the response 

derived from the currently-relevant category.  

These data fit nicely with theories of task-switching that posit that part of 

the residual switch cost is due to associative retrieval based on long-term priming 

(Allport & Wylie, 2000). Although the relevant task goal may be activated in 

response to a cue or other task instruction, a residual switch cost exists even 

when participants are given substantial time to prepare (e.g., Sohn et al., 2000). 

Presentation of the stimulus leads to activation of multiple mediated stimulus-

response pathways (Figure 1.2) for processing, leading to competition which 

must be resolved. In the case of the residual switch cost, the stimulus activates 

the category and response associated with the attribute that was relevant on the 

previous trial. This leads to longer reaction time on switch trials, for which 

interference must be resolved between the currently-relevant pathway and the 

one that is automatically activated as a function of being relevant on the last trial. 

In the case of the congruency effect, reaction time is longer on incongruent trials 

than congruent trials because of time needed to resolve competition between the 

two pathways that are be simultaneously active because the stimulus has 

previously been categorized according to both potentially-relevant tasks. In other 
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words, both the residual switch cost and the reaction time congruency effect 

likely arise from competition between the currently-relevant pathway and a 

previously-relevant pathway. How strongly a stimulus attribute activates a 

corresponding pathway depends both on how often that attribute has been 

relevant (leading to congruency effects) and how recently that attribute has been 

relevant (leading to switch costs). 

 The set of experiments presented here also provides support for 

descriptions of the Stroop effect that involve conflict at the level of encoding the 

stimulus according to one attribute rather than the other, rather than focusing 

only on competition at the response-output stage. This “stimulus-stimulus” 

conflict has been suggested as a critical component of the Stroop effect by 

several previous authors (e.g., Kornblum, 1992; De Houwer, 2003; Liu et al., 

2004, Van Veen & Carter, 2005). In the present experiments, Stroop-like 

congruency effects interacted with task-switching congruency effects, suggesting 

a similar process. These findings, along with Meiran and Kessler’s (2008) 

evidence that task-switching congruency effects can arise from practice when the 

condition allows for creation of abstract categories, but not when stimulus-

response associations are direct, suggest that Stroop-like congruency effects 

also involve conflict arising at the stage of encoding the stimulus according to 

one attribute (e.g., ink color) rather than the other (e.g., word meaning).  

 Beyond informing the task-switching and Stroop literatures, these 

experiments also provide a bridge between the two topics. While both task-

switching and Stroop are common paradigms for the study of cognitive control 

processes, there is little effort made to relate the two beyond a general concept 

of conflict resolution. The findings presented here demonstrate that task-

switching and Stroop may be fundamentally the same in that both paradigms 

allow for two simultaneously-active mediated pathways that connect stimuli to 

responses. In task-switching, both pathways are active due to task instructions, 

while in Stroop one pathway is instructed and the other is implicit based on the 

overlearned tendency to respond based on the dominant attribute. Resolution of 

competition between these pathways takes time, leading to the time costs 
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associated with incongruent and switch trials. In other words, the primary 

difference between task-switching and Stroop is the source of irrelevant-category 

activation, not the mechanism needed to resolve it.  

This deep similarity between task-switching and Stroop paradigms may 

inform future work, particularly on the topic of training interference resolution 

(e.g., Persson & Reuter-Lorenz, 2008). The task-switching congruency effect 

with repeated (but not Stroop-like) stimuli may be particularly well-suited as an 

outcome measure. Unlike the effects in many other paradigms, the task-

switching congruency effect with repeated stimuli appears to increase rather than 

decrease with practice. Thus, any decreases in the size of this effect between 

pre- and post-tests would likely be due to improvements in the efficacy of the 

interference resolution process and not to practice with the paradigm.  

 The experiments presented here may also tell us something about how we 

process information in the real world. Perhaps the most powerful finding in the 

present experiments is that stimulus-driven associations can build up over only a 

few trials (as in the Repeated Stimulus condition) and that these associations can 

have powerful effects on behavior even in the artificial laboratory environment. 

Moreover, once those associations are well-learned, they can generalize to 

similar stimuli which have never been presented before (as when the Novel 

Stimulus condition followed the Repeated Stimulus condition). In the real-world 

context, this may explain why saying “just this once” may lead to unintended, 

long-term behavioral consequences. For example, allowing your toddler to sleep 

in your bedroom after one nightmare may lead your toddler to categorize your 

bed as a place for sleeping and quickly lead to a pattern of him sleeping in your 

room even when it is not contextually appropriate (e.g., when he has not had a 

nightmare). Though these experiments add to the existing literature and apply to 

broader contexts, further experiments could clarify the mechanism underlying 

task-switching congruency effects. 
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Future Directions 
The experiments presented here provide evidence for the idea that task-

switching congruency effects and Stroop-like congruency effects arise from the 

same type of competition due to automatic activation of a category by the 

presentation of a stimulus. However, future experiments may address a few 

additional issues. In the current series of experiments, the cue informing 

participants of the currently-relevant task was embedded in the stimulus. Given 

the large amount of attention paid in the task-switching literature to the 

preparation interval (See Monsell, 2003 for a review), it would be useful for future 

experiments to separate the cue from the imperative stimulus in order to 

determine how congruency effects are related to the residual switch cost 

specifically. This would be particularly useful for addressing the question of 

whether accuracy and reaction time congruency effects index different 

processes. If congruency effects in accuracy are largely about failure to shift to 

the appropriate goal, one would expect that congruency effects in accuracy might 

be related to length of the preparation interval, while differential congruency 

effects in reaction time might be related to the residual switch cost.  

Another area that should be addressed in future experiments is the 

addition of a neutral trial type. Congruency effects in my experiments, as well as 

those in most existing task-switching literature are determined by directly 

comparing incongruent to congruent trials. This prevents any discussion of the 

benefit of congruency versus the cost of incongruency, though it is difficult to 

assess benefits and costs even with a neutral condition (Jonides & Mack, 1984). 

MacLeod has argued for inclusion of a neutral condition in Stroop comparisons, 

which may also be appropriate here (MacLeod, 1991).  

Based on the findings here regarding the appearance of the congruency 

effect after only a few trials, future work should also better equate conditions in 

the practice trials to those in the mixed-task runs for a cleaner comparison of 

when these effects occur and whether they require previous assignment of a 

particular stimulus to a competing category or whether assignment of any 

stimulus to a competing category is sufficient. Previous work by Kiesel and 
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colleagues (2007) suggested that congruency effects are larger when stimuli are 

frequently assigned to a competing category. However, this work did not address 

how quickly congruency effects can arise. 

 To relate more directly to real-world situations, future experiments should 

also consider how congruency effects are modified by the availability of more 

than two response options. To the best of my knowledge, no examination of 

response congruency effects in task switching has addressed this possibility. In 

many real-world situations, a stimulus (e.g., a computer) has more than two 

potential responses. It is not clear whether congruency effects might be smaller 

in cases with more available response options because competition from any one 

alternative would not be as strong or larger because there would be more 

alternatives competing for the final response. 
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Appendix A 
 

Correlations between accuracy and reaction time 
 

 Reaction time congruency effects are presented in the main text as they 

are more sensitive and more often studied than accuracy congruency effects. To 

ensure that reaction time effects were representative of overall performance, 

correlations were computed between accuracy and reaction time congruency 

effects in the mixed runs. There were no significant negative correlations, 

suggesting no speed-accuracy tradeoff in the effects of interest. 

 
Experiment 1 
Control RT & Accuracy congruency effects: r(46) = .37, p < .05 

Spatial RT & Accuracy congruency effects: r(46) = .27, p = .07 

Numerical RT & Accuracy congruency effects: r(46) = .33, p < .05 

  

Experiment 2 
Nonverbal Control RT & Accuracy congruency effects: r(22) = -.06, p = .79 

Nonverbal Spatial RT & Accuracy congruency effects: r(22) = .22, p = .31 

 

Experiment 3 
Verbal Control RT & Accuracy congruency effects: r(22) = -.17, p = .42 

Spatial RT & Accuracy congruency effects: r(22) = .44, p < .05 
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Experiment 4 
Novel Stimulus RT & Accuracy congruency effects: r(22) = -.09, p = .68 

Repeated Stimulus RT & Accuracy congruency effects: r(22) = .31, p = .15 

Spatial RT & Accuracy congruency effects: r(22) = .49, p < .05 
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Appendix B 
 

Raw Accuracy 
 

 Congruency effects in accuracy were not reliably negatively correlated 

with reaction time effects, suggesting no speed-accuracy tradeoff. Accuracy 

results for the primary comparisons in each chapter are presented here for 

comparison. 

 

Experiment 1 
Means and SDs for each condition (in percent correct) 
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Control Shape 95.9 98.7 99.6 98.6 94.4 87.4 

    (5.3) (3.0) (1.6) (3.2) (6.7) (12.5) 

  Size 99.3 99.6 99.3 99.5 96.8 94.9 

    (2.0) (1.6) (2.0) (1.8) (4.5) (5.8) 

Spatial Meaning 98.9 99.4 98.3 97.8 94.5 92.4 

    (2.5) (2.1) (3.9) (3.8) (6.2) (7.3) 

  Position 100.0 99.3 99.5 99.4 90.8 80.5 

    (0.0) (2.1) (2.2) (1.9) (10.8) (12.7) 

Numerical Count 99.3 99.0 99.1 92.5 85.4 83.0 

    (2.4) (2.6) (2.9) (6.5) (12.2) (13.6) 

  Identity 99.6 98.4 98.1 95.7 90.9 79.7 

    (1.5) (3.5) (4.3) (11.8) (8.2) (11.7) 
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Single-task results 
Control condition 

 Task: F(1,47) = 18.26, p < .001 

 Congruency: F(1,47) = 9.52, p < .005 

 Congruency x Task: F(1,47) = 8.16, p < .01 

Spatial condition 

 Task: F(1,47) = 14.91, p < .001 

 Congruency: F(1,47) = 6.36, p < .05 

 Congruency x Task: F(1,47) = . 60, p = .44 

Numerical condition 

Task: F(1,47) = 3.61, p = .06 

 Congruency: F(1,47) = 25.23, p < .001 

 Congruency x Task: F(1,47) = 2.28, p < .14 

 
Mixed-task results 
Condition x Congruency x Switch: F(2,94) = .74, p = .48 

Control Congruency x Switch: F(1,47) = 28.35, p < .001 

Spatial Congruency x Switch: F(1,47) = 22.81, p < .001 

Numerical Congruency x Switch: F(1,47) = 24.58, p < .001 

 
 Condition x Congruency: F(2,94) = 35.98, p < .001 

Control Congruency: F(1,47) = 62.67, p < .001 

Spatial Congruency: F(1,47) = 135.35, p < .001 

Numerical Congruency: F(1,47) = 161.43, p < .001 

 
Correlations between congruency effects 

 Control & Spatial: r(46) = .47, p < .005 

 Control & Numerical: r(46) = .57, p < .001 

 Spatial & Numerical: r(46) = .54, p < .001 
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Congruency effects in Control over time 
Means and SDs (in percent correct) 

  1st Half 2nd Half 

Congruent 98.9 99.6 

  (2.3) (1.4) 

Incongruent 93.0 93.5 

  (6.1) (6.0) 

Time x Congruency: F(1,47) = .02, p = .89 

 
Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Control Switch x Task: F(1,47) = 4.33, p < .05 

Spatial Switch x Task: F(1,47) = 7.99, p < .01 

Numerical Switch x Task: F(1,47) = 9.55, p < .005 

Asymmetry in Switch x Congruency interaction 

 Control Congruency x Switch x Task: F(1,47) = 9.16, p < .005 

 Spatial Congruency x Switch x Task: F(1,47) = 12.70, p < .005 

Numerical Congruency x Switch x Task: F(1,47) = 6.94, p < .05 

 
Experiment 2 
Means and SDs for each condition (in percent correct) 
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Nonverbal 
Control 

More 98.1 99.4 98.9 100.0 96.4 92.9 

  (3.1) (1.5) (2.0) (0.0) (3.3) (9.2) 

Taller 98.4 99.2 99.3 98.4 93.6 89.0 

(3.4) (1.7) (1.7) (3.5) (7.4) (9.2) 

Nonverbal 
Spatial 

Pointing 98.6 100.0 99.8 97.1 96.1 94.4 

 (2.7) (0.0) (0.9) (5.0) (4.5) (5.4) 

Position 99.2 99.5 98.9 99.7 93.4 83.4 

(2.2) (1.5) (1.9) (1.4) (6.4) (15.6) 
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Single-task results 
Nonverbal Control 

 Task: F(1,23) = 1.22, p = .28 

 Congruency: F(1,23) = 1.95, p = .18 

 Congruency x Task: F(1,23) = 2.86, p = .11 

Nonverbal Spatial 

 Task: F(1,23) = 8.32, p < .01 

 Congruency: F(1,23) = .50, p = .48 

 Congruency x Task: F(1,23) = 2.81, p = .11 

 
Mixed-task results 
Condition x Congruency x Switch: F(1,23) = .72, p = .40 

Nonverbal Control Congruency x Switch: F(1,23) = 5.89, p < .05 

Nonverbal Spatial Congruency x Switch: F(1,23) = 12.62, p < .005 

 
 Condition x Congruency: F(1,23) = 1.33, p = .26 

Nonverbal Control Congruency: F(1,23) = 40.97, p < .001 

Nonverbal Spatial condition Congruency: F(1,23) = 54.88, p < .001 

 
Nonverbal Spatial dominance & congruency correlation: r(22) = .00, p = .99 

 

Correlation between congruency effects 

 Nonverbal Control & Nonverbal Spatial: r(22) = .20, p = .36 
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Congruency effects in Nonverbal Control over time 
Means and SDs (in percent correct) 

  
Early 

Practice 
Late 

Practice 1st Third Last Third 
Congruent 99.5 99.5 99.7 98.5 

  (2.4) (2.4) (0.9) (2.1) 

Incongruent 93.0 94.8 92.6 93.4 

  (7.1) (9.6) (6.4) (5.5) 
 

Comparison of 1st third & last third of mixed runs 

Time x Congruency: F(1,23) = 1.85, p = .19 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = .13, p = .72 

 
Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Nonverbal Control Switch x Task: F(1,23) = .03, p = .87 

Nonverbal Spatial Switch x Task: F(1,23) = 4.96, p < .05 

 

Asymmetry in Switch x Congruency interaction 

 Nonverbal Control Congruency x Switch x Task: F(1,23) = .72, p = .41 

 Nonverbal Spatial Congruency x Switch x Task: F(1,23) = 4.91, p < .05 
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Experiment 3 
Means and SDs for each condition (in percent correct) 
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Verbal 
Control 

Origin 93.7 94.3 94.3 96.6% 93.0% 85.9% 

  (5.9) (5.5) 5.5% 5.7% 14.0% 13.0% 

Size 97.4 91.6 81.5% 89.6% 86.1% 75.2% 

  (3.9) (5.3) 8.8% 8.9% 12.0% 12.4% 

Spatial Meaning 98.1 99.4 97.7% 96.5% 94.1% 94.4% 

    (3.7) (1.5) 3.6% 6.0% 5.5% 7.1% 

  Position 99.4 99.1 97.4% 99.7% 95.4% 89.0% 

    (1.9) (1.8) 3.2% 1.3% 4.0% 8.6% 

 
Single-task results 
Verbal Control 

 Task: F(1,23) = 2.53, p = .13 

 Congruency: F(1,23) = 3.32, p = .08 

 Congruency x Task: F(1,23) = 14.79, p < .005 

Spatial  

 Task: F(1,23) = 7.21, p < .05 

 Congruency: F(1,23) = .84, p = .37 

 Congruency x Task: F(1,23) = 2.82, p = .11 

 
Mixed-task results 
Condition x Congruency x Switch: F(1,23) = .86, p = .36 

Verbal Control Congruency x Switch: F(1,23) = 3.24, p = .09 

Spatial Congruency x Switch: F(1,23) = 1.03, p = .32 

 
 Condition x Congruency: F(1,23) = .02, p = .90 

Verbal Control Congruency: F(1,23) = 9.45, p < .01 

Spatial Congruency: F(1,23) = 29.61, p < .001 
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Correlation between congruency effects 

 Verbal Control & Spatial: r(22) = -.03, p = .89 

  

Congruency effects in Verbal Control over time 
Means and SDs (in percent correct) 

  Early Practice Late Practice 1st Third Last Third 

Congruent 88.8 89.3 91.3 91.5 

  (12.2) (16.7) (7.9) (6.0) 

Incongruent 76.3 71.0 88.2 85.8 

  (17.6) (19.9) (8.4) (13.5) 

 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = 9.12, p < .01 

 
Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Verbal Control Switch x Task: F(1,23) = 10.38, p < .005 

Spatial Switch x Task: F(1,23) = 20.84, p < .001 

 

Asymmetry in Switch x Congruency interaction 

 Verbal Control Congruency x Switch x Task: F(1,23) = 3.69, p = .07 

 Spatial Congruency x Switch x Task: F(1,23) = 21.63, p < .001 
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Experiment 4 
Means and SDs for each condition (in percent correct)  
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Novel 
Stimulus 

Origin 93.0 94.9 94.4 94.9 95.7 86.4 

  (7.8) (4.4) (5.5) (5.8) (4.3) (11.6) 

Size 94.4 92.9 85.2 96.1 88.2 77.6 

  (5.7) (5.1) (7.5) (4.7) (11.0) (9.6) 

Repeated 
Stimulus 

Origin 95.7 98.1 97.9 95.9 91.1 82.8 

  (7.0) (2.9) (3.6) (5.7) (8.1) (11.4) 

Size 97.4 98.7 99.2 97.8 95.1 92.5 

  (5.6) (2.6) (2.4) (3.2) (5.6) (6.5) 

Spatial 
  

Meaning 98.3 99.6 98.1 96.7 95.1 96.6 

  (3.0) (1.2) (4.1) (4.5) (4.2) (4.9) 

Position 100.0 99.8 99.1 100.0 94.9 88.6 

 (0.0) (0.9) (1.8) (0.0) (6.0) (6.8) 

 
Novel first subjects - means and SDs for each condition (in % correct)  
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Novel 
Stimulus 

Origin 93.4 94.3 93.9 92.7 95.7 84.9 

(8.5) (5.4) (6.2) (6.8) (2.8) (12.0) 

Size 93.2 93.5 85.1 95.6 87.7 77.3 

(6.9) (5.6) (8.5) (5.8) (14.2) (10.3) 

Repeated 
Stimulus 

Origin  94.7 98.3 98.9 97.7 89.8 82.2 

(7.2) (2.5) (1.9) (5.4) (7.1) (12.0) 

Size 96.4 98.9 100.0 97.3 95.5 93.7 

(7.4) (1.9) (0.0) (3.3) (4.4) (5.8) 

Spatial  Meaning 97.7 99.6 97.1 95.0 94.5 95.0 

(3.4) (1.3) (5.0) (5.2) (4.3) (5.4) 

Position 100.0 99.6 99.2 100.0 96.7 89.1 

(0.0) (1.3) (1.8) (0.0) (5.6) (6.5) 
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Repeated first subjects - means and SDs for each condition (in % correct)  
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Novel 
Stimulus 
 

Origin 92.7 95.4 94.9 97.1 95.6 87.9 

(7.4) (3.4) (4.8) (3.5) (5.6) (11.5) 

Size 95.6 92.3 85.3 96.6 88.7 78.0 

(4.3) (4.7) (6.8) (3.5) (7.3) (9.2) 

Repeated 
Stimulus 
  

Origin 96.6 97.9 96.9 94.2 92.4 83.3 

(6.9) (3.3) (4.5) (5.8) (9.1) (11.2) 

Size 98.4 98.4 98.3 98.3 94.6 91.4 

(3.0) (3.1) (3.2) (3.0) (6.7) (7.2) 

Spatial 
  

Meaning 98.9 99.6 99.2 98.4 95.7 98.2 

(2.5) (1.3) (2.7) (3.0) (4.2) (3.8) 

Position 100.0 100.0 98.9 100.0 93.1 88.0 

(0.0) (0.0) (1.9) (0.0) (6.0) (7.2) 

 
Single-task results 
Novel Stimulus (all subjects) 

 Task: F(1,23) = 2.53, p = .13 

 Congruency: F(1,23) = 1.95, p = .18 

 Congruency x Task: F(1,23) = .01, p = .95 

Repeated Stimulus (all subjects) 

 Task: F(1,23) = 3.45, p = .07 

 Congruency: F(1,23) = .07, p = .79 

 Congruency x Task: F(1,23) = .00, p = .95 

Spatial  

 Task: F(1,23) = 16.28, p < .005 

 Congruency: F(1,23) = 3.10, p = .09 

 Congruency x Task: F(1,23) = 3.10, p = .09 
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Novel Stimulus (Novel first subjects) 

 Task: F(1,11) = 1.52, p = .24 

 Congruency: F(1,11) = .15, p = .71 

 Congruency x Task: F(1,11) = .34, p = .57 

Repeated Stimulus (Novel first subjects) 

 Task: F(1,11) = .25, p = .62 

 Congruency: F(1,11) = .99, p = .34 

 Congruency x Task: F(1,11) = .34, p = .57 

 

Novel Stimulus (Repeated first subjects) 

 Task: F(1,11) = .98, p = .34 

 Congruency: F(1,11) = 3.95, p = .07 

 Congruency x Task: F(1,11) = 1.01, p = .34 

Repeated Stimulus (Repeated first subjects) 

 Task: F(1,11) = 4.33, p = .06 

 Congruency: F(1,11) = .61, p = .45 

 Congruency x Task: F(1,11) = .78, p = .40 

 
Mixed-task results 
Condition x Congruency x Switch: F(2,46) = 2.55, p = .09 

Novel Stimulus Congruency x Switch: F(1,23) = 11.79, p < .005 

Repeated Stimulus Congruency x Switch: F(1,23) = 17.56, p < .001 

Spatial Congruency x Switch: F(1,23) = .97, p = .34 

 
 Condition x Congruency: F(2,46) = 3.36, p < .05 

Novel Stimulus Congruency (all subjects): F(1,23) = 15.71, p < .005 

Repeated Stimulus Congruency (all subjects): F(1,23) = 62.79, p < .001 

Spatial Congruency: F(1,23) = 65.83, p < .001 
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Novel Stimulus Congruency (Novel first): F(1,11) = 6.46, p < .05 

Repeated Stimulus Congruency (Novel first): F(1,11) = 36.98, p < .001 

 

Novel Stimulus Congruency (Repeated first): F(1,11) = 10.23, p < .01 

Repeated Stimulus Congruency (Repeated first): F(1,11) = 24.99, p < .001 

 

Correlation between congruency effects 

 Novel Stimulus & Repeated Stimulus: r(22) = .14, p = .51 

 Novel Stimulus & Spatial: r(22) = .12, p = .58 

 Repeated Stimulus & Spatial: r(22) = .10, p = .63 

 

Congruency effects in Novel Stimulus over time 
Means and SDs (in percent correct) 

  
Early 

Practice 
Late 

Practice 1st Third 
Last 
Third 

Congruent 90.3 85.2 94.7 87.8 
  (8.9) (16.3) (4.5) (9.6) 

Incongruent 82.0 77.3 93.1 89.5 
  (12.7) (18.2) (5.5) (6.0) 

 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = .20, p = .66 

 
Congruency effects in Repeated Stimulus over time 
Means and SDs (in percent correct) 

  
Early 

Practice 
Late 

Practice 1st Third 
Last 
Third 

Congruent 91.8 92.5 97.8 99.1 
  (11.9) (14.8) (3.0) (1.6) 

Incongruent 82.0 78.9 87.3 90.7 
  (18.8) (20.8) (9.7) (7.0) 

 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = .02, p = .87 
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Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Novel Stimulus Switch x Task: F(1,23) = 3.52, p = .07 

Repeated Stimulus Switch x Task: F(1,23) = 7.58, p < .05 

Spatial Switch x Task: F(1,23) = 8.31, p < .01 

 

Asymmetry in Switch x Congruency interaction 

 Novel Stimulus Congruency x Switch x Task: F(1,23) = 3.59, p = .07 

 Repeated Stimulus Congruency x Switch x Task: F(1,23) = 3.09, p = .09 

 Spatial Congruency x Switch x Task: F(1,23) = 19.16, p < .001 
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Appendix C 
 

Log transformed accuracy 
 

 Unlike raw reaction time data, it may not be appropriate to examine raw 

accuracy scores for additivity (Schweickert, 1985). Log-transformed accuracy 

scores are presented here as a more appropriate comparison. 

 

Experiment 1 
Means and SDs for each condition 
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Control Shape -0.019 -0.006 -0.002 -0.007 -0.026 -0.064 

    (0.025) (0.014) (0.007) (0.014) (0.034) (0.074) 

  Size -0.003 -0.002 -0.003 -0.002 -0.015 -0.023 

    (0.009) (0.007) (0.009) (0.008) (0.021) (0.028) 

Spatial Meaning -0.005 -0.003 -0.008 -0.010 -0.026 -0.036 

    (0.011) (0.009) (0.018) (0.017) (0.030) (0.036) 

  Position 0.000 -0.003 -0.003 -0.002 -0.045 -0.100 

    (0.000) (0.009) (0.010) (0.008) (0.059) (0.072) 

Numerical Count -0.003 -0.005 -0.004 -0.035 -0.074 -0.087 

    (0.011) (0.012) (0.013) (0.031) (0.071) (0.075) 

  Identity -0.002 -0.007 -0.009 -0.026 -0.043 -0.104 

    (0.007) (0.016) (0.020) (0.101) (0.042) (0.071) 
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Single-task results 
Control condition 

 Task: F(1,47) = 18.10, p < .001 

 Congruency: F(1,47) = 9.38, p < .005 

 Congruency x Task: F(1,47) = 8.10, p < .01 

Spatial condition 

 Task: F(1,47) = 14.83, p < .001 

 Congruency: F(1,47) = 6.37, p < .05 

 Congruency x Task: F(1,47) = .63, p = .43 

Numerical condition 

 Task: F(1,47) = .45, p = .50 

 Congruency: F(1,47) = 12.47, p < .001 

 Congruency x Task: F(1,47) = .24, p = .63 

 
Mixed-task results 
Condition x Congruency x Switch: F(2,94) = .87, p = .42 

Control Congruency x Switch: F(1,47) = 26.98, p < .001 

Spatial Congruency x Switch: F(1,47) = 22.30, p < .001 

Numerical Congruency x Switch: F(1,47) = 22.11, p < .001 

 
 Condition x Congruency: F(2,94) = 35.58, p < .001 

Control Congruency: F(1,47) = 50.51, p < .001 

Spatial Congruency: F(1,47) = 118.83, p < .001 

Numerical Congruency: F(1,47) = 134.75, p < .001 

 
Correlations between congruency effects 

 Control & Spatial: r(46) = .46, p < .005 

 Control & Numerical: r(46) = .57, p < .001 

 Spatial & Numerical: r(46) = .51, p < .001 
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Congruency effects in Control over time 
Means and SDs 

  1st Half 2nd Half 

Congruent -0.005 -0.002 

  (0.010) (0.006) 

Incongruent -0.033 -0.030 

  (0.029) (0.030) 

 

Time x Congruency: F(1,47) = .01, p = .91 

 
Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Control Switch x Task: F(1,47) = 5.29, p < .05 

Spatial Switch x Task: F(1,47) = 8.47, p < .01 

Numerical Switch x Task: F(1,47) = 8.58, p < .005 

Asymmetry in Switch x Congruency interaction 

 Control Congruency x Switch x Task: F(1,47) = 9.52, p < .005 

 Spatial Congruency x Switch x Task: F(1,47) = 12.43, p < .005 

Numerical Congruency x Switch x Task: F(1,47) = 6.46, p < .05 

 
Experiment 2 
Means and SDs for each condition  
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Nonverbal 
Control 
  

More -0.009 -0.002 -0.005 0.000 -0.016 -0.035 

(0.014) (0.007) (0.009) (0.000) (0.015) (0.049) 

Taller -0.007 -0.003 -0.003 -0.007 -0.030 -0.053 

(0.016) (0.008) (0.008) (0.016) (0.037) (0.046) 

Nonverbal 
Spatial 
  
 

Pointing -0.006 0.000 -0.001 -0.013 -0.018 -0.026 

(0.012) (0.000) (0.004) (0.023) (0.021) (0.026) 

Position -0.004 -0.002 -0.005 -0.001 -0.031 -0.091 

(0.010) (0.007) (0.009) (0.006) (0.031) (0.119) 
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Single-task results 
Nonverbal Control 

 Task: F(1,23) = 1.25, p = .27 

 Congruency: F(1,23) = 1.90, p = .18 

 Congruency x Task: F(1,23) = 2.77, p = .11 

Nonverbal Spatial 

 Task: F(1,23) = 8.23, p < .01 

 Congruency: F(1,23) = .55, p = .47 

 Congruency x Task: F(1,23) = 2.86, p = .10 

 
Mixed-task results 
Condition x Congruency x Switch: F(1,23) = .97, p = .33 

Nonverbal Control Congruency x Switch: F(1,23) = 5.42, p < .05 

Nonverbal Spatial Congruency x Switch: F(1,23) = 7.99, p < .05 

 
 Condition x Congruency: F(1,23) = 1.44, p = .24 

Nonverbal Control Congruency: F(1,23) = 35.47, p < .001 

Nonverbal Spatial condition Congruency: F(1,23) = 32.46, p < .001 

 
Nonverbal Spatial dominance & congruency correlation: r(22) = .05, p = .81 

 

Correlation between congruency effects 

 Nonverbal Control & Nonverbal Spatial: r(22) = .19, p = .39 
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Congruency effects in Nonverbal Control over time 
Means and SDs  

  

Early 
Practice 

Late 
Practice 1st Third Last Third 

Congruent -0.002 -0.002 -0.001 -0.007 

  (0.011) (0.011) (0.004) (0.009) 

Incongruent -0.033 -0.026 -0.034 -0.031 

  (0.034) (0.050) (0.031) (0.026) 

 

Comparison of 1st third & last third of mixed runs 

Time x Congruency: F(1,23) = 1.75, p = .20 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = .11, p = .74 

 
Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Nonverbal Control Switch x Task: F(1,23) = .01, p = .91 

Nonverbal Spatial Switch x Task: F(1,23) = 3.99, p = .06 

 

Asymmetry in Switch x Congruency interaction 

 Nonverbal Control Congruency x Switch x Task: F(1,23) = .51, p = .48 

 Nonverbal Spatial Congruency x Switch x Task: F(1,23) = 3.96, p = .06 
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Experiment 3 
Means and SDs for each condition 
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Verbal 
Control 

Origin  -0.029 -0.026 -0.026 -0.016 -0.039 -0.072 

(0.028) (0.027) (0.027) (0.027) (0.097) (0.074) 

Size -0.012 -0.039 -0.091 -0.050 -0.071 -0.131 

(0.018) (0.026) (0.050) (0.049) (0.075) (0.085) 

Spatial Meaning -0.009 -0.003 -0.010 -0.016 -0.027 -0.026 

(0.017) (0.007) (0.016) (0.029) (0.026) (0.034) 

Position -0.002 -0.004 -0.012 -0.001 -0.021 -0.052 

(0.008) (0.008) (0.015) (0.006) (0.019) (0.043) 

 
Single-task results 
Verbal Control 

 Task: F(1,23) = 2.50, p = .13 

 Congruency: F(1,23) = 3.40, p = .08 

 Congruency x Task: F(1,23) = 12.93, p < .005 

Spatial  

 Task: F(1,23) = 7.09, p < .05 

 Congruency: F(1,23) = .92, p = .35 

 Congruency x Task: F(1,23) = 2.86, p = .10 

 
Mixed-task results 
Condition x Congruency x Switch: F(1,23) = .71, p = .41 

Verbal Control Congruency x Switch: F(1,23) = 2.78, p = .11 

Spatial Congruency x Switch: F(1,23) = 1.44, p = .24 

 
 Condition x Congruency: F(1,23) = .34, p = .56 

Verbal Control Congruency: F(1,23) = 6.45, p < .02 

Spatial Congruency: F(1,23) = 28.43, p < .001 
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Correlation between congruency effects 

 Verbal Control & Spatial: r(22) = -.04, p = .87 

  

Congruency effects in Verbal Control over time 
Means and SDs  

  Early Practice 
Late 

Practice 1st Third 
Last 
Third 

Congruent -0.056 -0.059 -0.041 -0.040 

  (0.068) (0.100) (0.041) (0.029) 

Incongruent -0.133 -0.175 -0.057 -0.075 

  (0.127) (0.180) (0.045) (0.101) 

 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = 10.38, p < .005 

 
Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Verbal Control Switch x Task: F(1,23) = 10.48, p < .005 

Spatial Switch x Task: F(1,23) = 22.17, p < .001 

 

Asymmetry in Switch x Congruency interaction 

 Verbal Control Congruency x Switch x Task: F(1,23) = 1.60, p = .22 

 Spatial Congruency x Switch x Task: F(1,23) = 21.32, p < .001 
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Experiment 4 
Means and SDs for each condition 
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Novel 
Stimulus 

Origin -0.033 -0.023 -0.026 -0.023 -0.020 -0.068 
(0.039) (0.021) (0.026) (0.027) (0.020) (0.063) 

Size -0.026 -0.032 -0.071 -0.018 -0.059 -0.114 
(0.027) (0.024) (0.039) (0.022) (0.070) (0.060) 

Repeated 
Stimulus 

Origin -0.020 -0.008 -0.010 -0.019 -0.042 -0.087 
(0.034) (0.013) (0.017) (0.027) (0.043) (0.066) 

Size  -0.012 -0.006 -0.004 -0.010 -0.023 -0.035 
(0.027) (0.012) (0.011) (0.014) (0.027) (0.032) 

Spatial Meaning -0.008 -0.002 -0.009 -0.015 -0.022 -0.016 
(0.013) (0.005) (0.019) (0.021) (0.019) (0.023) 

Position 0.000 -0.001 -0.004 0.000 -0.024 -0.054 
(0.000) (0.004) (0.008) (0.000) (0.029) (0.034) 

 
Novel first subjects - means and SDs for each condition  
    Congruent Incongruent 

 
  Pure Nonswitch  Switch Pure Nonswitch  Switch 

Novel 
Stimulus 

Origin  -0.032 -0.026 -0.028 -0.034 -0.019 -0.075 
(0.043) (0.026) (0.030) (0.033) (0.013) (0.063) 

Size  -0.032 -0.030 -0.072 -0.020 -0.065 -0.116 
(0.033) (0.027) (0.044) (0.027) (0.094) (0.069) 

Repeated 
Stimulus  

Origin -0.025 -0.007 -0.005 -0.011 -0.048 -0.090 
(0.035) (0.011) (0.009) (0.025) (0.036) (0.070) 

Size  -0.017 -0.005 0.000 -0.012 -0.020 -0.029 
(0.036) (0.009) (0.000) (0.015) (0.021) (0.028) 

Spatial  Meaning -0.010 -0.002 -0.014 -0.023 -0.025 -0.023 
(0.015) (0.006) (0.024) (0.024) (0.020) (0.026) 

Position 0.000 -0.002 -0.003 0.000 -0.015 -0.051 
(0.000) (0.006) (0.008) (0.000) (0.027) (0.032) 
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Repeated first subjects - means and SDs for each condition  
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Novel 
Stimulus 

Origin -0.035 -0.021 -0.023 -0.013 -0.020 -0.060 
(0.037) (0.015) (0.022) (0.016) (0.026) (0.066) 

Size  -0.020 -0.035 -0.070 -0.015 -0.054 -0.111 
(0.020) (0.023) (0.035) (0.016) (0.038) (0.052) 

Repeated 
Stimulus 
  

Origin  -0.016 -0.009 -0.014 -0.027 -0.037 -0.083 
(0.033) (0.015) (0.021) (0.027) (0.049) (0.065) 

Size -0.007 -0.007 -0.007 -0.008 -0.025 -0.040 

 
 (0.013) (0.014) (0.015) (0.014) (0.032) (0.036) 

Spatial 
  
  

Meaning -0.005 -0.002 -0.004 -0.007 -0.020 -0.008 
(0.011) (0.006) (0.013) (0.013) (0.019) (0.017) 

Position  0.000 0.000 -0.005 0.000 -0.032 -0.057 
(0.000) (0.000) (0.008) (0.000) (0.029) (0.037) 

 
Single-task results 
Novel Stimulus (all subjects) 

 Task: F(1,23) = 2.63, p = .12 

 Congruency: F(1,23) = 1.93, p = .18 

 Congruency x Task: F(1,23) = .01, p = .91 

Repeated Stimulus (all subjects) 

 Task: F(1,23) = 3.40, p = .08 

 Congruency: F(1,23) = .11, p = .74 

 Congruency x Task: F(1,23) = .00, p = .95 

Spatial  

 Task: F(1,23) = 16.06, p < .005 

 Congruency: F(1,23) = 3.13, p = .09 

 Congruency x Task: F(1,23) = 3.13, p = .09 
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Novel Stimulus (Novel first subjects) 

 Task: F(1,11) = 1.47, p = .25 

 Congruency: F(1,11) = .17, p = .69 

 Congruency x Task: F(1,11) = .30, p = .60 

Repeated Stimulus (Novel first subjects) 

 Task: F(1,11) = .25, p = .63 

 Congruency: F(1,11) = 1.05, p = .33 

 Congruency x Task: F(1,11) = .28, p = .61 

 

Novel Stimulus (Repeated first subjects) 

 Task: F(1,11) = 1.07, p = .32 

 Congruency: F(1,11) = 3.84, p = .08 

 Congruency x Task: F(1,11) = 1.07, p = .32 

Repeated Stimulus (Repeated first subjects) 

 Task: F(1,11) = 4.37, p = .06 

 Congruency: F(1,11) = .54, p = .48 

 Congruency x Task: F(1,11) = .68, p = .43 

 
Mixed-task results 
Condition x Congruency x Switch: F(2,46) = 2.59, p = .09 

Novel Stimulus Congruency x Switch: F(1,23) = 12.33, p < .005 

Repeated Stimulus Congruency x Switch: F(1,23) = 15.36, p < .001 

Spatial Congruency x Switch: F(1,23) = 1.14, p = .30 

 
 Condition x Congruency: F(2,46) = 2.27, p = .11 

Novel Stimulus Congruency (all subjects): F(1,23) = 12.90, p < .005 

Repeated Stimulus Congruency (all subjects): F(1,23) = 54.12, p < .001 

Spatial Congruency: F(1,23) = 61.86, p < .001 

 

 

 



 
 

114 
 

Novel Stimulus Congruency (Novel first): F(1,11) = 5.17, p < .05 

Repeated Stimulus Congruency (Novel first): F(1,11) = 31.79, p < .001 

 

Novel Stimulus Congruency (Repeated first): F(1,11) = 9.50, p < .05 

Repeated Stimulus Congruency (Repeated first): F(1,11) = 21.45, p < .001 

 

Correlation between congruency effects 

 Novel Stimulus & Repeated Stimulus: r(22) = .19, p = .38 

 Novel Stimulus & Spatial: r(22) = .11, p = .62 

 Repeated Stimulus & Spatial: r(22) = .10, p = .65 

 

Congruency effects in Novel Stimulus over time 
Means and SDs  

  
Early 

Practice 
Late 

Practice 1st Third 
Last 
Third 

Congruent -0.046 -0.081 -0.024 -0.032 
  (0.044) (0.114) (0.021) (0.026) 

Incongruent -0.091 -0.126 -0.059 -0.049 
  (0.068) (0.119) (0.053) (0.029) 

 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = .34, p = .57 

 
Congruency effects in Repeated Stimulus over time 
Means and SDs  

  
Early 

Practice 
Late 

Practice 1st Third 
Last 
Third 

Congruent -0.041 -0.041 -0.010 -0.004 
  (0.063) (0.087) (0.014) (0.007) 

Incongruent -0.102 -0.122 -0.062 -0.044 
  (0.134) (0.142) (0.053) (0.034) 

 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = .16, p = .70 
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Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Novel Stimulus Switch x Task: F(1,23) = 3.12, p = .09 

Repeated Stimulus Switch x Task: F(1,23) = 7.26, p < .05 

Spatial Switch x Task: F(1,23) = 7.97, p < .05 

 

Asymmetry in Switch x Congruency interaction 

 Novel Stimulus Congruency x Switch x Task: F(1,23) = 2.99, p = .10 

 Repeated Stimulus Congruency x Switch x Task: F(1,23) = 3.32, p = .08 

 Spatial Congruency x Switch x Task: F(1,23) = 18.32, p < .001 
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Appendix D 
 

Composite z-scores

 
 Although there were no indications of speed-accuracy tradeoffs in the 

congruency effects of interest, a composite z-score was created as a combined 

dependent measure. This composite score was created by taking the z score of 

each participant’s mean reaction time for each cell of interest and adding it to the 

z-score of that participant’s mean error rate for the same cell. Other composite 

scores, such as bits of information transmitted per second, were considered but 

were ruled out as potentially inappropriate to the examination of choice reaction 

time tasks like those presented here (Laming, 2001). 
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Experiment 1 
Means and SDs for each condition 
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Control Shape -0.88 -0.45 -0.17 -1.34 -0.01 1.50 

    (0.57) (0.63) (0.63) (0.44) (0.85) (1.59) 

  Size -1.58 -0.57 0.08 -1.70 -0.17 0.59 

    (0.42) (0.70) (0.63) (0.34) (0.76) (0.78) 

Spatial Meaning -1.22 -0.50 0.17 -0.99 0.46 1.13 

    (0.35) (0.56) (0.78) (0.49) (1.00) (0.89) 

  Position -1.97 -0.76 -0.10 -1.83 0.42 2.84 

    (0.32) (0.67) (0.80) (0.57) (1.73) (1.78) 

Numerical Count -1.34 0.12 0.70 -0.29 2.26 3.10 

    (0.47) (0.79) (0.72) (0.94) (1.64) (1.90) 

  Identity -1.51 0.04 0.68 -1.04 0.97 3.37 

    (0.28) (0.83) (0.87) (1.39) (1.22) (1.52) 

 
Single-task results 
Control condition 

 Task: F(1,47) = 55.36, p < .001 

 Congruency: F(1,47) = 25.90, p < .001 

 Congruency x Task: F(1,47) = 9.48, p < .005 

Spatial condition 

 Task: F(1,47) = 114.12, p < .001 

 Congruency: F(1,47) = 17.61, p < .001 

 Congruency x Task: F(1,47) = . 77, p = .38 

Numerical condition 

 Task: F(1,47) = 11.88, p = .005 

 Congruency: F(1,47) = 35.27, p < .001 

 Congruency x Task: F(1,47) = 5.85, p < .05 
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Mixed-task results 
Condition x Congruency x Switch: F(2,94) = 1.27, p = .24 

Control Congruency x Switch: F(1,47) = 34.46, p < .001 

Spatial Congruency x Switch: F(1,47) = 36.47, p < .001 

Numerical Congruency x Switch: F(1,47) = 35.26, p < .001 

 
 Condition x Congruency: F(2,94) = 51.80, p < .001 

Control Congruency: F(1,47) = 49.82, p < .001 

Spatial Congruency: F(1,47) = 173.76, p < .001 

Numerical Congruency: F(1,47) = 185.82, p < .001 

 
Correlations between congruency effects 

 Control & Spatial: r(46) = .45, p < .005 

 Control & Numerical: r(46) = .54, p < .001 

 Spatial & Numerical: r(46) = .50, p < .001 

 
Congruency effects in Control over time 
Means and SDs 

  1st Half 2nd Half 

Congruent -0.39 -0.84 

  (1.11) (1.07) 

Incongruent 0.89 0.34 

  (1.41) (1.19) 

 

Time x Congruency: F(1,47) = .33, p = .57 
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Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Control Switch x Task: F(1,47) = 1.81, p = .19 

Spatial Switch x Task: F(1,47) = 26.28, p < .001 

Numerical Switch x Task: F(1,47) = 14.77, p < .001 

Asymmetry in Switch x Congruency interaction 

 Control Congruency x Switch x Task: F(1,47) = 20.01, p < .001 

 Spatial Congruency x Switch x Task: F(1,47) = 23.80, p < .001 

Numerical Congruency x Switch x Task: F(1,47) = 10.91, p < .005 

 
Experiment 2 
Means and SDs for each condition  
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Nonverbal 
Control 

More  -0.83 -0.26 0.60 -1.25 0.34 1.79 

(0.65) (0.62) (1.01) (0.37) (1.04) (1.74) 

Taller  -0.94 -0.24 0.45 -1.04 0.84 2.41 

(0.68) (0.65) (0.96) (0.67) (1.35) (1.66) 

Nonverbal 
Spatial 

Pointing -1.02 -0.76 -0.18 -0.49 0.23 1.11 

(0.44) (0.57) (0.88) (1.33) (0.80) (1.24) 

Position -1.73 -0.71 0.02 -1.79 0.49 2.96 

(0.37) (0.65) (0.92) (0.38) (1.23) (2.54) 

 
Single-task results 
Nonverbal Control 

 Task: F(1,23) = .17, p = .68 

 Congruency: F(1,23) = 7.16, p = .01 

 Congruency x Task: F(1,23) = 3.09, p = .09 

Nonverbal Spatial 

 Task: F(1,23) = 47.01, p < .001 

 Congruency: F(1,23) = 2.90, p = .10 

 Congruency x Task: F(1,23) = 5.13, p < .05 
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Mixed-task results 
Condition x Congruency x Switch: F(1,23) = .64, p = .43 

Nonverbal Control Congruency x Switch: F(1,23) = 7.79, p < .05 

Nonverbal Spatial Congruency x Switch: F(1,23) = 13.50, p < .005 

 
 Condition x Congruency: F(1,23) = 3.47, p = .08 

Nonverbal Control Congruency: F(1,23) = 55.76, p < .001 

Nonverbal Spatial condition Congruency: F(1,23) = 83.09, p < .001 

 
Nonverbal Spatial dominance & congruency correlation: r(22) = .14, p = .52 

 

Correlation between congruency effects 

 Nonverbal Control & Nonverbal Spatial: r(22) = .20, p = .35 

  

Congruency effects in Nonverbal Control over time 
Means and SDs  

  

Early 
Practice 

Late 
Practice 1st Third Last Third 

Congruent 0.05 -0.49 -0.82 -1.02 

  (1.61) (0.87) (0.58) (0.65) 

Incongruent 1.10 0.58 0.55 0.04 

  (1.45) (2.00) (1.30) (0.92) 

 

Comparison of 1st third & last third of mixed runs 

Time x Congruency: F(1,23) = 2.08, p = .16 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = .80, p = .38 
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Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Nonverbal Control Switch x Task: F(1,23) = .02, p = .89 

Nonverbal Spatial Switch x Task: F(1,23) = 8.17, p < .01 

 

Asymmetry in Switch x Congruency interaction 

 Nonverbal Control Congruency x Switch x Task: F(1,23) = .99, p = .33 

 Nonverbal Spatial Congruency x Switch x Task: F(1,23) = 7.02, p < .05 

 
Experiment 3 
Means and SDs for each condition 
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Verbal  
Control  

Origin 0.03 0.20 1.31 -0.36 0.28 2.32 

(0.90) (0.86) (0.89) (0.68) (1.51) (1.45) 

Size -0.56 0.70 2.94 0.37 1.32 3.73 

(0.61) (0.64) (1.17) (0.94) (1.45) (1.24) 

Spatial Meaning -1.55 -1.20 -0.69 -1.34 -0.46 -0.17 

(0.42) (0.39) (0.48) (0.63) (0.76) (0.88) 

Position -2.13 -1.41 -0.75 -2.17 -0.88 0.47 

(0.22) (0.40) (0.44) (0.20) (0.70) (1.01) 

 
Single-task results 
Verbal Control 

 Task: F(1,23) = .41, p = .53 

 Congruency: F(1,23) = 3.07, p = .09 

 Congruency x Task: F(1,23) = 19.95, p < .001 

Spatial  

 Task: F(1,23) = 51.20, p < .001 

 Congruency: F(1,23) = 1.26, p = .27 

 Congruency x Task: F(1,23) = 3.71, p = .07 
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Mixed-task results 
Condition x Congruency x Switch: F(1,23) = 1.13, p = .30 

Verbal Control Congruency x Switch: F(1,23) = 6.09, p < .05 

Spatial Congruency x Switch: F(1,23) = 2.42, p = .13 

 
 Condition x Congruency: F(1,23) = .34, p = .56 

Verbal Control Congruency: F(1,23) = 10.99, p < .005 

Spatial Congruency: F(1,23) = 42.27, p < .001 

 

Correlation between congruency effects 

 Verbal Control & Spatial: r(22) = -.02, p = .94 

  

Congruency effects in Verbal Control over time 
Means and SDs  

  Early Practice 
Late 

Practice 1st Third 
Last 
Third 

Congruent 0.20 -0.39 -0.69 -0.86 

  (1.24) (1.11) (0.59) (0.56) 

Incongruent 1.78 0.90 -0.51 -0.43 

  (2.20) (1.44) (0.64) (0.82) 

 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = 16.27, p < .005 
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Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Verbal Control Switch x Task: F(1,23) = 7.57, p < .05 

Spatial Switch x Task: F(1,23) = 49.11, p < .001 

 

Asymmetry in Switch x Congruency interaction 

 Verbal Control Congruency x Switch x Task: F(1,23) = 3.95, p = .07 

 Spatial Congruency x Switch x Task: F(1,23) = 33.43, p < .001 

 
Experiment 4 
Means and SDs for each condition 
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Novel 
Stimulus 
  

Origin 0.07 0.02 1.45 -0.11 0.05 2.55 

  (1.13) (0.87) (0.84) (0.93) (0.65) (1.58) 

Size -0.08 0.63 2.78 -0.22 1.32 3.91 

  (0.81) (0.83) (1.10) (0.73) (1.48) (1.25) 

Repeated 
Stimulus 
  
  

Origin -0.77 -0.57 0.51 -0.85 0.87 3.00 

  (1.17) (0.69) (1.13) (0.86) (1.29) (1.84) 

Size -1.10 -0.70 0.09 -1.22 0.21 1.61 

  (0.69) (0.60) (0.86) (0.45) (0.87) (1.09) 

Spatial Meaning -1.64 -1.37 -0.73 -1.38 -0.65 -0.35 

 (0.41) (0.36) (0.89) (0.52) (0.67) (0.61) 

Position -2.33 -1.66 -0.95 -2.34 -0.88 0.83 

  (0.14) (0.33) (0.46) (0.16) (0.95) (1.05) 
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Novel first subjects - means and SDs for each condition  
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Novel 
Stimulus 
  

Origin 0.08 0.13 1.64 0.14 0.01 2.69 

  (1.24) (1.14) (1.06) (1.14) (0.58) (1.65) 

Size -0.01 0.62 2.89 -0.28 1.31 4.03 

  (0.93) (0.99) (1.15) (0.85) (1.98) (1.41) 

Repeated 
Stimulus 
  

Origin -0.67 -0.73 0.29 -1.06 0.94 2.91 

  (1.30) (0.70) (0.99) (0.87) (1.36) (1.80) 

Size -1.04 -0.89 -0.09 -1.23 0.01 1.38 

  (0.90) (0.54) (0.83) (0.48) (0.85) (0.89) 

Spatial 
  
  

Meaning -1.57 -1.37 -0.56 -1.19 -0.64 -0.10 

  (0.42) (0.25) (0.96) (0.63) (0.73) (0.65) 

Position -2.38 -1.66 -0.95 -2.39 -1.21 0.70 

  (0.11) (0.36) (0.40) (0.13) (0.82) (1.01) 

 
Repeated first subjects - means and SDs for each condition  
    Congruent Incongruent 

    Pure Nonswitch  Switch Pure Nonswitch  Switch 

Novel 
Stimulus 
  

Origin 0.07 -0.09 1.26 -0.37 0.08 2.40 

  (1.06) (0.49) (0.52) (0.59) (0.74) (1.57) 

Size -0.15 0.63 2.68 -0.16 1.32 3.79 

  (0.71) (0.68) (1.09) (0.62) (0.83) (1.11) 

Repeated 
Stimulus 
  

Origin -0.88 -0.42 0.72 -0.65 0.80 3.09 

  (1.06) (0.68) (1.27) (0.84) (1.27) (1.96) 

Size -1.16 -0.51 0.27 -1.21 0.41 1.84 

  (0.44) (0.62) (0.88) (0.44) (0.89) (1.26) 

Spatial 
  
  

Meaning -1.72 -1.36 -0.89 -1.57 -0.67 -0.60 

  (0.40) (0.46) (0.83) (0.31) (0.64) (0.47) 

Position -2.29 -1.66 -0.95 -2.29 -0.56 0.97 

  (0.15) (0.32) (0.54) (0.18) (0.98) (1.12) 
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Single-task results 
Novel Stimulus (all subjects) 

 Task: F(1,23) = 1.16, p = .29 

 Congruency: F(1,23) = .96, p = .34 

 Congruency x Task: F(1,23) = .01, p = .92 

Repeated Stimulus (all subjects) 

 Task: F(1,23) = 4.25, p = .05 

 Congruency: F(1,23) = .35, p = .56 

 Congruency x Task: F(1,23) = .03, p = .88 

Spatial  

 Task: F(1,23) = 101.97, p < .001 

 Congruency: F(1,23) = 4.25, p = .05 

 Congruency x Task: F(1,23) = 5.16, p < .05 

 
Novel Stimulus (Novel first subjects) 

 Task: F(1,11) = 2.51, p = .14 

 Congruency: F(1,11) = .15, p = .71 

 Congruency x Task: F(1,11) = .19, p = .67 

Repeated Stimulus (Novel first subjects) 

 Task: F(1,11) = 1.03, p = .33 

 Congruency: F(1,11) = 1.33, p = .27 

 Congruency x Task: F(1,11) = .17, p = .68 

 

Novel Stimulus (Repeated first subjects) 

 Task: F(1,11) = .00, p = .99 

 Congruency: F(1,11) = 1.23, p = .29 

 Congruency x Task: F(1,11) = .65, p = .44 

Repeated Stimulus (Repeated first subjects) 

 Task: F(1,11) = 3.94, p = .07 

 Congruency: F(1,11) = .15, p = .71 

 Congruency x Task: F(1,11) = .54, p = .48 
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Mixed-task results 
Condition x Congruency x Switch: F(2,46) = 1.39, p = .26 

Novel Stimulus Congruency x Switch: F(1,23) = 12.73, p < .005 

Repeated Stimulus Congruency x Switch: F(1,23) = 17.65, p < .001 

Spatial Congruency x Switch: F(1,23) = 3.22, p = .09 

 
 Condition x Congruency: F(2,46) = 10.46, p < .001 

Novel Stimulus Congruency (all subjects): F(1,23) = 20.77, p < .001 

Repeated Stimulus Congruency (all subjects): F(1,23) = 79.63, p < .001 

Spatial Congruency: F(1,23) = 80.54, p < .001 

 

Novel Stimulus Congruency (Novel first): F(1,11) = 6.41, p < .05 

Repeated Stimulus Congruency (Novel first): F(1,11) = 41.81, p < .001 

 

Novel Stimulus Congruency (Repeated first): F(1,11) = 17.98, p < .005 

Repeated Stimulus Congruency (Repeated first): F(1,11) = 35.05, p < .001 

 

Correlation between congruency effects 

 Novel Stimulus & Repeated Stimulus: r(22) = .13, p = .55 

 Novel Stimulus & Spatial: r(22) = .18, p = .41 

 Repeated Stimulus & Spatial: r(22) = .14, p = .51 
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Congruency effects in Novel Stimulus over time 
Means and SDs  

  
Early 

Practice 
Late 

Practice 1st Third 
Last 
Third 

Congruent 0.78 0.41 -0.93 -0.70 
  (1.62) (1.38) (0.59) (0.53) 

Incongruent 1.54 1.01 -0.26 -0.42 
  (1.78) (1.60) (0.72) (0.48) 

 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = .09, p = 77. 

 
Congruency effects in Repeated Stimulus over time 
Means and SDs  

  
Early 

Practice 
Late 

Practice 1st Third 
Last 
Third 

Congruent 0.62 -0.40 -1.34 -1.66 
  (1.73) (1.35) (0.58) (0.45) 

Incongruent 1.28 0.85 -0.18 -0.61 
  (2.54) (1.72) (0.97) (0.80) 

 

Comparison of early practice & 1st third of mixed runs 

Time x Congruency: F(1,23) = 1.90, p = .18 

 
Asymmetry in switch costs & congruency interactions 
Asymmetry in switch costs 

Novel Stimulus Switch x Task: F(1,23) = 1.62, p = .22 

Repeated Stimulus Switch x Task: F(1,23) = 6.62, p < .05 

Spatial Switch x Task: F(1,23) = 15.14, p < .005 

 

Asymmetry in Switch x Congruency interaction 

 Novel Stimulus Congruency x Switch x Task: F(1,23) = 2.56, p = .12  

 Repeated Stimulus Congruency x Switch x Task: F(1,23) = 1.15, p = .29  

 Spatial Congruency x Switch x Task: F(1,23) = 24.50, p < .005
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