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 ABSTRACT 

Digital electronic systems typically must compute precise and deterministic results, 

but in principle have flexibility in how they compute.  Despite the potential flexibility, the 

overriding paradigm for more than 50 years has been based on fixed, non-adaptive inte-

grated circuits.  This one-size-fits-all approach is rapidly losing effectiveness now that 

technology is advancing into the nanoscale.  Physical variation and uncertainty in com-

ponent behavior are emerging as fundamental constraints and leading to increasingly sub-

optimal fault rates, power consumption, chip costs, and lifetimes.  This dissertation pro-

poses methods of physically-adaptive computing (PAC), in which reconfigurable elec-

tronic systems sense and learn their own physical parameters and adapt with fine granu-

larity in the field, leading to higher reliability and efficiency. 

We formulate the PAC problem and provide a conceptual framework built around 

two major themes: introspection and self-optimization.  We investigate how systems can 

efficiently acquire useful information about their physical state and related parameters, 

and how systems can feasibly re-implement their designs on-the-fly using the information 

learned.  We study the role not only of self-adaptation—where the above two tasks are 

performed by an adaptive system itself—but also of assisted adaptation using a remote 

server or peer. 

We introduce low-cost methods for sensing regional variations in a system, including 

a flexible, ultra-compact sensor that can be embedded in an application and implemented 

on field-programmable gate arrays (FPGAs).  An array of such sensors, with only 1% to-
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tal overhead, can be employed to gain useful information about circuit delays, voltage 

noise, and even leakage variations.  We present complementary methods of regional self-

optimization, such as finding a design alternative that best fits a given system region.   

We propose a novel approach to characterizing local, uncorrelated variations.  

Through in-system emulation of noise, previously hidden variations in transient fault sus-

ceptibility are uncovered.  Correspondingly, we demonstrate practical methods of self-

optimization, such as local re-placement, informed by the introspection data.  

Forms of physically-adaptive computing are strongly needed in areas such as com-

munications infrastructure, data centers, and space systems.  This dissertation contributes 

practical methods for improving PAC costs and benefits, and promotes a vision of re-

sourceful, dependable digital systems at unimaginably-fine physical scales.  
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CHAPTER 1  

Introduction 

 

Digital systems have advanced remarkably for the past half-century.  Semiconductor 

chips have been manufactured with increasing numbers of components exhibiting near-

uniform, predictable behavior.  This has allowed system architectures and programs to be 

designed from the top-down using a “one size fits all” strategy, independent of specific 

hardware characteristics or lifetime changes.  This separation of the logical and physical 

realms has been an essential aspect of the computer revolution, allowing a single design 

to be incorporated into millions of systems.  However, computation is physical, and as 

technology advances to nanoscale feature sizes, this long-standing paradigm is under 

threat.  It is time to reconsider the complete separation between “bits and atoms.”   

One emerging and fundamental problem is physical variation.  The spread in physi-

cal parameters such as transistor threshold voltage is growing dramatically, leading to 

chips with unique characteristics.  An example is illustrated in Figure 1.1 [17].  Technol-

ogy forecasts indicate rapidly worsening variability over the next several years, as seen in 

Table 1.1.  The threat worsens even further at the lower supply voltages needed for low-

power operation [28].  Another form of variation, wearout that occurs over time, is in-

creasing, as are transient fault rates as illustrated in Figure 1.2 [16].  These trends are 

adding to the enormous costs required to develop viable manufacturing technologies.  
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Upon manufacturing, chips are being discarded due to marginal regions and components 

that fail to meet specifications, increasing costs further.  Moreover, the systems built us-

ing the remaining chips are increasingly suboptimal.   

    

 

Figure 1.1: Delay profiles for three different 65 nm dies [28] 

 

Table 1.1: Semiconductor technology outlook [17] 

Date of high volume 
manufacturing 2006 2008 2010 2012 2014 2016 2018 

Technology node 
(nm) 65 45 32 22 16 11 8 

Billions of transistors 4 8 16 32 64 128 256 

Variability           Medium                          High                          Very High 

 

   

Figure 1.2: Threats from variability (left, threshold voltage), transient faults (middle), and 
wearout (right, degrading transistor current) [16] 



3 
 

Along with uncontrolled variation there is a second fundamental problem: growing 

uncertainty in physical parameters and component behavior.  At fine scales it is harder to 

accurately model, predict, or observe subtle and complex physical interactions.  During 

the design phase, the manufacturing process is often poorly understood and variation 

models are highly questionable.  After years of metrology and process learning, the man-

ufacturing models may improve, but often this is far too late to help designers [104].  Pre-

manufacturing models and simulations can show considerable disagreement.  One study 

of thermal gradients across a die suggests a difference of 8.6°C [66], while another sets 

the number at an alarming 20°C [102].  Even traditional models such as the heavily-used 

“bathtub” curve are becoming less effective; a large-scale study of memory reliability in 

Google data centers found that error rates rose unexpectedly after just 10–20 months of 

operation [89].  Increased integration has led to a widening knowledge gap.  Thorough 

characterization of individual components and regions is costly.  When there are over one 

billion transistors on a chip, the number of outliers is no longer trivial, but rather can 

number in the tens of millions.   

These trends are impacting a wide range of semiconductor applications, especially 

those needing high levels of efficiency or reliability, which is to say, most applications.  

One domain is on-board processing in spacecraft [31][41], unmanned aerial vehicles 

(UAVs), and similar embedded systems.  These applications often require low power, 

reconfigurability, well-understood soft error characteristics, and long lifetimes.  Another 

domain is communications; routers from vendors such as Cisco often require high relia-

bility since soft errors can have unbounded consequences [94].  High-performance com-

puting (HPC) is another domain being impacted.  As with embedded systems, there are 
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constraints on power and temperature.  Additionally, the scale of HPC computations is 

too large to allow for extensive redundancy as protection against soft errors, and there is a 

large cost associated with frequent checkpointing, so new methods for characterizing and 

avoiding soft errors are needed [72].  Lastly, these trends are important not only for to-

day’s applications using CMOS-based semiconductors, but also for future applications 

based on emerging reconfigurable nanotechnologies [38].   

Most computing systems are non-adaptive; the architectures employed and programs 

executed are fixed.  This differs greatly from naturally occurring complex systems which 

are often highly adaptive.  There are timely opportunities for using some principles, 

theory, and lessons from natural adaptive systems.  At the same time, we should not ex-

pect to simply mimic nature, since computing challenges often differ in character from 

those faced by natural systems.  Consider that computing systems are defined not only by 

what they can compute, but also how they compute.  There is an important distinction 

between the former, which involves mathematical functions and abstractions such as in-

struction set architectures, and the latter involving physical properties such as noise sus-

ceptibility, power consumption, hot spots, and component lifetimes.  Whereas the func-

tional level of abstraction is often not amenable to adaptive approaches, there are enorm-

ous opportunities for adaptation at the underlying levels. 

In this dissertation, we consider a paradigm we define as physically-adaptive compu-

ting (PAC).  With PAC, systems learn about their physical circumstances and perform 

fine-grained self-adaptation in the field.  In doing so, they improve their ability to meet 

their application-specific, physically-focused objectives, or in other words, they improve 

their fitness.  Work addressing certain aspects of physically-adaptive computing has been 
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underway for many years, but significant progress has been lacking for a variety of rea-

sons: the absence of significant physical variation in earlier semiconductor technologies, 

the lack of fine-grained reconfigurability, and the lack of design tool support.  All of 

these reasons are rapidly disappearing, suggesting a prime opportunity for deploying 

PAC.  Currently, one of the critical questions is how systems can adequately characterize 

fine-grained physical parameters, with little overhead.  We contribute several novel, low-

cost methods of sensing and self-test.  Hardware experiments provide some surprising 

findings and previously unpublished data.  A further question is how systems can feasibly 

optimize themselves using the information learned.  We study a range of optimization 

mechanisms in two different physical contexts, and conduct case studies which quantify 

the possibilities.  The contributions help to increase the benefits and decrease the costs of 

physically-adaptive computing, laying the groundwork for a significantly more adaptive, 

efficient, and reliable paradigm for digital electronic systems.   

       

1.1 General Background and Problem Definition 

Here we define the relevant elements of a computing system, including the physical 

substrate used for computation, the set of computational functions, and the set of system 

parameters.  We then describe the key concepts of variations and adaptation, and define 

the PAC research problems that we address.  

Substrate.  We define a substrate as physical hardware able to support computation, 

such as an individual microchip or portion of a microchip.  We use the notation Subj to 

represent a particular substrate.  Substrates have an associated platform type, e.g., a chip 

model type.  Each substrate, even among those of the same platform type, is physically 

unique.  Certain computing platforms allow for fine-grained reconfiguration of the circuit 



6 
 

components and interconnections.  Prime examples include field-programmable gate ar-

rays (FPGAs); detailed background on FPGA-based systems is given in Section 1.2.  A 

configuration specifies how to configure and connect the physical elements on a sub-

strate.  A particular configuration is denoted Configi.  Aside from FPGAs, there is a pro-

nounced trend in microprocessor chips toward higher numbers of processor cores; these 

many-core platforms provide a form of reconfigurability but are relatively coarse-

grained.  A third type of reconfigurable platform uses nanoelectronics formed by self-

organization rather than traditional lithography.  An example is the nanoPLA, though the 

technology is still in the research stage [38].  Note that we refer to all of these as reconfi-

gurable platforms, and we refer to a specific physical instance as a reconfigurable sub-

strate. 

Computational functions.  A function that is to be computed will be represented by 

function F.  It can be expressed mathematically in various ways such as with an algorithm 

or a finite state machine.  Representations that are close to the hardware include register-

transfer level (RTL) models and behavioral models using a hardware description lan-

guage (HDL).  We define a function netlist FN as a logical realization of F that lists the 

functional components and their connections.  In many hardware-oriented design flows, 

this is a netlist generated by a synthesis tool.  The function netlist in turn is implemented 

as a substrate configuration.  There can be many functionally-equivalent configurations 

that implement FN.  Re-implementation is a process of generating a new configuration 

that implements FN.  Re-implementation can be performed on the original netlist FN or 

via direct modification of a configuration denoted Config1 → Config2.  Computations of a 

function F are performed by a configuration-substrate pair (Configi, Subj).  This pair is 
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an important entity that will be a focus of the adaptive process.  Figure 1.3 illustrates a 

basic, traditional flow that occurs in the design and implementation of computing sys-

tems.  Although such a flow is sometimes associated with FPGA-based “hardware” de-

velopment, the configuration can be considered a type of low-level software (sometimes 

called firmware).  In fact, the flow is general enough that it could be readily modified for 

“software”-oriented systems, e.g., when computational functions are expressed as instruc-

tion-based programs. 

 

Figure 1.3: Conceptual view of a conventional system design flow 

 
Parameters.  A configuration-substrate pair has an associated set of physical and ab-

stract parameters {Par1, Par2…}.  We separate the parameters into three classes contain-

ing those specific to 1) the substrate, 2) the implemented logic, and 3) system operation.  

The main impetus for PAC is the deep uncertainty at design time of substrate parameters 

such as the inherent performance and reliability of individual transistors and wires.  If 

there were no such uncertainty, then the traditional substrate-oblivious approach to com-
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puter engineering would be sufficient.  However, uncertainty is growing and is a conse-

quence of technology advancing towards the atomic scale.  The sources of variation in 

substrate parameters include imperfect lithography in manufacturing, fluctuations in the 

number of dopant atoms or gate oxide atoms, uneven stress during operation, and many 

others.  Logical parameters are those primarily associated with the computational logic 

and are independent of the substrate.  Examples include signal probabilities (i.e., how of-

ten a signal is in the 1 state), toggle rates, and error propagation probabilities.  Logical 

parameters can exhibit high levels of variation, such as logical fanouts ranging from one 

to more than 30 [38], and order of magnitude differences in error propagation probabili-

ties [130].  Operational parameters are those associated with the operation of a compu-

ting system.  These emerge from the act of computing and depend upon the interaction of 

logical, substrate, and external environmental factors.  Examples include power con-

sumption, temperature, and fault/error rates.  Operational parameter variations such as 

thermal hot spots increase the need for physical adaptation.  Certain operational parame-

ters are also important for assessing the overall fitness of a system. 

Parameter variations.  Many of the key parameters in a computing system exhibit 

some form of variation.  There are spatial variations in substrate parameters such as de-

lay, and in operating conditions such as temperature.  In addition, parameters can exhibit 

temporal variations caused by wearout or changes in activity.  Wearout mechanisms are 

manifold and becoming harder to ignore [99], such as negative bias temperature instabili-

ty (NBTI), hot carrier injection, electromigration, and total ion dose (TID).  Due to varia-

tions, only a certain number of chips in a group meet the desired parameter specifica-

tions; this is the parametric yield.   
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Regional variations are those that are spread over a physical area, for instance when 

all transistors in a region of a chip have low threshold voltages (Vt) due to imperfect 

manufacturing, or when a high-temperature region (hot spot) emerges due to uneven 

power consumption.  These are also sometimes described as spatially-correlated or sys-

tematic variation.  The correlation distance specifies the size of the region, e.g. a radius 

of 1 mm [24], for which parameters have a non-negligible correlation.  Inter-die or die-

to-die variation affects an entire die globally.  It is sometimes considered a separate phe-

nomenon from regional variation, but can also be thought of as a special case in which 

the correlation distance is much greater than the size of a die. 

The second main type of spatial variation is local, spatially-uncorrelated variation, 

which we abbreviate as local variation.  This occurs at a single component (transistor, 

wire, etc.), and has no correlation to parameter values at other locations.  It is also some-

times called random variation.  With nanoscale technologies, component properties can 

be dramatically affected by a small number of atoms.  In the ubiquitous MOSFET-type 

transistors, electrical properties depend on the number of dopant atoms implanted during 

manufacturing.  The number of atoms cannot be controlled precisely, leading to random 

dopant fluctuations that affect Vt and other parameters.  Similar sources of local variation 

include uneven gate oxide thickness and line edge roughness.  Local wearout is possible 

via electromigration, charge carriers becoming trapped in the gate oxide, atoms being 

displaced by radiation, and many other sources. 

The amount of variation in a parameter is often modeled as being a sum of indepen-

dent random variables representing the die-to-die, regional, and local variations: 

 
ݎܽܲ∆ ൌ ஽ଶ஽ݎܽܲ∆  ൅ ௥௘௚ݎܽܲ∆  ൅  ௟௢௖௔௟.                                     (1.1)ݎܽܲ∆ 
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Figure 1.4 illustrates both regional variations (e.g., the general dependence of fre-

quency on the row location) and local variations (the spiky fluctuations), and how they 

combine in a single parameter. 

 

 
Figure 1.4: Regional and local variations in ring oscillator frequencies across an FPGA 

[90] 

 
Transient Faults and Soft Errors.  Advanced digital electronics are prone not only 

to physical variations but also to transient faults and soft errors.  In this context, a tran-

sient fault is a temporary effect triggered by noise.  The fault can lead to a deviation in 

the state trajectory of the machine; this is known as a soft error because it involves an 

error in information but no hard/permanent damage.  A soft error may in turn cause an 

incorrect result to be returned after a computation, a scenario sometimes called a system-

level soft error or a failure.  One common source of transient faults is ionizing radiation, 

which can take the form of alpha particles, neutrons, solar protons, heavy ions, etc.  A 
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transient current pulse is often called a single event transient (SET).  A transient fault that 

changes the value of a state element is known as an upset or a bit-flip, and an upset of a 

single storage cell is often referred to as a single event upset (SEU). 

Adaptation.  Adaptation is a process by which a system undergoes structural or pa-

rametric changes and becomes better fitted to an environment over time.  Adaptive sys-

tems are commonly found in nature, ranging from the simplest biological species to com-

plex ecosystems, and including human-related systems such as language, economies, and 

society.  The system environment itself is often dynamic, meaning adaptation is ongoing 

and the system never settles to an equilibrium.   

The general mechanisms for adaptation can include evolution, learning, self-

organization, or some combination thereof.  Evolution involves key concepts such as nat-

ural selection, descent with modification, genetic variations via operators (cross-over, 

mutation, etc.), and differential reproduction.  Learning on the other hand is usually con-

sidered a process occurring in a single individual through interaction with an environment 

over time.  Self-organization is the notion of patterns emerging via the interactions of 

many agents; an example is the cell differentiation that occurs during biological devel-

opment.  Of course, nature is complex and there are many layers, variants, and hybrids of 

these phenomena.     

An open question is the nature of adaptation in engineered/artificial systems [45].  

To what extent can such systems adapt autonomously and in a productive manner?  A 

few words need to be said about adaptation in artificial systems.  As alluded to earlier, 

digital electronic systems in particular are defined not only by what they can compute, 

but also how they compute.  There is an important distinction between the former, which 
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involves mathematical functions and abstractions such as instruction set architectures, 

and the latter involving nonfunctional properties.  Much work in adaptive computing sys-

tems deals with the former.  Examples of functional adaptation include adaptive decision 

making in robotic controllers, adaptive co-processing [47], some types of adaptive signal 

processing, and attempts at evolving digital functions in software or hardware.  Enabling 

functional adaptation in computing systems is often a daunting challenge because much 

of the existing computing environment is very brittle and unforgiving of novelty.  In this 

dissertation, we consider nonfunctional adaptation, and more specifically, adaptation that 

involves the physical properties of a system.  A partial taxonomy of computing system 

properties is shown in Figure 1.5.  A system has a set of functions {F1, F2, F3…} that it 

can compute, and also has nonfunctional properties that tend to involve physical pheno-

mena such as power consumption, the area used by a circuit, the reliability of computa-

tions performed, and the lifetime reliability of the physical components.  Even properties 

such as throughput and real-time performance involve a physical resource (time). 

 

 

Figure 1.5: Taxonomy of computing properties 
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Note that adaptation is different than dynamic feedback control.  With the latter, a 

controller generally accepts feedback and modifies a control variable, often to bring the 

system to a known state.  An example in digital systems is dynamic control of a system’s 

voltage and frequency based on temperature feedback.  With adaptation, the fitness land-

scape is often uncertain, and a system generally finds new states with higher fitness 

through learning or evolution, carrying information forward via structural or parametric 

changes.  The resources required to find better solutions can be extensive.  In some cases 

the two concepts overlap, as in the fields of adaptive control and intelligent control. 

Problem Definition.  The main problem being addressed in this dissertation is how 

to foster the fittest digital systems, given spatially unique, time-variant, uncertain physi-

cal circumstances.  Two of the critical research questions are: How can systems efficient-

ly learn about their physical state and related parameters?  How can systems feasibly op-

timize themselves and re-implement their designs on-the-fly using the information 

learned, given very limited system resources?   

 

1.2 FPGA-based Systems 

Field-programmable gate arrays (FPGAs) are currently the most widespread reconfi-

gurable platform and are discussed often in this dissertation.  Therefore, we provide some 

background information on FPGA-based systems including the hardware, reconfigura-

bility, and design flows.  

1.2.1 Hardware Platforms 

FPGAs are highly-flexible semiconductor platforms that allow many useful algo-

rithms to be implemented efficiently; thus they are popular for signal processing, com-

munications, and a widening range of applications.  A generic FPGA platform is illu-
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strated in Figure 1.6, with a more detailed view of reconfigurable logic and interconnect 

in Figure 1.7.  FPGAs contain vast arrays of reconfigurable components that can be used 

to implement logic functions.  The logic is interspersed with networks of reconfigurable 

interconnect, on-chip memories, and I/O blocks.  The basic unit of logic is a lookup table 

(LUT) which can implement any k-input function; typically the k inputs select among 2k 

values stored in SRAM cells.  For instance, a 6-input LUT contains 64 SRAM cells.  

Each LUT is paired with a flip-flop to form a LUT-FF pair.  Logic is divided into small 

homogeneous clusters containing several LUT-FF pairs.  Clusters are sometimes called 

slices in Xilinx terminology or logic array blocks (LABs) in Altera terminology.  The 

amount of circuitry can be enormous, approaching one million LUT-FF pairs per chip. 

   
 

 

Figure 1.6: High-level diagram of an FPGA [76] 
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Figure 1.7: Diagram of FPGA reconfigurable logic and interconnect 

 
An example of an FPGA type is the Xilinx Virtex-5, which is a fifth-generation, 

high-performance family.  A specific model in this family is the Virtex-5 110T.  All Vir-

tex-5 FPGAs have clusters (slices) containing four LUT-FF pairs.  Two clusters form 

what is called a configurable logic block (CLB).  The interconnect consists of wires and 

programmable switches inside switch boxes and local connection boxes; many of the 

routing details are proprietary.  In addition to the elements mentioned, the chips include 

hard macros such as DSP blocks, high-speed network interfaces, and sometimes entire 

processor cores. 

1.2.2 Reconfigurability 

FPGAs can be reconfigured by writing a new pattern into the on-chip configuration 

memory.  Most FPGAs such as the Virtex-5 are SRAM-based, meaning the configuration 

bits are stored in volatile, on-chip static random access memory (SRAM).  A configura-

tion is streamed into the chip from an external nonvolatile memory whenever a chip is 
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powered up; for this reason a configuration is also sometimes referred to as a bitstream.  

Certain FPGAs include nonvolatile configuration memory (e.g., flash memory) right on 

the chip.  A third type of platform uses anti-fuses to represent the configuration, but these 

platforms are only one-time programmable and of little interest for adaptive computing. 

FPGA configurations can contain tens of millions of bits and are streamed into chips 

at bandwidths on the order of gigabits per second; thus the configuration time can be on 

the order of milliseconds.  This delay has been a persistent roadblock to functionally-

adaptive computing intended to operate at the time scale of individual computations and 

sub-computations.  Support for partial reconfiguration is improving, creating new oppor-

tunities.  In any case, low-overhead adaptation at coarser time scales—such as hours, mi-

nutes, or even seconds—can already be achieved, which bodes well for physical adapta-

tion.  

1.2.3 Design Flow 

Figure 1.8 depicts a conventional FPGA design flow.  The user provides an applica-

tion description, such as a function F described in HDL, along with application-specific 

constraints for the various tools.  The function is synthesized to a technology-independent 

netlist FN using an electronic design automation tool.  In newer “high-level synthesis” 

flows, the function is described using a C-like language and synthesized with a separate 

tool.  In any case, the remaining steps are normally performed by FPGA vendor tools.  

The netlist is mapped into the primitives of a targeted FPGA platform.  After this “tech-

nology mapping,” a placement tool assigns all elements to a physical location.  The map-

ping and placement tools are also responsible for “packing” the logic into cluster-size 

groups [2].  After placement, a routing tool makes all the necessary connections using the 
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reconfigurable interconnect.  Lastly, a configuration (i.e., bitstream) is generated and 

stored for eventual download to an FPGA chip of the appropriate type. 

 

 

Figure 1.8: Example of a conventional FPGA design flow 

 

 

Figure 1.9: Addressing physical variations and uncertainty at different times in a system 
lifecycle 

 

1.3 Related Work 

The concept of physically-adaptive computing has connections to research in on-line 

adaptation of integrated circuits, reconfigurable computing, the general study of adapta-

tion, and many others.  We classify the previous work into three broad classes: pre-
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manufacturing approaches, manufacturing-time adaptation, and lifetime adaptation 

(Figure 1.9). 

1.3.1   Pre-Manufacturing Approaches 

As a stopgap measure, there have been efforts to address variability in a nonadaptive 

way at pre-manufacturing design time.  For instance, extra safety margin can be added to 

a design.  The amount of margin required is estimated, based in part on a general model 

of the expected variability.  A second approach involves timing analysis with statistical 

models of delay rather than worst-case models.  The objective is to design a circuit that 

can be manufactured with higher yield at a given frequency, using the facts that delays 

are usually better than worst case and that local, normally-distributed variations may can-

cel out over many components.  Two examples of statistical static timing analysis of 

FPGA applications are given in [91] and [59].  Such efforts are sometimes called “varia-

tion-aware design,” though in actuality they are only aware that variability will be present 

and not aware of what the specific variations will be in a manufactured chip.  They are 

better described as variation-tolerant. 

Another approach that occurs before chip manufacturing is work to improve the 

manufacturing process itself.  Advanced semiconductor processes are developed over a 

period of years and require extensive modeling, equipment development, test chips, and 

new fabrication plants.  It is well known that the investments required are enormous and 

growing.  Sizable efforts are needed to minimize parameter variation and uncertainty, 

since the traditional, non-adaptive paradigm depends on manufacturing consistent and 

well-behaved components.  Part of the rationale for PAC is reducing these costs and mak-

ing better use of inherently variable substrates.   



19 
 

Pre-manufacturing approaches are inherently oblivious to the unique characteristics 

of physical substrates.  Moreover, they do not address changes that occur in the field to 

workloads, external environments, or substrate parameters.  Therefore we focus on physi-

cally-aware approaches, both at manufacturing time and in the field.     

1.3.2 Manufacturing-Time Adaptation 

Some compensation for physical effects is possible at manufacturing time.  At-speed 

testing of dies on a wafer allows worst-case timing to be determined and chips to be 

placed into a speed bin or discarded altogether.  Testing is also performed for defects.  

Defects are permanent hardware faults, and can be thought of as an extreme type of high-

ly localized variation.  Faulty logic or memory can sometimes be permanently swapped 

out for spares using fuses [46].  With FPGAs, application-independent methods are pes-

simistic since many faulty components and worst-case paths would not actually be acti-

vated by an application.  Moreover, screening for marginalities will not work if every 

manufactured chip has marginalities.  The ITRS roadmap warns that the gray area be-

tween good and bad will expand, with effects such as “non-catastrophic gate oxide 

breakdown or highly resistive vias” [52].   

A more customized approach is to test chips based on application-specific require-

ments.  The prime example is Xilinx’s EasyPath service [115].  A customer submits up to 

two configurations needed by their application.  The configurations are fed into a Xilinx 

internal tool which generates the appropriate chip tests.  For instance, an application typi-

cally uses only 1%–10% of a chip’s configuration cells, and thus those are the only ones 

tested.  Chip yield greatly improves because many chips with don’t-care defects can still 

be shipped.  Since the manufacturing costs can be amortized over more good dies, chip 

costs are reduced by up to 75%.  With the Virtex-6 and entire “7 Series” of FPGAs, Xi-
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linx guarantees a cost reduction of at least 35% [115][116].  Application-specific screen-

ing does not enable the full benefits of customizing an application to an individual die.  In 

fact, adapting in the field is problematic since faults and marginalities may be lurking in 

the untested resources. 

 The next level of manufacturing-time customization is to actually create a map of 

the variations on each chip and to generate a customized implementation of the applica-

tion.  A proposal for this is presented in [24], using variation-aware place and route and 

FPGAs.  However, the costs are high to use expensive testers for fine-grained characteri-

zation, to perform resource-intensive computer-aided design cycles, and to handle large 

numbers of unique configurations.   

A further limitation of all of these manufacturing-time approaches, as with pre-

manufacturing approaches, is that they do not address parameter shifts that occur in the 

field. 

1.3.3 Lifetime Adaptation 

The research most closely aligned with this dissertation involves lifetime adaptation 

in digital systems.  Historically, a driver for such approaches was the threat of hard faults 

appearing in the field and the need for fault tolerance.  There have been proposals for 

handling FPGA defects via self-test and re-routing using a lightweight routing tool that 

runs in the system itself [62][30][105][83].  These ideas provide a starting point but leave 

unaddressed important issues such as correlated variations, the role of computational ac-

tivity (e.g., affecting thermal hotspots or data-dependent wearout), and how to make use 

of functioning but marginal elements.   

One proposed strategy for adapting to unique reconfigurable substrates is to generate 

a large number of implementations at random and to allow each system to identify the 
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most suitable alternative through trial and error [48][67].  While sufficient for avoiding a 

small number of defects, this approach does not work well for large systems subject to 

variations on multiple scales.  A randomly generated configuration is unlikely to provide 

a close fit.   

A little preliminary research has addressed the combination of self-characterization 

of variations, and subsequent optimization of configurations.  Some of these studies have 

focused specifically on the problem of delay variations, in FPGAs [54] or in a non-

CMOS reconfigurable technology [38].  Several works have focused just on self-

characterization of variations, for instance involving circuit delay [112].  Another set of 

studies has considered variation-aware optimization techniques using signal polarity in-

version [129], technology mapping [92], re-placement [24], and logical-physical mapping 

in a memory array [79].  A relevant theoretical study of variation-aware optimization is 

given in [91].  Note that these optimization techniques all depend on accurate characteri-

zation data being available. 

Some early progress has been made regarding adaptation in integrated circuits [103] 

and microprocessors [8].  A method of measuring leakage variations on a per-core basis 

has been proposed [127].  Many of the methods for many-core processors, such as the use 

of analog sensors and instruction set-based error detectors, are not generally applicable to 

reconfigurable platforms such as FPGAs, but the goals of introspection and resiliency are 

consistent with the theme considered here.      

Whereas the focus of this dissertation is physical adaptation, related research has 

been carried out in functional adaptation and adaptive computing.  Some of the problems 

addressed include dynamic switching between previously-generated FPGA configura-
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tions implementing different algorithms, finding effective adaptive control policies, and 

the design of application-specific instruction sets.  Some works in functional adaptation 

share with PAC a need for in-system implementation of computations [107] or on-board 

decision making.  Examples of cognitive architectures for adaptive computing systems 

include a Bayesian network-based architecture [33], a genetic algorithm-based classifier 

system [10], and a reinforcement learning-based controller [86].  Autonomic computing 

is another related area, involving the study of self-management and other so-called self-* 

properties in computing systems [29].  Much of the work is conducted in the logical 

realm [88][68].   

Some related work involves coarse-grained feedback control of physical parameters.  

Examples of control schemes for computer systems include chip-wide dynamic vol-

tage/frequency scaling [51][10] and thermal/power management in data centers [49].  

These architectures tend to be dynamic but not adaptive.  Methods of voltage/frequency 

scaling for many-core processors are being developed, where each voltage/frequency 

domain contains multiple cores [28].  

A recent related research topic is cyber-physical systems, where computer and com-

munication technologies are used to control an external physical system.  Since PAC is 

focused on physical phenomena in the computer system itself, it is largely complementa-

ry to that work.  The autonomous adaptation aspect of PAC suggests connections to the 

broader fields of engineered adaptive systems and intelligent systems.  For instance, a 

study of self-modeling robotic systems deals with the analogous challenge of adapting to 

a substrate prone to wearout/damage [15].       



23 
 

In summary, PAC research builds upon and has ties to several other research areas, 

but at the same time poses some distinct and important research questions of its own. 

 

1.4 Proposed PAC Framework 

In this sub-section, our approach and general architecture for physically-adaptive 

computing is proposed.  Detailed methods and results follow in the subsequent chapters.  

Portions of this sub-section were published in [134]. 

1.4.1 PAC Definition 

We define a physically-adaptive computing (PAC) system as one in which system 

configurations are optimized to suit the physical landscape, leading to higher fitness.  The 

general approach proposed here is based on periodic, fine-grained introspection and self-

optimization controlled by an adaptation agent.   

1.4.2 Fitness 

In the context of digital electronic systems, fitness is a measure of how well a system 

is meeting its application-specific objectives.  It is sometimes more convenient to use the 

concept of minimizing cost rather than maximizing fitness.  We use the terms fitness and 

cost interchangeably, with the understanding that lower cost corresponds to higher fit-

ness. 

Cost functions are used to define the cost for a given solution among the immense 

space of possible solutions.  The cost can be a function of parameters associated with the 

solution.  For example, the FPGA vendor Xilinx uses the following linear weighted cost 

function to evaluate different implementations of an application [122]:  

 
ሻ݂݃݅݊݋ܥሺݐݏ݋ܥ ൌ ଵݓ  ൈ ሺ݄ݐ݈݃݊݁ ݁ݎ݅ݓሻ ൅ ଶݓ ൈ ሺ݃݊݅݉݅ݐሻ ൅ ଷݓ ൈ ሺݎ݁ݓ݋݌ሻ 

(1.2) 
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Cost functions are commonly used in computer-aided design but traditionally do not 

account for the unique characteristics of the substrate.  We propose a new approach in 

which cost is instead defined for a (Config, Sub) pair:   

 
,݂݃݅݊݋ܥሺݐݏ݋ܥ ሻܾݑܵ ൌ  ݂ሺܲܽݎଵ, ,ଶݎܽܲ ଷݎܽܲ … ሻ 

(1.3) 

1.4.3 Introspection 

In the context of PAC, introspection is the process of a system learning about its own 

parameter values and the phenomena affecting its fitness.  This generally involves obtain-

ing data, using the data to estimate the related parameters, and sometimes building inter-

nal models.  One method of obtaining data is internal sensing.  This is appropriate for re-

gional variations since the parameter value at the sensor location is correlated to the sur-

rounding region.  A second method is self-test of component parameters; this addresses 

local variations that occur at individual components. 

In the domains of intelligent control and more specifically autonomic computing, 

sensor feedback data tends to be always available.  This is considered automatic sensing.  

Introspection in PAC goes further in that there are more extensive requirements for active 

sensing.  An adaptation agent may need to decide which of many parameters to character-

ize and then take actions to obtain data, for instance by initiating an appropriate self-test 

procedure. 

System configurations, as encoded in bitstreams, act as models of the computing sys-

tem that can be used to reason about logical structure, physical placement, etc.  An agent 

can also build a model of the physical substrate, by collecting sensor data and estimating 

the physical parameters.  In the case of spatially-correlated variations, the agent can ac-

quire data samples and build a model of a parameter profile across the entire substrate.  
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For instance, a model could be built that has a quadratic dependence on the x and y posi-

tions on the die: ܲܽݎሺݔ, ሻݕ ൌ ଶݔܽ  ൅ ଶݕܾ  ൅ ݔܿ  ൅ ݕ݀ ൅ ݁.  Building and maintaining de-

tailed models can be demanding [44].  It has been claimed that the best model of the 

world is the world itself.  In this sense, the agent can sometimes collect local physical da-

ta and immediately perform local self-optimization, without the need for building and 

maintaining a full variation map.       

1.4.4 Self-Optimization 

Self-optimization in the context of PAC is the process of a system finding new con-

figurations with higher fitness, given a physical substrate and environment (Figure 1.10).  

This includes generating and validating the configurations.  Generally, the generation of 

alternative configurations cannot be done at random but rather needs to be informed by 

the fine-grained introspection mentioned above.  The opportunities for optimization in 

reconfigurable systems are many, including local logic swapping, adaptive body bias, se-

lection of new netlist-level designs, LUT input re-ordering, inverted encodings, re-

synthesis, re-mapping, re-packing, re-placement, and re-routing. 

 

 

Figure 1.10: High-level view of the PAC concept 
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1.4.5 Time Scale 

The intent with PAC is for self-adaptation to occur periodically as needed.  Upon 

first being deployed, a system can direct a broad set of physical adaptations to account for 

manufacturing variations.  For example, optimizing the circuit placement or body bias 

may enable a slight reduction in supply voltage, thereby decreasing dynamic and static 

power consumption.  Following this initial period, a system can continue to adapt period-

ically to match the time scale of significant shifts in parameters.  The adaptation loop can 

require tens of milliseconds for reconfiguration alone, so certain high-frequency dynamic 

behavior cannot be addressed by PAC in real-time.  Dynamic voltage scaling can occur 

within one hundred microseconds [51].  Similarly, unintended dips in the supply voltage 

can occur on the order of microseconds.  However, many important phenomena can have 

time scales that are much longer.  Temperatures and workloads can sometimes change 

significantly over seconds and minutes.  Solar events can increase the radiation flux by 

four orders of magnitude for periods of hours or days [35].  Aging effects may occur over 

a period of weeks.  Moreover, even high-frequency phenomena can sometimes be ad-

dressed indirectly.  For instance, while an adaptation loop is typically not quick enough to 

respond to a specific voltage transient, it can be used to mitigate systematic problems de-

tected, such as recurring voltage transients in a specific location. 

1.4.6 Fine Granularity and FPGAs 

We define physical phenomena as fine grained if they have a length scale or time 

scale much smaller than that of an entire computation.  This includes most intra-die varia-

tions such as various “hot spots” and random local variations.  Correspondingly, methods 

of introspection and self-optimization should be considered fine grained if they have a 

resolution similar to the phenomena of interest.  Examples include the ability to sense 
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spatial variations at scales much finer than the correlation distance, the ability to perform 

self-test on small blocks such as individual latches, and the ability to re-arrange logic 

functions or re-route around individual wires or switches. 

Approaches with only chip-level spatial granularity are coarse by comparison.  Ex-

amples include chip-wide voltage or frequency scaling, and chip-wide adaptive body bi-

as.  A middle ground is granularity at the processor core level.  As many-core processors 

become common there is growing use of sensing and control methods affecting one or a 

small number of cores.  It has even been argued that the processor “core has become the 

new transistor” [78].  While this may be true from a system architect’s point of view, it is 

not sufficient for PAC.  Many of the phenomena motivating PAC are much finer than a 

processor core which can contain millions of transistors.  Imagine the vias connecting 

wires on adjacent layers of a chip; highly-resistive vias are expected to become a com-

mon problem according to ITRS projections [52].  If the only compensation method is to 

turn off an entire processor core, system efficiency will drop precipitously. 

For the above reasons we believe the case is strengthening for finely reconfigurable 

platforms such as FPGAs.  These enable sensing on the scale of small clusters, and recon-

figuration at the level of LUT, flip-flops, wires and switches.  It may even become possi-

ble to infer the properties of individual transistors inside latches, as will be seen in Chap-

ter 4. 

There is an important additional rationale for FPGA-based implementations.  They 

tend to have a moderate density of power and heat, since the logic is spread across islands 

surrounded by interconnect, and many resources are left unused.  Previously, this low 

density and higher resulting cost per chip were considered significant disadvantages in 
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many domains.  Application-specific integrated circuits (ASICs) and microprocessor 

units (MPUs) were much denser, providing higher performance and lower cost per chip at 

high volumes.  However, the situation is changing dramatically as power and heat densi-

ties severely constrain the scaling trends.  Dense platforms are generating more heat than 

can be easily removed from a system, forcing much of a chip to be left idle.  Some stu-

dies of many-core processors have indicated that the majority of the cores must be idle, a 

problem sometimes called “dark silicon.”  In a recent keynote address, ARM’s Chief 

Technology Officer Mike Muller projected that by 2020 and the arrival of 11 nm tech-

nology, the power budget may only allow 9% of a chip’s transistors to be active at any 

one time [70].  Thus the density advantage of ASICs and MPUs over FPGAs is less com-

pelling.  In some domains, the choice will be between a dense, fixed architecture in which 

most of the logic is idle, and a sparse, reconfigurable architecture capable of much finer-

grained PAC.  For an increasing number of applications the finely-reconfigurable plat-

forms are likely to win out.      

1.4.7 Assisted Adaptation 

We define self-adaptation as a process of system adaptation that is controlled and 

executed by a system itself.  We define assisted adaptation as a special type of self-

adaptation in which some of the resources for the adaptation process are provided by a 

remote server or peer.  A portion of the introspection and/or optimization tasks are of-

floaded.  

With PAC, the time scale of parametric shifts can be very long relative to the time-

scale of computations.  For instance, substrate parameters may change over a period of 

many days due to wearout.  Moreover, some portions of the physical adaptation process 

can require more resources than are available in the system.  This characteristic of need-
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ing infrequent, heavyweight resources suggests a role for assisted adaptation, in which a 

PAC system off-loads portions of the adaptive process to a remote server.  For instance, 

standard place and route tools generally require server-class memory and computing re-

sources and cannot feasibly run on a highly-constrained embedded system.  Likewise, 

estimation of certain logical parameters, such as error propagation probabilities using sta-

tistical fault injection, can require high-performance computing.   

Offloading execution to a remote machine has been realized in more abstract con-

texts such as “cyber-foraging,” in which a highly-constrained system searches over a 

network for usable resources [39].  Now there are several indications that such an ap-

proach holds promise in the PAC context.  Embedded systems with network connections 

are proliferating, and there have been significant advances in “cloud computing.”  As an 

example, frameworks are being developed for evaluating the energy efficiency of local 

vs. remote execution [60].  Second, preliminary studies such as one by Hyder et al. [48] 

illustrate remote execution for a type of physical adaptation, using multiple systems that 

are peers instead of using a server.  Third, missions such as the Cibola Flight Experiment 

have demonstrated that many of the pieces are already in place [19].  In that mission, 

physical data regarding faults and temperature swings on FPGAs is regularly transmitted 

to the ground.  After re-design and refinement on the ground, new FPGA configurations 

are securely uploaded to the spacecraft.  Up to 20 uncompressed configurations can be 

maintained on-board.  Though not fully automated and not as fine grained, the process is 

analogous to assisted adaptation.  Lastly, the first cloud for compiling FPGA applications 

came into existence in 2010 courtesy of National Instruments [58]; see Figure 1.11.  The 

LabVIEW FPGA 2010 beta tool allows compilation jobs to be farmed out to a cloud.  
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The jobs are performed in a fault-tolerant fashion by machines with high amounts of 

RAM and located at data centers operated by Amazon, Microsoft, or others.  Advanced 

security measures are employed just as with other high-security applications.  Thus much 

of the infrastructure needed for assisted PAC is arriving.   

 

 

Figure 1.11: FPGA Compile Cloud Service proposed by National Instruments [58] 

 
1.4.8 Proposed Architecture 

We now outline an architecture for a PAC agent.  The main objective of the agent is 

to generate physically-adapted configurations that optimize fitness.  It has at its disposal a 

set of interfaces, a library of routines, a bitstream containing the original configuration, 

and introspection data.  It uses these to build and reason about internal models, and to 

take appropriate actions.   

The actions available to the agent can be categorized as follows.  1) Introspection: 

the agent must seek out data to help in estimating parameter values.  Examples include 

performing a self-test of the reconfigurable substrate, collecting sensor data, and request-

ing logical data about an application from a remote server.  2) Optimization: the agent 

must decide whether to re-implement some or all of an application, and by which method.  

Examples include performing incremental re-placement or re-routing, inverting signal 
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polarities [129] to compensate for data-dependent wearout, and requesting a full varia-

tion-aware re-implementation cycle from a remote server.  3) Selection of configurations: 

the agent may need to load a self-test configuration, load a newly implemented configura-

tion so it can be validated on the substrate, or load a validated configuration having the 

highest fitness.  

A generic PAC system is sketched in Figure 1.12.  The adaptation agent process ex-

ecutes periodically as needed, either on a separate processor chip, on a hard core that is 

part of the same substrate (e.g., a PowerPC or ARM core [123] in Xilinx FPGAs), or 

even on a soft core implemented in the reconfigurable logic. 

 

 

Figure 1.12: Sketch of a generic PAC system 
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The decision procedure for the adaptation agent can take a variety of forms.  When 

the adaptation process is straightforward, a rule-based decision procedure may be suffi-

cient.  An example of a simple rule is, “If the time since the last self-test is at least 24 

hours, run self-test now.”  This will be the approach used in the case study presented in 

Chapters 5 and 6.  A question for future work is the extent to which the decision proce-

dure itself can be made adaptive.  A variety of cognitive algorithms have been proposed 

for use in adaptive computing systems [33][10][86]. 

A simplified flow of the adaptation process is shown in Figure 1.13.  In contrast with 

some previous flows of this type [105], the process need not be a linear progression of 

characterization-optimization-reconfiguration.  The agent may need to repeat certain 

types of actions, schedule actions to be performed remotely, and compete for resources 

with other agents. 

 

Figure 1.13: High-level view of the adaptive loop   

 
Here is a brief example of a PAC scenario.  After a specified time interval, the oper-

ating system activates the adaptation agent.  The agent decides to collect sensor data 
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while the rest of the system operates normally.  After processing, the data indicates that 

one region of the substrate is operating much more slowly than average.  The agent must 

query the sensors a second time in case the slowdown was caused by a transient pheno-

menon such as a voltage “droop.”  When the problem persists, the agent requests that a 

self-test of the substrate be performed at the next available opportunity.  The self-test data 

confirms an inherent slow region in the substrate.  Since the problem is regional and not 

highly localized, a global optimization algorithm requiring server resources is in order.  

The agent sends the relevant data to a remote server and requests that a new configuration 

be generated.  The agent process terminates and the rest of the system continues operat-

ing.  Within 24 hours the adapted configuration is securely uploaded to the system.  The 

agent is re-activated and requests that the new configuration be loaded and validated.  

Upon success, the new configuration is put into service and system health is evaluated.  

The original substrate-independent configuration is maintained as a backup.  The agent 

process then terminates until the next interval. 

 

1.5 Dissertation Outline 

The main contributions of this dissertation are a conceptual framework for physical-

ly-adaptive computing, new methods of introspection, previously unpublished evidence 

of physical variations, and new methods of self-optimization.   

The middle four chapters of this dissertation are organized along two dimensions as 

shown in Table 1.2.  Chapter 2 covers the problem of estimating regional variations in 

system parameters.  We introduce a flexible, highly-compact sensor that can be imple-

mented with reconfigurable logic and embedded in an application.  An array of such sen-

sors can be used by a system to gain useful information about delays, voltage transients, 
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and even leakage variations.  We then cover self-optimization for regional variations in 

Chapter 3.  We demonstrate PAC at the level of function netlists, and conduct case stu-

dies of three applications.  In the case studies, we suggest using a computational vulnera-

bility parameter in the cost functions, and we introduce a comprehensive soft error metric 

for this purpose.  Results show that by identifying and selecting the design best fitted to a 

region, fitness can often be improved by 30%–40%. 

 
Table 1.2: Organization of middle four chapters 

Topic Introspection Self-
Optimization 

Regional variations Ch. 2 Ch. 3 

Local variations Ch. 4 Ch. 5 

 

Chapter 4 covers introspection for local physical variations.  We conduct a unique 

study of local variations in transient fault reliability and establish limits of conventional 

characterization.  We then propose on-chip noise emulation as a much more feasible me-

thod of self-characterization.  As a proof-of-concept, we demonstrate an FPGA-based 

system capable of injecting noise into latches and uncovering previously hidden varia-

tions.  Chapter 5 is a study of self-optimization for local variations, using the introspec-

tion results from Chapter 4.  For instance we evaluate the use of re-packing and local re-

placement on a set of benchmark circuits to compensate for random variations, and show 

how reliability can be improved via low-cost self-adaptation as well as assisted adapta-
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tion using a remote server.  Lastly in Chapter 6, we summarize our contributions, identify 

directions for future research related to PAC, and provide some final thoughts.  
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CHAPTER 2  

Introspection for Regional Variations 

 

Regional variations in physical parameters are leading to excessive power consump-

tion, thermal hotspots, and reduced performance and reliability.  Methods of low-cost, in-

system characterization are needed.  This type of introspection is one of the key aspects of 

PAC.   

While some FPGA platforms include a single analog temperature and voltage sensor, 

they do not provide a means of measuring a variety of quantities at arbitrary locations.  

Thus one challenge is to use the standard digital logic in a reconfigurable fabric to meas-

ure as many key physical parameters as possible, and as unobtrusively as possible.  

The key research questions include the following: Which types of physical parame-

ters can be measured in reconfigurable systems?  How can they be measured, and with 

what overhead?  This chapter addresses these questions.  The main contributions of this 

work, which was originally published in [132], are the following:  

• The design of a flexible, compact, and easy-to-use sensor implemented in recon-

figurable logic 

• Improved procedures for measuring variations in delay, leakage power, dynamic 

power, and temperature 
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• A case study of a Virtex-5-based experimental system instrumented with over 100 

sensors, including results from thermally-controlled experiments 

 

2.1 Background 

We briefly discuss some of the work related to on-line sensing of physical parame-

ters.  Reconfigurable platforms sometimes include an analog voltage sensor and tempera-

ture sensor connected to an A/D converter, such as with the Xilinx System Monitor [125].  

However, the sensor coverage is limited to a single fixed location.  An early paper by 

Quénot et al. proposes the use of distributed ring oscillators to measure the voltage and 

temperature profile across an entire chip [81].  Works such as [57] describe associated 

measurement procedures.  A method of measuring leakage on a per-core basis in multi-

core processors was put forth in [127].  Regarding FPGAs in particular, there have been 

several attempts at on-line thermal sensing using ring oscillators, including 

[22][27][50][64]; unfortunately, these methods entail relatively high overhead, and are 

becoming less accurate since the temperature dependence of advanced reconfigurable 

logic (≤ 65 nm) increasingly is swamped by voltage noise.  Additional research focuses 

on finding an appropriate arrangement and density of sensors across the reconfigurable 

fabric [69].  In this chapter, we build upon the approaches mentioned above.   

There has been little work published regarding on-line measurement of FPGA para-

meters other than temperature.  An example of off-line characterization of FPGA compo-

nent delays is the work by Sedcole and Cheung [90].   

A brief consideration of some relevant application domains helps to motivate fine-

grained introspection.  Many embedded systems are required to exhibit low power, high 
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reliability, and high autonomy.  Examples include the FPGA-based systems deployed in 

spacecraft, UAVs, and similar systems [31][106].  Certain physical effects can be han-

dled with coarse-grained control techniques (e.g., chip-wide schemes for vol-

tage/frequency scaling, body bias, or power gating).  However, extreme variation calls for 

a finer-grained and more adaptive approach.  Data on regional variations may enable im-

proved efficiency and lifetimes in these embedded systems.   

Another relevant application domain is high-performance reconfigurable computing.  

As with embedded systems, there is a need for fine-grained sensing of power, tempera-

ture, and wearout.  One difference is that high-performance systems may be more ame-

nable to mitigation methods such as swapping out a failing FPGA, thermal-aware task 

scheduling [61], or on-line design optimization.  Note that high-performance FPGA co-

processors are increasingly created via high-level synthesis, meaning low-level physical 

effects such as hotspots may go untreated.  In fact, there are proposals for performing 

lightweight circuit synthesis at run-time [107].  The trend towards high-level design in-

creases the need for handling low-level effects at run-time. 

  

2.2 Instrumentation 

To enable effective on-line adaptation for physical effects, an FPGA-based system 

needs to be instrumented with the ability to measure physical parameters.  The nature of 

spatial variations across an FPGA chip necessitates that measurements be relatively fine 

grained, while system constraints dictate that the solution be low cost and efficient.  A 

key question is how instrumentation can be designed to achieve these conflicting goals. 
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One common type of on-chip digital sensor is based on a ring oscillator circuit that 

feeds a frequency counter.  The ring oscillator acts as a test circuit because its frequency 

is sensitive to parameters such as voltage.  The oscillator is enabled for some reference 

period and the number of pulses is counted.  The measured frequency is then used to es-

timate the physical quantity of interest.  The utility of such sensors for FPGA systems has 

been limited by their high sensitivity to supply voltage fluctuations, and by the associated 

hardware overhead. 

We now consider a much more efficient method of implementing the requisite fre-

quency counters, as well as a compact design of a ring oscillator.  Subsequently, we de-

scribe the proposed sensor and its methods of operation and access.   

2.2.1 Efficient Counting 

One approach to frequency counting is to implement a single centralized counter 

shared by multiple sensors [64].  Aside from routing congestion, this approach only al-

lows one sensor to be enabled at a time, which prevents a snapshot of a spatial profile to 

be captured.  (A parameter like dynamic power can change dramatically in the several 

milliseconds needed for serialized measurements.)  Furthermore, certain parameters re-

quire a system to be paused during measurement, so serialization would cause a linear 

decrease in performance.  For these reasons, we need a compact counter that can be in-

stantiated in each sensor and operated in parallel. 

The goals for the counter design include not just compactness but also ease of use by 

the software that reads and decodes the sensor data.  Traditionally these two goals have 

been mutually opposing, forcing a trade-off.  A standard binary counter uses a binary re-

presentation for the count as the name implies; this format can be readily processed in 
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software without special decoding.  Unfortunately, a binary counter consumes a relatively 

large amount of hardware resources; a counter with period M requires ڿlogଶ  LUTs and ۀܯ

flip-flops.  An alternative design is a linear feedback shift register counter (LFSR coun-

ter), which can be implemented very compactly using Xilinx’s shift register LUTs 

(SRLs).  For instance, a counter with period 215−1 can be built from an SRL, a flip-flop, 

and a LUT configured as an XOR [124]; this requires just two LUTs, compared to 15 for 

a binary counter.  However, the count value is scrambled by the LFSR and must be re-

covered by solving the discrete logarithm problem [25].  The discrete log is normally dif-

ficult to solve, which is why it has uses in the field of cryptography.  LFSRs have been 

used as event counters in cases where slow off-line decoding is acceptable, such as in sil-

icon debug [25].  The required overhead can be reduced somewhat through the choice of 

the LFSR’s characteristic polynomial, but remains non-trivial.  A series of exponentia-

tions must be performed (via polynomial multiplication), followed by lookups to residue 

tables that must be held in memory, followed by an application of the Chinese remainder 

theorem: 

ݐ݊ݑ݋ܿ ൌ  ∑ ௜ݎ ቀ ெ
௠೔

ቁ ௞              ,ܯ ௜ modݒ
௜ୀଵ                                    (2.1) 

where k is the number of moduli, ri is a residue, M is the counting period, mi is a modulus, 

and vi is a weight found with the extended Euclidean algorithm.   

We propose a counter design that is both compact and relatively easy to decode—a 

residue number system (RNS) ring counter.  An example is shown in Figure 2.1.  This 

style of counter was proposed long ago for generating timing signals [32], but to our 

knowledge its potential as an extremely efficient event counter for FPGAs has been unre-

cognized.  The design is composed of multiple shift registers of varying lengths, each 
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feeding back to itself.  Each shift register acts as a modulo-mi “ring counter” and can be 

implemented with a mi-bit SRL plus an optional flip-flop.  The shift registers are initia-

lized with a pattern such as a one-hot codeword.  When the count is to be incremented, 

the patterns shift to the right; the position of each “hot” bit represents the count value 

modulo mi, in other words, a residue ri.  A modulo-3 ring simply cycles through the states 

of 100, 010, and 001.  By implementing rings whose moduli are all pairwise relatively 

prime, the counter can reach a period of M = ∏ mi.  In the small example shown in Figure 

2.1, the moduli are five, seven, and nine, and thus the counter period is 5 × 7 × 9 = 315.  

The hot bits started to the left, and the counter was advanced ten times.  For instance, the 

hot bit in the bottom counter has wrapped around twice and returned to the leftmost posi-

tion, since 10 mod 5 = 0.  Since the residue values are readily available simply by reading 

out the individual shift registers, the RNS count value can be easily recovered just by ap-

plying the Chinese remainder theorem (2.1).  In this example, the residues are one, three, 

and zero, and the resulting decoded count is ten.   

   

 

Figure 2.1: Compact counter design using the residue number system (RNS).  All moduli 
are pairwise relatively prime.  The period is M = m1 × m2 × m3. 
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LFSR Counter Decoding Algorithm 
y ← polynomial contents of LFSR; // read counter 
for i = 1 to k do 

for j = 1 to 2 ڿlogଶሺܯ ݉௜⁄ ሻۀ do // exponentiations 
yi ← yi × y; // polynomial multiplication 

end 
ri ← TABLE(yi); // look up residue from table in memory 

end 
for i = 1 to k do  // Chinese remainder theorem 

count  = count + ri (M/mi) vi mod M;   
end 
return count; 

(a) 

RNS Ring Counter Decoding Algorithm 
r ← counter;  // read k residues from counter 
for i = 1 to k do  // Chinese remainder theorem 

count  = count + ri (M/mi) vi mod M; 
end 
return count; 

(b) 

Figure 2.2: Sketch of algorithms to recover the count for (a) an LFSR counter [25] and 
(b) the proposed RNS ring counter 

 
With the proposed counter, most of the processing overhead of an LFSR counter is 

avoided, and no memory is required for tables.  Pseudocode for the two counter styles is 

shown in Figure 2.2.  Consider an example in which a counter of period 213 is required.  

A comparison of the three design styles is shown in Table 2.1.  An RNS ring counter can 

be implemented with just two LUTs, using moduli of 33, 17, and 16.  With the Virtex-

5/6, one LUT acts as a 32-bit SRL and one acts as two 16-bit SRLs.  This two-LUT de-

sign is far more compact than a binary counter, and just as small as an LFSR counter.  

Moreover, the RNS ring counter requires no tables in memory, while the LFSR counter 

requires multiple tables totaling on the order of hundreds of bytes.  Lastly, the RNS  ring  
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counter  is  almost  as  trivial  to  decode  as  a  binary counter, comparing favorably to 

the dozens of polynomial multiplications needed for an LFSR counter. 

   
Table 2.1: Comparison of counter designs assuming a maximum period of 213 

Counter type 
Hardware overhead 

Ease of decoding Logic 
(LUTs) 

Memory 
(Bytes) 

Binary 13 0 No decoding 

LFSR using SRLs 2 Hundreds 
[25] 

Dozens of polynomial multip-
lications; ≥2 table lookups; ≥4 
integer ops 

RNS ring using SRLs 
(proposed) 2 0 6 integer operations 

 

2.2.2 Ring Oscillator Design 

The main goals for our ring oscillator are compactness, and sensitivity to relevant 

physical parameters.  The basic design is shown in Figure 2.3.  As with standard ring os-

cillators, it includes an odd number of inversions, and an on/off control switch.  Two as-

pects of the design are non-standard.  First, a latch is instantiated along with each LUT.  

The latch is held in the open state and acts as additional delay, increasing the fraction of 

ring oscillator delay that is due to transistors.  Since the effect of temperature is normally 

stronger on transistors than wires, this increases the overall sensitivity to temperature.  

This improved sensitivity was validated by a hardware experiment (detailed below in Ex-

perimental Results) comparing ring oscillators both with and without the latch.  Other 

researchers have used latches in a ring oscillator [56], but the impact of latches on tem-

perature sensitivity appears to have been unrecognized. 
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Figure 2.3: Proposed ring oscillator design 

 
The second benefit of the proposed ring oscillator is its compactness, using only 

three stages.  Ring oscillators for thermal sensing have used various numbers of stages, 

including 4 [14], 48 [50], and 75 [22].  One rationale given for a large number of stages is 

to cancel out local, uncorrelated variations, in the hopes that all ring oscillators will be-

have similarly.  However, calibration would still be required due to regional variations.  

A second reason is to minimize “self-heating,” since a slow and sparse design has lower 

heat density than a fast and dense one.  We conducted a hardware experiment comparing 

a compact 3-stage ring oscillator to a 21-stage, sparsely-placed design and found no evi-

dence of self-heating problems.  We also tested the ring oscillator using enable periods 

ranging from nanoseconds to milliseconds and found highly consistent frequencies. 

The main challenge in using reconfigurable logic-based ring oscillators to measure 

delay or temperature is their high sensitivity to the supply voltage.  We propose leverag-

ing this sensitivity to measure various types of voltage drop, and to subsequently infer 
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useful physical parameters.  The issue of voltage sensitivity will be discussed in Section 

2.3.   

2.2.3 Sensor Design and Deployment 

The proposed sensor design includes a ring oscillator, a frequency counter, and logic 

for control and access.  A high-level diagram is shown in Figure 2.4.  The sensor is 

enabled by a reference timer that is either on-chip or off-chip.  A single timer can be used 

to enable multiple sensors simultaneously.  The sensor resolution is dictated by the ring 

oscillator frequency and the length of the timer pulse.  For instance, a frequency of 250 

MHz and a timer pulse of 40 μs allow a resolution of one part in 10,000.  After a mea-

surement, the sensor data is read out via a scan output.  An array of sensors can be con-

nected via one or more scan chains.  Routing overhead includes the scan chain and two 

global signals: the timer signal and the scan chain enable.  Embedded software controls 

the scan sequence and reads the sensor data.  Note that the sensor data can be readily ac-

cessed without using the FPGA’s built-in capability for reading out its configuration 

(readback), and similarly sensors can be initialized without involving the FPGA reconfi-

guration process. 

A distinguishing feature of the proposed sensor is its compactness.  The entire design 

fits into a single Virtex-5 configurable logic block (CLB) containing just eight LUTs.  

This includes logic for scan and for synchronizing the timer signal to the ring oscillator 

clock.  As can be seen in Table 2.2, this is much smaller than previous designs that have 

been proposed for thermal sensing, even after normalizing to a single architecture. 
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Figure 2.4: High-level diagram of proposed sensor 

 
  Table 2.2: Comparison of reconfigurable-logic-based sensors  

Sensor design LUT count 
(target platform) 

LUT count 
normalized to 

Virtex-5 
Chen et al. 2007 [22] 140 (Altera ACEX) ≥ 70 

Jones et al. 2007 [50] 100 (Virtex-4) ≥ 50 
López-Buedo et al. 2004 
[65] 34 (Virtex-1) 31 

Design proposed here 8 (Virtex-5) 8 
 

The sensor design can be defined with a schematic or an HDL netlist.  Sensor loca-

tions can be easily specified by using physical constraint statements such as Xilinx’s 

RLOC_ORIGIN.  Directed routing statements are used to ensure consistent ring oscillator 

instances.  Software drivers contain the code for operating the sensors and for accessing, 

decoding, and processing the data.  By integrating the sensing infrastructure into a tradi-

tional system design flow, as shown in Figure 2.5, an instrumented application can be 

generated.  
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  Figure 2.5: Overview of the proposed design flow for FPGA system instrumentation 

 
An interesting question is, what is an appropriate spatial arrangement of sensors?  

Related works involving FPGA-based thermal sensors have either suggested a regular 

rectangular grid [65], or an irregular arrangement focused on expected application-

specific hotspots [69].  Here we seek to perform systematic measurements of a variety of 

physical parameters, and thus employ a regular grid; specifically, we recommend a hex-

agonal tessellation due to its efficient area coverage [113].  An example of a hexagonal 

sensor array can be seen in Figure 2.6, where each sensor (shown as a light rectangle) has 

six nearest neighbors that are nearly equidistant. 

   

 

Figure 2.6: Floorplan of an FPGA-based system instrumented with an array of compact 
multi-use sensors (light-colored rectangles) implemented in reconfigurable logic  
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A second question is, what is an appropriate density of sensors?  In the past, this has 

been largely dictated by hardware overhead.  Most work on FPGAs involves between one 

and 32 sensors per chip.  One work for ICs suggests sensing at 96 locations [57].  With 

our proposed compact design there is the possibility of deploying over 100 sensors while 

incurring only 1% overhead.  In principle, over 12,000 sensors could be instantiated in a 

high capacity Virtex-5 while using only half of the available logic.  The actual density 

should match the granularity of the physical phenomena being sensed.  One relevant 

measure is the distance at which areas of the chip are correlated (correlation distance).  

Sylvester et al. demonstrate that higher sensor densities enable increased accuracy, for 

instance in predicting chip lifetimes [103]. 

 

2.3 Measurement Procedures 

In this section, we address three general questions: which physical parameters can be 

measured in a reconfigurable fabric, how is such data useful, and what are the procedures 

for measurement?  After defining some necessary concepts, we introduce enhanced pro-

cedures for measuring variations in four key parameters: delay, leakage, dynamic power, 

and temperature. 

Ring oscillators have been widely used for sensing variations in delay.  They have 

also been proposed for sensing temperature.  The parameters of delay, temperature and 

voltage are all closely related.  For instance, at typical supply voltages, a ring oscillator 

will slow down with higher temperature, but speed up with higher voltage.  If two of the 

three related quantities can be measured accurately, then the third can be inferred.  This is 

typically how researchers have proposed using ring oscillators in reconfigurable fabrics.  
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For instance, the ring oscillator delay is measured at a known voltage, and then a model is 

employed to estimate the temperature.   

The traditional approach to ring oscillator-based sensing, for thermal sensing in par-

ticular, suffers from several limitations.  One is that actual supply voltages are often low-

er than intended due to a phenomenon called static voltage drop (also known as static IR 

drop [3]).  Supply voltages can furthermore undergo rapid, high-frequency swings after 

dramatic changes in switching activity.  We refer to these as voltage transients (also 

known as L di/dt events or voltage droops [57]).  Lastly, for platforms such as the Virtex-

5, measurements of the supply voltage can only be taken at a supply pin (we call this vol-

tage VCCp), and with limited resolution.   

2.3.1 Delay 

Every chip has fast regions and slow regions, due to factors such as imperfect litho-

graphy and variations in transistor critical dimensions [90].  By mapping and adapting to 

delay variations, the system frequency can potentially be improved.   

Regional delay variations can be mapped via controlled measurements of ring oscil-

lator frequencies across a chip.  A traditional procedure is to configure an FPGA fabric 

with a special test circuit containing ring oscillators.  The chip is left in an idle state for 

an extended period (seconds to minutes) to eliminate voltage or temperature gradients 

caused by switching activity.  Then the ring oscillators are sampled, either one at a time 

or (when feasible) simultaneously.  The procedure can be repeated for a range of temper-

atures and supply voltages if necessary.  We propose using a traditional procedure but 

with a key difference: the sensors are embedded in the application logic and the sensing 

is performed in the field.  This reduces the bottleneck that occurs with expensive testers 
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at manufacturing time.  Furthermore, with an instrumented application there may be no 

need for storing a separate test bitstream and for performing reconfigurations.  The delay 

characterization can be performed occasionally during a system’s lifetime to track gra-

dual, regional shifts caused by wearout. 

2.3.2 Leakage 

Leakage is a phenomenon in which current flows through a transistor at the wrong 

time (i.e., when turned off) or wrong place (gate oxide), as with a leaky water faucet or 

pipe.  The amount of variation is much larger than it is for delay; the ratio of leakage 

from worst-case to best-case transistors on a single FPGA die has already passed 2.0 

[111].  Two main types are sub-threshold leakage, which is very sensitive to temperature, 

and gate oxide leakage.  In fact, with upcoming high-K metal gate transistors used on 28 

nm FPGAs, gate oxide leakage will be largely mitigated [11], meaning the relative im-

portance of sub-threshold leakage (and thus temperature) will increase.  Hot transistors 

leak more current and generate more heat, driving a positive feedback loop.  It would be 

helpful to know a chip’s leakage profile so the problems of static power, thermal hots-

pots, and temperature-dependent reliability could be more effectively mitigated.   

To our knowledge there has been no low-cost method of sensing a leakage profile in 

FPGAs.  The authors of [98] lament, “Programming leakage sensors on the FPGA may 

not be feasible to employ due to their analog nature.”  Given a chip package and laborato-

ry equipment, one may be able to carefully measure the leakage currents at various power 

supply pins and map the data to regions on the die inside.  We propose a relatively 

straightforward method of in-system characterization, using our digital sensors.  First, we 

explain the physical mechanisms at work, and then describe the measurement procedure.  



51 
 

Historically, ring oscillator frequencies have been modeled as linear with temperature, 

assuming a constant supply voltage.  However, leakage current increases exponentially 

with temperature, and on modern chips such as the Virtex-5, this current is high enough 

to cause noticeable drops in the supply voltage and thus ring oscillator frequencies.  

Temperature-dependent voltage drop can be observed at the supply pins simply by read-

ing the built-in analog voltage sensor at different ambient temperatures.  For instance, we 

have found that this global drop increases by roughly 1 mV from 75°C to 85°C on the 

Virtex-5 we tested.  We also separately found evidence of regional on-chip voltage drops 

caused by regional currents interacting with the on-chip power grid.  At higher tempera-

tures, all ring oscillators will exhibit some slowdown due to the global effects (namely a 

decrease in carrier mobility, and global voltage drop due to both leakage and increased 

resistance in the power grid).  In addition, there will be a variable slowdown primarily 

caused by leakage-induced regional voltage drop.  This slowdown provides evidence for 

the amount of leakage in the vicinity of the oscillator.  While the absolute amounts of 

leakage are difficult to estimate accurately, this method provides an estimate of the rela-

tive leakage profile.   

The measurement procedure involves performing the ring oscillator delay characteri-

zation from Section 2.3.1 at two different die temperatures.  (Systems must either leve-

rage natural swings in ambient temperature, control the die temperature via a fan, or if 

necessary, use a ‘heater’ configuration.)  With these two measurements the effects of in-

creased temperature on each region of the chip can be compared, and the leakage profile 

inferred. 
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  As an example, imagine that ring oscillators spread across a die are sampled at a 

stable, nearly-uniform temperatures of both 0°C (where leakage is smallest) and 85°C.  

The difference in oscillator frequencies turns out to be 2.0% on average, largely due to 

global IR drop.  However, one spatial region exhibits larger differences of 2.5%, and 

another close to 3%.  These spatial anomalies can provide indications of high-leakage 

regions.        

2.3.3 Dynamic Power 

Dynamic power can have an uneven spatial distribution due to uneven application 

activity.  This leads to thermal hotspots, reliability issues, and extra power consumption.  

For example, the power supply may have to be set to a high voltage to offset the worst-

case regional voltage drop.  Dynamic power profiles can usually be estimated at pre-

manufacturing time, or in some cases with performance counters used at run-time.  Nev-

ertheless, certain systems may have an unknown profile, such as those with autonomous-

ly-generated configurations [107].  Sensing the profile in these cases may allow improved 

configurations to be found.  We now describe a simple method of inferring a dynamic 

power profile.  The basic approach is to sample ring oscillator frequencies as the system 

is running, briefly pause the system until no switching occurs, and then immediately 

sample the frequencies again.  A change in frequency indicates the size of regional vol-

tage drop due to switching current.  Temperature and leakage effects remain nearly con-

stant since the time between readings is much less than the thermal time constant which 

can be tens of milliseconds.  Very similar approaches have been used for sensing voltage 

variations [27][57], but here we exploit the fact that voltage drops can be used to infer 

dynamic power.  Furthermore, we propose the following enhancement to previous me-
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thods.  Voltage transients can introduce large errors in ring oscillator data.  We add a 

simple check for such events; instead of taking a single reading while the application is 

running we propose taking multiple consecutive readings.  Each reading is spaced out by 

the length of the problematic transients (on the order of 1ms).  A quick check of data con-

sistency can determine whether a voltage transient event occurred.  If not, the procedure 

can move forward and the system can be paused; otherwise new readings are required.  

This method is most practical for applications with a relatively steady-state power profile 

or activity phases much longer than milliseconds.  The proposed procedure is as follows: 

1.  Sample ring oscillator frequencies twice while application is running 

2.  Check consistency; if a voltage transient is detected repeat 1 

3.  Pause the application 

4.  Wait for voltage transients (caused by pausing activity) to dissipate 

5.  Sample ring oscillator frequencies again 

6.  Resume the application 

7.  When convenient, compare the frequency shifts of ring oscillators 

2.3.4 Temperature 

Thermal hotspots lead to early wearout, lower operating frequencies, higher static 

power, and extra cooling costs.  On-line sensing of a thermal profile can account for 

physical realities (e.g., variations in leakage or packaging) and allow for enhanced miti-

gation schemes.  Unfortunately, thermal profiles are very difficult to measure with stan-

dard reconfigurable logic.  The main problem is that circuit delays with modern CMOS 

technologies are no longer very sensitive to temperature [110].  With older technologies 

such as the Xilinx XC3000/4000 in the mid-1990s, ring oscillator frequencies would shift 
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by 20% over the full temperature range [14]; with the Virtex-5 we find the shift to be on-

ly 2.5%.   

The dependence on voltage, however, is quite strong.  On-chip voltages cannot be 

easily controlled or measured, adding noise to temperature measurements.  Previous 

works tend to assume that by pausing system activity, the supply voltage very quickly 

becomes spatially uniform and thus temperature can be cleanly estimated.  This is no 

longer valid in general, since leakage variations (greatly amplified by temperature varia-

tions) cause non-uniform drops in the supply voltage.  A second problem is that the 

supply voltage at the pins (VCCp) may not be measurable with fine resolution.  For in-

stance, the Xilinx System Monitor [125] reports VCCp with only 3 mV resolution, which 

could introduce errors of 10°C–20°C into temperature estimates.  A third problem is that 

voltage drop causes non-linearity in the delay, temperature, and VCCp relationships, so 

the conventional linear models are becoming less accurate.  Temperature sensing could 

be improved if additional built-in analog sensors were available on FPGAs, or if leakage 

current could be selectively disabled via power gating.  Absent those, there is a need for 

new models and methods.  

We propose the following procedure for estimating a thermal profile.  First, ring os-

cillator measurements are made across the range of voltages and temperatures.  A model 

of temperature as a function of delay and voltage is built, for instance via surface fitting 

in MATLAB.  This characterization and modeling can be performed off-line and need 

only be done once for a given ring oscillator design and target platform type.  An exam-

ple is detailed in the next section.  When a system is deployed into the field, variation-

aware calibration is performed to find the coefficients of the temperature model for each 
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sensor.  The data from delay and leakage characterization can be used for this calibration.  

At run-time, the chip region being sensed must be paused and left idle for long enough to 

allow any voltage transients to dissipate.  The ring oscillator frequencies are then meas-

ured, and the supply voltage at the pins is sampled (an average of multiple readings can 

improve the limited resolution).  This data is then plugged into the empirical model and 

the temperature around the sensor is estimated. 

  

2.4 Experimental Results 

We now describe our experimental setup and then present the results of sensing ex-

periments involving delay, leakage, dynamic power, and temperature.  We designed an 

experimental FPGA-based system and instrumented it with 112 of the proposed sensors.  

A block diagram of the design is shown in Figure 2.7.  The design was instantiated on 

each of two Xilinx Virtex-5 FPGAs residing on XUPV5-LX110T boards.  The reconfi-

gurable fabric is composed of 160 × 54 CLBs, corresponding to 160 × 108 Virtex-5 slices 

(aka clusters).  The sensors are arranged on a hexagonal grid of size 16 × 7 to fit the di-

mensions of the die.  Sensors are nearly equidistant from each of their six neighbors.  The 

layout can be seen in Figure 2.6, rotated right by 90 degrees.  The sensor frequency coun-

ter was designed with moduli of 49, 17 and 16 for a counting period of 13,328.  Key sen-

sor specifications are shown in Table 2.3.  Note that the readout time for the entire sensor 

array is about 100 μs, which is much faster than thermal time constants. 
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Figure 2.7: Block diagram of the experimental system implemented on a Virtex-5 FPGA 

 
Table 2.3: Sensor specifications 

Item Specification 
Hardware resources 8 LUTs per sensor (896 total) 
Data size 82 bits (= 49 + 17 + 16) 
Measurement period 40 μs 
Resolution 1 part in 10,000 @ 40 μs 
Sensor array readout time ~100 μs 

 

The system contains a MicroBlaze 7.10.a CPU, and three peripherals connected to 

the processor local bus (PLB): an XPS Timer for enabling the sensors, a core for interfac-

ing to the System Monitor, and a UART16550 serial interface for user input and output.  

All of these operate at 100 MHz.  In addition, application logic was included for experi-

mental purposes.  The application logic acts as a switching/heater circuit with regions that 

can be independently enabled.  It consists of 28,200 LUTs and flip-flops that can toggle 

at high speed.  Both the array of sensors and the application logic are connected to the 

MicroBlaze via a shared set of fast simplex links of minimum size.  The design was im-

plemented with the Xilinx ISE and EDK 10.1 toolset.  The experimental control software 

was written as a standalone application in C for the MicroBlaze, and fits into 32 KB of 
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block RAM.  Thermally-controlled experiments were performed using a TestEquity 

105A thermal chamber, as pictured in Figure 2.8. 

   
 

  

Figure 2.8: Experimental setup in the thermal chamber (left); close-up of an XUPV5 cir-
cuit board (right) 

 
We first tested the proposed ring oscillator design, and compared its temperature 

sensitivity to a conventional design.  Oscillator frequencies were measured at a range of 

temperatures from 0°C to 85°C, while the supply voltage at the pins was maintained at a 

constant 1.009 V.  Results confirm that the proposed design has a stronger temperature 

dependence than the conventional design, as seen in Figure 2.9.  The relative improve-

ment in the slope is 17%. 
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Figure 2.9: Frequency dependence on temperature for proposed ring oscillator design and 
conventional design 

 
2.4.1 Delay 

The first experiment using the proposed on-line measurement method is a 

characterization of delay variations.  This type of measurement is required for calibrating 

the ring oscillators.  The ambient temperature was set to 25°C and the system was left in 

the idle state until it reached thermal equilibrium.  The junction temperature (Tj) was 

35°C as reported by the System Monitor.  Ten consecutive readings of the oscillators 

were taken.  We found that the readings at individual sensors are highly consistent; the 

standard deviation for each set of ten readings is approximately 0.02% of the mean.  In 

other words, the random measurement error for an oscillator with mean frequency 250 

MHz is just 0.05 MHz.   

The frequency profiles of the two FPGA chips are shown in Figure 2.10.  The x and y 

coordinates represent Virtex-5 slice locations.  Dots indicate the average frequencies 

measured at the locations of the sensors.  The frequencies at locations between sensors 

are estimated using linear interpolation.  Several observations can be made.  Chip 2 is 

noticeably faster than chip 1, due to inter-die variation and board-level differences 
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(slightly different supply voltages and heat sinks).  Here we are more concerned with in-

tra-die regional variation.  With both chips, the right side is the slowest region.  The fast-

est region is near the top of the grid for chip 1 but near the bottom for chip 2.  The distri-

bution of measured frequencies is shown in Figure 2.11.  The amount of spatial variation 

can be expressed via a coefficient of variation, which is the standard deviation σ across 

all sensor frequencies divided by the mean μ.  Both chips exhibit a coefficient of variation 

of approximately 2.3%, which corresponds to a 3σ variation of approximately 7%. 

 

   

Figure 2.10: Frequency profile for chip 1 (left) and chip 2 (right) in the idle state at Tj = 
35°C  

 

 

Figure 2.11: Histogram of ring oscillator frequencies for chip 1 (dark) and chip 2 (light) 
in the idle state at Tj = 35°C 
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2.4.2 Leakage 

The second experiment is a characterization of a current leakage profile.  We meas-

ured all ring oscillator frequencies while the system was idle, but this time at two differ-

ent temperatures.  The ambient temperature was controlled by the thermal chamber.  The 

measured leakage variations are visualized in Figure 2.12, which shows the relative fre-

quency shifts that occur when the steady-state junction temperature is changed from 35°C 

to 85°C.  Larger shifts are evidence of higher leakage.  Certain ring oscillators on chip 1 

slow down by 1.6%, while others slow down by 2.7%.  For chip 2 the range is 1.3% to 

2.4%.  Ring oscillator frequency and leakage both depend on threshold voltage, so one 

might expect the two parameters to be highly correlated.  In other words, fast regions 

might tend to be leaky regions.  Analysis of the intra-die experimental data shows a weak 

correlation.  The correlation can be measured using linear regression and the R2 statistic.  

A value of 1 indicates perfect correlation.  We found the R2 value to be 0.19 for both chip 

1 and chip 2. 

      

Figure 2.12: Map of leakage current variations for chip 1 (left) and chip 2 (right) 
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2.4.3 Dynamic Power 

We next test the ability to sense a dynamic power profile.  A demonstration applica-

tion was set up to generate high switching activity near the top and bottom of the reconfi-

gurable fabric.  The middle portion was left idle so that clean measurements could be tak-

en and validated against the System Monitor, which sits near the center of the die.  Spe-

cifically, 4,500 slices toggled in the upper third of the die with y coordinates ≥110, and 

2,550 slices toggled in the bottom portion of the die.  The proposed procedure was ap-

plied, isolating the effect of switching activity.  Measurements indicate that ring oscillator 

shifts are indeed largest in the two regions with switching activity, as shown in Figure 

2.13.  The image is rotated to illustrate the changes along the y axis.  This type of mea-

surement provides important information about the spatial extent of switching effects.  

For instance, while the application was set up with a dramatic discontinuity in  activity  at 

y = 110, the measured frequency shifts are surprisingly continuous, showing a relatively 

even slope that begins around y = 100 and extends all the way to the top of the die. 

 

 

Figure 2.13: Map of frequency changes due to switching activity 
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2.4.4 Temperature 

In this final experiment we consider temperature variations.  We first build an empir-

ical model of frequency, temperature and voltage.  The sensor array is placed such that 

one sensor is at (x,y) = (48,81) immediately adjacent to the System Monitor, allowing 

temperature estimates for that location to be validated against the built-in analog sensor.  

We want to know what type of model fits the data and with what accuracy.  We measured 

frequencies over a range of temperatures from 0°C to 85°C, and over a 40 mV range of 

voltages.  The supply voltage VCCp was indirectly modified by enabling various amount 

of application activity (affecting the static voltage drop), from zero activity all the way to 

100% application activity in 10% steps (equivalent to about 600 slices of application log-

ic).  In total, 34 data points were collected, with ten readings at each point.  Various mod-

els were fitted to the data using MATLAB, in order to find an effective temperature esti-

mation function T(x,y) = f (Freq(x,y),VCCp), where T(x,y) is the temperature at die loca-

tion (x,y), and f is a function of frequency Freq(x,y) and voltage VCCp.  We found that a 

traditional model with linear dependence on frequency and voltage provides a root mean 

square error of 5.7°C.  In contrast, we found that a 2nd order polynomial model provides a 

better fit and lower error.  The form of the model is as follows, with coefficients ci: 

 
ܶሺݔ, ሻݕ ൌ ܿଵݍ݁ݎܨሺݔ,  ௣ܥܥሻଶ ൅ ܿଶܸݕ

ଶ ൅ ܿଷݍ݁ݎܨሺݔ, ௣ܥܥሻܸݕ ൅  

ܿସݍ݁ݎܨሺݔ,  ௣ ൅ ܿ଺ .                                                (2.2)ܥܥሻ ൅ ܿହܸݕ

 
This model reduces the error to 3.5°C.  Plots of the surface fit can be seen in Figure 2.14; 

the surface is curved and twisted rather than planar.  The error with this model is compa-
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rable to the accuracy of analog sensors such as the one built in to the System Monitor, 

which is rated to ±4°C. 

 

 

Figure 2.14: Measured relationship between temperature, sensor frequency, and supply 
voltage for the sensor at (48,81) 

 

 

Figure 2.15: Map of frequency changes due to temperature effects 
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In addition to the validated measurements at location (48,81), we sensed the thermal 

effects across the entire fabric for the application mentioned above.  Ring oscillator fre-

quencies were measured immediately after the application was paused, and compared to 

the steady-state idle case.  The resulting shifts in frequencies are illustrated in Figure 

2.15.  This profile includes not only the direct effect of temperature, but also the indirect 

effect caused by temperature-dependent leakage. 

 

2.5 Summary 

We have introduced an approach to on-line sensing of regional variations that in-

cludes a compact multi-use sensor, methods of instrumenting an application, and en-

hanced procedures for measuring physical parameters.  This type of low-cost introspec-

tion enables a PAC system to gain important knowledge about its physical circumstances.  

Novel use of a residue number system counter yields sensors that are surprisingly com-

pact, while an enhanced ring oscillator enables a 17% improvement in temperature sensi-

tivity.  The proposed sensor fits into just eight LUTs on a Virtex-5, and is nearly one-

quarter of the size of the smallest previously published design.  We have described pro-

cedures for measuring the profiles of four parameters of key interest to system designers: 

delay, dynamic power, leakage power, and temperature.  The work suggests possibilities 

for future research involving additional physical parameters, measurement procedures, 

and sensor array arrangements.  As demonstrated with our experimental system, the pro-

posed approach is suitable for low-cost sensing of a variety of parameters, and is accurate 

enough to estimate spatial profiles.  The regional data learned via introspection can be 

used to inform the PAC optimization methods discussed in the next chapter. 
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CHAPTER 3  

Self-Optimization for Regional Variations 

 

In this chapter, we describe methods of self-optimization for regional variations, us-

ing data gleaned by introspection.  First we briefly discuss regional adaptive body bias 

and re-placement of circuits.  Then we consider self-optimization at a higher-level of ab-

straction; given regional variations, alternative netlist-level designs are evaluated on-line 

and the fittest one selected.  We argue for the importance of including soft error vulnera-

bility in the netlist evaluation, and propose a new figure-of-merit for logical vulnerability.  

Then we demonstrate quantitative examples of PAC in three applications, with a cost 

function that includes area, throughput, and the proposed vulnerability parameter. 

 

3.1 Adaptive Body Bias 

The characteristics of a group of transistors can be altered by changing the bias vol-

tage applied to the body of the devices.  This is called adaptive body bias (ABB).  Re-

verse biasing is when a negative bias voltage is applied, raising the effective threshold 

voltage.  This generally improves leakage but slows down switching.  Conversely, for-

ward biasing is when a positive bias voltage is applied, lowering the threshold voltage 

and leading to a leakier device but faster switching. 
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ABB can be used in a chip-wide fashion at manufacturing time to account for die-to-

die variations.  With FPGA chips such as the Altera Stratix III and IV, it is now possible 

to perform regional ABB, with regions containing just two clusters (i.e., logic array 

blocks or LABs) and a total of just 20 8-input LUTs.  The current state-of-the-art is for 

the ABB settings to be determined at pre-silicon design time based on static timing analy-

sis [63].  Regions containing critical or near-critical path logic are set to the high-

performance mode, and all other regions are set to the low-leakage mode.  This approach 

is oblivious to substrate variations and assumes that using pre-manufacturing timing es-

timates is good enough. 

Nabaa et al. propose an alternative ABB approach involving in-system characteriza-

tion of delays in the actual substrate [75].  The accuracy of their delay measurement me-

thod is unclear, and there is no method of leakage measurement.  Their simulation model 

oddly includes local, uncorrelated variations and does not address regional variations.  

Furthermore, the approach requires a special characterizer circuit that would have to be 

built into the FPGA as a hard macro; current FPGAs do not have such a circuit. 

The methods of introspection presented in Chapter 3 can be used to improve upon 

the two previously mentioned methods and allow optimization of ABB settings in the 

field, as follows.  For a given chip type, a self-test configuration is created that includes 

an array of sensors.  The sensors are packed as densely as needed to match the correlation 

distances for delay and leakage.  In the extreme case, a sensor can be placed at every sin-

gle region (pair of LABs), which on the highest-capacity Stratix IV platform means 

roughly 10,000 regions.  Once a system has been deployed, the self-test configuration is 

loaded and measurements are taken of the delay and leakage profiles.  Critical regions 
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can be identified—these are regions that had been assigned the high-performance ABB 

setting at pre-manufacturing time, and also have been mapped to the slowest portions of 

the reconfigurable substrate.  These regions establish a maximum achievable frequency 

fmax.  Next, regions with extra timing margin (slack) are identified—these are regions that 

had been assigned the high-performance setting but have been mapped to substrate por-

tions that are significantly faster than worst case.  If the slack is greater than a desired 

threshold, the ABB setting is switched to low-power mode, reducing static power. 

  Conversely, regions that were initially placed in the low-power mode may have 

much less slack than expected if the delay is abnormally high.  These could be switched 

to the high-performance mode to lessen the probability of soft errors due to timing viola-

tions.    

This qualitative example suggests an opening for further work in this area.  The ap-

proach is readily applicable to platforms such as the Stratix III and IV.  A fully self-

adaptive scheme could be enabled by vendor support for direct modifications of the ABB 

settings in the bitstream.  In any case, PAC systems can leverage assisted adaptation by 

communicating the desired settings to a server running the Altera CAD tools.  The server 

would generate the adapted bitstream and transmit it back to the PAC system. 

 

3.2 Re-Placement 

Once regional variations have been characterized as discussed in Chapter 2, a system 

can in principle be optimized via variation-aware placement.  Cheng et al. proposed an 

algorithm for “chipwise” placement called vaPL, within the VPR framework [24].  This 

algorithm depends on accurate characterization data being available; the authors did not 
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address how this would be possible, admitting that “synthesis of test circuits to generate 

the variation map is ongoing research.”  The methods of Chapter 2 help to fill the gap.  

Cheng et al. simulated the proposed algorithm assuming total variation (die-to-die, re-

gional, and local) of 3σ = 10% and a correlation distance of 2 mm, and estimated an aver-

age improvement in circuit speed of 12%. 

Another variation-aware extension to the VPR placement algorithm was proposed in 

[98].  The algorithm depends on accurate delay and leakage information being available, 

though once again no solution was provided.  The authors felt that “leakage sensors on 

FPGAs may not be feasible.”  Assuming that methods of sensing became available in the 

future, their simulations showed the possibility of a 10% improvement in frequency and a 

simultaneous 14% improvement in leakage.  Fortunately, the methods described in Chap-

ter 2 now provide a low-cost method of estimating delay profiles and even getting a 

rough estimate of leakage profiles. 

With both of the above placement algorithms, the assistance of a server would gen-

erally be needed.  Note that the above frequency gains of 10%–12% may increase the 

price or utility of a system by much more than 10%–12% for applications that are per-

formance-constrained. 

 

3.3 Netlist-Level PAC 

While Sections 3.1–3.2 considered optimizations that are made to a physical imple-

mentation of a function, we now consider applying PAC at a higher level of abstraction.  

Namely, adaptation for physical objectives can occur at the level of the function netlists 

FN.  Netlists act as models of computational “designs” which may realize the same high-
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level function, e.g., the same algorithm.  Informed by introspection into regional varia-

tions, a system can consider alternative designs for use inside the region of interest, and 

dynamically select the one with highest fitness.  Figure 3.1 is a simple illustration of the 

scheme.  Alternative designs are maintained in a library, either on a server or in a PAC 

system itself.  As an example, recall that the Cibola Flight Experiment can maintain 20 

uncompressed bitstreams onboard [19].  A PAC system senses regional variations in sub-

strate parameters and in dynamic parameters such as transient fault rates and regional 

supply voltages.  The system reads the alternative designs’ static parameters such as area 

and throughput, and combines them with the introspection data to perform on-line cost 

evaluation.  The fittest design can be selected and scheduled for integration into the sys-

tem configuration.  The actual integration can occur via dynamic partial configuration or 

after generation of a new system configuration.  The intent is not to reconfigure at the 

time scales of individual computations, which can be on the order of milliseconds, but 

rather on an occasional basis to match shifts in substrate parameters (over days, weeks, 

etc.) and fault environments (e.g., over minutes).  

A scheme with some similarities to ours has been proposed in [47].  In that work, a 

mobile device transmits a user’s computational needs to a server that selects among alter-

native versions of FPGA co-processors.  The selected versions are then made available 

for download to the mobile device.  The problem considered here differs in that it re-

quires regional physical introspection and optimization, and more of the work is per-

formed by the adaptive system itself rather than by a server.   
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Figure 3.1: Dynamic selection of fittest design 

 
A function F can be associated with a set of function netlists {FN1, FN2…} 

representing different computational designs of F.  Each netlist FNi has an associated 

configuration Configi which is a physical implementation targeting a specific platform 

type. 

A system can be tessellated into a grid of physical regions with unique properties due 

to variations.  In Chapter 2, we tessellated a chip into a hexagonal grid, with a sensor at 

the center of each hexagonal region as shown in Figure 2.6.  Many circuits of interest, 

such as those implementing co-processors, are much smaller than the correlation distance 

and fit inside a region with nearly homogeneous properties.  In other words, regional var-

iations from the system perspective can appear as global variations from the subsystem 

perspective.  The region where the circuit is placed acts as the computational substrate for 
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that circuit, denoted Sub(x,y), where (x,y) is the region coordinate on a 2-dimensional 

chip. 

PAC at the netlist level, just as with PAC at lower levels of abstraction, requires a 

cost function.  As defined in Section 1.4.2, the fitness or cost of pair (Configi , Sub(x,y)) 

is an application-specific function of system parameters.  In the next section, we argue for 

the importance of considering soft error vulnerability of alternative netlists in the cost 

function.  We propose a soft error metric to capture the logical vulnerability of computa-

tions, and show how it can be used as a parameter, along with introspection data regard-

ing regional fault rates.  In Section 3.5, we provide experimental results of soft error si-

mulations and three case studies demonstrating netlist-level PAC with regional varia-

tions.     

 

3.4 Computational Vulnerability 

Just as transient faults are an important physical phenomenon, the tendency for soft 

errors to propagate and corrupt computational results is an important logical phenome-

non.  A full consideration of the soft error threat requires that logical vulnerability be 

measured and included as a logical parameter in system cost functions.  In this study, we 

show that existing soft error metrics are a poor fit for this purpose.  We propose a new 

metric and validate it with vulnerability experiments on three applications in Section 3.5.  

This study was originally published in [130]. 

Background.  The integrity of computed results in leading-edge electronic systems 

is increasingly threatened, especially in scientific computations with large extent in space 

and/or time [18], computations performed under marginal operating conditions to save 



72 
 

power [128], and embedded computations subjected to harsh radiation [40].  In each of 

these domains full protection against soft errors is often infeasible, and thus the computa-

tions performed have some amount of intrinsic vulnerability.   

One challenge is to quantify the relationship between low-level transient faults and 

the resulting system-level soft errors.  A popular metric for characterizing this relation-

ship is the fraction of faults that lead to errors.  This fraction goes by many names de-

pending on the level of analysis and on institutional preference, including architectural 

vulnerability factor [74], error cross section, residency, and logic derating [55].  We use 

the term vulnerability fraction (VF) as a catch-all for these nearly equivalent terms.  A 

conventional approach is to multiply an SEU rate by a VF value to arrive at another wide-

ly-used metric, the system-level soft error rate (SER).  SER represents the frequency of 

errors of a particular type, and is often expressed in units of failures-in-time (where one 

“FIT” equals one fault per 109 hours), or alternatively, as mean-time-between-failure 

(MTBF) or mean-time-to-failure (MTTF).  The difference between MTBF and MTTF 

involves the repair time, but in the case of soft errors, the terms are nearly equivalent. 

Architectural vulnerability factor (AVF) signifies the fraction of SEUs in a CPU 

structure that lead to an architectural error [74].  The prime methods of estimating AVF 

are architecturally correct execution (ACE) analysis and statistical fault injection (SFI), 

the merits of which are debated in [109][12].  Regardless of its accuracy, ACE analysis is 

applicable only to instruction set architectures (ISAs) and not, for instance, to computa-

tions performed via hardware-implemented algorithms in FPGAs or ASICs.   

For our purposes, vulnerability fraction metrics are insufficient in that they do not 

measure the amount of vulnerability per computation.  Thus they cannot be readily used 
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as a figure-of-merit for computations of different lengths or spatial exposure.  For in-

stance, two designs may have identical vulnerability fractions but have vastly different 

hardware area and thus vastly different vulnerability per result.  

The system-level SER metric combines VF with an absolute rate of SEUs to estimate 

the absolute rate of computational errors.  SER is a natural fit for certain soft error types, 

such as detectable unrecoverable errors.  Such errors affect system availability and are 

often handled by aborting a computation and performing a recovery operation or system 

restart.  Clearly it can be helpful to estimate the rate at which these occur.  SER is far less 

suitable for undetectable errors that cause corrupted results, however, since it fails to ac-

count for the length of a computation.  Two different designs may have an identical SER 

but greatly different vulnerability per result.  Another drawback is the dependence on the 

SEU rate which may not be known, especially at design time.   

A different type of modeling is classical reliability analysis.  For instance, assuming 

that errors are exponentially distributed and have a constant rate λ, we can model the soft 

error reliability of a computation having length t as R(t) = e−λt.  This type of analysis is 

common in reliability engineering and was applied to computational reliability in [71].  

Unfortunately, when it comes to corrupted computations, the error rate is difficult to es-

timate and may not be constant.  We may know the rate of SEUs per bit, but are less like-

ly to know when and where an SEU would cause a computational error.   

A measure of memory vulnerability that accounts for both space and time is men-

tioned in [97].  A measure called mean-work-to-failure addresses the temporal and spatial 

extent of vulnerability, though it requires knowledge of the SEU rate [82].  A spatially-
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weighted extension of the AVF metric was proposed [21], as was a temporally-weighted 

extension [13], but neither captures both dimensions. 

3.4.1 Fault Model and Soft Error Model 

The fault model used here consists of an SEU for which the value of a single state 

element in the machine (e.g., a latch) is flipped at a particular time.  In our experiments, 

we assume that memories are covered by error detection and therefore we focus on 

latches/flip-flops.  Latches are only vulnerable to SEUs during a certain timing window 

[93]; we assume in this study that this timing consideration is built in to the SEU rate.  

We focus on computations incurring no more than one SEU.  Lastly, we do not consider 

in this study either single event transients in combinational logic or single event multi-bit 

upsets.   

The soft errors of interest here are those that are undetectable by the system and 

cause incorrect computational results.  Because such errors are disguised from any error 

detection method and yet have harmful effects, we describe them as insidious soft errors 

(ISEs).  An ISE is initiated by an SEU and eventually causes an incorrect result to be re-

turned, i.e., a computational failure.  In the literature, the aforementioned ISE scenario is 

sometimes referred to as a silent data corruption (SDC) error.  Silent data corruption can 

occur in a variety of domains (memory, storage, processing) due to a variety of fault me-

chanisms (software bugs, permanent hardware faults, transient faults, etc.).  ISE refers 

specifically to soft errors in computations.   

3.4.2 Proposed Metric   

A metric is needed that captures the extent of logical vulnerability in the computa-

tions performed by a certain design.  In other words, given the existence of physical 
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faults such as SEUs, what is the logical vulnerability to soft error propagation and corrup-

tion of computational results?  We treat a computation performed using a configuration 

Configi as having N associated spatial resources, each containing one or more state ele-

ments.  Resource n has a spatial weight ws(n) which represents its relative rate of SEUs.  

For resources consisting of the same type of state elements (e.g., the same flip-flop de-

sign), and under the single fault assumption, the weight is simply the number of state 

elements.  For now we assume that the physical elements in a given region exhibit uni-

form fault susceptibility; in later chapters we account for local variations.  The computa-

tion also is assumed to have K temporal intervals, with each interval k having weight 

wt(k) indicating its duration.  In the simplest case, all weights are uniform, for instance 

when the intervals represent clock periods.  For each resource n at each interval k, some 

fraction of possible SEUs at (n,k) would in fact initiate an ISE and lead to a corrupted re-

sult; this fraction is denoted the vulnerability fraction VF(n,k).  The vulnerability over 

space and time (VST) is the sum of weighted vulnerabilities in the computation: 

 

ܸܵܶሺ݂݃݅݊݋ܥ௜ሻ ൌ  ෍ ෍ ,ሺ݊ܨܸ ݇ሻ ൈ ௦ݓ 

௄

௞ୀଵ

ே

௡ୀଵ

ሺ݊ሻ ൈ  .௧ሺ݇ሻݓ 

(3.1) 

By aggregating vulnerability over an entire computation, we obtain a single VST value 

which represents the total logical vulnerability intrinsic to the computations performed 

using configuration Configi, independent of the SEU rate.  The VST values differ across 

designs that use different spatial or temporal resources or that have a different logical 

structure.  For instance, designs with extensive error correction will tend to have low 

VST.   
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VST is expressed in units of “bit·s” which captures both the spatial and temporal di-

mensions.  The use of “bit” here refers to information held by the state elements which in 

turn have some spatial exposure to SEUs.  As an example, assume a computation has 106 

state elements with weight 1 (i.e., one bit of state), and those elements are fully vulnera-

ble for 106 periods of weight 10−9 s.  Summing up the vulnerabilities gives a VST of 106 

bits × 106 × 10−9 s = 103 bit·s. 

The usefulness of VST will be illustrated in simulation experiments described in the 

next section.  Subsequently, the metric will be used as a parameter in cost functions in 

three case studies of netlist-level PAC. 

 

3.5 Experimental Results 

A problem formulation is given for netlist-level PAC with regional variation.  Three 

applications are introduced, and results are presented for VST experiments and for netl-

ist-level PAC. 

3.5.1 Problem Formulation 

In defining the cost function, we consider three parameters: area, throughput, and 

soft error vulnerability.  For an area estimate, we use the number of flip-flops used by a 

design.  Throughput is simply the number of operations per second.  For soft error vulne-

rability, we use the probability of a soft error affecting a computational result.  This prob-

ability is a function of the transient fault rate and the VST value.  While VST can often 

be estimated through pre-manufacturing simulations as in the previous section, the fault 

rate will often need to be determined through in-system characterization.  This is because 

the fault rate can depend on regional substrate variations (e.g., in threshold voltages), op-
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erating conditions such as the supply voltage (which can vary regionally), and a dynamic 

noise environment that can involve changes in particle flux or in the mix of particle ener-

gies.  As one example, spacecraft encountering solar ejection events [35] or passing 

through the South Atlantic Anomaly [108] can temporarily experience upset rates 2–4 

orders of magnitude higher than normal, as depicted in Figure 3.2.   

 

 

Figure 3.2: Large variation in radiation-induced SEUs occurring in the NASA SAMPEX 
mission in low Earth orbit, due to the South Atlantic Anomaly [108] 

 
The average fault rate associated with region (x,y) at time t will be denoted  λ(x,y,t).  

This accounts for the time-varying noise environment, as well as the inherent fault sus-

ceptibility of the region at (x,y).  This fault rate can be determined via introspection using 

methods such as those in Chapter 4.  Once the fault rate is learned, it can be combined 

with VST to determine the probability of a computational error.  When certain conditions 

hold, the probability is just the product of the two physical and logical factors.  The con-

ditions are the following: a uniform fault rate within the region of interest and throughout 

the computation, no more than a single fault per computation, and a fault rate that is in-

dependent of the data (0 or 1).  If the fault rate is data-dependent, the equation can be ex-
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tended by separating out the 0 and 1 cases.  Provided the above conditions hold, the prob-

ability of a computational error is estimated as: 

 
௘ܲ௥௥ ൌ ,ݔሺߣ  ,ݕ ሻݐ ൈ ܸܵܶ.                                                             (3.2) 

 
As an example, assume a computation has an SEU rate of λ = 2.8×10−15/bit·s (equal 

to .01 FIT/bit) and VST(Configi) = 1013 bit·s.  The probability of a result error would be:  

 
௘ܲ௥௥ ൌ  2.8 ൈ 10ିଵହ/bit ൉ s ൈ 10ଵଷ bit ൉ s ൌ 0.03. 

 
Now that all three necessary system parameters have been specified, we can define 

the cost function.  For these case studies, we use a simple linear weighted sum of the 

area, throughput, and soft error parameters: 

 
,௜݂݃݅݊݋ܥሺݐݏ݋ܥ ,ݔሺܾݑܵ ሻሻݕ ൌ ௔௥௘௔ݓ  ൈ ܽ݁ݎܽ ൅ ௧௛௥ݓ  ൈ ݎ݄ݐ ൅ ௖௩ݓ  ൈ ,ݔሺߣ  ,ݕ ሻݐ ൈ ܸܵܶ. 

(3.3) 

3.5.2 Applications 

PAC at the netlist level will be demonstrated on three sample applications.  In each 

case, we generated alternative netlists (expressed in Verilog) using the Xilinx CORE Ge-

nerator 9.2i tool.   

CORDIC Algorithm.  The COordinate Rotation DIgital Computer (CORDIC) is a 

long-standing algorithm for solving trigonometric, hyperbolic, and square root equations 

[120].  We compare two different CORDIC designs – a “word serial” design and a 

streaming design.  Each is based on the Xilinx CORDIC v3.0 core [120], targeting the 

Virtex-II Pro FPGA platform.  The word serial design is capable of handling only a single 

computation at a time, with a latency of 20 cycles and repeat rate of 19 cycles (consecu-



79 
 

tive computations overlap by one cycle).  The streaming design also has a latency of 20 

cycles, but is capable of handling 20 simultaneous computations, with one completing 

each cycle.  Both designs use maximum pipelining and have 16-bit inputs and output.  

The designs are configured to perform vector rotation computations.   

Floating-point Addition.  Floating-point is a number representation supporting wide 

ranges, and floating-point arithmetic is used in many important computations such as 

scientific applications.  We generated three different designs of a double-precision float-

ing-point adder, with varying amounts of register pipelining.  The adders are all based on 

the Xilinx Floating-Point Operator v3.0 [119] and target the Virtex-5 platform.  We gen-

erated adders with the minimum amount of pipelining allowed (2 stages of registers), an 

intermediate amount (7), and the maximum amount (12).   

Fast Fourier Transform.  The Fast Fourier Transform (FFT) is an efficient method 

of computing the Discrete Fourier Transform, and is very popular for digital signal 

processing [121].  We generated three different hardware designs of the FFT, based on 

the Xilinx FFT v5.0 core [121].  Each design is capable of computing a complex, one-

dimensional fixed-point FFT with a programmable size of up to 64K points.  The designs 

are labeled according to the architecture used: Radix-2 Lite, Radix-2, and Radix-4.  Each 

computes the FFT by making a number of passes through the data.  A pass can be thought 

of as a computational “phase.”  The number of phases is defined by the architecture to be 

logr N, where r is the radix and N is the number of points in the signal. 

3.5.3 Computational Vulnerability 

We conducted vulnerability experiments that demonstrate how the proposed VST 

metric can be used for evaluating different netlist designs of a given function.  We mod-
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eled SEU faults in flip-flops as mentioned earlier.  We did not model SEUs in memory 

cells such as on-chip RAM or FPGA configuration cells; these tend to be detectable and 

thus not a contributor to ISE. 

The gate-level Verilog netlists of each design were instrumented with fault injection 

circuitry such that an SEU could be injected at any flip-flop and clock cycle.  Care was 

taken to ensure that SEUs could occur even in flip-flops with a de-asserted clock enable, 

just as they can in actual hardware. 

We performed fault simulation to find a complete set of vulnerabilities associated 

with a computation, and used those to calculate VST.  In the FFT case, we performed ex-

haustive fault simulation on 32-point computations and found the VST associated with 

each phase, allowing us to project the VST for larger-scale computations.  For compari-

son purposes, we also determined the conventional vulnerability fraction (VF) associated 

with each design.   

CORDIC computations.  We performed exhaustive fault simulation across ten 

computations with random input values, and determined the average VST associated with 

the two designs.  The results shown in Figure 3.3 indicate that computations performed 

by the streaming design have a lower VST and thus lower vulnerability.  Experimental 

data is given in Table 3.1. 

 
    Table 3.1: VST of CORDIC computations 

Design SEU faults 
injected 

Insidious 
soft errors 

(ISEs) 

Ave. VST per 
computation  

(bit·s) 
Word serial 107000 15120 1.14×10−4 
Streaming 268200 11931 7.02×10−5 
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Figure 3.3: Traditional vulnerability fraction of CORDIC designs (left); vulnerability for 
CORDIC computations using the VST metric (right) 

 
Note that the standard VF metric is not suitable for this type of comparison.  The 

streaming architecture has a high VF, which can simply be an indication that the design is 

highly efficient, with almost all computational resources being highly utilized.  The 

throughput is 19 times higher than the word serial case, and the clock period is shorter 

(shown below in Table 3.3).  Thus the computations performed by the streaming design 

are significantly less vulnerable.  The word serial design can perform only a single com-

putation at a time, causing many of the state elements (such as input and output flip-

flops) to remain under-utilized and leading to a low VF.  Moreover, the reliance on a sin-

gle shift-add circuit requires data to be fed back, which can force a longer clock period 

and actually increase the vulnerability per computation. 

Floating-Point Addition.  For each design we performed exhaustive fault simulation 

to determine the associated VST.  The input patterns consisted of ten pairs of random 

floating-point numbers.  The VST values for a given design showed very little depen-

dence on the input values, differing by less than 1% in all cases.  We determined the av-

erage VST of a floating-point addition on each design.  This average VST can be thought 

of as the intrinsic vulnerability of the associated computation. 
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As can be seen in Figure 3.4, computations performed on the minimum-pipelined de-

sign have the least vulnerability (lowest VST), and those on the maximum-pipelined de-

sign have the most vulnerability.  Experimental data is shown in Table 3.2. 

   

 

Figure 3.4: Traditional vulnerability fraction of floating-point adders (left); vulnerability 
for floating-point additions using the VST metric (right) 

 
Table 3.2: VST of floating-point additions 

Level of 
pipelining 

SEU 
faults 

injected 

Insidious 
soft errors 

(ISEs) 

Ave. VST per 
computation  

(bit·s) 
Minimum 2940 1388 1.43×10−6 
Medium 51240 4878 1.96×10−6 
Maximum 130200 7387 2.33×10−6 

 

It is important to note that VF gives a very different and potentially misleading pic-

ture of vulnerability, as can be seen in Figure 3.4.  The minimum-pipelined design has the 

highest VF, but its computations are in fact the least vulnerable.  Moreover, whereas the 

CORDIC experiment favors the largest, highest performing design, this study favors the 

smallest, lowest performing design.  This illustrates that there is not always a simple rela-

tionship between the vulnerability of the computation and the size or performance of a 

design.   
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FFT.  We used exhaustive fault simulation to determine vulnerability of a 32-point 

Radix-2 FFT.  A portion of the VST map for this computation is shown in Figure 3.5; 

shaded cells indicate vulnerable bit-times.  We also calculated VST values for each clock 

period to determine the dynamic nature of vulnerability, as shown in Figure 3.6.  The 

VST for the entire computation is simply the area under the curve.  Note that there are 

log2 32 = 5 compute phases.  The dramatic swings in vulnerability were a surprising re-

sult.  They arise from the flowing of state information back and forth between computa-

tional logic and on-chip memory during each phase.  The data is protected from insidious 

soft errors when residing in memory, and potentially vulnerable when venturing into the 

exposed logic.  The dynamics highlight the fact that, at least at fine time scales, the rate 

of insidious soft errors need not be anywhere near constant.  Thus the routine assumption 

of a constant error rate needs to be carefully considered [114].   

 

 

Figure 3.5: Portion of the vulnerability map for 32-point Radix-2 FFT 
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Figure 3.6: Dynamic behavior of VST for 32-point Radix-2 FFT 

 
A general parameterized formula of vulnerability for these N-point FFT computa-

tions is given by: 

   
VST = (VST per phase) × (# of phases) = A N logr N.                            (3.4) 

 
The coefficient A is design-specific and is based upon data gleaned from fault simu-

lations of small-sized FFTs.  For instance, it depends on the peak VST values, as well as 

the length of each compute phase, which in turn depends on the number and depth of the 

design’s “butterfly engines.”  Note that this equation accounts for the total vulnerability 

of the compute phases; we did not study the vulnerability of the load or unload phase 

(e.g., the first or last 32 cycles in Figure 3.6), which tends to be similar for each design.   

The VST values for large-sized FFT computations can be projected, as seen on a log-

log scale in Figure 3.7.  Computations performed on the Radix-2 Lite design are the most 

vulnerable, while those on Radix-4 are the least vulnerable.  On a linear scale, the pro-

nounced differences in VSTs are readily visible, as depicted in Figure 3.8.  As with the 
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other experiments, measurements of VF do not capture the actual vulnerability relation-

ships.  The Radix-2 Lite design has the lowest VF, but the highest absolute vulnerability 

per computation. 

 

 

Figure 3.7: Projected VST for various FFT sizes 

 

Figure 3.8: Traditional vulnerability fraction for 64K-point FFTs (left); projected vulne-
rability using the VST metric (right) 

 
The experimental results indicate that the relationship between the vulnerability of a 

computation (as measured by VST) and other design characteristics is not a simple one.  
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In two experiments, higher throughput was associated with lower VST, but with floating-

point additions the opposite was true; the addition of pipeline stages reduced the clock 

period but increased the number of state elements, leading to a net increase in VST.  Nor 

was VST well-correlated with the number of state elements in the design.  These findings 

stress the importance of performing characterization, and the need for treating reliability 

as an independent design consideration along with power consumption, area, and perfor-

mance. 

Another result of this study is a clear demonstration that the traditional vulnerability 

fraction metrics and the associated SER metric do not capture the absolute vulnerability 

per computation, and in fact can present a misleading picture.  While highly-reliable de-

signs have a low VF as one would expect, we have seen that inefficient designs also have 

a low VF.  A prevalence of don’t-care state bits does not improve the vulnerability of a 

computation but increases the circuit area and causes a deceptive decrease in the VF.  

There is a second and more subtle phenomenon at work as well.  Inefficiencies in a de-

sign can lead to a longer clock period or additional cycles per computation, either of 

which forces vulnerable state information to be exposed for longer periods.  These effects 

cause an increase in the absolute vulnerability that is not captured by VF metrics but is in 

fact captured by VST. 

When evaluating architectures with different spatial and temporal extents, the VST 

metric can be used as a figure-of-merit.  Results from the fault simulation experiments 

illustrate some of the inadequacies of the existing approaches and the efficacy of VST. 
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3.5.4 Netlist-Level PAC 

Using the problem formulation, applications, and VST metric from Sections 3.5.1–

3.5.3, we illustrate netlist-level PAC.  We assign values to the weights in the cost func-

tion and show how cost varies with the fault rate.  An example of a plausible fault rate 

used in research is 2.8×10−15/bit·s, which corresponds to 0.01 FIT.  The fault rate range 

considered here is from 10−16/bit·s to slightly above 10−11/bit·s. 

CORDIC computations.  Table 3.3 displays the static parameters for the two 

CORDIC designs: area, minimum clock period (which affects throughput), throughput, 

and VST.   

 
Table 3.3: CORDIC design characteristics 

Design 
Area estimate
(no. of flip-

flops) 

Minimum 
clock period 

(ns) 

Throughput 
(ops/s) 

Ave. VST 
per compu-

tation  
(bit·s) 

Word serial 535 7.52 7M 1.14×10−4 
Streaming 1341 5.88 170M 7.02×10−5 

 

The cost functions for the configurations representing the two designs, Configword 

and Configstreaming, can be expressed as: 

 
,௪௢௥ௗ݂݃݅݊݋ܥ൫ݐݏ݋ܥ ,ݔሺܾݑܵ ሻ൯ݕ ൌ 

௔௥௘௔ݓ  ൈ 535 ൅ ௧௛௥ݓ  ൈ 7 ൈ 10଺ ൅ ௖௩ݓ ൈ ,ݔሺߣ  ,ݕ ሻݐ ൈ 1.14 ൈ 10ିସ,           (3.5) 

 
ݐݏ݋ܥ ቀ݂݃݅݊݋ܥ௦௧௥௘௔௠௜௡௚, ,ݔሺܾݑܵ ሻቁݕ ൌ  

௔௥௘௔ݓ ൈ 1341 ൅ ݓ௧௛௥ ൈ 1.7 ൈ 10଼ ൅ ௖௩ݓ  ൈ ,ݔሺߣ  ,ݕ ሻݐ ൈ 7.02 ൈ 10ିହ.        (3.6) 

 
The streaming design has a better VST, and thus for higher fault rates, its relative 

cost compared to the word serial design will improve.  We illustrate this with an example.  
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Assume warea = 1, wthroughput = 107, and wcv = 1021.  Equations 3.4 and 3.5 can be solved to 

find the fault rate at which they are equal: 

 
௧௛௥௘௦௛௢௟ௗߣ ൌ 1.84 ൈ 10ିଵସ/bit ൉ s. 

 
It turns out that for any fault rate below this threshold, the word serial design has the 

lowest cost.  Above the threshold, the streaming design has the lowest cost.  The relation-

ship for an entire range of fault rates is illustrated in Figure 3.9.  Note that cost is shown 

on a log scale.  At the lowest fault rates, word serial is a full 59% better, and at the high-

est, streaming is 38% better. 

 

 

Figure 3.9: Cost of CORDIC designs vs. fault rate 

 
Floating-Point Addition.  Table 3.4 lists the static parameters of each design.  

Throughput is given in terms of floating-point operations per second (FLOPS). 
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Table 3.4: Floating-point adder characteristics 

Level of 
pipelining 

No. of 
pipeline 
stages 

Area  
estimate 
(no. of 

flip-flops) 

Minimum 
clock  
period 
(ns) 

Throughput 
(FLOPS) 

Ave. VST 
per  

computation 
(bit·s) 

Minimum 2 147 10.31 97M 1.43×10−6 
Medium 7 732 4.02 249M 1.96×10−6 
Maximum 12 1085 3.16 316M 2.33×10−6 
 

As another example of relative costs changing with the dynamic fault rate, we as-

sume warea = 1, wthroughput = 1012, and wcv = 1022.  Results are shown in Figure 3.10 on a 

log scale.  In solving the three cost functions, we find two thresholds.  Between fault rates 

of 1.35×10−13 and 1.08×10−12/bit·s, the medium pipelined design is the fittest by a small 

margin.  Below 1.35×10−13/bit·s, the maximum pipelined design is the fittest by up to 

10%.  Above 1.08×10−12/bit·s, the minimum pipelined design is the fittest by up to 24%.  

 

 

Figure 3.10: Cost of floating-point adder designs vs. fault rate 
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FFT.  The static parameters of each design are listed in Table 3.5. 

   
Table 3.5: FFT design characteristics 

Design 

Area 
estimate 

(no. of flip-
flops) 

Minimum 
clock 
period 
(ns) 

No.  of 
engines 

Length of each 
compute phase 
(clock cycles) 

Projected 
VST per 64K-

point  
computation 

(bit·s) 
Radix-2 Lite 1459 8.77 1 (log2 N)+12 6.86 
Radix-2 1566 6.58 2 ⎡0.5 log2 N⎤+13 4.00 
Radix-4 3715 6.45 4 ⎡0.25 log4 N⎤+16 2.33 

 

As before, we select weights in order to provide an instructive example: warea = 1, 

wthroughput = 1, and wcv = 1015.  For a fault rate below 3.33×10−14/bit·s, the maximum Ra-

dix-2 Lite design is the fittest.  Above 1.07×10−12/bit·s, the Radix-4 design is the fittest.  

Between those two thresholds, the Radix-2 design is the fittest.  In the limit of high fault 

rates, the Radix-4 design has nearly half the cost of the next best alternative.  

 

 

Figure 3.11: Cost of FFT designs vs. fault rate 
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In all three applications, significant reductions in cost are possible by dynamically 

identifying the fittest design for the given regional variations and fault environment.  The 

table below shows the reductions possible by switching from the 2nd fittest to the fittest 

design, both for the low and high fault rate environments.  Furthermore, it shows the cost 

reduction enabled by the fittest design relative to the average cost over all designs. 

 
Table 3.6: Reduction in cost after selecting fittest design 

Application 

Cost reduction 
relative to 2nd 
fittest design 

(λ =  
10−16/bit·s) 

Cost reduction 
relative to 2nd 
fittest design 

(λ =  
1.31×10−11/ 

bit·s) 

Cost reduction 
relative to 

average cost 
(λ =  

10−16/bit·s) 

Cost reduction 
relative to 

average cost 
(λ =  

1.31×10−11/ 
bit·s) 

CORDIC 59% 38% 42% 24% 
Floating-point  
adder 10% 24% 34% 23% 

FFT 6% 45% 34% 49% 
 

 
3.6 Summary 

Reconfigurable systems have great potential not only to learn about their regional 

variations but to compensate automatically for them.  Adaptive body bias, re-placement, 

and selection of alternative netlists are just three promising approaches.  With an appro-

priate netlist-level soft error metric and its inclusion as a parameter in cost functions, sys-

tems can better trade off reliability and efficiency. 

Having discussed PAC for regional variations in Chapters 2 and 3, we next move on 

to local, random variations in Chapters 4 and 5.  Local variations are different in charac-

ter and require novel methods of introspection and self-optimization. 
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CHAPTER 4  

Introspection for Local Variations 

 

In this chapter, we propose methods of introspection for local, random variations.  In 

contrast to the regional variations covered in Chapters 2 and 3, local variations are so 

finely grained and uncorrelated that they can be very difficult to observe or keep track of.  

A case study is provided of variations in transient fault upsetability in latches.  We estab-

lish limits on using a system’s actual noise environment for self-characterization, and 

then propose in-system noise emulation as a much more feasible method.  As a proof-of-

concept, we demonstrate an FPGA-based system capable of injecting noise and uncover-

ing previously hidden variations.  Learning about local variations enables special PAC 

optimizations as discussed in Chapter 5.  The two major portions of this chapter were 

published in [131] and [133]. 

   

4.1 Background 

Delay, power, and leakage variations are widely recognized to be reducing system 

efficiency.  The amount of 3σ variation in these parameters is reaching 60%, 72%, and 

255%, respectively [52].  However, another threat is emerging and is much less unders-

tood.  As seen in Chapter 1, technologies at the nanoscale are increasingly prone to local 

variation, and at the same time increasingly prone to noise.  We see a strong need for un-
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derstanding and mitigating the threat posed by this combination—variations and noise.  

While the threat is not well understood, it is clear that spreads in Vt and transistor gate 

length are impacting the minimum amounts of charge (Qcrit) that can upset logical states 

[9][34].  A recent simulation of flip-flop designs found large variations in Qcrit for indi-

vidual instances of a given design, although it did not quantify the contribution made by 

local variations.  Using a hardware-calibrated model of 65 nm CMOS transistors, the 

study found that even for the best-case flip-flop design, the total 3σ variation  in Qcrit was 

as high as 20% for flip-flops in the 0 state, and 44% in the 1 state [73].  Most alarming of 

all, transient fault rates tend to have an exponential dependence on Qcrit; one model indi-

cates that a 70% difference in Qcrit can correspond to a 15 times difference in fault rates 

[77]. 

Isolating and observing behavior at this extreme level of granularity is very difficult.  

Sensors such as those proposed in Chapter 2, whose measurements are correlated to the 

parameters of the surrounding region, are of little help with local, uncorrelated variations.  

New methods of local characterization are needed. 

Related Work.  Several works have considered local variations in the context of de-

lay, including methods of characterizing FPGA delay variations [90][112] and for per-

forming variation-aware re-placement [92].  These approaches are not applicable to local 

variations in upsetability.  A method was recently proposed for characterizing extreme 

variations in resistances and threshold voltages for a future reconfigurable nanotechnolo-

gy with 5 nm gate lengths [38].  Much related work has focused on hard defects, which 

might be thought of as a pathological type of local variation.  Approaches to self-healing 
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via mapping and re-routing around defects have been suggested [62][105], but are not 

sufficient for identifying or compensating for variations in latches. 

Little research has been published regarding local variations in transient fault upseta-

bility.  A simulation-based study of total variation in 65 nm flip-flop reliability appeared 

recently as mentioned above [73].  Some attempts have been made at on-line characteri-

zation of single event transients [80][87] and single event upsets [19], but not local varia-

tions.  Some methods have been proposed for mapping out the marginal cells in an 

SRAM array and for preferentially matching an application to the appropriate 

cells/regions [79], but these are not applicable to logic.  Testing with an external radiation 

source is sometimes used to estimate upsetability for a particular chip type.  The noise 

sources used include alpha particle emitters, and beams of protons [55], heavy ions [4], 

neutrons, and light (i.e., a laser).  Typically the mix of particles and energies is limited, 

making it difficult to achieve fidelity to actual noise environments.  The noise locations 

generally cannot be finely controlled, so characterization of fine-grained variations is im-

possible.  Empirical data on local variations in upsetability is thus severely lacking.  In 

any case, radiation testing is nowhere near feasible for characterizing every component 

on every chip to be deployed.   

     

4.2 Local Variations in Latch Reliability 

In this section, we examine in more detail the phenomena of transient faults, latch 

upsets, and local variations.  Transient faults in digital systems are one-time events that 

upset the state of a node and potentially lead to system-level soft errors.  Faults can be 

triggered by particle radiation, coupling, thermal noise [85], and other mechanisms.  Due 
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to local variations, each component can have a different inherent susceptibility to tran-

sient faults.  This susceptibility property goes by many names such as “error cross-

section” in the specific context of radiation-induced faults.  We use the general term up-

setability, and define it as the probability of a component incurring an upset in a specific 

noise environment.  In many cases, upsetability can be thought of as a rate of upsets.  Of-

ten we normalize upsetability values to a mean; for instance, a component with twice the 

mean number of upsets will have a value of 2.0.  Note the difference between upsetability 

of hardware components and the more abstract vulnerability of logical soft error propaga-

tion; the latter was covered in Chapter 3. 

This case study focuses on faults that occur in a specific type of component, a latch.  

Latches store temporary bits of information to enable computing of the desired function.  

Transient faults affecting latches change the state of the stored bit.  Upsets occurring in a 

memory array or a static FPGA configuration bit can often be efficiently detected and 

corrected without any system-level failures.  Upsets in latches, however, are more diffi-

cult to handle.  This is because latches change state rapidly and at locations all across a 

die, so they cannot be protected with a low-overhead error correction scheme such as 

ECC.  It is possible to design custom latches that are less susceptible to upsets [126], but 

doing so adds expense and prevents the use of standard field-programmable logic.  Pro-

tection of latches thus often requires a high-overhead scheme such as triple modular re-

dundancy (TMR).  There is a need for low-cost mitigation methods that can be used in-

stead of or in conjunction with TMR.   

An example of a CMOS latch is shown in Figure 4.1.  Latches are typically used in a 

master-slave pair that forms a flip-flop.  Upsets can occur when a latch is holding data 
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(closed).  There are four main types of upsets corresponding to the master latch holding a 

0 or 1, or the slave latch holding a 0 or 1.  We refer to these as m0, m1, s0 and s1, respec-

tively.  The master and slave latches generally have opposite clock phases so only one is 

holding data at a time.  Thus a flip-flop is susceptible to only one of the four upset types 

at any given time.   

 

Figure 4.1: Example of a CMOS latch [96].  It can be used to form a master-slave flip-
flop with asynchronous set and reset. 

 
While some have predicted that upsets in combinational logic will become as promi-

nent as upsets in latches, recent evidence from a 32 nm chip shows that latch upsets con-

tinue to dominate [37].  Furthermore, an ITRS working group has studied and simulated 

the failure rates for upcoming technologies, and has found that parametric failures of 

latches (e.g., latches that are too slow to be operational) are increasing much faster than 

failures of SRAM cells or combinational logic gates.  In fact, they project that variation-

induced failures of latches may increase by an astonishing 24 orders of magnitude be-

tween the 45 nm and 22 nm technology nodes, from 10−30 to 10−6 failures/latch (Figure 

DESN8 in [52]).  On top of that, a new latch upset mechanism is looming on the technol-

ogy horizon.  As supply voltages edge closer to threshold voltages and CMOS scales 

down towards fundamental limits, latches will be upsetable by intrinsic thermal noise.  

One study suggests that by 2022 thermal upsets in latches will be very frequent at supply 
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voltages of 0.25 V; with threshold voltage variations, thermal upsets may occur even at 

0.45 V [85]. 

 

4.3 System-Level Soft Error Model 

We define a system as having a set of logical state bits SB and a set of physical flip-

flops FF.  We define an associated matrix x that specifies which logical state bits are 

placed at which flip-flop locations.  The variable xij is 1 if state bit i is matched with flip-

flop j and is 0 otherwise.  Each state bit must be placed at exactly one location.  Each 

state bit i also has a signal probability SPi representing the probability that i is in the 1 

state given the workload.  Each flip-flop j א FF is prone to transient faults and has four 

upsetability parameters m0j, m1j, s0j and s1j, corresponding to the rates of the four upset 

types.   

The fault rate of a bit/flip-flop pair ij is essentially the fraction of time spent in a state 

multiplied by the fault rate associated with that state, summed over all states.  We assume 

here that the clock duty cycle is 50% such that the master and slave latches are exposed 

for equal periods.  The fault rate associated with a pair ij is then:  

 
௜௝ߣ ൌ  ሺ݉1௝ ൅ ܵ 1௝ሻݏ ௜ܲ ൅ ሺ݉0௝ ൅ 0௝ሻ ሺ1ݏ െ ܵ ௜ܲሻ.                         (4.1) 

 
Assuming that the error propagation probability VF is independent of the data state, the 

system-level soft error rate associated with pair ij can be estimated as: 

  
௜௝ܴܧܵ ൌ ௜௝ߣ  ൈ  ௜.                                                          (4.2)ܨܸ 
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Assuming further that upsets occur at a single latch and that only a single soft error exists 

at any one time, the total system-level soft error rate can be estimated as: 

 
ܴܧܵ ൌ  ∑ ௜௝௜௝ܴܧܵ .                                                           (4.3) 

 

4.4 In Situ Characterization 

Variation-aware adaptation requires a feasible method of characterizing the upseta-

bilities.  Radiation beam testing is out of the question for this task; it is not practical for 

individual latches to be characterized in this way, much less every latch on every chip 

that is to be deployed.  Here we consider direct characterization via detection and count-

ing of latch upsets in situ, meaning upsets occurring in the field due to a system’s actual 

noise source.  A potential advantage of this approach is high accuracy, due to the realistic 

noise environment.  Furthermore, it may capture lifetime shifts in component parameters.  

However, this approach is only feasible if latch SEUs can be made to occur often enough 

to generate statistically significant data.  Several methods of SEU acceleration will be 

considered next.  We investigate using accelerated latch SEU counts as maximum like-

lihood estimators of the actual upsetabilities.  For example, a latch incurring twice as 

many SEUs as another will be estimated to have twice the upsetability.  The number of 

SEUs that must be observed to make this approach sufficiently accurate will be deter-

mined in Chapter 5.  

Latches under test can be placed in a configuration that maximizes the rate of detect-

able SEUs.  The latch clock can be turned off in order to maximize the window of vulne-

rability (WoV), which is the fraction of time that a latch is prone to an SEU that propa-

gates beyond the current clock cycle.  In normal operation this window is often open only 
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10% of the time due to timing masking [93]; here we increase the window to 100%.  This 

un-clocked configuration also minimizes clock power. 

An example of a simple in situ test procedure is shown in Figure 4.2.  (a) Latches 

under test are first initialized to the desired state, and then left idle for an extended period 

to act as SEU detectors.  (b) Any SEU that occurs leaves a latch in an error state indefi-

nitely.  (c) The latch states are periodically read out and monitored by a controller, and 

evidence of SEU events is recorded in individual SEU counts maintained in SEU-

protected memory.  The latches are then re-initialized and the process is repeated. 

 

 

Figure 4.2: Example of on-line SEU characterization of level-sensitive latches 
 

Note that this procedure can typically be implemented on a reconfigurable platform 

without requiring any special circuitry.  For instance, with the Virtex FPGA family, 

latches can be initialized with either an asynchronous set/reset or by re-loading the bit-

stream.  The latch states can be read out in the background during system operation via 

the Virtex capture and readback feature.     

One in situ test scenario is to characterize all unused latches opportunistically during 

system operation.  For instance, a design may require 70% utilization of latches, allowing 

the remaining 30% to be characterized without impacting system availability.  If neces-
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sary, user logic could be swapped from location to location such that all latches would 

eventually undergo testing; similar schemes have been devised to test for permanent 

faults [36][101]. 

An alternative scenario is to perform SEU testing of all latches simultaneously dur-

ing system down time.  This nonconcurrent approach is sometimes the simplest and 

quickest way to characterize the entire platform.  A particular advantage is the greater 

freedom to set the operating conditions.  By lowering the operating voltage, the Qcrit val-

ues can be decreased and thus the SEU rates can be significantly accelerated.  (The 

supply voltage must not be so low as to significantly shift the relative upsetabilities.)  In 

[42], lowering the supply voltage to 0.4 V is shown to increase the latch SEU rates by 

one to two orders of magnitude.     

Testing may be further accelerated by leveraging periods of high radiation.  As men-

tioned in Chapter 3, spacecraft encountering solar ejection events or passing through the 

South Atlantic Anomaly can experience upset rates up to 10,000 times higher than nor-

mal [35].  Such periods may be unsafe for normal system operation, but they could pro-

vide a useful source of SEUs for accelerated testing. 

 

4.5 Selective In Situ Characterization 

Even with the above methods of acceleration, there is the complication of characte-

rizing latches in all four permutations of data and clock states.  The master and slave 

latches cannot necessarily be tested simultaneously; some reconfigurable platforms do 

not support both clocks being turned off at the same time, and thus only one type of latch 

is susceptible to SEUs at any time.  This implies that at least four separate test campaigns 
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(two for master latches and two for slave latches) would be needed in order to fully cha-

racterize all latches.  Most problematically, the SEU rate in some of these four configura-

tions may be much lower than in others, forcing much longer test times. 

Here we consider whether an in situ approach can be made more feasible via selec-

tive characterization.  We calculated the relative SEU contributions of the four states us-

ing typical values for the various parameters.  First we note that latch SEU rates are often 

heavily dependent on the data state of the latch.  The latches in the Actel ProASIC FPGA 

are ten times more susceptible when holding a 1 bit than when holding a 0 [5].  Note also 

that latches are prone to upsets only for particles above a certain energy (measured in li-

near energy transfer), and that this energy threshold may depend on the data state.  In the 

case of the Xilinx Virtex-4QV, the threshold in the 0 state is 1.5 MeV-cm2/mg, but the 

threshold in the 1 state is only 0.5 MeV-cm2/mg [4].  Radiation flux tends to be dramati-

cally higher at lower energies, so even slight differences in threshold can lead to large 

differences in fault rates.  In any case, we used the flip-flop study performed in [42] as a 

guide and assumed a 0–1 bias of 4.0. 

Next, we modeled the difference in raw SEU rates between master and slave latches.  

Often master latches have higher raw SEU rates, for instance due to having lower drive 

strengths and lower Qcrit.  Four of the five flip-flop designs studied in [42] have a signifi-

cantly higher rate for the master latch; the ratios are in the range of three to ten, and we 

assume here a master-slave bias of four.  Lastly, we chose typical values for the window 

of vulnerability.  The WoV tends to be significantly higher for master latches; slave 

latches are susceptible to SEUs only during the second phase of a clock cycle when it 
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may be too late for the SEU to be captured by downstream logic.  We set the master 

WoV to 0.25 and the slave WoV to 0.04, based on data from [93]. 

Combining the above factors, we determined the relative contributions of the four 

SEU types to the total number of SEUs that propagate to the next clock cycle.  We found 

that with these parameter values, a full 77% of all propagated SEUs originate from a mas-

ter latch in the more susceptible data state A.  (State A can be a 0 or a 1 depending on the 

technology and latch design.)  Some 19% come from a master latch in the less susceptible 

data state B.  Only 3% of all propagated SEUs come from a slave latch in state A, and a 

mere 1% from a slave latch in state B.  These estimates are summarized in Table 4.1.  

The rate of propagating SEUs shown in the fourth column is simply the raw SEU rate 

multiplied by the mean WoV. 

 
Table 4.1: Example of typical SEU contributions 

   

We find it surprising that, under some typical parameter settings, the vast majority of 

system-level soft errors can be traced back to a single latch type (master latches) and a 

single data state.  In fact, due to differences in Qcrit and windows of vulnerability, 96% of 

all system-level errors in our study originate from master latches.  For applications with a 

large imbalance of this kind, the SER can be lowered by optimizing the master latch case.  

In some systems, this can be accomplished simply by lowering the clock duty cycle. 

Scenario Normalized 
SEU rate 

Mean 
WoV 

Rate of 
propagated 
SEUs 

Fraction of 
propagated 
SEUs 

Master latch in state A 1.0 0.25 0.25 77% 
Master latch in state B 0.25 0.25 0.0625 19% 
Slave latch in state A 0.25 0.04 0.01 3% 
Slave latch in state B 0.0625 0.04 0.0025 1% 
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Given their overwhelming importance, it may be possible to use a simplified ap-

proach to in situ characterization with a focus on master latches in state A.  This reduced 

focus would greatly improve the test time; instead of four tests of varying lengths (lower 

SEU rates require longer test times), only a single test campaign would be performed and 

at the highest fault rate.  This would also reduce the amount of characterization data that 

must be maintained, and enable a simplified self-optimization strategy that will be eva-

luated in the next chapter. 

 

4.6 Self-Test 

Given the limitations of in situ characterization established in the previous section, 

can a system feasibly characterize its own local variations in component reliability?  Are 

such variations significant?  In this section, we introduce a method of self-test for local 

variations in reliability using on-chip noise injection.  We furthermore present the results 

of hardware experiments showing a large spread in latch reliability on two 65 nm FPGAs. 

4.6.1 Fault Models 

As discussed previously, digital circuits are prone to transient faults caused by radia-

tion and other noise sources such as thermal noise.  In particular, latches are high-

performance storage cells prone to SEUs and SETs.  As an empirical case study, we con-

sider the latches in currently available (65 nm) FPGA chips.  These “user” latches are 

employed directly in application logic, as distinct from the configuration cells used to 

hold the static configuration data.  Prior work suggests that in a 65 nm process, SET 

pulses have widths of roughly 400–900 ps [9].  While FPGA vendors have tried to de-

emphasize the importance of SETs and SEUs in latches, the problem is real and growing.  
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For instance, as a countermeasure, Xilinx is hoping to produce a special 65 nm chip se-

ries in 2011 called the Virtex-5QV.  This platform would include special dual-node 

latches less prone to SEUs, and “filters” on all latch inputs to remove SET pulses of up to 

800 ps in width.  The drawbacks of this platform include extremely high cost (likely in 

the tens of thousands of dollars), and a lag of one manufacturing generation behind the 

leading edge of reconfigurable platforms.  For these reasons, the vast majority of applica-

tions of reconfigurable technology will still be threatened by SETs and SEUs.      

4.6.2 Method 

We now address the question of how to characterize local variations in reliability at 

low cost.  The basic approach we propose is in-system self-test using an on-chip “noise 

emulator” to test upsetability with respect to various sources of noise.  Synthetic noise is 

generated on-chip and injected into a group of latches in the form of a very short pulse on 

one of the common signal inputs.  Each latch will either be upset or not upset by the ap-

plied noise pulse.  Through a series of trials, the inherent upsetability of each latch with 

respect to the noise of interest can be characterized.  Systems need only perform the self-

test procedure occasionally, or in some cases just once, to match the time scale of signifi-

cant shifts in upsetability.  For instance, upsetability values may shift over a period of 

weeks due to aging effects.    

We now describe a method of noise emulation, and a method of calibrating the noise 

levels.  We inject noise via the latches’ asynchronous set and reset lines.  The faults being 

modeled with this type of noise are twofold—SET pulses on the set and reset lines them-

selves, and (indirectly) SEUs.  Detailed transistor-level and electrical models of the latch 

design are unavailable (they are usually vendor-proprietary), thus we can only indirectly 
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estimate upsetability with respect to SEUs.  By injecting noise we aim to learn something 

about the stability and static noise margin of the latch, which in turn can provide some 

information about upsetability to radiation-induced SEUs that hit a latch directly, and 

thermal noise.  If necessary, noise can be injected via the clock or clock enable line to 

gain additional information.  

The proposed noise emulator must be able to generate very short pulses with fine 

resolution.  It can be implemented using conventional reconfigurable platforms in at least 

three ways.  One approach would be to use two phase-locked loops and the Vernier prin-

ciple; this provides a resolution of 35 ps on a Xilinx Virtex-5 FPGA [23] but requires a 

long synchronization time before each pulse.  A second method would be to use a spe-

cial-purpose delay line such as an IODELAY block on the Virtex-5; this provides a reso-

lution of 78 ps [95].  We propose a pulse generator based on a carry-chain delay line.  It 

essentially acts as a digital-to-time converter, which takes an input value and creates a 

pulse of a certain width.  The design is simple and compact, relying on the carry logic to 

control the pulse width with resolution better than 50 ps.  Such carry logic is available on 

a variety of FPGA platforms.  An example of a carry-chain delay line in a different con-

text can be seen in [6].  A portion of our pulse generator chain is shown in Figure 4.3.  

Initially all of the level-sensitive latches are in the 0 state.  When the trigger signal ar-

rives, all latches open and the latch outputs begin to rise simultaneously.  The “carry in” 

signal propagates through the carry-chain, forcing each latch to 0 after a predictable de-

lay.  Each resulting pulse has a slightly different width.  One signal is selected at a mul-

tiplexer (mux) to act as the noise source that is driven on to either the set or reset signal. 
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Figure 4.3: Portion of pulse generator circuit 

 
In addition to the pulse generator, there is a need for an effective noise distribution 

system.  With recent FPGAs, the noise can be distributed using built-in “clock” buffers 

and dedicated interconnect networks, both of which can be either global or regional.  

Such resources minimize pulse distortion and rise/fall delays.  The buffers, distribution 

networks, and local interconnections however do exhibit variation themselves.  Pulses 

traversing different paths can be subtly narrowed or widened differently, thereby skewing 

the amount of noise energy delivered to different locations.  Thus, a key challenge is how 

to enable fair comparisons of upsetability at different locations.  One important observa-

tion is that flip-flops are inherently arranged in clusters (small groups of logic), and the 

flip-flops within a cluster can be driven with the same control line.  A very similar 

amount of noise can be delivered to the flip-flops within a given cluster.  For this reason, 

we focus on characterizing intra-cluster variations.  Comparisons across different clus-
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ters (i.e., inter-cluster) are more difficult.  An experiment that validates our intra-cluster 

approach will be discussed in the results below. 

The self-test process is controlled by a program running on a processor core.  The 

program can calibrate the noise level, set up test conditions, trigger noise, and read out 

and process the results.  The amount of noise can be calibrated for each cluster and for 

each of the four test cases by stepping through a range of pulse widths and finding the 

noise threshold at which latch upsets occur.  Thus one can compensate for variations in 

the interconnect as well as for non-linearities in the carry-chain.  In fact, variations can be 

leveraged to improve the noise emulation capability; multiple independent carry-chains 

can be implemented to provide a greater selection of pulse widths.  To reduce simultane-

ous switching and transients in the voltage supply, only one cluster is calibrated at a time.  

The clusters not under test are initialized to a state from which they will not switch, e.g., 

0 in the case of reset noise.  The proposed self-test circuit implementable on reconfigura-

ble platforms is sketched in Figure 4.4. 

 
Figure 4.4: Proposed self-test circuit configuration 
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As a simple example of how upsetability is estimated, assume that self-test is per-

formed for s0 upsetability of the four flip-flops at cluster coordinate (0,0).  After hun-

dreds of trials, the number of upsets occurring at the four flip-flops happens to be 300, 

200, 400 and 100, and the mean upset count is 250.  The relative s0 upsetability of the 

four flip-flops is estimated to be 1.2, 0.8, 1.6 and 0.4, respectively. 

4.6.3 Experimental Results 

We built an experimental system as a proof-of-concept of the proposed methods, and 

to answer two main questions: Is it feasible for a system to test itself for local, random 

latch variations?  Can such variations be significant even on 65 nm FPGAs?   

The system consists of an array of flip-flops under test, an on-chip noise emulator, 

and a MicroBlaze control processor.  It was implemented on each of two XUPV5-

LX110T boards containing a Xilinx Virtex-5 FPGA.  The main focus of the study is a 

collection of 1,024 flip-flops arranged in a 32 × 32 array.  The Virtex-5 architecture sepa-

rates flip-flops into clusters of four (a Virtex-5 slice), connected to the same set and reset 

lines.  We configured the flip-flops to include an asynchronous set and reset (Xilinx 

FDCPE primitives).  The collection of 256 clusters is situated within a single clock re-

gion in the lower right corner of the chip.  The flip-flop data inputs and outputs are daisy-

chained together to form a single 32 × 32 shift register that can be accessed by the control 

processor using fast simplex links. 

The noise emulator uses a pulse generator with eight independent carry-chains, each 

with eight stages.  Pulses can be generated with widths as narrow as roughly 500 ps or as 

wide as 700 ps.  The noise is distributed to the 256 clusters using two regional clock buf-

fers and regional clock networks.  The master and slave latches are treated here as black 
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boxes subject to noise; the internal transistor-level and electrical models are proprietary 

and unavailable to us.  The experimental program is a standalone application written in C 

for the MicroBlaze using EDK 10.1; it fits within 64 KB of on-chip RAM.  All experi-

ments have been conducted using a 1 V supply voltage for the internal logic, and at am-

bient room temperature. 

First, self-calibration of the noise levels was performed for each of the clusters and 

upset types; the total execution time was three minutes.  The noise was calibrated to the 

lowest energy that allowed upsets to be detected in each of the four flip-flops.  Clusters 

were calibrated individually in an effort to reduce any experimental effects (e.g., transient 

voltage droops) and thus improve accuracy; in large-scale systems, parallel calibration 

may be required in order to reduce overhead.  An 8-bit calibration value was stored for 

each cluster and upset type, requiring 1 KB of memory.  Then self-test was performed by 

applying noise to a single cluster at a time, reading out the results, and repeating the test 

255 times for each cluster.  The process was repeated for all four upset types, requiring a 

total time of five seconds.  The entire self-test was conducted on each of the two FPGAs.   

Our results show significant, local variations in upsetability.  Figure 4.5 illustrates a 

map of m1 upsetability for the 256 clusters of flip-flops.  Each cell in the image corres-

ponds to a flip-flop, and each vertical group of four cells corresponds to a cluster.  The 

value in each cell represents the ratio of the number of upsets to the average for the asso-

ciated cluster.  For instance, a ratio of two indicates that a latch incurred twice the aver-

age in that cluster.  The primary purpose of the data is to characterize variations within 

each of the 256 clusters of four flip-flops; comparisons across different clusters are more 

difficult.  We calculated the coefficients of variation for latch upsets within a cluster, as 
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shown in Figure 4.6.  The coefficients range from 17% to 77% (3σ values of 51% to 

231%).  This amount of variation is generally higher than the ITRS projected levels for 

delay or power mentioned earlier, and in some cases even as high as leakage.  This sug-

gests that in some noise environments, faults in the many marginal components will be 

the dominant contributor to the overall fault rate, and thus there will be a large potential 

for upsetability-aware optimizations.   

 

Figure 4.5: Local, intra-cluster variations in upsetability for chip 1 (left) and chip 2 
(right).  Shown is m1 upsetability relative to the local cluster average for 256 clusters of 

four flip-flops.  Clusters span four cells vertically. 
 
 

 

Figure 4.6: Coefficient of variation (σ/μ) for latch upsets within a cluster in the tested 
noise environment, averaged over 256 clusters 
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We saw no obvious systematic or regional correlations, providing support that the 

measured variations are indeed random by latch.  We explicitly searched for a systematic 

bias based on flip-flop location in a cluster.  The data indicates that upsets are nearly un-

iformly distributed across the four locations (A, B, C, D), as one would expect with local, 

uncorrelated variations.  The relative distribution of 500,000 upsets across the four loca-

tions was (.252, .248, .253, .247) for chip 1 and (.253, .249, .252, .245) for chip 2.  

Although the main focus is on intra-cluster variations for a given test case, some sec-

ondary conclusions can be drawn; we see more variation in slave latches than master 

latches, and far higher variation when a latch is in the 1 state than in the 0 state.  The lat-

ter finding is consistent with a recent simulation of four types of 65 nm latches [73].  

Note also that while the focus here is on flip-flops, the idea of injecting noise and esti-

mating upsetability is also applicable to certain SRAM configuration cells.  Many LUTs 

can be configured as shift register LUTs (SRLs), and noise can be injected through the 

clock or clock enable line, potentially uncovering variations in the constituent SRAM 

cells.  We found a data bias using this method—a 1 bit in an SRL was much more likely 

than a 0 bit to flip due to clock noise.  

 

4.7 Summary 

Our results demonstrate that local, random variations can indeed be significant and 

can be uncovered via careful self-test.  Whereas radiation testing is inapplicable, and in 

situ characterization during system operation is typically infeasible, on-chip noise emula-

tion can quickly provide useful upsetability data.  We found that the amount of variation 

in upsetability can be significant even on 65 nm FPGAs, with coefficients of variation of 
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up to 77% depending on the noise environment.  The next questions, addressed in Chap-

ter 5, are how to enable self-optimization in such a situation, and what kind of benefits 

can be expected on real circuits. 
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CHAPTER 5  

Self-Optimization for Local Variations 

 

This chapter covers self-optimization for local, random variations.  Statistical simu-

lations are used to estimate reliability improvements and find an appropriate size for the 

optimization neighborhood.  We then use actual FPGA hardware introspection data from 

Chapter 4 to evaluate the use of re-packing and local re-placement on a set of benchmark 

circuits, and show how reliability can be improved via low-cost self-adaptation as well as 

assisted adaptation using a remote server.  The two major portions of this chapter were 

published in [131] and [133]. 

    

5.1 Variation-Aware Re-Placement 

Given the latch upsetability estimates made possible by introspection, a system can 

be reconfigured with a more effective mapping between logical state bits and physical 

latch instances.  Performing a full variation-aware place and route cycle on-line would be 

quite costly in terms of computational and memory resources, especially if attempted on 

an embedded system.  Instead we investigate the potential for incremental place and route 

[26]. 

We propose decomposing the logic array into a collection of virtual neighborhoods, 

and then optimizing the placement of state bits only within each neighborhood.  This re-
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duces the computational and memory burden significantly, and avoids most of the diffi-

culty of routing and timing closure.  Logic that has special placement constraints or that 

resides on a critical path can be made ineligible for re-placement.  A simple example of 

such incremental place and route is illustrated in Figure 5.1. 

 

 

Figure 5.1: A cluster of logic in its original configuration with state bits (1,2,0) placed at 
master-slave flip-flops D,C,B (left); the same cluster after re-ordering of logic (right) 

 
In order to evaluate different system configurations, estimates will be needed for the 

factors in (4.1)–(4.3).  The upsetabilities can be estimated using one of the two methods 

presented in Chapter 4: in situ characterization, or self-test based on noise emulation.  

The logical parameters can generally be estimated at pre-manufacturing time.  For in-

stance, the VF factors can be estimated through statistical fault simulations and a careful 

study of the timing windows of vulnerability [43].  The signal probabilities can typically 

be found via logic simulation or, if necessary, on-line sampling in the field; with some 
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FPGAs on-line sampling of logic states can be performed transparently to a computation 

via non-intrusive scans.   

We now investigate the following low-cost heuristic for finding improved place-

ments.  Physical flip-flop instances are ranked according to a single variable—the upse-

tability of the master latch in state A (discussed in Section 4.5).  Logical state bits in the 

design are ranked by their weighted vulnerability fraction in state A (the probability of 

being in state A multiplied by VF).  The worst-case unassigned state bit is paired with the 

best-case unassigned latch instance.  Essentially this causes the threats at the physical and 

logical levels to be negatively correlated, in order to minimize the system-level soft error 

rate contribution.  The process is repeated until all eligible state bits have been placed. 

The main questions are whether such an approach can be effective enough in reduc-

ing the soft error threat and, if so, what is a proper neighborhood size?  We address these 

questions in the next two sections. 

 

5.2 Statistical Simulation Results  

We created a statistical model of a computational system and conducted Monte Carlo 

simulations to determine the efficacy of the methods in question.  The model contains 

100,000 master-slave latch pairs, each latch having local variation in each of the four up-

setability parameters.  In this model only, the upsetabilities are assumed to be normally 

distributed.  Note that in most noise environments the upsetabilities need not be normally 

distributed even if Qcrit is; this is because the energy of noise events is usually skewed 

toward lower energies.  Only local, uncorrelated variation is modeled here; regional, spa-

tially-correlated variation is assumed to be negligible within the small optimization 
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neighborhoods considered.  The SP and VF variables for state bits are given uniform ran-

dom distributions from 0.0 to 1.0.  Unless otherwise stated, the remaining parameters are 

set to the values described in Section 4.5, with a neighborhood size of eight flip-flops and 

a logic utilization of 50%.  For each experiment, we simulate latch upsetability characte-

rization followed by variation-aware reconfiguration, and measure the impact on SER. 

In the first experiment, we address the question of how much SEU sampling is re-

quired to adequately characterize relative latch upsetabilities.  One published guideline 

suggests that 100 SEU events are needed to characterize average upsetability [1]; we are 

interested to find a similar empirical guideline for relative upsetability of individual 

latches.  Given the dominance of one type of latch upset (master latches with data in the 

more susceptible state) as shown in Section 4.5, we seek to determine whether it is feasi-

ble to characterize and adapt to just one type of upsetability.  We simulated successive 

amounts of SEU data collection followed by reconfiguration based on the upsetability 

estimates.  The standard deviation for each type of upsetability was set to 20% of the 

mean.  Thirty Monte Carlo trials were performed at each data point.  The results are illu-

strated in Figure 5.2.  We found that SER could be improved by up to 15%.  Surprisingly, 

we found that most of the possible SER improvement can be realized even after a small 

number of SEUs are observed per latch.  For instance, after an average of eight SEUs, the 

improvement in SER is over half of what could be achieved with perfect knowledge of 

the relative upsetabilities.  The data is consistent across trials; the root-mean-squared-

error is too small to be visible in the figure. 
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Figure 5.2: Improvement in SER vs. amount of SEU characterization 

 
We measured the potential for SER improvements as a function of the amount of 

variation and as a function of the optimization neighborhood size.  We simulated upseta-

bility characterization (again limited to an average of ten SEUs per master latch), for 

three different amounts of variation: standard deviations equal to 10%, 20%, and 30% of 

the mean.  These amounts of variation in upsetability are feasible given the spread in Qcrit 

modeled in [9][42][73].  Neighborhood sizes of 2, 4, 8, 16, and 32 flip-flops were simu-

lated, with 30 Monte Carlo trials performed for each size.  The results are shown in Fig-

ure 5.3.  First note that the amount of SER improvement is much higher for higher 

amounts of variation.  Surprisingly, the SER improvement levels off very quickly with 

neighborhood size, meaning most of the possible improvement can be realized with very 

small and tractable sizes.  For instance, the amount of improvement with neighborhoods 

of just eight flip-flops is 75% of the amount associated with a maximum-size neighbor-

hood (100,000).  This holds true for all three values of SEU variation that were simulated. 
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Figure 5.3: Improvement in SER vs. neighborhood size, for three different amounts of 
SEU variation 

 
Perhaps the most surprising result from this study is the effectiveness of logic recon-

figuration within very small neighborhoods.  Optimization within each neighborhood of 

just eight flip-flops can produce significant reductions in the soft error rate.  This is en-

couraging since incremental place and route is far more practical when the neighborhood 

size is small.  In fact, modern reconfigurable platforms tend to naturally employ small 

neighborhoods in their logic arrays.  Xilinx’s Virtex-6 FPGAs, as well as all of its up-

coming 7th generation FPGAs (Virtex, Kintex, Artix), are organized into clusters (aka 

slices) containing eight flip-flops [116].  The logic within a cluster uses the same clock 

and control signals, making it more interchangeable.   

We found that the mean number of faults that must be observed in situ per latch to 

enable an effective re-implementation is on the order of ten.  This compares favorably to 

an existing rule of thumb [1] suggesting that 100 SEU events are generally required for 

accurate estimation of fault susceptibility.  The advantage of the investigated approach is 
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that highly accurate estimates of upsetability are not required; all that is needed is enough 

relative data to identify most of the outliers (components that are particularly upsetable or 

non-upsetable).  Whether ten faults per latch can be generated in a timely fashion de-

pends heavily on the radiation environment and the ability to lower Qcrit.  In most applica-

tions, SEUs are far too infrequent even with accelerated testing, and thus relative upseta-

bilities cannot be readily characterized with this approach.  In situ characterization of 

fault upsetabilities may become more feasible for emerging technologies with inherently 

high fault rates.  Nevertheless, in general there is a strong need for novel and practical 

methods of characterization such as the proposed on-chip noise emulation from Section 

4.6. 

   

5.3 Case Study 

In this section, we present an example of physically-adaptive computing in the con-

text of transient faults, using actual hardware introspection data from Chapter 4.   

5.3.1 Problem Statement 

We now state the problem using the PAC formalism presented in Chapter 1.  We 

start by assigning the function F to be each of a set of benchmarks functions (circuits) 

from the IWLS2005 OpenCores suite [53].  Each of the 15 selected functions has no 

more than 1,024 state bits.  The functions are synthesized with version 10.1 of the Xilinx 

synthesis tool to generate the function netlists FN. 

We use two reconfigurable substrates Sub1 and Sub2 which are instances of a modern 

FPGA with 65 nm features and fine-grained reconfigurable logic (Xilinx Virtex-5 

XC5VLX110T).  We specifically study in detail a 32 × 32 array of 1,024 flip-flops near 
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the lower right portion of the chip.  We assume that the substrate parameters of interest 

(flip-flop upsetabilities) are static while the adaptation agent is active. 

The logical parameters are the signal probabilities SPi of the state bits in FN; these 

probabilities indicate how often each state bit is in the 1 state for the representative work-

load.  The substrate parameters that must be characterized by the PAC system are the four 

types of upsetability: m0j, m1j, s0j, and s1j, for each of the 1,024 flip-flops.  Lastly, the 

operational parameter of interest is the total fault rate. 

 A configuration Config has an associated matrix x that specifies which logical state 

bits are placed at which flip-flop locations.  The variable xij is 1 if state bit i is matched 

with flip-flop j, and is 0 otherwise.  The fault rate of a bit/flip-flop pair ij is essentially the 

fraction of time spent in a state multiplied by the fault rate associated with that state, 

summed over the four type of faults.  As in Chapter 4, we assume here that the clock duty 

cycle is 50% and thus the master and slave latches are exposed for equal periods.  The 

cost of the bit/flip-flop pair is defined here to be the associated fault rate:  

 
௜௝ݐݏ݋ܿ ൌ  ሺ݉1௝ ൅ ܵ 1௝ሻݏ ௜ܲ ൅ ሺ݉0௝ ൅ 0௝ሻ ሺ1ݏ െ ܵ ௜ܲሻ.                      (5.1) 

 
We define the cost function for configuration-substrate pair (Config, Sub) to be the 

total fault rate.  Assuming that faults affect single latches, we sum all of the component 

fault rates, and treat the MTBF as the inverse of this total fault rate:  

 
,݂݃݅݊݋ܥሺݐݏ݋ܥ ሻܾݑܵ ൌ ∑ ∑ ௜௝௝௜ݔ௜௝ݐݏ݋ܿ .                                              (5.2) 

 
The goal for the PAC system is to characterize the necessary parameters and gener-

ate new configuration-substrate pairs (Config, Sub) that minimize cost (maximize fit-
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ness).  Note that this involves reducing the raw number of transient faults, a strategy 

called fault avoidance.  Descriptions of our experiments and results are given next. 

5.3.2 Experimental Results 

We created an experimental FPGA-based system to test self-optimization for local 

variations, and to develop a better understanding of the achievable overhead.  The system 

is capable of performing self-characterization of locally-varying latch upsetabilities on 

actual hardware.  Lightweight tools for re-implementing an application, e.g., tools that 

can run on the FPGA itself, are not yet available from chip vendors; however, we created 

a tool capable of evaluating alternative implementations off-line.  

5.3.2.1 Self-Characterization 

The characterization method involves the autonomous injection of small amounts of 

charge into a latch via short pulses on the asynchronous set and reset lines, as described 

in the previous chapter.  Self-characterization was performed for 256 clusters of four flip-

flops on both substrates.  For every flip-flop, the system characterized the four values of 

transient fault upsetability associated with the given noise environment.  As was seen in 

Chapter 4, significant local variations were found.   

5.3.2.2 Experiment 1: Physical Variation Only 

In the first experiment involving re-implementation, we aimed to find a lower bound 

on the effectiveness of both self-adaptation and assisted adaptation.  The physical para-

meters were determined via self-characterization, while the logical parameters (signal 

probabilities) were assumed to be uniform so there would be no logical variation to take 

advantage of.  All signal probabilities were set to 0.5 for this experiment only.   
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We implemented the 15 benchmark functions using the conventional Xilinx ISE 10.1 

tool flow, which is independent of the unique reconfigurable substrate.  The resulting 

numbers of state bits, LUTs, and clusters are shown in Table 5.1.  Circuits were allowed 

to use as much logic as necessary, with the constraint that all state bits reside at flip-flops 

in the 32 × 32 array under test. 

 
Table 5.1: Benchmark circuit characteristics 

 

The cost of these original, substrate-independent implementations was calculated.  

This was done by extracting the cluster coordinates and flip-flop sites of all state bits (us-

ing Xilinx Floorplanner), and then evaluating (5.2).  Next, an adapted implementation 

with the lowest cost was found.  The method used was re-placement of the state bits with-

in each cluster.  Since there are four flip-flop locations and up to four state bits that need 

to be placed, there are up to 4! = 24 alternative placements for each cluster.  Our re-

implementation tool performed the variation-aware optimization within each of the 256 

Benchmark circuit 
No. of 
state 
bits 

No. of 
LUTs 

No. of 
clusters 
(aka slices)

No. of clus-
ters w/ >0 
state bits 

Intra-cluster 
state bit 
packing 

steppermotordrive 39 62 17 13 0.75 
pci_spoci_ctrl 55 190 80 31 0.44 
des_area 64 420 281 25 0.64 
ss_pcm 87 40 31 25 0.87 
usb_phy 98 78 41 40 0.61 
i2c 114 173 81 46 0.62 
sasc 116 74 57 48 0.60 
des3_area 128 593 475 32 1.00 
simple_spi 131 114 57 44 0.74 
systemcdes 190 347 129 59 0.81 
spi 229 609 340 171 0.33 
tv80 359 1579 571 151 0.59 
wb_dma 516 721 371 162 0.80 
aes_core 530 1599 654 189 0.70 
systemcaes 670 1411 502 224 0.75 
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clusters, needing only 256 × 24 evaluations of (5.2).  The new total mean time between 

latch failures (MTBF) was then calculated by summing over all clusters. 

An example of intra-cluster optimization is depicted in Figure 5.1.  Three state bits 

are placed among the four flip-flops in a cluster.  As a system learns more about the rele-

vant parameters, a new and better implementation is found.  Gains can come not only 

from avoiding unreliable components (e.g., flip-flop D) but from matching logical and 

physical variations when possible.     

The next task in this experiment was quantifying the effects of assisted adaptation, in 

which a heavier-weight algorithm can be employed.  The Xilinx tools do not readily sup-

port global, per flip-flop variation-aware placement, so we created a method serving as an 

approximation.  First, the global packing of logic into clusters [2] was modified to 

achieve better balance.  For instance, if seven state bits were originally packed into three 

clusters using flip-flop counts of 4, 2, and 1, our tool would re-pack the logic such that 

the distribution became 3, 2, and 2.  This balancing decreases the number of fully-utilized 

clusters and thus increases the degrees of freedom—there are more opportunities for 

avoiding the worst flip-flops and leveraging the best ones.  The number of clusters con-

taining utilized flip-flops was held constant so as not to increase circuit area.  Intra-

cluster re-placement was then performed just as in the self-adaptation case but with the 

possibility of even better placements.  The new MTBF was calculated and compared to 

the original substrate-independent MTBF.   

The flows used in the experiments are shown in Figure 5.4.  On the left is the tradi-

tional, non-adaptive flow.  On the right is the additional flow used to emulate the PAC 

process. 
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Figure 5.4: Traditional design flow (left) and the additional flow used to emulate the PAC 
process (right) 

  
The results are shown in Figure 5.5.  For self-adaptation, the MTBF improved by an 

average of 16% using substrate RS1 and 14% when using RS2.  With assisted adaptation, 

the improvement reached an average of 35% and 25%. 

 

 

Figure 5.5: Results of experiment 1 showing the improvements in MTBF for self-
adaptation and assisted adaptation relative to the non-adaptive case, assuming no varia-

tion in signal probabilities   
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One circuit, des3_area, showed no improvement in this experiment.  This is because 

the circuit is a regular datapath and leads to clusters that are fully packed; without any 

spare flip-flops and without any logical variation to use as a counteracting force, there is 

no degree of freedom.  Generally, as state bits are packed with less density within clus-

ters, as shown in the right column of Table 5.1, the gains increase.  The least dense cir-

cuit, spi, saw improvements as high as 77%. 

5.3.2.3 Experiment 2: Physical and Signal Probability Variation 

Having established a lower bound on the levels of improvement, we next conducted 

an experiment in which there was variation across the logical parameters (signal probabil-

ities).  This allowed us to quantify the additional benefits of using logical variation to 

counteract the physical variation.  As with the previous experiment, the experimental 

PAC system used the actual physical parameter data and either performed self-adaptation 

(in the form of intra-cluster re-placement), or relied on assisted adaptation, in which case 

the aforementioned re-packing was performed along with intra-cluster re-placement.  For 

each benchmark and substrate, the signal probabilities were assigned independent random 

floating-point values between 0 and 1.  This is an approximation; in actual applications 

the signal probabilities can be found through logic simulation or via on-line sampling us-

ing a method such as Xilinx’s “capture and readback.”  The process was repeated for ten 

trials, 15 benchmarks, and two substrates, for a total of 10 × 15 × 2 = 300 re-

implementations for self-adaptation and again for assisted adaptation.  In each trial, the 

MTBF after adaptation was compared with the MTBF of the original configuration-

substrate pair.  The results are shown in Figure 5.6.  Across all benchmarks, the MTBF 

improved by an average of 31% and 27% after self-adaptation when using substrates RS1 
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and RS2, respectively.  The gains are much higher than after self-adaptation with uniform 

signal probabilities (experiment 1), due to the logical variation counteracting the physical 

variation.  For instance, a state bit with a high probability of being in the 1 state can be 

placed at a flip-flop with a low rate of upsets in the 1 state.  The gains are even greater 

with assisted adaptation, reaching 53% and 36%, respectively. 

 

 

Figure 5.6: Results of experiment 2 showing the improvements in MTBF for self-
adaptation and assisted adaptation relative to the non-adaptive case, assuming uniformly 

random signal probabilities.  Error bars show the standard deviation across ten trials. 

 
5.3.3 Limitations 

One limitation of the case studies in this chapter is the assumption that all logic in a 

cluster can be re-ordered; in some cases there can be asymmetries (e.g., the use of carry 

logic) and restrictions that make re-ordering difficult.  Moreover, with our tool we al-

lowed very fine-grained variation-aware changes to an implementation, though this is not 

yet supported by FPGA vendor tools.  There are reasons to believe that in-system re-

implementation is becoming more feasible.  Two of the leading vendors (Xilinx and Alte-
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ra) have announced new and more complete support for partial reconfiguration [117][7].  

As physical issues come to the fore, vendor plans for additional fine-grained methods 

[105] are likely to come to fruition.  A final limitation of the case studies is that they in-

volved optimization toward a single objective.  In reality, there are typically multiple 

conflicting objectives (power, reliability, design effort, etc.) that require careful trade-off 

analysis. 

 

5.4 Discussion 

The results of our experiments illustrate some of the potential for physically-focused 

optimization.  One observation is that the value of PAC depends highly on the amount of 

variation in both logical and physical parameters.  For instance, substrate Sub1 exhibits 

higher random variation in latch reliability than does Sub2; the coefficient of variation is 

roughly 20% higher in relative terms as seen in Chapter 4.  As a consequence, the PAC 

benefits are generally larger when using Sub1.  A second example is the effect of varia-

tion in logical parameters; in the presence of variation the benefits of self-adaptation 

doubled, from 16% (14%) to 31% (29%).   

An additional finding is the importance of logic packing.  In the absence of logical 

variation, the presence of spare flip-flops is especially important.  The rightmost column 

of Table 5.1 provides one metric of intra-cluster packing—the number of state bits di-

vided by the number of clusters containing state bits.  In experiment 1, the gains are gen-

erally inversely related to the level of intra-cluster packing.  In experiment 2, additional 

gains are possible via logical-physical matching. 
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The potential for optimization is also related to environmental parameters.  Latches 

can have different noise thresholds at which upsets occur, so if the noise environment is 

dominated by events around the threshold energies, there can be huge variations.  Some 

components may never incur a fault while others may do so frequently.  Variation can 

furthermore be data-dependent; we found that the latches exhibited much higher variation 

when in the 1 state.  These phenomena point to the need for careful characterization and 

modeling of the many types of system parameters. 
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CHAPTER 6  

Conclusions 

 

This dissertation is intended to contribute to an ambitious long-term vision, in which 

digital systems achieve significantly higher efficiency and reliability via adaptation.  We 

highlight the main contributions below, then point to and explore some promising direc-

tions for future research.  Lastly, we engage in some introspection of our own and pro-

vide final thoughts on this endeavor. 

 

6.1 Summary of Contributions 

The main contributions of this dissertation are the following: 

• A rationale and conceptual framework for physically-adaptive computing  

• Novel methods of sensing regional variations in reconfigurable systems, including 

a multi-use FPGA-based sensor one-quarter the size of the previous smallest de-

sign 

• A novel method of self-test for local variations in upsetability, using on-chip 

noise emulation 

• Previously unpublished silicon data for 65 nm FPGAs, with several surprising 

findings involving delay, leakage, temperature, and upsetability    
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• A new soft error figure-of-merit that can be used to evaluate the fitness of alterna-

tive designs    

• Self-optimization methods for regional variations, such as in-system selection 

among alternative designs  

• Self-optimization methods and experiments for local variations, including a case 

study quantifying the possibilities for both self-adaptation and assisted adaptation 

 
The general concepts of introspection, variation, and fine-grained optimization have 

been synthesized into a common framework we call PAC.  Typically, these concepts are 

studied piecemeal and in disparate research areas.  In comparing and contrasting natural 

and artificial adaptive systems, we have identified a unique opportunity for digital sys-

tems regarding physical adaptation.  We have outlined the key elements of a unified PAC 

framework and have provided arguments for the importance of fine granularity and re-

mote assistance.   

We have established a novel approach to instrumenting an application with an array 

of flexible, low-cost sensors.  Along with improved measurement procedures, the pro-

posed sensor arrays allow estimation of many regional, spatially-correlated parameters.  

The proposed FPGA-based sensor, which includes a novel residue number system ring 

counter, is one-quarter the size of the previous smallest sensor. 

We have demonstrated a novel self-test strategy of on-chip noise emulation, and pre-

sented a design for an efficient, 50-ps-resolution circuit for FPGAs.  Noise emulation can 

uncover previously hidden local variations not observable with radiation testing or in situ 

monitoring.  This approach to introspection can be implemented with separate bitstreams 

and requires no permanent hardware overhead—something that cannot be achieved with 
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ASICs or MPUs.  The overhead of using an extra bitstream is small; a system such as the 

Cibola Flight Experiment can store 20 bitstreams, and in many cases, self-test bitstreams 

can be maintained at a remote server or peer and retrieved occasionally as needed. 

Data on fine-grained physical variations tends to be scarce in the literature.  We have 

contributed some unique empirical data.  First, we have determined the relationship be-

tween ring oscillator frequencies and temperature on a 65 nm FPGA; we found that the 

curve has flattened by a factor of eight compared to the Xilinx XC3000/4000 chips from 

the mid-1990s.  The data can be used to calibrate and validate analytical models of tem-

perature dependence, which indeed predict that the curve flattens out as supply voltages 

decrease [110].  Second, we have quantified spatial variations in delay, and established 

some limits on sensing temperature.  Additionally, we have provided novel data regard-

ing local variations in upsetability. 

Soft error metrics such as architectural vulnerability factor are widely used.  Howev-

er, we have demonstrated that certain situations require a more comprehensive metric.  

We introduced the notion of vulnerability over space and time (VST) which accounts for 

the differing amounts of spatial and temporal resources used by different designs.  This 

metric can be used as a logical parameter in a cost function for evaluating alternative de-

signs. 

We have identified many new opportunities for self-optimization.  For regional vari-

ations, we studied in-system evaluation and selection among alternative designs.  Case 

studies of CORDIC, floating-point addition, and FFT applications showed potential im-

provements in fitness of roughly 30%–40%. 
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For local variations, we quantified the benefits of both re-packing of logic across 

clusters, and re-placement of logic within clusters.  The results show that significant 

gains (30% increase in MTBF) are possible via self-adaptation, and even larger gains 

(40%–50%) via assisted adaptation.    

 

6.2 Directions for Future Work 

The work discussed here suggests a variety of promising research avenues involving 

support for physical adaptation, variations of the PAC paradigm, and adaptive computing 

closer to physical limits.   

6.2.1 PAC-Friendly Tools, APIs, Hardware  

Further work is needed regarding infrastructure that is conducive to PAC.  

Lightweight tools are needed for performing more of the adaptation process in-system 

rather than by a server.  Ideally, reconfigurable platforms would have open bitstream 

formats and tools, but commercial interests may hinder that goal.  Instead, platform ven-

dors could at a minimum provide APIs that allow more powerful adaptation in the field.  

Along the lines of Xilinx’s Set_CLB_Bits function which provides control of logic block 

configurations [118], vendors could provide a means to swap logic cell functions and 

routing.  Research into reconfigurable hardware platforms is needed regarding the appro-

priate number and resolution of built-in sensors, the addition of power gating (which 

would help to isolate regions during self-test), and symmetric local interconnect that 

makes swapping easier.  As system configurations become more fluid in the field, there 

will be a need for new approaches to bitstream security. 
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Design productivity is an increasingly important goal given the immense scale and 

complexity of systems today.  Thus the inclusion of PAC principles in a system should 

not greatly impact the work of system or application designers.  Further research is 

needed regarding integrating PAC automatically.  For example, an infrastructure such as 

the one proposed in Chapter 3 (sensors, interconnection, physical constraints, and drivers) 

could be turned into a parameterizable intellectual property core and added to the IP li-

brary provided by FPGA vendors.  This would allow designers to start with a ready-made 

PAC infrastructure.  Similarly, self-test circuits and optimization routines for local varia-

tions could be included transparently in the vendor bitstreams, similar to what Xilinx has 

already stated as a goal [105].    

6.2.2 Variations of Physically-Adaptive Computing 

Multiple spatial scales.  PAC can potentially be applied at multiple spatial scales—

local, regional, system-wide, even inter-system.  An analogy exists to biology, where 

adaptations can occur at a single DNA base pair, a gene, and even in the number of 

chromosomes.  Interactions between adaptation at multiple scales need to be considered.  

For instance, local introspection data may need to be combined with regional data.  When 

evaluating potential regional optimizations, an agent may have to consider the loss of 

previously performed local optimizations.  A better understanding is needed of the condi-

tions for which local adaptation alone is the best strategy.      

Multiple agents.  While our experiments used a single adaptation agent, most of the 

proposed methods are non-global, meaning they can potentially be used for decentralized, 

multi-agent PAC.  As an example, each region of a many-core system could have an as-

sociated agent performing introspection and self-optimization.  A decentralized approach 
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is likely to be necessary given the growing amounts of system integration and parallel 

processing.    

Multiple hardware contexts.  Some reconfigurable systems have multiple contexts 

that use the same chip or region of a chip [47].  For instance, a system may alternate be-

tween high-performance and high-reliability implementations of an application, or may 

dynamically switch between IP cores implementing different protocols.  Both of the lead-

ing FPGA vendors now support partial reconfiguration for the latter case.  An area for 

future work is re-usability of PAC knowledge across contexts.  Can knowledge of adapta-

tions be extracted from a bitstream and leveraged in a different context?  When does it 

make sense for an agent to optimize all contexts simultaneously rather than separately? 

Multiple systems.  A further line of inquiry is the nature of PAC cooperation across 

multiple systems.  At a minimum, peers may be able to share logical data and self-test 

bitstreams, reducing the local memory overhead and server communication.  Certain 

types of computations may be a poor physical fit for certain systems, and perhaps could 

be migrated to achieve a better fit.  One can envision systems advertising their unique 

capabilities in a marketplace of computation.  Research would be needed into the limits 

and possibilities of such an extension. 

6.2.3 The Problem of Heat 

Excessive heat is a fundamental physical problem for computing systems, causing 

exponential increases in wearout, sub-threshold current, and eventually, thermal noise 

errors [85].  Removing heat is itself expensive.  Cavin et al. warn that continued scaling 

“will result in the generation of thermal loads that cannot be managed by any known heat 

removal technology…Radically new solutions for heat removal are necessary” [20].  
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Thermal hotspots do not always match what is predicted by simulation models and tools 

such as HotSpot, due to substrate variations, packaging defects, and unexpected work-

loads.  Thus on-line sensing and fine-grained re-implementation of computations can play 

a role as an additional mitigation method. 

Systems can in theory be cooled to ultra-low temperatures.  However, low-

temperature operation has been attempted in the past as a means to achieving high per-

formance, and has run into at least two roadblocks.  First, total system efficiency is li-

mited by the energy required for cooling, as stipulated by Carnot’s Theorem in thermo-

dynamics.  Second, while many circuit properties improve at low temperatures, some ef-

fects can worsen such as hot carrier injection.  Thus new manufacturing technologies, and 

possibly non-CMOS technologies such as SiGe, may be required.  A resurgence of inter-

est in low-temperature computing is likely.  Already, there are experimental quantum 

computers that operate at −269°C (4K).  A further possibility is discussed below. 

6.2.4 PAC in Space 

A prime area for future study is physically-adaptive computing in space systems.  

NASA’s FPGA-based SpaceCube 1.0 is currently flying on the International Space Sta-

tion and undergoing reliability experiments.  A new space-qualified 65 nm FPGA called 

the Xilinx Virtex-5QV is expected to enter production in 2011 [126].  This promising 

platform will have extra protection against SETs and SEUs and may be effective for mis-

sion critical computations such as command and data handling and flight control.  The 

natures of physical variations, wearout, and fault mechanisms on this platform remain to 

be seen. 
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Each Virtex-5QV chip is expected to be very expensive and a full generation behind 

the commercial-grade FPGA chips such as the 40 nm Virtex-6.  Thus there will be ongo-

ing needs for higher-performing, lower-cost platforms, especially for non-mission-critical 

computations such as payload processing. 

Regarding the problem of heat mentioned above, we pointed out that artificial cool-

ing is costly.  One fascinating possibility is to leverage environments with natural ultra-

low temperatures.  The coldest such places are beyond Earth.  Certain shaded craters on 

the Moon are believed to be the coldest spots in the solar system, with temperatures be-

low −223°C (50K).  Combined with specialized cooling technology, it may even be poss-

ible to reach −263°C (10K) [84].  Computing in such environments is currently prohibi-

tive, but that may well change.  One likely scenario is for low-temperature computing 

technologies to be successfully realized first for ground-based systems.  These systems 

will have unique advantages such as boosted performance or quantum capabilities, but 

ultimately will have limited efficiency in terrestrial environments due to cooling require-

ments.  A subsequent step would be to find ways to deploy such technology in naturally 

cold space environments.  Though adaptive computing in space sounds like a distant 

goal, it may be where the laws of thermodynamics lead. 

   

6.3 Final Thoughts 

Given the essential role digital systems play in society, I feel it is important to take 

steps, however modest, in the direction of physical adaptability.  In my view, the oppor-

tunities and rewards are plentiful.   
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My experiences along this dissertation journey offer a small glimpse into the possi-

bilities.  Recounting just one stirring experience, I came to believe many months ago that, 

despite the conventional wisdom, local variations in upsetability were likely significant 

and that they could and should be uncovered.  I subsequently implemented a method of 

self-test in an effort to shine light on this question.  Upon turning on the experimental 

system for the first time, the early data showed no sign of variation, with patterns of all 

0’s (0x0 hexadecimal) or all 1’s (0xF).  After some initial concern, I spent a few hours 

fixing bugs, learning about the instrument, and adjusting the noise.  Then, for the first 

time, some wonderful patterns began to emerge.  Suddenly the system was reporting non-

uniform characters…0xB…0x8…0x5…and many more.  The nanoscale details began to 

reveal themselves in beautiful and repeatable variations.  I felt privileged and fascinated 

to be seeing a tiny, previously hidden part of nature.  As the results got stronger, I was 

elated that the variations were significant and measurable, representing a new opportunity 

for systems to improve themselves.  

Now, the broader journey continues, toward better understanding of computation at 

nanoscales, and toward more effective, dependable digital systems.  Legendary astrono-

mer Carl Sagan once said, “Somewhere, something incredible is waiting to be known.”  

This is undeniably true.  I find it inspiring that not only will we know new and incredible 

things, but that our engineered systems in service of society will come to know them-

selves at microscopic scales, and with our help, climb to peaks unimagined. 
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