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CHAPTER I

INTRODUCTION

The number of transistors that can be packed together in semiconductor chips have 

increased exponentially over the past 50 years. This behavior was first predicted famously 

by Gordon Moore in 1965 as illustrated in Figure I.1. Moore’s law predicts that the num-

ber of transistors in semiconductor chips doubles every two years. The trend in the semi-

conductor industry has been more or less consistent with this prediction. Modern chips 

contain up to a billion transistors. The dense packing of transistors in a chip is enabled by 

advances in process technology with the transistor device geometry shrinking at every 

new technology node. The spatial resolution of transistors can be as low as 32nm in the 

latest technologies. Thus today’s technology enables man to produce powerful computing 

devices at massive scales by being to able to control the behavior of matter at the level of 

just a few atoms. 

Figure I.1. Gordon Moore’s original graph from 1965.                 
Source: http://www.intel.com/technology/mooreslaw/
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At the same time, these advances in technology are accompanied by novel challenges 

which are threatening to limit the pace at which we make progress in accordance with the 

Moore’s law. Earlier transistors were much larger and their physical dimensions (e.g. 

length) and other properties were easier to control. However with shrinking sizes it has 

become increasingly difficult to control these properties/parameters. Termed process vari-

ation, this phenomenon implies that the behavior of a chip has an uncertainty related to the 

exact manufacturing process and is only known to within bounds during the design phase 

of the chip. This means that meeting the performance specification becomes more chal-

lenging. The complexity of process variations and the uncertainty is increasing with tech-

nology scaling . There are different sources for this process variation. Lithography is the 

process of using light to transfer a geometric pattern to the silicon substrate or thin films 

on the substrate. The resolution related to the wavelength of light leads to lithographic 

variation as illustrated in Figure I.2. Other sources of variation are related to the process of 

doping or intentional addition of impurities to silicon to achieve desired properties. The 

 

Figure I.2. Resolution enhancements in photolithography have 
stalled due to difficulties associated with EUV (Extreme 
Ultravioloet lithography). This is a source of variation as 

transistor geometries shrink at advanced technology nodes. 
Source: Mark Bohr, Intel
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final geometric pattern achieved on silicon or the layout affects the distribution of stress in 

silicon which leads to layout dependent stress variation in certain silicon technologies 

called strained silicon technologies. It is important to study and model the effect of these 

sources of variation to enable better knowledge of chip properties in the design phase [1-

3]. Timing verification/analysis and power analysis are two key steps in assessing the 

quality of an integrated circuit design. In the optimization step, insights from timing anal-

ysis are used to tune the design to achieve, for example minimum area in silicon while 

meeting target timing constraints. These are briefly described in the following sections 

along with the impact of process variations on the accuracy of these analyses. 

I.1  Timing Analysis and Optimization

The aim of timing verification of a chip is to make sure that a chip operates at a speci-

fied clock frequency with a desired yield under the specified range of operating condi-

tions.  A simple definition of yield is the fraction of chips manufactured which meet the 

performance specifications. Timing verification involves timing analysis of the network of 

logic gates in the circuit or the netlist (a description of a circuit in terms of electrical con-

nections of gates). Timing analysis can be static or dynamic. Dynamic timing analysis 

involves propagation of vectors at the input ports of the network to the output ports and 

computing the timing behavior of the circuit. Static timing analysis does not consider indi-

vidual input vector patterns and is therefore more conservative in the timing behavior esti-

mate. However, due to the complexity of usage the standard methods used for processors 

and ASICs (Application Specific Integrated Circuits) do not involve dynamic timing anal-

ysis. Hence we only consider static timing analysis in this work. 
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 The basic steps involved in a static timing analysis on a netlist are summarized here [4-

5] 

• Output pin timing constraints are determined

• Input pin arrival time is determined.

• Clocks in the netlist are identified. 

• Timing constraints are generated at all circuit pins

• Minimum/maximum rising and falling signal timing are propagated from inputs to

outputs. Signals may also be propagated from outputs to inputs for certain analyses. 

• The delay of each circuit element (transistors, gates) are estimated in the above

step. 

• Considering clock uncertainty, check if all paths meet the timing constraints. 

• If there are violations, these have to be fixed through changes in the netlist. Static

timing analysis is performed on the modified netlist. 

I.1.1  Variability Aware Timing Analysis

With increasing process parameter variations there was a need to incorporate uncer-

tainty into timing analysis. A traditional conservative approach is to perform static timing

analysis at multiple process conditions or “corners” for a given circuit. A process corner is

a set of values assigned to all circuit parameters with the hope that some combination of

the values assigned will elicit worst case performance for the circuit. Process corners are

generated by assuming upper and lower bounds for each process parameter independently.

The process corners of specific interest include the best, nominal and worst case corner.
4



For example, the worst case corner is the process corner where the maximum operating

frequency of the circuit is the lowest. To find the best and worst corners, all the process

corners need to be evaluated. However as the number of process variation sources

increases, the number of candidate corners increases exponentially which makes this

approach expensive. An alternate approach is to assume worst case behavior for each

device which leads to large guard bands and loss of performance. Therefore, rather than

using simple corner models, modern CAD tools are moving towards a more probabilistic

view of circuit timing behavior. In replacing corner models, there are two primary

approaches that incorporate process parameter uncertainty in timing analysis. The first is

to perform statistical static timing analysis (SSTA) by modeling gate delay as a function

of process parameters and propagating these distribution functions to compute the distri-

bution of circuit delay [6-15]. We refer to these approaches as traditional SSTA. In tradi-

tional SSTA it has proven challenging to efficiently model factors such as “skewness” in

the arrival time distribution. Skewness is a measure of deviation from an assumed stan-

dard fitting function, and can be attributed to factors including non-linear dependence of

the gate delays on process variation. Also, a number of modeling issues are still in early

stages of development, such as combined analysis of large interconnect structures driven

by non-linear drivers, coupling events, and modeling of transparent latches. While some

progress has been made in addressing these issues [6-15], it is expected that a fully mature

traditional SSTA tool capable of performing timing sign-off may not be widely available

in the near future. The second approach is Monte Carlo based SSTA, which involves

selection of samples of the process variation space to obtain statistical distributions of cir-

cuit timing behavior. The application of Monte Carlo (MC) for statistical timing was dis-
5



cussed in [16], where it was shown that Monte Carlo based SSTA is accurate even in

scenarios with high dimensionality and non-standard distributions in the process variation

space, where traditional SSTA has difficulties. However, there are two main difficulties

with this approach. First, the standard MC approach of random selection of samples in the

process variation space requires too many samples for sufficient accuracy, resulting in

high runtime cost. Second, there is no work to show the applicability of MC based SSTA

for incremental statistical timing analysis. We address both concerns in Chapter II. 

As important as reducing the sample size for Monte Carlo based SSTA is to exploit the

trivial parallelism in the algorithm by performing computations on parallel machines. For-

tunately, recent years have seen the rapid scaling of throughput-optimized processors,

such as Graphics Processing Units (GPUs). Modern GPUs deliver over 1 TeraFlops of

computational power with more than 100 GB/second of memory bandwidth while con-

ventional processors face difficulties with frequency scaling and are increasingly incorpo-

rating multiple cores on a chip to keep up with Moore’s law. However, to exploit the

benefits of throughput-optimized processors such as GPUs, applications need to be rede-

General 
Purpose 
GPUs

Smart 
Sampling 

SSTA

Figure I.3. Smart sampling techniques for SSTA can be 
parallelized on GPUs to achieve significant speed ups in 

statistical timing analysis
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signed to achieve performance and efficiency. We present techniques to speed up statisti-

cal timing analysis on throughput processors in Chapter III. Our proposed smart sampling

technique, Stratification + Hybrid Quasi Monte Carlo (SH-QMC), is implemented on a

GPU based on NVIDIA CUDA architecture. We show that although this application is

based on MC analysis with straightforward parallelism available, achieving performance

and efficiency on the GPU requires exposing more parallelism and finding locality in

computations. This is in contrast with random sampling based algorithms which are ineffi-

cient in terms of sample size but can keep resources utilized on a GPU. Results presented

provide a compelling case for the adoption of GPUs for SSTA. 

I.1.2  Variability Aware Optimization

Next, we focus on optimizing a given circuit design to minimize cost metrics such as

area on silicon or power consumed by the chip while meeting a specified timing con-

straint. Optimization takes advantage of the fact that the same logic function can be per-

formed by different implementations of logic gates which trade-off performance for area

of power consumed. For example, standard cell libraries are available from vendors,

where there is a choice of different gate sizes for a given logic gate. A higher gate size

usually means that the gate incurs lower delay to propagate the logic, however with an

area penalty or increase in power consumption. Timing optimization can be performed by

choosing the appropriate gate type to perform each logic function such that timing con-

straints are met. However, variability in timing makes this more challenging as the timing

constraints in the optimization problem are now probabilistic functions rather than deter-

ministic. As discussed in the case of timing analysis, it is possible to select among differ-
7



ent process corners (generated by assuming upper and lower bounds for each process

parameter independently) and optimize only at the worst case corner. However, increase in

variability in the nanometer era has contributed to pessimistic guardbands for circuit

design techniques that optimize at worst-case process corners. Smart deterministic

approaches have been proposed that employ statistical timing analysis to reduce pessi-

mism in the guardbands while retaining the deterministic nature of the algorithms. In other

words, the optimization itself has deterministic objective function and constraints. How-

ever, the result obtained from the optimization is analyzed using an SSTA tool to check if

the statistical objective is also met. If not, deterministic optimization continues till the sta-

tistical objective is attained. Other statistical optimization techniques focus on optimiza-

tion algorithms which directly work with statistical objective and constraints, where

clearly the computational cost is higher. It is not clear how much improvement can be

gained using the latter set of approaches over smart deterministic approaches. This work

presents a new lower bound to evaluate these statistical optimization techniques, drawing

inspiration from recent advances in sampling based SSTA. We also compare several sta-

tistical design optimization approaches, including one proposed in this work called SLOP,

against the computed lower bound. We show that the existing optimization methods have

nearly exhausted the obtainable improvement from being statistically aware and mostly

provide trade-offs in runtime speed.

I.1.3  Gate Delay Modeling

An important step in timing verification is to calculate the delay of each circuit

element. Though we do not provide a detailed treatment of variability effects on gate delay
8



modeling in this work, we propose a technique to achieve increased accuracy in gate delay

modeling compared to conventional techniques. This technique is not currently integrated

with the rest of the methods developed in this work for timing analysis and optimization.

However, with additional research to incorporate variation effects, this can potentially

increase the efficiency of these other techniques further. Hence, we present a discussion of

this approach in Chapter VI. 

Gate delay depends on several variables, including input signal transition time and the

characteristics of the load driven by the gate. Gates drive other gates and their input pin

capacitance adds to the capacitive load at the driver gate. Gates may also drive long global

wires on the chip with large capacitive and resistive components. Modeling of gate delays

has become an important challenge in recent technologies. Traditional standard cell

libraries (libraries with pre-designed logic gates to achieve different functionalities and

drive strengths) have modeled logic gates as voltage sources based on a Thevenin model.

Timing libraries provide data for each logic gate where the delay characteristics are

precharacterized as a function of input signal transition time and a simple lumped output

capacitive load model (without considering distributed capacitive or resistive effects). The

output load of a gate is approximated to a single capacitance to make use of the

information in the timing library. This information is used to model the gate itself as a

voltage source with a resistance in series, using an iterative approach. The respective

parameters for the voltage source and resistor are dependent on the lumped capacitance

model. These models are inadequate to capture the timing behavior in modern nanometer

scale CMOS. The lumping of load capacitances into an effective capacitance leads to
9



errors in timing analysis. Also, signal integrity issues require a level of accuracy in

waveform shapes which cannot be achieved with these models.

Recently current source models (CSMs) have become popular for use in standard cell

characterization and static timing analysis. However, there has not been any detailed study

of what aspects of the gate parasitics and DC current source behavior should be modeled

for sufficient accuracy, and there have been no results reported incorporating a CSM with

the above complexity into a timing analysis flow with reasonable runtime. This work

addresses these two limitations by investigating complexity/accuracy trade-offs in CSMs

in Chapter VI. We then present a novel technique to perform fast, accurate waveform

analysis using current source models. Timing analysis results on benchmark circuits show

significantly reduced errors compared to a traditional Thevenin-based flow. 

I.2  Standby Power: Leakage Analysis

Ideally the power consumption of chips with scaling should not be a significant prob-

lem. However, in reality the trends in increase in power consumption by digital circuits is

alarming. This can be attributed to the fact that the while device geometry has been scaling

consistently, the corresponding reduction in supply voltage has not been consistent. High

power consumption increases the need for cooling of the chip and beyond a limit this can

be very expensive. The power consumption of a chip can be broadly classified as dynamic

power consumption and static or standby power consumption. Dynamic power consump-

tion is due to charging and discharging of the nodes in the circuit. Static power consump-

tion occurs when there is no switching activity in the circuit. The main component of static

power is leakage power. Power analysis of a design involves estimating the dynamic and
10



static power consumption of a circuit. The static power consumption of a circuit increases

exponentially with leakage current and this is a major concern with process scaling. In this

research, we focus on the static component of power consumption. 

As in the case of timing analysis, increasing process variation with scaling adds com-

plexity to static power or leakage analysis. A promising solution is to perform statistical

analysis of leakage and use this to guide leakage optimization and design changes. Analo-

gous to the case of timing analysis, current approaches to calculate full-chip leakage

power can be classified into two main categories. The first category of methods are analyt-

ical in nature. These attempt to model full chip leakage using a standard distribution, most

commonly a lognormal distribution. The moments of this distribution are computed by

matching moments with an expression involving summation of leakage distributions at the

gate level [24-27]. In [24] a lognormal distribution is used to approximate the leakage cur-

rent of each gate and the total leakage is obtained by summing the log normals. A low rank

quadratic approximation to capture non-lognormal leakage distributions is proposed in

[25]. It is noted that a 20% error is observed when modeling leakage distributions as

purely lognormal using a linear approximation. The authors in [26] attempt to capture high

level characteristics of a candidate chip design for early mode leakage estimation. In [27]

the authors propose a systematic characterization of leakage related parameter variations.

A quadratic model of the logarithm of leakage current is also proposed. Traditionally these

approaches have provided the desired accuracy. However they make assumptions about

either the nature of the statistical distribution of process variation parameters or the nature

of the dependence of standard cell leakage on the underlying variables for handling pro-

cess variation. The process variation parameters are assumed to have a standard distribu-
11



tion, most commonly Gaussian, or the logarithm of standard cell leakage is assumed to be

a linear or quadratic sum of the variables modeling process variation. It is not clear that

these assumptions will still hold true considering secondary effects in process variation

and a growing number of variation sources at technology nodes below 45nm. 

The second category of methods fall into the classification of Monte Carlo based tech-

niques involving selection of samples in the process variation space and using these sam-

ples to compute leakage distribution. Monte Carlo techniques can handle non-standard

distribution of process parameters and lookup tables for dependence of standard cell leak-

age on process variables. Therefore they do not require simplifying assumptions about the

dependence of leakage on process parameters or the nature of process parameter distribu-

tion, making them highly scalable. Also the inherent parallelism in evaluating Monte

Carlo samples make these techniques amenable to multi-core and Graphics Processing

Unit (GPU) computing. However Monte Carlo techniques typically require a large sample

size rendering them expensive. There is a need for smart selection of samples to reduce the

number of samples that require evaluation without compromising accuracy. In [28] the

author describes such techniques, known as variance reduction techniques. These tech-

niques need to be tailored to the system under consideration for efficient reduction in sam-

ple size. In the context of integrated circuits it has been shown that a suitable choice of

these techniques can lead to significant sample size reduction for statistical timing analy-

sis[29]. 
12



I.3  Overview of Monte Carlo Variance Reduction

Since the major contributions in this work are based upon a Monte Carlo sampling

perspective of the process parameter variation space, an overview of Monte Carlo

sampling and variance reduction approaches is in place here. The standard Monte Carlo

method addresses the problem of approximating the integral of a function f(x) over the s-

dimensional hypercube , where x represents a point in an s-dimensional space.

The MC estimate of the integral f is given by the arithmetic mean of fi, which are values of

the function f(x) evaluated at n samples distributed throughout the hypercube. 

MC based statistical timing involves selecting samples of the process variation space

to obtain statistical distributions of circuit delay. This is mapped to the standard

mathematical problem of MC, which is to estimate the integral of a function, using

samples in its domain. There are standard techniques for variance reduction of MC, which

include Quasi Monte Carlo techniques, Latin Hypercube sampling, stratified sampling,

importance sampling and control variates. In this section, we briefly discuss their

applicability to digital circuit analysis. 

I.3.1  Quasi Monte Carlo 
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Figure I.4. Quasi random and pseudo random sequences.
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The Koksma-Hlawka inequality relates the error bound of a method to numerically

estimate an integral using a sequence of samples, to a mathematical measure of uniformity

for the distribution of the points, called “discrepancy” [34]. This inequality suggests that

we should use a sequence with the smallest possible discrepancy to evaluate the function

in order to achieve the smallest possible error bound. Such sequences constructed to

reduce discrepancy are called Low Discrepancy Sequences (LDSs). Quasi monte carlo

techniques are characterized by their use of LDSs to generate samples. LDSs are

deterministic sequences, in other words there is no randomness in their generation.

Intuitively, these sequences are well dispersed through the domain of the function,

minimizing any gaps and/or clustering of points. Figure I.4 illustrates that quasi random

sequences generate samples with lower discrepancy compared to pseudo random

sequences (sequences with properties similar to “truly” random sequences). Sobol[35],

Faure and Niederreiter[33] are LDSs that have been studied extensively. In this work, we

consider Sobol sequences, which are known to be simple to construct and more resistant to

the pattern dependency issue (mentioned below), compared to the other sequences.

Interested readers can refer to [35] for a construction of the Sobol sequence, and [36] for

an implementation. 

 In the context of statistical timing analysis, Quasi Monte Carlo techniques have been

studied in [33]. The author notes that LDSs are imperfect and as the number of dimensions

in the problem increases, there is degraded uniformity. This effect is especially significant

among the higher coordinates of LDSs, which show undesirable patterns as opposed to the

low discrepancy pattern in Figure I.4. This phenomenon is referred to as pattern

dependency. The author suggests that in timing analysis the lower coordinates of Sobol
14



sequences, which have no significant pattern dependencies, be assigned to the important

variables in the sampling procedure. Therefore, a concept of criticality of variables in

timing analysis needs to be defined, which can be used to sort the variables in the order of

their decreasing importance.The coordinates of the Sobol sequence can then be assigned

to variables in this order. We present a technique for ordering the variables based on their

criticality to circuit delay in the statistical timing framework. 

A related point is that Sobol sequences are not accurate beyond a certain number of

dimensions. Hence, in this work, we use Quasi Monte Carlo techniques in conjunction

with stratified sampling and Latin Hypercube Sampling (LHS). The next two subsections

provide a brief overview of stratified sampling and LHS. 

I.3.2  Stratified sampling

Stratified sampling is a technique to partition the sample space into mutually exclusive

strata, and then sample using any of the known variance reduction techniques within each

[28]. The stratification method in this work is illustrated for a 2D example in Figure I.5,

where random variable X is divided into 4 equal probability bins (X is equally likely to

fall in any of the 4 bins), whereas random variable Y is not binned. This method is adopted

when X is critical to the function value to be estimated, whereas Y is not. In this way, the

Figure I.5. Stratification of a 2D space. Variable X is divided 
into 4 bins, thus dividing the sample space into 4 strata.

Bin3

Bin0

Stratum0
Stratum3
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Figure I.6 omly to 
2D space is partitioned into 4 strata as shown in the figure. Throughout the work, we use

‘bin’ to refer to regions in individual variables, and ‘strata’ to refer to partitions in the nD

space, where n is the dimensionality. In general in multidimensional space, 1 or more

variables are binned, and the permutations of bins across variables define strata. In the

case of timing analysis, the timing behavior of the circuit is more sensitive to the critical

variables by selection and these variables are binned. Therefore within strata the timing

behavior exhibits lower variation and is easier to estimate. The technique leads to

accuracy with few samples, however cannot be used over very large dimensions since the

number of strata increases exponentially.

I.3.3  Latin Hypercube Sampling

Latin Hypercube sampling is a technique in variance reduction which deals with

multidimensional systems [37]. This technique tries to sample each variable involved

uniformly by dividing the variable into equal probability bins. The samples from bins in

variables are combined across dimensions to obtain faster convergence than random

sampling. This is in contrast with taking all permutations of the bins across variables to

define strata, and then sampling within each stratum as in stratified sampling described

R andom  variab le  xR andom  variab le  x

. Latin Hypercube Sampling (a) Divide each variable in 8 equal probability bins and sample in bins. (b) Combine rand
form 8 triplets
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above. This means that LHS can deal with large dimensions, however with a moderate rate

of convergence compared to full stratification. 

 The LHS procedure is illustrated in Figure I.6. Each random variable is divided into

equal probability bins. One sample is generated within each bin. Such samples are

combined across variables to obtain Latin Hypercube samples. This is the procedure to

obtain k samples, where k is the number of bins per variable. To obtain mk number of

samples, we repeat the LHS procedure m times. 

Two other techniques that have been studied for application to integrated circuit yield

estimation are importance sampling and control variates. In general, these methods require

more detailed information about the circuit. For literature in statistics about the method,

refer to [28]. More work is required to establish the effectiveness of these approaches for

use in the modern integrated circuit design process.

I.4  Thesis Overview and Key Contributions

• We describe methods to improve the efficiency of Monte Carlo-based statistical

static timing analysis. We propose a Stratification + Hybrid Quasi Monte Carlo (SH-

QMC) approach to reduce the number of samples required for Monte Carlo based

SSTA. Our simulations on benchmark circuits up to 90K gates show that the proposed

method requires 23.8X fewer samples on average to achieve comparable accuracy in

timing estimation as a random sampling approach. Results on benchmark circuits also

show that when SH-QMC is performed with multiple parallel threads on a quad core

processor, the approach is faster than traditional SSTA with comparable accuracy. SH-

QMC scales better than traditional SSTA with circuit size. When the proposed SH-
17



QMC technique is extended to include a graph pruning method the runtime is further

reduced by 48% on average for the benchmark circuits considered. We also propose an

incremental approach to recompute a percentile delay metric after ECO. The results

show that on average only 1.4% and 0.7% of original samples need to be evaluated for

exact recomputation of the 95th percentile and 99th percentile delays, after sample size

reduction using SH-QMC.

• We illustrate possibilities to exploit the parallelism in the SH-QMC algorithm with

the implementation of the algorithm on a Graphics Processing Unit (GPU). We show

that although straightforward parallelism is available, achieving performance and

efficiency on the GPU requires exposing more parallelism and finding locality in

computations. This is in contrast with random sampling based algorithms which are

inefficient in terms of sample size but can keep resources utilized on a GPU. We show

that SH-QMC implemented on a Multi GPU is twice as fast as a single STA on a CPU

for benchmark circuits considered. In terms of an efficiency metric, which measures

the ability to convert a reduction in sample size to a corresponding reduction in

runtime w.r.t a random sampling approach, we achieve 73.9% efficiency with the

proposed approaches compared to 4.3% for an implementation involving performing

computations on smart samples in parallel. Another contribution of the work is a

critical graph analysis technique to improve the efficiency of Monte Carlo based

SSTA, leading to 2-9X further speedup.

• We propose a technique to compute a lower bound for the minimum possible area

that can be achieved for a design while meeting a particular timing yield, which is the

percentage of die that meeting a specified timing constraint. We then compare several
18



statistical design optimization approaches, including one proposed in this paper called

SLOP, against the computed lower bound. We show that even the simplest statistical

optimization approaches produce area results which are, on average, within 9.6% of

the lower bound while the best ones performed only marginally better, reaching within

3.7% of the bound. This demonstrates that the proposed bound is a close bound. 

• Leakage power minimization is critical to semiconductor design in nanoscale

CMOS. On the other hand increasing variability with scaling adds complexity to the

leakage analysis problem. In this work we seek to achieve tractability in Monte Carlo-

based statistical leakage analysis. A novel approach for fast and accurate statistical

leakage analysis considering inter-die and intra-die components is proposed. We show

that the optimal way to select samples, to capture intra-die variation accurately, is

according to the probability distribution function of total process variation. Intelligent

selection of samples is performed using a Quasi Monte Carlo technique. Results are

presented for benchmarks with sizes varying from approximately 5,000 to 200,000

gates. The largest benchmark with 198461 gates is evaluated in 3 minutes with the

proposed approach compared to 23 hours for random sampling with comparable

accuracy. Compared to a conventional analytical approach using Wilkinson’s

approximation, the proposed technique offers superior accuracy while maintaining

efficiency. State dependence and multiple sources of variation are considered and the

approach is scalable with number of process parameter variables for standard cell

characterization cost. We also show reduction in sample size to meet target accuracy

for computing leakage distribution due to the inter-die component only when

compared to random selection of samples. 
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CHAPTER II

EFFICIENT MONTE CARLO BASED INCREMENTAL 
STATISTICAL TIMING ANALYSIS

II.1  Introduction

Process parameter variations have taken on increasing importance in nanometer-scale

CMOS. Rather than using simple corner models that capture worst-case behavior at the

device level (and lead to large guard bands), modern CAD tools are moving towards a

more probabilistic view of circuit timing behavior. Two different approaches exist to

capture the timing behavior - (1) analytical approaches which propagate standard

distribution functions through the circuit, and (2) Monte Carlo (MC) based approaches

which analyze samples of the circuit in the process variation space. Previous work in these

areas were overviewed in Chapter I. 

Standard techniques to reduce the sample size for MC based approaches exist in

statistics literature and are called variance reduction techniques. The application of these

techniques for parametric yield estimation has been analyzed in literature [30-33]. In [30],

a Latin Hypercube approach for parametric yield estimation is proposed. In [31], mixture

importance sampling for statistical SRAM design and analysis is proposed. The approach

in [32] uses the control variates technique in conjunction with importance sampling for
20



timing yield estimation. However, while several approaches are reviewed, no results are

presented. In [33], the authors propose to use Quasi Monte Carlo Analysis for yield

estimation. However, it is not clear how this approach can be extended to systems with

large number of dimensions (variables) which is often the case with process variation.

Also, these approaches do not focus on the specific problem of using MC as an alternative

to traditional SSTA for timing analysis. Variance reduction relies heavily on information

about the system [28], hence it is important to adapt it specifically to timing analysis. To

the best of our knowledge this work is the first to directly study variance reduction aimed

at improving the efficiency of MC-based SSTA with an accurate process variation model

considering intra-die variation with spatial correlation [7] and uncorrelated random

variation. 

ECO(Engineering Change Order) and synthesis tools require incremental timing

analysis techniques for fast recomputation of circuit delay with small changes in the

design. To meet time to market, designers need tools capable of performing fast

incremental timing analysis, and such tools need to incorporate process variations. While

incremental techniques for traditional SSTA exist in literature [6], the lack of such

techniques has been a major drawback for MC based approaches to SSTA. We address the

specific problem of recomputing a percentile delay metric after incremental circuit sizing.

To the best of our knowledge, this work is the first to address incremental timing analysis

in MC based SSTA. 

This work has three main contributions. First, we introduce a new approach for

variance reduction in MC based SSTA, Stratified Sampling + Hybrid Quasi Monte Carlo

(SH-QMC). In SH-QMC, we propose to use circuit timing criticality information for
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sample size reduction. We use information about the criticality of variables to the circuit

delay to order them. For the most critical variables, we then employ techniques that

achieve high accuracy with few samples. For the less critical variables, we use techniques

that are effective for problems of higher dimensionality. The proposed approach is

implemented and tested on benchmark circuits with sizes up to 90,000 gates, and

compared to a random sampling approach for selecting samples in the process variation

space. In general SH-QMC shows large speedups relative to the random sampling

approach: 23.8X on average and up to 44X on the benchmarks studied. Our results also

show that the number of samples required does not increase with the number of gates in

the circuit. Additionally, when SH-QMC is implemented with multiple threads on a quad

core processor, it is faster than traditional SSTA for comparable accuracy. We also observe

that the performance of SH-QMC scales better than traditional SSTA with circuit size. 

Second, we propose an extension to SH-QMC to consider a graph pruning method. In

this method we use the information obtained from the evaluation of a few SH-QMC

samples to reduce the circuit graph size. This enables fast evaluation of the remaining

samples leading to up to 84% additional reduction in runtime. 

 Third, we propose a technique to recompute a percentile delay metric after

incremental circuit sizing, where individual gates are resized. In this technique, we use

information local to the resized gate to prune out most of the samples, leaving only a few

samples to be reevaluated. Our results for the incremental computation of the 95th

percentile and 99th percentile delays of benchmark circuits show that on average only

1.4% and 0.7% of original samples need to be evaluated for exact recomputation, even

after sample size reduction using SH-QMC.
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This chapter is organized as follows. Section II.2 presents our work on variance

reduction for MC based SSTA and proposes a graph pruning method to improve the

efficiency of SH-QMC. In Section II.4, we propose our approach to incremental statistical

timing analysis. We present detailed results in Section II.5 and conclude with Section II.6. 

II.2  Smart sampling based on timing criticality

In this section, we first describe our process variation model and then go on to discuss

our smart sampling approach. 

II.2.1  Process variation model

Our process variation model is based on [7] which takes into account intra-die

spatially correlated variation [17-22] by partitioning the die into n * n grids and assuming

identical parameter variations within a grid. Therefore, each source of variation is

represented by a set of random variables for all grids. For example, transistor gate length

variation is represented by a set of random variables for all grids and the set is of

multivariate normal distribution with a covariance matrix RLg. Principal component

analysis [23] is performed on these correlated random variables to obtain a set of principal

components. Similarly, principal components are obtained for other sources of variation.

Figure II.1. Ordering variables using timing criticality. 

   Variables

Critical - Stratified sampling. Sub-
divide variables and thus the space. 
Limited to 2-5 dimensions.

Moderate - methods for fast conver-
gence, but limited dimensions. E.g. 
QMC. 

Non-critical - methods for high 
dimensions, but slower conver-
gence. E.g. LHS. 
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Let pi : i=1,...,m be the principal components of all global sources of variation. In addition

to these global sources of variation, we have an independent random variable Δr to

account for random variation at the gate level. The delay for a gate is expressed as a linear

combination of principal components of pi’s and Δr: 

where d0 is the gate delay mean, ki: i=1,...,m are the coefficients for the principal

components. pi’s and Δr are independent unit normal random variables after suitably

scaling their coefficients. 

II.2.2  Stratification+Hybrid Quasi Monte Carlo(SH-QMC)

In our smart sampling approach SH-QMC, we propose to use circuit timing criticality

information to reduce the sample size for MC based statistical timing analysis. In the

previous subsection, we have defined the variables representing process parameter

variation. In our proposed approach, we order these variables based on their criticality to

the circuit delay using a timing criticality parameter Pcrit defined in the next subsection.

We then apply Quasi Monte Carlo (QMC), stratified sampling and LHS to variables based
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on their convergence property and the ability to handle multiple variables (dimensions) as

illustrated in Figure II.1. The topmost critical variables guide the stratified sampling

approach, which leads to faster convergence. Only the top 2-5 variables are used to guide

stratification since the number of strata increases exponentially with the number of

variables. QMC method is then employed on the topmost to moderately critical variables

for its fast convergence properties. However, QMC can exhibit pattern dependencies with

large number of variables, so only a limited number of variables are sampled using QMC.

On the non-critical variables, we use Latin Hypercube Sampling which is applicable for

large number of variables, but has slower convergence to an accurate result. 

The method is illustrated in Figure II.2 using a 5 variable example. As mentioned

before, variables are ordered as critical, moderately critical and non-critical. The two most

critical variables r1 and r2 are divided into 4 bins each (Figure II.2a). A stratum is defined

as a set of points in the 5D space restricted to one bin each in r1 and r2, but unrestricted in

r3, r4 and r5. The total number of strata is 16, arising from 4 by 4 permutations of the

bins. Figure II.2b illustrates one particular stratum which we use to explain the remaining

steps. In this stratum, points are restricted to bin 2 in r1 and bin 3 in r2. As shown in

Figure II.2c, QMC method based on Sobol sequence is used to sample r1, r2 and r3 in the

stratum and LHS is applied to r4 and r5. Note that since we are only sampling within the

stratum, samples of r1 and r2 are restricted to the respective bins. QMC generates triplets

as shown in the figure. For performing LHS, r4 and r5 are divided into 8 bins each and

one value is selected from each bin as in Figure II.2c. 8 LHS pairs are generated by

randomly picking from r4 and r5 in one step of LHS. Two LHS pairs are shown in Figure

II.2d. Next, the LHS pairs are combined with the QMC triplets to generate our final
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samples. The procedure is repeated: LHS pairs are generated again in r4 and r5, and QMC

triplets are generated in the other 3 variables. These are then combined as before. After

generating the samples in this stratum, we move to the next stratum and repeat our steps.

In this manner, we generate samples in all 16 strata. 

Among the variables on which QMC is employed, the lower coordinates of LDSs are

assigned to the more critical variables. The order of criticality here is again decided using

the parameter Pcrit. 

II.2.3  Timing criticality Pcrit

To order the principal components, we employ a timing criticality metric Pcrit. To

compute Pcrit, we perform static timing analysis on the nominal circuit to identify critical

paths within a slack of s% of worst-case arrival time, where s is a parameter. This STA run

is performed under nominal process conditions. Now, each grid is assigned a weight equal

to the number of gates falling in any of the potential critical paths. Let wi
g be the weight of

the ith grid. The weight of the jth principal component is given by 

 where kij is the coefficient of the jth principal component in the ith grid variation. This

empirical technique leads to fast computation of Pcrit with sufficient accuracy to guide our

proposed SH-QMC.

wj wg
i

kij×⎝ ⎠
⎛ ⎞

i
∑=
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II.3  Pruning based algorithm for timing analysis

In Section II.2.2 above we discussed our Stratification + Hybrid Quasi Monte Carlo

(SH-QMC) approach to reduce the sample size using timing criticality information. In this

section we propose a technique to further improve the performance of SH-QMC through

graph reduction. As explained before, timing criticality information for SH-QMC is

obtained by performing STA on the nominal circuit. Clearly as we evaluate the samples

for SH-QMC we extract more information about the statistical behavior of the circuit with

each additional sample evaluated. The algorithm presented here has two stages. In the first

stage of the algorithm, the basic idea is to use slack information for every node in the

circuit graph obtained at the nominal sample to identify non-critical nodes. The

corresponding gates are excluded from consideration for statistical analysis based on SH-

QMC. In the second stage we make use of information obtained from evaluation of

successive SH-QMC samples to find bounds on the statistical behavior of timing slack at

each node. When enough information is gathered to tag a certain node as having negligible

statistical probability to fall in the critical path(s) for any sample, the node is pruned or

eliminated from consideration for the SH-QMC samples yet to be evaluated. 

The algorithm is explained in more detail here. As explained, the first stage involves

eliminating nodes based on nominal STA. Nodes with positive slack exceeding a threshold

value are pruned. This threshold value is chosen to be 10% of the nominal case worst

arrival time. The choice is such that the likelihood of a path with greater than the threshold

slack being critical is very low. The second stage of pruning is performed once a subset of

SH-QMC samples is evaluated. The samples generated by SH-QMC can be partitioned

into sets such that within a set the samples are complementary in their coverage of the
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process variation space. These sets are referred to as minimal SH-QMC sets in the rest of

the chapter. As a result when all samples within any of these sets are evaluated the

statistics of the circuit arrival time are estimated more accurately than a set of the same

sample size with elements selected at random from the SH-QMC set. As mentioned before

in Section II.2.2, SH-QMC combines stratified sampling, Quasi Monte Carlo sampling

(QMC) and Latin Hypercube Sampling (LHS). First the sample space is partitioned into

strata. Next QMC and LHS are applied in combination within each stratum. A minimal

SH-QMC set consists of equal-sized subsets from each stratum. As mentioned before,

within a stratum a subset of the variables is sampled using LHS. The sample size of the

subset corresponding to a stratum is defined by the number of bins in the variables

sampled using LHS. The samples in the subset are selected such that each variable

sampled using LHS has exactly one value per LHS bin. This is the same as selecting an

LHS set (consisting of one value per bin for each variable in the set). Note that the

variables sampled with QMC do not play a role in the selection of samples as QMC

samples have no granularity restrictions from the way they are constructed. For example,

suppose the LHS technique used divides each variable into 20 bins and there are 4 strata in

the process variation space. Then a minimal SH-QMC set has 80 samples and each subset

has 20 samples. Intuitively a minimal SH-QMC set has all LHS bins and strata covered

which leads to the lower error for delay statistics computation for the sample size. With

this backdrop the second stage of pruning can be explained. Exactly one minimal SH-

QMC subset is selected from the SH-QMC set and the elements evaluated. At every

circuit node we thus have a slack distribution obtained from the minimal subset. Given the

slack distributions, the procedure to prune nodes is explained using Figure II.3. The slack
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distributions for gates ‘g1’ and ‘g2’ are illustrated in the figure. Note that slack by

definition cannot be negative once the circuit is fixed. The dotted line indicates a low

percentile of the slack distribution for each gate. A gate is pruned if the dotted line

coincides with zero, that is the low percentile value is zero. The problem now is to

determine the optimal percentile point of slack distribution for pruning. Lower percentile

points are expected to be accurate but cost runtime. We evaluate the trade-off with varying

percentile point and present our results. 

II.4  Incremental Evaluation of a Percentile Delay

ECO and synthesis tools require efficient incremental timing analysis techniques for

fast recomputation of circuit delay with small changes in the design, while also accounting

for process variation. In MC based SSTA there is a lack of incremental capability to date.

In this section, we present an approach for the incremental evaluation of a specific

percentile delay of a circuit with a small change in circuit sizing. We illustrate the

approach for the case of single gate sizing in this work. However, the approach can be

extended to the case of simultaneous multiple gate sizing. The key intuition is that if the

Figure II.3. Slack distribution of gates ‘g1’ and ‘g2’ obtained by 
evaluation of minimal SH-QMC set. The threshold percentile for 
each distribution is plotted as a dotted line. ‘g2’ is pruned in this 

case as the criterion of positive slack percentile is satisfied. 

g1 g2

g1

g2

g3

0
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samples for SH-QMC on circuit C are reused for C’ (C with gate g sized), then most

samples need not be reevaluated to recompute the xth percentile delay; only those samples

that have a circuit arrival time ‘close’ enough to the xth percentile delay of C need to be

reevaluated. An upperbound on change in circuit arrival time of a sample from C to C’ can

be determined from a local bound computation involving only a few gates connected to

the gate g being resized. This bound can be used to prune out a majority of the samples,

leaving us with a few that need to be reevaluated. Further speedup can be achieved with

established techniques for incremental STA on the samples selected for reevaluation. 

II.4.1  Algorithm
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Figure II.4. (a) Samples are visited in decreasing order of 
circuit arrival time, starting from the xth percentile (tx). 

Samples with delta crossing tx are selected, others pruned. (b) 
Recomputation of circuit arrival time is performed at the 

selected sample and tx is updated. 
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We perform timing analysis on an original circuit C using our SH-QMC approach and

store the samples for the process variation space and the corresponding circuit arrival time

in memory. Our approach for the recomputation of a specific percentile delay using the

stored samples is illustrated in Figure II.4. For each sample, a bound on change in circuit

arrival time from C to C’ (C with gate g sized) is obtained as explained in Section II.4.2.

Each sample has a positive bound and negative bound for either direction of change. The

samples are sorted in the order of increasing circuit arrival time for C. In Figure II.4a, the

samples are represented by points on the circuit arrival time distribution curve. They are

visited in the decreasing order of arrival time starting from the xth percentile value tx. A

sample k is selected for reevaluation if its arrival time for circuit C and the positive bound

for k add up to exceed tx. For example, in Figure II.4a, sample i is pruned out since its

positive bound is not large enough to cross tx. However, sample i-1 is reevaluated as it has

a large enough upper bound to cross tx. As illustrated in Figure II.4b, the arrival time for i-

1 is recomputed. Sample i-1 is updated with this value of arrival time which shifts tx to the

right. Next sample i-2 is reevaluated, however the arrival time value obtained is less than

tx, so tx does not change. Sample i-2 is also updated with the recomputed arrival time

value. After considering all samples to the left of tx, we visit the samples to the right. The

criterion for reevaluating a sample here is that its arrival time for C and the negative bound

for the sample should add up to less than tx. After this step, we repeat the procedure and

visit samples to the left of the updated tx. Samples reevaluated earlier are not visited again.

The termination criterion is that there are no samples to the left or right of tx which satisfy

the criterion for reevaluation. The final value of tx is the xth percentile delay of C’. 
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The justification for reuse of samples is that our metric to guide SH-QMC Pcrit

(Section II.2.3) is measured at the grid level in our process variation model, so within

reasonable ECO changes the timing criticality of the circuit does not change to

significantly alter our metric Pcrit. In particular, we are only concerned about the relative

ordering of variables based on Pcrit. Therefore with single gate sizing, the samples are still

accurate. For cases where there is significant design change, SH-QMC is performed again

to generate new samples. As mentioned the samples for C are stored in memory. Our

results on the benchmarks studied demonstrate that the number of samples for SH-QMC

that gives sufficient accuracy is 80 for the largest circuits. Therefore, we need to store 80

samples for each gate. In general, if the number of samples required is much higher, the

memory overhead could be significant. Section II.2.1 defined the variables to model

process variation, which are the principal components for all sources of variation and an

independent random component at the gate level. Now, it is enough to store samples for

these components, as the device parameters can be retrieved using the values of

components. Storing samples for the principal components incurs negligible memory

overhead. In the case of the independent random component, instead of storing all samples

of the component for all the gates, we store the initial ‘seed’ value for the pseudorandom

number generator. Note that for STA, gate delays are propagated in the topological order.

This offset in the topological order along with the ‘seed’ value is provided to the

pseudorandom number generator which reproduces the random numbers while

incremental analysis is performed. 

II.4.2  Computing circuit arrival time bound for samples
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We compute the maximum possible increase and decrease in the circuit arrival time for

each sample of circuit C using local gate delay change information when gate g is sized.

Define sets Fi(g) of fanin gates of g, FoFi(g) of fanouts of gates in Fi(g) and Fo(g) of

fanout gates of g. We select subpaths that are candidates for obtaining the bounds in circuit

arrival time and evaluate the change in delay of these subpaths when g is sized. Every

subpath starting from an input pin of a gate in Fi(g) and ending in an output pin of a gate

in either Fo(g) or FoFi(g) is a candidate for this evaluation. Some such subpaths could

have more than one gate in Fi(g). We assume that delay change is significant only in the

gates in the three sets defined above, therefore only these gates affect the change in

subpath delay. Now, we obtain bounds for circuit arrival time change for a sample S as

follows. Let P(g) be the set of all candidate subpaths. tS(p) and t’S(p) are delays for

subpath p in sample S before and after sizing gate g, respectively. Then the negative and

positive bounds are given by: 

delta_neg(g,S) = 

 delta_pos(g,S) = . 

In other words, we find the maximum and minimum values of the change in delay of

candidate subpaths. As gate delay change is assumed to be significant only in the local

subcircuit (set of gates belonging to Fi(g), Fo(g) and FoFi(g)), the computational

overhead is low. In our algorithm in Section II.4.1, we only need either of delta_neg or

delta_pos for most samples. A delta_neg or delta_pos computation for a sample involves

gate delay computation and propagation in the local subcircuit twice, one each before and

in tS' p( ) tS p( ) p P g( ) 0,∈∀–{

max tS' p( ) tS p( ) p P g( ) 0,∈∀–{ }
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after gate sizing. Therefore, the cost of arrival time bound computation across all the

samples for the percentile delay recomputation is approximately twice that of performing

Monte Carlo analysis on the local subcircuit with smart samples. The runtime for this is

negligible compared to that of a single STA run for most practical circuits. 

II.5  Results

Our simulation results are based on a 90nm industrial technology library. In our

implementation we only consider channel length variation as a source of process variation

Table II.1. Comparison of random sampling, LHS based and SH-
QMC approaches based on sample size. The last two columns show 

the speedup of LHS and SH-QMC respectively, over random 
sampling.

Circuit No of 
gates

RS 
count

LHS 
count

SH-QMC 
count

LHS 
speedup

SH-QMC 
speedup

C432 256 1120 1120 240 1 4.7
C499 544 1760 1360 40 1.29 44
C880 500 1760 1440 80 1.22 22
C1908 603 1440 960 80 1.50 18
C2670 780 1600 1200 80 1.33 20
C3540 1163 2320 1440 160 1.61 14.5
C5315 1692 2160 1120 80 1.93 27
C6288 3834 1840 880 80 2.09 23
C7552 2152 3040 1280 80 2.38 38
VD1 14503 1360 800 80 1.70 17
VD2 34082 2000 880 80 2.27 25
USB 32898 2240 1200 80 1.87 28

ETHER 57327 2080 1600 80 1.30 26
VGA 90831 2000 800 80 2.50 25
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Figure II.5. Error comparison of random sampling, LHS and 
SH-QMC for a VGA circuit (90831 gates) w.r.t. golden of MC 

count 40,000. 
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for simplicity. However, this is not a limitation of our approach. The inter-die spatially

correlated intra-die and uncorrelated random components of channel length variation are

considered. The overall standard deviation is 10% of nominal channel length. This amount

of process variation increases absolute variability, but more importantly serves to

highlight the accuracy comparison of the techniques considered. The number of grids in

the spatial correlation model for individual circuits is varied linearly with post-placement

area starting from 2 by 2 for the smallest circuit to 16 by 16 for the largest circuit. This

corresponds to a grid area of approximately 40μm by 40μm for all the circuits. We

compare our proposed SH-QMC approach with random sampling and LHS based

techniques. Simulations are performed on ISCAS85 benchmark circuits [38], and 5 large

circuits. These are Viterbi Decoder 1(VD1), Viterbi Decoder 2(VD2), USB2.0 Core

(USB), Ethernet MAC Core (ETHER) and VGA Controller Core (VGA), with gate counts

varying from approximately 15,000 to 90,000. We perform synthesis and APR on all the

circuits using commercial tools.

Our comparisons are based on the error in estimating statistical moments of arrival

time distribution for a given method w.r.t the moments from a golden of 40,000 Monte

Carlo runs. Consider for example a given trial MC1 of size 100 samples. This gives a

circuit arrival time distribution. From this, moments μ1 and σ1 (mean arrival time and

standard deviation in arrival time) are obtained and error (magnitude of deviation from the

golden) calculated for both. From repeated trials (each of 100 samples in this example),

we get 2 distributions for error. The nature of the error distributions show the efficiency of

the technique. For example, as we increase the number of samples from 100 to 200 in the
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above example and repeat the experiments, the error distribution is expected to get tighter

and closer to zero. In particular, the 95th percentile of the error gets closer to zero and we

use this value as a criterion to compare different techniques. The minimum number of

samples required by a technique such that the 95th percentile of error distribution is less

than 5% for both mean arrival time and standard deviation of arrival time is our

performance metric for the technique. 

 Table II.1 compares the number of samples required for random sampling, an LHS-

based technique and our proposed SH-QMC approach. The proposed approach achieves

on an average 23.8X reduction (lowest 4.7X up to 44X) in number of samples w.r.t

random sampling, whereas LHS achieves a modest improvement of 1.7X on average

(lowest 1X up to 2.5X). The improvements are consistent across the benchmark circuits

studied. In Section II.2.3, we mention that critical paths are identified within a slack of s%

for computing timing criticality Pcrit. We investigated the sensitivity of the results to the

parameter s and found that varying s from 1-5% showed no changes in the number of

samples required to meet the stated accuracy objective, indicating that the proposed

technique is stable with respect to this parameter. Figure II.5 visually presents the 95th

percentile of error of random sampling, LHS and SH-QMC for our largest circuit VGA

(90831 gates) w.r.t. the golden model. Though we have two error distributions

Table II.2. Runtime comparison of SHQMC with SSTA. AT = 
circuit delay

Circuit No of 
gates

Mean AT 
Error(%)

σ AT Error 
(%) 

SSTA  
Run-

time(s)

SH-QMC 
Runtime(s)

SSTA SH-
QMC

SSTA SH-
QMC

Multi 
thread

Single 
thread

VD1 14503 1.56 0.08 2.43 1.80 0.92 0.83 2.9
VD2 34082 1.66 0.34 2.37 2.12 3.79 2.42 8.7
USB 32898 1.36 0.53 3.48 1.85 4.37 4.22 14.2

ETHER 57327 0.35 0.05 1.8 2.3 8.18 6.2 19.9
VGA 90831 0.40 0.08 0.03 1.80 9.93 6.85 22.1
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(corresponding to mean and standard deviation of arrival time), our simulations show that

the error in estimating standard deviation always dominates the error in mean. The error

plotted in Figure II.5 is therefore for the standard deviation of arrival time. 

Table II.2 compares the runtime of SH-QMC and traditional SSTA. For both mean

and standard deviation of arrival time the error for SH-QMC in the table is the average

absolute deviation from their values in the golden model; for traditional SSTA this is the

error w.r.t the golden. The golden model is MC with 40,000 samples. One drawback of

Monte Carlo techniques in general is that every time an experiment is performed, the error

w.r.t golden is different. This means that the error in one particular MC experiment is

sometimes higher than the average value mentioned. However, the 95th percentile of the

absolute error distribution is still less than 5% for all the circuits in the table. This

translates to an error of 3-7ps in absolute time for different circuits, which is a reasonable

target for the given process technology. All our simulations were performed on a single

Quad Core processor. For SH-QMC, we perform two different experiments, in one we

spawn 4 threads to use the parallelism in the Quad Core machine, and in the other we run

a single thread on the machine. The former uses the parallelism in sample evaluation,
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Figure II.6. Performance comparison of traditional SSTA with 
multi-threaded SH-QMC for VGA circuit (90831 gates) as 

function of number of grids in process variation model. 
37



which is straightforward in MC methods but not true of traditional SSTA. Parallelizing

traditional SSTA is non-trivial and would incur runtime cost. We consider circuits with

more than 10,000 gates for meaningful runtime comparisons. SH-QMC with multi-

threading performs better than traditional SSTA in runtime. Also, further speedup in SH-

QMC can be achieved in a straightforward manner using parallel processing on more than

one processor. Figure II.6 compares the performance of traditional SSTA with SH-QMC

for the VGA circuit as a function of number of grids in the process variation model. This

illustrates that SH-QMC scales better than traditional SSTA. Figure II.7 is a typical case

comparison of efficiency in estimating a high percentile statistic in arrival time

distribution obtained from our approach w.r.t a traditional SSTA approach. The error in

estimating the 99th percentile arrival time for SH-QMC is better than traditional SSTA at

more than 72 samples for the USB2.0 Core circuit (32898 gates) considered. In general,

our approach estimates the 99th percentile arrival time better than traditional SSTA for all

benchmark circuits studied at a low number of samples. Figure II.8 compares the

probability distribution curve of arrival time of the USB circuit for SH-QMC (96 samples)

and a traditional SSTA approach, w.r.t the golden. Our technique captures the mean arrival
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vs. traditional SSTA w.r.t golden of 40,000 MC count for USB 

circuit. 
38



time (marked with vertical lines) and the overall shape of the distribution better than the

traditional SSTA approach. 

The results of the proposed graph pruning approaches for SH-QMC for the benchmark

circuit VD1 are presented in Figures 9 and 10. As explained in Section II.3 the pruning

criterion is that a low percentile of the slack distribution be zero. In our implementation

we approximate the criterion assuming a normal distribution for slack. The cutoff

percentile is determined in terms of the pruning parameter k defined to be such that if μ −

kσ of the gate slack distribution is non-negative, then the gate is pruned. The plots in

Figures 9 and 10 plot the error and runtime of the pruning approach while varying the

pruning parameter. As the pruning parameter increases the pruning criterion gets more

restrictive which leads to higher accuracy while costing runtime. The error metric is the

Table II.3. Comparison of three SH-QMC-based approaches with 
no pruning, single stage pruning and double stage pruning on 

benchmark circuits. 

Circuit No of 
gates

No pruning Single stage Two stage
Runtime(s) % gates 

pruned
Runtime (s) % gates 

pruned
Runtime(s)

VD1 14503 2.9 52.4 1.76 54.1 1.58
VD2 34082 8.7 28.4 8.67 29.9 8.08
USB 32898 14.2 68.3 5.71 75.4 5.60

ETHER 57327 19.9 98.2 6.34 98.3 3.10
VGA 90831 22.1 66 12.6 68 13.0

Pr
ob

ab
ili

ty
 D

is
tr

ib
ut

io
n

T r a d . S S T A

S H -Q M C

G o ld e n

A r r iv a l T im e  (n s )

 G o ld e n
 S H -Q M C  9 6
 T ra d . S S T A

Figure II.8. Arrival time distribution of SH-QMC (96 samples) 
and traditional SSTA w.r.t golden(40,000 MC) for USB circuit. 
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95th percentile error in estimating the standard deviation in arrival time compared to a

golden Monte Carlo analysis with 40,000 samples. The error is compared with respect to

the SH-QMC approach without graph pruning. For pruning parameter k exceeding 3.5, the

errors are comparable for both single stage and two stage pruning approaches with respect

to the analysis performed without graph pruning. The runtime of both the approaches are

better than the case of no pruning since non-critical gates have been pruned from
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Figure II.9. Comparison of the 95th percentile error in σ for single 
stage and two stage pruning for a large benchmark circuit. 
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consideration after evaluating a few samples. Two stage pruning is faster than single stage

pruning. This is because highly non-critical gates are removed before the first SH-QMC

sample is evaluated in the two stage approach. In general the error of both single and two

stage approaches are comparable to the case of no pruning for all the benchmark circuits

for pruning parameter k exceeding 4. Table II.3 compares the three SH-QMC based

approaches with no pruning, single stage pruning and two stage pruning. The pruning

parameter k is fixed at 4 where the errors of all three approaches are comparable for the

benchmark circuits. Single stage pruning has up to 68% lower runtime compared to the no

pruning case whereas two stage pruning has up to 84% lower runtime. Single stage

pruning performs is faster by 42% and two stage pruning by 48% on average. 

Table II.4 presents our results for the incremental evaluation of the 95th percentile and

99th percentile delay after a gate size change using our approach in Section II.4. In our

experiments, we select 100 gates at random for a given circuit. Each gate is sized up

individually and the percentile delays recomputed. Our simulations show that on average

only 1.4% and 0.7% of samples need to be reevaluated for exact recomputation of the 95th

percentile and 99th percentile delays after performing SH-QMC. 

II.6  Summary

This chapter presents a Stratification + Hybrid Quasi Monte Carlo (SH-QMC)

approach to improve the efficiency of MC based statistical static timing analysis. The

proposed approach uses easily computable timing criticality information, and achieves on

average 23.8X and up to 44X reduction in the number of samples required for timing
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estimation compared to a random sampling approach. With multithreading on a quad core

processor for SH-QMC, the approach is faster than traditional SSTA for comparable

accuracy. Also, further speedup of SH-QMC is straightforward using parallel processing

across machines. In addition, SH-QMC scales better than traditional SSTA with circuit

size. Our approach estimates the 99th percentile arrival time better than traditional SSTA

for benchmark circuits studied using only a low number of samples. We also propose an

extension to SH-QMC to consider graph pruning based on information obtained from

sample evaluation. This additionally reduces the runtime for SH-QMC by 48% on

average. We proposed an incremental approach to recompute a percentile delay metric

after ECO. The results show that on average only 1.4% and 0.7% of original samples need

to be evaluated for exact recomputation of the 95th percentile and 99th percentile delays

after ECO. 

Table II.4. Performance of incremental evaluation of 95th and 99th 
percentile delay with gate size change for SH-QMC with 80 

samples. AT=Arrival Time

Circuit No of 
gates

Avg. Incremental evaluations 
per gate

Avg. Incremental evaluations per 
gate/sample size(%)

95th percentile 
AT

99th percentile 
AT

95th percentile 
AT

99th percentile 
AT

VD1 14503 1.515 0.51 1.89 0.64
VD2 34082 0.54 0.515 0.68 0.64
USB 32898 1.625 0.57 2.03 0.71

ETHER 57327 0.96 0.535 1.20 0.67
VGA 90831 0.84 0.505 1.05 0.63
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CHAPTER III

EFFICIENT SMART MONTE CARLO BASED SSTA ON 
GRAPHICS PROCESSING UNITS WITH IMPROVED 

RESOURCE UTILIZATION

III.1  Introduction

Recent strides have been made in the development of throughput-optimized

processors, such as Graphics Processing Units (GPUs). Throughput processors recognize

two crucial aspects of machine organization which are parallel execution and hierarchical

memory organization. To increase performance in throughput processors, applications

will need to expose parallelism while finding locality in their computations to overcome

restrictions arising from communication bandwidth bottlenecks. In this work we show the

importance of these two aspects for improving performance and efficiency in the context

of statistical timing analysis by drawing inferences from the implementation on a specific

GPU architecture.

We focus on a Monte Carlo based SSTA (MC SSTA) approach to statistical timing

analysis, which involves analyzing samples of the process variation space to obtain

statistical distributions of circuit timing behavior. MC techniques are “embarrassingly

parallel” and have inherent advantages over traditional SSTA in exposing parallelism for

performance improvements in throughput processors. However, the large number of
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samples required in a standard MC approach of random selection of samples leads to high

runtimes. 

An effective solution to address the high runtime cost of MC SSTA is to use

techniques to reduce the sample size. Some such techniques have been discussed in

Chapter II. As mentioned, sample size reduction is achieved using a combination of

standard techniques in statistics called variance reduction techniques [28] and the use of

circuit specific information.

In this work we draw upon these advancements in MC SSTA. However, with a

reduced sample size the objective of exposing parallelism for performance on throughput

processors poses new challenges. In the case of GPUs, the level of parallelism required in

the application is much higher than the units of parallelism to hide bottlenecks including

memory access time. In a random sampling based approach the sample size is in the range

of tens of thousands, about two orders of magnitude higher than the units of parallelism

available in the GPU hardware. Therefore, this enables high utilization of resources on the

GPU simply by performing computations on the samples in parallel. An implementation

of random sampling MC SSTA on GPUs was explored in [58], where it is illustrated that

such an implementation is sufficient for adequate resource utilization. However smart

sampling algorithms can achieve accurate results with a sample size that is typically in the

range of 100-200, which is the same order of magnitude as the hardware parallelism

available on a GPU. This reduction in sample size cannot be translated to a corresponding

reduction in runtime for a GPU with such a straightforward implementation. In addition to

enabling fast statistical timing analysis of chips with millions of gates, this additional

improvement opens up possibilities for using SSTA in a design optimization loop. 
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The main contribution of this work is to illustrate performance and efficiency

improvements in the context of smart sampling based MC SSTA by recognizing the

aspects of parallel execution and hierarchical memory organization in throughput

processors. This translates to the following key ideas leading to the implementation.

Expose more parallelism. In the context of smart sampling based MC SSTA, gates in a

circuit that do not depend on each other for input data given the computations already

performed can be analyzed in parallel, leading to data parallelism or gate parallelism. We

propose a smart scheduling algorithm for allocation of gates to parallel threads to make

use of this parallelism. We show that exposing gate parallelism is crucial to achieving

parallel execution on GPUs in the context of smart sampling based MC SSTA.

Find locality in computations. Finding locality in computations is critical to avoid

restrictions arising from communication bandwidth bottlenecks. We lump together

computations that are manageable within the fast local memory to avoid bottlenecks from

accessing slow global memory.

We attempt to illustrate these general principles for throughput processors through an

implementation of the smart sampling based MC SSTA technique called SH-QMC

(Stratified Hybrid + Quasi Monte Carlo), which was proposed in [29], on Nvidia's CUDA-

based GPU platform. Though the implementation itself is specific to the platform, this

serves to illustrate the effectiveness of these concepts. The algorithm in [29] achieves a

significant reduction in the number of samples needed to achieve accurate timing results

while also considering a detailed process variation model incorporating within die

variation. We compare the proposed implementation of SH-QMC with a straightforward

sample level parallelism approach. Average speedups over random sampling MC SSTA
45



improve from 11.2X to 192.5X for the two implementations of SH-QMC on benchmark

circuits ranging from 15,000 to 60,000 gates. When the GPU system is compared with a

CPU an average speedup of 153X is achieved. The average runtimes normalized to a

single STA on a CPU is 0.46, pointing to the result that smart sampling based MC SSTA

on a GPU is faster than a single STA on a CPU. 

A second contribution of this work is a critical graph analysis technique to speed up

MC SSTA. Nominal STA is used to identify gates with very low probabilities of falling on

critical paths under process variation, and are pruned from further consideration, without

impacting the accuracy of statistical timing analysis. This enables fast evaluation of circuit

samples leading to a 6.8X runtime reduction for the benchmark circuits considered.

The chapter is organized as follows. Section 2 describes the important relevant

hardware and software features in GPUs. Section 3 briefly discusses the SH-QMC

algorithm for smart sampling based MC SSTA. Section 4 describes the implementation of

MC SSTA on GPUs and proposes techniques to achieve resource utilization when

mapping SH-QMC onto GPUs. Section 5 discusses the critical graph analysis technique.

Section 6 presents results and the paper concludes in Section 7.

III.2  CUDA Platform

NVIDIA CUDA (Compute Unified Device Architecture) is a general purpose parallel

computing architecture that is easily programmable and exhibits good performance in

scientific applications [59]. The CUDA architecture is built around multiprocessors, each

consisting of several scalar processor (SP) cores. From a software perspective, threads are

the basic unit for parallel computation and the code they execute is called the kernel. A
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thread block, also referred to as a block, contains a batch of threads. Threads in the same

block can efficiently share information through shared memory and run on the same

multiprocessor. Within a block, 32 consecutive threads are grouped into a warp. All

threads in a warp follow the exact same sequence of instructions. CUDA threads have

accesses to multiple memory spaces during their execution. Global memory has the largest

size but also exhibits long access times compared to other on-chip memory. The CUDA

warp consists of two half-warps of 16 threads each. If all 16 threads of a half-warp access

consecutive words from global memory, the overhead is significantly lower than when

non consecutive words are accessed [60]. Other types of fast on-chip memory in the

targeted CUDA architecture include register memory and shared memory. Shared memory

can be shared within a block and is significantly faster than global memory.  

III.3  Smart Sampling based SSTA: SH-QMC

We propose to implement the smart sampling based MC SSTA approach SH-QMC

(Stratification + Hybrid Quasi Monte Carlo), proposed in Chapter II, on GPUs. This

algorithm significantly speeds MC based SSTA using sample size reduction. In this

technique, circuit timing criticality information is used for intelligent selection of samples.

It is shown that 100-200 samples are sufficient for accurate statistical timing analysis. The

process variation model is based on [7], which considers intra-die spatially correlated

variation by partitioning the die into n * n grids and assuming identical parameter

variations within a grid. SH-QMC uses a combination of standard techniques and circuit

timing criticality information to reduce sample size for MC based analysis (variance

reduction techniques). The variance reduction techniques employed are Quasi Monte
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Carlo (QMC), stratified sampling, and Latin Hypercube Sampling (LHS). These

techniques are employed on variables based on their convergence properties and the

ability to handle multiple variables. A detailed analysis of the algorithm is presented by in

Chapter II. 

III.4  Monte Carlo based Statistical Timing Analysis on GPUs

This section describes techniques for efficient implementation of MC SSTA on GPUs.

In a random sampling based MC approach, samples of the chip are generated using

process variation information. These samples have no data dependence on each other and

therefore are directly amenable to parallelism. This is referred to as sample parallelism.

Each thread is dedicated to the computation of one sample (representing one virtually

fabricated die) of the circuit. Gates are visited in the topological order in the circuit by a

thread and delay computations are performed. For the computation of process variation

samples we use a Mersenne Twister based random number generator [58]. A detailed

discussion is omitted for brevity. 

III.5  Enhanced resource utilization for implementation of SH-

QMC on GPU

Sample parallelism is sufficient to keep resources utilized on GPUs when employing

random sampling [58]. However the sample size in SH-QMC is typically only 100-200,

which is comparable to the number of streaming processors available in GPUs. A

straightforward implementation in the spirit of the approach in [58] leads to under-

utilization of resources. In this section, we describe techniques which adhere to the two
48



key ideas for performance and efficiency in throughput processors introduced in Section

1. With this improved resource utilization, performing SSTA repeatedly in a design

optimization loop with hundreds of thousands of iterations becomes a possibility for

moderately sized circuits. 

a. Parallelism - exposing gate parallelism

For gates with no data dependence gate delay calculations can be performed in

parallel. To leverage this parallelism we propose static scheduling of gates in the circuit

using a scheduling algorithm prior to performing statistical timing analysis. A schedule

table assigns gates to levels such that gates at a given level are assigned to parallel threads

only after computations on previous levels have been completed (Figure III.1). All threads

working on gates in the same sample are grouped together within a CUDA block. A block

consists of threads that can efficiently communicate with each other using shared memory.

Threads working on different samples of the circuit are grouped into different blocks,

allowing flexible use of memory and resources. For assigning gates to the schedule table,

we propose two algorithms - Algorithm 1 and Algorithm 2. The pseudocode for both

algorithms is presented in Figure III.2. In Algorithm 1, the gates are sorted in topological

order. A gate is ready to be scheduled when all its fanin gates have been scheduled in

previous levels of the schedule table. All ready gates are assigned to levels such that the

number of gates per level does not exceed the key parameter MaxPerLevel. Algorithm 2

performs smart scheduling of gates to reduce the total number of computation steps. In

this case gates that are ready to be scheduled are preferentially grouped together in a level

based on three criteria:
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Fanout count: Gates with large fanouts are assigned a higher preference for

scheduling. This allows more freedom for gate choices in subsequent levels where more

gates are likely to have their fanin gates already scheduled. 

Global memory access: Gates with common fanin gates are grouped together to avoid

redundant fetching of delay data from slow global memory. 

Pin count: Gates with the same or similar number of inputs are assigned to the same

level. Gates with higher input pin counts involve more delay computation steps. Since all

threads within a CUDA warp are forced to perform the same number of computations, all

threads in a warp complete at the same time as the thread for the gate with the largest

pincount. Therefore, grouping together gates with lower input counts in the same level

leads to speed up.  

Figure III.1. Gate scheduling. Gates in a sample with no 
dependence are computed in parallel. In graph shown, gates 

g1,g2,g3 have no dependence and can be assigned to the same 
level. However, g3 is a 2-input gate which if assigned to the same 
level as g1 and g2, increases the computational steps in the level. 

Therefore, g3 is assigned to the next level along with gate g4. 

MC sample 1

MC sample n

Threads

Level 1

Level k

Shared memory
Block 1

Block n
Shared memory

Gates

g1

g2

g3

g4

g1 g2

g3 g4

g1 g2
g3 g4
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Given the list of ready gates, a gate g is selected for scheduling to the next level such

that a linear sum of costs based on the above three criteria is maximized. ExtraFanin is the

number of fanin gates of g that are not already fanins for other gates in the current level.

The algorithm tries to select gates with low values of ExtraFanin to minimize the total

memory accesses from global memory required to perform computations on gates in the

current level. FaninDiff is positive if the new gate selected has more pins than the gates in

the current level. A maximum of MaxPerlLevel gates are selected per level and the list of

ready gates is updated before gates are allocated to the next level in the schedule table. 

Figure III.2. Algorithm 1 and Algorithm 2 for gate scheduling. 

Scheduling Algorithm 1
Topologically sort gates in the circuit  
queue ReadyGate 
Level = 0 
while all gates are scheduled
{
    for all gates g not scheduled, if g is ready
            Add g to queue ReadyGate
    while ( size of Schedule[Level] < MaxPerLevel .AND. ReadyGate is not empty)
                Add to list Schedule[Level] ( ReadyGate.pop() )      
     Level ++
}
return schedule 

Scheduling Algorithm 2
Topologically sort gates in the circuit  
queue ReadyGate 
Level = 0 
while all gates are scheduled {
    for all gates g not scheduled, if g is ready
            Add g to queue ReadyGate
    faninlist = {} 
    faninM = 1 
    while size of Schedule[Level] < MaxPerLevel .AND. ReadyGate is not empty {
             Find g in ReadyGate to maximize Weight(g,faninlist,faninM)
             Add g to Schedule[Level]
             Remove g from ReadyGate, Add fanin gates of g to faninlist
             faninM = max( fanincount(g), faninM )                      
     } 
     Level ++ 
}
return Schedule 

    Weight(g,faninlist,faninM)
Fanout = fanoutcount(g)
ExtraFanin = number of fanin gates of g not in faninlist 
FaninDiff   = max( fanincount(g) - faninM, 0 )
Weight =  Fanout - CoeffMem*ExtraFanin - CoeffDelayStep*FaninDiff
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b. Localizing computations in shared memory

Since global memory has much higher latency and lower bandwidth than on-chip

memory, global memory accesses should be minimized. Shared memory is a fast on-chip

memory resource and therefore ideal for storing all intermediate information. However,

the shared memory size for each multiprocessor is small (16KB in typical CUDA

architectures), which is small compared to global memory. The maximum size of shared

memory allocated to a block is no larger than 16KB, which is not sufficient to store all

intermediate information in practical sized circuits. Hence global memory is used to store

the delay information. To minimize access of this data from global memory, we propose a

technique to localize computations such that they are manageable within the limits of

shared memory. As mentioned in Section 4.2a, the circuit is scheduled into multiple levels

in a schedule table to expose gate parallelism. We group N levels into one entity or

subcircuit, where the parameter N is a function of the shared memory size. Before gates in

the first level of the subcircuit are scheduled, input data for this subcircuit is loaded into

the shared memory. When gates in subsequent levels require input data already accessed

or computed by gates in the previous levels within the same subcircuit, this is accessed

from the shared memory. This minimizes access of data from global memory. In addition,

while computations on gates in the current subcircuit are being performed, the algorithm

fetches data required for the next subcircuit (defined by the next N levels) if not an output

of the current computation. This allows overlapping of memory access steps and

arithmetic computations so that global memory latency is effectively hidden.

Figure III.3 summarizes these techniques. Computations for one circuit sample are

illustrated in the figure. The schedule table resides in global memory. Gates in the current
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level of the schedule table are assigned to different threads. Process variation samples for

the gates are computed in parallel and gate delay computations are performed. The input

delay information required for the computations is accessed from current_subckt in shared

memory. Here N levels in the schedule table are grouped together. The current_subckt in

shared memory consists of all input information required by gates in N levels including

the current level. This data was previously loaded into the shared memory from global

memory. While arithmetic computations are performed one level at a time on the set of N

levels, delay information for the next set of levels i+N to i+2*N-1 is loaded from global

memory to shared memory as illustrated. The table next_subckt stores this data in shared

memory. This allows better hiding of latency for the global memory access within each

Next_subckt

Current_subckt

Shared memory

Global memory

Schedule

Delay

Gate

Thread

Process variation data. 
Parallelised Mersenne 
Twister algorithm per thread

Gate delay computation 
per thread

Store gate
delay in 
global 
memory

Assign gates in current 
level to threads using 
schedule table. 

Load input
delay for
next schedule
level

Load
input 
delay

i

i+N-1

i+N

i+2*N-1

Figure III.3. Summary of proposed approaches to improve 
resource utilization. Concurrent computation on gates in the same 

level and use of shared memory are illustrated. 
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thread. Also, access of data for N levels at a time avoids repeated accesses from global

memory. The output information from the current delay computations are stored in the

delay table in global memory and also updated appropriately in the table next_subckt.  

III.6  Critical Graph Analysis for MC SSTA

 In this section we propose a technique to improve the performance of SSTA through

critical graph analysis. The basic idea is to identify critical paths in the graph by

performing heuristics. In other words, gates which are expected to have a negligible effect

in determining the worst case arrival time of the circuit can be pruned or avoided from

consideration in subsequent analyses, leading to speedups in the overall statistical

analysis. In the context of variability, criticality is statistical. The challenge here is to

assign probability values to gates/paths in the circuit based on a measure of criticality. In

[61], the authors propose an algorithm to compute criticality probability of gates in the

circuit. This algorithm computes criticality accurately, however it can potentially add a

significant runtime overhead to the SSTA. It may be noted that the proposed critical graph

analysis technique only requires that all sufficiently critical gates be selected for accuracy

in subsequent SSTA. The exact values for criticality probability are not required in the

further analysis. Therefore, we propose a simpler technique for critical graph

identification. We propose that slack information obtained from STA performed at the

nominal process corner be used to identify the critical graph. The timing overhead for this

technique is significantly lower. 

III.6.1  Nominal STA based Critical Graph Identification
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This technique uses information obtained from timing analysis of the circuit at the

nominal process corner. The example in Figure III.4 illustrates the technique. Nominal

STA is performed and slack information is obtained at all gates in the circuit. Gates with

significant slack, in this case higher than a threshold value of 0.3 are excluded from

consideration when applying MC based SSTA. The reduced graph size will allow the

runtime-dominant MC STA runs to be reduced roughly linearly with circuit size. The

threshold slack is defined as s% of the worst arrival time at the nominal sample, where s is

the pruning parameter. For instance, s is 30% in the above example if circuit delay is 1

unit. 

III.7  Results

We implement the proposed approach on an Nvidia Tesla S1070 GPU with a 3.16

GHz Intel Xeon-based Linux machine serving as the host. The GPU system has 4 GPU

cards totalling 960 streaming processor cores [62]. Results in this section are based on a

65nm commercial technology library. In our implementation we only consider channel

length variation as a source of process variation for simplicity, however other sources can
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0.1
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Gates pruned

Original graph

Reduced graph

Figure III.4. Illustration of graph reduction. Slacks for nodes are 
indicated next to corresponding gates. Gates with slacks higher than 
a threshold of 0.3 at output node are removed to obtain the reduced 

graph in the example. 
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be readily implemented. The inter-die, spatially correlated intra-die and uncorrelated

random components of channel length variation are considered. The overall standard

deviation is 10% of nominal channel length. Simulations are performed on four large

circuits, Viterbi Decoder 1 (VD1), Viterbi Decoder 2 (VD2), USB 2.0 Core (USB), and an

Ethernet MAC Core (ETHER), with gate counts varying from approximately 15,000 to

60,000. We perform synthesis and APR on all the circuits using commercial tools.

Table III.1 compares the implementation of a random sampling based MC SSTA

approach with the SH-QMC approach, both on the Tesla S1070 GPU system. The results

indicate that a straightforward implementation of SH-QMC exploiting sample level

parallelism does not lead to speedups corresponding to the reduced sample size w.r.t a

random sampling based approach, whereas much higher speedups are obtained using the

proposed techniques to improve resource utilization for smart sampling techniques. The

sample size used in the random sampling based approach is 50,000. The number of

samples used in the SH-QMC approach is 192 (the exact number is related to the

granularity of sample size in the SH-QMC approach based on [29]). The SH-QMC

approach is implemented in three variants: 

Table III.1. Comparison of runtime for SH-QMC (192 samples) vs. random sampling based MC SSTA on 
GPU. SH-QMC is implemented with (a) sample level parallelism or SP (b) sample + gate parallelism or SGP. 

(c) SGP + efficient shared memory usage or SGP+S.Mem.  

Circuit # of 
Gates

RS 50k (ms) SH-QMC on 1 GPU (ms)/Speedup 
w.r.t RS on 1 GPU

SH-QMC on 4 GPU (ms)/Speedup w.r.t 
RS on 4 GPU

1 GPU 4 GPU SP SGP SGP+S.Me
m

SP SGP SGP+S.Mem

VD1 14503 4630 1620 155/30X 32/147X 28/164X 148/11X 15/109X 13/123X
VD2 34082 10870 3810 366/30X 70/155X 64/170X 349/11X 33/116X 30/128X
USB 32898 11360 4050 364/31X 71/160X 65/175X 344/12X 17/232X 16/256X
Ether 57327 19370 6810 634/31X 119/163X 106/182X 600/11X 29/233X 26/263X
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1) SP: Only sample level parallelism is considered. This is based on the

implementation in [58]. An active thread is dedicated to computations on a single sample; 

2) SGP: Multiple threads perform computations on a sample by exploiting gate

parallelism; 

3) SGP+S.Mem. In this case shared memory is utilized and prefetching of data is

performed.

We define the efficiency of the SH-QMC implementation as the runtime per sample of

the random sampling approach divided by the runtime per sample for the SH-QMC

approach. If the reduction in sample size for SH-QMC w.r.t random sampling could be

translated into a corresponding reduction in runtime by the same factor then the efficiency

is 100% according to the definition. In the GPU implementation we show results using

both a single GPU card and four GPU cards in the S1070 GPU system. For the single GPU

implementation, the speedup of the implementation compared to a random sampling

approach increases from 30.5X for sample parallelism (SP) to 172.7X for SGP+S.Mem.

This demonstrates that exposing gate parallelism and exploiting shared memory greatly

increases resource utilization in the GPU for smart sampling based MC SSTA. The

efficiency metric for the implementation increases from 11.7% for SP to 66.3% for

SGP+S.Mem. When all cards in the multi-GPU system are used, we achieve 192.5X

speedup on average for SGP+S.Mem compared to 11.2X for SP. In this case the runtime

improvement is more pronounced compared to the case of a single GPU, since more

resources are available per sample, leading to even lower resource utilization without the

proposed techniques. The efficiency metric increases from 4.3% for SP to 73.9% for

SGP+S.Mem for SH-QMC. Figure III.5 illustrates the trend in performance improvement
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versus sample size for SP and SGP+S.Mem. As the sample size decreases the performance

improvement with resource utilization increases significantly, underlining the synergy of

these techniques with smart sampling based MC techniques.

Table III.2 compares the efficiency of SH-QMC with 192 samples on a CPU versus a

GPU system. The results are also shown for a single STA run on the CPU. On average a

48X speedup is achieved for a single GPU card over a quad core CPU. The average

speedup is 153X when the multi-GPU system is compared with the quad-core CPU. The

runtimes normalized to that of a single STA on a CPU are 1.26X and 0.46X, respectively,

for a single GPU and multi-GPU. Thus MC SSTA runtime on a GPU is comparable to that

of a single STA run on a CPU. 

As shown in Table III.1, the runtime for SH-QMC on the Ether circuit (57K gates) is

only 600ms on a GPU even with a simple implementation using sample parallelism.

Extrapolating from this data, this means that we can perform statistical analysis on large

designs with millions of gates with low runtime. In addition, for circuits of similar sizes,

the additional 20X improvement with the proposed approaches opens up possibilities for
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the use of SSTA in a design optimization setting where the analysis can be performed

repeatedly in a loop for better quality of results. To illustrate the basic idea we

demonstrate a simple experiment where SH-QMC is performed in tandem with gate

sizing. Here, we select gates randomly for sizing, and perform SH-QMC after every sizing

step. This is repeated for 100,000 sizing steps and the runtime is reported in Figure III.6.

The proposed approach for implementation of SH-QMC (SGP+S.Mem) is compared with

the sample level parallelism based implementation (SP) for the benchmark circuits

studied. For the largest circuit with 57K gates, the runtime is reduced from 16.7 hours to

42 minutes with the proposed approach. In a similar spirit, we compare the runtime of SH-

QMC on both CPU and GPU with STA on a CPU, in Figure III.7. The analyses are

performed in a loop involving 100,000 sizing iterations for the Ether circuit (57K gates).

The runtime for the cases of SH-QMC on a CPU and STA on a CPU are 166 hours and 2.7

hours respectively, compared to 42 minutes for the proposed SH-QMC implementation on

GPU.

Figure III.8 illustrates the runtime improvement versus the degree of gate parallelism

when using scheduling algorithm 2 from Figure III.2. The improvement in runtime

Table III.2. Comparison of runtime for SH-QMC (192 samples) 
on GPU vs. CPU. and single STA on CPU. The CPU is a 3.16GHz 

Intel Xeon processor.

Cir-
cuit

Sin-
gle 

STA 
on 

CPU

SH-
QMC 

on 
quad 
core 
CPU

SH-QMC 
on GPU 1 

card/Speed 
up w.r.t. 

quad core 

SH-QMC 
on GPU 4 

cards/
Speed up 
w.r.t quad 
core CPU

Runtime of SH-
QMC on Tesla 
GPU norm. to  

CPU STA

1 card 4 cards
VD1 20ms 1.1s 28ms/39X 13ms/85X 1.4 0.65
VD2 50ms 2.9s 64ms/45X 30ms/97X 1.28 0.6
USB 50ms 3.2s 65ms/49X 16ms/200X 1.3 0.32
Ether 100ms 6.0s 106ms/57X 26ms/231X 1.06 0.26
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saturates around a gate parallelism of about 200. The discontinuity in the graph at a gate

parallelism of 64 is because an additional warp is required in the block to accommodate a

new thread in this case (64 is a multiple of 32, the warp size in CUDA). Beyond this point,

each block requires more registers (for the new warp) and the number of registers required

per multiprocessor exceeds the capacity. Therefore, the number of blocks that can be

active per multiprocessor is reduced. This leads to the runtime overhead.

We evaluate the accuracy of the critical graph identification approach in Table III.3.

The second column shows the percentage of gates pruned from consideration after critical

graph analysis. We perform experiments on 80,000 samples where the possible error

arising from critical graph analysis is computed at each sample. The third column shows
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Figure III.6. Comparison of runtime for SH-QMC performed with 

successive gate sizing (100,000 sizing steps) on 4 GPU cards for 
Ether circuit. Runtime for an implementation utilizing sample level 

parallelism (SP) is compared with the proposed approach 
(SGP+S.Mem). 

Table III.3. Quality of results for the critical graph analysis 
technique.  

Circuit % gates 
pruned

% of sam-
ples with

zero error

Error in 
99th percen-

tile AT
VD1 65.4 99.74 0.018
VD2 43.2 99.60 0.015
USB 81.7 98.60 0.080
Ether 89.3 98.82 0.045
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the percentage of samples which incur absolutely no error. The error in computation of the

99th percentile of the circuit delay distribution (using 80,000 samples) is shown in the

fourth column. We see that across all the benchmarks studied, more than 98.6% of

samples incur absolutely no error. Also, the error in computation of the 99th percentile of

worst arrival time is negligible. Table III.4 illustrates the results from graph reduction for

the benchmarks studied. The point on the sizing curve such that the hardware intensity

(defined as the magnitude of the ratio of percentage change in power to percentage change

in timing constraint) is 1 is selected for analysis in the table. On average a 6.8X speedup is

achieved through the new pruning approach on the GPU implementation of SH-QMC,

which is orthogonal to the speedups described above.
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Figure III.7. SH-QMC with 192 samples on GPU is compared 
with SH-QMC on CPU and STA on CPU, on a logarithmic scale, 
for Ethernet circuit with 57327 gates. SH-QMC on multi-GPU is 

faster than STA on CPU. 

Table III.4. Runtime improvement from graph reduction 
combined with the proposed technique.  

Circuit # of Gates % gates 
pruned

S.G.P+
S.Mem

(ms)

S.G.P.+
S.Mem+

G.Red
(ms)

Speedup 
due to 
graph 

reduction
VD1 14503 65.4 13.1 4.5 2.9
VD2 34082 43.2 29.7 16.9 1.8
USB 32898 81.7 15.8 2.9 5.5
Ether 57327 89.3 25.9 2.7 9.4
61



III.8  Conclusions

We present an implementation of smart sampling based MC SSTA on a GPU system.

We show that a straightforward implementation of smart sampling that exposes only

sample parallelism under-utilizes resources in the GPU, in contrast to random sampling

based MC SSTA approaches where this type of parallelism is sufficient. We propose

several techniques to achieve high resource utilization for the case of smart sampling

based MC SSTA, particularly gate parallelism and enhanced use of shared memory. While

sample parallelism leads to only 11.2X speedups using 192 samples compared to random

sampling with 50,000 samples, our techniques lead to 192.5X speedups for the same

comparison. In terms of an efficiency metric, the proposed techniques achieve an

efficiency of 73.9% for smart sampling MC SSTA compared to a modest 4.3% for sample

parallelism. Most significantly, MC SSTA runtime on a multi-GPU is shown to be over

twice as fast as a single STA run on a CPU. This work also proposes a critical graph
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analysis technique to further speedup MC SSTA, achieving a 2-9X speedup on several

benchmarks.
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CHAPTER IV

A LOWER BOUND COMPUTATION METHOD FOR 
EVALUATION OF STATISTICAL DESIGN TECHNIQUES

IV.1  Introduction

Recent research has paid significant attention to statistical design techniques, where

the focus is on optimizing designs to increase their robustness under variability while

minimizing any increase in cost (e.g., area or power). Optimization at worst-case corners

leads to pessimism and large guardbands. Therefore, smart deterministic algorithms were

introduced where the key observation is that the pessimism incurred by worst-case corner

approaches is mainly due to an inability to set appropriate guardbands (i.e., timing

constraints) for optimization in a deterministic setting, rather than the quality of the

algorithm itself [66-69]. Therefore, it is sufficient to augment a deterministic algorithm

with statistical analysis to minimize pessimism in the timing constraint used for

optimization. The authors in [69] summarize these approaches and propose a technique to

capture WID variation effects without explicitly modeling them in the optimization

procedure. Here, a circuit-level guardband for the target timing constraint is used to

capture WID (within-die) variation effects. A conventional transistor sizing algorithm

similar to [70] which captures only D2D effects, is then used to minimize cost to meet this

guardbanded target. The appropriate guardband is found by sweeping its value and
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repeating the conventional optimization followed by SSTA at each point, until timing

yield is met.

Other techniques have focused on explicitly capturing statistical sensitivities at the

device/gate level or introducing spatial correlation-aware margins at the device level to

reduce the pessimism found in worst-case corner optimization [8,71-74]. The authors in

[8] propose a yield optimization technique using a gradient-based non-linear optimizer.

An efficient heuristic is proposed to compute yield gradient. In [71], the robust statistical

optimization problem is formulated as a second order conic program (SOCP). A linear

relationship between delay and parameters affecting variability is assumed. A piecewise

linear gate delay model as a function of gate size is constructed to enable the problem

formulation as an SOCP. In robust geometric programming (RGP) [72], a worst-case

corner approach is used to incorporate process variation effects. A Geometric

Programming model is used to capture the delay of gates as an analytical function of

design parameters and parameters representing parasitic effects. The effect of variations is

included by adding appropriate margins to the delay constraints at the output pin of each

logic gate. 

These algorithms provide reasonable solutions to the problem at hand, which is to

arrive at a design that meets performance requirements with sufficient confidence given

process variability. 

However it is not clear the scope of improvement possible by using statistical

optimization approaches rather than smart deterministic algorithms such as [69]. Given

the additional runtime costs of the fully statistical approaches, it would benefit designers
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and future researchers to know the potential improvements available to statistical

techniques.

The major contribution of this work is a lower bound computation method to compare

the Quality of Results (QoR) of statistical design techniques under process variations. This

method takes its inspiration from recent developments in statistical timing analysis where

a sample-level view of the process variation space is taken [29,33,56]. We show that the

lowest cost for any design to meet a specified timing yield objective is bounded by a

theoretical limit. This limit is related to the exact solution obtained if different samples in

the process variation space were to be optimized deterministically. Given a set of samples

in the variation space, the optimal design to meet a deterministic timing T while fixing the

process parameters at each sample can be obtained using an exact optimization technique.

We show that for a large enough sample size, the xth percentile of the cost (area, power) of

the designs obtained by optimizing each individual sample to meet timing constraint T is a

lower bound for any design that meets T with a specified timing yield of x%. 

Second, in the same spirit as the lower bound computation, we propose a statistical

design technique that draws upon a sample level perspective of the variation space -

Sample Level Optimization in Parallel (SLOP).  As the name indicates, different samples

in the process variation space are optimized in parallel using two phases. In the first phase,

a straightforward deterministic optimization is performed for each sample.  These results

are then fine tuned in the second phase by shifting the focus of the algorithm to the

optimization of an intelligently selected high percentile sample taken from phase one,

such that the timing yield is met. Among the solutions thus obtained at each sample, the
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lowest cost solution is selected. The technique is highly amenable to parallelism on multi-

core machines and GPUs.  

We compare the results obtained from SLOP and two other techniques proposed in

literature, Burns [69], and Robust Geometric Programming or RGP [72], against the lower

bound computed using the proposed technique. We show that the solutions obtained from

SLOP and RGP are close to the theoretical limit for the cost. Further improvements

possible to solutions computed by the Burns, SLOP and RGP methods are at most 9.6%,

7.5% and 3.7% respectively, on average for the benchmark circuits studied. The

improvement in quality of solution for SLOP and RGP comes at the cost of an average of

7.4× and 41.5× increase in runtime, respectively compared to the Burns approach.

Therefore, we conclude that smart deterministic approaches are sufficiently accurate while

incurring low runtime cost.  At the same time both Burns and SLOP also offer possibilities

for massive parallelization on GPUs and multiprocessor systems. 

The rest of the paper is organized as follows. Section 2 discusses previous work on

exact optimization of a design at a fixed process corner. Section 3 explains the proposed

technique to obtain a theoretical limit for the cost of a design to meet a given timing yield.

Section 4 describes the proposed Sample Level Optimization in Parallel (SLOP) approach.

Section 5 presents results and conclusions are presented in Section 6.

IV.2  Exact Deterministic Optimization

Given the growing parallelism available in modern CPUs and GPUs, there is interest

in using sample-based approaches to perform statistical timing and power analysis and

optimization.  When examining specific samples in the process variation space these
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approaches rely on finding the optimal solution for that given sample (die). This section

discusses the existing literature on exact optimization of a design at a given point in

process space.  It is theoretically possible to obtain cost lower bounds at a process corner

using branch and bound or simulated annealing techniques.  However, in practice, these

techniques exhibit very high runtimes.  Other techniques to obtain the optimal design at a

process corner make assumptions regarding the gate delay model. In [75], the authors

propose an approach for exact transistor sizing. The method involves two phases. In the

first phase, called the D-phase, incremental changes in delay are assigned to each node of

the circuit graph. This is formulated as the dual of a min cost network flow problem and is

solved exactly. In the second phase, or the W-phase, feasible transistor sizes are calculated

to incorporate the node delay changes assigned in the previous phase with minimal

increase in cost. This phase assumes that the transistor delay is expressible as a sum of

simple monotonic functionals. A simple monotonic function applied to this case has the

property that it is monotonically decreasing in one transistor parameter and montonically

increasing in all other transistor parameters. Reference [76] discusses a Geometric

Programming approach to solve circuit design optimization problems. Geometric

Programming (GP) models can address a wide variety of integrated circuit design

problems [76]. Also, commercial solvers are available that can handle large-scale GPs

efficiently [77].  Therefore, we focus on a GP-based approach to obtain the cost lower

bound for a design. 

In a GP model, the objective function and the constraint functions are expressed as a

general class of functions called posynomial functions. A posynomial function is a sum of

monomials. 
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A GP can be expressed in the following form 

Here fi(x) are posynomial functions, gi(x) are monomial functions, and xi are

optimization variables. 

Generalized Geometric Programs (GGPs) [76] extend the formulation to a more

general class of functions called generalized posynomials. A generalized posynomial is

any function that is expressible using the operations of summation, multiplication,

positive (fractional) powers, and maximum of posynomials.  An example of a generalized

posynomials is illustrated below : 

where f1(x), f2(x) are posynomials and h1(x) is a generalized posynomial.

The formulation of an optimization problem as a GGP requires modeling the objective

and constraint functions as generalized posynomials. Techniques to approximate practical

functions using generalized posynomials are discussed in [76]. In this work, we employ a

Max-Monomial fitting approach for this purpose. A max-monomial function has the form

minimize f0(x)
subject to :
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where fk(x), k=1,…,K are monomials. A heuristic algorithm for finding the max-

monomial approximation to a data set for a fixed K is provided in [76]. The algorithm

selects a subset of the data for each monomial where the monomial is the maximum

compared to the other monomials. The monomial fit for this subset of data is then

improved using a simple least squares linear fit after performing logarithmic operations on

both sides. 

With the max-monomial representation for delay, the optimization problem at a

process corner can be formulated as a GGP: 

where is a max-monomial function. xi is the size of the gate at node i, sj is the slew at

node j and pi,j represents the parasitic values at nodes i and j. ri is the vector of process

parameter values at the sample for the gate at node i. E is the set of edges in the circuit

graph. T is the specified timing constraint, ATi is the arrival time at node i, and di,j is the

delay of edge e(j,i). 

minimize  
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IV.3  Lower Bound For Design With Statistical Timing Yield 

Constraint 

This section describes a new technique to obtain a lower bound for the typical case

cost of a design while meeting a statistical timing constraint T with yield x. The lower

bound is computed using results from independent exact optimization of samples in the

process variation space.  The exact optimization technique used at each sample was

described in Section 2.  We consider the distribution of costs obtained by exact

optimization of each sample in a sample set that is sufficiently large and adequately

captures the distribution of process parameters.  We show that the cost of any design that

meets the constraint T with timing yield x is higher than the xth percentile of the cost

distribution. 

Figure 1 illustrates the approach for a sample set S = {s1, s2, s3, s4}. Each of the

samples in S are optimized to meet a timing constraint T with resulting (provably

minimal) costs A1, A2, A3, A4, respectively.  D is any design that meets the timing

constraint T with respect to the sample set S with a yield of x=75% and area A(D). Note

that D meets the constraint T at samples s1, s2 and s3. Therefore, A(D) must be higher than

A1, A2 and A3. However, the same cannot be said of A4. Since the 75th percentile of the

distribution Ai, i = 1...4 is at least equal to max(A1, A2, A3),  A(D) must be at least equal to

the 75th percentile of distribution Ai with respect to set S. For a sample set S that captures

the process parameter distribution accurately, this means that the area of any design D that

meets constraint T with timing yield x is lower bounded by this value, subject to an error
71



related to estimation of timing yield using the sample set. A more rigorous approach

considering this error is presented below. 

Let S be a set of samples in the process variation space.  denotes the lowest

typical case cost for a design to meet timing constraint T at sample . Let   denote

the xth percentile of the distribution  with respect to sample set S for constraint T.
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(a) Optimal area (exact) vs. timing constraint at samples in set S.
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Figure IV.1. Illustration of Theorem 1. Ai represents the optimal cost solution at sample si. Design D meets 

timing constraint T for the 75th percentile of the given sample set. The cost of this design is A(D) and exceeds 
Ai, i=1,…,3 as D meets the timing constraint at samples si, i=1,…,3. Therefore, A(D) exceeds the 75th percentile 

of the distribution Ai, i=1,…,4 for the given sample set.
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n(S) denotes the number of elements in S.   is the xth percentile of the worst circuit

delay for design D w.r.t. sample set S. 

    Theorem 1. Given a design D, the following is true: 

In other words,   is a lower bound for the typical case cost of a design to meet

T for the xth percentile of the worst arrival time distribution with respect to sample set S.

     Proof: Let A(D) denote the nominal cost of design D. If D meets the timing

constraint T w.r.t sample, then 

Let D satisfy T for the xth percentile of the worst arrival time distribution with respect

to sample set S or .  In other words, D meets timing constraint T for at least

x% of the samples in S. It follows from (2) that 

 i.e., holds for at least x% of the samples in S. 
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This in turn imposes the following constraint on the xth percentile of the distribution

with respect to sample set S. 

Theorem 2. Let Sn be a set of n samples in the process parameter space such that

for any design D' in the design space, where tx(D') is the xth

percentile worst circuit delay of D'. For a given design D which satisfies

,

    Proof:

Note that the proof for Theorem 1 assumes   is an integer. This assumption

can be removed easily. The proof is omitted for brevity. 

Theorem 2 suggests a technique to obtain the lower bound on the cost of a design to

meet a statistical timing yield constraint. This is summarized below for the case of x%

timing yield at T. 

Note that as the sample size ,  and a closer lower bound is obtained. Also,

smart sampling techniques have been proposed in literature to obtain moments and

percentile values of the circuit delay distribution with a low sample size, and the error

incurred in estimation of the moments and percentile values using some of these

Given 
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techniques have been discussed [29,33,56]. These techniques can be used to perform

efficient computation of the lower bound with few samples.

IV.4  Sample Level Optimization in Parallel (SLOP)

This section proposes a Sample Level Optimization in Parallel (SLOP) technique for

statistical circuit optimization. The optimization problem addressed here is to find the

minimum cost solution for a design to meet a given timing constraint at the xth percentile

of its worst case circuit delay distribution considering process variations. SLOP takes a

sample level view of the process variation space. First, samples are generated that are

essentially virtually fabricated dies. Within each virtual die, the process parameters are

fixed and deterministic optimization is then performed. The optimization steps are based

on a greedy strategy such as in [70] where gates in the critical path are selected and sized

iteratively. The selection criterion is based on a metric that estimates the gain in circuit

speed for a unit upsizing of the gate. Each virtual die can be optimized in parallel. Once

Algorithm 1
Generate set of samples Sn in the variation
space according to the process parameter
distribution. Estimate error  bound ε for
computation of the xth percentile of worst
circuit delay using set Sn. 
Obtain cost  for the design

optimized to minimize typical case cost while
meeting constraint T at each corner/sample

Obtain the xth percentile of the cost

distribution

)( ε+TAi

ni Ss ∈

)( ε+TAx
Sn
75



the optimization steps are complete, the design with the best cost among the solutions

from different virtual dies is selected.  

Figure 2 illustrates the approach. SLOP consists of two phases, S-phase and HPS-

phase. Note that SLOP progresses for each sample in parallel, and hence operates on a

single virtual die.

• S-phase or Sample Phase. In this phase, a virtual die is optimized using a greedy

strategy to meet the timing constraint T.  The result is a set of gate sizes that will meet

the performance constraint for this specific point in the process variation space (i.e.,

sample).

• HPS-phase or High Percentile Sample Phase. SSTA is performed on the design

returned from the first phase and the xth percentile sample is selected. It is not

surprising that the design from the S-phase will not satisfy the timing constraint T for

the entire process variation space.  This phase seeks to zoom in on the portion of the

process variation space that poses the greatest difficulties for the design from the S-

phase, and re-optimize.  Monte Carlo Sampling based SSTA is employed to select the

xth percentile sample.  Analytical SSTA techniques cannot be used here as they do not

provide information at the sample/virtual die level as required by SLOP. We use a

smart sampling based SSTA approach proposed in [29] called SH-QMC for this

purpose. SH-QMC provides good accuracy in computing a high percentile of the worst

arrival time with a small numbers of samples (100-200). The selected sample is then

optimized to meet the constraint T using a similar greedy approach as in the S-phase.

The results from different optimization runs (i.e., the parallel virtual die) are compared
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and the design meeting T for the xth percentile worst case delay with minimum cost is

chosen as the final solution.

IV.5  Results

Simulation results in this paper are based on a 65nm industrial technology library. The

implementation considers channel length, oxide thickness, and threshold voltage

variations as process parameters. Inter-die, spatially correlated intra-die and uncorrelated

random components of variation are considered for each parameter. The relative amounts

of process parameter variation among die-to-die, spatially correlated, and random sources

have been reported in the literature [78-80]. An increase in systematic die-to-die
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Circuit delay, sample i 

Ar
ea

 

Step 2: S‐phase deterministic 

optimization to meet T at sample i Step 1: Pick sample i 

Step 4: HPS‐phase deterministic optimization 
to meet T at sample HPS(i) 
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i
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Step 3: SSTA at design from S‐phaseT 

Proceed to Step 2    

for sample i+1 

Figure IV.2. SLOP overview: Each virtual die i is optimized in parallel. The optimization consists of an S-Phase 
and an HPS-Phase. In the S-Phase, the virtual die is optimized to meet the timing constraint T using a greedy 
approach. In the subsequent HPS-Phase, the xth percentile sample of the design i optimized in S Phase, called 
HPS(i), is selected. If T is already met at HPS(i), optimization terminates. Else, the design is optimized further, 

this time with sample HPS(i)  constrained to meet a timing T. The best among parallel solutions is selected. 
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component of variation accompanied by an increase in random WID variation has been

reported in [78] for a 45nm technology compared to 90nm. Systematic component of

frequency variation is estimated at 52% in [79] for a 65nm technology node. In our

implementation, the standard deviation in channel length variation is 5%. The standard

deviation for oxide thickness is 1.3%. The contribution of D2D components of channel

length and oxide thickness are fixed at 50% while dividing the random and spatially

correlated WID components equally.  The threshold voltage variation is modeled based on

[80], where a Pelgrom model is used to compute the random component of threshold

voltage variation. The number of grids in the spatial correlation model for individual

circuits is varied linearly with post-placement area starting from 2 × 2 for the smallest

circuit to 16 × 16 for the largest circuit. This corresponds to a grid area of approximately

40μm × 40μm for all the circuits.

Simulations are performed on ISCAS85 benchmark circuits [38] and three additional

large benchmark circuits: Viterbi Decoder 1 (VD1), Viterbi Decoder 2 (VD2), and USB

2.0 Core (USB) with gate counts ranging from approximately 15,000 to 35,000. We

perform synthesis and APR on all the benchmarks using commercial tools. Simulations

were performed on a 16-core 2.0GHz AMD machine with 32GB RAM. 

Table 1 shows the lower bound in area for benchmark circuits to meet a specified

timing constraint with a timing yield of 99%. As noted in Section 2 the lower bound

computation is constrained by the ability to obtain a perfect model of gate delay as a

function of gate size, parasitics, and process variation effects. Hence, we model gate

delays in the standard cell library with the approach described in Section 2 that uses the

max-monomial fitting algorithm. We use 11 monomial terms in our implementation.
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Further increases in the number of monomials are limited by the physical memory

constraints on the server system for the largest benchmark circuits studied. For the

purpose of lower bound computation, we use this gate delay model in the results for the

various approaches considered.  This enables us to make conclusions about the robustness

of each of these techniques in comparison with the exact lower bound.  Timing constraints

were set such that the hardware intensity of each benchmark circuit is 1.0.  The hardware

intensity of a design is defined as the magnitude of the ratio of percentage change in cost

to percentage change in timing constraint. The solutions obtained from three different

approaches - Burns [69], Robust Geometric Programming (RGP) and the proposed SLOP

technique are compared to the lower bound. The runtime values reported for Burns and

SLOP are for implementation on a CPU using a GPU as a co-processor to exploit the

parallelism available in these algorithms. The GPU is an Nvidia Tesla S1080 system with

4 cards. On average 12.8× and 6.4× improvements are obtained through such parallelism

compared to a purely CPU-based implementation for Burns and SLOP, respectively. RGP

is implemented on a CPU since no straightforward source of parallelism is available in the

algorithm.

Table 1 indicates that the area of solutions obtained by Burns, RGP and SLOP are on

average 9.6%, 3.7% and 7.5% higher, respectively, than the lower bound. This shows that

the sub-optimality in the results obtained from these methods are low compared to the

absolute best solution possible. Figure 3 shows sizing curves for the different optimization

approaches as well as the lower bound computed using the proposed technique. The figure

illustrates that the room for further improvement of results beyond smart deterministic

approaches is low.   
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Circuit # 
gates

Area Area/Runtime(s) Area 
Lower 
Bound

∆ Area w.r.t. Lower Bound (%)
Worst 
Corner Burns RGP SLOP W.C Burns RGP SLOP

C432 256 687.6 647.6/0.3 614/2.2 635.1/0.4 588.1 16.9 10.1 4.4 8.0
C499 544 1234.7 1168.2/0.4 1126/5.8 1163.8/1.2 1065.3 15.9 9.7 5.7 9.2
C880 500 1648.2 1558.3/0.7 1506/10.3 1541.4/1.5 1448.8 13.8 7.6 3.9 6.4
C1908 603 1654.3 1555.9/0.5 1492/6.6 1533.8/1.4 1454.1 13.8 7.0 2.6 5.5
C2670 780 2217.6 2095.7/0.5 1952/9.2 2084.5/2.1 1891.0 17.3 9.3 3.2 10.2
C3540 1163 3653.2 3477.1/1.4 3269/19 3422.1/6.5 3169.7 15.3 9.7 3.1 8.0
C5315 1692 5595.6 5236.1/1.7 4980/31 5206.5/9.7 4871.6 14.9 7.5 2.2 6.9
C6288 3834 8923 8447.1/6.1 7847/75 8024/32.1 7639.0 16.8 10.6 2.7 5.0
C7552 2152 6128.9 5833.7/3.8 5513/38 5785.9/23.6 5329.1 15.0 9.5 3.5 8.6
VD1 14503 45780.6 37302/16.9 35593/310 36933/129.7 34598.5 32.3 7.8 2.9 6.7
USB 32898 107131 90866/83.1 79856/4950 84291/658.4 74275.0 44.2 22.3 7.5 13.5
VD2 34082 97959 81308/108 79932/3846 80265/794.7 78305.7 25.1 3.8 2.1 2.5

Table IV.1. Comparison of Burns, RGP and SLOP approaches against the lower bound for area at 
benchmark circuits. RGP is implemented on a CPU. Burns and SLOP are implemented on a CPU with a GPU 

co-processor, to utilize the parallelism available in the algorithms
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Figure IV.3. Comparison of sizing curves for Burns, RGP and 
SLOP against the lower bound for area computed at varying 

timing constraints for the 99% timing yield
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IV.6  Conclusions

Worst-corner based deterministic approaches lead to pessimistic design. A significant

amount of this pessimism can be reduced using statistical guidance for setting guardbands

for the timing constraint. This paper proposes a lower bound computation method to

evaluate statistical design optimization techniques. A statistical optimization technique

that takes a sample level view of the process variation space, called Sample Level

Optimization in Parallel (SLOP) is also proposed. Results from the lower bound

computation method are compared against the solutions obtained from SLOP, and two

previously proposed approaches - a smart deterministic approach (Burns) and a robust

statistical optimization technique (RGP).  Results indicate that any statistically aware

technique has area within 10% of the lower bound on average.  Burns achieves the lowest

runtime. More statistically aware techniques (SLOP, RGP) do obtain lower area solutions;

however the additional improvement is only 5.9% on average (for RGP). The results from

RGP are within 3.7% of the lower bound, with additional runtime cost of 41.5X compared

to Burns. SLOP has higher area compared to RGP by 3.8% on average, however is faster

than RGP by 5.6X. 
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CHAPTER V

EFFICIENT SMART SAMPLING BASED FULL-CHIP 
LEAKAGE ANALYSIS FOR INTRA-DIE VARIATION 

CONSIDERING STATE DEPENDENCE

V.1  Introduction

As circuit design moves to smaller technology nodes the standby power dissipation of

devices has become an important concern. In addition, variability leads to significant vari-

ation in the standby power which adds complexity to the problem. We discussed existing

approaches to analyze standby power in Chapter I. We study the applicability of smart

sampling based Monte Carlo techniques for leakage analysis in this work. 

There are two main contributions in this work. To the best of our knowledge this work is

the first to study sample size reduction for statistical leakage analysis using a Monte Carlo

based approach. We consider intra-die variation, state dependence and multiple sources of

process variation. Second, we address the issue of standard cell characterization, which is

largely ignored in literature. Statistical circuit leakage analysis involves characterization

of standard cells at grid points in the process variation space. This is illustrated in the sche-

matic for a traditional flow in Figure V.1. Although characterization is only performed

once in the design flow for a library the number of grid points grows exponentially with
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the number of process variation parameters. There is a need to select samples to reduce

characterization cost while meeting target accuracy in leakage analysis. 

We first consider the problem of leakage analysis for the case of inter-die variation

involving multiple process variation parameters. For this we propose to use a Quasi Monte

Carlo technique [35] for selecting samples in the process variation space. We show that

for a large benchmark circuit there is significant reduction in sample size to meet target

accuracy when compared to a random selection of samples for computing leakage distri-

bution. Standard cell characterization needs to be performed only at these samples which

reduces the cost of standard cell leakage characterization. Next we propose a solution for

the case of the total leakage distribution considering inter-die and intra-die components

which is the major contribution of this paper. We recognize that this problem can be for-

mulated as selecting samples for inter-die variation and computing the local distributions

at each of these samples due to intra-die variation. Computation of the moments of the

local distribution requires additional samples in the neighborhood of each inter-die sam-

ple. The number of these additional samples can be prohibitively high. We propose tech-

niques for efficient selection of the samples. The key ideas are as follows. First we show

that the optimal way to select samples to compute local distributions accurately is to select

samples according to the probability distribution function of total process variation. Sec-

ond, the selection of samples is performed intelligently by using the Quasi Monte Carlo

technique. Experiments are performed on benchmark circuits synthesized in a 45nm com-

mercial technology. State dependence information is also considered. We compare our

technique with 3 approaches 1) random sampling, 2) a technique referred to as Method1,

and 3) a traditional analytical approach based on [24]. Method1 involves smart selection
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of inter-die samples but no intelligence or reuse of samples for intra-die variation. For the

largest benchmark considered with 198461 gates, the proposed approach requires 3 min-

utes whereas random sampling and Method1 complete the task in 23 hours and 18.4 hours,

respectively. We also achieve accurate results for estimation of m, s, and the 95th percen-

tile of chip leakage distribution for all benchmarks considered with low runtime. 

The paper is organized as follows. Section V.2 describes Quasi Monte Carlo approach,

which is a standard technique to reduce sample size for Monte Carlo analysis. Section V.3

proposes a leakage analysis technique for the case of inter-die variation using a Quasi

Monte Carlo technique. Section V.4 addresses leakage analysis for total leakage analysis

involving inter-die and intra-die variation using smart samples. Results and conclusions

are presented in Sections III.5 and III.6 respectively. 

V.2  Smart Sampling for Leakage Analysis

Monte Carlo-based leakage analysis involves selecting samples in the process variation

space to obtain a statistical distribution of circuit leakage. This is mapped to the standard

Obtain transistor/device 
SPICE leakage model

Characterize cell library 
at grid points in process 
variation space

 
Generate Monte Carlo 
samples in multi parameter 
variation space 

LUT interpolation at each
sample per cell/element type.
Add for leakage distribution. 

Characterize cell library 
at QMC samples in inter-die  
process variation space

 
At each sample add values
per cell/element type for
leakage distribution. 

Obtain transistor/device 
SPICE leakage model

Traditional flow Proposed flow

Figure V.1. Traditional and proposed leakage analysis flow for 
global variation with multiple sources.
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mathematical problem of Monte Carlo (MC), which is to estimate the integral of a func-

tion using samples in its domain. There are standard techniques for variance reduction of

MC, including Quasi Monte Carlo techniques. These techniques are detailed in [28]. 

V.2.1  Quasi Monte Carlo 

The standard Monte Carlo (MC) method addresses the problem of approximating the

integral of a function f(x) over the s-dimensional hypercube  where x repre-

sents a point in an s-dimensional space. The MC estimate of the integral is given by the

arithmetic mean of fi which are values of the function f(x) evaluated at n samples distrib-

uted throughout the hypercube. The error bound of a method to numerically estimate an

integral using a sequence of samples is mathematically related to a measure of uniformity

for the distribution of the points called “discrepancy”. A sequence with the smallest possi-

ble discrepancy has the property that when used to evaluate the mean it achieves the

smallest possible error bound. Sequences constructed to reduce discrepancy are called

Low Discrepancy Sequences (LDSs). Quasi Monte Carlo techniques are characterized by

their use of LDSs to generate samples. LDSs are deterministic sequences, i.e., there is no

randomness in their generation. Intuitively these sequences are well dispersed through the

domain of the function, minimizing any gaps or clustering of points. Sobol, Faure, and

Niederreiter are LDSs that have been studied extensively. In this work we consider Sobol

sequences, which are known to be simple to construct. Interested readers can refer to [35]

for a construction of the Sobol sequence. In the context of circuits Quasi Monte Carlo

techniques have been studied for statistical timing analysis [29] where results indicate that

the techniques are a good fit and are amenable to multi-core and GPU computing. This

Cs 0 1 )s,[=
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work is the first to study the application of Quasi Monte Carlo (QMC) techniques for sta-

tistical leakage analysis. 

V.3  Leakage Analysis for Inter-Die Variation with Smart 

Sampling

 In this section we first describe the steps in an industrial leakage analysis flow. A typi-

cal industrial flow circuit leakage analysis involves characterization of a standard cell

library and computation of circuit leakage using the characterized data as explained in

Section 3.2. Further we introduce our approach to estimation of statistical leakage due to

inter-die parameter variation to achieve tractability for multiple sources of process varia-

tion. 

V.3.1  Process Variation Model

Process variation parameters such as critical dimension (CD) and oxide thickness

exhibit correlations. To account for correlations between parameters principal component

analysis (PCA) is performed. Critical dimension, threshold voltage and oxide thickness

are thus expressed as linear combinations of principal components. For process technol-

ogy nodes 45nm and below some foundries provide such statistical information with prin-

cipal component analysis. Now process variation models with inter-die and intra-die

components are widely used in the literature [7]. Each process variation parameter has a

global or inter-die component, which is modeled by a single random variable for a param-

eter in a die. Intra-die components account for spatial correlation within the die and uncor-

related random variation per device. In this model the die is partitioned into n * n grids and
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identical parameter variations are assumed within a grid. Therefore, each source of varia-

tion is represented by a set of random variables, one for each panel in the grid. For exam-

ple, transistor gate length variation is represented by a set of random variables for all grids

and the set is of multivariate normal distribution with covariance matrix RLg. As men-

tioned above the process variation parameters have been resolved into principal compo-

nents. It follows that each component is represented by a set of random variables for all

grids. Principal component analysis (PCA) is again performed on these spatially corre-

lated variables. In addition an independent random variable accounts for random variation

at the device level for components resulting from PCA on process variation parameters. 

V.3.2   Traditional Leakage Analysis Flow for Inter-Die Variation 

The standard cell library is characterized for leakage information at grid points in the

process variation space. To include state dependence information, standard cells are char-

acterized at the grid points for each input state. If state dependence is not considered then

an average of the leakages for all input states is computed. 

In a traditional Monte Carlo-based leakage analysis flow (to account for inter-die

parameter variation) process parameter variables or their principal components are sam-

pled. As only global variation is considered the same sample set is assigned to every ele-

ment type in the standard cell library. The leakage value per element type in the library is
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Figure V.2. Quasi random and pseudo random sequences.
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obtained by interpolation in the leakage lookup table for the element type. The circuit

leakage is obtained by adding up the leakage value obtained for each element type after

weighting by the number of occurrences of the element type in the circuit. 

The above approach does not consider state dependence of standard cell leakage. To

enable leakage calculation to account for state dependence, the standard cell characteriza-

tion data must have leakage information for every cell state as mentioned above. In addi-

tion, at the circuit level state probability information is required for every instance of each

element type in the circuit. Various approaches exist in the literature to arrive at an esti-

mate of state probability for each instance. For a detailed discussion on this topic refer to

[39].

V.3.3   Proposed Leakage Analysis Flow with Smart Sampling

Characterize standard cells at smart  
samples in total process variation
space including inter-die and intra-die 

 

Obtain transistor/device SPICE
leakage model

Proposed flow

Generate smart samples in inter-die 

 

 

process variation space during runtime.
 

 
Estimate moments of circuit leakage 

  
 
 

 

 
characterization data. Compute sum of 
at each sample above, using cell 
distribution due to intra-die variation

local distributions to obtain total leakage  
distribution. 

components. 

Figure V.3. Proposed leakage analysis flow for within-die variation.
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We propose to use Quasi Monte Carlo based sampling for standard cell library charac-

terization and runtime leakage analysis. In a traditional flow standard cells are character-

ized at discrete grid points in the space of random variables to model process variation as

explained in Section V.3.2. In the proposed approach the characterization is performed at

samples generated using a Quasi Monte Carlo (QMC) based approach. In particular we

use Sobol sequences in the QMC approach in this work. QMC samples refer to Sobol sam-

ples in the rest of the paper. The same process variation samples are used for characteriza-

tion of all element types in the standard cell library and their states. 

The proposed approach differs from a traditional flow during runtime in that samples are

not generated at this stage. The inter-die samples are precomputed during cell library char-

acterization. A given inter-die sample is assigned to every element type in the library as

before and the circuit leakage is obtained by adding up the leakage values from element

types as in the traditional flow. It follows that there is now no need for interpolation in the

look-up table from cell characterization. The leakage values are readily available in the

tables without need for interpolation. The traditional and proposed flows are illustrated in

Figure V.1. 

V.4  Leakage Analysis for Total Variation with Smart Sampling

 This section proposes an algorithm for estimating full-chip leakage considering inter-

die and intra-die components of variation. In sub-45 nm technologies secondary effects in

process variation are important and the number of significant sources of process variation

is increasing. Existing approaches to calculate full-chip leakage power make simplifying

assumptions about either the nature of statistical distribution of process variation parame-
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ters or the nature of dependence of the standard cell leakage on these parameters. The

parameters are assumed to have a standard distribution or the logarithm of standard cell

leakage is assumed to be a linear or quadratic sum of the parameters. Combined with a

growing number of process variation sources this is a limitation on the accuracy. Monte

Carlo based methods on the other hand are expensive when handling intra-die variation.

The proposed approach can efficiently handle any non-standard distribution of variables

or dependence of full-chip leakage on these variables.

A schematic of the proposed approach for total variation is illustrated in Figure V.3. Pro-

cess variation consists of inter-die and intra-die components. In Section V.3 we discussed

generation of samples in the space of inter-die variation distributed according to the joint

probability distribution of the variables involved. We apply intra-die variation to such a

sample around the nominal and obtain a local leakage distribution for the circuit. The sum

of these distributions from all samples should give the total leakage distribution. From a

sampling perspective this translates to generating more samples distributed according to

the intra-die distribution around each inter-die sample. In this way the problem of total

leakage variation can be formulated as a two-level sampling problem, the first level corre-

inter-die sample
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Figure V.4. Reusing samples for local distribution computation. 
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according to local probability distribution.
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sponds to inter-die variation and the second level corresponds to intra-die variation at each

of the samples in the first level. Using Quasi Monte Carlo sampling, accurate results for

inter-die variation can be achieved with few samples as explained in Section V.3. However

even for a low number of first level, or inter-die, samples the total number of samples in

the second level can be prohibitively high. The idea here is that if the second level samples

are chosen optimally such that either the entire set or a subset can be used for computation

at every inter-die sample the number of samples can be minimized. A uniform sampling

approach in a bounded space enveloping the inter-die samples may be tried. However

while this considers outliers in the inter-die distribution this does not weigh samples close

to the nominal adequately. The problem is to arrive at a pdf which is optimal for all sam-

ples.

Consider the first level or inter-die samples in the process variation space. The problem

is to find a pdf for optimality in computation at every inter-die sample. Such a pdf is

obtained by summation of the pdfs of local distributions at the inter-die samples. Now we

have the surprisingly simple result that if the number of inter-die samples is large enough

the summation of the pdfs converges to the pdf for the distribution obtained for total vari-

ation with inter-die and intra-die components. The proof has been omitted for brevity. Our

experiments indicate that if the inter-die samples are chosen according to a Sobol

sequence and the sample size is large enough (typically more than 100) this is indeed true.

Therefore we select the second level samples according to the pdf for total variation. To

minimize the number of second level samples we use Sobol sequences to sample in this

space. 
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For the case of no spatial correlation the idea is illustrated in Figure V.4 where two sam-

ples are shown on the inter-die distribution. The second level samples are chosen to be

Quasi Monte Carlo based samples in the total process variation space. One such sample in

Figure V.4 lies in different regions of the pdf for the two inter-die samples. Therefore the

first level samples assign different weights to the leakage values obtained at a particular

second level sample. The characterization step needs to compute leakages for standard

cells at the second level samples only. The procedure to reuse samples is illustrated in Fig-

ure V.5 for the case of a 2D process variation space. Figure V.5a shows the total process

variation distribution along with the local distribution at an inter-die sample S. Figure V.5b

shows the second level samples generated in the total distribution space xi : i=1...N. These

samples are reused for computation of moments of local distribution at S as in Figure

V.5c. In particular the mean of local distribution at S for the circuit, L(S) is given by

  (1)

where JpdfIntra is the probability distribution for intra-die variation and JpdfTotal is the

probability distribution for total variation. Similarly higher moments for the local distribu-

tion can be computed. The total leakage distribution is a sum of local leakage distributions

and is computed using L(S) and the higher moments obtained for all samples. In the case

of spatially correlated intra-die variation, the sample for one variable is not a single value

but a set of values corresponding to grids in the spatial correlation model. This means that

each element of vector xi in (1) is not a scalar but a vector with correlated elements. The

number of elements in this vector is equal to the number of grids. The functions JpdfIn-

tra(xi-S) and JpdfTotal(xi) are modified to include the spatial correlation. We explore spa-

L S( )
L xi( ) JpdfIntra xi S–( )×

JpdfTotal xi( )
------------------------------------------------------------------------------

i 1=

N

∑=
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tial correlation later and show that this level of modeling process variation is not needed

for large circuit and full-chip leakage analysis. 

Now the local distribution corresponding to one sample can be approximated using Cen-

tral Limit Theorem abbreviated as CLT [40]. If spatial correlation is not considered then

this local distribution has contribution from sum of identical independent random vari-

ables from instances of a given element type in the cell library. If there are enough

instances the local distribution approaches a normal distribution. Also for a large number

of instances the variance of this distribution approaches zero according to CLT. This

means that the local distribution approaches a single number which is the mean of the dis-

tribution. In the presence of spatial correlation as long as there are sufficient independent

regions in a die, i.e., the circuit is large enough the Central Limit Theorem can be applied

[41] as if all intra-die variation was uncorrelated. A reduction in variance of the local dis-

tribution translates to a reduction in the number of second level or additional samples for a

target accuracy. For large circuit blocks and chips the problem essentially is to compute

only the mean of the local distribution at each inter-die sample. For circuits where spatial

correlation has a significant effect on leakage distribution, the technique can still be
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are 
 

applied. The local distribution within a grid panel has contribution from the sum of identi-

cal independent random variables from instances of a given element type in the cell

library. Therefore the local distribution within each grid panel approaches a normal distri-

bution with number of instances in the panel, which reduces the number of additional sam-

ples, with spatial correlation considered, to capture the local distribution. 

JpdfTotal
JpdfIntra

Samples 
generated 
according to
JpdfTotal

Figure V.5. (a) Total (Inter+Intra die) distribution and local pdf at an inter-die sample. (b) QMC based samples 
generated according to total variation. (c) For computing mean of local pdf the samples generated in (b) are

weighed according to the ratio of the probabilities in the two distribution functions. 
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JpdfIntra
with 
appropriate
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V.5  Results

 Our simulation results are based on a 45nm commercial technology. Principal compo-

nent analysis is used to obtain principal components for the correlated process variation

parameters including CD, oxide thickness and threshold voltage. Simulations are per-

formed on industrial circuits with sizes ranging from approximately 5000 to 200,000

gates. In our implementation, we only consider inter-die variation and uncorrelated intra-

die variation. Spatially correlated intra-die variation is not implemented. In the presence

of spatial correlation as long as there are sufficient independent regions in a die, i.e., the

circuit is large enough, the Central Limit Theorem can be applied as explained in [41] and

therefore the results are accurate for large circuit blocks and chips. This is illustrated in

Figure V.6 for a benchmark circuit with approximately 43,000 gates. The standard devia-

tion of the leakage distribution without considering spatial correlation is compared to the

case where a grid-based spatial correlation model is considered. The total standard devia-

tion for intra-die variation is the same in both cases. The assumption of no spatial correla-

tion accurately estimates standard deviation for number of grid panels above 256,
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supporting the argument in [41]. Therefore, spatial correlation is not a limitation for circuit

blocks and chips with practical sizes for the current implementation, which is our focus in

this work. The modification in the algorithm for the case of smaller circuits is discussed in

Section V.4. 

Figure V.7 shows the result for our proposed approach for inter-die parameter variation

using smart samples. The smart samples are obtained from a Sobol sequence. The error in

estimating s of leakage distribution for inter-die variation using smart samples is com-

pared with a random sampling based approach for a VGA circuit with approximately

43,000 gates. The golden value is obtained from a Monte Carlo simulation with 20,000

samples. We compare the minimum sample size required to achieve target accuracy of 3%

error in estimating s for both methods. The proposed approach requires 9.3X fewer sam-

ples compared to random sampling. In a typical industrial flow the standard cells are char-

acterized at grid points in the process variation space. With 7 grid points chosen for each

of the three principal components in our implementation the number of points to be char-

100 1000 10000
0

5

10

15

20

Er
ro

r(
%

)

Sample size

 Random
 QMC

Target accuracy 3%

Figure V.7.  Comparison of error in estimating σ of leakage 
distribution for inter-die variation using QMC vs. random 

sampling for VGA circuit(43214 gates). 
96



acterized is 343 in a traditional flow whereas the proposed approach requires only 150

from Figure V.7, a 56% reduction in standard cell characterization overhead.

We now present our results for total process variation considering both inter-die and

intra-die components of variation. Table V.1 shows results comparing the proposed

approach with 20,000 Monte Carlo runs on benchmark circuits. The metrics compared are

mean m, sigma s, and the 95th percentile of the circuit leakage distribution. The errors in

estimating these metrics for the largest benchmark circuit Chip1 are less than 3%. The

errors in estimating the metrics are less than 3.6% for all the benchmark circuits. Note that

there is higher accuracy for the largest benchmark studied. The proposed approach has a

runtime of less than 3 minutes for the largest benchmark, which illustrates the runtime

efficiency. The larger runtime for Chip1, even accounting for the larger circuit size, is

attributed to the fact that state probability information is only considered for this circuit.

State probability consideration for each instance adds significant cost to the computation. 
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es 
Figure V.8 plots the accuracy against runtime of the proposed approach and a random

sampling approach. We also compare this with the result for another smart sampling based

technique called Method1. As explained in Section V.4 the proposed approach first gener-

ates inter-die samples using smart sampling. In the next step a smart selection of samples

in the total variation space is coupled with reuse of these samples to compute the mean of

local leakage distributions at inter-die samples. In Method1 inter-die samples are gener-

ated using a Sobol sequence as in the proposed approach. However a random sampling

based Monte Carlo analysis is performed at each inter-die sample to obtain the local distri-

bution. In other words there is no intelligence or reuse of samples in total variation space,

however as inter-die samples are generated using smart samples this method is expected to

be faster than random sampling. Figure V.8 shows that the proposed approach has a run-

time of less than 3 minutes to achieve target accuracy for the largest benchmark whereas

Method1 has a runtime of 18.4 hours. This result illustrates the advantage of smart sam-

pling and reuse of the additional samples in the total variation space. The random sam-

pling approach has a runtime of 23 hours. It may be noted that the slope of the curve for

Method1 is steep in the beginning compared to the rest of the curve. This is because in

Method1 the number of inter-die samples is increased in the beginning till the inter-die

Table V.1. Comparison of proposed approach with Golden (Monte Carlo 20,000 samples) for benchmarks. * indicat
that state probability is considered for instances in the circuit. 

Golden (Monte Carlo 20k samples) Proposed approach Error (%)
Gate 
count

μ 
(mW)

σ
(mW)

95th per-
centile
(mW)

Runtime μ
(mW)

σ
(mW)

95th 
percen-

tile
(mW)

Runtime
(s)

μ σ 95th 
percen-

tile

Speed
up

VD1 5536 0.51 0.18 0.85 1.7 hours 0.51 0.17 0.87 1.77 s 0.03 3.55 2.21 3405
VD2 13258 1.21 0.42 1.99 4.8 hours 1.20 0.40 2.04 1.83 s 0.30 2.61 2.51 9495
USB 15946 1.11 0.36 1.79 7.4 hours 1.11 0.36 1.85 1.95 s 0.01 1.97 3.35 13738

ETHER 23939 1.40 0.46 2.26 10.2 hours 1.40 0.45 2.33 2.09 s 0.06 1.99 3.10 17633
VGA 43214 2.85 0.98 4.71 15.6 hours 2.84 0.96 4.85 2.02 s 0.49 2.31 2.97 27778

*Chip1 198461 10.63 2.67 15.59 19.2 days 10.64 2.63 15.96 278 s 0.10 1.71 2.37 5969
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component of variation is captured accurately. After that only the number of random sam-

ples to capture the local distribution is increased while keeping the number of inter-die

samples constant, hence the decrease in slope. The slow convergence of random sampling

to capture local distribution is the reason for comparable runtimes of Method1 and random

sampling. 

Table V.2 compares the proposed approach with an analytical approach to compute

leakage distribution based on [24]. In [24] the authors approximate the logarithm of gate

leakage as a linear expression involving process variation variables. Wilkinson’s approxi-

mation is used to compute sum of lognormals to obtain circuit leakage as a lognormal

expression. From Table V.2 the maximum error in estimating m is 3.7% for the analytical

approach compared to 0.5% for the proposed approach. Similarly the maximum error in

estimating s is 6.1% for the analytical approach compared to 3.6% for the proposed

approach. It may also be noted that the proposed approach incurs less error as circuit size

increases but no such trend is observed for the analytical approach. For the largest bench-

mark Chip1 state dependence has been implemented for both methods. The errors in esti-

mating m and s are significantly lower for the proposed approach in this case as illustrated.

As mentioned before the runtime for Chip1 is significantly higher compared to other cir-

cuits, even accounting for circuit size because state probability information of instances is

considered in this circuit. In the case of the analytical approach the increase in time cost is

much higher because the dependence on number of states is quadratic. 

Figure V.9 compares the total leakage distribution of the largest benchmark circuit with

200,000 gates for the proposed approach with the golden and the analytical approach

based on [24]. The leakage variation considering only inter-die variation is also plotted.
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This analysis considers state probability information for instances in the circuit. The state

probability information is extracted using a commercial tool. We see that the distribution

curve is captured with accuracy by the proposed approach whereas there is significant

error with the analytical approach. 

V.6  Conclusions

Monte Carlo-based techniques are promising for statistical leakage analysis because of

the generality and scalability of the approach even when complex relations exist between

leakage and process parameters. This work addresses the problem of reducing the sample

size for Monte Carlo based leakage analysis. For a large benchmark circuit the sample size

is reduced by 9.3X compared to a random sampling approach to achieve target accuracy.

The standard cell characterization cost is also reduced by 56%. We also propose a solution

to estimate the total leakage distribution considering inter-die and intra-die components. A

novel technique involving smart sampling combined with reuse of samples is introduced

to address this issue. The proposed approach is compared with random sampling, Method1

where samples are not reused, and an analytical approach. For the largest benchmark con-

Table V.2. Comparison of proposed approach with Wilkinson’s 
based approach. * indicates that state probability information is 

considered for instances in the circuit. 

Circuit Gate 
Count

Proposed approach Wilkinson’s 
approach

% Error Run-
time(s)

% Error Run-
time(s)μ σ μ σ

VD1 5536 0.03 3.55 1.77 3.43 4.81 0.16 
VD2 13258 0.30 2.61 1.83 3.16 1.80 0.16 
USB 15946 0.01 1.97 1.95 3.62 6.13 0.19

ETHER 23939 0.06 1.99 2.09 3.69 0.53 0.20
VGA 43214 0.49 2.31 2.02 3.03 1.37 0.20

*Chip1 198461 0.10 1.71 278 3.08 5.46 3094
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sidered the proposed approach performs the computation in 3 minutes whereas the random

sampling approach and Method1 complete the task in 23 hours and 18.4 hours, respec-

tively. The analytical approach has up to 3.7% and 6.1% in approximating m and s com-

pared to 0.5% and 3.6% for the proposed approach. In addition the characterization cost

for the total leakage distribution is scalable with respect to the number of process variation

variables since Quasi Monte Carlo sample size increases moderately with the number of

variables whereas in a traditional grid-based characterization approach the cost grows

exponentially with the number of process variation variables. 
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CHAPTER VI

FAST AND ACCURATE WAVEFORM ANALYSIS WITH 
CURRENT SOURCE MODELS

VI.1  Introduction

Recent research has focused on new approaches which attempt to keep the gate delay

model interconnect insensitive for capturing complex loads. A model called 'Blade' was

proposed by Croix and Wong [42]. This models the DC current characteristic of the gate

as current source and the parasitics as a single output capacitance. The single output

capacitance does not capture non-linearity. Also, the approach in runtime is to perform

numerical integration, which is expensive. In [43], Keller et al propose to use a current

source model for the drivers for crosstalk induced delay change analysis. In [44], the

authors propose linear and nonlinear driver models for timing and noise analysis. The

work points out how basis functions can be effectively used to propagate voltage

waveforms. In [48], the authors proposed to characterize the driver's linear and saturation

region operations individually with Linear Time Varying (LTV) models such that they are

interconnect insensitive. The work in [42-44] have been followed up in [45-47]. The

models proposed in these are called Current Source Models (CSMs). In [45], the authors

map the time shift parameter proposed in [42] to an RC ladder, and try to model non

linearity in capacitance. In [46], the authors proposed a multi-port current source model to
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deal with multiple switching effects. This approach, while accurate, adds more complexity

to the model and it is unclear how much the computational efficiency will be in the

runtime engine for timing analysis. An interesting approach towards statistical analysis

using current source models considering process variations has been proposed by [47].

These approaches are interesting, yet they fall short of giving us an efficient runtime

engine. In particular, there is no work showing that the parasitic model and the DC current

source model in CSMs can be incorporated in an efficient runtime engine.

In this work, we focus on CSMs. We attempt to address the specific issues to be dealt

with in implementing a practical timing analysis approach with an efficient runtime

engine, based on current source models. Our contributions are twofold. First, we model

the DC current behavior and the transient behavior for optimality in the accuracy vs.

runtime trade-off. We make observations regarding efficient ways to capture the DC

current source model. We propose a Bicubic Spline based DC Current Source Model, and

show that this is highly accurate, as well as amenable to fast runtime analysis. For

modeling the transient, we show that a simple parasitic capacitance model with a time

shift parameter is sufficient to make an accurate model. Second, we propose a solution for

fast and accurate run time waveform analysis utilizing the current source model. Our work

is the missing link between the fact that Weibull functions represent waveforms

effectively [49], and that CSMs have the potential to be the future in timing analysis.

Specifically, we propagate voltage waveforms as Weibull functions and exploit the

properties of our current source model to efficiently solve for Weibull parameters at every

gate. Additionally, the method can be extended to more elaborate load models for the

future, and for the case of noise analysis, as well as to model process variations. Timing
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analysis results on benchmark circuits show significantly reduced errors (and error

spreads) compared to a traditional Thevenin-based flow. In terms of µ+σ percentile, we

gain by 20-150% in slew and up to 220% in delay through this approach. 

We present our work in the following sections. Section 2 deals with our approach

towards precharacterization of gates in a CSM. In Section 3, we describe a technique for

fast and accurate waveform analysis during runtime. Section 4 shows results on

benchmark circuits while Section 5 concludes the work. 

VI.2  Precharacterization

The precharacterization step in CSMs for a given process/voltage/temperature (PVT)

corner involves two steps as mentioned before. First the DC current sourced by the gate is

modeled as a function of active input pin and output pin voltages. The transient waveform

also depends on the parasitic capacitance. In the second step, this parasitic behavior is

modeled with a capacitance-based or charge-based model. Here we describe our approach

to precharacterization and show how our Bicubic Spline based DC Current Source Model

is efficient for incorporating in a runtime engine. We also discuss our approach to

modeling parasitic behavior.

VI.2.1  Bicubic Spline based DC Current Source Model

For a given process/voltage/temperature (PVT) corner, DC supplies are attached to

input and output pins and swept from 0-ΔV to Vdd+ΔV. A 2-D table of output current

versus input and output voltages is obtained [42]. In our case, ΔV is 0.1V. Now, an

accurate and efficient model of output DC current is extracted from the data. We propose a
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Bicubic spline model. We compare a fourth order polynomial fit in two variables to the

bicubic spline fit [51] for the data, and find that the bicubic spline fit is stable with higher

accuracy. Figs. 1(a) & (b) show typical error plots for the two models. Note that the

fourth-order polynomial fit is unstable at the steady-state points (0, 1.2) and (1.2, 0)

because of sharp trends in the region. Also, the peak error magnitude is an order lower for

bicubic spline. Table 1 shows data for the stagewise timing analysis performance of

standard cells in an industrial 90nm library for the two approaches, where it is clear that

the proposed approach has much higher accuracy. From our experiments, we also observe

that a bicubic spline with 3 by 3 internal knots is comparable in accuracy to 4 by 4 internal

knots for this purpose, meaning 3 by 3 internal knots is sufficient.Bicubic splines are

continuous up to the second derivative. This is of important consequence in implementing

a slew of approaches to solving non-linear equations in a runtime engine. We exploit this

property in our runtime engine in section 3. 

VI.2.2  Modeling Parasitics

We calibrate two capacitance values each for rise and fall transitions. One each for 10-

50% (C10-50) and 50-90% (C50-90) output voltage transition regions. For a given gate

for a rise/fall transition, we calibrate the capacitance parameters for minimum error across

10-30% 
(% error)

50% 
(% error)

20-80% (%error)

Spline Poly Spline Poly Spline Poly
Avg -0.5 2.8 -0.8 -1.5 0.6 2.6
Stdev 0.9 2.7 0.3 1.0 0.4 1.7

Table VI.1. Comparison of stagewise timing analysis for a bicubic 
spline fit (spline) vs. a fourth order polynomial fit (Poly) for 

standard cells in an industrial 90nm library.
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a set of input slew rate and output load capacitance combinations. These input slew rates

range from fast to slow (F04 to 8 F04) transitions. The maximum output load capacitance

is such that the output slew does not exceed 8 F04 for any input slew. The array of

capacitance values is distributed uniformly below this value. 

At a given combination of input slew s and output load capacitance Cload, we run

SPICE for the gate. Next we compute the 10-50% parameter C10-50(s, Cload) (this

corresponds to 10-50% output voltage for output rise transition and 90-50% output

voltage for output fall transition). For this, we simulate our bicubic spline based current

source model for this input slew s and output load capacitance Cload with an additional

capacitance C at the output. We sweep the value of C. The approach in simulation is to use

numerical integration. As precharacterization is a one time effort, the time cost of

numerical integration does not matter. The value of C which minimizes the error in 10-

50% output transition time compared to SPICE is C10-50(s, Cload). Now we sweep s and

Cload. C10-50 is obtained using a weighted average of C10-50(s, Cload). The weights

take into account that relative error in C10-50 to total output load is higher at smaller

Cload values. 

The procedure to obtain C50-90 is similar. The calibrated C10-50 is used till the 50%

output voltage transition in the simulation of the gate model. The 50-90% parameter C50-

90(s, Cload) minimizes error with respect to SPICE and C50-90 is the weighted average of

these values.

We also calibrate a constant time shift parameter for combinational library cells. The

procedure is similar as above; here the error in 50% delay is minimized with respect to

SPICE using a time shift. Again, the calibrated C10-50 is used till the 50% output voltage
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transition in the simulation of the gate model. We find it worth mentioning that the

transient model in current source models is a set of calibrating parameters, and does not

correspond to the actual parasitic capacitance values. Hence, the actual parasitic model

may be complex, but the output voltage curve is observed to respond smoothly in spite of

this. This is the basis of our choice of a simple transient model.

VI.3  Weibull-based Runtime Engine

This section presents a novel method to perform timing analysis for a circuit. Our

method exploits the fact that the bicubic spline based DC current source model obeys

smoothness properties, and therefore lends itself to various simple mathematical analyses.

It has been noted in [49] that the cumulative distribution function of a Weibull function is

very efficient in capturing waveform shape. This, coupled with the Bicubic Spline based

DC current source model, enables a simple and fast yet accurate method to propagate

waveforms as Weibull-based functions.

VI.3.1  Basic Concept and Flow

For simplicity, we consider here the simplest three-parameter Weibull function. CDF

of Weibull functions can be written as follows: 

Refer to Fig 2. Let the rising input waveform to a gate be represented by   Let output

waveform Vc1 be of the form   Note that this is for an output falling transition of a gate;

abtttbaW )/)0((exp(1)0,,( −−−= (1)
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for the output rising case, the forms are interchanged. Also, let the bicubic spline model of

Idc be as follows (refer Fig 2): 

where are coefficients of a piecewise bicubic polynomial. 

Now, consider our model of a library cell loaded with a π load, as in the schematic in

Fig 2. The KCL equation for current in this situation can be written as 

Our aim is to come up with parameters   to minimize the error function given by

where

)0,,( ininin tba
)0,,( outoutout tba

Tshift

C2 C1

VC2 VC1
R 

Vin 

CintIdc C2 C1

VC2 R VC1

Figure VI.2.  Schematic of the proposed modified Blade-based model
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The first term in eqn 3(b) refers to the current sourced by the DC current model (refer

to as source current), and the sum of second and third is the current flowing into modeled

and real loads (refer to as load current) (Fig 3). Therefore, the problem can be formulated

as solving for parameters (aout,bout,t0out) such that the error in f(t) is minimized for all t. A

least square approximation by integrating f(t)2 for all t may be tried. However, the

function is not explicitly integrable. Also, the large number of parameters makes a look-up

table form for the integration infeasible - it will include parameters ain, bin, aout, bout and
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Figure VI.3. Typical waveforms for source and load currents as in the proposed model for an output falling 
case. The difference is the error function (referred to as f (t)). 
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t0out, along with the time limits of the integration, say t1 and t2 (since   are coefficients of

a piecewise bicubic, this involves piecewise integration). However, the function is

continuous and differentiable with respect to all three parameters; therefore an iterative

method may be adopted to solve a system of non-linear equations. We considered several

methods including Newton Raphson and Conjugate Gradient based steepest descent

method. We intend to solve the following system of non-linear equations by Newton-

Raphson iterations (where f(t) is the function as above).

The time points (t1, t2, t3) are chosen to be the 20, 50 and 80% transition points of

VC1. In our case, Newton Raphson is observed to converge faster, typically in 3-4

iterations. Steepest descent methods have a disadvantage because the parameters

(aout,bout,t0out) we search for are not homogenous quantities. For starting values of aout,

bout and t0out - we need the following fitting coefficients per gate: 

where td_out, ttr_out are output delay and slew respectively, cap is the gate load cap,

tr_in is the input slew. This can either be taken from the vendor device datasheet or

extracted during device characterization. 

VI.3.2   Enhancing Accuracy
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It is possible to improve the accuracy by using basic understanding of the current flow

in a gate. It is observed that though the error function (when seen as a function of t) at time

points of 50% and 80% transition points in output voltage (corresponding to equations

4(ii) and 4(iii)), are smooth in the neighbourhood of t, the error function near the 20%

transition point (equation 4(i)) can have local fluctuations. For an improved solution,

therefore, it is desirable to fit the early part of the transition (corresponding to the 20%

point) with more points. Note that the above procedure in section 3 A basically seeks to

obtain a charge flow waveform by matching its derivative, i.e., current at t1, t2 and t3.

Near the 20% point t1, it helps to obtain an approximation for the average current flow in

the neighborhood of t1 in t, and use this quantity directly as the error to be minimized,

instead of current at just t1. For this, we derive an approximation for the total charge flow

between two time points t1,0 and t1,2 in the neighborhood. Equation (6) below computes

this error charge err_c(t1,0,t1,2). We then divide it by the time interval. 6(b) means that we

resort to a simple quadratic interpolation for Idc using calculated values at time points t1,0

, t1,1 and t1,2 near the 20% transition region. We have chosen (10%, 15%, 20%) of output

voltage transition for this purpose. Now, since comparing one charge quantity and two

current quantities (at 50% and 80% points of the transition) in a system of equations

creates difficulties in convergence, we normalize this charge term with the time interval

over which the approximation is considered. Thus, effectively the first quantity becomes

an average current as in eqn 6(d). This is used in place of f(t1) in eqn (4). 
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VI.4  Results

We performed simulations on benchmark circuits synthesized in an industrial 90nm

technology. The results of the Weibull-based analysis were compared with numerical
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 Circuit Weibull slew 
error µ+σ (%)

Thevenin slew  
error µ+σ (%)

C3540 4.6 7.7
C499 3.2 7.6
C2670 3.2 7.5
C1908 5.1 6.1
C880 2.3 5.7

Circuit
Weibull, delay 
error µ+σ (%)

Thevenin, delay 
error µ+σ (%)

C3540 3.2 7.2
C499 3.9 3.6
C2670 5 7
C1908 2.3 7.5
C880 3.5 7.4

Table VI.2. Error statistics compared to SPICE of delay and slew 
for proposed and traditional techniques for various benchmark 

circuits. 
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integration results based on the current source model. For comparison of accuracy with a

model comparable in time efficiency, we use a Thevenin model. This converges in less

than 4 iterations for most cases [50]. This model is at the heart of most of the timing

analysis tools. Note that our experiment sought to compare performance of the two

methods in moderate to high resistive shielding conditions, since these represent the most

difficult cases traditionally. Hence, the benchmark circuits were synthesized targeting

such load conditions so that the various approaches can be evaluated in a stringent

environment.

Table 2 shows a comparison of the two methods for several ISCAS85 benchmark

circuits [38]. As a result of the improvements shown, the error at the µ+σ percentile (68th

percentile for normally distributed errors) is reduced by 20-150% in slew. For computing

50% delay the new approach provides up to 220% smaller error at the µ+σ percentile. Fig

4 and 5 show data for large ISCAS85 benchmark circuits. Fig 5 visually depicts how

errors in slew rate estimation are reduced with this approach compared to a Thevenin-

based flow. Fig. 4(a) shows slew rate error of our approach. Figs 4(b), (c) show the delay

performance for our approach. Thevenin-based models are criticized for being unphysical

in mapping any complex load to a single Ceff. This is precisely the factor that leads to

larger errors in slew rate for the Thevenin case here. We have observed that errors in 10-

30% and 70-90% transition time improve substantially because of the underlying physical

approach of current source models. This coupled with comparable efficiency is the

advantage of the proposed approach. As noted before, convergence of the Newton

Raphson system occurs in 3-4 iterations, which is similar to the Thevenin approach.
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VI.5  Conclusions

We have investigated the importance of various modeling decisions on the accuracy

and complexity of CSMs. In particular we find that a bicubic spline approach to fitting DC

current source as a function of input and output voltages is accurate and lends itself to

efficient manipulation in timing analysis. Furthermore, we show that the use of a 2-piece

internal capacitance model provides good accuracy, while remaining tractable. We then

propose a Weibull-based method to perform waveform analysis using the suggested CSM.

This technique allows the higher accuracy capabilities of current source models to be

leveraged in efficient static timing analysis tools. We show that errors in delay and slew

across gates in various benchmark circuits are reduced substantially (by µ+ σ error

quantile) compared to traditional Thevenin-based approaches. In addition, the approach

retains computational efficiency as the Newton-Raphson approach converges in 3-4

iterations, as is the case in Thevenin-based timing flows. Also, very importantly, the

approach can be scaled to other parasitic models that have been proposed with a

reasonable complexity.
115



0.5 1.0 1.5 2.0 2.5 3.0 3.5

-10

-5

0

5

10

Er
ro

r %

Slew (normalized F04)

 

0 10 2 0 3 0 40 50
-0 .5

-0 .4

-0 .3

-0 .2

-0 .1

0 .0

0 .1

0 .2

0 .3

A
b

so
lu

te
 E

rr
o

r 
(n

or
m

a
liz

e
d 

F
04

)

Ar rival  T ime (n ormalized  F0 4)

0 .0 0 .5 1.0 1 .5 2 .0 2.5 3.0
-0.10

-0.05

0.00

0.05

0.10

Ab
so

lu
te

 E
rr

or
 (n

or
m

al
iz

ed
 F

04
) 

Stagewise  Gate  delay (normalized F04)

Figure VI.4. (a)% error in slew (b) Absolute error in gate delay (c) Absolute error in arrival time. 
116



-10 -8 -6 -4 -2 0 2 4 6
0

20

40

60

Fr
eq

ue
nc

y

Error %

 Weibull

-10 -8 -6 -4 -2 0 2 4 6
0

20

40

60

Fr
eq

ue
nc

y

 Thevenin

Figure VI.5. Error histograms for slew estimations in two large ISCAS85 circuits given a primary input 
excitation
117



CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarise our findings regarding the effectiveness of Monte Carlo

based algorithms for performance analysis and optimization of digital circuits. We

discuss the merits of intelligent sampling techniques for statistical timing analysis and the

advantages of implementation on a massively parallel system such as a Graphics

Processing Unit. These ideas are further extended to the case of statistical optimization.

Using the proposed framework for comparison of statistical optimization techniques,

inferences are drawn regarding the advantages of different algorithms in literature and the

proposed SLOP algorithm.  We conclude with suggestions for further work in the area to

enable adoption of these methods in industrial Electronic Design Automation (EDA)

tools. 

VII.1  Smart Monte Carlo SSTA : SH-QMC

A Stratification + Hybrid Quasi Monte Carlo (SH-QMC) approach is introduced with

the objective of improving the efficiency of MC based statistical static timing analysis.

The proposed approach extracts timing criticality information of the circuit to intelligently

select samples. On average 23.8X and up to 44X reduction is achieved in the number of

samples required for timing estimation compared to a random sampling approach. When
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implemented on a quad core processor, the approach is shown to be faster than traditional

SSTA while achieving comparable accuracy. The scaling trends of SH-QMC with respect

to circuit size are also favorable.  

VII.2  Acceleration of SH-QMC on Graphics Processing Units 

(GPUs)

The proposed smart sampling based MC SSTA technique SH-QMC is implemented

on a GPU system. It is shown that while approaches such as random sampling based MC

SSTA can keep resources utilized on a GPU with a simple implementation in which

samples are analyzed in parallel, smart sampling techniques lead to resource utilization

with such an implementation owing to the reduced sample size. We propose a gate

scheduling technique to expose additional parallelism in the application, while shared

memory is utilized to reduce communication bandwidth bottlenecks associated with slow

global memory. We have the impressive result that MC SSTA runtime on a multi-GPU is

twice as fast as a single STA run on a CPU. 

VII.3  Comparison of Statistical Design Optimization 

Techniques

A lower bound computation method to evaluate statistical design optimization

techniques is proposed. Using this bound, we evaluated several current design

optimization methods. We found that worst-corner based deterministic approaches result

in a pessimistic design with an average area 20% greater than the theoretical lower bound

motivating the need for statistically informed methods.
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Among these, we compared a smart deterministic approach (Burns) and a robust

statistical optimization technique (RGP), as well as a method proposed in this paper call

SLOP that uses sample level view of the process variation space. Results show that all

statistically aware technique have areas within 10% of the lower bound, on average. More

statistically aware techniques (SLOP, RGP) do achieve lower areas; however the

additional improvement is only 5.9% on average for RGP and are within 3.7% of the

lower bound, with additional runtime cost of 41.5X compared to Burns. SLOP has higher

area compared to RGP by 3.8% on average, however is faster than RGP by 5.6X. Overall,

the lower bound shows that all statistical methods produce results that are provably close

to the theoretical minimum and trade-off additional run time for approaching this

minimum to within a couple percent.

VII.4  Smart Sampling based approach for full-chip leakage 

analysis

We addressed the problem of reducing the sample size for Monte Carlo based leakage

analysis. A solution to estimate the total leakage distribution considering inter-die and

intra-die components is proposed. It is demonstrated that a direct approach involving

smart sampling leads to large sample size. Therefore, samples are reused using proper

weights to obtain statistics with respect to different distribution functions. For the largest

benchmark considered, the runtime is reduced from 23 hours for a random sampling based

approach to 3 minutes for the proposed approach. Also, the library leakage characteriza-

tion cost is shown to be scalable with respect to the number of process variation variables. 
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VII.5  Future Work

This work presents compelling arguments to support the adoption of Monte Carlo

based algorithms for performance analysis and optimization of digital circuits. However,

some challenges remain in their adoption into an industrial flow. 

Critics of Monte Carlo based techniques often point to the lack of incremental

capability in such techniques, for example, in the case of statistical timing analysis. Monte

Carlo based techniques depend on samples generated in the process variation space to

obtain statistics of the circuit delay distribution. If incremental changes are made to the

design, the technique should ideally be capable of utilizing results from the previous

analysis to speed up analysis of the modified design. This work discusses the incremental

computation of a fixed percentile of the delay distribution after Engineering Change Order

(ECO). However, if the designer performs a series of changes resulting in a significant

change to the critical path of the design, full recomputation of samples is required. 

To minimize the number of recomputations, one possible approach is to perform

periodic checks on the design for changes to the ordering of principal components. A

smart technique to perform this check can minimize the number of recomputations.

Alternately, one could explore possibilities for incremental regeneration of samples with

changes to the ordering of principal components. It may be noted that with the aid of

massively parallel machines such as GPUs, the runtime of smart sampling based SSTA is

significantly reduced as reported in this work. This reduces the need for incremental

techniques for SSTA on such machines. However, incremental techniques could still

provide significant value for general-purpose processor based design flows. 
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Another important requirement for adoption of smart sampling based SSTA in an

industrial flow is to find an accurate lower bound on the number of samples required to

achieve target accuracy in the performance metric. This is especially important in an

optimization loop, where the critical graph changes continuously and could have a

significant effect on the sample size required for target accuracy. One method for this

computation would be to study the convergence of the circuit delay as more samples are

analyzed, via a learning-based approach. An alternate possibility is to perform a

theoretical analysis to bound the error for the smart Monte Carlo technique as a function

of the number of samples, while considering circuit-specific information (such as slack

distribution of top k critical gates, where k is a parameter). 

Regarding statistical design optimization, it is noted in the work that smart

deterministic approaches such as Burns, which use statistically generated guardbands,

achieve results to within 10% of the computed lower bound for the cost objective. More

statistically aware techniques, such as SLOP and RGP, provide moderate improvement in

accuracy while trading off runtime. Whereas the straightforward parallelism available in

SLOP enables speed up on a GPU, this is not true for RGP which does not have such

natural parallelism. Conventionally, the primary focus of optimization research has been

to improve the quality of optimization solutions especially using more and more statistical

information, while computational efficiency is given secondary status at best. This new

evidence suggests a paradigm shift for research in the area of statistical design

optimization. It shows that the primary focus of research should now be to develop

techniques to achieve higher computational efficiency through parallelism or other means,
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while the solutions meet a specified quality criterion, say to within 5% of the lower bound

metric on average for benchmark circuits considered.
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