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ABSTRACT

Breast cancer detection on automated 3D ultrasound with co-localized 3D x-ray

by

Sumedha Sinha

CHAIR: Paul L. Carson

X-ray mammography is the gold standard for detecting breast cancer while

B-mode ultrasound is employed as its diagnostic complement. This dissertation

aimed at acquiring a high quality, high-resolution 3D automated ultrasound image

of the entire breast at current diagnostic frequencies, in the same geometry as

mammography and its 3D equivalent, digital breast tomosynthesis, and to extend

and help test its utility with co-localization. The first objective of this work was

to engineer solutions to overcome some challenges inherent in acquiring complete

automated ultrasound of the breast and minimizing patient motion during scans.

Automated whole-breast ultrasound that can be registered to X-Ray imaging in the

same geometry eliminates the uncertainty associated with hand-held ultrasound.

More than 170 subjects were imaged using superior coupling agents tested during

the course of this study. At least one radiologist rated the usefulness of X-Ray

and ultrasound co-localization as high in the majority of our study cases. The

second objective was to accurately register tomosynthesis image volumes of the

breast, making the detection of tissue growth and deformation over time a realistic

possibility. It was found for the first time to our knowledge that whole breast digital

tomosynthesis image volumes can be spatially registered with an error tolerance

of 2 mm, which is 10% of the average size of cancers in a screening population.

xii



The third and final objective involved the registration and fusion of 3D ultrasound

image volumes acquired from opposite sides of the breast in the mammographic

geometry, a novel technique that improves the volumetric resolution of high

frequency ultrasound but poses unique problems. To improve the accuracy and

speed of registration, direction-dependent artifacts should be eliminated. Further, it

is necessary to identify other regions, usually at greater depths, that contain little or

misleading information. Machine learning, principal component analysis and speckle

reducing anisotropic diffusion were tested in this context. We showed that machine

learning classifiers can identify regions of corrupted data accurately on a custom

breast-mimicking phantom, and also that they can identify specific artifacts on in

vivo breast images. Initial registrations of the phantom image sets with many regions

of artifacts removed provided robust results as compared to the original datasets.
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CHAPTER I

Introduction

1.1 Motivation

Breast cancer takes the heaviest toll of all cancer-related deaths among women

worldwide [WHO, 2009]. One in ten women will develop breast cancer at some time

in her life and women living in North America have the highest rate of breast cancer

in the world [ACI 2006]. X-ray mammography is the most widely used screening

tool for breast cancer detection while the most readily accepted use of ultrasound

(US) in the United States has been diagnostic, in distinguishing a simple cyst from

a solid lesion[Kolb et al., 2002, Moss et al., 1999, Novak, 1983, Taylor et al., 2002].

Stavros et al. [Stavros et al., 1995] stated that if all the criteria for a simple

cyst are met, the accuracy of US is 96-100%. Furthermore, they identified

benign solid lesions in ultrasound images with a 99.5% negative predictive rate.

However, on the subject of the operator dependence of hand-held ultrasound

[Baker et al., 1999, Conway et al., 1991], Conway et al. stated that: “In five of 50

cases, masses detected with freehand US and initially believed to correspond to the

mammographically detected mass were subsequently found to represent different

areas of the breast.” Automated whole-breast ultrasound that can be registered

to X-Ray imaging in the same geometry eliminates some of this uncertainty by

pinpointing the lesion’s location in the breast, ensuring that the relevant mass is

found and also avoiding confusion between multiple masses. Co-localization with

1



MRI would also be helpful since MRI has demonstrated efficacy for a high-risk

population [Saslow et al., 2007] but this particular aspect has not been addressed

in this work. The main advantage of ultrasound imaging in this context lies

in its superior ability to identify and cull benign masses and cysts, in addition

to being cost-effective and independent of potentially harmful contrast agents

[Goldberg et al., 1994].

We are developing an automated ultrasound-tomosynthesis system wherein a

digital X-ray tomosynthesis unit has been augmented with a motorized ultrasound

transducer carriage above a special compression paddle [Carson et al., 2004,

Kapur et al., 2004, LeCarpentier et al., 1999]. This system allows for the acquisition

of 3D X-ray and ultrasound images in the same geometry. The first objective of

this work was to engineer solutions to overcome the challenges inherent in acquiring

complete automated ultrasound of the breast and minimizing patient motion during

scans. The second objective was to accurately register tomosynthesis images of

the breast acquired at different times, and test the usefulness of geographical

correlation between 3D X-Ray and ultrasound. For screening, co-localization may

be essential to retain the sensitivity of ultrasound in detecting additional cancers

without introducing a higher fraction of false positives or call-backs. The third

and final objective involved the acquisition of volumes of opposed view images

(OVI) from the top and the bottom of the breast, using pulse echo B-mode

ultrasound. With ultrasound, there is a trade-off between imaging depth and

resolution due to the fact that higher frequencies, which provide finer resolution,

are attenuated disproportionately. Relatively low frequencies are needed for depth

penetration of more than 4 cm. To retain the resolution of high frequency ultrasound

[Rizzatto et al., 1997], we can image the breast from both sides in the mammographic

geometry (i.e., breast compressed between two plates), which we will refer to as

dual-sided imaging. The goal is to register and fuse these volumes to produce a high

2



resolution, high quality 3D ultrasound image of the complete breast. This is a novel,

feasible technique for higher quality images formed by registering and fusing opposite

views. The improved resolution at higher frequencies will facilitate detection of

micro-calcifications [Cleverley et al., 1997, Nagashima et al., 2005] and estimation of

tumor margins [Kolb et al., 1998], characteristics highly indicative of breast cancer.

1.2 Background of Thesis

1.2.1 Improvements in current scanning techniques

3D automated ultrasound (US) is rarely acquired in the mammographic geometry,

due to the technical problems associated with this configuration. Automated US

systems with other configurations have been built and tested recently with good

results. Jackson et al. [Jackson et al., 1993] and U-Systems [Wenkel et al., 2008]

described a system that requires the patient to lie supine, whereas Shipley et

al. [Shipley et al., 2005], Duric et al. [Duric et al., 2007] and Gooding et al.

[Gooding et al., 2010] described a system that needs the patient to lie prone.

However, accurate mechanical registration with mammograms is not possible in

such a setup. Richter et al. [Richter et al., 1997] achieved some success in lesion

characterization with a system on which 3D automated US could be acquired in the

mammographic geometry, but emphasized the need for technical improvement.

Automated ultrasound images can be acquired with the dual-modality system in

the conventional mammography views: cranio-caudal (CC), medial-lateral-oblique

(MLO), lateral-medial-oblique (LMO), lateral-to-medial (LM), and medial-to-lateral

(ML). On our automated US system, images were initially acquired through a TPX

(4-methylpentene-1 based polyolefin) plastic compression paddle [Booi et al., 2007] a

device used to compress the breast in mammography, and later through a fiber mesh

paddle. Compression reduces image degradation due to motion, x-ray scatter and

x-ray beam hardening, and lowers the required radiation dose. Inasmuch as a longer
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duration of compression is necessary for automated ultrasound, a compression force

of about 4 to 10 dN is typically used with the dual-modality system to minimize

patient discomfort while stabilizing the breast. (The FDA specifies a maximum

compression force of 17.7 dN in Rule 663(4) of the Ionizing Radiation Rules.) The

ultrasound transducer is placed in a holder that is attached to an x-y translator drive,

which moves the transducer across the compression paddle under computer control.

One to three adjacent automated US transducer sweeps are performed as needed

for the area of coverage, depending on the shape and size of the patient’s breast.

The 3D US images obtained are later registered and fused in order to visualize the

entire breast volume. The first important consideration is to image the entire breast

with US. Stacey-Clear et al. [Stacey-Clear et al., 1993] observed that 73% of the 86

cancers they studied were “found at the periphery of the breast as defined by a zone

1 cm wide beneath the subcutaneous fat or anterior to the retro-mammary fat”. This

zone may include up to 50% of the breast volume, owing to the hemispheric shape

of the breast. Hence, including this region in the ultrasound scan is of the utmost

importance on our dual modality system. Other considerations include improving

the quality of the adhesive coupling between the ultrasound transducer and the skin

surface and stabilizing the breast while in compression.

Solutions to the technical problems described above would ensure that the

peripheral region of the breast is included in the 3D automated US image and that

fusion of multiple US sweeps into a seamless image volume [Chang et al., 2010,

Tozaki et al., 2010] is not compromised by motion artifacts. Consequently,

mechanical registration of 3D US and tomosynthesis would result in more accurate

localization and characterization of the suspected lesion(s).

1.2.2 Tomosynthesis image registration

In this study, 3D digital X-ray tomosynthesis [Claus et al., 2006, Eberhard et al., 2006,

Zhang et al., 2006] and 3D automated ultrasound images of patients’ breasts were
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acquired in the same geometry with a unique dual-modality system. X-ray tomosyn-

thesis shows great promise for use as a primary screening tool in breast imaging and

its efficacy in detection and assessment is enhanced by anatomic correlation with an

automated ultrasound scan acquired in the same geometry. It would be a decided

advantage to be able to register pairs of these images before and after chemotherapy,

to measure the change in volume of the malignant lesion and compare measurements

to those obtained with automated ultrasound. At the time of detection, the

average breast tumor diameter is 21 mm. [Sickles et al., 2005, Sommer et al., 2003]

Registration should be able to detect at worst a 10% change in tumor size. Therefore

our goal was a registration error of less than 2 mm.

Meyer et al. [Meyer et al., 1999] reported early success with volumetric US

registration and Krucker et al. [Krücker et al., 2000] reported registration error

values of 0.31 mm on a phantom image and 0.65 mm in vivo. Narayanasamy et

al. [Narayanasamy et al., 2007] were able to register 9 out of 10 pairs of automated

grayscale ultrasound images to each other with a mean error of 1.2 mm +/- 0.9 mm.

These were repeat scans with less than 15 minutes between the two acquisitions. If

changes in lesion volume can be measured on 3D tomosynthesis images as well as

3D ultrasound images, this further enhances the usefulness of dual modality breast

imaging.

Registration of breast tomosynthesis images had not been attempted in the past

and I had the opportunity to use MIAMIFUSE [Kim et al., 1997, Meyer et al., 1997,

Meyer et al., 1999] for this attempt. Accuracy was limited by the poor axial

resolution of the tomosynthesis images (1 mm) and angle-dependent artifacts.

1.2.3 Multi-modality mass characterization

Ultrasound images aid the radiologist in assessing the malignancy of a suspicious

mass seen on the X-ray image, especially in identifying benign masses (e.g.,

cysts) to prevent unnecessary biopsies. Kotsianos-Hermle et al. showed 72%
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correlation between automated ultrasound and manual ultrasound in a recent study

[Kotsianos-Hermle et al., 2009]. True and exact co-location of a suspicious mass

with 3D mammography is possible only with mechanically registered automated

ultrasound. When the lesion(s) of interest is visible in both modalities, anatomic

correlation afforded by the dual modality system localizes the mass within the breast

with more accuracy. Richter et al. [Richter et al., 1997] stated that a combination

of mammography and B-mode automated ultrasound was successful in detecting

83-92% (by 4 readers) of 41 malignant lesions in their study. The radiologist’s level

of confidence in identifying the lesion of interest in both the X-ray and ultrasound

images increases to certainty when mechanical registration is used for co-location.

1.2.4 Opposed view whole breast imaging

Automated 3D US does present good potential for screening purposes

[Kelly et al., 2010, Lister et al., 1998], especially for women with dense breasts

[Kolb et al., 1998, Jackson et al., 1993]. Kolb et al. stated that forty-two percent

of non-palpable cancers in their study would not have been detected without

screening US (all of these cancers were in dense breasts). However, the poor

image quality of automated US and technical problems in its implementation have

prevented mainstream clinical adoption. Where hand-held ultrasound is concerned,

it is possible to position the transducer directly above the lesion at a minimally

aberrating orientation, but this is not possible with automated ultrasound.

Attempts have been made to improve the quality of 3D automated US

to a level where it can and should be used routinely for screening. Carson

et al. [Carson et al., 1981] first discussed the use of ultrasound pulse echo

imaging in conjunction with transmission ultrasound tomography. Andre et al.

[Andre et al., 1999] and Duric et al. [Duric et al., 2007] achieved some success with

ultrasound tomography, where they employed both reflection and transmission

imaging. However, Duric et al could only achieve an out-of-plane resolution of 12 mm
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and they were unable to detect masses of size <15 mm. Transmission imaging had

an in-plane resolution of 4 mm, which compares poorly with the in-plane resolution

of pulse echo US which is less than 0.5 mm. Shipley et al. [Shipley et al., 2005]

documented a volumetric automated US system with specialized attenuation

compensation (using information from backscatter), wherein the patient lay prone

and the breast was held in a cone. However, none of these ultrasound scanning

techniques involved image acquisition in the same geometry as a mammogram and

hence could not implement mechanical registration or co-location.

Pulse echo or B-mode ultrasound in the mammographic geometry is a more

feasible technique for screening applications, especially when opposed view images

are acquired (dual-sided imaging). A unique approach to 3D grayscale ultrasound

is proposed wherein the breast will be imaged along the same plane but from

opposite sides. Opposing image volumes can be registered, possibly compounded

[Moskalik et al., 1995, Krücker et al., 2000, Krücker et al., 2002] and fused. Artifacts

caused by shadowing and refraction would be minimized. The finer resolution and

increased sensitivity to small scatterers at higher frequencies [Rizzatto et al., 1997],

will also facilitate the detection of small scatterers in solid hypoechoic lesions and

their discrimination from fat and cysts, besides improving the visibility of tumor

margins. The opposing images thus obtained can be fused together, using the

information in the overlap region for intrinsic registration.

Dual-sided imaging would also allow the use of frequencies at 10MHz or higher,

since the image from either side need not cover the entire thickness of the breast.

Compression thickness for the average breast is between 4 and 5 cm; Helvie et al.

[Helvie et al., 1994] documented a mean compression thickness of 4.4 cm in the

cranio-caudal view and 4.8 cm in the mediolateral oblique view in a study population

of 250 paired mediolateral oblique and craniocaudal mammograms. Hence depth

penetration of more than 3 cm will rarely be required on either side of the average
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breast, further strengthening the case for imaging at a frequency equal to or greater

than 10 MHz, as opposed to a lower frequency such as 7.5 MHz. Frequencies in this

range are commonly used clinically for B-mode breast ultrasound. Roubidoux et

al. [Roubidoux et al., 2005] documented results obtained with the GE M12L at 9

MHz. However, since automated ultrasound requires greater depth penetration than

the far more flexible hand-scanning technique, investigators have been wary of using

higher frequencies for single-sided imaging.

Opposed view images can be taken within minutes or even seconds of each

other. However, success in registration of these images is complicated by the

low signal-to-noise ratio (SNR), poor resolution and refraction and attenuation

artifacts in the central region of the breast where the two views will overlap. The

replacement of a TPX paddle with a mesh paddle has done away with one of the

biggest drawbacks of the former setup by reducing attenuation [Booi et al., 2007]

and facilitating good acoustic coupling. Opposed view imaging through a filament

mesh paddle results in superior contrast, spatial resolution and a higher SNR. It is

possible that these images will be of a quality that justifies their use for screening

purposes, especially for subjects with dense breasts.

From our knowledge of the relevant literature, this is the first time that opposed

view ultrasound imaging of the breast has been attempted in the mammographic

geometry, with potential for automation and registration with tomosynthesis.

1.3 Contributions of Thesis

Both quantitative and qualitative advancements were made in automated ultrasound

whole-breast scanning and its co-localization with tomosynthesis.

With regard to obtaining better image quality for our existing system, several

innovations were made with the author’s participation [Sinha et al., 2007a]. Filling

the gaps between the breast and compression paddle with a highly viscous ultrasound
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gel using a syringe reduced gap lengths by about 60%. This solution was only partial

as 73% of malignant lesions are present at the periphery of the breast, as defined by

a zone 1 cm wide beneath the subcutaneous fat or anterior to the retromammary fat.

However, it is possible to image the axillary tail and extreme medial regions of the

breast better by using lateral views. The subareolar region can be imaged better by

compressing the breast such that the nipple is closer to the TPX paddle, therefore

reducing the gap between the paddle and the subareolar region. Breast slippage

is a problem with coupling gel between the paddle and the breast. An adhesive

hairspray was found to provide acoustic coupling of the compression paddle to the

breast. This coupling agent preserved image quality, was empirically found to be a

close second-best for adhesively coupling the breast to the paddle and was easy to

remove and clean up. Viscous bubble-free ultrasound gel proved most effective for

coupling the transducer to the paddle for LM views, when the paddle is vertical. As

of the current date, more than 170 subjects have been imaged in CC and LM views

of the affected breast using the experimentally determined superior coupling agents.

Patient motion artifact analysis carried out in both B-mode and IQ mode proved

that shallow patient breathing and breath-hold were not harmful to image quality,

whereas speech and sudden breathing produced unacceptable artifacts. By aiding

the stabilization of the compressed breast, we succeeded in minimizing technical

difficulties in image splicing and registration caused by slippage of the breast.

We found for the first time to our knowledge that whole breast digital

tomosynthesis mammography image volumes taken at different times can be

spatially registered [Sinha et al., 2009]. The registration process was complicated by

several factors; primarily, the compression of the breast at different times results

in different mammographic appearances. Digital tomosynthesis mammographic

volumes also contain reconstruction artifacts that are dependent on the viewing

angle. Furthermore, these digital tomosynthesis mammographic images have a
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slice thickness of 1 mm (this value can vary from 0.1 mm to half the lateral

extent of the image for simpler reconstruction algorithms), depending on the extent

of target object in the direction of x-ray tube motion. The axial resolution is

clearly poorer than the 0.1 mm x 0.1 mm resolution in the image plane (voxel

size was 0.1 x 0.1 x1 mm3). With care in selecting nearly identical locations in

each of two same-modality image volumes of the breast as control points, image

based registration was quite successful. Although the achieved average registration

error of 2 mm is relatively large compared to the tomosynthesis resolution of 0.1

mm, this error is small compared with the average size of mammographically

detected breast cancers in a screening population. A tolerance of +/- 10% in

tumor diameter change estimation(average tumor size at first detection is 20 mm

[Sickles et al., 2005, Sommer et al., 2003] ) in this first attempt at tomosynthesis

registration is promising.

When digital breast tomosynthesis was compared to mammography, tomosynthe-

sis outperformed mammography in mass detection (BIRADS 3 to 5), mass margin

delineation and cancer detection. When automated ultrasound was compared to

clinical hand ultrasound, it was consistently judged as inferior. However, when lesions

were detected on automated ultrasound, mean correlation between the radiologists’

assessments of percentage malignancy on the clinical hand US and the research

auto US was 0.81. Hence, in spite of its limitations, automated US performed well

enough to justify geographic co-location with tomosynthesis [Sinha et al., 2007b].

In this pilot study of 26 cases (See Fig 2), the mean ranking for usefulness of

correlative imaging was moderate. At least one reader rated usefulness as high in

62% of our cases. On the whole, when lesions were visible in automated US, they

were characterized with an accuracy comparable to that achieved with clinical hand

US. Progress needs to be made in producing ultrasound scans with greater breast

coverage, especially at the chest wall and the breast periphery. Automated US in
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its current setup cannot replace clinical hand US for screening purposes but can aid

radiologists in lesion detection and assessment.

Finally, significant progress was made in developing improved registration and

fusion techniques for dual-sided imaging of the compressed breast. We expected

extensive direction-dependent artifacts in the overlap zone and hence elimination of

these artifacts was investigated. Principal component analysis and speckle reducing

anisotropic diffusion were two of the noise-removal techniques we considered for

this purpose. Our results imply that principal components may be somewhat

useful in registration of locally warped breast ultrasound images that are partially

obscured by noise. Implementing some form of edge detection or segmentation

was an alternative approach, and finally, machine learning was successfully used

for isolating noise and artifacts in ultrasound images [Sinha et al., 2010]. Machine

learning has been used in the past to identify suspicious masses on ultrasound images

[Kotropoulos and Pitas, 2003, Piliouras et al., 2004]. We achieved an accuracy of

almost 100% for automated classification of true and corrupted ultrasound data

obtained from a custom breast-mimicking phantom. For a limited in-vivo image set,

we demonstrated that specific image artifacts, namely shadows and enhancements

can be reliably separated from background image data, with an accuracy of more

than 90%. This classification can be ported to a fusion algorithm that enables

automated registration of images acquired from opposed views of the breast.

Segmented images of the phantom could be registered successfully in 6 of 6 runs with

different sets of control points, with an average error of 1.67 mm, while registration

failed on the original image set in half of these runs, thus proving the utility of

artifact removal in opposed view image registration.
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CHAPTER II

Automated Ultrasound Scanning on a Dual

Modality Breast Imaging System

2.1 Introduction

This study is part of a project aimed at improving the efficacy of breast cancer

diagnosis and characterization by acquiring images of the breast in the same

geometry with x-rays and ultrasound (US) [Carson et al., 2004, Kapur et al., 2004,

LeCarpentier et al., 1999]. The automated ultrasound is acquired though a special

compression paddle [Booi et al., 2007] that is also used for x-ray imaging. Possible

ultrasound modes are: 3-D ultrasound in grayscale (B-mode), Doppler color flow

imaging, elasticity imaging and compounding. This report focuses on grayscale

ultrasound.

X-ray and ultrasound images can be acquired with the dual-modality system in

the conventional mammography views: cranio-caudal (CC), medial-lateral-oblique

(MLO), lateral-medial-oblique (LMO), lateral-to-medial (LM), and medial-to-lateral

(ML). The ultrasound transducer is placed in a holder that is attached to an x-y

translator drive, which moves the transducer across the compression paddle under

computer control. One to three adjacent automated US transducer sweeps are

performed as needed for the area of coverage, depending on the shape and size of the

patient’s breast. The 3D US images obtained are later registered and fused in order

to visualize the entire breast volume. Fusion requires a high degree of accuracy.
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Figure 2.1: Photograph of breast-simulating phantom illustrating air gap between
phantom and compression paddle at the periphery.

The final image volume is usually evaluated [Sahiner et al., 2007] in conjunction

with a 3-D mammogram [Chan et al., 2005] (tomosynthesis). Two approaches to

achieve adjacent sweep alignment are stabilizing the breast while in compression and

post-processing (i.e., shifting, tilting, warping, etc.) the obtained images.

A major problem associated with performing ultrasound scans through a

compression paddle is that there can be an appreciable air gap between the paddle

and the breast surface near the breast periphery. This gap is illustrated in Fig. 2.1.

Since ultrasound is highly reflected at the paddle/air interface, and very little

ultrasound at diagnostic imaging frequencies transmits through air, any region of the

breast where there is such an air gap will not be visible in the ultrasound image. Our

purpose was to investigate the magnitude of the US coverage problem and possible

solutions.

An additional issue is how to minimize breast motion, and yet provide coupling

of the breast to the compression paddle. Traditional US gels exhibit excellent US

transmission properties, but are too slippery for maintaining the breast in a fixed

position in contact with the paddle throughout scan times that can last several
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minutes. In addition, patient motion due to breathing and speaking can create

artifacts that distort the grayscale ultrasound image. Furthermore, breast slippage

is undesirable for elasticity imaging, which may be implemented after the automated

US sweeps are obtained by further compressing the human subject’s breast in small

increments up to an additional 5% strain (elasticity imaging carried out by R.C.

Booi). Digitized radio-frequency (RF) signals acquired for elasticity studies are

later correlated and displacement estimates are converted to strain images. Though

elasticity imaging has proven to be a valuable diagnostic tool, like image fusion, it

is very sensitive to breathing motion. We quantified four different motion artifacts

for B-mode and IQ (In phase/Quadrature phase) RF data, and explored methods to

minimize such artifacts.

2.2 Materials and Methods

IRB approval was obtained for this study (2002-0584, University of Michigan) and

informed consent was obtained for every patient in these trials. Initially, testing was

done on a first generation dual-modality ultrasound/digital mammography system

consisting of a GE (General Electric Healthcare, Milwaukee, WI) LOGIQ 9 US

system and a GE Senographe 2000D digital mammography unit. Subsequent testing

was performed on a combined system consisting of a GE LOGIQ 9 US system and

a second generation GE research tomosynthesis unit [Eberhard et al., 2006]. The

US transducer that was employed was a GE M12L linear matrix array operating at

maximum center frequencies of 10 to 12 MHz. The US system was augmented with

a motorized transducer carriage that translated the transducer from left to right

over a water-filled or gel-filled TPX (4-methylpentene-1 based polyolefin) plastic

compression paddle of 2.5 mm thickness (see Fig. 2.2).

Water is employed as a coupling agent between the transducer and the paddle

for CC-views and gel is employed for oblique and lateral views. Software developed
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(a)

(b)

Figure 2.2: (a) Close-up of automated scanning equipment. (b) Schematic drawing
illustrating relative positions of the breast, x-ray detector, transducer, compression
paddle, and couplants. (Thickness of adhesive couplant is exaggerated for improved
visibility in drawing.)

18



by GE Global Research is used to drive the motorized carriage.

The compression paddle is a device used to compress the breast in mammography,

where compression reduces image degradation due to motion, x-ray scatter and

x-ray beam hardening, and lowers the required radiation dose. Inasmuch as a longer

duration of compression is necessary for automated ultrasound, a compression force

of about 4 to 10 dN is typically used with the dual-modality system to minimize

patient discomfort while stabilizing the breast.

2.2.1 Estimation of coverage

These experiments were carried out by M.M. Goodsitt. To estimate the fraction of

the breast surface area that is in contact with the compression paddle, technologists

made visual tracings of the paddle-to-breast contact region and the outer breast

border on transparencies placed on the compression paddle. These tracings were

drawn for 10 patients [7 with known breast cancer and 3 normal volunteers]. The

tracings were then digitized with a flatbed scanner and analyzed with ImageJ, a

public domain Java image processing program inspired by NIH Image [NIH, 2010] to

measure the contact and total breast surface areas and the linear dimensions of the

peripheral air gaps. To fill-in the air gap between the breast and the compression

paddle at the curvature of the breast periphery, we developed a technique utilizing a

syringe to dispense bubble-free gel at this location. The linear dimensions of the gap

filled with US gel were estimated from US images of 10 different volunteers.

2.2.2 Couplant Selection

• Couplant between Breast and Compression Paddle

To test agents for coupling the breast to the paddle, various adhesives were

qualitatively assessed for the absence of coupling gaps and shear/ slippage

resistance. The tests were carried out on a human wrist. These experiments

were carried out under the supervision of M.M. Goodsitt. The compression
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paddle was in the CC position and was filled with water for coupling the

transducer to the paddle. The couplant candidates were then each applied to

the wrist and the wrist was lightly compressed with the paddle. Gray-scale

ultrasound images were then acquired of the same area of the wrist. The

adhesive couplant candidates that were tested included included: Got2bglued

hairspray (Schwarzkopf & Henkel, Irvine, CA), Gigahold hairspray (Continental

Consumer products, Birmingham, MI), Skintac adhesive (Torbot Group Inc,

Cranston, RI), SonTac Gel pads (Diagnostic Ultrasound Corporation, Bothell,

WA), Shaped Gel Concept Pads (Gel Concepts, Whippany, NJ), Tensive Glue

(Parker Laboratories, Fairfield, NJ), YES paste (Gane Brothers and Lane, Elk

Grove Village, IL), Got2bglued spiking glue (Schwarzkopf & Henkel, Irvine,

CA), and Poligrip dental paste (GlaxoSmithKline, Moon Township, PA).

Aquasonic Gel (Parker Laboratories, Fairfield, NJ), a conventional ultrasound

coupling gel was utilized as a gold standard for comparisons. In addition to

the absence of gaps and good shear/slippage resistance, we also qualitatively

evaluated image quality, ease of use and after-effects, if any.

Next these agents were quantitatively assessed by measuring the contrast-to-

noise ratios in images of the 2.4 mm diameter anechoic and -9 dB cylindrical

targets within a CIRS (Computerized Imaging Reference Systems, Inc.,

Norfolk, VA) Model 047 Gray Scale Contrast-Detail Ultrasound phantom.

Cross-sectional B-mode images of these targets were taken at different depths

(namely 2.5 cm and 4 cm) with and without an intervening 2.5 mm thick piece

of TPX plastic. The TPX plate was a smaller version of the compression paddle

that was more convenient to use when imaging the phantom. The coupling

agents were placed between the TPX and the phantom scanning window.

The resulting images were then analyzed to compute the contrastto-noise

ratios within selected targets in the phantom. The contrast-to-noise ratio was
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evaluated [van Wijk and Thijssen, 2002] as:

CNR =
(µt − µb)

σrms

(2.1)

where µt is the mean signal level in the target region of interest, µb is the mean

signal level in the background region of interest and σrms is the root mean

square noise in the background. µb and σrms were obtained as the average of

mean and standard deviation values in six background ROIs in the phantom,

at the same depth as the targets. We also obtained comparable images of a

cyst in a patient’s breast using Got2BGlued (the most viable coupling agent

from our qualitative and quantitative results) and Litho Clear ultrasound gel.

The CNRs for the cyst were evaluated using the formula above, picking six

background ROIs all around the periphery of the cyst.

• Couplant between Transducer and Compression Paddle in ML and LM Views

For coupling the transducer to the paddle in the LM and ML views, various

gels, lotions and oils were qualitatively assessed for viscosity. These were

Sonotech Litho Clear Gel (Sonotech, Bellingham, WA), Sonotech Clear Image

Gel (Sonotech, Bellingham, WA), (Both Low and High Viscosity Types),

Medichoice Gel (Owens and Minor, Richmond, VA), Polysonic lotion (Parker

Laboratories, Fairfield, NJ), Aquasonic Gel (Parker Laboratories, Fairfield,

NJ), General Imaging Gel (ATL, Reedsville, PA), Primrose Oil (Cedar Vale

Natural Health, Crocker St. Cedar Vale, KS), Nutra-E Oil (Nature made

Nutritional Products, Los Angeles, CA), Glycerin and three mixtures of

Polysonic Gel with Litho Clear Gel (Ratios 1:2, 1:1 and 2:1). The parameters

for this test were: gel movement after 3 minutes and after 6 minutes for a given

layer thickness.

• Motion Analysis

21



Ultrasound image data were collected in B-mode and in IQ mode for analysis

of artifacts caused by patient motion during scans. Automated full coverage

ultrasound is carried out in B-mode; whereas, IQ data is collected (also in

automated mode) during elasticity data acquisitions. Six (7 for elasticity)

patient volunteers were asked to do the following during short stationary

scans: (1) hold their breath, (2) take a deep breath and release it, (3) breathe

shallowly and (4) talk (repetition of a single phrase). Every image was split

into eight regions and each of these regions was correlated individually across

successive image frames at the pixel level. The minimum observed correlation

was noted for each region. Elasticity data was correlated at the sub-pixel

level over the whole image and average correlation was noted. Furthermore,

the correlation maintained in successive image frames was checked over time

for a stationary scan. This was done to quantify the maintenance of adhesive

properties over time.

To best splice adjacent US sweep images into a 3-D volume, it is advisable

to include redundant data in the form of an overlap between sweeps. The

automated US scanning system was programmed to scan the breast with

an overlap of 1 cm between adjacent sweeps. The actual overlap could be

different due to possible bowing of the compression paddle, looseness of the

transducer holder, etc. The true overlaps or shifts were determined using the

AVS (Advanced Visual Systems Inc., Waltham, MA) Miami Fuse registration

application.

2.3 Results and Discussion

2.3.1 Estimation of coverage

Examples of the visual traces of the breast-paddle contact areas and breast outer

boundaries are shown in Fig. 2.3. The percentages of breast area in contact with the
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(a) (b)

Figure 2.3: (a)Worst case visual tracing of breast in contact with the paddle (inner
curves) and outer breast borders .The area of the breast in contact with the paddle is
28.7 cm2 and the total breast area is 81.9 cm2, yielding the minimum contact area of
35%. (b)Best case visual tracing of breast in contact with the paddle (inner curves)
and outer breast borders. The area of the breast in contact with the paddle is 80.2
cm2 and the total breast area is 108 cm2, yielding the maximum percentage area in
contact with the paddle of 74%

compression paddle from the visual tracings without gel are listed in Table 2.1.

The percentages of the breast area in contact with the paddle ranged from 35%

(Fig. 2.3a) to 74% (Fig. 2.3b) with a mean of 56% 15%. The linear dimensions of

the gaps between the border of the contact region and the outer border of the breast

in the tracings are listed in Table 2.2. These gaps were measured at 4 different

angles relative to the approximate centers of the breasts at the chest wall [See Fig.

3] For these 10 patients, the gap dimensions ranged from 0.8 cm to 4.3 cm with a

mean of 2.2 cm 0.9 cm.

Analysis of the B-mode ultrasound images obtained with the automated system

on 10 different volunteers who were subsequently scanned with the gaps filled-in with

gel indicated that had gel not been employed, air gaps would have ranged between

0.7 cm and 4.7 cm (mean= 1.7 cm +/- 0.6 cm). The analysis also indicated the

percentage of the linear dimensions of the gaps that were filled-in with gel ranged

from 42% to 85% with a mean of 61% +/- 10%.

Fig. 2.4 is a B-mode single slice from a 3-D US volume showing how gel fill-in

improves breast coverage. Most of the breast beneath the gel-fill region shown in
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Subject Area in contact with
paddle(cm2)

Total breast area ( cm2) Percentage of breast
area in contact with
paddle (%)

1 114.8 154.4 74.4
2 65.6 103.7 63.2
3 28.0 62.7 44.7
4 51.9 105.0 49.4
5 735.7 84.7 42.2
6 36.2 80.1 45.2
7 28.7 81.9 35.1
8 126.9 193.1 65.8
9 80.2 108.4 73.9
10 50.4 71.6 70.4

Table 2.1: Percentage of Breast Area in Contact with the Compression Paddle from
Visual Tracings (No Gel).

Non-contact Gaps at Breast Periphery (cm)
Subject 30 degrees 60 degrees 90 degrees 120 degrees 150 degrees

1 0.9 0.8 1.05 1.8 1.85
2 3.6 2.6 2.7 3.1 2
3 3.2 2.5 2.1 2.35 1.8
4 3.85 3.25 3.55 2.7 1.6
5 3.85 2.25 2.1 1.5 1.4
6 2 2.2 3.1 2.9 2.6
7 4.3 3.9 3.3 3 1.75
8 2.6 2.3 2.25 1.75 1.6
9 1.3 0.9 1.45 1 1.1
10 0.85 1 1.9 1.45 1.1

Table 2.2: Linear dimensions of the gaps at the breast periphery from Visual Tracings
(No Gel).
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this figure would not have been imaged without the gel.

Figure 2.4: Single slice of a spliced grayscale image volume with gel fill-in around
the breast border.

2.3.2 Couplant Selection

Our qualitative comparison indicated that the most suitable coupling agent between

the breast and the compression paddle was the water-soluble hairspray, Got2BGlued.

Another water-soluble hairspray, GigaHold, and a liquid adhesive that is used to

attach ostomy and other appliances to skin, Skintac, also performed well. The latter,

however, is not water-soluble and must be removed with alcohol.

When various viscous substances were qualitatively tested for coupling the

transducer to the compression paddle in the lateral view, Sonotech Litho-Clear gel

performed best overall. This was also the gel chosen for filling in the gap at the

periphery of the breast.

Figure 2.5 compares the relative image quality obtained with the automated US

scanning system using Got2Bglued hairspray and Litho-Clear ultrasound gel as the

coupling media between the TPX paddle and the breast.
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(a)

(b)

Figure 2.5: (a)A cyst in a patient’s breast imaged through the compression paddle
with Got2Bglued spray between the breast and the paddle. The patient had multiple
cysts in both breasts. (b)The same cyst imaged through the compression paddle with
US gel between the breast and the paddle.
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Visual inspections of these patient images as well as quantitative measurement of

a CNR improvement of 2.5% for the Got2Bglued couplant prove that the adhesive

spray does not degrade image quality as compared to ultrasound gel. Also, it

maintains correlation over time. See Fig. 2.6 for B-mode correlation over 5 minutes,

which is the average time during which the patient is in compression.

Figure 2.6: Correlation maintained over time for the most suitable coupling agent,
for a stationary scan. The value largely stays above 0.8. The drop in correlation for
frame 13 is likely to be due to patient motion.

Figures 2.7 and 2.8 graphically represent CNR values obtained for the anechoic

and -9 dB (2.4 mm diameter, 4.52 mm2 cross-sectional area) targets in the CIRS

Gray Scale phantom. Circular ROIs of two different sizes [55 pixels (0.92 mm2

) and 130 pixels (2.16 mm2 )] were analyzed in several identical test images and

the best results were selected in each case. The ROIs were positioned at the

centers of the targets by eye. The smaller ROI provides information about image

degradation in the middle of the targets due to the coupling agent, and is related to

potential decreases in target conspicuity. The larger ROI provides more generalized
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information about image degradation, in particular, fill-in due to the coupling agent.

‘Water with TPX’ is the gold standard case where a 2.5 mm thick piece of TPX

(heretofore referred to as the ‘TPX plate’) was inserted between the transducer and

the phantom and water was used as the coupling agent between the TPX plate

and the phantom. ‘Water without TPX’ is the case where water was used between

the transducer and the phantom, without an intervening TPX plate. This plate

was a smaller version of the compression paddle that was more convenient to use

when imaging the phantom. All of the other agents were tested with the TPX plate

inserted. Aquasonic gel was used to couple the transducer to the paddle in all cases,

and either water or the agents being tested were used to couple the paddle to the

phantom. Of the three agents tested (Got2bglued, Gigahold and Skintac), Skintac

had the best CNR value in six cases out of eight.

Figures 2.9 and 2.10 show background mean and RMS noise values obtained in

the CIRS Gray Scale phantom at the 2.5 cm and 4 cm depths respectively, for both

55 and 130 pixel areas. In general, inserting the 2.5 mm thick TPX plate between the

transducer and the phantom with water as the coupling agent resulted in a decrease

in the average background pixel value bv 27.9% at a depth 2.5 cm and 32.5% at a

depth of 4 cm. There were small (<10%) additional losses in the average background

pixel values for the adhesives with TPX compared to water with TPX. The RMS

background noise was less for Water with TPX compared with Water without TPX,

probably due to the smaller average pixel values when TPX was present. Finally the

RMS background noise for the adhesives with TPX was in most cases within about

10% of those for water with TPX.

2.3.3 Motion Analysis

Figures 2.11 and 2.12 graphically represent the results for B-mode analysis of motion

artifacts. Mean and standard deviations for each artifact are included in Table 2.3.

In the graphs in Figures 2.11 and 2.12, the four bars represent the averages
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Figure 2.7: CNR values for both anechoic and -9dB targets at depths of 2.5 cm and
4 cm respectively, for each coupling medium, where ROI size is 55 square pixels. The
largest (magnitude) value of -4.44 was obtained at 4 cm depth for the anechoic target,
when water was used as the coupling medium, in the absence of a TPX plate.

Left Breast Right Breast
Artifact Mean Standard Deviation Mean Standard Deviation

Breath Hold 0.963 0.056 0.979 0.023
Deep breath and release 0.805 0.128 0.807 0.098

Shallow Breathing 0.974 0.042 0.962 0.034
Talking 0.906 0.106 0.912 0.066

Table 2.3: Mean and standard deviation values for the four motion artifacts analyzed
for the left and right breasts.
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Figure 2.8: CNR values for both anechoic and -9dB targets at depths of 2.5 cm and
4 cm respectively, for each coupling medium, where ROI size is 130 square pixels.
The largest (magnitude) value of -4.25 was obtained at 2.5 cm depth for the anechoic
target, when water was used as the coupling medium, in the absence of a TPX plate.
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Figure 2.9: CNR values for both anechoic and -9dB targets at depths of 2.5 cm and
4 cm respectively, for each coupling medium, where ROI size is 55 square pixels. The
largest (magnitude) value of -4.44 was obtained at 4 cm depth for the anechoic target,
when water was used as the coupling medium, in the absence of a TPX plate.
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Figure 2.10: CNR values for both anechoic and -9dB targets at depths of 2.5 cm and
4 cm respectively, for each coupling medium, where ROI size is 130 square pixels.
The largest (magnitude) value of -4.25 was obtained at 2.5 cm depth for the anechoic
target, when water was used as the coupling medium, in the absence of a TPX plate.
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of the minimum correlation values (minimum obtained in the 8 areas analyzed in

each image) observed for each of the four experimental techniques. The error bars

represent +/- one standard deviation.

Figure 2.11: Averages and standard deviations of the minimum correlation values
observed for the left breasts of six patients in the situations: breath hold, hold and
release, shallow breathing and talking (repetition of single phrase).

Figure 2.12: Averages and standard deviations of the minimum correlation values
observed for the right breasts of six patients in the situations: breath hold, hold and
release, shallow breathing and talking (repetition of single phrase).
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In general (combining the data for both breasts) when minimum correlation was

observed for B-mode data at the pixel level, breath hold (R = 0.97) and shallow

breathing(R = 0.97) caused the least decorrelation, while speech caused intermediate

decorrelation (R = 0.91) and deep breathing (R = 0.81) caused the most. Two

sample Wilcoxon test results over every pair of different artifact correlation results

for the left and right breasts individually, indicate that the four methods analyzed

had statistically significant mean differences between them (p << 0.05). Wilcoxon

tests comparing artifact correlations in patients’ left breasts to those in patients

right breasts did not indicate a statistically significant mean difference between the

left and right breasts (p >> 0.05), except for breath hold.

These findings were similar to those obtained for elasticity imaging. When

average correlation was observed for IQ data at the sub-pixel level, shallow breathing

(R = 0.96) caused the least decorrelation, while breath hold (R = 0.93) also had

a relatively high correlation value. Speech caused intermediate decorrelation (R =

0.87) and deep breathing (R = 0.73) caused the most. Two sample Wilcoxon test

results indicated that shallow breathing, holding breath, and talking were statistically

significantly different from deep breathing (p << 0.05), but not from each other (p

>> 0.05). Correlation differences for the same artifact between the left and right

breasts were not statistically significantly different (p >> 0.05). Registration of

shifted sweeps in AVS [Krücker et al., 2000, Meyer et al., 1999, Moskalik et al., 1995]

in order to splice them to form the complete 3-D volume resulted in a negligible

overlap error of 0.55 - 0.65 mm. Fig. 2.13 is an example of a recently spliced image

volume, where two sweeps were trimmed and fused to complete the volume.

2.3.4 Estimation of Coverage

The gaps between the breast and the compression paddle at the breast periphery

can limit ultrasound coverage to only half of the total breast area for the combined

x-ray/ ultrasound imaging system. Filling the gaps with Litho-Clear ultrasound gel
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(a)

(b)

Figure 2.13: (a)Single slice of a spliced grayscale image volume for a recent patient
with multiple cysts in the left breast. (b) Same image slice; the vertical line indicates
the joint between the adjacent scans.
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using a syringe is effective at solving this problem, reducing the gap lengths by about

60%. This solution is only partial as 73% of malignant lesions are present at the

periphery of the breast, as defined by a zone 1 cm wide beneath the subcutaneous

fat or anterior to the retromammary fat [Stacey-Clear et al., 1993]. However, it is

possible to image the axillary tail and extreme medial regions of the breast better by

using lateral views. The subareolar region can be imaged better by compressing the

breast such that the nipple is closer to the TPX paddle, therefore reducing the gap

between the paddle and the subareolar region.

2.3.5 Couplant Selection

9 different materials were tested for acoustic coupling of the compression paddle

to the breast. Their coupling strengths, effects on image CNR and practicability

were compared and the optimal substance was chosen. In all cases, water without

the TPX layer produced the best CNR values. Water with the TPX layer showed

better CNR values than the other agents in all cases except one. The insertion of

the TPX plate was found to reduce the CNR value on the average by 11.3% at a

depth of 2.5 cm and by 15.8% at a depth of 4 cm for gray scale images. It also

reduced the average pixel value in the background region by 30.2% with almost no

change in the standard deviation. In six out of eight cases, the Skintac adhesive

produced better CNR values than the other two agents. Background mean and

standard deviation values show that Skintac has consistently low standard deviation

values while maintaining high background mean levels. However, the difference in

CNR values between Got2Bglued and Skintac was found to be relatively small (less

than 10% in all cases except one). Furthermore, in terms of practicality, Skintac is

not as viable as the next best agent, Got2bglued; Skintac requires rigorous alcohol

clean-up, while Got2bglued can be removed easily with soap and water.

Therefore, we decided that the Got2bglued adhesive hairspray was best for our

application. In all cases, CNR values for Got2bglued were degraded by no more
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than 20% as compared to pure water. Got2bglued preserves image quality, was

empirically found to be a close second-best for adhesively coupling the breast to the

paddle and was easy to remove and clean up.

10 pure and 4 compound substances were tested for coupling the transducer to

the paddle in the LM view. Litho Clear ultrasound gel maintains high viscosity at

body temperature (37 ℃) and proved most effective for coupling the transducer to

the paddle for LM views. It is also used to increase area of coverage by filling in the

gap between the paddle and the outer edge of the breast. As of September 2006,

73 subjects have been imaged in CC and LM views of the affected breast using the

experimentally superior coupling agents.

2.3.6 Motion Analysis

Patient motion artifact analysis carried out in both B-mode and IQ mode proved

that shallow patient breathing and breath-hold were not harmful to image quality,

whereas speech and sudden breathing produced unacceptable artifacts. The

significant difference that was observed in the B-mode breath hold data for the

left and right breasts may be caused by cardiac asymmetry i.e., when the patient

holds her breath, the heart pulses more strongly due to the baroreceptor reflex

[Seidel et al., 1997]. Hence breath hold causes more decorrelation for the left breast.

Such a difference between the images of the right and left breasts was not observed

with shallow breathing.

The region wise split for all motion conditions indicated that decorrelation was

consistently (95% of the time) greatest towards the chest wall. This was expected

because the motion of the chest wall causes decorrelation when the patient is

breathing or talking. Overall, since patient scans can be more than a minute long,

shallow breathing is a more feasible option than breath hold.

By aiding the stabilization of the compressed breast, we succeeded in minimizing

technical difficulties in image splicing and registration caused by slippage of the
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breast.

2.4 Conclusion

In conclusion, limitations of automated US scanning on a multi-modality breast

imaging system have been addressed by developing methods to couple the transducer

and breast to the compression paddle, as well as methods to fill-in peripheral gaps,

minimize patient motion and register and reconstruct multi-sweep US image volumes

after clinical acquisition. The ultrasound techniques described and evaluated here

yield ultrasound volumes that provide good comparisons with x-ray attenuation

properties of the tissues as viewed in the high speed, wide angle, and low dose

x-ray tomosynthesis images. This direct comparison should improve visual and

computer-assisted diagnosis.
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CHAPTER III

Image Registration for Detection and

Quantification of Change on Digital Tomosynthesis

Mammographic Volumes

3.1 Introduction

Digital tomosynthesis mammography is a promising modality for routine

breast cancer screening and diagnosis. Three-dimensional digital tomosyn-

thesis mammography[Claus et al., 2006, Eberhard et al., 2006] yields im-

ages of considerably better quality than does projection mammography

[Burgess et al., 2001, Hadjiiski et al., 2004], because anatomical features are

displayed in greater detail [Zhang et al., 2006]. On mammograms, these fea-

tures are often obfuscated by overlying tissue. Tomosynthesis yields substantial

three-dimensional information that makes registration, subtraction, and detection

of change a more realistic possibility. Precise spatial alignment of these image

volumes would aid more rapid detection of changes in tumor appearance and growth

over time, especially during neoadjuvant chemotherapy. However, the presence

of artifacts caused by the highly asymmetric point spread function of digital

tomosynthesis mammography suggests that spatial alignment of the two image sets

might be difficult if there are large differences in the volumetric displacements of

internal structures during compression. Our purpose was to achieve digital breast

tomosynthesis image registration of whole breast image volumes acquired at different
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times in the same mammographic position and to assess the magnitude of residual

error.

3.2 Subjects and Methods

A system combining automated whole breast ultrasound and digital tomosynthesis

mammography [Kapur et al., 2004] is under investigation for the detection and

characterization of breast masses. With this system, 21 tomosynthesis projection

images can be acquired over a 600 arc in 7.5 seconds. Each 3D tomosynthesis image

volume is reconstructed from 21 projection images using simultaneous algebraic

reconstruction. To study whether registration was feasible, two such image volumes

were acquired in each of our seven cases. Four of these cases consisted of images

acquired within minutes of one another after the patients breast was removed from

the imaging unit, cleaned, repositioned and recompressed between the paddle and

detector. In two of the other three cases, the image volume sets were acquired

over a one-year period. In the third case, the acquisition interval was 6 months.

All patients had clinical mammographic findings classified as negative (BI-RADS

category 1) or benign (BI-RADS category 2). Institutional review board approval

was obtained for this study and informed consent was obtained from every patient.

Special care was taken in stabilizing the breast during each examination.

The breast was compressed between mammography-style plates and acoustic

coupling was used for reproducible, large area scanning through the plates

[Sinha et al., 2007a] Registration was performed with mutual information for

automatic multimodality image fusion (MIAMI Fuse , University of Michigan)

non-rigid 3D registration [Kim et al., 1997, Meyer et al., 1997, Meyer et al., 1999] on

the AVS platform (Advanced Visual Systems, Waltham, MA), based on the mutual

information objective function (see Equation 1) and thin plate spline interpolation

[Bookstein, 1997] .
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I =
a∑ b∑

p(a, b)log2(p(a, b)/p(a)p(b)) (3.1)

’a’ and ’b’ are the two datasets to be registered in the equation above.

One image set was selected as the reference (usually the first of the two acquired

image volumes; either can be selected). The other image set (called the target or

homologous image) was spatially transformed to align with the reference frame. We

registered the two 3D image sets by selecting 15 corresponding control points placed

at key features, e.g. forks or sharp bends in blood vessels, ligaments and ducts.

These points were employed as control points by the software and were moved to

optimize the so-called mutual information (MI) of the two image volumes (see Figure

3.1).

We estimated registration error by finding a different set of fifteen fiducial

points in both image sets and measuring the Euclidean distance between the

locations of each point on the reference and registered images. Three expert readers

independently marked these points twice each, to provide a total of six measurements

per case. The measurements were averaged to produce the final estimate of fiducial

registration error.
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Figure 3.1: Movement of fiducial markers over the course of non-linear registration
of tomosynthesis image sets.
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3.3 Results and Discussion

The mean registration error was 1.8 mm +/- 1.4 mm. The minimum mean error of

1.2 mm was achieved for a dense breast over scans taken within the hour (see Figure

3.2).

One pair of image volumes acquired over a year-long interval was not be registered

satisfactorily. This image set was registered only after down-sampling by a factor of

8, which greatly increased the residual error value. The registration error was only

1.6 mm, however, for an image volume pair on the contralateral breast of the same

volunteer over a year-long interval (see Figure 3.3). The maximum mean error of 2.8

mm was observed for a pair of scans obtained with a 6-month gap. Of the four pairs

acquired before and after repositioning, without a significant time lapse between the

two acquisitions, registration was successful with an average registration error of 1.6

mm +/- 1.2 mm. Table 3.1 shows the errors in every case. Vector plots (not shown)

of the displacements of the 15 or so control points throughout the image volumes

showed in every case that the registration corrected both local tissue warping and

global translation.

We found for the first time to our knowledge that whole breast digital

tomosynthesis mammography image volumes taken at different times can be

spatially registered. The registration process was complicated by several factors;

primarily, the compression of the breast at different times results in different

mammographic appearances. Variable breast distortion during compression and

actual physiologic changes (in case of a large time interval between scans) offer

challenges. In some cases there can be high shear gradients at boundaries between

tissues of differing composition. Digital tomosynthesis mammographic volumes

also contain reconstruction artifacts that are dependent on the viewing angle.

Furthermore, these digital tomosynthesis mammographic images have a slice

thickness of 1 mm (this value can vary from 0.1 mm to half the lateral extent of
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Figure 3.2: 49-year-old woman with simple cyst in breast (case A1, Table 1). Tomo-
graphic images from image volumes that were acquired minutes apart and registered
with mutual information for automatic multimodality image fusion. A, Reference
image. B, Checkerboard display with alternating squares from reference image and
target image before registration. C, Checkerboard display with alternating squares
from reference image and target image after registration showing better alignment of
breast features than in B, especially in top half of image.

Case Time interval MRE (mm) SD (mm)
A1 Less than 15 min 1.2 0.97
A2 Less than15 min 1.39 1.27
A3 Less than15 min 1.8 1.2
A4 Less than15 min 1.85 1.37

B1: LCC 12 mth 1.55 1.24
B2 6 mth 2.76 2.3

B1: RCC* 12 mth - -

Table 3.1: Registration Evaluation of Seven pairs of Breast Tomosynthesis Images.
Mean registration error (MRE) and standard deviation (SD) values for seven pairs
of breast tomosynthesis images. *B1: RCC was an unsuccessful registration because
registration did not succeed until the images were downsampled by an unacceptably
large factor (8).
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Figure 3.3: 50-year-old woman with normal breast (case B1, left craniocaudal, Table
1). Tomographic images from image volumes that were acquired 1 year apart and
registered with mutual information for automatic multimodality image fusion. A,
Reference image. B, Registered image from the most recently acquired image volume.
C, Difference image shows changes in breast over 1 year, and registration error.
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the image), depending on the extent of target object in the direction of x-ray tube

motion. The axial resolution is clearly poorer than the 0.1 mm x 0.1 mm resolution

in the image plane (voxel size was 0.1 x 0.1 x1 mm3).

With care in selecting nearly identical locations in each of two same-modality

image volumes of the breast, image based registration was quite successful. The

exact manual identification of starter points is not always necessary, but we deemed

it necessary for this limited study. It may be possible to develop feature recognition

for automated selection of corresponding starter points.

Six out of seven tomosynthesis pairs acquired to date were registered with a

residual error of l-3 mm. Sickles et al [Sickles et al., 2005] found that the mean

and median sizes of cancers detected by mammography in a representative sample

population of 332,926 patients were 20.2 and 15 mm respectively. Although an

average registration error of 2 mm is relatively large compared to the tomosynthesis

resolution of 0.1 mm, this error is small compared with the average size of

mammographically detected breast cancers in a screening population. A tolerance of

+/- 10% in tumor diameter change estimation in this first attempt at tomosynthesis

registration is promising.

The subtraction technique shown in Fig. 2 may prove useful for highlighting

change that is not due to registration error. Excepting changes in parenchymal

volume and water content over the course of the menstrual cycle [Fowler et al., 1990],

certain changes in the appearance of breast tissue over time can indicate the presence

of malignancy, and comparison of the reference image and the registered image could

help to identify such changes. Any improvement in the spatial registration of two

3D image volumes should aid in finding and comparing changes in breast tissue.

When achieved, image registration should be relevant in interpretation of digital

tomosynthesis mammographic volumes, particularly for less experienced readers and

in computer-aided diagnosis.
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3.4 Conclusion

In conclusion, limitations of automated US scanning on a multi-modality breast

imaging system have been addressed by developing methods to couple the transducer

and breast to the compression paddle, as well as methods to fill-in peripheral gaps,

minimize patient motion and register and reconstruct multi-sweep US image volumes

after clinical acquisition. The ultrasound techniques described and evaluated here

yield ultrasound volumes that provide good comparisons with x-ray attenuation

properties of the tissues as viewed in the high speed, wide angle, and low dose x-ray

tomosynthesis images. This direct comparison should improve visual and computer

assisted diagnosis.
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CHAPTER IV

Multi-modality 3D imaging for breast cancer

screening X-Ray tomosynthesis and automated

ultrasound

4.1 Introduction

Traditionally, X-ray mammography is the gold standard [Stacey-Clear et al., 1993]

for breast cancer screening and B-mode ultrasound is used to aid in characterization

of the suspicious mass [Stavros et al., 1995]. In this study, 3D digital X-ray

tomosynthesis [Claus et al., 2006, Eberhard et al., 2006] (DT) and 3D automated

ultrasound [Carson et al., 2004, LeCarpentier et al., 1999] images of every patient’s

breast were acquired in the same geometry with a unique dual-modality system

[Kapur et al., 2004] (see Figure 4.1). X-ray tomosynthesis shows great promise

[Chan et al., 2005] for use as a primary screening tool in breast imaging and its

efficacy in detection and assessment is enhanced by geographic correlation with an

automated ultrasound scan acquired in the same geometry. The automated grayscale

ultrasound is acquired though a special compression paddle[Booi et al., 2007] that is

also used for X-ray imaging.

X-ray and ultrasound images can be acquired with the dual-modality system in

the conventional mammography views: cranio-caudal (CC), medial-lateral-oblique

(MLO), lateral-medial-oblique (LMO), lateral-to-medial (LM), and medial-to-lateral

(ML). The ultrasound transducer is placed in a holder that is attached to an x-y
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Figure 4.1: Patient seated at the dual modality system, being imaged with X-ray
and ultrasound methods. The patient’s breast is compressed between a TPX (4-
methylpentene-1 based polyolefin) paddle and the X-ray detector. The X-Ray tube is
contained within the cowling on top, while the ultrasound transducer is attached to
a motorized carriage directly above the compression paddle. The GE L9 ultrasound
unit is on the right.

translator system, which maneuvers the transducer across the compression paddle

under software control. One to three adjacent automated US transducer sweeps are

performed, depending on the shape and size of the patient’s breast. The US image

volumes obtained are registered and fused to visualize the entire breast volume.

For meaningful image fusion in the context of mass detection and characterization,

the lesion(s) of interest must be visible in both modalities. When this is the case,

geographic correlation afforded by the dual modality system localizes the mass

within the breast with more accuracy. Ultrasound images aid the radiologist in

assessing the malignancy of a suspicious mass seen on the X-ray image, especially in
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identifying benign masses (e.g., cysts) to prevent unnecessary biopsies. It is therefore

essential that the quality of the automated ultrasound images not be significantly

degraded from those obtained with traditional direct contact and hand-guidance.

The challenges of automated US scanning with this system have been addressed

[Sinha et al., 2007a] by developing methods to fill-in peripheral gaps, minimize

patient motion and register and reconstruct multi-sweep US image volumes. These

refinements in technique facilitated this study.

4.2 Methods

IRB approval was obtained for this study and informed consent was obtained for

every patient in these trials. Testing was performed on a combined system consisting

of a GE LOGIQ 9 ultrasound (US) system and a second generation prototype GE

digital tomosynthesis (DT) unit. The US transducer employed in this study was a

GE M12L linear matrix array operating at center frequencies of 10 and12 MHz. The

US system was augmented with a motorized transducer carriage that translated the

transducer across a TPX (4-methylpentene-1 based polyolefin) plastic compression

paddle of 2.5 mm thickness. Water was employed as the coupling medium between

the transducer and the paddle for CC-views and gel was used for all other views.

To best splice adjacent US sweep images into a 3-D volume, it is preferable to

include redundancy in the form of a programmable overlap between adjacent sweeps.

In practice, the actual overlap often changed slightly due to possible bowing of the

compression paddle, flexion in the transducer holder, etc. Using approximately

known overlap values (often verified by eye), complete automated US image volumes

were generated for each case.

Twenty-seven patients were imaged on this combined system, 7 cyst cases and 20

with BIRADS 4 lesions. DT image volumes and automated US image volumes were

acquired in the same view and in the same geometry. 3 experienced, MQSA certified
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radiologists independently reviewed the resulting images in a blinded study. The

tomosynthesis and automated US images were assessed separately at first, viewed

with ImageJ, a public domain Java image processing application supported by NIH

Image [NIH, 2010].

To begin with, research tomosynthesis was compared to clinical mammography.

The total numbers of detected masses with BIRADS ratings between 3 and 5 were

noted for both techniques. Then, the percentage visible margins were compared for

corresponding masses seen in both types of images. Finally, readers were asked to

rate their preference for one modality over the other, with 1 being ‘Mammogram

much better’, 3 being ‘Equivalent’ and 5 being ‘Tomosynthesis much better’. A

similar comparison was made between research automated ultrasound and clinical

direct contact, hand-guided ultrasound. The readers were asked to specify whether

the primary mass was a simple cyst (‘Yes/No’) and then state percentage probability

of malignancy for this mass. Finally, readers were asked to rate relative mass

visibility, with 1 being ‘Clinical hand US much better’, 3 being ‘Equivalent’ and 5

being ‘Automated research US much better’.

Lastly, the DT and automated US images were correlated with in-house software

and viewed together. Each radiologist gauged the usefulness of multi-planar imaging

and correlation between DT and auto US on a scale of 1 to 5, where a rating of

1 was equivalent to ‘not useful’ and a rating of 5 was equivalent to ‘extremely

useful’. A second study was conducted on a subset of 10 cases by 2 of the first 3

readers, using more advanced correlation software (see Figure 4.2). The radiologist

was able to draw a 3D box around the suspicious mass in one image and the

software automatically generated a geographically correlated, similarly boxed region

on the other image, within which he or she could confidently localize and further

characterize the mass. The reader’s confidence level in localizing and identifying

the primary mass in both imaging modalities was measured on a scale of 1(low) to
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Figure 4.2: For this cancer case, a box was drawn around the lesion by the radiologist
on the tomosynthesis image (in red), and transferred (in white) to the orthogonal
automated ultrasound image on the right. Ultrasound image is at 2X magnification.

5(high), before and after geographic co-location/correlation.

4.3 Results and Discussion

The mean preference for digital tomosynthesis over mammography was 4.01 (DT

much better) on a scale of 1 to 5. Tomosynthesis outperformed mammography in

mass detection (BIRADS 3 to 5), mass margin delineation and cancer detection.

(Results have been presented and will be published elsewhere.)

The quality of research automated ultrasound was consistently judged to be

inferior to clinical hand ultrasound, as the readers expressed a mean preference of

1.67 (clinical hand much better) on a scale of 1 to 5. Out of 78 possible detections

for 26 cases (one case out of the 27 had only micro-calcifications and no mass), 16

detections could not be made on automated ultrasound because of current difficulties

in reaching lesions against the chest wall. However, when detections could be made
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on auto US, mean correlation between the radiologists’ assessments of percentage

malignancy on the clinical hand US and the research auto US was 0.81. Hence, in

spite of its limitations, automated US performed well enough to justify geographic

co-location with DT.

In the first study of 26 cases (see Figure 4.3), the mean ranking for usefulness of

correlative imaging was 2.75, whereas the median ranking was 3(moderately useful)

on the scale of 1 to 5. At least one reader rated usefulness as 4 or 5 in 16 cases out

of 26 (62%).

In the additional study of 10 cases, with more advanced software, the mean rating

for usefulness of correlation increased to 3.25. At least one reader rated usefulness as

4 or 5 in 6 cases out of 9 (67%). (One case had indeterminate readings). Confidence

in localizing and identifying the suspicious mass increased in 7 cases out of 9 (see

Figure 4.4). However, a Wilcoxon signed rank test did not indicate a statistically

significant change in confidence levels (p value was 0.072 and 0.053 for the two

readers respectively).

On the whole, when lesions were visible in automated US, they were characterized

with an accuracy comparable to that achieved with clinical hand US. Progress needs

to be made in producing ultrasound scans with greater breast coverage, especially at

the chest wall and the breast periphery. Automated US in its current setup cannot

replace clinical hand US for screening purposes but can aid the radiologists in lesion

detection and assessment.
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(a)

(b)

Figure 4.3: Mean(a) and maximum(b) DT-US correlation utility ratings for 26 cases.
A scale of 1 to 5 was used, where a rating of 1 was equivalent to ‘not useful’ and a
rating of 5 was equivalent to ‘extremely useful’.
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(a)

(b)

Figure 4.4: Confidence in localizing and identifying the primary mass in both image
modalities, pre and post visual geographic correlation, as expressed by readers 1(a)
and 2(b). A scale of 1(low) to 5(high) was used.
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4.4 Conclusion

Automated ultrasound aids the radiologists evaluation of a suspicious mass in the

human breast and raises the confidence level of his or her assessment. As automated

scanning and reading software techniques advance, superior results are expected.

56



CHAPTER V

Image Processing for Registration and Fusion of

Opposed View Breast Ultrasound Image Volumes

5.1 Introduction

Automated 3D ultrasound imaging presents good potential for breast cancer

screening purposes, as recently asserted by Kelly et al. [Kelly et al., 2010], especially

for women with dense breasts for whom mammography is less effective because the

X-Ray attenuation of dense normal tissue is similar to the attenuation of the high

water content and connective tissues of cancers.

With ultrasound, there is a trade-off between imaging depth and resolution due

to the fact that higher frequencies, which provide finer resolution, are attenuated

disproportionately. To retain the resolution of high frequency ultrasound, while

maintaining registration with x-ray images, we can image the breast from both sides

in the mammographic geometry (i.e., breast compressed between two plates), which

we call dual-sided imaging (see Figure 5.1). This is a viable technique for better

quality images formed by registering and fusing opposite views since less depth

penetration is needed. Improved resolution at higher frequencies facilitates detection

of micro-calcifications and estimation of tumor margins, features highly suggestive

of breast cancer.

Success in registration of dual-sided images is complicated by low signal-to-noise

ratio (SNR) and other artifacts in the central region of the breast where the two
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(a)

(b)

Figure 5.1: (a) Automated ultrasound acquisition set-up for single-sided imaging.
The software-driven motorized transducer carriage moves over a compression paddle.
(b)Schematic of setup for automated dual sided imaging of the breast in mammo-
graphic compression.
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(a) (b)

Figure 5.2: (a)Example of cyst in a breast image (indicated by arrow), with enhance-
ment underneath. (b)Example of cancer in a breast image (indicated by arrow) with
shadow underneath.
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views overlap [Bude and Tuthill, 2000, Krücker et al., 2000]. Posterior acoustic

‘shadows’ and ‘enhancements’ are specific artifacts that are prevalent in breast

ultrasound images (see Figure 5.2). They are caused by the differential ultrasonic

attenuation of fibrous tissues such as cancers, and by cysts, respectively. The darker

region or columnar shadow below a cancer is caused by its higher relative attenuation

properties. The brighter enhancement beneath the cyst, a region of higher intensity

when compared to the background, is caused by the lower relative attenuation of

the water-filled cyst. Strong scattering phenomena including refraction and total

internal reflection resulting from speed of sound differences are also responsible for

these anisotropic artifacts, which are highly dependent on the insonification direction

of the ultrasound transducer.

Compounding, wherein images are acquired at different beam angles and then

averaged with varying degrees of sophistication, has been used extensively to eliminate

these artifacts [Entrekin et al., 2001, Moskalik et al., 1995, Treece et al., 2007].

However, in practice, a compounded scan would increase the acquisition time of an

automated ultrasound scan unacceptably. Currently, in our setup, a single angle full

breast scan (15 cm in length) takes less than five minutes, but if multiple angle scans

were required to be taken at different times from two sides of the breast, it would

be highly undesirable to keep the patient’s breast compressed for longer than 20

minutes. The practical difficulties posed by automated compound imaging increase

our motivation for dual-sided B-mode imaging.

5.2 Materials and Methods

5.2.1 Experimental Phantom Design

To eventually achieve successful registration of dual-sided in-vivo images, we

conducted early experiments with the simpler, reproducible case of a breast-

mimicking phantom containing 39 lesions in all, 21 of which simulate cancers and
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18 of which simulate cysts. These produce realistic artifacts and provide contrast

detectability. The attenuation coefficients of the hypoechoic lesions are not typical

of similar lesions in breast tissues, but that particular physical property was not

considered essential for these tests. This custom-designed phantom simulates the

breast compressed in the mammographic cranio-caudal geometry and was built by

E.L. Madsen and G. Frank at the University of Wisconsin, Madison. The phantom

is a rectangular solid (Length = 18 cm, Width = 8.5 cm, Height = 6.4 cm), with a 5

cm thick lesion-embedded slab sandwiched between two 7 mm thick aberrating layers

of tissue-mimicking subcutaneous fat. The phantom is bounded by acrylic walls and

the scanning windows on the top and bottom are covered with 25 µm thick Saran

wrap (see Figure 5.3). Pedestal anchors have been inserted for structural stability.

The fat and glandular-mimicking materials are oil-in-gelatin dispersions, while

the lesions contain no oil. There are two types of glandular material having

slightly different sound speeds. The tissue-mimicking fat has an even lower speed of

sound. The oil produces a lowered propagation speed and density and contributes

to attenuation. The single hyperechoic lesion contains water-based gelatin with

powdered graphite and glass beads (45-53 µm in diameter) [Madsen et al., 1982].

The tissue-mimicking subcutaneous fat layers have scalloped surfaces in order

to replicate refraction effects simulating those in an actual human breast. The

geometric simplicity of this refracting layer allows for potential quantitative analysis

and correction of refraction errors.

The 39 lesions are exactly positioned in the tissue-mimicking glandular region

(see Figure 5.4). Each 1.25 cm thick depth zone contains at least 4 ‘cancers’ and 4

‘cysts’ to provide sufficient statistical test cases per zone [Kofler and Madsen, 2001]

when image sweeps at two or more viewing angles are employed. Also, two large

double-cone shaped ‘cancers’ (to partially mimic their irregular shape in vivo), one

large spherical ‘cyst’ and one large hyperechoic spherical ‘cancer’ have been included
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Tissue-Mimicking Material Relative contrast (dB)
High speed glandular 0
Low speed glandular -7
Hyperechoic lesion +5
Hypoechoic lesions -11

Cysts Anechoic
Fat -10

Table 5.1: Relative contrast of materials in phantom.

in this phantom. Randomly positioned knots on three 0.3 mm diameter nylon fibers

in the central area of the phantom create more echogenic structural elements. A

small (1% by volume) concentration of formalin raises the melting point of the

materials (by means of formaldehyde cross-linking) to 100℃, and a 5% concentration

of 1-propanol is included for preservation.

The first version of this phantom was designed with acoustic properties that

appear in the ultrasound literature, specifically in a breast phantom used for the

ACRIN 666 trial [Madsen et al., 2006]. This phantom was found to produce minimal

shadows (see Figure 5.5). A second phantom with substantially greater contrast

in speed of sound, using recently published values from ray-traced ultrasonic CT

[Duric et al., 2007] produces image shadows similar to those often seen in vivo (see

Tables 5.1 and 5.2), largely because of refraction and total internal reflection effects.

Attenuation coefficients were almost identical and the speeds of sound of the lesions

were similar to the original version, but the speeds of sound in the glandular material

and fat were reduced by 100m/s and 40m/s, respectively. This experience suggests

an explanation for the significant edge enhancement of transmission images of

attenuation.[Lehman et al., 2000]. Angled and irregular boundaries between tissues

of quite different speeds of sound might produce differential attenuation and shadows

observed in pulse echo images.
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Tissue-Mimicking Material Speed (m/s) Atten. coeff. at 8
MHz (dB/cm)

Atten. coeff. at 10
MHz (dB/cm)

High speed glandular 1455 3.44 5.26
Low speed glandular 1423 3.61 4.61
Hyperechoic lesion 1550 9.54 11.76
Hypoechoic lesions 1539 11.81 15.64

Cysts 1544 1.26 1.59
Fat 1412 4.07 5.25

Table 5.2: Relevant physical properties of materials in final version of phantom

(a)

(b)

Figure 5.3: (a) Schematic of phantom: (a) End View (b) Side View.
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Figure 5.4: Geometric layout in phantom within the two lesion-containing 18 cm x 5
cm planes.
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(a) (b)

Figure 5.5: Cancer-like double cones and cysts imaged with the same TGC settings in
versions 1 and 2 of the phantom [(a) and (b)]. Note absence of significant shadowing
on (a), due to lower speed of sound differences between lesions and background.

65



5.2.2 Machine learning for breast ultrasound image quality
assessment

Machine learning classifiers were used to classify image regions in the bottom half

of the ultrasound images, which is the region of overlap between opposed views,

into useful and less useful information for image fusion and registration purposes.

Machine learning has been used with considerable success for identifying suspicious

masses on ultrasound images [Kotropoulos and Pitas, 2003, Piliouras et al., 2004].

Kotropulos et al. achieved a leave-one-out accuracy of 84% in lesion detection and

Piliouras et al. were 98.7% accurate in separating cancerous lesions from other

lesions. Drukker et al [Drukker et al., 2003] achieved a sensitivity of 100% at 0.43

false-positive malignancies per image, when they undertook computerized recognition

of shadow regions on breast ultrasound images for detection and classication of

cancerous lesions.

Support Vector Machines

Support Vector Machines (SVMs) are derived from statistical learning theory

[Vapnik, 1999]. An SVM is based on the structural risk minimization principle.

Support vector machines locate the hyper-plane that maximizes the margin between

two separate sets in the training data. For data ‘xi’, i = (1,. . . ,n), this classifier finds

the best hyperplane (yi = wxi + b) by solving a constrained optimization problem

(using Lagrange multipliers):

minw,b
1

2
||w||2 (5.1)

given that:

yi(wxi + b)− 1 ≥ 0 (5.2)

SVMs are well suited to handling imbalanced data sets. Since we have more ‘good’
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regions of interest (ROIs) than corrupted or ‘bad’ ROIs, this inherent asymmetry in

our data makes SVMs a good choice for our purposes. We decided to use SVMlight,

an open source program which can process thousands of support vectors, has low

computational requirements and is fast and efficient [Joachims, 2008]. A linear

kernel was sufficient for our purposes.

Artificial Neural Networks

An artificial neural network (ANN) is a non-linear machine learning classifier

that is made up of artificial ‘neurons’, which are joined by varying weights

[Widrow and Lehr, 1990]. It attempts the conceptual approximation of a functional

unit of the human brain. Learning is implemented by using a ‘connectionist

approach’. A feedforward network is the simplest form of an ANN, in which outputs

are not directly cycled back to inputs. Multi-layer perceptrons are commonly used

types of ANNs, specifically trained by backpropagation. Generally, sigmoid functions

drive the outputs of individual neurons. The ANN used for this classification

(MATLAB’s ‘nprtool’) consisted of 20 neurons in a feed-forward network with one

hidden layer, trained by scaled conjugate gradient backpropagation.

For training and testing the two classifiers described above, we obtained

ultrasound images on our breast-mimicking phantom. Early attempts at

classification of compressed phantom data with SVMs were jointly conducted with

F. Hooi, also at the University of Michigan. ROIs affected by different types of

lesions were proportionately distributed amongst training (40%), testing (40%)

and validation sets (20%). In order to train the classifiers, the phantom image

regions were manually labeled. Eventually, pixel data was decompressed prior to

feature extraction. First order image statistics of overlying image pixel columns

were sufficient. Six features were extracted, mean and standard deviation of the ROI

itself and two ROIs above it.
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I also had access to in vivo breast images of cysts and cancers and an MQSA-

certified radiologist located each mass for labeling purposes. Due to the limited size

of these datasets which included 14 cancer cases and 9 cyst cases, they were split

only two ways, using 60% of the data for training and 40% for testing. 13 features

were employed for cancers, which included mean, standard deviation, ten histogram

bins and skewness of the ROIs. Similar features were used for cysts, but ROIs were

divided in half to take advantage of the nature of enhancement artifacts where

bright areas lie below anechoic regions. The 15 features included mean and standard

deviation of each half of the ROI.

Guided classification of phantom data

The dataset consisted of two 323-slice volumetric ultrasound images of the breast

phantom. These opposed views were obtained through the top and bottom of the

phantom by rotating it and using the single-sided scanning apparatus depicted in

Fig. 5.1(a). As artifacts in ultrasound images are very angle dependent, these two

views provided significantly different realizations of the same cysts and cancer-like

lesions in the phantom. For example, a shadow cast by a cancer-like lesion will point

in the exact opposite direction on the top view when compared to the bottom view

(see Figure 5.6).

A two-step approach to the problem was adopted, beginning with a guided

classification. For this classification, we characterized ROIs in the image as good or

bad data by examining overlying structures, because these directly affect the quality

of data in the ROIs. Since we knew the precise locations of all the lesions in the

phantom and the resulting artifacts, we labeled regions in the image accordingly as

(lying below) cancers, cysts or background. The ‘bad’ data were selected as data

lying below a cancer or cyst, while ‘good’ data were data in the central glandular

region that were unaffected by any lesion, and which we will refer to as ‘background.

We classified these ROIs two ways: cancers vs. cysts, and cancers vs. background.
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Figure 5.6: Top and bottom views of the same cancer-like lesion in the breast phan-
tom: arrows point to shadows.

We did not attempt cysts vs. background because in the phantom the cysts did not

enhance underlying areas significantly, as they would in vivo.

Every lesion was clearly visible on approximately 9 image slices. The slices were

spaced 0.4 mm apart and the lesion diameter was 5 mm. 24 lesions were imaged

(we excluded image slices containing the larger lesions at this stage). 12 of these

lesions cast significant shadows on the top view and 12 on the bottom view. Images

obtained from the top view were designated as the training dataset, and the images

obtained from the bottom view were used as the testing dataset. This could be done

because of the inherent top-bottom symmetry of the phantom.

The features chosen for the SVM for each ROI were the mean, standard deviation

and seven bin histograms of local pixel amplitude values in a 15x15 window of pixels

lying directly overhead. Table 5.3 and Figure 5.7 present a comparison of grayscale

features for example ROIs that were found in the background and below a cancer
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ROI Mean Standard Deviation)
Background 163.76 16

Below Cancer 125.98 17.98

Table 5.3: Feature comparison (grayscale, log-compressed data) for one example of
guided classification input (also see Figure 7).

respectively.

Robust classification of phantom data

As our goal of using SVMs is to automate the removal of corrupted data for image

fusion and registration purposes, we investigated automated classification of fixed

size ROIs in the entire image volume. To simulate this more general application,

we selected ROIs from random slices independent of knowledge of lesion location

and attempted to classify these ROIs with the model developed by the previous

technique. This method allowed us to demonstrate the effectiveness of the SVM in

picking out regions of good and bad data automatically with no user guidance.

We divided each ultrasound image into feature ROIs of 30 by 30 pixels wide (the

lesions were approximately 30 px wide on the image, so the shadows were rarely

wider than 30 px) and labeled these manually(see Fig 5.8). Our first attempt at

classification resulted in an accuracy of less than 50%. This was obtained with the

same set of features that we used for guided classification.

To improve accuracy, we modified our feature set to include the features from

ROIs themselves, along with those from three overlying ROIs. There were 17 features

in all. Several first order statistics parameters were used as features to describe the

main ROI, including mean, standard deviation, a seven bin histogram and skewness.

Depth at which the ROI was located was also used. (See Table 5.4 and Figure

5.9.) We included skewness because true ultrasound data usually has a Rayleigh

distribution with a positive skewness value [Abramowitz and Stegun, 1972]. This

author hypothesized that the distribution of corrupt data would usually be more
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(a)

(b)

Figure 5.7: Seven-bin histograms for: (a) Background/normal ROIs (b) ROIs below
cancer-like lesions in the phantom.
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(a)

(b) (c)

Figure 5.8: (a) Examples of ‘good’ and ‘bad’ data ROIs in a phantom image, indicated
by check marks and crosses respectively. (b) Good data ROI (c) Bad data ROI.
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Feature True ROI Corrupt ROI
Mean 5095.74 2369.3
Stdev 1610.69 823.41

Mean (1 above) 4214.42 2682.55
Stdev (1 above) 1348.9 2821.53
Mean (2 above) 3798.5 1044.34
Stdev (2 above) 1257.84 1130.71

Table 5.4: Examples of linearized/ decompressed data features for authentic ROIs vs
corrupt ROIs at the same depth in the breast phantom.

Gaussian in appearance, with a lower value of skewness. A median filter was used to

smooth the image. The size of the filter window was equal to the speckle spot size

of the ultrasound image (3x3 px). For each case, we also investigated the influence

of different kernels in classification.

After extensive testing, we found that the first order image statistics of overlying

image pixel columns after decompression provided sufficient features for the classifier.

Six features were extracted, mean and standard deviation of the ROI itself and two

ROIs above it. Median filtering did not improve our accuracy values.

Guided classification of in vivo data

This author also applied these classifiers to clinical breast image data. An

MQSA-certified radiologist identified and localized shadows caused by cancers and

enhancement caused by cysts. We attempted to separate shadows cast by cancers

from background, and also to separate enhancement caused by cysts from the

background. 10 features were initially chosen: mean, standard deviation, (for a

columnar ROI of fixed width and height: 6x60 px), histogram and skewness. The

6 px ROI column width was chosen as it provided better results than either 3 or 9

px. Other ROI widths were not tested. The ROIs were manually selected, given the

prior localization information.

The feature set for cysts was modified by dividing the ROI column into halves

height-wise and assessing mean and standard deviation separately for these, adding
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(a)

(b)

Figure 5.9: Ten-bin histograms for: (a) ‘True’ or background data ROIs (b) ‘Corrupt’
ROIs below cancer-like lesions in the phantom.
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(a) (b)

Figure 5.10: (a) and (b): Examples of enhancement caused by cysts (indicated by
arrows).

two more features to this set. Intuitively, one would expect this feature set to

perform better because the enhancement below a cyst is always associated with a

dark area inside the cyst above. Images of cancerous lesions and cysts were available

for 12 patients and 10 patients respectively. Of these images, the location of the

mass was verified by the radiologist on a smaller subset: 14 image volumes for 10

cancer patients and 9 image volumes for 8 cyst patients. Although many data points

were available for each image volume, these did not vary enough to justify a 3-way

split for training, testing and validation. Hence leave-one-out cross-validation was

implemented.

See Figures 5.10-5.11 and Table 5.5 for features selected in the cyst data set. See

Figures 5.12-5.13 and Table 5.6 for features selected in the cancer data set.
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Feature Background ROI ROI within cyst and
enhancement

Mean(top half ) 1112 102
Fractional Stdev(top half ) 0.88 0.96

Mean(bottom half ) 1417 1250
Fractional Stdev(bottom half ) 0.72 1.31

Amplitude bin 1 5 5
Amplitude bin 2 9 30
Amplitude bin 3 16 21
Amplitude bin 4 12 15
Amplitude bin 5 10 12
Amplitude bin 6 10 9
Amplitude bin 7 7 11
Amplitude bin 8 3 4
Amplitude bin 9 11 2
Amplitude bin 10 14 2

Skewness 1.54 3.81

Table 5.5: Examples of linearized/ decompressed data features for cysts vs back-
ground.

Feature Background ROI Cancer ROI
Mean 830 47

Fractional Stdev 1.34 0.53
Amplitude bin 1 210 356
Amplitude bin 2 104 4
Amplitude bin 3 37 0
Amplitude bin 4 1 0
Amplitude bin 5 2 0
Amplitude bin 6 3 0
Amplitude bin 7 3 0
Amplitude bin 8 0 0
Amplitude bin 9 0 0
Amplitude bin 10 0 0

Skewness 2.21 2.14

Table 5.6: Examples of linearized/ decompressed data features for cancers vs back-
ground.
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(a)

(b)

Figure 5.11: Ten-bin histograms for case 1 (a) Background/normal ROI (b) ROI
within cyst in breast tissue.
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(a) (b)

Figure 5.12: Examples of shadow artifacts caused by cancers (indicated by arrows):
(a) More typical columnar shadow (b) Displaced shadow offset from apparent center
of cancer.
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(a)

(b)

Figure 5.13: Ten-bin histograms for case 1 (a) Background/normal ROI (b) ROI
within cancer in breast tissue.
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5.2.3 Non-linear registration of opposed view phantom
images

After segmenting the image with our classifiers (see Fig. 5.14), registration

was performed with mutual information for automatic multimodality image

fusion (MIAMI FuseTM , University of Michigan) non-rigid 3D registration

[Kim et al., 1997, Meyer et al., 1997, Meyer et al., 1999] on the AVS platform (Ad-

vanced Visual Systems, Waltham, MA), based on the mutual information objective

function (see Equation 1) and thin plate spline interpolation [Bookstein, 1997] .

I =
a∑ b∑

p(a, b)log2(p(a, b)/p(a)p(b)) (5.3)

‘a’ and ‘b’ are the two datasets to be registered in the equation above.

One image set was selected as the reference (usually the top image volume; either

can be selected). The other image set (called the target or homologous image) was

spatially transformed to align with the reference frame. We registered the two 3D

image sets by selecting 9 or more corresponding control points placed at key features,

e.g. edges of lesions or echogenic knots. These points were employed as control

points by the software and were moved to optimize the so-called mutual information

(MI) of the two image volumes.

5.2.4 Non-linear registration using principal components

Eight human studies were selected for this preliminary evaluation: 4 cyst cases

and 4 cancer cases. In the absence of a true dual-sided imaging setup, single sided

images were duplicated and the copy synthetically warped to replicate the artifacts

that might arise in dual-sided images (See Figure 5.15). The original image set was

selected as the ‘reference’. The warped image set (called the target or ‘homologous’

image) was spatially transformed to align with the reference frame.

The synthetic warping procedure was carried out as follows [Krücker et al., 2002].
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(a)

(b)

Figure 5.14: (a)See grid superimposed on image on left, and original image on right.
(b)Regions of corrupt data masked by trained machine learning classifier.
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Firstly, a uniform grid of points was generated. Then a random translation of up

to 5 mm was added to each grid point in x and y. Finally, another random shift

vector was added to each reference point in x and y. The mean deformation between

the original and shifted points was scaled to 1.2 mm, which is a realistic estimate of

observed warp deformation values [Krücker et al., 2002]. The mean deformation D

was calculated over the image volume ‘V’ as:

D =
1

V

∫ ∫ ∫
|x− T(x)|d3x (5.4)

where x and T(x) are the spatial locations inside the original and warped image

volumes respectively. 3-degree polynomials were fitted to the two sets of points. The

entire image was then warped by these polynomials.

Principal Component Analysis (PCA) [Jolliffe, 1986] projects data onto a lower

dimensional space, ordering the basis vectors such that the projection onto the first

vector captures the maximum variance in the data (see Equations 5.5, 5.6 and 5.7) .

Every succeeding vector describes as much of the remaining variability as possible.

PCA uses the eigenvalue decomposition of the data covariance matrix XXT (where

‘X’ is the data) after mean centering. The eigenvalue decomposition provides a set

of eigenvectors ei corresponding to eigenvalues λi. The first PCA component is the

projection of the data onto the first eigenvector e1 (corresponding to the largest

eigenvalue λ1). Let the data ‘x’ be such that:

x = (x1, ..., xn)T (5.5)

Let the mean of this population be µx = E(x). Then the covariance matrix is

obtained as:

Cx = E[(x− µx)(x− µx)
T)] (5.6)
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An orthogonal basis can be calculated by finding the eigenvalues and eigenvectors

of the symmetric covariance matrix. These eigenvectors and their corresponding

eigenvalues are the solutions of the following equation:

Cxei = λiei, i = 1, ....n (5.7)

In our study, the PCA basis vectors were extracted from 30 adjoining image slices,

spaced 0.4 mm apart. Most masses are 1.2 cm or larger and often their appearance

does not change over this scanning distance. A stack of 30 slices was found to reduce

noise without blurring details unacceptably. These slices were taken from automated

ultrasound image volumes. A single image from the center of the 30-image stack was

then projected onto the first basis vector. This projection appeared to have captured

the most relevant image information for our purposes. There was however, some loss

of edge information along with the significant reduction in speckle, clutter and other

noise (see Figure 5.15).

Image registration was performed with mutual information as in Equation

5.2.3. Two sets of control points were independently marked by the author and

a radiologist in the original(‘reference’) and warped(‘homologous’) images, thus

partially compensating for the effect of the arbitrary selection of these points.

Registration error was estimated by finding a different set of ten fiducial points

in the reference image and the registered homologous image and measuring the

Euclidean distance between the locations of each point on the two images. Two

expert readers (MQSA certified radiologists) independently marked these points for

each case. The measurements were averaged to produce the final estimate of fiducial

registration error.
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(a) (b)

(c) (d)

Figure 5.15: (a) Original image containing cyst. (b) 3-degree polynomial warped
result. (c) PCA first component. (d) 3-degree polynomial warped result for PCA
first component.
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5.3 Results and Discussion

5.3.1 Classification of phantom data

For guided classification of ROIs chosen from areas below lesions and in the central

background of the breast phantom we obtained near-perfect accuracy of 98%, using

an SVM with a linear kernel. The SVM and ANN both achieved excellent accuracy

of about 97% for the automated classification of true and corrupt image regions in

ultrasound data obtained from the breast phantom. For both classifiers, using the

first two features alone (mean and standard deviation) gave us an accuracy of 90%.

Using different kernels and median filtering images prior to feature selection did

not significantly impact accuracy. The computation time was negligible for both

classifiers.

5.3.2 Classification of in vivo data

For classification of ROIs in the cancer dataset as either true or distorted by a

cancer, SVMs were 94% accurate. For classification of ROIs in the cyst dataset as

either true or distorted by a cyst, accuracy was 93%. ANNs were 91% and 89%

accurate respectively. Leave-one-out cross-validation showed an average accuracy

of 92% for both datasets. Once again, using different kernels and median filtering

images prior to feature selection did not improve accuracy.

5.3.3 Non-linear registration of opposed view phantom
images

A full affine transform did not succeed in aligning the two opposed views (see Fig.

5.16).

Non-linear registrations were carried out for 9 or more control points. See Tables

5.7 and 5.8 for registration error values over multiple runs for the original phantom

images and the segmented phantom images respectively. Mutual information values

were actually slightly lower for segmented images, and not indicative of registration
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(a)

Figure 5.16: Checkerboard image of mis-registered homologous image, using a full
affine transform
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Case Mean error in x(mm) Standard Devia-
tion of error in
x(mm)

Mean error in y(mm) Standard Devia-
tion of error in
y(mm)

Orig 1 0.49 1.06 0.272 1.01
Orig 2 9.54 14.22 8.619 15.69
Orig 3 13.92 6.89 11.9391 13.09
Orig 4 0.50 0.46 0.85 0.69
Orig 5 12.57 7.85 9.2565 7.77
Orig 6 0.69 0.43 1.0846 0.85

Table 5.7: Registration error in x and y for the unsegmented original images; note
that cases 2, 3 and 5 did not register at all.

Case Mean error in x(mm) Standard Devia-
tion of error in
x(mm)

Mean error in y(mm) Standard Devia-
tion of error in
y(mm)

Seg 1 0.71 0.74 1.39 1.91
Seg 2 0.57 1.28 0.53 1.84
Seg 3 0.78 0.80 1.34 2.31
Seg 4 0.83 0.97 1.72 2.83
Seg 5 0.83 0.88 1.74 2.76
Seg 6 0.77 0.81 1.58 2.06

Table 5.8: Registration error in x and y for the segmented images.

accuracy. Error was calculated by averaging the distances between lesion centers

in the reference image and the registered homologous image. The centers were

marked by hand and then shifted slightly to an optimal position by correlating

the surrounding region with a lesion-sized mask. Note that for cases 2, 3 and 5,

the original phantom images were grossly misregistered (see Figs 5.17 and 5.18 for

examples from case 3).

Since the natural structure of the phantom is such that lesions are divided

into four zones depth-wise (1.25 cm each), CNR (contrast-to-noise ratios) for these

zones show where the signal begins to degrade substantially. There is only a slight

reduction in average lesion CNR while moving from the surface down to the zone

directly below it (4.5% and 2.1% respectively for each view), and average CNR

dropped by 25% while moving one zone further down. Decisions must be made
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(a)

(b) (c)

Figure 5.17: (a)Reference image and homologous image taken from opposite sides
(b)Misregistered homologous image slice, using a warp transform on the original
image(c) Same registered homologous image slice, using a warp transform on the
segmented image
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(a)

(b) (c)

Figure 5.18: (a)Reference image and homologous image taken from opposite sides
(b)Misregistered homologous image slice, using a warp transform on the original
image(c) Same registered homologous image slice, using a warp transform on the
segmented image
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regarding the selection of image regions in the central two zones, where quality is

highly variable and overlap from the two views is usual.

The proposed algorithm for constructing the combined image set retains the

original image information in the top and bottom, while fusing the central zone

post-registration as follows: if certain image regions have been masked as corrupt

on both sides, then fill in those pixels with a pixel by pixel average of the original

image information. If an image region is masked only on one side, retain pixels from

the unmasked side. Finally, if the machine learning algorithm has not eliminated

a particular image region on either side, replace those pixels with the maximum of

the two sides. Examples of fused images from the phantom are in Figures 5.19 and

5.20. Note the clear margins of the hypoechoic lesions and the clear delineation

of bottom structures in Fig 5.19(b), and the marked improvement in visibility of

underlying lesions in Fig 5.20(b). However, resolution is lost on the filaments seen

in cross section on a line down the center. The averaging of data from both views

causes blurred or even duplicate target points due to registration error or imperfect

focussing in either image.

5.3.4 Non-linear registration using principal components

Mutual information values were compared for registration of the original images,

the PCA first components of these images, and finally the original images using the

PCA-derived warping transform. Mutual information (MI) improved for the PCA

first component by 84% and 111% on average, respectively, for the two sets of control

points. This effect had multiple causes, but one of those may have been image

blurring. MI did not change significantly when the PCA transform was applied to

the original images (see Tables 5.9 and 5.10). An exception was an increase in MI of

219% for Cancer 2, when the second set of control points was used.

See Figure 5.21 for examples of the joint 2D histograms obtained for the three

stages of registration described above. Note the sharper alignment for the PCA first
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(a)

(b)

Figure 5.19: (a)Reference image and homologous image taken from opposite sides
(b)Fused image after registration
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(a)

(b)

Figure 5.20: (a)Reference image and homologous image taken from opposite sides
(b)Fused image after registration
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Case MI: Original MI: PCA MI: Original with PCA TRANSFORM
Cyst 1 1.13 2.04 1.16
Cyst 2 1.14 2.11 1.14
Cyst 3 1.23 2.08 1.01
Cyst 4 0.73 1.63 0.73

Cancer 1 1.11 1.96 1.13
Cancer 2 0.6 1.17 0.63
Cancer 3 1.25 2.05 1.24
Cancer 4 0.94 1.96 0.95

Table 5.9: Comparison of mutual information (MI) values obtained from registra-
tion of original images, PCA images and original images with the PCA transform,
respectively, for the first set of control points.

Case MI: Original MI: PCA MI: Original with PCA TRANSFORM
Cyst 1 1.17 2.04 1.16
Cyst 2 0.84 2.11 1.14
Cyst 3 1.04 2.16 1.22
Cyst 4 0.65 1.62 0.71

Cancer 1 1.13 1.96 1.13
Cancer 2 0.21 1.57 0.67
Cancer 3 1.25 2.06 1.24
Cancer 4 0.95 1.84 0.96

Table 5.10: Comparison of mutual information (MI) values obtained from registra-
tion of original images, PCA images and original images with the PCA transform,
respectively, for the second set of control points.
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component.

See Figure 5.22 for a case in which PCA helped to align images that were

mis-registered the first time. See Figure 5.23 for a case wherein PCA produced a

much-improved subtraction or difference image.

Significantly higher values of mutual information were obtained for the first

PCA component, with a mean increase of 98%. The meaning of this increase is not

apparent, since it could be caused by the speckle reduction from selecting this single

component, and not by improved registration. There was no significant difference in

the MI value when the same, original image data sets were registered directly and by

use of the PCA-derived warping transform.

See Figure 5.24 for registration error estimates with and without PCA. These

were obtained independently for the two sets of initial control points. In two cases

we see a a drastic improvement in the subtraction images and a significant decrease

in registration error values; Cyst 1 (Case 1) for the first set of control points, from

1.76 mm to 0.27 mm, and Cancer 2 (Case 6) for the second set of control points,

from 4.13 mm to 0.42 mm. The last result is the most important, suggesting greater

robustness when the PCA-derived warping transform is employed.

In the other cases the registrations were quite comparable. The difference in error

values with and without the use of PCA was not found to be statistically significant

by the Wilcoxon signed-rank test.

5.3.5 SRAD: Speckle Reducing Anisotropic Diffusion

Speckle is a type of multiplicative noise that hinders radiologists in their

interpretation of ultrasound images. Speckle Reducing Anisotropic Diffusion

(SRAD) [Sun et al., 2004, Yu and Acton, 2002] is the edge-sensitive diffusion

for speckled images in the same way that conventional anisotropic diffusion

[Perona and Malik, 1990] is the edge-sensitive diffusion for images corrupted with

additive noise.
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(a) (b)

(c)

Figure 5.21: (a) Joint 2D histogram of local non-rigid registration on original images.
(b) Histogram of registration on PCA first component images. (c) Histogram of
registration on original images after applying transform obtained from PCA first
component registration.
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(a) (b)

Figure 5.22: (a) Subtraction image showing differences between original image and
registered image for Cancer 2. Bright areas are misregistered sections. (b) Subtraction
image showing differences between original image and image registered with PCA first
component transform.
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(a) (b)

Figure 5.23: (a) Subtraction image showing differences between original image and
registered image for Cyst 4. Bright areas are misregistered sections. (b) Subtraction
image showing differences between original image and image registered with PCA
first component transform.

Koenderink [Koenderink, 1984] motivates the diffusion equation formulation by

stating two criteria:

• Causality.

Any feature at a coarse level of resolution is required to possess a (not

necessarily unique) cause at a finer level of resolution. In other words, no

spurious detail should be generated when the resolution is diminished.

• Homogeneity and Isotropy.

The blurring is required to be space invariant.

The essential idea is: embed the original image in a family of derived images I(x,

y, t) obtained by convolving the original image Io(x, y) with a Gaussian kernel G(x,

y; t) of variance t:

I(x, y, t) = Io(x, y)G(x, y; t) (5.8)
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(a)

(b)

Figure 5.24: (a) Bar graph showing registration error with and without the use of
PCA, for the first set of control points. (b) Bar graph showing registration error with
and without the use of PCA, for the second set of control points.
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It = div(c(x, y, t)∇I) = c(x, y, t)∆I +∇c∇I (5.9)

We would want to encourage smoothing within a region in preference to

smoothing across the boundaries. This could be achieved by setting the conduction

coefficient to be 1 in the interior of each region and 0 at the boundaries. The blurring

would then take place separately in each region with no interaction between regions.

The region boundaries would remain sharp.

SRAD) was applied to smooth images with limited success (see Figures 5.25-5.27).

Registration was attempted as in Section 5.2.4, but initial results were not promising.

However, it may be possible to obtain better results by using a greater range of the

variance step size, i.e., parameter ‘∆t’ (the value used was 0.05) or changing the

pixel step size ‘h’ (see Appendix 1). The author found that increasing ‘h’ to values

of 3 or more caused unacceptable blurring.

See Appendix 1 for relevant equations.
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(a) (b)

Figure 5.25: (a) Original cyst image: XY. (b) 3D SRAD with 90 iterations: XY. (All
images scaled to max/5: max, 100 z-slices used.)

(a) (b)

Figure 5.26: (a) Original cyst image: XZ. (b) 3D SRAD with 90 iterations: XZ. (All
images scaled to max/5: max, 100 z-slices used.)
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(a) (b)

Figure 5.27: (a) Original cyst image: YZ. (b) 3D SRAD with 90 iterations: YZ. (All
images scaled to max/5: max, 100 z-slices used.)
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5.4 Conclusion

We have shown that machine learning was able to identify and classify the regions

of corrupted data accurately on a breast-mimicking phantom, and also that it

could identify specific artifacts on in vivo breast images. Opposed view registration

was more robust on segmented images of the breast phantom. Also, on in vivo

breast images, results imply that principal components or other speckle reduction

algorithms may be useful in registration of locally warped breast ultrasound images

that are partially obscured by noise.

102



CHAPTER VI

Future Work

We are refining the technical aspects of automated ultrasound scanning and

dual-sided scanning in particular. A rubber ‘gel dam’ was utilized to contain

ultrasound gel at the periphery of the breast for the duration of the scan. A

molded transducer holder that holds the transducer rigidly in place replaced our

older sharp-edged holder that required rubber padding for stiffness. Also, the

mesh paddle currently used for scanning is an improvement on the 2.5 mm TPX

[4-methylpentene-1 based polyolefin] paddle used in early patient scans, as it does

not attenuate and distort the ultrasound beam to the same extent. Additionally, the

fiber mesh does not degrade the quality of X-ray images significantly. This work is

being prepared for publication.

Six readers have participated in extensive clinical trials covering 52 cases. These

trials are being conducted on the benefits of combining digital breast tomosynthesis

with registered automated ultrasound (AUS). In this study, the location of the mass

on the tomosynthesis image is indicated, to prevent confusion with other masses.

Hence, this is more or less a test of how registered AUS contributes to the diagnosis

made with tomosynthesis, and not a test of the effectiveness of tomosynthesis as

compared to mammography.

This dissertation describes an experimental study on a breast-mimicking

phantom, but dual-sided data is not yet available on human subjects. To scan
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patients with dual-sided ultrasound imaging, we are currently modifying an

Instrumentarium X-Ray unit. Mesh paddles will hold the breast on both sides

and scans will initially be conducted with GE’s M12L transducer, although we

will transition to a lower profile transducer eventually. As for image processing

prior to registering and fusing the two sides, to implement principal component

analysis(PCA) for 3D image volumes, it may be necessary to exclude fifteen slices

at each end of the whole breast image stack (usually 300 slices or more in size)

from the registration process. The control points for the PCA transform cannot lie

in these slices. However, the resultant warp transform would probably still be an

improvement upon the the transform obtained for the original image stack. Smaller

subsets of the data could possibly be used for PCA projections instead of 30-slice

sets to include end slices in the PCA registration. PCA has not been carried out

on 3D images of the breast phantom and this would be a good starting point. Also,

PCA and other smoothing techniques such as anisotropic diffusion may compensate

for the variation in the accuracy of 3D non-linear registration caused by manual

control point selection, and this aspect can be explored further.

Since the machine learning classifier has been trained to identify corrupt data

on single-sided images, it can be used on early cases for data differentiation.

Classification could be implemented for different-sized regions of interest (ROIs),

instead of the fixed sizes used in this work. A finer grid would allow for the detection

of more jagged and irregular shadow shapes. A moving grid that does not require

fixed centers for the ROIs would be even more flexible. However, the ROI size should

not be smaller than the speckle spot size for the ultrasound beam. If this were the

case, the features such as mean, standard deviation etc. would not accurately render

the nature of the data. Ideally, one could incorporate data classification in the

registration itself and run the entire process on one platform. Lastly, presentation of

the images is crucial to the radiologist’s understanding and ability to interpret the
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information at hand. A feasible set-up would be to display both dual sided original

image volumes in one window, with a slider that switches from the top view to the

bottom view, while displaying the fused image volume in another window. Artifacts

such as posterior acoustic shadows and enhancements that are not visible on this

image can be evaluated on the original image views. These artifacts do aid in the

diagnosis of cancers and cysts, although their elimination allows for a clearer picture

of what lies beneath the mass causing the artifact. One very important application

of dual-sided imaging is the estimation of the lower margins (i.e., distal to the

transducer) of a cancer. These margins are usually obscured by shadowing from the

upper part of the cancer.
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APPENDIX A

Appendix: Equations for Speckle Reducing

Anisotropic Diffusion

Instantaneous coefficient of variation:

q =

√√√√(1
3
)( |∇|

I
)
2
− (1

6
)
2
( |∇|

2I
I

)
2

1 + 1
6
( |∇|

2I
I

)2

(A.1)

Speckle Scale function:

qo(t) = λ

∫ ∫
q2(x, y; t)dxdy∫ ∫

dxdy
(A.2)

Diffusion Coefficient:

c(q) =
1

1 + [q2(x,y,z;t)−qo2(t)]
qo2(t)(1+qo2(t))

(A.3)

Calculation of Laplacian:

∇2Ini,j,k =
Ini+1,j,k + Ini−1,j,k + Ini,j+1,k + Ini,j−1,k + Ini,j,k+1 + Ini,j,k−1 − 6Ini,j,k

h2
(A.4)
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Divergence:

dn
i,j,k =

1

h2
[cni+1,j,k(I

n
i+1,j,k − Ini,j,k)+

cni,j,k(Ini−1,j,k − Ini,j,k) + cni,j+1,k(Ini,j+1,k − Ini,j,k)+ cni,j,k(Ini,j−1,k − Ini,j,k) +

cni,j,k+1(I
n
i,j,k+1 − Ini,j,k)+ cni,j,k(Ini,j,k−1 − Ini,j,k) (A.5)

Iterative implementation:

In+1
i,j = Ini,j +

∆t

6
dn

i,j (A.6)
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