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PR E F A C E  

 The best way to describe this dissertation thesis is a journey where scientific 

discoveries were made along the way. Not knowing what to expect or whether this 

research would provide new scientific insights, I set out a bold path to seek the truth. 

Hence, the chapters may seem disjointed, but they describe our investigations in detail 

and the exciting findings therein. It may be beneficial to briefly describe the sequence of 

events that led to the formation of my dissertation topic.  

 This research topic formulated from the inception of the 2007 Phoenix Mars 

Scout Mission in which Dr. Nilton O. Renno was a Co-Investigator. There were few 

concerns raised by Lockheed Martin (LM) due to rocket plume – surface interactions 

during the Phoenix landing phase in which they partnered with our research group to 

investigate, and this is presented in Chapter 2. I spear-headed this investigation and 

presented our results in numerous Technical Interchange Meeting reviews at LM during 

2005 and 2006.  

 This investigation led our research group and the science and engineering teams 

to be concerned with rocket plume-induced dust lifting and cratering of the landing site 

and this is presented in Chapter 3. Although there were initially numerous obstacles to 

conduct this complex study such as funding and resources, I wrote proposals and 

discussed methodologies with my advisor and other engineers/scientists. We were then 

authorized to perform these studies with the support of NASA Jet Propulsion Laboratory 

(JPL) and NASA Ames Research Center (ARC) in which we presented our findings to 

both the Science and EDL teams as well as various science/engineering conferences in 

2007 and 2008.  

 Perhaps, the most exciting moment of my doctoral training is to witness the 

successful landing of the Phoenix spacecraft on May of 2008 with all of my colleagues 

from the Phoenix Conference Center at JPL. After this momentous event, our research 

investigation was allowed to continue which led us to two exciting discoveries which 
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make the basis of both Chapters 3 and 4. As the reader will see, this investigation is quite 

diverse, but it provides important engineering and science insight into the final stages of a 

spacecraft landing on another planet and the possibility of life on Mars.  Hence, this 

dissertation was truly a “journey” in every sense of the word.  

 We have submitted all three chapters for publication and these inspired further 

studies for future landing missions to planetary bodies such as the 2011 NASA Mars 

Science Laboratory (MSL) mission. Further work in collaboration with JPL for the MSL 

mission is documented in Appendix A and C. 
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ABSTRACT 

 Pulsed supersonic jets or rocket plumes have different surface flow physics than 

steady jets, in particular in tenuous atmospheres such as that of Mars where jets are 

collimated over large distances compared to their diameters. We show that plate shock 

formation and collapse during each cycle of pulsed jets impinging on a surface causes 

large pressure fluctuations capable of producing extensive erosion during spacecraft 

landings. Here, we study the pressure loads and erosion caused by pulsed jets of the 

Phoenix spacecraft on the surface of Mars and its implications to engineering and 

science. 

 While steady thruster jets caused only modest surface erosion during the landings 

of previous spacecraft on the moon and Mars, the pulsed jets from Phoenix led to 

extensive alteration of its landing site on the martian arctic, exposed a large fraction of 

the subsurface water ice under the lander, and led to the discovery of evidence for liquid 

saline water on Mars.  We report the discovery of the ‘explosive erosion’ process that led 

to this extensive erosion and evidence for liquid water. We show that the impingement of 

supersonic pulsed jets fluidizes porous soils and forms cyclic shock waves that propagate 

through the soil producing erosion rates more than an order of magnitude larger than that 

of other jet-induced processes. The understanding of ‘explosive erosion’ allows the 

calculation of bulk physical properties of the soils altered by it, provides new insights 

into the behavior of granular flow at extreme conditions, and explains the alteration of the 

Phoenix landing site at the northern arctic plains of Mars.  

 We then show new photometric evidence that the Phoenix spacecraft imaged 

liquid saline water in the arctic, and that deliquescence causes liquid water to sporadically 

flow in the polar region. This finding also corroborates the hypothesis that the 

thermodynamics of freezing/thaw cycles leads to the seasonal formation of liquid saline 

water where ice and salts exist near the martian surface. Finally, we show broadband 
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spectral signature of liquid brines in flow-like and pond-like features on defrosting polar 

dunes. This has important implications for geology, geochemistry and the habitability of 

Mars.  
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CHAPTER 1 

Introduction 
 
 
 
1.1 Background 
 
 Mars is the planet most similar to Earth in the solar system. Earth and Mars have 

roughly the same land area. Both planets have large sustained polar caps and a 23 degree 

tilt in the axis of rotation, leading to seasonal variability.  They both have large dust 

storms and atmospheres with some similar chemical species. However, the martian 

atmosphere is tenuous with surface pressure 1% of that of the Earth.  Hence, Mars 

provides scientists with a simple comparative laboratory for studying terrestrial climate 

change, geophysics and perhaps the evolution of life in spite of being smaller with a 

lower gravitational field and much colder than Earth. One of the most compelling 

questions in space exploration is whether Mars ever had microbial life.   

 One of the necessary conditions for the existence of life is the presence of liquid 

water. Water is the medium for all biological processes on Earth and without it, life, as 

we know it, would not exist. Hence, we believe this molecule is vital for biological 

processes on Mars. Water is also the primary medium that shaped the geological 

landscapes on Earth and possibly on Mars as well. The first direct evidence of water on 

the Martian soil was found by the National Aeronautics and Space Administration 

(NASA) Mars Global Surveyor’s (MGS) Gamma Ray Spectrometer [Boynton et al, 

2002]. The evidence for water is the decrease in the epithermal neutron flux towards the 

poles as depicted in Figure 1.1. This discovery led to the development of the NASA 2007 

Phoenix Mars Scout mission which first confirmed the existence of water ice at the 

northern polar region [Smith et al., 2009].  In addition, Phoenix discovered physical and 

thermodynamic evidence for liquid water on its landing site [Renno et al., 2009]. 
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Figure 1.1 Epithural neutron flux of the entire surface of Mars. Minimum fluxes in the polar region suggest 
the presence of water ice [Boynton et al., 2002].  
 

 One of the most important results of the Phoenix Mars mission was the potential 

discovery of present day liquid water at pressures and temperature below 1 kPa and 250 

K, respectively. At these temperatures and pressures, pure water could only exist as either 

ice or vapor. Thermodynamically, liquid water could only be stable on the martian 

surface if it contained relatively high concentrations of salt ions. Surprisingly, after the 

discovery of evidence for liquid water, Hecht et al. [2009] and others found ~5% by mass 

of soluble salts in the martian soil. Consequently, the freeze/thaw cycles ranging from 

diurnal to geologic time-scales (Tclim) may lead to the formation of highly concentrated 

pockets of liquid brines as shown in Figure 1.2. Pure water ice precipitates when dilute 

mixtures are cooled and this leads to an increase in the salt concentration until the 

eutectic temperature (Teut) is reached. When highly saline solutions exist, salts precipitate 

when concentrated mixtures are cooled until the eutectic solution is reached, and the 

solution freezes.  
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Figure 1.2. Sketch of the phase diagram of a brine solution [Renno et al., 2009].  

 

 Renno et al. [2009] show that liquid saline water may form by deliquescence at 

the martian surface, a process in which a hygroscopic substance absorbs atmospheric 

water vapor until dissolution.  The partial pressure of water vapor at the Phoenix landing 

site ranges from 0.3 to 2 Pa [Renno et al., 2009; Zent et al., 2009], which is higher than 

the deliquescence relative humidity (RHD

 As depicted in Figure 1.3, NASA successfully completed six surface robotic 

missions and five orbiting missions to the Red Planet since 1975. The NASA Viking 1 

spacecraft was the first to successfully land on the martian surface, at western Chryse 

Planitia [Shorthill et al., 1976]. The Viking spacecraft, the Mars Pathfinder and the Spirit 

and Opportunity Mars Exploration Rovers discovered hints of past liquid water on Mars. 

For example, Opportunity detected large concentrations of hematite at Eagle Crater, 

which most likely formed in the presence of liquid water [Squyres et al., 2004]. The high-

resolution images from the MGS spacecraft detected gullies in the Newton Basin which 

have been hypothesized to be formed by trickling aqueous solutions of snow melt 

) of various salts seen at the landing site. Hence, 

this leads to absorption of water vapor and formation of brines. Since the polar regions of 

Mars possess water ice (ground ice and frost), salt and atmospheric water vapor [Smith et 

al., 2009], interfacial liquid saline water should be convincingly ubiquitous. As a result of 

the similarities of Earth’s sister planet and the increasing possibility of Mars harboring 

life, NASA developed its main theme for the robotic Mars Exploration Program, “follow-

the-water”.   
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[Christensen, 2003]. According to Carter et al. [2010] the Compact Reconnaissance 

Imaging Spectrometer (CRISM) and OMEGA spectrometers on-board the Mars 

Reconnaissance Orbiter (MRO) and Mars Express orbiters detected hydrated 

phyllosilicates on the northern plains of Mars. Chloride-bearing materials that form in 

aqueous solutions are found in localized regions less than 25 km2

 

, but are detected in 

small amounts in the southern highlands [Osterloo et al., 2008].  The “follow the water” 

theme for space exploration resulted in the design and development of the MRO in 2005 

and the Phoenix Mars Scout mission in 2007. The main goals of both of these missions 

were to confirm and characterize water and possibly organic compounds on the martian 

surface.  Only the seventh and newest lander called Mars Science Laboratory (MSL), 

ready to depart Earth in 2011, is equipped with instruments to search for organics and 

signs of life [Atreya et al., 2007].  Unfortunately, many missions to the Red Planet failed 

either during the trip or during the treacherous landing phase.  

Figure 1.3 Robotic space exploration of Mars from 1975 to 2013 (ExoMars rover was delayed to 2018). 
Courtesy of NASA/JPL-Caltech 
 

Table 1.1. Eight failed spaceflight missions to Mars in the last four decades. RFSA = Russian Federal 
Space Agency; ESA = European Space Agency 
 

1.2  Motivation 

  According to Table 1.1, more than 60% of surface missions to Mars failed with 

more than 50% of those failures occurring during the entry, descent and landing (EDL) 

phase.  This landing sequence must remove more than 99% of the craft’s kinetic energy 

Spaceflight 
Mission 

Year Agency Comments 

    
Mars 2 & 3 1971 RFSA Crashed on landing/ceased after 20 sec 
Mars 6 & 7 1974 RFSA Crashed on landing/entered heliocentric orbit 
Phobos 1 & 2 1989 RFSA Landing sequence was not initiated 
Mars Polar Lander 1999 NASA Crashed on landing 
Beagle 2 2004 ESA Lost contact after entry  
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within seven minutes in an approximate distance of 3500 km. Hence, there are many 

engineering challenges during this sequence because: (a) the atmosphere is thick enough 

to cause significant dynamic loads and heating, but too thin to decelerate the spacecraft 

for soft landing; (b) the hazardous surface environment is either caused by landing-

induced disturbances or pre-existing boulders, craters and variable atmospheric dust 

content; (c) it is difficult to simulate and test the end-to-end EDL sequence [Braun and 

Manning, 2006]; (d) the short landing phase makes it difficult to employ redundant 

systems; (e)  accurate landing requires highly effective aerodynamic control over the 

flight path. To further elucidate the intricacies of landing a spacecraft on planetary 

bodies, the various phases of EDL are briefly described below and depicted in Movie D1, 

Appendix D. 

 Each EDL phase is described schematically in Figure 1.4 [Grover and Desai, 

2004; Bailey, 2008]. The spacecraft first enters the martian atmosphere (entry phase) 

enclosed by the heat shield and back shell. During the hypersonic phase, there is 

maximum heat and deceleration loads as shown in Figure 1.4. Once the deceleration 

loads increase to a certain threshold value, the parachute is deployed (parachute phase), 

reducing the spacecraft to subsonic speeds.  The heat shield is jettisoned and the radar 

locks onto the surface to accurately determine the spacecraft altitude. At pre-determined 

altitude, the lander separates from its backshell and parachute and descent rocket motors 

are warmed for the terminal descent phase. Radar locking is important before separation, 

because if the separation is too early there may not be enough fuel for a powered descent 

to the surface or if it is too late the spacecraft may impact the surface before stabilizing. 

Gravity turn aligns the spacecraft thrust vector with the velocity vector in the opposite 

direction. When thrust is applied, this reduces both the vertical and horizontal velocity 

components during terminal descent.  Prior to the gravity turn, there may be an additional 

thrust applied off-nadir to prevent back shell recontact with the spacecraft (Backshell 

Avoidance Maneuver). Once gravity turn has been completed, the rocket motors are 

throttled or pulsed to achieve a constant descent velocity until touchdown. This spans the 

last ~50 m of flight.  A single point failure in either of these phases could cause the 

spacecraft to crash on the surface.  Hence, many simulations and adequate component 

testing is required for minimizing mission risk. The primary goal of the investigation 
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described in this thesis was to reduce the risks associated with the constant velocity phase 

of terminal descent of the Phoenix EDL sequence.  

 
Figure 1.4. Phoenix entry, descent and landing (EDL) sequence. [Bailey et al., 2008] 

  

 During the constant velocity phase for a typical powered descent sequence, the 

rocket motors fire with ~2000 N of thrust for a ~ 350 kg lander. There are four main risks 

during the terminal descent phase as shown in Figure 1.5: (a) aerodynamic loads on the 

spacecraft, (b) site alteration, (c) ejecta accumulation and (d) surface contamination. All 

of these risks are dependent on the complex plume-surface interactions. During this 

phase, the spacecraft experiences large aerodynamic loads during the last 10 m of 

descent.  For example, lift loss and ground effect forces, and asymmetric torques can 

destabilize the spacecraft. These effects are mainly the results of plume-surface 

interactions.  These plumes can interact with each other, the surface and re-circulate back 

up into the lander base augmenting the thrust vector (ground effect) [Gulick, 2006]. For 

example, it was unexpectedly discovered by looking at archived and unsubstantiated 

results of numerical simulations that MPL suffered from high lander base pressures 

during descent. Jet entrainment causes a downward pressure force when the spacecraft 

approaches the surface, and this leads to lift loss [Huseman and Bomba, 2000]. This 
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effect can reduce thrust by about 60% close to the surface [Krothopalli et al., 1999]. 

Hence, these two competing effects can lead to large instabilities prior to touchdown. 

According to the NASA JPL Special Review Board on the Loss of the Mars Polar Lander 

(MPL), “plume interactions should be modeled and verified by test for all future landers.” 

According to the report, these complex interactions may have been one of the reasons for 

MPL failure [Whetsel et al., 2000]. All of these areas are a potential concern for the 

Phoenix and MSL spacecrafts. However, the aerodynamic loads may not be a large issue 

for MSL due to a relatively large nozzle-to-surface height.    

 

 
Figure 1.5. Risk assessment of a space mission due to plume-surface interactions  

  

 Cratering and erosion developed by high thrust and supersonic exhaust plume 

interactions has the potential to lead to the loss of planetary missions.  Jet-induced 

cratering can lead to large trenches that can tilt or tip-over the spacecraft upon touching 

down [Whetsel et al., 2000].  The craters formed during this process can lead to 

asymmetric deflection of the exhaust plumes, resulting in asymmetric torques on the base 

of the spacecraft. Another problem is that high-speed ejecta can impinge on the payload 

and the lander causing damage and destabilization during descent [Gulick, 2006]. Ejecta 

can lead to instrument and thermal hardware erosion and reduce visibility, preventing 

radar locking [Sengupta et al., 2009]. Extensive ejecta on solar panels may reduce power 
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and lead to the loss of the spacecraft. Although plume-surface interactions can cause 

engineering problems, it is also a concern for science.  

 Predicting the extent of erosion and deposition at a landing site is of great benefit 

to science operations [Arvidson et al., 2009]. For example, static landers are able to 

sample and analyze areas that are not contaminated by the exhaust plumes. Knowledge of 

the altered ground morphology in conjunction with a good understanding of plume-soil 

interactions provide estimates of the mechanical properties of soil, as done by the NASA 

Surveyor [Jaffe, 1968] and Viking missions [Shorthill et al., 1976].  Rocket plume 

induced cratering may uncover scientific clues within the deep subsurface of planetary 

bodies. In order to accurately predict cratering at landing sites, knowledge of the type of 

propulsion system used is imperative.  

 Liquid, solid and electric propulsion systems are used today for ascent, cruise and 

descent of launch vehicles and spacecrafts. However, the focus of this dissertation is the 

use of retro-propulsion for spacecraft landing architectures, and liquid propellant systems 

provide more diversity in operational modes and as a result are desired for landing 

spacecrafts. Liquid rocket propulsion systems are either pulsed or throttled [Sutton and 

Biblarz, 2009]. All space missions to Mars prior to 1998 used throttleable descent 

engines that allow continuous thrust modulation, forming steady-state supersonic exhaust 

plumes [Romine et al., 1973; Stitt, 1967]. The 1998 NASA Mars Surveyor Mission and 

2007 Phoenix Scout Mission used a new low cost pulse-modulated descent engine 

[Martin et al., 1998]. Thrust is simply varied by dynamically controlling the duty cycle, 

the on-time within each pulse, and the pulse frequency. From water-hammer [Martin et 

al., 1998] and cold start validation [Frei et al., 2001] tests, this system proved to be 

robust with respect to the dynamic loads on the spacecraft and thrust ignition at 

atmospheric temperatures of 205 K. However, no studies of plume-surface interactions 

due to pulsed supersonic jets in tenuous atmospheres had been conducted [Gulick, 2006]. 

There was no knowledge on how impinging pulsed jets would affect the aerodynamic 

loads on a spacecraft or how a landing site would be altered by it [Whetsel et al., 2000]. 

The design and configuration of the Phoenix descent engine nozzles were considerably 

different from the Viking shower head nozzles as shown in Figure 1.6. Hence, scientists 

and engineers did not know if past studies conducted for the Viking missions would be 
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applicable to these pulsed engines. Because of the loss of MPL with a similar pulsed-

modulated propulsion system, this was considered to be a significant mission risk. Thus, 

the Phoenix Project was encouraged to study plume-surface interactions [NASA JPL 

(Phoenix CDR), 2004]. Our group at the University of Michigan proposed to conduct this 

research into two different phases: (a) plume-surface flow physics and (b) cratering 

dynamics. These investigations led to the third phase of our research: (c) evidence for 

water ice and liquid saline water on Mars.  We will briefly discuss past research 

conducted in these three phases. 

 
Figure 1.6. Terminal descent engines. (A) 18-nozzle Viking Rocket Engine Assembly [Dawson et al., 
2008] and (B) MR-107 Phoenix Rocket Engine Motor (REM) [Gulick, 2006] 
 
1.3  Prior research  
 
 Past work conducted for plume-surface flow physics were mainly done at low 

Mach numbers (<3), near field impingement distances (below 15 nozzle exit diameters, 

d) and at terrestrial atmospheric conditions of 101.3 kPa and 300 K. Although this 

provided valuable information with respect to acoustic and heat transfer applications, 

these conditions do not adequately simulate the flow physics of spacecraft landings on 

Mars. However, some insightful information into the flow physics was provided by these 

pioneering studies. It was determined that surface pressure is highly dependent on nozzle 

area ratio and nozzle contour geometry [Romine et al., 1973]. Vick and Andrews [1966] 

first discovered that the surface pressure fields were highly dependent on the nozzle to 

surface distance. As discussed in detail in Section 2.6, three different shock structures of 

the supersonic thruster plumes were first observed by varying the nozzle-to-surface 

distance (4d to 400d) and nozzle exit to ambient pressure ratio (expansion ratio) 

[Adamson and Nicholls, 1967]. The first extensive characterization of these parameters in 

the tenuous martian atmosphere (<1 kPa) was done by Romine et al. [1973] during the 
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design phase of the Viking propulsion system. This provided important information such 

as the plume structure (Fig. 1.7A) and spatial ground pressure profiles (see Chapter 2) for 

steady supersonic jets. However these tests were limited because the ambient pressure 

would increase by a factor of two or three from martian conditions during the tests and 

they were constrained to altitudes of less than 35 nozzle exit diameters, where such 

interactions are observed up to a height of ~100d.  

 
Figure 1.7. NASA Viking site-alteration test studies. (A) Shadowgraph image of the plume structure of 
cold gas N2

 

 supersonic jets with similar Viking showerhead nozzle configuration [Romine et al., 1973]. (B) 
Normalized surface impingement pressure vs. normalized axial distance for prototype Viking rocket motor 
exhaust plume at Mars atmospheric pressure [Romine et al., 1973]. Crater depth and radius due to prototype 
Viking rocket motor exhausting into lunar nominal soil (C) and dune sand (D) at Mars atmosphere [Romine 
et al., 1973].      

 
 There are only a few studies of cratering dynamics caused by steady supersonic 

jets in tenuous atmospheres. The main reasons for such limited tests are the fact that most 

partial vacuum chambers have to be clean for space hardware testing and hence, could 

not be used for these types of tests [Greeley et al., 1980]. Also, a significantly large 
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vacuum chamber (> 2000 m3

 However, these earlier and more recent studies did provide some insight into the 

various jet-induced erosion processes. There are four mechanisms which will be 

discussed in detail in Chapter 3 that lead to jet-induced erosion: (i) viscous shear erosion 

[Shorthill et al., 1976a]; (ii) bearing capacity failure [Alexander et al., 1966]; (iii) 

diffusion-driven flow [Metzger et al., 2009]; and (iv) diffuse gas erosion [Scott and Ko, 

1968]. Earlier studies showed that underexpanded thruster plumes in lunar atmospheres 

leads to viscous shear erosion. The investigation conducted by Romine et al. [1973] at 

NASA White Sands Test Facility was the only in-depth theoretical and experimental 

study of the interactions of steady under-expanded jets with granular media at martian 

conditions.  Their study led to the development of shower head nozzles in order to 

minimize cratering of the landing site (Fig. 1.7 B,C). This design was developed to 

substantially increase turbulent mixing between the jets and decrease the surface 

impingement pressure below the cratering threshold. This provided a wealth of 

knowledge that the Viking science and engineering teams used and formed the basis of 

our investigation. Currently, no robust numerical models or analytical solutions exist to 

simulate jet-induced cratering dynamics, but various academic and NASA centers are in 

) was needed to perform relatively long duration tests to 

simulate spacecraft landings without large increases in the atmospheric pressure [Braun 

and Manning, 2006]. These full-scale experiments are also too expensive for typical 

spaceflight missions. Past studies were mainly done at either NASA Langley Research 

Center (LaRC) or NASA Lewis Research Center in the 1960s and 1970s [Land and 

Scholl, 1966; Clark, 1969; Clark, 1970].  Previous studies of jet-induced cratering 

dynamics in tenuous atmospheres in support of the Apollo, Surveyor and Viking missions 

were relatively rudimentary with limited documentation [Romine et al., 1973; Metzger et 

al., 2010]. Theories for predicting the crater dynamics by Alexander et al [1966] were not 

supported by visualization. Most of these studies only focused on the final crater 

morphology. The quarter-space and half-space techniques developed in 1976 for impact 

cratering studies first allowed an accurate visualization of both transient crater growth 

and ejecta trajectory. Unfortunately, such investigations were not conducted for the 1998 

Mars Surveyor Mission. Hence, only limited analysis of the transient cratering process 

due to supersonic jet interactions exist.  
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the process of developing them [Metzger et al., 2009]. Before a robust model can be 

developed, extensive experimental tests at low (<1000 Pa) to vacuum pressures (~1 x 10-5

 Granular media refers to any system composed of relatively macroscopic, discrete 

particles small in comparison with the length scale of the system. Granular flows are 

these particles set into motion.  They are a subset of two-phase flows composed of solid 

particles and interstitial liquid or gas. Two types of general forces produce granular 

flows: pressure contact forces and interstitial fluid forces (e.g. cohesion, drag, lift, 

electrostatics etc.). Such flows lead to important natural phenomena such as sand dunes, 

impact craters, avalanches and landslides [Pudsaini and Kroner, 2008]. Granular flow 

physics are readily observed on Mars, because the martian surface is mainly covered with 

a centimeter to meter scale of basaltic sand. The particle size for martian regolith ranges 

from <15 µm to >1000 µm [Shaw et al., 2009].   

 

Pa) are needed.  Theoretical and experimental investigations of the granular flow physics 

are the first steps in understanding cratering dynamics.   

 Granular media can exist in distinct regimes analogous to the three phases of 

matter: solid, liquid and gas [Jaeger, Nagel and Behringer, 1996]. These regimes are 

dependent on how they are prepared and excited. There are many fluid dynamic 

structures observed for granular flows such as convective rolls [Knight et al., 1996], 

geyser-like excitations (oscillons) [Umbanhowar et al., 2001], longitudinal vortices in 

chute flows [Forterre and Pouliquen, 2001], dead zones (regions of stationary deposits) 

[Gray, Tai and Noelle, 2003], particle-free regions and shock waves [Amourechene and 

Kellay, 2006]. The focus of this study is on shock waves within granular flows subject to 

jet impingement, but there are other applications where these structures are observed. The 

formation of shock wave features within rapid-granular flows around obstacles are 

readily observed from experiments and numerical simulations [Gray, Tai and Noelle, 

2003; Amourechene and Kellay, 2006]. These flow structures are referred to as granular 

shock waves. Huang [2006] and Bougie et al. [2002] show that granular shock waves 

form and propagate in vibrofluidized granular media forced by oscillations of a solid 

plate. Experimental and numerical simulations show the propagation of a single granular 

shock wave results from the high-velocity impact of a projectile [Schultz et al., 2007]. As 

further described in Chapter 3, shock waves are more commonly formed in granular 
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media than in gas because the sound speed is much lower in granular media [Liu and 

Nagel, 1992]. However, investigations of shock wave propagation in vibrofluidized 

granular media have only recently been investigated and are scarce [Huang, 2006]. In 

addition, investigations of the shock and flow physics of granular systems subject to 

interactions with supersonic jets are virtually non-existent.  

 Another focus of our research, which developed from site-alteration studies, is the 

search for water on Mars in both the liquid and ice phases.  The consensus among 

planetary scientists is that Mars is a desolate and dry planet. Although only recently there 

were suggestions that large quantities of subsurface water ice likely existed in the polar 

region, this idea needed to be confirmed by in-situ analysis [Boynton et al., 2003]. 

Bandfield et al. [2003] found only trace amounts of magnesium carbonate (2-5% by 

weight) in the martian dust, supporting the idea that liquid water was not a major 

contributor to the geochemistry and geology of Mars. Also, olivine, which is easily 

transformed into other minerals in contact with liquid water, was widely detected at Nili 

Fossae by MGS’s Thermal Emission Spectrometer, supporting the idea that Mars has 

been extremely dry on geological time scales [Hoefen et al., 2003]. Gullies found on 

Mars may not have developed by trickling aqueous solutions, but may be a direct result 

of landslides and wind erosion as seen on the moon [Bart, 2007] and observed by High 

Resolution Imaging Science Experiment (HiRISE) on board MRO [McEwen et al., 2009]. 

One of the goals of this dissertation is to test the idea that both ice and small amounts of 

liquid saline water exists on present-day Mars.   

 This research was a journey into unchartered realms that led to very interesting 

and exciting discoveries. The general methodology behind my dissertation topic is 

charted in Figure 1.8.  
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Figure 1.8. Flow chart of dissertation topic.  

 

1.4 Central Research Themes 

 This dissertation seeks to provide a comprehensive understanding of plume-

surface interactions caused by spacecraft landings and the various processes that led to 

the discovery of water on Mars. Although most of the results in the Chapters are either 

from or applied to the Phoenix Mars Scout Mission, we have also presented considerable 

research in the Appendices in support of the future Mars Science Laboratory (MSL) 

Mission.  

 What is the flow physics of impinging supersonic jets in tenuous atmospheres?   

 In order to address this question, we developed an experimental testbed and 

conducted various experiments at University of Michigan and NASA Ames Research 

Center. In Chapter 2, we analyze measurements of the exhaust plume composition for the 

full-scale Phoenix descent engine during tests at Aerojet Corporation in Redmond, 

Washington. This provides a detailed assessment of the potential contamination of the 

landing site during the Phoenix descent. We also analyze the interaction of the Phoenix 

plume with impermeable surfaces.  We show that pulsed supersonic jets in tenuous (e.g., 
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martian) atmospheres behave differently than steady jets. We compare the results of 

experiments with that of compressible computational fluid dynamic simulations from a 

few numerical codes and theory. Appendix A provides more details on the flow physics 

of steady supersonic jets for the purpose of simulating the plume effects due to the 

landing of MSL, the next NASA Mars mission.   

 What are the cratering dynamics associated with the impingement of pulsed jets 

into granular media and how does this compare to other jet-induced erosion processes?  

 We developed an experimental testbed at the University of Michigan and ran it in 

a large vacuum chamber at NASA Ames Research Center. We conducted various 

subscale site-alteration experiments for the Phoenix and MSL missions.  In Chapter 3, we 

describe the results, physics and applications of jet-induced erosion processes and report 

the discovery of explosive erosion. Appendix B provides further calculations of this 

process. Appendix C provides a comprehensive analysis of erosion rates on planetary 

bodies due to spacecraft landings based on the results of previous spaceflight missions 

and our investigations for the Phoenix and MSL missions.   

 How water was discovered at the Phoenix landing site and what are its 

implications?  

 Through experimental and numerical simulations and the analysis of images taken 

by various spacecrafts described in Chapter 3, we show that the erosion dynamics due to 

the Phoenix landing phase led to a large exposure of water ice, extensive erosion and to 

the discovery of evidence for liquid brine at the landing site. Along with physical and 

thermodynamical evidence for liquid saline water, we show in Chapter 4 photometric and 

broadband spectral evidence for liquid brines on Mars.  

 We start this investigation by determining the rocket plume composition to 

ascertain the potential contamination at the Phoenix landing site, and then we embark on 

new studies of plume-surface interactions during Phoenix descent.   
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C H A PT E R  2 
 

Effects of the Phoenix Lander descent thruster plume on the Martian 

surface 
 

Composition of the Phoenix descent thruster plume and the flow physics of impinging 
pulsed supersonic jets at Mars atmospheric pressure 

 
This chapter describes an article published in the Journal of Geophysical Research-
Planets: Phoenix Special Issue in 2008. The complete reference is: Plemmons, D. H., 
M. Mehta, B.C. Clark, S. P. Kounaves, L.L. Peach, N.O. Renno, L. Tamparri and S.M.M. 
Young (2008) Effects of the Phoenix Lander descent thruster plume on the Martian 
surface, J. Geophys. Res.,113
 

, E00A11.  

2.1  Introduction 

 The final descent and touchdown phase of the Phoenix Lander is controlled by 

twelve hydrazine (N2H4

 There was concern among the Phoenix Science Team that the exhaust products 

could interact with and alter the natural compounds in the Martian soil.  There was also 

concern that unburned hydrazine and potential impurities in the fuel could contaminate 

the landing site.  Finally, site-alteration and dust lifting by the interaction of the pulsed 

jets with the Martian regolith was also a concern. These same concerns are applicable for 

the MSL descent stage spacecraft.  

) monopropellant retro-rocket engines in pulsed mode, which 

could result in the impingement of some of the exhaust products onto the Martian regolith 

at the landing site.  The Phoenix engines use pulse frequency and duty cycle control to 

dynamically throttle power during descent [Wong et al., 2002]. 

 To address these issues, the Phoenix Science Team performed extensive analysis 

of the hydrazine fuel, the thruster exhaust products, and the dynamical interaction of the 

exhaust plume with the surface.  These efforts included: (1) selecting the cleanest, driest 
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propellant available for the Mission; (2) assaying and documentation of the Mission 

propellant; (3) conducting experimental plume signature identification during the hot-fire 

engine qualification testing of the flight motors using a batch of the Mission propellant;  

(4) capturing sample exhaust gases from these tests for use in future laboratory analysis; 

(5) extensive laboratory testing, computational modeling and analysis; and, (6) preserving 

a batch of the Mission propellant and a back-up rocket motor for potential future testing, 

should this be warranted.  Computational and experimental studies have been performed 

on the products of the catalytic hydrazine decomposition in order to understand the 

potential physical interactions of the rocket plume with the Martian surface. 

 A very brief discussion of two of the Phoenix Lander primary scientific 

instruments that would benefit from the plume diagnostics data and analysis efforts is 

included in this section to provide context for the investigation.  A more detailed 

description of these instruments is included in other manuscripts in this special issue 

[Boynton et al., 2007; Kounaves et al., 2007]. 

 The Microscopy, Electrochemistry and Conductivity Analyzer (MECA) is a 

combination of scientific instruments including a wet chemistry laboratory (WCL), 

optical and atomic force microscopes, and a thermal and electrical conductivity probe. 

MECA determined acidity, salinity, and composition by mixing soil samples with small 

amounts of water.  MECA examined the soil grains to provide information on mineralogy 

and origin. 

 The Thermal and Evolved Gas Analyzer (TEGA) is a combination of high-

temperature ovens and a mass spectrometer that was used to perform chemical analysis of 

Martian soil and ice samples.  TEGA was used to detect volatiles, soil mineralogy, and 

potential organics that may be resident on the Martian surface. 

 Understanding the physics of rocket plume impingement on planetary surfaces is 

important for the survivability of the spacecraft during terminal descent and touchdown 

phases of the Entry, Descent and Landing (EDL) sequence [Whetsel et al., 2000]. Limited 

investigations of steady-state rocket plume interactions with the Martian soil surface were 

conducted for the Viking mission by NASA researchers in the 1970s [Grover et al., 

2005].  The dynamics of the interaction of an under-expanded jet plume flow field, where 

the nozzle exit pressure is greater than the ambient (back) pressure, with the surface is 
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quite complex.  Indeed, instabilities in the flow occur because of the co-existence of 

subsonic, transonic, and supersonic regions within the flow [Krothopalli et al., 1999].  

For this reason, computational simulations must be tested with data from experiments 

[Janos and Hoffman, 1968]. 

 This Chapter discusses the objectives of plume diagnostics and interaction 

research efforts and explains why they are important to the Phoenix science mission.  We 

present the methodology and results from three research efforts: (1) spectral diagnostics 

of the rocket engine exhaust gases, (2) analysis of plume gases using gas chromatography 

and mass spectrometry, and (3) physical interactions of the rocket plume with an 

impermeable surface.  We conclude with a brief discussion on planned future work and 

how these data will help with the scientific measurements on Mars. 

 

2.2 Objectives 

 There are two main phases focused in this Chapter. The first phase is determining 

the composition of the rocket plume from the Phoenix descent engine. The second phase 

is the study of transient rocket plume interactions with a flat surface. First phase, the 

hydrazine fuel used in the Phoenix Lander is high purity grade (99% by weight) but still 

contains impurities such as water (< 1%), ammonia (< 0.3%), aniline (< 0.003%), and 

trace organics (< 0.005%).  There was a significant level of uncertainty among the 

science team as to the exact composition of the exhaust products and it was decided to 

perform additional experimental and numerical studies on the Phoenix landing system 

rocket engines. Second phase, the understanding of the physical interaction of thruster 

plumes with the Martian surface is also crucial for assessments of dust lifting and 

spacecraft contamination. However, detailed experimental investigations of pulsed rocket 

plume interaction with the ground and the Martian regolith are currently not available 

[Mehta et al., 2007].  We conducted computational simulations and laboratory 

experiments in conjunction with detailed scaling analysis to study these interactions and 

postulate their effects on dust lifting.  We report such measurements here and show that 

they are consistent with numerical simulations.    

 
2.2.1 Phoenix Descent Engine  
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 These thrusters are classified as MR-107N and are designed and manufactured by 

the Aerojet Corporation. One engine has a maximum thrust of 300 N, a specific impulse 

of ~230 s and a mass of 0.7 kg as referred to in Table 1.1. Their rapid pulsing and high 

reliability with a life cycle of ~1500 pulses is accomplished by a Moog single seat valve.  

To provide a brief history, these thrusters were incorporated for the 2001 Mars Surveyor 

Program which was moth balled and re-installed for the Phoenix spacecraft, but some of 

the seat valves showed considerable deterioration upon hot-fire testing. Hence, new MR-

107N engines were eventually employed. The Phoenix descent engines are paired in a 

package of two as shown in Figure 1.6.  As we will describe in further detail below, these 

engines use hydrazine as the main propellant which spontaneously ignites with a catalyst. 

MR-107N engine specifications are provided below in Table 2.1.  

 

 

 

 

 

 

 

 

 

 
Table 2.1.  MR-107N (Phoenix) descent engine specifications  

 

2.3 Analysis of the plume gases with Fourier transform infrared diagnostics  

2.3.1 Chemical reaction modeling 

The primary product of hydrazine decomposition is ammonia 

 

3N2H4 → 4NH3 + N2.  (2.1) 

 

In the presence of sufficient heat, the ammonia will further decompose into N2 and H

 

2NH

2 

3 → N2 + 3H2

Parameters 

.  (2.2) 

  
MR-107N 

Catalyst Iridium/rhodium 
Propellant Hydrazine 
ISP 230  (s) 
Combustion products H2, N2, NH
Mass of engine (kg) 

3 
0.7 

Total pressure at inlet (kPa) 1240 
Total temperature at inlet (K) 1116 
Maximum thrust (N) ~300 
Nozzle area ratio (a.u.) 20.7 
Plume Mach number at exit 4.7 
Pulse frequency (Hz) 10 
Pulse width (s) ~0.055 
Jet firing duration (s) <2.0 
NH3 0.49  exhaust mass fraction (a.u.) 
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The catalyst beds in the Phoenix landing system engines are made of iridium and 

rhodium metals affixed to a porous ceramic alumina.  The combustion temperature within 

the catalyst bed reaches ~1200 K. The decomposition of N2H4

 

N

 with an iridium catalyst 

can be expressed by [Lyon, 1971] 

2H4 → 4/3(1 – x)NH3 + 1/3(1 + 2x)N2 + 2xH2,  (2.3) 

 

where, x is the fraction of originally formed ammonia that has dissociated into N2 and 

H2. A rhodium catalyst produces nitrogen and hydrogen in equal quantities [Sayer, 1970]  

 

2N2H4 → 2NH3 + N2 + H2.  (2.4) 

 

 Chemical equilibrium modeling was performed to provide some insight on 

interpretation of Eqns. 2.1– 2.4. The predicted plume properties are shown in Table 2.2. 

The left column is the output from the NASA Gordon-McBride [McBride and Gordon, 

1996] chemical equilibrium code.  The right column is the results from similar 

calculation performed by the engine manufacturer.  The manufacturer’s code is a 

modified version of the Gordon-McBride code that allows for quenching the NH3

 

 

decomposition inside the combustor.  Eqns. 2.1–2.4 show that the products in hydrazine 

monopropellant rocket exhaust plume can significantly vary, with possible major species 

mole fractions of 

NH3

H

:  10%–80% 

2

N

:      0%–67% 

2

N

:    20%–33% 

2H4

 

:  Unknown 

Species Equilibrium Model  Quenched Model 
   
NH 9.1% 3 36% 
N 32% 2 27% 
H 59 % 2 36% 

Table 2.2. Chemical equilibrium calculated mole percent at the rocket engine nozzle exit. 
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As mentioned in the Section 2.2, the hydrazine fuel used in the Phoenix Lander is high 

purity grade.  A purity analysis was performed by the engine manufacturer to ensure that 

the fuel was in compliance with military specification MIL-P-26536.  The results from 

the purity analysis are shown in Table 2.3. 

 
Compound Acceptable Values for High 

Purity Grade (by Weight) 
Measured Values 

   
N2H 99.00 % min 4 99.69 % 
H2 1.00 % max O 0.25 % 
NH 0.30 % max 3 0.06 % 
Trace Organics (Excluding Aniline) 0.005 % max 0.001% 
Aniline 0.003 % max < 0.0006 % 
Total Nonvolatiles 0.0010 % max 0.0004 % 
Particulates 1 mg/L max 0.8 mg/L 
Corrosivity 0.00125 % Fe max 0.00025 % 
Chlorine 0.0005 % max 0.00017 % 
CO 0.0030 % max 2 0.0003 % 

Table 2.3. Hydrazine purity analysis results. 
 

2.3.2 Test procedure 

 The thrusters exhaust products were characterized during the operational test 

phase of the engine manufacturing process.  Three plume analysis systems were used (in 

addition to modeling and simulation) to ensure thorough characterization of the exhaust 

products. Exhaust gas samples were extracted through a heated sample line and analyzed 

using a Fourier transform infrared (FTIR) multigas analyzer (MGA) [Markham et al., 

2004].  A separate plume sample was extracted through the heated sample lines and 

stored in a passivated sample canister for off-site analysis using gas 

chromatography/mass spectrometry (GC/MS) methods.  An additional gas sample was 

collected and stored for future analysis, if required.  An instrumentation schematic is 

shown in Figure 2.1. 
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Figure 2.1.  Schematic of the FTIR instrumentation installed on the rocket engine test cell. 

 As mentioned in the Introduction (Section 2.1), the same fuel lot as used on board 

the Phoenix Lander was used during the engine test firings.  The results from the MGA 

analysis were previously reported by Plemmons et al. [2007] and are summarized below. 

 

2.4 Plume gas analysis results 

 Based on the hydrazine decomposition analysis, the concern over unreacted 

hydrazine, and the results from the fuel purity analysis, the FTIR MGA was calibrated to 

measure high levels of NH3, and low levels N2H4, and water vapor.  Exhaust gas samples 

were acquired and analyzed for two separate engine firings.  The MGA measured NH3
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concentrations in excess of 50% during engine start and settled to 45% after the engine 

reached operating temperature, which is 19% higher than the engine manufacturer’s 

performance model and 5 times larger than the equilibrium model prediction.  The 

measured water vapor levels are just under 0.25%, which is in agreement with the pretest 

fuel purity analysis shown in Table 2.2 and indicates that water does not participate 

significantly in the reaction. 
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 Hydrazine was not observed in the thruster exhaust plume.  However, the 

hydrazine FTIR absorption features on this instrument are coincident with the ammonia 

absorption spectra.  Hence, the high ammonia concentration will mask low concentration 

hydrazine. Based on post-test analysis of the FTIR spectra where the spectra were 

manually searched for hydrazine absorption features, it is estimated that the unreacted 

hydrazine levels in the thruster plume is less than 0.2%. 

 The ammonia and water vapor concentration measured for one of the engine 

firings is shown in Figure 2.2.  The engine was fired for approximately 40 seconds.  At 

the end of the firing, the FTIR absorption cell was isolated and the MGA continued to 

analyze the final sample to obtain a baseline estimate on the instrument precision under 

test conditions. After approximately 2 minutes 40 seconds, the absorption cell was purged 

with high-purity nitrogen and the ammonia and water vapor concentration readings 

returned to zero. 

 

Figure 2.2.  Multigas analyzer results for ammonia and water vapor. 
 

 Gas samples were extracted from the exhaust plume of two Phoenix retro-rocket 

thrusters during hot fire acceptance testing.  Recirculation gas samples were taken from 

inside the test cell for two additional engine firings.  The samples were analyzed for 
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ammonia, water vapor, and hydrazine concentrations using a FTIR absorption 

spectrometer.  The measured ammonia and water vapor were in reasonable agreement 

with expected values. Using a value of 3.0=x  in Eqn. 3, yields 45% NH3, 26% N2, and 

29% H2

 

, on a molar basis. 

2.5 Analysis of the plume gases using gas chromatography-mass spectrometer 

 The purpose of this analysis was to corroborate the spectroscopic infrared gas 

analysis via the gas sample probe that was performed during the test firings.  The samples 

were obtained during the test firings by diverting the plume gases into two passivated gas 

sample canisters.  One was charged with the plume gases at 300 torr and the other at 

1,277 torr, respectively.  The analysis reported here was performed using the 1,277 torr 

sample.  The analytical procedures for the instrumental analysis were developed for 

simple sample extraction, and used standard methods on a standard configuration GC-

MS.  The 300 torr sample and the remaining 1,170 torr sample have been stored for 

future testing should specific questions arise during surface measurements on Mars or 

should they arise regarding interpretation of the chemistry results. 

 

2.5.1 Methodology 

 During two of the test firings, the stainless steel heated sample lines carrying hot 

rocket exhausted gases outside the test chamber, through a heated boost pump, delivered 

the gases to a sample canister rather than to the FTIR-MGA instrument.  One of those 

sample containers collected only 300 torr of exhaust gases.  Since this is below 

atmospheric pressure, the sample can only be accessed through complicated line work 

and was thus not analyzed in these tests.  The other sample canister collected at a 

pressure of 1,277 torr, well above 760 torr (1 atm) was easily extracted and required no 

complicated processing. 

 A septum was attached to the canister outlet.  The attachment included a rubber 

stopper plate through which a syringe could be inserted to extract samples.  A small space 

of less than 0.25 mL volume was formed between the stopper and the closed-valve of the 

canister.  The canister had to be opened and bled significantly (3 or 4 times for several 

seconds) to flush air out of the chamber.  Samples were tested each time.  The oxygen 
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peak reduced significantly with each flush.  When the oxygen peak disappeared, it was 

assumed the chamber was emptied of air. 

 With the septum closed tight and the canister fully open, the small chamber was 

allowed to come to equilibrium with the gases in the canister.  The canister was then fully 

closed off from the chamber.  A 100 µL sample was extracted from the chamber, through 

the septum, with a 500 µL (Superco SGE) gas tight syringe.  The sample was carried 15 

feet and manually injected into the GC-MS (Shimaduz QP-5050A). 

 The injection temperature was 200 °C and interface temperature 280 °C.  The 

instrument control mode was split because the samples were large and plentiful.  The 

total flow rate was 21.7 mL/min under an inlet pressure of 100 kPa.  The final reported 

analyses were run for 5 minutes at a steady oven temperature of 50 °C.  Higher 

temperatures and ramped temperatures were unnecessary since the entire sample was 

gaseous and did not need to be volatilized.  With significantly longer runs (>1 hour) only 

the peak at 1.25 minutes was observed in the gas chromatogram and thus a 5 minute run 

was more than sufficient. 

 Prior to the sample analysis, air was run by identical sample delivery and GC-MS 

method.  The GC-MS method was also run without injection of any sample, and provided 

a true blank.  After all plume analyses were complete, the GC-MS was baked out using a 

very slow temperature ramp of 50 °C to 470 °C.  There were no indications of any less 

volatile substances remaining on the column. 

 

2.5.2 GC-MS Results 

 Table 2.4 shows the results for the mass spectrum of the air blank and plume 

sample. The blank, containing approximately 77% N2 and 21% O2, displays a mass 

peaks at 28 m/z (14+14 atomic mass units (amu)) with a relative intensity (Irel) of 100 

and at 32 m/z (16+16 amu) with an Irel

m/z 

 = 40.4. 
Air, I Sample, Irel Fragment rel 

    
15 0.0 5.2 NH 
16 3.1 88.8 NH
17 

2 
0.4 100.0 NH

18 
3 

0.8 3.8 ? H2O, NH
28 

4 
100.0 75.6 N

31 
2 

0.0 0.0  
32 40.4 1.2 O

Table 2.4. Results of GC-MS analysis. 
2 
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 The chromatogram for the 100 µL plume sample shows a single sharp peak with a 

retention time of 1.2 minutes.  This peak in turn resulted in a mass spectrum with three 

major peaks at 16m/z (Irel = 88.8), 17m/z (Irel = 100), and 28 m/z (Irel = 75.6).  These 

peaks can be assigned to NH2 (16 amu), NH3 (17 amu), and N2 (28m/z), respectively. 

Other very minor ammonia-related and water peaks are also present, probably for NH (15 

amu) and H2O (18 amu).  It should be noted that detection and analysis of H2 is 

extremely complex and requires special containers, handling, and procedures, thus no 

attempt was made to measure the H2

 

2.5.3 Interpretation of the results 

 content of the plume gases.  It is also important to 

note that no standards were used to construct calibration curves and thus no quantitative 

results are provided for any of the other constituents.  

 The most significant results of the GC-MS analysis are (1) that a major fraction of 

the thruster plume is composed of NH3 and (2) that no hydrazine is present.  As 

discussed above, the quenched equilibrium code for the Phoenix hydrazine thrusters 

predicts 36% NH3, 36% H2, and 27% N2.  The in situ plume gas analysis yielded 45% 

NH3 and 0.23% H2O.  Using absolute intensities and setting the level of NH3+NH2+NH 

at 45%, we can calculate the levels of N2 and H2O, as 18% and 0.8%, respectively.  Even 

though our results are not rigorously quantitative, these levels are reasonably close to 

those predicted by the model and performance criteria.  Taking into account all these 

results, it is reasonable to estimate that the plume contains about 45% (±5%) NH3

 The more significant result is that we found no indication in the mass spectrum, 

within our detection limits, of N

. 

2H4 (32 amu).  If any is present it is <1%, however, 

given that there is no confirmation peak at 31amu for N2H3, the peak at 32 amu is most 

likely due to O2

 The other major reaction product found in the plume sample is N

 contamination from air not fully evacuated from the container. 

2 and this 

strongly influences the specific heat ratio. This is discussed in Section 2.6.2.2.  This can 

typically range from 20% to 35% and the model predicts 27%.  Our estimated result of 

18% is low, but can be accounted for by the errors introduced if we allow for some 
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recombination of N2 and H2

 

 fragments to give NH. Now, we will explore the second 

phase of this research investigation.  

2.6 Flow physics of pulsed supersonic jet impingement at Mars pressure 

 An experimental testbed was developed to simulate the flow physics of the 

exhaust from a Phoenix pulsed rocket engine and its interaction with a flat surface.  

Indeed, all requirements for simulating these interactions were determined using non-

dimensional scaling parameters.  Numerical simulations were used to help the physical 

interpretation of the experimental results. 
 

2.6.1 Introduction 

 Plume-surface flow physics in tenuous to vacuum atmospheres due to steady 

supersonic jets have been studied by researchers in preparation for the Apollo missions 

[Roberts, 1966]. The main methods of characterizing these flows are to spatially and 

temporally determine the pressure fields and density gradients (Schlieren). There are 

three types of supersonic free-jets that exhaust from nozzles. The jet or rocket plume can 

either be underexpanded, overexpanded or perfectly expanded [Sutton and Biblarz, 

2009]. An underexpanded jet is when the jet pressure at the nozzle exit is larger than the 

ambient pressure. An overexpanded jet is when the ambient pressure is larger than the 

exit pressure, and perfect expansion of a jet occurs when both of these parameters are the 

same.  The jet pressure tries to match the ambient pressure which leads to large 

differences in their shock structure.  

 For an underexpanded jet, the exit jet pressure (Pn) is larger than the ambient (Pb) 

and this leads to Prandtl-Meyer (PM) expansion waves, initiated at the lip of the nozzle 

(shown as blue lines in Figure 2.3A1), which reduces the jet pressure to match the 

ambient. Due to reflection of the PM expansion waves in region 2 shaded in grey, this 

leads to a jet pressure smaller than the ambient in region 3. Hence, this results in the 

reflection of these expansion waves from the ambient boundary, resulting in PM 

compression waves.  The coalescing of the compression waves leads to oblique shocks 

shown as red lines. This results in the matching of the two competing pressures in region 

4. When oblique shock reflection occurs, the jet pressure is larger than ambient in region 
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5 and the process starts again.  These are known as “shock cells” which form as 

repeatable train-like structures as shown in Figure 2.3A1. They dissipate further 

downstream due to viscous losses and turbulent mixing with the ambient atmosphere. We 

show a planar-laser-induced-fluorescence (PLIF) spark image in Figure 2.3A2 and a 

contour image of the standard deviation of the mean velocity (standard deviation image) 

in Figure 2.3A3 of an underexpanded jet [Inman et al., 2009]. The standard deviation 

image correlates to turbulence intensity.  

 For an overexpanded jet, the exit pressure is smaller than the ambient and this 

leads to the formation of oblique shock waves at the nozzle lip shown in region 1 in 

Figure 2.3B1. The same dynamics as for the underexpanded jets are observed, but they 

are out-of-phase where it is now first compression and then expansion. The PLIF and 

standard deviation images are shown in Figures 2.3B2 and 2.3B3 respectively [Inman et 

al., 2009]. Turbulence and unsteadiness are much more pronounced for overexpanded 

jets which may lead to instability and faster dissipation of the plume structure. According 

to [Hagemann and Frey, 2008], the diffusion rate of the entrained flow into the turbulent 

mixing region, the interface region between the jet shock and the ambient atmosphere, is 

larger than the underexpanded case and increases axially. Due to overexpansion of the 

plume, the free atmospheric boundary pinches the jet inward, leading to an increase in the 

turbulent mixing region and attenuation of the inviscid core. For perfectly expanded jet, 

the criteria for both pressures to be matched are met at the nozzle exit and hence, no 

expansion or compression waves are observed.  
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Figure 2.3. Plume shock structure of underexpanded and overexpanded supersonic jets. (A1) Schematic of 
an underexpanded supersonic jet. (A2) PLIF spark image and (A3) PLIF standard deviation image [Inman 
et al., 2009]. (B1) Schematic of an overexpanded supersonic jet. (B2) PLIF spark image and (B3) PLIF 
standard deviation image [Inman et al., 2009].  
  

 Most rocket plumes exhausting from a descent engine on Mars or the moon are 

underexpanded and this classification will be the prime focus of our studies. However, as 

discussed in Section 3.5.1 and Appendix A.5.5., the plume structure and their effects on 

the surface are considerably different between the two atmospheres. Flow structures due 

to impinging steady jets were separated into three regimes as discussed by Donaldson and 

Snedekar [1971]: (a) free-jet; (b) impingement zone and (c) wall jet. These structures are 

mainly characterized by pressure and density fields at steady-state as done by Stitt [1961] 

for preparation of the first landings on the moon. We will briefly discuss the flow 

structures within the impingement zone and wall jet which are considerably the most 

important for ground erosion [Lamont and Hunt, 1980]. The plate shock, tail shock and 

stagnation bubble below the plate shock as shown in Figure 2.4A are important flow 

structures which we show directly influences the ground pressure. Plate shock is a normal 

shock wave reflected from an impermeable surface. Tail shocks are oblique shock waves 

which are reflected from the plate shock and emanate from the triple point. The triple 
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point is the region where the incident, plate and tail shocks converge as depicted in 

Figure 2.4A. Since the total pressure loss is much greater for a plate shock than for 

oblique tail shocks, there is ring of relatively high surface pressure. A portion of the flow 

below the plate shock cannot overcome these relatively large pressure gradients on the 

outboard of the plate shock, resulting in the recirculation of gas (stagnation bubble) as 

depicted by Figure 2.4A [Henderson et al., 2005]. For comparison, we depict the 

schematic and the Schlieren photograph (Figure 2.4B) of an underexpanded impinging 

jet. Past studies predominantly investigated these structures at steady-state conditions. 

Our main goal in this Chapter is to investigate the behavior of these structures in transient 

conditions.  

 
Figure 2.4. Plume shock structure within the impingement zone of an underexpanded jet. (A) Schematic of 
flow structures. [Pattison et al., 2005]; (B) Schlieren image distinctly showing a curved plate shock 
[Lamont and Hunt, 1976] 
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2.6.2 Experimental and computational methodologies 

2.6.2.1 Experimental methodology 

A half-scale cold flow (non-heated jet) test-bed (CFTB) was developed to study 

the impingement of supersonic pulsed jets on a flat surface at Mars ambient pressure 

(Fig. 2.5).  The thruster firing frequency, the duration of the pressure pulse, and the 

chamber pressure (PC) were adjustable.  Dry compressed nitrogen gas at room 

temperature was used to simulate hydrazine decomposition products because it has a 

similar specific heat capacity ratio. The importance of this parameter in scaling is 

discussed in the following section. Fast response absolute micro-electro-mechanical 

system (MEMS) pressure sensors were placed radially across the impingement plate at a 

spacing distance of 27.5 mm between sensors.  A gauge pressure transducer was placed at 

the nozzle inlet which measured the stagnation pressure of the incoming flow. Both 

transducer and MEMS sensors each had a response time of 1 msec. One thermocouple 

was also placed at the plate’s centerline.  One ½ scale thruster with a similar nozzle 

contour profile as the Phoenix MR-107 descent engine nozzle was horizontally mounted 

inside a thermal-vacuum chamber, which was set to an ambient pressure of 690 Pa and 

ambient temperature of 290 K.  The ambient pressure within the thermal-vacuum 

chamber was generated by a mechanical pump and monitored by a transducer with a 

response time of 1 msec at a maximum sensitivity of 1000 Pa. During the constant 

velocity descent phase of the Phoenix spacecraft, the rocket plumes are pulsed at a 10 Hz 

frequency, with a 55-45 msec pulse width, a maximum chamber pressure (PC-max) of 1.24 

MPa, and a chamber pressure (PC) rate of change during engine startup/shutdown cycles 

of approximately 152 MPa/s. Our CFTB system generally met all these requirements as 

shown in Table 2.4, but it took many design iterations to obtain the required performance. 

The thruster chamber pressure and the ground impingement pressures (Ps

 

) were measured 

at a sampling rate of 48 kHz.  The thruster altitude (i.e., the distance of the thruster exit 

plane from the impingement plate) can be adjusted from 0.25 m (scaled touchdown 

altitude) to 1 m above the surface.  
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Table 2.5. Specifications of performance parameters between Phoenix rocket motor and ½ scale cold gas 
thruster. 

 

 

 

Figure 2.5. (Top) Schematic of ½ scale Phoenix nozzle contour. All dimensions are in inches. Courtesy of Lockheed 
Martin. (Bottom) Schematic of the CFTB experimental setup at University of Michigan [Mehta et al., 2007]. 

Parameters 
  

MR-107N ½ scale 

Total pressure at inlet (kPa) 1240 1240 
Total temperature at inlet (K) 1116 300 
Jet pressure at exit (kPa) 3.24 3.09 
Jet density at exit (kg/m3 0.03 ) 0.19 
Jet velocity at exit (m/s) 1929 712 
Jet mass flow rate (kg/s) 0.16 0.11 
Pulse frequency (Hz) 10 10 
Pulse width (s) ~0.055 ~0.065 
Firing duration (s) <2.0 ≤0.3 
Nozzle diameter at exit (cm) 6.25 3.13 
NH3 0.49  exhaust mass fraction (a.u.) 0.0 
Maximum thrust (N) ~300 ~160 
Exhaust plume products N2, H2, NH N3 2 
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2.6.2.2  Scaling laws for rocket plume flow physics  

 Theoretical scaling laws prove that subscale cold gas jets can simulate the shock 

structure and ground pressure values due to full-scale rocket plume interactions. This is 

proven through first principles by normalizing the conservation equations. The governing 

compressible Navier-Stokes equations (Eqns. 2.5 – 2.7) are presented in symbolic 

notation below [Schlichting and Gersten, 2001]: 
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Where T, p, ρ, v, λ, β, cp φ, τ, t and are the plume temperature, pressure, density, 

velocity, thermal conductivity, coefficient of thermal expansion, isobaric specific heat 

capacity, the viscous stress tensor, time and the rate of viscous dissipation, respectively. 

The volumetric force is denoted by f. Arrows above the parameter denote that these terms 

are vectors. These compressible Navier-Stokes equations are normalized with the 

following parameters [Schlichting and Gersten, 2001]:  
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All the reference parameters are taken at the nozzle exit (denoted as a subscript e) 

with a diameter of D. The length scale and plume viscosity are denoted by x andµ , 

respectively. Upon substituting the reference parameters (Eqn. 2.8) into equations 2.5, 2.6 

and 2.7, the normalized Navier-Stokes equations become:  
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 The speed of sound at the nozzle exit is denoted by ce
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. Substitute Eqn. 2.12 into Eqn. 

2.11 for compressible ideal gas flow and equation 2.11 becomes:  
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 Hence, the flow physics of the rocket plume/supersonic jet is a function of the Reynolds 

number (Re), Froude number (Fr), Mach number (Ma), Prandtl number (Pr) and specific 

heat ratio capacity (γ). However, simplifications can be made due to the supersonic flow 

regime. For example as Fr ∞, the first term on the right hand side of Eqn. 2.10 tends to 

zero. Also as Re ∞ and applied to Eqns. 2.10 and 2.11, characteristic of supersonic 

flows, the flow can be considered inviscid. This is valid for supersonic jet interactions in 

all regions except at the viscous boundary layer. Here viscosity of the jet plays a role. 

However, the ground total pressure has a relatively minor dependence on the jet viscosity 

for large Reynolds number and this is known as the Barker effect [Schlichting and 

Gersten, 2001; Barker, 1922].  
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 Alternatively another more simplified thermodynamics approach to Eqn. 2.11 is 

shown below: 
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Where Et , IE, KE, cv and R are the total energy (Et), internal energy (IE), kinetic energy 

(KE), isovolumetric specific heat capacity (cv
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) and gas constant (R) of the plume. By 

substituting the thermodynamic definition of the internal energy and kinetic energy of 

chemical specie, equation 2.15 becomes equation 2.16. Equation 2.17 results from 

normalizing equation 2.16 by the internal energy. Substitute equations 2.19 and 2.18 into 

2.17 and apply the definitions of Mach number and specific heat ratios and the 

conservation of energy equation becomes: 

 

 

Where k is known as the Mach similarity parameter and this is a function of both Mach 

number and specific heat ratios which is consistent with the normalization of the 

governing compressible Navier-Stokes equations (Eqn. 2.13) for the supersonic regime. 

To ensure dynamic similarity within the plumes between the supersonic jet and rocket 

plume, the Mach number and specific heat ratio need to be matched. Also, the Reynolds 

number must be within the turbulent regime (>104). Similar analyses need to be applied 

to the boundary conditions imposed by these flows. 
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 There are two types of surface boundary conditions for this application: (a) free 

boundary and (b) solid boundary. The free surface boundary is defined as the 

infinitesimal interface between the exhaust plumes and the ambient atmosphere (P∞
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this interface region near the nozzle exit, the entrained flow velocity and temperature are 

continuous to the plume. The solid surface boundary, intuitively, is defined as the solid 

surface where the jets interact. At the free boundary [Schlichting and Gersten, 2001]: 

 

Substituting equations 2.21-2.23 into the normalized parameters shown in equation 2.8, 

these parameters become: 
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Since the specific heat ratio and the nozzle area expansion ratio are similar for full-scale 

and subscale systems, the dynamic pressure at the nozzle exit, 2
eeUρ , will be similar 

from isentropic relations provided the stagnation pressure at the nozzle inlet, PC 
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matched. The flow is isentropic at the nozzle exit, and this is a valid assumption due to 

the adiabatic and reversible nature of the flow through the diverging section of the nozzle 

[Anderson, 2006]. It should be noted that 1-D isentropic relations are only valid in 

regions of PM expansion and not throughout the exhaust plume. By manipulating 

equation 2.24, another nondimensional term named the jet expansion ratio (e), developed 

from the boundary conditions, needs to be satisfied:  

 

 PC needs to be matched for both full-scale and subscale systems for equation 2.27 

to be satisfied and this is defined as the nozzle pressure ratio (NPR), α. PC-max is defined 
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as the stagnation chamber pressure when maximum engine thrust is reached. The NPR 

and jet expansion ratio are defined as follows:  
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 The normalized boundary conditions at the solid surface are the following:  
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 The dimensional term, Ts

 The specific heat ratio for the gas mixture of hydrazine combustion products at 

the nozzle exit is not analytically straight-forward to determine.  This parameter is 

numerically calculated throughout the internal nozzle using two-dimensional Method of 

Characteristics solutions fully coupled with finite-rate kinetics. From these numerical 

calculations, the specific heat ratio between the rocket plume and N

, is the surface impingement temperature. According to the 

governing Navier-Stokes equations and boundary conditions specific for supersonic jet 

interactions, there are five nondimensional numbers that need to be satisfied to ensure 

dynamic similarity: γ, Ma, Re, e, α. From equation 2.30 and the matching of these 

required nondimensional numbers, the ground pressure is theoretically simulated. The 

ground temperature can also be calculated from this approach, but it is not of interest in 

these applications.  Below is a description of each of these parameters.  

2

The exit Mach number between the two flows is matched by simulating the 

nozzle expansion ratio, nozzle contour profile and the specific heat ratio.  This ensures 

that the compressibility effects are simulated within the plume. This is also confirmed by 

numerical simulations. The Mach similarity parameter, as derived above, is a function of 

 show good 

agreement as tabulated in Table 2.6.  Using OVERFLOW CFD code, the specific heat 

ratio throughout the exhaust plume is ~1.4 [Van Norman, 2010] and hence, nitrogen test 

gas was used for our experiments.    
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the exit Mach number and specific heat ratio and is defined as the ratio of the kinetic 

energy of the plume to the internal energy of the plume at the nozzle exit [Land and 

Scholl, 1966], 
2)1( Mk −= γγ          (2.33) 

 There are four flow regimes determined by the Reynolds number in increasing 

order: (a) Stokes or creeping (<1), (b) laminar (100-103), (c) transition (103-104) and (d) 

turbulent (>104

 The other parameter, as derived above, used to scale our CFTB is the jet 

expansion ratio of the exhaust plume at the nozzle exit.  This term has important physical 

interpretations as well. The pressure force ratio of the rocket plume at the nozzle exit (F

) flows. For rocket plumes and supersonic jets used in the experiments, the 

flow is fully-turbulent. It can be seen from Table 2.6 that the rocket exhaust plume and 

supersonic jet are within the same flow regime.  

e) 

relative to the atmosphere (F∞) is important in determining both the jet expansion angle 

of the plume with respect to the centerline [Clark, 1971] and shock structure of the plume 

as described in Section 2.6.1. This parameter described the effects of the ambient 

atmosphere on the exhaust plume. Its’ far-field effects are described in more detail in 

Section A.5.5, Appendix A. This in turn is determined by the ratio of nozzle exit pressure 

(Pe) to ambient pressure (P∞

∞∞∞
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eee

) [Clark and Conner, 1969], 

.           (2.34) 

The final scaling parameter used is the nozzle pressure ratio (Eqn. 2.28).  This 

parameter is obtained by normalizing the maximum stagnation pressure of the nozzle 

inlet (PC-max

By matching these nondimensional numbers and the geometric length scaling 

with respect to the nozzle diameter, the ground pressure profiles and the plume and 

) with respect to the ambient atmospheric pressure.  NPR is an important 

parameter in ensuring that the CFTB has ground pressure profiles similar to the full-scale 

case of the real size and performance of the rocket motor. Simulation of the thruster 

plume temperature is not critical in understanding the force loads on the surface [Roberts 

et al., 1982]. This is further corroborated by normalization of the conservation of energy 

(Eqn. 2.13) which is only a function of the Mach similarity parameter for supersonic 

turbulent flows.  
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impingement flow structures produced by the CFTB theoretically simulates those 

produced by the rocket exhaust.  This is further confirmed by comparing full-scale and 

subscale numerical analyses as described in Sections 2.6.5.3 and A.5.8 (Appendix A). 

Table 2.6 quantitatively compares non-dimensional plume parameters between the 

experimental setup and full-scale. Based on the similarity of the nondimensional 

parameters shown in Table 2.6, the subscale CFTB theoretically simulates the 

interactions of the Phoenix rocket plume with the impermeable surface. The rocket 

exhaust parameters may vary slightly depending on the extent of ammonia disassociation 

during the hydrazine decomposition reaction described in Section 2.3.1. 

 
Parameters Full-Scale Experiment 
   
k  11.4 12.7 
e 3.8 4.4 
α ~1500 1550 
Ma 4.7 4.8 
γ 1.38 1.4 
Re 3.4 x 10 12.7 x 105 

Table 2.6. Exhaust plume non-dimensional scaling parameters. 

5 

 
2.6.2.3 Computational methodology 

 In addition to the experimental study, we also used 3-D and axisymmetric 

computational fluid dynamics (CFD) models to study the transient impingement of the 

Phoenix thruster plume on the surface.  The full Navier-Stokes equations were solved 

over the entire domain including the nozzle internal flow, where a total temperature, total 

pressure boundary condition was used to satisfy inlet conditions. Unsteady, compressible 

inviscid and turbulent numerical solvers of the finite volume based ANSYS Inc. 

FLUENT code were used.  Structured mesh generation was developed for the flow 

domain using ANSYS Gambit.  Grid adaption and an iterative time stepping size of 1 

μsec were applied to the computational models to resolve shocks and capture small 

transient events. This CFD study was done in collaboration with Lockheed Martin’s 

Aerophysics Department where they ran the Aerosoft GASP numerical code.  Time series 

of thruster chamber pressure measured during hot fire (rocket engine testing) and cold 

flow tests were used to force the CFD models [Huseman and Bomba, 2000]. More details 
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regarding the flow domain and boundary conditions for these numerical codes are 

described in Appendix  A (see section A.4.2).  

2.6.3 Experimental results 

 The main data obtained from our experiments were the time-series of both the 

ambient pressure and PC profiles and ground pressure time series and spatial profiles.  All 

pressure profiles were normalized with respect to the average maximum PC value and all 

dimensions were normalized with respect to the nozzle exit diameter. From temporal 

ground pressure profiles at touchdown altitude (Fig. 2.6) and Mars atmospheric pressure, 

the centerline peak pressures at the ground vary between 35 and 20 kPa (non-dimensional 

ground pressure values of 0.028 and 0.014, respectively).  These surface overpressures 

last between 10 and 18 msec (Fig. 2.6), which is repeatable for the two 100 msec pulse 

firing sequences.  The PC pulse firing sequence is comprised of: 10-12 msec PC ramp up; 

40 - 50 msec of relatively constant maximum PC value known as the quasi-steady state 

regime; and 30 msec PC ramp down (Fig. 2.6).  The pressure amplitude is largest at the 

centerline and it decreases nonlinearly with nozzle-to-surface distance as discussed in 

Section 2.6.6.  During the quasi-steady state regime, at a non-dimensional altitude of 

h/De = 8.4, the pressure amplitude is about 5 kPa (Ps/PC-max = 0.005) for about 40 to 50 

msec into each power cycle.  The quasi-steady state regime is defined to be when the 

ground pressure is relatively constant with time during the full-thrust duration. Only two 

thruster firing cycles were captured due to a significant increase in the vacuum chamber 

ambient pressure by 500% which alters the ground pressure due to change in the jet 

shock structure [Mehta et al., 2007].  These repetitive and transient ground overpressures 

illustrated in Figure 2.6 do not occur in experiments with steady-state (non-pulsating) 

supersonic jets at Mars atmosphere as illustrated in Figure A3 (Appendix A.5.7) or 

pulsating supersonic jets at Earth atmosphere.  The physical reason of this difference is 

explained in more detail below. 
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Figure 2.6.  Non-dimensional thruster chamber pressure (PC) and ground pressure (Ps) time series during 
two complete ~50 msec pulse width thruster firing cycles at the Phoenix touchdown altitude (h/De = 8.4). 
The thin dark line is the centerline ground pressure profile as a function of time. The thin light line is the 
ground pressure profile at 27.5 mm from the centerline. The dashed and thick dark lines are the back 
(ambient) pressure and PC time series profiles, respectively.  The quasi-steady state regime occurs between 
25 and 70 msec for the first firing cycle and between 115 and 155 msec for the second firing cycle. For the 
first engine cycle, plate shock formation occurs between 10 and 20 msec and approximately between 60 
and 75 msec during plate shock collapse. Measurement error of ground pressure is 2.5% of full-scale value 
and measurement error of PC

 
 is 1% of full-scale value.   

 Further evidence of ground overpressure are seen in the spatial ground pressure 

profiles presented in Figure 2.7.  At t = 112 msec, around the time of the first 

overpressure during the second firing cycle, the centerline pressure amplitude is 16 kPa 

(Ps/PC-max = 0.013) and that during the quasi-steady state phase at t = 136 msec the 

pressure amplitude decreases to 5 kPa (Ps/PC-max = 0.0042).  It can be seen that during the 

quasi-steady state regime, the ground pressure is relatively constant up to approximately 

r/De

 For pulsed jets at an e = 0.02 at touchdown altitude, transient overpressures were 

not observed and a maximum normalized pressure of less than 0.003 was measured. 

Between moderately underexpanded and highly overexpanded jets, we observe 

approximately up to two orders of magnitude increase in the maximum ground pressure.   

 of 0.9 and then it decreases monotonically.  
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Figure 2.7. Ground pressure profile (Ps) non-dimensionalized with the maximum chamber pressure (Pc-max), 
as a function of non-dimensional distance from the centerline at the ground in two phases of the thruster 
firing cycle at an altitude of h/De

 

 = 8.4: before (112 msec) and during (136 msec; 144 msec) fully 
developed plate shock formation. Measurement error of ground pressure is 2.5% of full-scale value. 

2.6.4 Numerical results 

 Figure 2.8 shows the Mach contour – time sequence profiles of a pulsed 

supersonic jet impinging on a flat surface at an altitude of h/De = 25.  These calculations 

were done at Mars ambient pressure conditions and ambient temperature of 298 K.  The 

plume properties were those of dry nitrogen at temperature of approximately 300 K, 

similar to the experimental conditions.  Similar characteristic transient ground 

overpressures were observed with a maximum centerline pressure of 40 kPa (Ps/PC-max = 

0.032) with a duration between 10 and 15 milliseconds.  This also developed during PC 

ramp up and ramp down phases [Mehta et al., 2007]. 
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Figure 2.8.  Plate shock formation and collapse process at h/De = 25 from axisymmetric, compressible, 
unsteady numerical simulations. (A) Mach contours profiles of the plate shock dynamics. Mach contour 
range is from Mach 0 to 11 and a legend is provided in the figure. (B) Non-dimensional ground pressure 
profiles as a function of non-dimensional distance from the centerline during four stages of the plate shock 
collapse process: quasi-steady state regime (28 msec); PC ramp down (54 msec); Plate shock collapse (61 
msec); and complete PC

 

 ramp down (88 msec). The Pc profile for this case has a pulse-width of ~50 msec 
representative of the Phoenix pulse-modulated engines during the terminal descent phase of EDL.  

 Figure 2.8B shows the spatial ground pressure profiles at varying stages of the 

plume impingement process.  It indicates that the ground pressure peak of 21 kPa (Ps/PC-

max = 0.017) at r/De = 0.9 is observed during the quasi-steady state regime.  Minor 

pressure perturbations of approximately 2.1 – 3.8 kHz were also observed during this 

regime [Mehta et al., 2007].  During the ground overpressure regime when PC ramp 

down occurs, a monotonic spatial increase in centerline pressure is observed with a 
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maximum of 35 kPa (Ps/PC-max = 0.028) at t = 61 msec.  As qualitatively observed in our 

experimental results, the spatial ground pressure is relatively constant in the quasi-steady 

state regime at ~16 kPa (Ps/PC-max = 0.013) up to a non-dimensional radial distance of 

approximately r/De = 0.8 at t = 28 msec.  During the start of PC ramp down, the 

centerline pressure decreases to ~12.4 kPa (Ps/PC-max = 0.01) at t = 54 msec with a similar 

spatial profile.  During complete PC

 Another important feature of these jets at Mars atmospheric pressure is their 

tightly collimated plume structure as shown in Figure 2.8.  We observe minimal 

dissipation of the structure and jet pressure for large axial lengths. This is characteristic 

of moderately underexpanded jets and as discussed in Appendix A, this is not observed 

for highly overexpanded or underexpanded jets.   

 ramp down, where the thruster inlet stagnation 

pressure is below 20% of its’ maximum value, there is a small monotonic pressure profile 

with a maximum non-dimensional ground pressure of 0.002 at the centerline. 

 

2.6.5 Interpretation of experimental and numerical results  

 Results of the cold flow testbed and numerical simulations, described above, 

show qualitative and quantitative similarity. Both of these studies suggest that a highly 

unstable normal plate (bow) shock (Fig. 2.4A) and possibly stagnation bubble form and 

collapse at the ground during the engine startup and shutdown portions of each power 

cycle, respectively.  However, the large overpressures at the ground are primarily 

associated with the formation and collapse of this plate shock.  The amplitude of the 

largest overpressures depends on the stagnation pressure rise and fall rates, atmospheric 

density or jet expansion ratio, and most importantly, the strength or Mach number of the 

plate shock. A relatively constant spatial ground pressure profile along the span of the 

plate shock diameter as observed in Figures 2.7 and 2.8B is indicative that a fully 

developed shock has formed near the surface.  It can also be seen for a ½ scale thruster, 

the fully developed plate shock diameter is ~5 cm.  We also note that during Pc 

 From Figure 2.4A, the other flow features directly related to this interaction 

during the quasi-steady state regime are symmetric oblique tail shocks that emanate from 

the triple point and may impinge on the surface [Krothapalli et al., 1999].  The triple 

ramp 

down the plate shock diameter decreases and eventually collapse.  



 

 45 

point region is where the reflected incident, plate and tail shocks converge. The relatively 

small ground pressure peak of 21 kPa (Ps/PC-max = 0.017) observed at r/De

 The wall jet, the last flow feature of interest, was not discernable from our 

temporal or spatial pressure profiles due to low spatial resolution. From the Mach 

contours, the plume impingement at the surface creates a supersonic wall jet that 

propagates along the ground at Mach 2 (Fig. 2.8). This is further supported by small 

secondary pressure peaks at r/D

 ~0.9 in Figure 

2.8B probably result from flow passing through the oblique tail shock boundary which 

has a higher pressure recovery than a normal shock [Krothopalli et al., 1999].  

e

 Although the ground pressure values are different due to different h/D

=3.5 in which the flow went through a compression 

wave. The wall jet can cause considerable soil erosion and dust lifting. These successive 

overpressures and the associated ground shock vibrations may lead to site alteration and 

this is further discussed in Section 2.6.6. 

e

 

 cases, an 

important finding is that the qualitative temporal and spatial ground pressure profiles are 

the same for two different altitudes.  However, the GASP numerical solver was used to 

provide a more accurate quantitative comparison between the experimental 

measurements and numerical simulations. Both temporal (Fig. 2.9A) and spatial (Fig. 

2.9B) ground pressure profiles of the cold flow testbed measurements and numerical 

simulations are consistent with each other [Mehta et al., 2007].  There are some 

discrepancies, but the general flow physics can be extrapolated from this analysis. For 

example, the onset of the overpressure is delayed for the experimental measurements by 

~5 ms and its’ magnitude is less than those recorded numerically. The discrepancies can 

be attributed to limitations to both the hardware sampling frequency and numerical model 

assumptions. The Pc profile used for the numerical simulation has a slightly larger pulse-

width than for the experiments. Some of these inconsistencies could be attributed to the 

high instabilities within the plate shock and as discussed in the following section, as 

being more likely.  
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Figure 2.9. Comparison of axisymmetric numerical simulations and experimental measurements of pulsed 
supersonic N2 jet interactions at h/De = 8.4. (A) Temporal centerline ground pressure (dashed lines) and Pc

 

 
(solid line) profiles; (B) Spatial ground pressure profiles and Mach contour. [Gulick, 2006] 

2.6.5.1 Plate shock dynamics  

The dynamics of the impingement of a pulsed rocket plume with the surface at 

low ambient pressure is illustrated in Figure 2.8A and can be seen by a transient 

numerical simulation (Movie D2, Appendix D).  From numerical and experimental 

results, we deduced the following mechanism for this complex interaction. At the start of 

the engine duty cycle, PC ramp up, isentropic expansion waves coalesce into accelerating 

shock waves, which propagate downward from the converging-diverging nozzle and 

impinge on the ground [Courant and Friedrich, 1999].  This sudden compression causes 

an increase in the flow momentum and ground pressure, which is defined as the pre-plate 

shock formation stage.  An irreversible and detached normal shock forms when 

compression/oblique shock waves are reflected by the ground and coalesce at a particular 

distance upstream from the flat surface (shock stand-off distance) [Lamont and Hunt, 

1980].  The non-isentropic behavior and viscous dissipation across this normal shock 

boundary causes a decrease in ground total pressure, attributed to a sudden decrease in 

plume velocity across the boundary [Anderson, 2004]. The loss in the total pressure or 
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pressure recovery across the normal shock is directly a function of the shock strength 

(Mach number) and orientation (oblique or normal) [Lamont and Hunt, 1980].   

Additional ground pressure perturbations are caused by instabilities at the 

boundaries of a stagnation bubble and plate shock that forms during the quasi-steady 

portion of the duty cycle (25 to 70 msec during the first cycle and 115 to 155 msec during 

the second cycle all illustrated in Figure 2.6).  Plate shock fluctuations normal to the 

surface also contribute to the ground pressure perturbations [Henderson et al., 2005].  

These fluctuations during the quasi-steady regime are not readily observed in the 

experimental data because of the limited sampling rate, but are observable in numerical 

simulations.  Theoretically, as the shock stand-off distance decreases, the ground pressure 

increases due to smaller gas expansion over a smaller plume volume below the plate 

shock.  When, on the other hand, the stand-off distance increases, the ground pressure 

decreases because of an increase in the plume volume below this shock which facilitates 

expansion and momentum dissipation. Henderson et al [2009] shows that the axial 

oscillations of the plate shock are due to the motion of both the contact surface, which 

separates shock driven flow and stagnant ambient flow, and the stagnation bubble. These 

pressure fluctuations due to normal shock oscillations are also observed during its’ 

formation and collapse as shown by an axisymmetric transient simulation (Movie D3, 

Appendix D).   

Once the thruster inlet stagnation pressure to ambient pressure ratio is not large 

enough to support a normal shock at the surface during PC ramp down phase, the plate 

shock and/or stagnation bubble collapses, leading to the propagation and impingement of 

weak shock waves.  Through gas compression, this considerably increases the ground 

pressure similar to the mechanisms described above [Mehta et al., 2007].  Once the plate 

shock is absent during complete PC ramp down, the ground pressure monotonically 

decreases with decreasing thruster inlet stagnation pressure as would be seen for subsonic 

jet impingement (Fig. 2.8B) [Donaldson et al., 1971].  From our results, this mechanism 

causes large pressure spikes observed at the beginning and end of each engine power 

cycle (Figs. 2.6 and 2.9A).  Numerous tests confirmed that the overpressures correlated to 

engine thrust cycling. The plate shock acts to decelerate the impinging jet flow and 
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increase pressure loss which leads to a relative decrease in the ground pressure and the 

observed overpressure peaks.  

The plate shock dynamics can also be seen by spatial ground pressure profiles 

(Figures 2.7 and 2.8B).  As described above, once a plate shock is fully developed, the 

ground pressure at the centerline drops and remains relatively constant along the plate 

shock diameter.  Once pre-plate shock formation or post-collapse occur, a monotonic 

increase in spatial ground pressure is observed due to direct impingement of compression 

waves. This further validates the dynamic process of the normal stand-off shock due to 

pulsed underexpanded jet impingement. 

By applying this proposed mechanism and the lack of large pressure gradients and 

characteristic overpressure peaks, pulsed supersonic jets at Earth atmosphere at an h/De

 

 = 

8.4 and e = 0.02 never developed a plate shock at the surface.  This is described in more 

detail in Appendix A, Section A.5.5 

2.6.5.2 Asymmetries due to adjacent plume interactions 

Although most of the studies presented thus far are primarily concerned with 

single jet interactions, we will briefly discuss the ground pressure and shear stress (tau) 

behavior due to two adjacent underexpanded N2 jets with a nozzle spacing of x/De = 0.1, 

similar in geometric configuration as adjacent Phoenix descent engines. A 3-D steady 

state numerical simulation was developed to understand possible asymmetries at the 

surface. In contrast to the radial symmetry of single subsonic and supersonic jet 

interactions [Phares et al, 2000], adjacent jets develop large asymmetries in both ground 

pressure and wall shear stress parameters as shown in Figure 2.10. There are no 

symmetric ring-like contour profiles, but rather asymmetric semi-circular high pressure 

and shear stress regions. This may be attributed to shock-shock Riemann interactions 

[Menikoff and Plohr, 1989] which develop a merged shock with higher strength at both 

the near-field and far-field regimes. Hence, the plate shock is almost twice in diameter as 

observed for a single jet case. This merging could lead to a noncoplanar development of 

the normal shock, resulting in asymmetry in ground pressure. This may also affect both 

the tail shock and the flow behavior of the supersonic wall jets, leading to asymmetry in 

the wall shear stress. These wall jets are caused by flow expansion, developing mainly 



 

 49 

from flow across the tail shock and propagating along the surface (Fig. 2.8A) [Carling 

and Hunt, 1974]. Hence, these results demonstrated the need for 3-D numerical 

simulations of the six pairs of Phoenix REM plume interacting at the surface.      

 

 
Figure 2.10 3-D numerical simulation of two adjacent underexpanded N2 jets interacting at the surface at 
h/De

 

 = 25. Contour s of (A) wall shear stress normalized by ambient pressure and (B) normalized ground 
pressure; (C,D) Tau and ground pressure profiles along the x and y centerlines.  (E) Mach contour  

2.6.5.3 Comparison of full-scale and subscale analyses 

First, a single full-scale descent engine was numerically modeled and we 

observed good agreement with data from subscale experiments. This profile is shown in 

Figure A16, Appendix A. This was an important result, because it partially confirmed the 

validity of our scaling laws. Full-scale rocket test firing at simulated martian conditions 
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that record both temporal and spatial ground pressures are needed to fully validate these 

laws.   

Once numerical and experimental results showed relatively good temporal and 

spatial agreement, the numerical code GASP was used to model full-scale three-

dimensional cases for adjacent thruster plumes impinging at the surface. The 

computational domain spans a 60° wedge where two engines are modeled and is bounded 

by symmetry planes [Gulick, 2006]. This domain is then extrapolated to obtain the Mach 

and pressure contour profile of the full 360° Phoenix Lander as shown in Figure 2.11. 

More details in regards to the development of the flow domain and boundary conditions 

are described in Appendix A.4.2.  Due to adjacent plume interactions and non-linear 

shock/shock interactions as described in the previous section, the plate shock 

demonstrates noncoplanarity and oscillates in three-axes, leading to both asymmetric 

high pressure regions (Fig. 2.11A) and ground pressure fluctuations (Fig. 2.11B) during 

the quasi-steady regime. Most importantly, characteristic overpressure peaks are 

observed during rapid engine start-up and shut down, suggesting the mechanism of plate 

shock formation and collapse. These numerical simulations show that the spatial ground 

pressure profiles between the full-scale (Fig. 2.11) and subscale (Fig. 2.10) systems show 

good agreement and further confirm the use of these scaling laws.  

 

 
Figure 2.11. Three-dimensional numerical simulation of full-scale interacting REM plumes exhausting into 
a martian atmosphere. (A) Mach and normalized pressure contours of steady REM plumes interacting at the 
surface at an altitude of h/De = 8.4 and 0° slope [Gulick, 2006] (B) Centerline ground pressure (green 
curve) and Pc (red curve) temporal profiles due to 0.1 s jet pulse at an altitude of h/De

 

 = 21.9 and 0° slope. 
The dashed line is the centerline ground pressure solution for steady-state numerical simulation. [Gulick, 
2006] 
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2.6.6 Site-alteration and dust lifting  

 Various mechanisms due to the pulsed rocket plume scheme can lead to 

significant soil erosion and dust lifting.  The overpressures described above and the high 

surface shear stress associated with the supersonic wall jets can lead to soil erosion and 

dust lifting.  Large and rapid pressure fluctuations might cause soil liquefaction [Youd, 

2001].  Soil liquefaction is defined as the fluid-like state of granular media. Ground shock 

vibrations caused by these large transient overpressures super-imposed by the pulsing 

quasi-steady state overpressure regions may disrupt the soil and break the particle-to-

particle cohesive forces.  This can decrease the bearing capacity, maximum average 

contact pressure between the foundation and the soil to prevent shear failure, and increase 

the fluidization of the soil, possibly leading to lateral ground failure and crater formation 

[Vitton et al., 1990]. This similar mechanism provides a hydraulic mining pulsed water 

jet to excavate heavy granular and rock material [Kolle, 1994].  The extent of ground 

failure depends on the soil properties, surface impingement pressure, ground shear stress 

[Romine et al., 1973] and the dynamic interactions between the thruster plume and the 

ground [Youd, 2001].  The minimum ground pressure threshold before erosion takes 

place at a simulated martian environment is approximately ~2 kPa for soil similar to dune 

sand or lunar nominal [Romine et al., 1973].  

Also, depending on whether the shock cell is within the compression or expansion 

zone near the surface results in a non-linear behavior of ground pressure with altitude, 

which presents itself differently than for the asymptotic profiles of subsonic jets [White, 

1996]. These pressures are relatively independent of altitude and oscillate around a mean 

value for small h/De (< 40). The overpressure and quasi-steady state ground pressure can 

significantly change in magnitude as can be seen for the two non-dimensional altitude 

cases presented here: h/De

 

 = 8.4 and 25. This high variability is further shown in Figure 

2.12. We see good qualitative agreement between experimental observations of cold gas 

simulations [Romine et al., 1973] and 3-D numerical results of full-scale systems [Gulick, 

2006]. This variability may also lead to further disturbance of soil during spacecraft 

descent.  
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Figure 2.12 High variability of ground pressure vs. altitude profiles due to shock wave interactions. (A) 
Limited experimental results (red profile) compared to NASA WSTF and NASA LaRC studies using a 
single nozzle [Romine et al., 1973]; (B) Numerical result for full-scale Phoenix REM plume interactions at 
both steady state and transient conditions.  Green curve - earlier numerical solution in support of the Mars 
Surveyor Program (MSP) [Gulick, 2006].  

 
 According to Romine et al [1973], there are three main mechanisms that lead to 

site-alteration and dust lifting: (a) bearing capacity failure; (b) viscous erosion and (c) 

diffused gas erosion.  Through extensively developed scaling laws which address these 

three mechanisms, we can properly scale earth-gravity based tests for Mars conditions 

(Chapter 3).  All three mechanisms may play a significant role in site-alteration and dust 

lifting due to Phoenix’s pulsed thrust impact on the surface.  Also, the recent discovery 

that Mars northern polar region surface has extensive soil-depth variability, ranging from 

5 cm to greater than 20 cm [Bandfield, 2007], has made understanding site-alteration and 

dust lifting important for Phoenix science operations.  Due to the importance of 

understanding ground pressure profiles of thruster plume interactions, further studies 

were conducted in support NASA’s new Mars mission.  
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 The main parameter that is used to determine the extent of jet-induced soil erosion 

is the surface pressure profile of the impinging jet or rocket plume [Romine et al., 1973]. 

As discussed in Chapter 3, soil pore pressure and soil properties are directly dependent on 

the surface pressure. However, this investigation shows that along with surface pressure 

magnitude and spatial profiles, the temporal pressure profile is also a critical parameter in 

determining the flow physics of the exhaust gas within the granular media.  

 

2.6.7 Flow physics of steady supersonic jet impingement at varying atmospheric 

regimes  

 Numerical and experimental investigations of both far-field and near-field 

supersonic steady jet interactions with a flat surface at various atmospheric pressures are 

presented in Appendix A. These studies were done in support of the NASA Mars Science 

Laboratory mission. Temporal and spatial ground pressure measurements in conjunction 

with numerical solutions at altitudes of 35d and jet expansion ratios between 0.02 and 

100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket 

exhaust plumes at Mach ~5.  Due to engine cycling, overpressures and the plate shock 

dynamics are different between pulsed and steady supersonic impinging jets. In contrast 

to highly over-expanded and underexpanded exhaust plumes, results show that there is a 

relative ground pressure load maximum for moderately underexpanded (e ~2-5) jets 

which demonstrate a long collimated plume shock structure. For plumes with e >>5 

(lunar atmospheric regime), the ground pressure is minimal due the development of a 

highly expansive shock structure. This is dependent on the stability of the plate shock, the 

length of the supersonic core and plume decay due to shear layer instability which are all 

a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground 

pressure profile and large transient overpressures are predominantly linked to the 

dynamics of the plate shock as discussed in this Chapter. Results also show that subscale 

supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume 

impingement provided important scaling parameters are in agreement. More importantly, 

this study shows that thruster plumes exhausting into martian environments possess the 

largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the 

jet interactions at terrestrial and lunar atmospheres.  
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2.7 Conclusions and future work 

 The FTIR and GC-MS analysis of the thruster plume gases show no detectable 

hydrazine.  This is the primary result of the FTIR and GC/MS analysis, since the 

presence of hydrazine has the potential to significantly complicate the interpretation of 

the in-situ analysis of the Martian soil.  The analysis however did show significant 

amounts of NH3 and N2. The N2 posses no problem for the Phoenix wet chemistry, but 

the presence of NH3

 Experiments and numerical simulations suggest that the ground impingement 

pressure of the pulsed thruster plumes at the surface of Mars generates large transient 

overpressures which correlate to a ground shock frequency of approximately 20 Hz and a 

10 Hz quasi-steady state ground pressure perturbation.  These large ground overpressures 

occur due to the formation and collapse of the plate shock near the surface due to high 

instability in the plate shock dynamics during P

 in the plume must be further investigated and a good understanding 

of the possible reactions obtained. 

C

 We plan to use the data presented here to test the effects of NH

 start up and shutdown cycles.  This, in 

conjunction with surface asymmetry and altitude effects, may have the potential to 

significantly increase soil erosion and uplifting.  The amount of cratering and soil 

uplifting depends on the soil properties, ambient pressure and engine thrust to be 

discussed in Chapter 3.   

3

 Significant insight and information have been obtained in understanding the flow 

field of pulsed underexpanded jets and its dynamics on the surface. However, high-speed 

Schlieren imaging at a minimum of 1000 frames per second is needed to confirm our 

theory. This should be compared to numerical simulations performed. In particular, 

Schlieren with Particle Image Velocimetry will also provide information on the behavior 

of stagnation bubbles subject to the described plate shock dynamics and may shed some 

light on acoustics.  

 adsorption on a 

cross section of Mars simulant soils.  The experiments are designed to provide 

information as to what effects such adsorption may have on the chemical analyses that 

will be performed by the Wet Chemistry Laboratory (WCL) on Phoenix. 

 The next approach is to conduct experiments with the CFTB at the NASA Ames 

Research Center’s Planetary Aeolian Laboratory (PAL), Aeolian wind tunnel facility at 
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martian environments, to quantify soil erosion and uplifting during spacecraft landing on 

Mars. Our main goal is to understand the flow physics and its’ effects of pulsed under-

expanded jets impinging on granular systems in tenuous atmospheres. Scaling laws (see 

section 3.2.1) are used to relate experimental results to the site-alteration measurements at 

the landing site.  

 These experimental results described in Chapter 3 provided the Phoenix Science 

Team with an approximation of the crater contour as well as the crater depth and dust 

deposition at the landing site.  Results from the tests were primarily used for scientific 

interest and assessment of spacecraft stability, providing information about possible dust 

contamination in the vicinity of sample ingestation areas for MECA and TEGA, on 

calibration targets, and general albedo-induced changes to the thermal properties of the 

science deck [Marshall et al., 2007]. Subsequently, these tests were used to provide 

information of erosion or deposition at the digging location, solar panels and landing 

deck.  Provided that MECA only has four sample analysis opportunities for the wet cells, 

it was important that we understood soil disturbance in the digging area, both its lateral 

and vertical extent.  These top few centimeters were also the zone of chemical 

contamination from the plumes that could potentially influence TEGA results. Results 

from these tests lead to mitigation strategies. Our research group worked closely with 

both the Phoenix engineering and science teams to implement these strategies. For 

example, the solar panels were controlled to deploy much later than originally planned 

and the robotic arm avoided regions of high contamination. 
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CHAPTER 3 
 
 
Explosive erosion during the Phoenix landing exposes subsurface water 

on Mars 

 
Cratering dynamics due to impinging supersonic jets 

 
This chapter describes an article submitted and revised to Icarus in 2010.  
 
3.1 Introduction 

 On May 25th

 Brief interactions of the jets from three non-pulsed engines of the Viking landers 

(with 2230 Newtons of thrust) with the martian soil caused only modest surface erosion 

during landing [Shorthill et al., 1976a, 1976b]. However, Phoenix’s twelve engines (with 

30% less total thrust) pulsating at 10 Hz with an average impingement pressure of only 

1/10 of the Earth’s sea level pressure [Renno et al., 2009], caused extensive erosion of the 

 2008, the Phoenix spacecraft landed on the martian arctic to study 

the local environment and its potential for sustaining life [Smith et al., 2009]. The search 

for water has been an important goal of the mission because liquid water is an essential 

ingredient for life as we know it [Renno et al., 2009]. Here, we report the discovery of the 

erosion process that rapidly removed 5 to 18 cm thick layers of soil [Smith et al., 2009; 

Sizemore et al., 2009], first exposing water ice at the landing site [Renno et al., 2009], 

and leading to the discovery of evidence for liquid saline water on Mars [Renno et al., 

2009]. The understanding of this process allowed the calculation of bulk physical 

properties of the soil at the Phoenix landing site. This study also provides information on 

site contamination that may have occurred during the landing phase. Along with new 

developments in granular flow, the discovery of the ‘explosive erosion’ process reported 

here has important implications for engineering and science.  



 

 57 

landing site, and exposed the subsurface ice under the lander over a radius between 75 

and 85 cm from its centerline (Appendix B.1) [Smith et al., 2009]. The Phoenix inertial 

measurement unit indicates that lift loss started when the spacecraft was 5 m above the 

surface, while descending at ~2.6 m/s, followed by ground effects and a slight reduction 

in the spacecraft descent velocity (see Section 3.8) [Desai et al., 2008]. This suggests that 

the jets interacted with the soil for less than 2 s.

 It has been known that jet impingement produces soil erosion and craters through 

four distinct physical processes: (i) The dragging of surface soil particles by viscous 

shear erosion (VSE) when the forces caused by the jet’s shear stress exceed the cohesive 

and frictional forces between particles, as occurred during previous landings on Mars and 

the moon [Shorthill et al., 1976a, 1976b; Christensen et al., 1967];  The formation of 

transient craters with steep walls occurs by a combination of two distinct processes 

termed (ii) bearing capacity failure (BCF) and (iii) diffusion-driven flow (DDF) when the 

jet’s ground pressure exceeds the shear strength of the soil [Metzger et al., 2009]; (iv) 

The removal of soil when gases from the thruster jets rapidly escape from the granular 

pore space causing diffuse gas erosion (DGE), a single eruption event when the engines 

shut down [Metzger et al., 2009; Scott and Ko, 1968]. Here, we report the discovery of a 

fifth process (v), which we name diffusive gas explosive erosion (DGEE) or ‘explosive 

erosion’ that dominates the erosion process when supersonic pulsed jets impinge into 

porous soils which generate high pore pressure gradient forces to soil weight ratios, ∆P

 Although unlikely, minor incipient 

erosion may have occurred while the spacecraft was above 5 m [Clark, 1970]. To provide 

more contexts to our investigation, the aerodynamic loads and rates during the Phoenix 

spacecraft entry, descent and landing sequence is presented in Section 3.8.  

*

 

. 

These processes are described in further detail in Section 3.4.  

3.2 Experimental methods 

 Here, scaling analysis of laboratory experiments and numerical simulations are 

used to study the erosion caused by the Phoenix landing on Mars. Scaling of the thruster 

jet-soil system indicates that the erosion dynamics due to spacecraft landings on Mars can 

be simulated by laboratory experiments on Earth. Hence, the terms “experiments” and 

“laboratory simulations” are used interchangeably in the Chapter. Similarity can be 
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achieved by matching the nondimensional numbers that scale gravitational (Fg), 

interparticle (Fσ), pore pressure gradient (Fp) and aerodynamic (Faero) forces on the 

granular media (Fig. 3.1) [Balme and Hagermann, 2006; Neakrase et al., 2009; Greeley 

and Iversen, 1985] or by simulating these forces in the absolute scale.  Faero

 

 on the 

particle is dependent on the jet’s shear stress and it has two components: the lift force 

which is perpendicular to the jet and drag force which is parallel to the flow. The 

interparticle forces which are a function of the particle size include cohesion, van der 

Waals, electrostatics and moisture [Neakrase et al., 2009]. The Magnus lifting force due 

to particle rotation and Saffman force due to shearing flow is less than a percent of the 

particle weight [Kok and Renno, 2010] and has been neglected in our scaling laws. It is 

also important to ensure that the jet impingement dynamics such as the pulse width, 

frequency and jet orientation (cant angle with respect to nozzle centerline) are simulated. 

These parameters are tabulated in Table 3.1.  

 

 

 

 

 

 

 
Table 3.1 Specifications of the performance parameters between dual Phoenix rocket motors and 
½ scale cold gas thrusters.  

 

 

Parameters 
  

MR-107N ½ scale 

Total pressure at inlet (kPa) 1240 1240 
Total temperature at inlet (K) 1116 300 
Jet pressure at exit (kPa) 3.24 3.09 
Jet density at exit (kg/m3 0.03 ) 0.19 
Jet velocity at exit (m/s) 1929 712 
Jet mass flow rate (kg/s) 0.32 0.22 
Pulse frequency (Hz) 10 10 
Pulse width (s) ~0.055 ~0.065 
Firing duration (s) <2.0 ≤3.0 
Nozzle diameter at exit (cm) 6.25 3.13 
NH3 0.49  exhaust mass fraction (a.u.) 0.0 
Maximum thrust (N) ~600 ~160 
Cant angle (deg) 0 0 
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Figure 3.1.  Sketch of the main forces acting on soil particles during jet-induced erosion. Although depicted 
that the jet is incoming from left to right, it can be in any direction. 
 

  A duration of 0.75 to 3.00 s long interactions of dry N2 jets from a pair of 

subscale Phoenix engine nozzles with a granular bed of martian simulant was studied 

using various particle size distributions in a pressure-controlled chamber. The criterion to 

use nitrogen as the test gas is described in Section 3.2.1. Brief plume-soil interactions of 

steady and 10 Hz pulsed jets at ~300 K with a ~65 msec pulse width (Fig. 3.2) at various 

static altitudes are studied in a ~4000 m3 chamber at NASA Ames Research Center’s 

Planetary Aeolian Laboratory (PAL). The vacuum chamber was set to atmospheric 

pressures between martian and terrestrial near-surface ambient conditions. All jets 

impinge normally with respect to the soil bed. The contours of the pair of Phoenix 

descent rocket engine motor (REM) nozzles and the spacecraft configuration including 

the lander deck and nozzle orientation and spacing are all ½ scale models as depicted 

along the +z and –x directions in Figure 3.3A,B and Figure 2.5 (Chapter 2).  
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Figure 3.2. ½ scale Phoenix descent engine simulators pulsating at 10 Hz with a ~65 msec pulse width are 
used in our laboratory simulations (experiment). Data from  a single thrust cycle of our laboratory 
simulation is compared with that from the  Phoenix REM thrusters  hot fire testbed  (HFTB) performed at 
Earth atmospheric pressure and corrected for Mars atmosphere conditions.   
 

 

 
Figure 3.3. (A) Top-down schematic along the +z axis and side (along the -x-axis) views of the Phoenix 
spacecraft which shows the placement of the transparent baffles 1 and 2 and thrusters. Courtesy of 
NASA/JPL-Caltech/Lockheed Martin. (B) An isometric photograph of the laboratory simulations at NASA 
Ames Research Center - PAL.  
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 Pressure transducers installed in the nozzle inlets were used to monitor the 

stagnation pressure in the thruster simulator and assure that its’ magnitude and temporal 

profile were similar to that in the combustion chamber of the Phoenix descent engines 

during the landing phase. The nozzle pressure ratio (NPR) was identical between 

subscale and full-scale systems. The thruster inlet stagnation pressure vs. time graph 

known as a thrust cycle for a 10 Hz pulsed jet is shown in Figure 3.2. There are four 

regimes for each cycle which spans 0.1 s: thrust rise, ‘steady’ thrust, thrust decline and 

thrust shut-down  For all tests, the maximum thruster chamber pressure and temperature 

are 1.2 MPa and 300 K, respectively.  

 Transparent plexiglass baffles (baffles 1 and 2) were used to simulate the planes 

of symmetry between neighboring pairs of thruster jets as shown in Figure 3.3A [Romine 

et al., 1973; Huseman and Bomba, 2000] and to visualize the erosion process through 

still and hi-speed imaging [Schultz et al., 2007; Metzger et al., 2009]. When multiple jets 

impinge on the surface, stagnation planes develop between groups of thrusters [Huseman 

and Bomba, 2000; Romine et al., 1973]. The trajectories of fine soil particles loosely 

follow these planes. Therefore, a sixty-degree test section was developed to simulate the 

fluid dynamic effects of the outboard REM thrusters. This approach was further 

confirmed by computational fluid dynamic simulations as discussed in section A.4.2.  

  The quarter-space technique [Schultz et al., 2007] described below is used in all 

PAL experiments to approximately visualize the axisymmetric crater growth process. All 

high speed images are taken along the x-z plane (baffle 2) in the direction of the +y axis 

which is directed into the page and the origin is at the apex of the wedge as depicted in 

Figure 3.4A,B.  These images at full resolution of 1280 x 1024 pixels are taken normal to 

baffle 2 at a frame rate of 500 images per second and shutter speed of 1 msec. The high 

speed camera is located 30 cm from the baffle plane (Fig. 3.4C) and focused on the 

impingement region’s x-y-z coordinates of: (30 cm, 0 cm, 20 or 5 cm). The test section 

which shows a 2-D layer of granular media is illuminated with 750 W lamps on either 

side of the camera. The high speed camera operates with a wide angle lens which allows 

a coverage width of 75 cm. Based on test setup configuration, the impingement centerline 

point on the granular media is at an x-y-z coordinate of: (30.0 cm, 5.6 cm, 20.0 or 5.0 

cm). In cylindrical coordinates, the r-θ-z values are: (30.0 cm, 10.6º, 20.0 or 5.0 cm). All 
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data extrapolated from high speed images are taken along the x-z plane at θ = 0º (baffle 

2). Post site alteration data is taken from still images along the x-z plane at θ = 0º and θ = 

60º (baffle 1) and isometric images and measurements.  

  

Figure 3.4. (A) A side-view schematic of the impingement of supersonic pulsed jets on porous soils. The 
quarter space technique [Schultz et al., 2007] with the high-speed camera viewing along the positive y-axis 
and focusing on the plexiglass symmetry-plane (x-z plane) is used to analyze the jet-soil interaction. (B) An 
annotated monochromatic image of the side-view of the test section along the x-z plane at pre-jet impact 
conditions (t = 0.0 s).  (C) A top-view schematic of the experimental setup looking along the –z axis. 
Shows the positioning of the test section, high speed (HS CAM) and still (S CAM) cameras and focused 
lights sources (LS) depicted by yellow arrows.  
 

 In order to account for the effects of lower martian gravity, low-density crushed 

walnut shells were used to simulate the gravitational forces of soil particles on Mars 

[Greeley et al., 1980]. These martian stimulants, partitioned into four different particle 

size distributions, were used in the experiments: (i) poorly sorted fine sand (S) (diameter, 

d ~160µm), (ii) fine silt/dust (F) (d < 15 µm), (iii) large coarse sand (C) (d = 850 to 2500 

µm), and (iv) bimodal mixture of fine silt/dust with fine sand (B) (Table 3.2). The 
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simulants were sieved to resemble the various size distributions of basaltic sand found on 

Mars [Shaw et al., 2009] to accurately simulate interparticle forces. The simulant 

properties were determined by direct shear, constant/variable head permeability and 

relative density tests performed in controlled laboratory conditions at 300 K and 5-20% 

relative humidity which was representative conditions of the NASA Ames vacuum 

chamber facility.  

      

* BI – 50% fine silt and 50% fine sand by volume  
Table 3.2. Measurements of the physical properties of the martian soil simulant (crushed walnut shells) 
used in the laboratory simulations 

 

3.2.1 Scaling analysis 

 Erosion rates and dynamics depend on the forces acting on the granular media 

(Fig. 3.1) and modes (Fig. 3.2) of the impinging jets. It follows from nondimensional 

analysis that the forces caused by the impinging jets on the soil are scaled by matching 

the ratio of the kinetic with the internal energy (hypersonic similarity parameter) of the 

plume (k, Eqn. 3.1), the jet expansion ratio (e, Eqn. 3.2), and the plume’s exit Mach 

number and Reynolds number (Re, Eqn. 3.3) as discussed in Chapter 2. Along with 

matching the jet dynamics, the erosion dynamics are scaled (Appendix B.2) by matching 

the densimetric Froude number (Frd, Eqn. 3.4) [Mazurek and Rajaratnam, 2005; Greeley 

and Iversen, 1985], the soil strength scaling parameter (β, Eqn. 3.5) [Holsapple, 1993], 

the nondimensional threshold friction velocity (u*t /u*, Eqn. 3.6) [Greeley and Iversen, 

1985], the ratio of the characteristic diffusion time in the vertical component with jet 

pulse period (τ/timp, Eqn. 3.7) and the normalized pressure gradient within the soil (∆P*

Soil stimulant 

, 

Eqn. 3.8) [Balme and Hagermann, 2006].  From dimensional analysis (Appendix B.2), 

the important scaling laws are tabulated in Table 3.3 and defined as follows:  

  
Particle 
diameter  
(µm) 

Mean 
diameter 
(µm)

Cohesive 
strength 
(kPa) * 

Permeability 
coefficient 
(cm/s) 

Porosity 
(a.u.) 

Angle of 
friction 
(deg) 

Crater 
volume 
ratio 
(a.u.) 
 

Fine silt/fine sand (B) 2 – 200 ~BI 5.0 (±1.5) 0.0003 (±2e-5) 0.45(±0.05) 31 (±2.0) 0.16 
 Fine sand (S) 2 – 200 ~160 1.3 (±0.3) 0.0021 (±0.001) 0.50(±0.05) 33 (±2.5) 0.20 
Coarse grain (C) 850-2500 ~1500 0.0 (±0.25) 0.3000 (±0.1) 0.30(±0.03) 35 (±2.0) 0.01 
 Fine silt (F) 2 – 25 <15 7.5 (±1.0) 0.0002 (±3e-5) 0.73(±0.10) 28 (±2.0) 0.65 
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where γ is the specific heat ratio, Me  and Mg  are the Mach numbers (= U/cs) of the 

exhaust jet at the nozzle exit and granular shock waves and cs is the speed of sound of its 

respective medium, Pe, Pamb,  and P imp are the nozzle exit, ambient and steady 

impingement pressures, ∆P is the pressure differential between the soil pore space, Pp, 

and the surrounding atmosphere [Balme and Hagermann, 2006], Ue

d

 is the nozzle exit jet 

velocity, is the average particle diameter, D is the nozzle exit diameter, g is 

gravitational acceleration, τ is the gas diffusion characteristic time-scale, timp is jet 

impingement pulse period, ρa is the jet density, ρp is the particle density, l is soil depth, μ 

is jet viscosity, k is soil permeability, n is soil porosity, u*t is the threshold friction 

velocity [Shao and Lu, 2000], u* is the friction velocity, AN  )(Re*tf(= ; dimensionless) 

[Shao and Lu, 2000], and κ which is proportional to the interparticle forces (dimensional) 

[Shao and Lu, 2000] are relatively constants, and Y is soil strength which is dependent on 

cohesive strength (c), effective normal stress and angle of internal friction ( iθ ) 

[Terzaghi, 1943]. AN is weakly dependent on Re*t

  

 for particle sizes between 30 µm and 

1300 µm.   The scaling parameters highlighted in red in Table 3.3 are most important for 

simulating soil particle forces and plume dynamics due to DGEE.  

 

 

 

 

 

 

 

 

 
 
                          †Data obtained from fine basaltic sand at Viking 2 Landing Site on Mars [Shaw et al., 2009] 
                          ‡Properties significantly change from pre-jet impact conditions during DGEE 
                          γ

 
Data obtained for simulant-type S 

Table 3.3. Normalized parameters at pre-jet impact conditions based on scaling relations 
 

Normalized parameters 
  

Full scale ½ scale† 

Expansion ratio (e) 

γ 

3.8 3.7 
Exit Mach number (Me 4.7 ) 4.8 
Nondimensional threshold friction velocity  ~0.015 0.014 
Nozzle pressure ratio ~1500 1550 
Densimetric Froude number (Frd 250 ) 230 
Gas Reynolds number (Reg 3.4 x 10) 12.7 x 105 

Particle Re number (Re
5 

p) 0.7 x 10‡ 2 x 103 

Strength scaling parameter (β) 
3 

~0.4 ~0.3 
KE/IE plume 11.4 12.7 
Diffusion time scale (τ/t imp) ~330 – 10 ‡ 200 - 6 
Gamma (γ) ~1.38 1.40 
Nozzle area ratio (Ae/A* 20.7 ) 20.7 
Knudsen number (Kn) 0.03 0.05 
Altitude (h/D) 8 – 80 8 - 60 
Normalized pressure gradient (ΔP*) >2500 ‡ >1800 
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 We briefly discuss our assumptions and add further detail in the usage of these 

scaling laws. For these jets which are in the turbulent regime (Table 3.3), the gas 

Reynolds number (Reg) has a small effect on aerodynamic forces due to the Reynolds 

Number Similarity [Townsend, 1956]. The aerodynamic forces are dependent on the lift 

and drag coefficients, the dynamic pressure and the particles cross sectional area. These 

aerodynamic coefficients are relatively constant and independent of Reg within the 

turbulent regime. The bulk particle Reynolds number (Rep) for packed granular beds 

which is dependent on particle size and porosity (Eqn. B7, Appendix B.2), for both full-

scale and subscale simulations indicate that the flow is near or within the turbulent 

regime (Table 3.3). According to the Burke-Plummer equation for Rep ≥ 1000 [Bird, 

1996], the friction factor (Cd) is relatively constant and independent of Rep for average 

particle sizes tested and adequately simulates the viscous forces. Independently, neither 

the Fr nor the density ratio (Eqn. B5, Appendix B.2) accurately describe sediment 

transport due to jet interactions, but the combination of the two parameters (Eqn. 3.4) 

show good correlation with erosion rates and crater profiles as proven by previous 

researchers [Greeley and Iversen, 1985; Mazurek and Rajaratnam, 2005; Neakrase et al., 

2009]. The β parameter, a function of cohesion and angle of internal friction, is not 

important for low cohesive and low bulk weight soils as observed on Mars and in our 

experiments. The nondimensional threshold friction velocity (u*t/u*) is an important 

parameter because it determines whether the jet’s viscous shear stress is capable of 

eroding soil grains when u*t/u* < 1. The numerator of Eqn. 3.6 determines the required 

friction velocity to lift spherical particles by taking the summation of the aerodynamic, 

interparticle and gravitational forces and moments on a grain [Shao and Lu, 2000]. The 

denominator of Eqn. 3.6 is the friction velocity of the exhaust plume along the granular 

media which is calculated from Eqn. B34 (Appendix B.5) at a normalized radius of ~4 

from the plume centerline. Here, the velocity and density profiles were similar to the 

nozzle exit conditions and were obtained from computational fluid dynamic simulations 

of both full-scale and subscale jets. Since the  particle size distribution is approximately 

equal  between the simulant and martian soil [Goetz et al., 2009], we use the same 

aerodynamic roughness length, z0, (Eqn. B34, Appendix B.5) when calculating the 

friction velocity (Eqn. 3.6) [Greeley et al., 2000]. Eqn. 3.7 is the ratio of time needed for 
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diffusion of the exhaust plume to reach steady state to a soil depth of l (diffusion time) 

with respect to the jet’s pulse period, timp
D
d

. The  scale is orders of magnitude larger than 

unity which proves that microscopic effects due to gas diffusion on individual grains can 

be neglected [Mazurek and Rajaratnam, 2005] and the dynamics are governed by bulk 

properties. 

 The scaling analysis of cratering described above demonstrates similarity in the 

absolute forces and force ratios on the granular system between the laboratory 

simulations and the full-scale process of spacecraft landings on Mars (Table 3.3). Hence, 

this satisfies our main goal of simulating the dynamics of the exhaust plume and soil 

particles during cratering. As a result and noted in Chapter 2, similar transient pressure 

distributions on the surface, similar shock structure profiles, shear strength soil properties 

and soil weight occur in the laboratory experiments and full-scale system on Mars. In 

Section 3.6, we show that the normalized crater and deposition profiles and normalized 

erosion rates are similar in both our experimental results and observations at the Phoenix 

landing site. This similarity in the dynamic forces is critical for the quantitative 

simulation of the erosion and cratering dynamics caused during the Phoenix landing 

[Holsapple, 1993; Greeley et al., 1980]. Certain scaling parameters can be neglected 

depending on which erosion process is dominant. For example, the normalized shear 

strength (Eqn. 3.5), pore pressure gradient (Eqn. 3.8) and diffusion time-scale (Eqn. 3.7) 

parameters can be neglected for VSE dominant processes.     

 There are some limitations to these tests due to the fact that they were conducted 

at Earth’s gravity and used exhaust jets composed of N2 at room temperature. Dynamic 

descent of thrusters during test firing was not pursued because of adding unknown 

complexity to the physics. However, static testing at various altitudes allowed us to 

integrate this function and obtain a representative mean value for erosion rates and crater 

dimensions. Due to the lighter weight of walnut shells, the soil simulant particles 

accelerate faster by a factor of ~2.2 than soil particles on Mars, but the initial trajectories 

of the ejecta are adequately simulated because the inertial forces are similar in both at the 

near-field crater regime (near and within the crater). Hence, complete similarity of the 

kinematics is difficult to achieve. Within this regime, the drag (D) and lift forces (Eqn. 
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3.9) are independent of the particle velocity, up, due to the valid assumption that the gas 

velocity, U∞
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, is much larger than the particle velocity. This is also supported by 

experimental observations. 

 This is partly due to high particle collision frequencies which inhibit large 

increases in the particle acceleration relative to the exhaust plume. At far-field regimes, 

this assumption may not be valid for certain cases and further studies are needed to assess 

the lift and drag forces on the ejecta. Particle Reynolds number presents a large disparity 

between experiment and full-scale processes for clay-size particles (~1 µm) due to 

differences in exhaust plume viscosity. More importantly, we have not quantified here 

how each scaling parameter affects the erosion rates.  This has been started in a study 

described in Appendix C. Although these scaling laws described above prove to be 

theoretically valid, we conclude that this application needs to be confirmed by additional 

experimental and numerical simulations.   

 

3.2.2 Determining average jet-induced erosion rates 

 The average erosion rates were calculated by measuring the radius and depth of 

the final crater developed in each experiment. The error associated with these in-situ 

measurements was less than 5%. The total crater volume (Vc

(3.10)                     

) was calculated assuming 

that it is a paraboloid with a volume:  

hrVc   
2
1 2π=    

where r is the radius of the crater and h is its depth. Knowing the duration of the jet 

impingement, tL, the bulk density of the martian simulant, and the crater volume, the 

average rate of mass ejected by the jets can be calculated. Some crater volumes (e.g., 

exposed surface) were geometrically calculated from a derivative of the paraboloid. This 

approach shows good agreement to the method of integrating infinitesimal parabolic 

contours. Physical dimensions and erosion rates are normalized by the pair of subscale 

thrusters’ exit diameter (3.125 cm), and mass flow rate (0.22 kg/s), respectively, and 

therefore expressed as adimensional units (a.u.).  The normalized crater dimensions such 
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as depth and exposed and crater radii are recorded in Table B1, Appendix B.3. We use a 

mass correction term to estimate the erosion rate expected at the Phoenix landing site 

from our experimental data. This term is the density ratio between simulant and basaltic 

sand (factor of 2) and this mass scaling approach was confirmed by Greeley et al. [1982] 

using wind tunnel simulations to estimate the sediment flux due to dust devils on Mars. 

 

3.3 Observations 

 There were four general experimental cases performed in this study: (i) pulsed 

and (ii) steady jets at mars atmospheric pressure and (iii) pulsed and (iv) steady jets at 

Earth atmospheric pressure. The main goal of this study was to determine the effects of 

pulsed jets on granular media in tenuous atmospheres. These cases were selected to 

provide a range of data sets applicable to various spacecraft landing architectures on 

planetary bodies. These 24 experiments tabulated in Table 3.4 would also provide a 

diverse range of erosion mechanisms observed by impinging jets.  

Table 3.4.Test matrix  

 

Test 
  

Jet  
height 

Soil  
depth 

Soil 
simulant 

Jet  
mode 

Pulse 
frequency 

Test 
duration*

P
  

Pamb Timp Dominant 
mechanism 

amb 

 (m) (cm)   (Hz) (s) (kPa) (kPa) (K)  
           
1 0.26 20 B pulsed 10 1.50 0.800 18 287 DGEE 
2 0.26 5 B pulsed 10 1.50 0.800 18 288 DGEE 
3 0.26 5 B pulsed 10 3.00 0.864 18 288 DGEE 
4 0.26 20 S pulsed 10 3.00 0.864 18 285 DGEE 
5 0.41 20 S pulsed 10 3.00 0.864 22 288 DGEE 
6 0.41 20 S pulsed 10 3.00 0.800 22 286 DGEE 
7 0.74 20 S pulsed 10 3.00 0.864 11 285 DGEE 
8 1.88 20 S pulsed 10 3.00 0.864 8 285 DGEE 
9 0.26 20 S pulsed 10 1.50 0.800 18 287 DGEE 
10 1.88 20 S pulsed 10 1.50 0.800 8 286 DGEE 
11 0.26 5 S pulsed 10 1.50 0.800 18 287 DGEE 
12 0.41 20 S pulsed 10 3.00 101.3 -- 290 VSE 
13 1.56 20 S pulsed 10 3.00 101.3 -- 290 VSE 
14 0.26 20 S pulsed 10 3.00 101.3 3 291 VSE 
15 0.74 20 S pulsed 10 3.00 101.3 -- 290 VSE 
16 0.26 20 S steady 0 0.75 101.3 -- 290 VSE 
17 0.26 20 S pulsed 10 1.50 101.3 -- 285 VSE 
18  0.26 20 S steady 0 0.75 0.800 18 288 BCF/DDF 
19 1.05 20 S steady 0 0.75 0.800 -- 284 BCF/DDF 
20 1.56 20 S steady 0 0.75 0.864 -- 290 BCF/DDF 
21 0.26 5 F pulsed 10 1.50 0.800 18 287 DGEE 
22 0.26 20 F pulsed 10 1.50 0.800 18 288 DGEE 
23 0.26 5 C pulsed 10 1.50 0.864 18 285 VSE 
24 0.26 20 C pulsed 10 1.50 0.800 18 288 VSE 
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 Here, we will briefly discuss the various observations noted from the experiments 

conducted at the PAL facility. For all of the cases of pulsed jet impingement into 

simulant at martian atmospheric pressure, the soil was rapidly excavated to the hard 

surface and moved granular media outward in a radial fan reaching mean heights of ~3 m 

(~100 a.u.) and radial distances of ~10 m (~300 a.u.) as observed by real-time imaging. 

Highly dynamic granular structures within the soil bed were only observed with high-

speed imaging. For example, bright radial granular fronts which originated below the 

thruster were seen propagating within the soil along the transparent baffle 2 plane, but not 

along baffle 1. Also, bubbling and semi-stratification of the soil below the thrusters were 

observed during the thrust shut-down phase. Upon complete excavation of the granular 

media before four thrust cycles (0.4 s), the ordered granular structures disappear and 

turbulent movement of soil is observed. These highly dynamic granular structures, the 

associated explosive energy and substantial rapid removal of soil were not seen for the 

impingement of pulsed and steady jets at earth atmosphere or steady jets at mars 

atmosphere. 

 For all cases at Earth atmosphere, the erosion was highly localized and resulted in 

the surficial removal of less than 5 cm of soil, leading to characteristic parabolic craters. 

The trajectories of the soil particles were mainly vertical with a maximum height of ~0.6 

m which did not extend outward beyond 0.5 m from the jet centerline. For pulsed jets 

during thrust shutdown phase, the crater slope would exceed the angle of internal friction 

leading to re-deposition of the crater. For steady jets at Mars atmosphere, the soil was 

temporarily excavated to the hard surface within ~0.7 s, forming a steep cylindrical crater 

which quickly re-deposited during the thrust shut-down phase.  The soil trajectory was 

mainly vertical but a modest amount of simulant did extend outward to a radial distance 

from jet centerline and height of ~2 m. 

  No signs of crater disturbances were noted due to the filling of the vacuum 

chamber to terrestrial atmospheres after each tests was completed. The suspension time 

of C-type, S-type, and F-type simulant within the martian atmosphere after test 

completion was less than 1 s, 300 s and 11000 s, respectively. Distinct characteristic 

observations were noted for the four general cases by both high-speed and real-time 
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imaging, and this led us to believe that different mechanisms and dynamics were 

involved as will be discussed in the following sections. 

 

3.4. Diffusive gas explosive erosion 

3.4.1 Results 

 To compare the various jet-induced erosion and crater growth processes observed 

in the experiments, we developed normalized erosion rate vs. normalized altitude profiles 

from the numerous test cases as shown in Figure 3.5. These comparisons are made with 

the thrust duration being equivalent for all cratering processes studied which is 

approximately similar to the spacecraft descent time within the last 5 m prior to landing 

(Table 3.4). The average crater growth rate caused by DGEE, depicted by blue and red 

data points in Figure 3.5 (Tests 1-11, 21,22), is approximately five times greater than that 

caused by BCF/DDF, the dominant cratering mechanisms caused by steady (non-pulsed) 

jets at Mars atmospheric conditions illustrated by the green curve (Tests 18-20).  DGEE 

occurs for thruster altitudes ranging from 0.26 to 2 m above the surface for all soil 

simulants tested, except coarse sand/granules (Tests 23-24). Indeed, our laboratory 

experiments also show that DGEE at Mars atmospheric conditions removes 10 to 20 

times more soil particles per unit thrust time than VSE either at Mars [Shorthill et al., 

1976a, 1976b; Romine et al., 1973], or at Earth’s atmospheric conditions, where VSE 

dominates illustrated by the yellow curve (Tests 12-15,17). DGE was not observed in our 

tests.  
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Figure 3.5. Normalized erosion rate vs. normalized altitude for laboratory simulations with various soil 
simulants at Mars and Earth atmosphere conditions. The erosion rate is normalized by the jet’s mass flow 
rate and the altitude is normalized by the nozzle exit diameter. All data points are for pulsed impinging jets 
at Mars atmosphere at 20 cm soil depth unless specified. Square and triangle box symbols denote 3 s and 
1.5 s test durations, respectively; 0.75 s test duration for steady jets; The blue curve fitting line for the fine 
sand (S) experiments (Tests 4-8) is a power law polynomial, and the green (Tests 18-20) and yellow fitting 
lines (Tests 12-15) are linear.   

 

 The final crater morphology, calculated from isometric images such as in Figure 

3.6A, is shown in Figures 3.6B, 3.7 and 3.8 as contour plots to depict the extent of 

erosion and cratering that occurred in each test case. The colorbar denotes the normalized 

soil depth where negative and positive values correlate to depth of soil either eroded 

(shaded in blue) or deposited (shaded in red), respectively. A quarter section of the 

spacecraft is superimposed onto these contour plots. Also included in these contour plots 

is the 90° sweep of the Robotic Arm which is depicted in a darker shade. All length 

scales (x, y, z and l) in these figures are normalized by the nozzle exit diameter, D. All 

values reported within this article and figures are obtained from the experiments (exp), 

and the full-scale (fs) length quantities are calculated by Eqn. 3.11 and denoted in 

parenthesis or otherwise stated.  
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[ ] [ ]

[ ] quantity scalelength 

exp
exp

=

=

x

x
D
D

x fs
fs  

 
Figure 3.6. Diffusive gas explosive erosion. (A) Image of the crater caused by Test 2 (Table 3.4); (B) 
Normalized erosion/deposition contour plot for crater shown in the above figure; similar contours observed 
for Test 1. Color bar indicates the normalized depth of soil in which zero a.u. is the reference value prior to 
jet impingement. Scaled 90° section of the lander and RA coverage area is indicated in dark shading within 
the figure. 
 
 These contour plots indicate that layers of mixtures of fine silt and sand of 5 cm 

of thickness are completely removed in less than 1 s at the scaled Phoenix touchdown 

altitude of 0.26 m (0.5 m at full-scale), leaving a completely exposed impermeable 

subsurface with radius of ~42 cm (85 cm at full-scale) as illustrated in Figure 3.6B (Test 

2). In contrast to BCF, DDF and VSE processes, this rapid and broad excavation to the 

surface occurred in experiments at Mars atmosphere with fine sand (Test 9, Fig. 3.7A), 
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silt (Test 22, Fig. 3.8) and their mixtures (Test 1) with depths ranging from 5 to 20 cm. In 

many cases, the final crater radius exceeded 85 cm in tests with the largest soil depths.  

 

Figure 3.7. Normalized erosion/deposition contour plots of laboratory simulations with a 20 cm thick layer 
of simulant for (A) Test 9, (B) Test 17 and (C) Test 18 (Table 3.4).   

A B 

C 
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Figure 3.8. Normalized erosion/deposition contour plot of laboratory simulation for Test 22 (Table 3.4).   

 

3.4.2 Predictions at the Phoenix Landing Site 

 Through these analyses, we predicted prior to Phoenix touching down on the 

martian arctic that the subsurface ice could be extensively exposed by this erosion 

process due to pulsed rocket plume-soil interactions. As a result, from heat transfer 

analysis, the subsequent hot jet impingement on the subsurface water ice at the Phoenix 

landing site would melt ~1 mm of its top layer, and could splash mud with salt under the 

lander [Renno et al., 2009]. This process led to the first direct observation of 

deliquescence on Mars [Renno et al., 2009]. Deliquescence is the absorption of 

atmospheric water vapor by hygroscopic materials (salts) to form a liquid brine solution. 

From the calculations shown in Appendix B.1 and the understanding of the rocket 

combustion process, a total of ~0.37 kg of ammonia may have interacted with the 

subsurface ice during landing.  

 The ability of DGEE to remove large quantities of soil in a very short time 

interval could result in the widespread exposure of subsurface ice at the Phoenix landing 

site as shown by two bright elliptical surface features in the center of Fig. 3.9. 

Furthermore, our results indicate that the ‘explosive erosion’ caused by the Phoenix 

thrusters could remove soil layers with depths in excess of 15 cm, producing a large blast 
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zone by ejecting soil particles meters from the jet impingement point. It also indicates 

that soil particles removed from below the lander could cover the entire Phoenix work 

area and beyond with a cm-thick or less layer of loose soil particles as shown in Figure 

3.6B (Test 2 in Table 3.4). Our laboratory simulations indicate that if VSE (Fig. 3.7B is 

an example of Test 17) or BCF/DDF (Fig. 3.7C is an example of Test 18) were the 

dominant erosion mechanisms during Phoenix’s short landing phase, the cratering would 

be minimal and the subsurface ice would not have been exposed. These claims are further 

supported by the dynamics of ‘explosive erosion’ and other cratering mechanisms which 

are presented below.  

 
Figure 3.9. RAC Sol 5 image (RS005EFF896663219_11730MDM1) of the extensively exposed ice under 
the lander near the southern footpad (“Holy Cow”). Courtesy of NASA/JPL-Caltech/U. of Arizona/Max 
Planck Inst. 

 
 

3.4.3 Dynamics 

 Characteristic shock wave structures are readily observed in granular media such 

as in soil and snow. Granular shock waves occur in nature during avalanches and 

landslides [Pudsaini and Kroner, 2008]. They occur when high-speed granular flow 

impinges on obstacles and present similar structure to shock waves in air [Amarouchene 

et al., 2001]. These granular structures also play an important role in DGEE.  

 The erosion rate of DGEE is much larger than that caused by other erosion 

mechanisms because it locally fluidizes the soil and produces cyclic granular shock 

waves as depicted in Movie D4 (Appendix D) and Fig. 3.10 (Test 9). These two 

processes are intimately linked because soil fluidization below the jet plays an important 

role in the formation and propagation of shock waves. Both of these processes are caused 
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by the short pulse period of the jet relative to the time-scale for gas diffusion through the 

soil (τ /timp > 1). The ‘explosive erosion’ process is forced by the large pressure variations 

caused by the partial reflection and collapse of normal shock waves produced by the 

interaction of pulsed supersonic jets with the surface. Pressure variations at the surface 

ranging from ~0.8 to 40 kPa forces exhaust gases to penetrate into the porous soil and 

rapidly diffuse outward because of the low atmospheric pressure, ∆P*

 From Movie D4, we observe the separation of many granular particles from each 

other along the +z and ±x directions which can lead to the loss of shear strength. This 

fluidization results in large increases in soil porosity and reduces the speed of sound in it 

from ~280 to ~0.3 m/s (Fig. 3.13, see Section 3.4.4) [Huang et al., 2006; Amarouchene 

and Kellay, 2006; Liu and Nagel, 1992]. From classical continuum-kinetic theory, the 

speed of sound of granular mediums is dependent on granular temperature and soil 

volume fraction (porosity). The granular temperature for these systems is much smaller 

than for gas mediums due to inelastic collisions. The methodology of calculating the 

sound speed and granular temperature for our application is given in Section 3.4.4.  

≥1. The collapse of 

normal shock waves and the significant decrease in the impingement pressure near the 

end of each engine thrust cycle results in pressure gradients within the soil that causes 

soil fluidization shown in Figures 3.10A3 and 3.10A5 as dark mottled bands within the 

granular media below the jet.  

 Cyclic variations in soil porosity create large soil density gradients that produce 

large variations in the speed of sound [Huang et al., 2006; Amarouchene and Kellay, 

2006]. This creates supersonic and subsonic granular flow regimes when the gas from a 

subsequent thrust cycle penetrates into the fluidized soil. Granular shock waves, 

produced during the power rise of each thrust cycle, develop from large pressure 

gradients between the impingement zone (epicenter) in the fluidized soil interior and its’ 

surroundings at ~800 Pa. These shock waves, shown as bright radial granular structures 

in Figures 3.10A2, 3.10A4 and 3.10A6, form and propagate in regions of significantly 

reduced granular sound speed. Such regions have a low particle density (fluidized) and 

are shown by Figures 3.10A3 and 3.10A5 to be relatively darker than the undisturbed 

areas and semi-stratified.   
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 During the ‘steady power phase’ of the thrust cycle , the pressure of the impinging 

jet reach high uniform values, compresses the soil, and reduces the pressure gradient 

between the soil pores in the impingement area and surrounding regions. This increases 

the speed of sound in the soil and inhibits the formation of shocks fronts [Huang et al., 

2006; Amarouchene and Kellay, 2006]. As a result, granular shock waves are produced in 

a cyclic pattern, as indicated by the propagation of high particle density fronts shown in 

Figure 3.10. High speed images show that radial shock waves propagate with an average 

speed of Mach 12 in relatively high permeability soils. These shock fronts eject a large 

mass of particles of fine sand and silt ballistically and supersonically with respect to the 

granular sound speed to ~3 m above the surface and at distances greater than ~4 m (fine 

sand) and 15 m (silt) from the wave front. As a result of ejecta with high-kinetic energy, 

soil deposition occurs over a large area and large accumulations do not occur close to the 

crater. A schematic in Figure 3.10 further elucidates the ‘explosive erosion’ dynamics 

described above.  
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Figure 3.10. (Top) High speed images of the ‘explosive erosion’ dynamics observed in Test 9 (Table 3.4). 
The duration of this test spans a time constant, t/t imp, of 0.2 to 23.1.  Images along the x-z plane (baffle 2) 
were taken at 500 frames per second using the quarter space technique. At A2, A4 and A6, three granular 
shock waves (shown as bright curved granular structures) are observed propagating outward from the 
impact centerline (epicenter). At A3 and A5, localized soil fluidization (shown as dark semi-stratified 
regions below the jet) is observed during the thrust shut-down phase. At A7, the exposed surface can be 
seen, and at A8, minor crater re-deposition occurs. Similar dynamics observed in fine silt/sand simulants 
(Test 1). This spans a t/timp

 

 between 0.2 to 23.1 See Movie D4. (Bottom) Schematic of the ‘explosive 
erosion’ dynamics. Speed of sound in granular media decreases by three orders of magnitude in the 
fluidization regime.   

 
 High velocity ejecta blankets are produced during the impingement of each jet 

pulse, until the soil below the thrusters is completely removed. Since the volume of 

fluidized soil increases with each engine thrust cycle, the radius of the shock waves also 
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expands, leading to increases in the outward flux of ejecta with time. The soil is being 

ejected and partially re-deposited into the transient crater from surrounding regions 

during the first four thrust cycles. During the fifth thrust cycle, much of the soil has been 

excavated and redeposition is minimal, enabling the fluidization depth to extend to the 

impermeable subsurface. Turbulent entrainment of the granular flow removes the 

remaining soil. Once the surface is exposed and the nearly final crater has formed, the 

more benign VSE mechanism begins to dominate the erosion process and removes 

surface particles along the periphery of the crater and ground topography, producing 

erosion striations. These dynamics are noted for soil depths between 5 cm and 20 cm, and 

the number of granular shock waves observed is dependent on the soil depth.   

 Similar dynamics were observed in experiments with the three soil simulants used 

in our laboratory experiments: fine sand (Tests 4-11), fine silt (Tests 21, 22) and fine 

sand/silt mixture (Tests 1-3). In the experiments with the course sand model (Tests 23, 

24), the dominant erosion mechanism observed was VSE with the formation of a large 

transient crater and turbulent granular flow. However, in experiments with silt, soil 

fluidization is more expansive and plays a more important role in the erosion process than 

in other experiments. Also, the initial radial shock front leads to the ejection of large 

clumps of silt and turbulent particle entrainment, and as a result subsequent granular 

shock waves are either less visible or possess smaller amplitudes. Localized soil 

fluidization and granular shock waves do not occur in the VSE and BCF/DDF processes 

as depicted by Figures 3.11 and 3.12, respectively, and therefore they produce much 

smaller and shallower craters. Although diffuse gas erosion (DGE) was not observed for 

any of the test cases, DGE dynamics are presented as a schematic in Figure X.X for 

completeness.  
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Figure 3.11. (Top) High speed images of the viscous shear erosion dynamics observed in Test 17 (Table 
3.4). See Movie D5. (Bottom) Schematic of the VSE dynamics.  
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Figure 3.12. (Top) High speed images of bearing capacity failure/diffusion-driven flow dynamics observed 
in Test 18 (Table 3.4). See Movie D6. (Bottom) Schematic of the BCF/DDF dynamics.  
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Figure 3.13. Schematic of DGE dynamics. 

 

3.4.4 Calculations of granular temperature and speed of sound from high speed 

imaging 

 To determine whether our flow of interest is within the subsonic, transonic or 

supersonic regime, we calculated the temperature and sound speed of the granular system 

from high-speed imaging. Granular temperature is defined as the collisional velocity 

fluctuations of granular particles within the system and they continually dissipate energy 

due to its inelasticity. However, granular flows may be excited or perturbed to increase or 

maintain this temperature. The temperature of the fluidized granular regions prior to 

granular shock formation is calculated from Eqn. 3.12 [Huang et al., 2006]. These 

calculations were done for Tests 4 and 9. The granular temperature, Tg
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, is defined as the 

following:  

           (3.12) 

The vn and vb are the velocity vectors of the n particle and background velocity, 

respectively. N is the number of particles. These parameters were calculated using the 

high-speed imaging of 2-D high resolution images and a simple particle tracking 

software. Each image was analyzed every 2 ms.  Each pixel which is ~400 μm in size in 

the x-z plane (Fig. 3.4) was tracked in both space and time. This was recorded for 
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multiple particles along the fluidized domain during the thrust shut-down phase. 

Background velocity is defined as the following [Huang et al., 2006]:  
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=

= 
                          (3.13) 

 The granular temperature increased during each thrust cycle, and the average 

value during four thrust cycles is ~0.016 m2/s2. This trend is consistent with previous 

studies of high-speed granular flow such as those reported by Amarouchene and Kellay 

[2006] and Huang et al. [2006]. The speed of sound (cs

Here, we briefly discuss the derivation of the granular sound speed which is 

important in understanding the flow regime of interest. The conservation equations of 

mass, momentum and energy for granular flows have the following forms [Savage et al., 

1988]: 

) in the granular medium is 

calculated from continuum-kinetic theory (Eqns. 3.14 – 3.16) [Bougie et al., 2002], and 

this approach shows good qualitative agreement with experimental results [Amarouchene 

and Kellay, 2006].   
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where 𝑢�⃗  is the bulk velocity of the granular particles,  𝜌Rp is the particle density, ν is the 

solid volume fraction, 𝑝⃗ is the pressure tensor which has a kinetic and collisional 

component, 𝑞⃗ is the flux of fluctuation energy which is also composed of a kinetic and 

collisional component, 𝑔⃗ is the gravitational acceleration, γc is the collisional rate of 

dissipation per unit volume and t is time. For moderate concentrations of particles where 

binary collisions are dominant, it is a valid assumption to neglected the kinetic 

components of the equations. However at higher concentrations where collisions 

significantly increase, the assumptions of binary collision do not hold and rate-

independent and collisional rate-dependent stresses occur.  
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The total stress tensor is then assumed to be the sum of collisional momentum 

flux and rate-independent stresses as shown by  

( )[ ] ( ) (3.17)                     κκ gIfppp p sosc −+=+≈





  
 
where κ is analogous to viscosity and defined by Savage et al. [1988].  

To obtain an approximate estimate of the “sound speed” of granular media, we 

neglect the dissipation and flux of fluctuation energy terms and Eqn. 3.16 simplifies to  

(3.18)                                            : 
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Neglecting analogous terms for viscosity from Eqn. 3.17, the collisional stress tensor is 
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The normal stress is defined by  

(3.20)                 )(  )(  )1(2 0 TTgp ρνχρννε =+=
 

 
Where ε is defined as the particle’s coefficient of restitution and this determines the 

efficiency of energy dissipation. For values near one, the energy of the system is 

relatively conserved.  The term g(ν) is the radial distribution function at contact and is 

defined as follows: 
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  Then, substitute Eqn. 3.19 into Eqn. 3.18 to obtain 

(3.22)                   : 0 upupc


⋅∇=∇  
 
Using the conservation of mass equation (Eqn. 3.14) and Eqn. 3.22, we substitute these 

relations into the modified conservation of energy equation (Eqn. 3.18). By 

differentiating the granular pressure with respect to the bulk density of soil, we obtain the 

granular sound speed [Savage et al., 1988] as shown  
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As can be seen in Figure 3.14, the sound speed is a non-linear function of porosity, 

volume fraction. From this derivation, it can be seen that the speed of sound within the 

granular media is not directly dependent of the plume temperature. Fundamentally, the 

granular sound speed is a function of the granular temperature (particle velocities) which 

is dependent on the applied and simulated particle forces. The plume temperature 

indirectly contributes to these particle forces. Hence, Eqn. 3.23 applies to both hot and 

cold gas flows.  

 Analytical calculations based on continuum-kinetic theory indicate that the sound 

speed within the fluidized bed is approximately 0.3 m/s at a soil volume fraction of 0.2 

for our experiments dominated by DGEE (Fig. 3.13). This is well below the speed of 

sound in gas and can support supersonic flow. This is predominantly due to soil particle 

inelastic collisions which significantly reduces the granular temperature. These 

calculations were used to determine the Mach number and granular flow regime. 

Experiments supported by Particle Image Velocimetry (PIV) are needed to directly 

measure the particle velocities, obtain the granular temperature and test our calculations 

and data interpretation.  

  



 

 88 

Figure 3.14. Speed of sound in the granular media (c) vs. soil volume fraction for laboratory simulations 
with fine sand simulant composed of crushed walnut shells. 
 

3.4.5 Quantitative analysis 

 Next, we quantify the sudden increase in soil density across the shock fronts and 

the DGEE granular flow physics presented above, using the light reflectance photometry 

technique [Lee et al., 2007; Caesar Ton-That et al., 2008; Hapke, 2008]. The soil volume 

fraction is calculated from reflectance intensity data provided by the high speed images 

(Appendix B.4). A calibration curve is developed, where relatively black and white pixels 

with a pixel length of ~400 μm represents 0 and ~1 soil volume fractions (relative 

density), respectively [Caesar Ton-That et al., 2008].  A calibration curve is specific to 

different granular media or particle sizes. For Fig. 3.14 (Test 9), the soil volume fraction 

data is obtained along the +x-axis on the x-z plane (baffle 2) from the granular shock 

wave epicenter (x = 28.2 cm) to a radial distance of 15.6 cm (x = 45.6 cm). Similar 

analyses were conducted for the fluidization regimes within an area band of z = ±0.1 cm. 

The x-coordinate is fixed at the epicenter for each time interval, but the z-coordinate 

decreases during the erosion process from z = 17.2 cm at t = 0.112 s to z = 13.2 cm at t = 

0.214 s. These profiles of soil volume fraction vs. normalized x-distance are calculated at 

various stages of DGEE along the +x axis.  

 Analysis (Appendix B.4) of sequence of images of the DGEE process in fine sand 

simulant indicates that the soil volume fraction jumps from ~0.2 to ~0.8 at the beginning 

of each thrust cycle as shown by the orange and black profiles in Figure 3.15, suggesting 

the formation of a strong shock wave. The images also show that when the soil becomes 

fluidized near the end of each thrust cycle, the soil volume fraction at the origin decreases 

from ~0.5 to below 0.2 (granular gas), as illustrated by the red, blue and green curves, 

substantially reducing the speed of sound in it. It is difficult to quantify subsequent shock 

waves because of the increased fluctuations in the soil volume fraction (reflectance 

intensity). With each pulse cycle, the shock strength increases and fluidization further 

decreases the soil volume fraction and expands its domain. Large increases/decreases in 

the soil volume fraction (density) are not observed in experiments dominated by either 

BCF/DDF or VSE as illustrated in Figures 3.11 and 3.12. 
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Figure 3.15. Soil volume fraction as a function of normalized x-distance from the epicenter of a granular 
shock wave, at the times indicated in Fig. 3.10, during the ‘explosive erosion’ process (Test 9). These 
profiles are calculated from reflectance intensity data. Third order polynomial fitting was used for 
experimental data at times t = 0.098 s (t/timp = 0.98) and 0.186 s (t/timp

 Our analysis suggests that the uncertainty in the volume fraction value for fine 

sand simulant [Lee et al., 2008; Caesar Ton-That, 2009] is approximately ±0.05. In order 

to account for small asymmetries in the light illumination angle (leading to small 

localized bright and dark zones away from the area of interest), we determined the 

average soil volume fraction profile prior to jet impingement along an area band of z = ± 

5 cm as seen by the green curve in Fig. 3.14. This analysis suggests a mean volume 

fraction of ~0.5, which agrees with density measurements for fine sand (Test 9). Light 

oversaturation of the complementary metal-oxide-semiconductor (CMOS) sensors may 

record higher reflectance values for the brightest pixels within the image, known as the 

blooming effect, and result in larger uncertainty values  

 = 1.86) and linear fitting was used at 
t = 0.00 s. 
 

 The qualitative assessment of granular shock waves shown in Figure 3.10 

indicates that it also has similar characteristics to shock waves observed in supersonic gas 

media (Fig. B5, Appendix B.7). Dark and bright bands of the shock structure within gas 

and granular media are observed in all images. Although reflectance intensity profiles 

and qualitative observations support localized soil fluidization which led to the formation 
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of these shock waves, we numerically and analytically investigate this dominant 

mechanism caused by DGEE.   

 

3.4.6 Gas diffusion induced fluidization within granular media due to DGEE 

 Through analytical calculations, and numerical and laboratory simulations, we 

show that DGEE can cause gas diffusion to extend to large depths in short time intervals 

and lead to localized soil fluidization. The characteristic diffusion time-scale, τ, and 

characteristic one-dimensional diffusion velocity (= l/τ) to depth l can be calculated from 

Eqn. 3.7.  As described in Sections 3.4.2 and 3.4.3, DGEE is not a static process. Indeed, 

it causes many jet and soil parameters to change by orders of magnitude in short time 

scales. For example in Figure 3.15, the soil volume fraction decreases by a factor of ~3 

within 0.2 s during this process, significantly increasing the average soil porosity (n). 

According to the Kozeny-Carman equation (Eqn. 3.25) and the assumption of Darcian 

flow within the granular micro-pore space [Costa, 2006], an increase in n increases the 

soil permeability by orders of magnitude.  This equation is derived by applying the 

Navier-Stokes equations within an assembly of capillary tubes representing the pore 

spaces of the granular media. Eqn. 3.25 and the parameter C, a function of particle 

diameter, tortuosity of the pores and shape factor, assumes homogeneous semi-spherical 

fine sand particles with the same d used in Test 9. This particle size is also similar to the 

effective particle diameter calculated from Carrier [2003].  

( )
(3.25)        

180
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=  

 Due to DGEE, the characteristic diffusion time-scale decreases by a factor of 

greater than 50 from the maximum values recorded in Table 3.3 which results in a 1-D 

diffusion velocity of ~1 m/s. Along with large changes in the soil properties responsible 

for gas diffusion, the ground pressure values significantly change due to the interaction of 

pulsed jets with the surface. Ground pressure values can transiently increase by a factor 

of 3 to 5 times the value at steady-state due to partial plate shock formation and collapse 

at the surface. This could further increase the characteristic diffusion velocity to ~2 m/s.  

 From Figure 3.10, granular shock wave epicenters originate from z = 17 cm at t = 

0.112 s down to z = 7 cm at t = 0.318 s. The shock wave epicenters occur at an average 
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soil depth of ~4 cm per thrust cycle. Gas diffusion and large pressure gradients need to 

develop to these soil depths in order for granular shock wave propagation to initiate at 

these locations. Hence, the experimental results for Tests 4 and 9 show an average lower 

bound value of the characteristic gas diffusion velocity to be 0.4 m/s.   

 Along with the results from the analytical calculations and experimental 

observations presented above, an axisymmetric time-varying numerical simulation which 

is more quantitatively accurate shows that gas diffusion by the exhaust plume during the 

thrust rise phase has the potential to reach large depths within the granular bed in short 

time scales and initiate soil fluidization due to DGEE. The localized fluidization process 

that occurs during DGEE is dependent on ∆ P* and large variations in soil properties. The 

numerical simulation is conducted with an axisymmetric explicit finite-difference code 

[Scott and Ko, 1968] based on a second-order non-linear differential equation (Eqn. 

3.26a) with a time-dependent impingement pressure profile. This is developed using 

MATLAB. The numerical code is derived from the Navier-Stokes equations using 

homogenization mathematical techniques. We make the assumption that isothermal 

transient flow within the porous medium obeys Darcy’s Law (Eqn. 3.26a) [Scott and Ko, 

1968]. This transient numerical model simulates normalized pore pressure contours in a 

granular bed due to jet interactions with soil depth (z) of 15D and radial domain of 15D 

with a time step of 1x10-7 s. The pore pressure (p) values are normalized with respect to 

the steady-state jet impingement pressure (Pimp). The outer walls of the simulations at z = 

0 and x = 15D are modeled as impermeable surfaces where x = r is the radial component. 

The axis at r = 0 is defined as the axisymmetric line. For simplicity, we model the pulsed 

jet from a pair of thruster nozzles as a sine pressure wave (Eqn. 3.26b) with a pulse 

width, TPW

 

, for a single thrust cycle that interacts with a static granular bed with constant 

permeability and porosity. Hence, the removal of sand grains is not simulated. Prior to jet 

impact and during the thrust shut-down phase, the model assumes a constant pore surface 

pressure in equilibrium with the martian atmosphere (Eqn. 3.26b). Exhaust plume and 

soil properties used within the simulation shown in Figure 3.16 are generally 

representative of the experiment conditions.  



 

 92 

   

            constant; )(                                               

    

  )(3.26            0   ;  sin0.1)(                                       

)(3.26            21                                    
2

2

22

PW
imp

amb

imp

PW
imp

amb

PWimp

Tt
P
P

P
tp

bTt
P
P

T
t

P
tp

a
t
p

k
n

r
pr

rrz
p

>==

≤≤+







=

∂
∂

=







∂
∂

∂
∂

+
∂
∂

π

µ

 
 The dimensionless form of Eqn. 3.26a can be written in explicit finite difference 

form as:  
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Where P = p/Pimp , R = r/r0 , Z = z/r0 , T = (kPimp/2µnr0
2)t, numerical value subscripts 

(i.e. 0,1,2, etc.) are vertex points on the mesh developed with 0 at the origin and r0 is the 

radius of the dual nozzles.                                 

 DGEE is a highly dynamic process and as a result, soil permeability and porosity 

significantly change during a single thrust cycle, but even more so from one cycle to 

another. Figure 3.16 shows the pressure contours within the fine sand simulant (S) at 

times t = 0.015 s, t = 0.030 s and t = 0.085 s for soil porosities of n = 0.50 and n = 0.78. 

This soil porosity implemented in the code simulates the average bounds observed during 

the DGEE process in the experiments (Test 4-11) noted in Figure 3.15.  We observe that 

the pressure contours can extend to a soil depth of ~11 cm with an average soil pore 

pressure greater than 3.0 kPa at t = 0.015 s (thrust rise phase) for a soil porosity of n = 

0.78. Maximum gas diffusion depth of ~17 cm is reached at 0.0325 s when maximum 

thrust is reached. Hence, this leads to the formation of granular shock waves at martian 

atmospheric pressures. The pressure contours dissipate to less than ~2.4 kPa and expand 

to a soil depth of ~34 cm during the thrust shut-down phase (t = 0.085 s). Higher pore 



 

 93 

pressure contours of ~5 kPa are observed at the start of the thrust shut-down phase (t = 

0.065 s). This leads to the pressure gradient forces on the soil particles exceeding the 

normal atmospheric pressure and cohesive forces. Hence, this process is more readily 

observed at low atmospheric pressure environments (Mars) than at terrestrial 

atmospheres.  

 Once these gradients break minor cohesive bonds, the only restraining force is the 

cumulative weight of the sand grains. For the particle sizes studied, the pressure gradient 

force is slightly larger than the particles’ gravitational force during the thrust shut-down 

phase (t = 0.065 s to 0.1 s), causing the effective stress to be zero and the soil to enter a 

fluidized state as observed experimentally. For porosities between n = 0.5 and n = 0.78, 

the potential fluidization depth, zf 

2d

, which results in soil instability ranges from 10 cm to 

16 cm per thrust cycle. This calculation from Eqn. 3.28 takes into consideration the 

gravitational weight and cohesive strength (c) of a column of sand of cross sectional area 

which extends from the surface to a depth zf
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 where the gas diffusion pore pressure can 

lead to such instabilities. It should be noted that the pressure contours show relatively 

good agreement with the fluidization spatial profile shown in Figures 3.10A3 and 

3.10A5.  

 
  



 

 94 

 
Figure 3.16. Results of numerical simulations of the time-varying pressure wave propagating within the 
fine sand simulant for a single thrust cycle at Mars atmospheric pressure for the laboratory simulations 
(Tests 4-10). All length scales are normalized by the nozzle exit diameter and the colorbar depicts the pore 
pressure values within the soil which are normalized by the average steady state impingement pressure, 
Pimp

 

. We show these pressure contours at t = 0.015 s, t = 0.030 s and t = 0.085 s for two average bounds in 
soil porosity observed experimentally: n = 0.50 and n = 0.78. 

 As a comparison, we show that for a constant soil porosity of n = 0.5 during the 

thrust rise phase, gas diffusion extends to a soil depth of 4 cm with an average pore 

pressure of 6.4 kPa and expands to a depth of ~13 cm with a pore pressure less than 4 kPa 

during the thrust shut-down phase. Hence, the average characteristic diffusion velocity 

from these numerical simulations is between 1 and 3 m/s. This is also observed 

experimentally, where the depth of fluidization and resulting shockwave epicenter are 

much smaller for the first thrust cycle where the initial porosity is 0.5 as opposed to 

subsequent cycles. The duration when maximum penetration depth is reached is most 

likely smaller in our laboratory simulations due to a shorter thrust rise phase than 

numerically simulated. From conducting a series of numerical simulations with slight 

variations in permeability and porosity (sensitivity tests), we find that a decrease in soil 

permeability by a factor of 10 from theoretical values at pre-jet impact conditions has a 
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relatively minor effect on the pressure contour profiles and decreases the calculated depth 

of gas penetration and fluidization by a factor of ~0.7.  

 As a further comparison, the numerical model was applied to input conditions 

from the full-scale Phoenix REM thrusters and soil properties typical of Mars as shown in 

Table 3.5. Hot fire test data of the REM motors were used to bound the simulations 

shown in Figure 3.17. Here, the maximum diffusion depth reaches ~16 cm at n = 0.78 

and t = 0.030 s and then expands to ~32 cm during the thrust shut-down phase. Good 

agreement with numerical simulation results for the subscale experiment was observed 

for the absolute values of the depth of gas penetration and pressure contours. Normalized 

jet penetration radius during thrust rise show good agreement between full-scale and 

subscale results. Inconsistencies in the normalized radius and depth between the two 

cases are observed during the fluidization regime at the thrust shut-down phase. Slightly 

higher pore pressure values were predicted for the full-scale case, but it should be noted 

that the pulse width for the Phoenix REM motors are shorter than for the experiments 

(Table 3.5). Gas diffusion depth does not necessarily scale with nozzle diameter as 

observed for the penetration radius. This predominately scales with known soil properties 

and the impingement pressure magnitude and temporal profile.   

 Overall, the numerical simulations and analytical calculations support the 

observations seen in Tests 4-10 and that the ‘explosive erosion’ process leads to soil 

fluidization, granular shock waves and large penetrations of the exhaust plumes into 

relatively fine grained and low cohesive granular media within short time scales. The 

full-scale numerical simulation also supports that ‘explosive erosion’ was likely the 

governing mechanism during the Phoenix landing. The smaller grain and higher porosity 

of the fine silt simulant (Tests 21-22) may explain the expansive fluidization during 

thrust shut-down phases. Another possible but an unlikely mechanism that could have 

assisted liquefaction is vibro-fluidization, a process in which large surface vibrations 

could lead to extensive soil fluidization.   
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Figure 3.17. Results of the numerical simulations of the time-varying pressure wave propagating within 
fine basaltic sand at 160 µm for a single thrust cycle at Mars atmospheric pressure. The input and boundary 
conditions correspond to the full-scale Phoenix REM thrusters firing during descent.  

 

Parameters 
  

Full scale ½ scale† 

Friction velocity (m/s) 

γ 

~88.9 ~35.6 
Threshold friction velocity (m/s) 1.3 0.5 
AN (a.u.) 0.0123   0.0123 
K (m4/kg-s2 3 x 10) 3 x 10-4 
Gas diffusion time (s)

-4 
~33 – 1 ‡ ~20 - 1 

Soil depth (cm) 5 – 18 5 - 20 
Porosity (%) ~50 ‡ 50 
Gas viscosity at exit (kg/m-s) 9.4 x 10 3.5 x 10-6 
Permeability (m

-6 
2) 7.1 – 0.2 x 10‡ 7.1 – 0.2 x 10-11 

Cohesion (kPa) 
-11 

0.3 – 1.9 1.3 
Angle of internal friction (deg) ~30 33 
Soil particle density (kg/m3 3000 – 2650 ) 1300 
Particle size (µm) ~160 ~160 
Impingement pressure (kPa) ~15 ‡ ~15 
Gravitational acceleration (m/s2 3.71 ) 9.8 
Atmospheric pressure (Pa) ~858 ~832 
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†Data obtained from fine basaltic sand at Viking 2 Landing Site on Mars [Shaw et al., 2009] 
                          ‡Properties significantly change from pre-jet impact conditions during DGEE 
                          γ

 
Data obtained for simulant-type S 

Table 3.5. Dimensional parameters at pre-jet impact conditions based on scaling relations  

 Although the assumption that viscous dominant flow within the micro-pore space 

is reasonable, especially during the thrust shut-down phase and deeper within the soil, 

there may be times within the thrust-cycle and regions within the granular media where 

inertial effects become important. This increases complexity of the problem, but Teruel 

and Rizwaan-uddin [2009] show that the permeability for turbulent flows, determined 

numerically, also increases with soil porosity, k = f(n3

 

/1-n). Also, modeling of turbulent 

flow in porous media is limited and there is currently no consistent well founded 

methodology [Teruel and Rizwaan-uddin, 2009]. The Kozeny-Carman equation is well 

established for applications with granular media larger than clays, but more accurate 

calculations of the permeability may be obtained by measuring the sphericity factor and 

tortuosity of the granular media, rigorously accounting for permeability anisotropy and 

varied particle size distributions, and assuring complete steady flow and saturated soil 

specimen during the permeability tests.     

3.5. Relatively benign jet-induced erosion processes at Earth and Mars atmospheric 

pressure 

3.5.1 Viscous shear erosion 

 Viscous shear erosion dominates during the impingement of the pulsed thruster 

jets into soils composed of fine sand and silt at Earth atmospheric conditions depicted in 

Movie D5 (Appendix D) and Figure 3.11 which are examples of Test 17. It can be seen 

that VSE mainly acts by removing surface layers of soil particles. The radius and depth of 

the craters developed by VSE shown by Figure 3.7B (Test 17) were three to four times 

smaller than that caused by ‘explosive erosion’ shown by Figure 3.7A (Test 9). After 

pulsed jet impingement for 3 s or less, the crater developed is less than 5 cm deep and 

had a diameter less than 20 cm. Similar crater profiles were also observed for VSE at 

Mars atmospheric conditions [Shorthill et al., 1976a, 1976b, Romine et al., 1973]. The 

crater contour profiles showed relatively little difference between soil simulants tested. 

Atmospheric temperature (K) ~243 ~280 
Maximum thrust (N) ~600 ~160 
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The large coarse sand/granules (~1500 μm) have more massive particles which also 

inhibits the ‘explosive erosion’ process. No localized soil fluidization or granular shock 

waves were observed in VSE dominated processes.  

 Dust lifting is considerably more localized in VSE dominated experiments at 

Earth and Mars atmospheric conditions than DGEE [Romine et al., 1973]. However, soil 

deposition due to VSE at Mars atmosphere is less. At Earth atmosphere, Figure 3.7B 

shows a contour plot  of a distinct crater rim of ~15 to 30 cm in width (~30 to 60 cm at 

full-scale) and a deposition of 7 to 10 cm layers of soil near the lander footpad. The soil 

was ejected vertically at a steady rate due to the formation of a parabolic crater as shown 

in Figure 3.11, in contrast to ‘explosive erosion’ which led to sudden dynamic events 

which ejected granular media outward from the shock wave epicenter. The area covered 

by ejecta is considerably larger in experiments dominated by ‘explosive erosion’ and this 

correlates well with what is observed at the Phoenix landing site. In these experiments, 

many soil particles are ejected well beyond the testbed area.  

 From particle tracking data, we deduce that there are two reasons for the large 

differences in the deposition location between the two mechanisms. First, the drag on 

particles or bulk flow at Earth atmospheric pressures is hundred times larger than for the 

cases at Mars. Second, the mean velocity of shock-induced bulk media is five to seven 

times larger than for viscous shear-induced flows at martian atmosphere. For example, on 

the moon in a vacuum atmosphere, jet-propelled particles can reach supersonic speeds 

and travel distances greater than 160 m due to negligible drag forces. This was recorded 

by the Apollo 12 crew when they noticed microscopic craters on the Surveyor 3 hardware 

due the sandblasting effects during their lunar landing [Jaffe, 1971].  

The other main difference between the site-alteration characteristics on Mars and 

Earth, at a similar thruster inlet pressure, is caused by the fact that the impingement 

pressure is significantly larger at Mars atmosphere conditions than on Earth conditions as 

discussed in Chapter 2. This occurs because the thruster jet is underexpanded and 

collimated at Mars conditions and forces the development of a plate shock at the surface. 

A highly overexpanded shock structure which rapidly develops into a subsonic turbulent 

plume is observed in experiments at Earth atmospheric conditions, leading to the inability 

of a plate shock to develop at the surface. The surface impingement pressures at lunar 
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atmosphere have modest values as well due to a highly expansive plume shock structure 

[Clark, 1971], characteristic of highly underexpanded jets (e > 100). This forms a large 

areal plate shock which distributes the thrust load over a larger area, significantly 

decreasing the ground pressure and producing minimal site-alteration as observed for 

previous Apollo and Surveyor missions [Christensen, 1967; Mason, 1970].   

 

3.5.2 Bearing capacity failure and diffusion-driven flow  

 Bearing capacity failure and diffusion-driven flow dominate the erosion process 

in experiments with steady jets at Mars atmospheric conditions depicted in Movie D6 

(Appendix D) and Figure 3.12 which are examples of Test 18. In this case shown in 

Figure 3.12, a partially reflected plate shock developed at the surface, and the soil 

composed of fine sand simulant was excavated down to the impermeable subsurface in 

less than a second.  Minor eroded soil was ejected away and upwards by flow deflected 

by the steep parabolic crater with a diameter of ~10 cm.  

 Diffusion-driven flow (DDF) drives the soil in a tangential direction and bearing 

capacity failure (BCF) forces the soil in a perpendicular direction to the crater surface 

[Metzger et al., 2009]. DDF occurs when the exhaust plume diffuses into the soil layer 

and through viscous drag removes a uniform soil layer along the periphery of the crater 

wall. In contrast to DDF, the BCF mechanism alone does not erode soil layers. The 

pressure force of the jet mechanically compresses the soil, forming a cup-like crater. 

Majority of the soil is seen to be compressed along the cavity by bearing capacity failure 

similar to that observed during initial simulations of the Viking and Mars Science 

Laboratory (Appendix C) landings on Mars [Romine et al., 1973]. The distinction 

between which erosion process dominates is determined by the ratio of simulant particle 

to plume diffusion velocity. If the plume diffuses faster than the movement of simulant 

grains, DDF prevails and vice-versa for BCF [Metzger et al., 2009]. We have not 

assessed in this Chapter which distinct process between DDF and BCF is governing, but 

we believe that both processes play a role in erosion by steady jets. For experiments with 

the S-type simulant, the exhaust plumes diffuse into the soil layer and removes soil along 

the crater periphery as shown in the schematic of Figure 3.12. Small amounts of surface 

viscous erosion were also observed at the outer areas of the crater. 
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 After engine shut-down, most of the eroded and compressed soil rapidly refills the 

cavity and hence, we hypothesize that BCF was dominant. The final crater was less than 

5 cm deep with a diameter of 50 cm shown in Figure 3.7C. Although soil deposition 

thickness was greater for VSE, loose soil deposition also surrounds the crater rim for the 

BCF/DDF process. Similar erosion dynamics and crater profile were observed for the 

fine silt/dust simulant and this was also recorded for pre-Viking site alteration 

experiments conducted with lunar nominal soil (d < 20 μm) [Romine et al., 1973]. No 

localized soil fluidization or granular shock waves were observed in experiments 

dominated by BCF/DDF.  

 

3.6 ‘Explosive erosion’ at the Phoenix Landing Site 

 The idea that DGEE occurred during the landing of the Phoenix spacecraft is 

supported by images from the Surface Stereo Imager (SSI) and Robotic Arm Camera 

(RAC) [Smith et al., 2009]. These images shown by Figures 3.9 and 3.18 suggest that the 

erosion removed layers of regolith, rapidly exposing the subsurface ice over a large area 

[Smith et al., 2009] of ~2 m2
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 and ejecting ~300-120 kg of soil in less than 2 s, as 

predicted by DGEE. The calculated normalized erosion rates for type B and S 

simulants with depths between 5 cm and 20 cm at various altitudes (Tests 1-11) range 

from 20 to 65 for DGEE dominant processes, 40 to 130 when including the mass 

correction term discussed in Section 3.2.2. In contrast, these average erosion rates are 

below 10 (20 by including the mass correction term) for BCF, DDF and VSE processes 

(Tests 12-20). The range of normalized erosion rates calculated from RAC images of the 

Phoenix landing site (Appendix B.1) are between 35 and 100 which are in good 

quantitative agreement with the laboratory simulations governed by DGEE.  

 Furthermore, the exposed ice table seen at the southern footpad in Figure 3.9 

extends to a radius between 75 and 85 cm from the spacecraft centerline with a width of 

~1.1 m, similarly observed by the ‘explosive erosion’ process through normalization in 

applying Eqn. 3.11. In Figure 3.9, there are three large patches of the exposed subsurface 

where two exposed surfaces are bright and the third is much darker. Mellon et al [2009] 

indicates that the two bright features are either lighter-toned water ice or ice-saturated 
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soil observed at a high phase angle. They are separated with a modest amount of dark soil 

deposit. Figure 3.18A shows that the ice table was also extensively exposed near the 

eastern footpad.  

 In contrast to VSE and BCF/DDF, DGEE produces poorly defined and narrow 

crater rims with minor fluidized deposition, similar to those observed below the Phoenix 

lander. Loose soil particles are observed along stagnation planes between the three 

groups of thrusters and at the spacecraft centerline, in agreement with the design and 

results of our experiments. Modest amounts of particle deposition are observed around 

the crater rim, seen by the ejecta covered rocks near the footpad (Fig. 3.17D). Our 

experiments suggest that a layer of loose soil of ~1 to 2 cm of thickness was deposited in 

this region located in the work area as indicated in Figures 3.6B and 3.7A. This agrees 

with the fact that the forces on the robotic arm indicate less cohesive top soil near the 

crater rim than in places farther away [Arvidson et al.,2009]. Most importantly, these 

erosion characteristics are further corroborated by our experiments which simulates the 

dynamic pulsed nature of the impinging jets on soil at Mars atmospheric pressure as 

observed during the Phoenix landing. 
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Figure 3.18.  Images of erosion and deposition areas at the Phoenix landing site. (A) A partial close-up 
view of the exposed ice table, “Snow Queen” which is approximately ~55 cm in diameter 
(RS006EFF896752928_117A6MDM1). (B) Sol 7 SSI image (SS007EFF896839472_117FER1M1) of a 
rock (of ~12 cm of diameter) that was dragged for ~35 cm due to the shear force of the exhaust plume; (C) 
Sol 6 SSI image (SS006EFF896755404_1179ER1M1) of striations, ejected pebbles, and ejecta-covered 
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rocks out to ~3 m from the spacecraft centerline; (D) Sol 0 SSI image 
(SS000EFF896228288_10C96R1M1) of loose fluidized regolith is observed near the lander footpad. (E) 
Sol 5 SSI mosaic of the site alteration features seen with respect to the thrusters (marked in white ovals). 
Courtesy of NASA/JPL-Caltech/U. of Arizona/Texas A&M 

 
 Both local and macroscopic effects were observed due to the erosion caused by 

the landing phase. Displaced and ejected pebbles/rocks (Fig. 3.17B), ejecta covered rocks 

(Fig. 3.17C), and radial erosion striations all up to 3 m away from the lander centerline 

(Fig. 3.17 C, E), soil disturbance at a diameter of more than 40 m around the lander 

[Smith et al., 2009] (Fig. 3.18) and ejecta deposition even near the top of the legs struts 

[Renno et al., 2009] are all consistent with the explosive nature of DGEE. Some 

embedded rocks were dislodged from the ice table [Sizemore et al., 2009] due to the jets 

rapid, violent and broad excavation process and high surface impingement pressure loads. 

These soil disturbances are much larger in scale than those from the Viking, Surveyor 

and Apollo landings [Shorthill et al., 1976a, 1976b; Christensen, 1967; Mason, 1970), 

and experiments governed by either the VSE or BCF/DDF mechanisms which produced 

less intense, more localized erosion. Landing site images of previous spaceflight missions 

are shown in Appendix B.6 to provide a qualitative comparison of rocket plume-induced 

cratering.  

 VSE at the Phoenix landing conditions would lift soil particles less than 7 m away 

from the lander as shown by analytical calculations presented in Appendix B.5. However, 

Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment 

(HiRISE) image in Figure 3.19 shows a dark symmetric halo extending more than 20 m 

away from the lander, probably caused by  surface erosion due to the impact of sand 

grains ejected by ‘explosive erosion’ [Smith et al., 2009; Greeley, 2002; Greeley et al., 

1974]. Another interpretation of this halo is that the high-energy ejecta composed mainly 

of silty-sand and aggregates could have been deposited over these distances [Markiewicz 

et al., 2009; Greeley et al., 1974] as observed experimentally. It should be noted that this 

dark halo was not observed at the landing site prior to Phoenix touching down.  Both 

interpretations support the idea that ‘explosive erosion’ was dominant. Relatively much 

smaller in scale, asymmetric erosion was observed by the backshell and heatshield’s 

oblique impact with the martian surface, which may imply that the dark halo around 

Phoenix is characteristic of the “erosion-supported” hypothesis. 
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Figure 3.19. Sol 0 MRO HiRISE image (PSP_008591_2485) of the Phoenix landing site taken 22 hours 
after landing. A dark halo of more than 20 m in radius can be seen around the spacecraft depicted by a blue 
dot. Contrast applied to image. Courtesy of NASA/JPL-Caltech/U. of Arizona/Ball Aerospace. 
 

 Slight discrepancies in the normalized erosion rates and crater profiles between 

spacecraft observations and laboratory simulation may be due to the assumptions made in 

our analyses of the Phoenix data. Calculation of the soil removal from Phoenix data 
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(Appendix B.1) is under the assumption that the soil media has a relatively constant bulk 

density and the third group of thrusters exposed a similar fraction of subsurface ice. Since 

a digital elevation map has not been created under the lander, this value is only an 

approximation based on limited images taken from Phoenix’s RAC. Also, complete 

similarity between subscale terrestrial and full-scale planetary processes is difficult to 

achieve for granular processes and this may lead to some inconsistencies.  

 

3.7. Bulk physical soil properties derived from DGEE 

 The erosion processes described above can be used to determine approximate 

bulk physical properties of the soil at the landing site because crater morphology depends 

strongly on soil porosity, permeability and cohesion [Shorthill et al., 1976a, 1976b; 

Hutton et al., 1980]. Thus, the value of these important soil parameters can be determined 

by the analysis of images of the area below the lander and its surroundings [Shorthill et 

al., 1976a, 1976b; Hutton et al., 1980]. Our analysis in Appendix B.5 compares the ratio 

of average volume eroded with that of unaltered soil up to a distance of 40D from the 

lander centerline between experiments (Tests 1-11, 21-22, 23-24) and observations at the 

workspace region of the Phoenix landing site. This eroded volume fraction has been 

defined as the crater volume ratio.  

 The average crater volume ratio caused by the Phoenix landing is ~0.10. These 

calculations based on Figures 3.7A, 3.8 and 3.20 were averaged between soil depths of 5 

cm and 20 cm. DGEE on soils composed solely of fine silt (Tests 21-22), which has the 

highest porosity and lowest permeability of all soil simulants used, predicted to remove 

greater than six times the volume eroded during the Phoenix landing, corresponding to an 

exposed area of ice six times larger than observed under the spacecraft (Table 3.2). 

Relatively incompressible simulant such as large coarse sand/granules (Tests 23-24) or 

heavily cemented soils are not subject to DGEE and therefore cannot produce the 

alteration observed at the landing site (Table 3.2). A mixture of approximate equal parts 

of fine sand and silt simulant by volume (type B) produces erosion similar to that caused 

by Phoenix (Tests 1-2, Table 3.2).  

 First order comparison of the crater volume ratio from our laboratory simulations 

and that calculated with the Phoenix data suggests that the permeability coefficient and 
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porosity of the soil of the Phoenix landing site are within the range of ~3 x 10-4

 

 cm/s and 

~0.45, respectively. The martian arctic regolith seems to possess high compressibility at 

relatively high pressure loads as discussed in Section 3.4. These values and general 

properties can be used to constrain models of hydrological and vapor diffusion processes 

and therefore provide insights into the deposition and mobilization of water ice on the 

martian arctic [Hannah and Phillips, 2005; Sizemore and Mellon; 2006].  

Figure 3.20. Crater profiles for 5 cm soil depth cases for Tests 2, 11, 21 and 23 (Table 3.4). 
 
 From our experimental results and RAC and SSI imaging, the large volume of 

exposed subsurface water ice, the lack of soil deposition within the crater, and the steep 

crater walls indicates that the soil at the landing site is a cohesive mixture of fine silt and 

sand. Since the average crater volume ratio at the landing site is smaller than that 

observed in our laboratory simulations for type-B simulant, the soil cohesive strength 

may be larger than 3.5 kPa. We hypothesize that duricrust formed by liquid brines may 

be a source for the higher cohesion [Renno et al., 2009].  

 As an alternative or in conjunction hypothesis, the crater volume ratio (Table 3.2) 

which shows a general increase with decreasing particle size may also imply a larger 

presence by volume of fine sand (d > 200 µm) at the Phoenix landing site than estimated 

previously by the Microscopy, Electrochemistry and Conductivity Analyzer’s (MECA) 

Optical Microscope (OM) [Goetz et al., 2009]. The MECA OM shows two main particle 

size distributions at the landing site: ~70-100 μm and <15 μm. However, caution must be 
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taken in this comparison because the OM does not sample particles larger than 200 µm in 

diameter, and therefore its analysis is biased towards a smaller size distribution [Goetz et 

al., 2009]. The presence of a dark halo around the lander (Fig. 3.18) may also suggest a 

larger fraction of sand, coarser than the surface deposit which has a higher albedo [Smith 

et al., 2009; Greeley et al., 1974].  

 

3.8. Spacecraft aerodynamic loads and rates during the Phoenix EDL sequence 

 This section is included to provide context to the research investigation described 

above. Data from inertial measurement units (IMU) and gyros sampled at 200 Hz, located 

at the base of the lander, measures the three-dimensional accelerations and angle rates of 

the spacecraft. The radar provides 10 Hz altitude and spectra data. The altitude is 

measured from the lander footpad to the surface. Entry state such as flight path angle, 

speed, azimuth, time, latitude and longitude are provided from the Navigation Team. 

These figures were generated by applying the data file provided by NASA JPL/LaRC: 

phx_tlm.traj.grnd_up.lla.alt_abv_LS  

 Figure 3.21 shows the three-axis acceleration on the spacecraft during the EDL 

sequence. The x-direction is depicted along the vertical direction relative to the 

spacecraft. It shows maximum gravitational (g)-loads at Hypersonic 4 regime and 

parachute deployment. Maximum g-loads on the spacecraft occurs when we obtain 

maximum dynamic pressure on the heat-shield. As designed, it can be seen that 

immediately after backshell separation, the pulsed thrusters are firing until touchdown.    
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Figure 3.21 Three-axis acceleration vs. time of the Phoenix spacecraft during the EDL sequence. 

  

 The figures below in Fig. 3.22 focus on the last 6 m of descent. From this data, lift 

loss due to plume-surface interactions spans an altitude from 4.5 m to ~3.5 m, causing an 

increase of ~0.25 m/s in the descent velocity. Then, ground effects due to plume-surface 

interactions starts and decreases the descent velocity from 2.65 m/s to 2.4 m/s (Fig. 3.21). 

These figures support that the duration of plume-surface interactions was indeed quite 

brief on the order of ~1.7 s. The onset of ground effect is delayed as compared to 

simulations and this may be attributed to the fact that reflected plumes start interacting 

with the base of the lander closer to the ground (h/d ~60) than predicted.  
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 Figure 3.22. Ground effect force vs. altitude (left) and vertical descent velocity vs. altitude (right) during 
the Phoenix landing. The force and vertical velocity were calculated with data from the lander’s inertial 
measurement unit (IMU) and numerical simulations. Courtesy of Lockheed Martin/NASA/JPL-Caltech. 

 
 Figure 3.23 shows the aerodynamic acceleration and angle rates in all three axis 

during the last 2.5 second prior to touchdown. It shows the successful thrusters firings at 

10 Hz which results in transient acceleration peaks in all directions, but most prevalently 

within the x-direction. It can also be seen there was a slight bounce upon touchdown 

impact. Hence, a single decceleration peak is observed at ~0.3 s after touchdown. The 

unexpected bounce could have resulted from an additional 25 msec of pulsed thrusting 

upon initial contact. During the last 6 m, there was no mean roll rate, but a slight pitch 

and yaw rate within the last ~1.8 m which may be attributed to reflected plume 

interactions.   
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Figure 3.23. Three-axes spacecraft acceleration (left) and angle rates (right) vs time before touchdown. 

 

 From 3-D CFD steady-state simulations developed by the Aerosoft GASP code, 

the ground effect forces starts increasing below ~3 m as shown in Figure 3.24A. This is 

consistent with the flight data shown above in Figure 3.22. It can also be seen that lift 

loss occurs at 5 m or greater. Figure 3.24B suggests a large destabilizing torque in the z-

direction at a ground slope of ±10 degrees. Both destabilizing functions are maximized at 

touchdown altitude.   
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Figure 3.24. Three-dimensional steady-state numerical simulations for full-scale maximum torques and 
forces on the Phoenix Lander during descent. Force in the x-direction (top) and torque in the z-direction on 
the spacecraft vs. relative ground slope and altitude. [Gulick, 2006] 
 

3.9 Further experimental studies of cratering physics due to supersonic jet 

interactions in tenuous atmospheres  

 As a follow-up to this research investigation, a detailed experimental study of the 

interactions of steady supersonic jets with granular systems at altitudes greater than 35d 

was conducted at Mars atmospheric pressure. The research was done in support of the 

future NASA Mars Science Laboratory mission and described in Appendix C. Key 

findings include BCF/DDF as the primary erosion mechanisms which lead to a semi-

linear dependence of erosion with throttle level, ground slope and particle size. These test 
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programs in conjunction with spaceflight data were used to determine the dependency of 

nondimensional parameters on erosion rates. We find that the densimetric Froude number 

– erosion rate profiles are distinct between three jet-induced cratering processes: VSE, 

BCF/DDF and DGEE. Maximum cratering is observed at Mars atmospheric regimes 

relative to lunar and terrestrial environments.    

 

3.10 Conclusions and future work 

 This study used Phoenix spacecraft data and experimental and numerical 

simulations to investigate the dynamics of erosion caused by the thruster plume 

interactions with soil during the Phoenix spacecraft landing on the martian arctic. Its 

main results are: 

 (1) A new erosion process termed diffusive gas explosive erosion (DGEE) is 

discovered. DGEE is caused by supersonic pulsed jets impinging in porous soils at 

martian (low) atmospheric pressure. The explosive nature of this erosion process is 

caused by the localized fluidization of soil and the formation and propagation of strong 

cyclic and radial granular shock waves. This leads to erosion rates which are 5 to 20 

times greater than that of previously known processes caused by impinging jets.  From 

theoretical calculations, numerical simulations, high speed imaging and photometry 

techniques, we are able to qualitatively and quantitatively determine the formation and 

effects of fluidization and granular shock waves on the surrounding granular media at 

extreme conditions.  

 (2)   RAC, SSI and HiRISE images of the landing site, together with our results 

suggests that DGEE is responsible for the removal of 5 to 18 cm thick layers of soil, the 

first discovery of the expansive exposed ice table under the lander and an altered ground 

morphology that extends to 40 m in diameter which all occurred during the Phoenix 

landing. The more interesting observation is that this excavation took place in very short 

time scales of less than a second. This violent erosion process led to the discovery of the 

first direct evidence of liquid saline water on Mars [Renno et al., 2009] and provided 

information in regards to site contamination. While surface erosion during previous soft 

landings on Mars was dominated by VSE [Shorthill et al., 1976a, 1976b; Hutton et al., 

1980], we show the erosion during the Phoenix landing was dominated by DGEE.  
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  (3) Through experimental findings and spacecraft imaging of the altered landing 

site, we are able to approximately quantify through interpolation the various soil 

properties of the martian arctic plains that can be determined through jet-induced erosion.  

 The main goals of this research are to provide insights into the behavior of 

granular media subject to thruster jet interactions during spacecraft landings on Mars. 

Based on past studies on scaling laws, this Chapter takes a fresh look at the scaling of jet-

soil interactions. Accurately simulating the dynamics of granular flow as attempted here 

should be paramount and a first step in understanding these interactions. Most 

importantly, the physics described in this Chapter sheds light into the dynamic behavior 

of granular media subject to jet impingement at extreme conditions of low atmospheric 

pressure and low gravitational acceleration.  

 This study may also provide important information into in-situ resource utilization 

(ISRU) technology. This highly efficient and extremely rapid erosion process could be 

used to excavate the soil and extract resources from it. Pulsed cold gas thrusters on the 

spacecraft can be used as a low cost instrument to effectively sample martian soils. 

Hence, further studies, as briefly outlined below, are needed of soil transport in planetary 

environments.  

 Additional controlled experiments at low atmospheric pressure environments with 

large variations in particle sizes and densities and plume velocities are necessary to 

validate our scaling laws and further corroborate our theories of jet-induced erosion 

processes at extreme conditions.  Along with additional terrestrial experiments, it would 

be beneficial to conduct a series of controlled experiments on Mars, of the effect of 

supersonic jets on granular soil. This can provide us with the ground truth to both our 

scaling laws and more importantly to numerical models being developed. Although 

limited, similar tests in the 1960s were conducted using NASA Surveyor V’s liquid 

propulsion system on the moon.  

 Additionally, all future planetary surface missions should obtain detailed images 

and digital elevation maps of the site-alteration regions. Also, a camera on-board the 

spacecraft should take a time sequence and high-resolution images of dust lifting and 

erosion during the spacecraft descent and ascent phases. Limited observations were made 

during the Apollo lift-off and landings on the Moon. Moreover, Mars Science Laboratory 
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Mars Descent Imager (MARDI) will document its descent and may provide science and 

engineering teams with a further understanding of the erosion process due to spacecraft 

landings on Mars, for the first time. Numerical models and laboratory simulations in 

conjunction with ground truth are essential in fully characterizing these complex 

interactions. For future manned and robotic missions to Mars and other celestial planets, 

the understanding of these interactions is critical for the safety and survivability of the 

crew and spacecraft. Although the engineering aspects of ‘explosive erosion’ as described 

above are important, this discovery led to revolutionary thinking in the search for life on 

Mars. 

 Due to the physics and effects of the newly discovered erosion process at the 

Phoenix landing site and high relative humidity above the sublimating and exposed ice 

table, we looked for signs of liquid water below the lander. Shortly after, Renno et al 

[2009] first discovered possible signs of liquid brines on Mars. In Chapter 4, we further 

investigate this discovery by photometric and broadband spectral analyses of images 

taken by the Phoenix and MRO spacecrafts and controlled laboratory experiments.  
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C H A PT E R  4 
 
 

Photometric and spectral evidence for deliquescence and liquid saline 

water on Mars 

 
This chapter describes an article submitted and under review by Nature in 2010. 
 
4.1 Introduction 

 Determining if life ever existed on another planet is one of the main goals of 

space exploration. Since it is believed that liquid water is a basic ingredient for life, an 

important step in the search for extraterrestrial life is to determine if liquid water exists in 

other planets [Space Studies Board, 2002]. Mars is the most Earth-like planet in the solar 

system and there is evidence that it had liquid water in the past [Squyres et al., 2004]. 

Therefore, Mars is an excellent candidate for searching for signs of past microbial life. 

The recent discoveries of evidence for interfacial water [Kereszturi et al., 2009; 

Mohlmann et al., 2010] for liquid saline water or brines [Renno et al., 2009], and for 

methane [Mumma et al., 2003] 

 The water vapor pressure at the triple point of water is below the atmospheric 

pressure on the lowest regions of Mars, but the low surface temperature and dry 

atmosphere inhibits the presence of pure liquid water on them. However, liquid water can 

on Mars have excited the science community by reviving 

the possibility of extant microbial life in a nearby planet. Here we show photometric and 

broadband spectral evidence that liquid saline water exists on Mars. In addition, we show 

that this finding indicates that deliquescence occurs seasonally on Mars’ polar region. 

These discoveries support the hypothesis that freezing/thaw cycles lead to the formation 

of brine pockets where ice and salts coexist in the shallow martian subsurface [Renno et 

al., 2009]. This has important implications for the search for extraterrestrial life because a 

diverse array of terrestrial microorganisms thrives in brines [Boetius et al., 2009]. 
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exist as brines because salts can lower the freezing temperature to Mars like temperatures 

[Renno et al., 2009; Haberle et al., 2009; Hecht et al., 2009; Chevrier et al., 2009]. The 

lowest temperature at which brines freeze, known as their eutectic temperature, can be 

lower than 200 K for single salts found on Mars, and mixtures of different salts can have 

even lower eutectic temperatures [Renno et al., 2009]. The eutectic temperature depends 

mainly on the solutions’ ion concentration and composition. Salts absorb water when the 

relative humidity over them is above the deliquescence relative humidity. This humidity 

value can be lower than a tenth of the saturation value over pure water, depending on the 

salts composition and the temperature of their solutions [Renno et al., 2009; Seinfeld et 

al., 2006]. 

 It has been postulated that eutectic solutions form where salts are present near 

water ice and their temperatures oscillate around the eutectic value [Renno et al., 2009]. 

These solutions form because salts deliquesce and ice precipitates from their diluted 

solutions when they are cooled, until the solution reaches the eutectic concentration and 

freezes, at the eutectic temperature [Renno et al., 2009]. The eutectic temperature of 

solutions of some salts found on Mars is low enough that they could be liquid even in the 

polar region [Renno et al., 2009; Hecht et al., 2009; Chevrier et al., 2009; Seinfeld et al., 

2006; Pestova et al., 2005]. The Phoenix Lander found physical and thermodynamical 

evidence for liquid brines on its landing site in the Mars Arctic [Renno et al., 2009]. This 

was first investigated due to the nature of the altered site and extensive exposure of 

subsurface water ice under the lander by the explosive erosion process described in 

Chapter 3. Hence, it was hypothesized by Renno et al. [2009] that the saline mud was 

easily splashed onto the lander struts and a few of these deposits dried upon cooling and 

formed distinct spheroids. Here we report the discovery of photometric evidence that 

liquid saline water is present at the Phoenix landing site. In addition, we report the 

discovery of photometric and broadband spectral evidence that liquid brines seasonally 

flows in some areas of Mars polar region, when they start to defrost early in the spring. 

These results have important implications for the habitability of Mars [Boetius et al., 

2009]. 

 
4.2 Methodology  
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The reflectance at wavelength λ is defined [Rees, 2001] as 
 

Rλ =
π Iλ
Fλ

,       (4.1) 

 
where Fλ and Iλ

 

 are the radiances at wavelength λ incident at the surface and reflected by 

it. The reflected radiance can be calculated using the measured brightness intensity, or 

instrument digital number (DN), with the aid of the instrument calibration function 

[Delamere et al., 2010] 

Iλ + Iλ
path = aDN + b ,      (4.2) 

 
where Iλ

path  is the net source of radiance (emission plus scattering, minus absorption) at 

wavelength λ integrated along the surface-instrument path, and a and b are the instrument 

gain and offset. Taking the radiance reflected from the darkest pixels on shadows to be Iλ 

 

≅ 0, it follows from Eqn (4.2) that 

 Iλ = a DN − DNdark( ).      (4.3) 
 
Substituting Eqn (4.2) into (4.1), we get 
 

Rλ =
π
Fλ

aDN + b − Iλ
path( ).     (4.4) 

 
Thus, the reflectance of pixels dominated by ice is 
 

Rλ
ice =

π
Fλ

(aDNice + b − Iλ
path ) ,     (4.4a) 

 
and the reflectance of dark pixels dominated by shadows is 
 

Rλ
dark =

π
Fλ

(aDNdark + b − Iλ
path ) .    (4.4b) 

 
Subtracting Eqn (4.4b) from (4.4a), we get 

 

Rλ
ice − Rλ

dark =
π
Fλ

(aDNice − aDNdark )  
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π
Fλ

=
Rλ

ice − Rλ
dark

a
1

DNice − DNdark







. 

 
Multiplying both sides by Iλ
 

, we get 

 
π Iλ
Fλ

= Rλ
ice − Rλ

dark 1
DNice − DNdark







Iλ
a

. 

  
Taking Rλ

dark  ≅ 0, it follows from the above and Eqn (4.3) that 
 

Rλ = Rλ
ice DN − DNdark

DNice − DNdark







.     (4.5) 

 
Eqn (4.5) is used to adjust the reflectance of each pixel of the images analyzed in  

this Chapter. Reflectances of ice, at the spectral bands in consideration, measured in the 

laboratory [Clark, 1981; Painter et al., 1998] 

Images of brines of laboratory experiments at Mars conditions [Zorzano et al., 

2009], of Phoenix spheroids [Renno et al., 2009], and of flow-like and pond-like features 

on Richardson crater’s dunes [Kereszturi et al., 2010; Kereszturi et al., 2009; Mohlmann 

and Kereszturi, 2010] are analyzed by visually finding the brightest 25-50 pixels 

indicating frost/snow, the 25-50 darkest pixels in the darkest shadows, and adjusting the 

reflectance of each pixel with the aid of Eqn (4.5). Important parameters in regards to 

these three studies are tabulated in Table 4.1.  

are used in our calculations. The error in the 

reflectance calculation is estimated in Section 4.5. 

 Table 4.1 gives the spectral band covered by each image analyzed in this Chapter. 

The presence of the liquid phase and ice in the laboratory experiments was verified by 

infrared spectroscopy [Zorzano et al., 2009]. The controlled laboratory experiments at 

similar Phoenix landing site conditions were conducted at the Planetary Environment 

Simulation Chamber (PESC) at Centro de Astriobiologia (Spain). Both laboratory and 

Phoenix images are in the visible (VIS) portion of the spectra spanning from 400 to 750 

nm (Table 4.1). The DNice values for these images were obtained from the brightest 

locations where frost was detected [Zorzano et al., 2009; Renno et al., 2009], while the 

DNdark values were from the darkest shadows on the edge of the sample holder and where 

the diameter of the Phoenix strut changes. 
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† 

Table 4.1. Albedo of liquid brines at Mars atmospheric pressure (P

Albedo of the liquid phase derived from field measurements of terrestrial sea ice[Perovich, 1996] 

atm

 

) and temperature (T) at the spectral 
bands (Camera Sensitivity) of the various images analyzed in this article. 

The value of DNdark of Mars Reconnaissance Orbiter (MRO) HiRISE images are 

from pixels located on the darkest shadows casted by boulders and dune edges on low 

albedo areas. The DNice

Table 4.1 indicates that HiRISE images in the blue green (400-600 nm), visible 

with red filter (550-850 nm), and near infra-red (780-1060 nm) portions of the spectra 

were analyzed. The HiRISE images were analyzed using both USGS ISIS

 values of these images were found on locations where the 

Compact Reconnaissance Imaging Spectrometer (CRISM) detected surface frost 

[Kereszturi et al., 2010]. CRISM detected both carbon dioxide and water ice frost in this 

area, in particular on dune crests and slopes [Kereszturi et al., 2010; Kereszturi et al., 

2009]. The presence of ice is also confirmed by the spectral analysis reported later.  

 3.2 [USGS, 

2009] and ITT Visual Information Solutions IAS Viewer 

 

3.2.1 [ITT Visual Inf. Sys., 

2009]. Only radiometrically calibrated images were used, and no additional dynamic 

range adjustments were applied to them.                                                                                                                                                                                                                                                                                                                                                                                                                                

4.3 Photometric and broadband spectral analysis 

 The diffuse component of light scattered from wet surfaces is reduced by an 

amount proportional to the inverse of the square of the index of refraction [Jezek et al., 

1987]. Since the index of refraction of liquid water is larger than that of water ice, 

liquefaction darkens water substance. Because liquid brines have larger index of 

refraction than liquid water, they enhance the darkening [Renno et al., 2009]. Scattering 

is reduced because changing the medium covering the surface from air to water decreases 

the relative index of refraction between the surface and its surroundings. This increases 

forward scattering and produces reflections at the liquid-air interface, causing the wet 

Studies 
  

P
(Pa) 

atm T 
(K) 

Atmospheric 
Composition 

Camera 
Sensitivity (nm) 

Pixel Resolution 
(µm) 

Albedo

 

† 

      
PESC  ~800-700 ~220-240 ~95% CO 400-750 2 ~150 < 0.3 
Phoenix RAC ~840-800 ~225 ~95% CO 400-750 2 ~200 < 0.3 
MRO HiRISE (BG) ~850-720 * ~140-260 ~95% CO 400-600 2 25 x 10 < 0.4 4 

MRO HiRISE (VIS) ~850-720 ~140-260 ~95% CO 550-850 2 25 x 10 < 0.1 4 
MRO HiRISE (NIR) ~850-720 ~140-260 ~95% CO 780-1060 2 25 x 10 < 0.05 4 



 

 120 

surface to absorb more light than the dry [Lekner et al.,1988; Twomey et al., 1986]. These 

effects have been studied extensively in sea ice (a mixture of ice, brines, and salts) 

because changes in its albedo play an important role on climate [Perovich et al., 1996]. 

The albedo of sea ice decreases when it starts to melt in the summer, causing increases in 

the absorption of solar radiation that accelerates the melting [Perovich et al., 1996]. 

Simple quantitative relationships between the physical and optical properties of sea ice do 

not exist. However, it is well established that spectral variations in the optical properties 

of sea ice are dominated by absorption [Perovich et al., 1996]. Because ice is highly 

scattering, its reflectance is approximately constant with wavelength. On the contrary, the 

reflectance of sea ice with melt (brine) ponds decreases strongly with wavelength (Fig. 

4.1) [Perovich et al., 1996]. Except for an increase of the order of 30% at the angle of 

reflection of the solar beam, the reflectance of sea ice is approximately constant in all 

directions (it is Lambertian) [Perovich et al., 1996]. Therefore, the albedo of sea ice is 

approximately equal to its reflectance. 

 
Figure 4.1. Albedo of ice, frost/snow, liquid water/brines and Mars soil as a function of wavelength. 
Albedo of (a) snow-covered sea ice [Perovich, 1996], (b) glazed-snow over sea ice [Perovich, 1996] , (c) 
bare sea ice [Perovich, 1996], (d) melt ponds [Perovich, 1996] 

 

, and (e) Mars polar soil [Smith et al., 2009],  
. The colors represent HiRISE blue-green (BG), visible (VIS), and near-infrared (NIR) spectral bands 
[Delamere et al., 1996].  

 A schematic diagram of the relationship between the physical conditions of sea 

ice and its albedo in the visible portion (400-750 nm) of the spectrum is shown in Figure 
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4.2. Measurements between the blue green (400-600 nm) and near infrared (780-1060 

nm) portions of the spectrum show that the albedo of glazed ice and snow covered ice is 

approximately constant with wavelength and that the albedo of melt ponds in sea ice 

peaks at approximately 400-500 nm and decreases by almost an order of magnitude 

beyond 600 nm (Fig. 4.1). The albedo of snow covered sea ice (snow or frost covered 

soils on Mars) and melts ponds (liquid brines on Mars) at various portions of the 

spectrum, at which images from Mars are available, can be used to fingerprint liquid 

brines because it distinguishes them from frost/snow, ice and soil (Table 4.2) [Perovich et 

al., 1996; Smith et al., 2009].  

 
Figure 4.2. Photometric relationship between the albedo and the physical conditions of brines. (Top) 
Schematic diagram of the relationship between the albedo and the physical condition of sea ice. It shows 
that albedo (in the visible) smaller than ~0.3 indicates the presence of the liquid phase (Fig. 4.1). This color 
scale is used in all photometric analysis of this article. (A) Image of a sample of sodium perchlorate brine 
in a laboratory chamber at Mars conditions (Table 4.1) [Zorzano et al., 2009]. The bright area inside the 
sample holder is a mixture of ice and frozen brine, the dark area is liquid brine, and the bright area outside 
the sample holder is frost [Zorzano et al., 1996]. (B) Albedo calculated with Eqn (4.5), from the image on 
the left. Isolines at 0.1 are in white and at 0.3 in black. Frost and frozen brines have high albedo (similar to 
fresh or new snow) and areas containing liquid brines have albedo smaller than 0.3. Albedo uncertainties 
are ~10% (Section 4.5). 
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Table 4.2. Mean albedo of snow-covered sea ice (frost/snow) [Perovich, 1996], melt pond on sea ice (melt 
pond) [Perovich, 1996], and Mars polar soil (Mars soil) [Smith et al., 2009], on the blue-green, visible with 
red-filter, and near infra-red portions of the spectra. The mean albedo values are calculated from the data 
presented in Fig. 4.1. 
 
 Images of brines from the studies described in Table 4.1 are analyzed by finding 

the brightest pixels indicating ice, the darkest pixels on shadows indicating reflected 

radiance Iλ

R = Rice
DN − DNdark

DNice − DNdark

 ≅ 0, and by adjusting the reflectance of each pixel [Smith et al., 2005] as 

,          

(shown in Eq. 4.5) where Rice

 

 is the reflectance of ice measured in the laboratory (Table 

4.3) [Clark et al., 1981]. We refer to the resulting images as reflectance adjusted images, 

or simply “albedo images.” 

 
 

Table 4.3. Reflectance of water frost ( Rλ
ice ) at martian conditions at the spectral windows [Clark, 1981] of 

the images analyzed in this letter. The range of values covers possible frost grain sizes [Clark, 1981; 
Painter et al., 1998]. 
  

Material 
  

Spectral Window 
 

Wavelength 
(nm) 

Mean albedo 

Frost/Snow Blue-Green (BG) 400 – 600  0.9 
Melt Pond   0.4 
Mars Soil   0.08 
Frost/Snow Visible (VIS) 550 – 850  0.9 
Melt Pond   0.1 
Mars Soil   0.3 
Frost/Snow Near Infra-red (NIR) 780-1060  0.75 
Melt Pond   0.05 
Mars Soil   0.4 

Spectral Window (λ) HiRISE Phoenix RAC & 
Lab Experiment 

   
Blue – Green (BG) 1.00 – 0.90 -- 
Visible (VIS) 0.95 – 0.85  0.95 – 0.85 
Near – infrared (NIR) 0.95 – 0.70 -- 
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Figure 4.3. Photometric analysis of images of spheroids on a strut of the Phoenix Lander. (A1-A3) Raw 
images (Table 4.1) of spheroids on a strut of the Phoenix Lander on martian days or Sols 8 (A1), 31 (A2) 
and 44 (A3) [Renno et al., 2009]. Courtesy of NASA/JPL-Caltech/U. of Arizona/Max Planck Inst. (B1-B3) 
Albedo of the images A1-A3 with isolines at 0.1 in white and 0.3 in black. The color code presented in Fig. 
4.2 is used here. The white isolines enclose areas of low albedo associated with growth and motion of 
spheroids, suggesting deliquescence. None of the spheroids have albedo high enough to correspond to frost. 
The spheroids albedo values indicate the presence of both liquid phase (albedo ~0.1) and refrozen liquid 
(albedo ~0.45). 

 
 Comparison of images of brines at Mars laboratory conditions and the schematic 

diagram at the top of Figure 4.2 indicates that the knowledge acquired in studies of 

terrestrial sea ice can be used to search for liquid brines on Mars, even when only images 

at visible wavelengths are available.  Indeed, it indicates that significant amounts of 

liquid brines decrease the albedo of ice (frost or snow) and martian soils to values below 

0.3, and that albedo smaller than 0.1 indicates areas dominated by the liquid phase.  It has 

been argued that the darkening of spheroids on a strut of the Phoenix Lander indicates 

melting [Renno et al., 2009]. Figure 4.3 shows quantitative photometric evidence that the 

Phoenix spheroids are composed of liquid saline water. It shows that the area of the 

Phoenix strut where a spheroid appears to liquefy and drip [Renno et al., 2009] has the 

low albedo of liquid brines. The albedo of other areas where spheroids grow is similarly 

low, supporting the idea that they grow and move by deliquescence. Both spheroid 

darkening (melting) and spheroid growth near dark albedo regions (<0.1) can be seen. 

This growth rate is also analytically predicted by the deliquescence process. These 
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spheroids are also observed and measured to either stop growing or shrink towards the 

end of the mission where the atmospheric temperatures are much colder. This is caused 

by dilution of the spheroids which leads to both freezing and sublimation. The 

quantitative photometric analysis here presented adds to the physical and 

thermodynamical evidence for liquid saline water discovered by Phoenix. 

 It is highly unlikely that these spheroids are dominated by polar soil or frost. Polar 

soil exhibits a much higher albedo of ~0.25 to ~0.3 due to a large fraction of atmospheric 

dust and they would not show large changes in albedo as a function of time or the 

observed spheroid dynamics described above. Although thermodynamics does not 

support that these spheroids are dominated by frost, we further show that they have 

moderate to low albedo, are spherical in shape and are more importantly highly localized. 

Frost is bright ice crystals which form from solid deposition of atmospheric saturated 

water vapor on solid surfaces. It can be seen from Figure 4.4 that surface frost at martian 

conditions exhibits high and uniform albedo along the sample holder. This also shows 

good agreement with both the optical and physical behavior of frost/snow in terrestrial 

and martian environments (Phoenix Landing Site) [Searls et al., 2009]. 

 
Figure 4.4. Photometric analysis of a laboratory image of frost at visible wavelengths. Photometric analysis 
of new frost evenly deposited along the sample holder of laboratory experiments at Mars conditions (Table 
4.1) [Zorzano et al., 2009]. It indicates that new frost that never melted has albedo > 0.8.  If the Phoenix 
spheroids were frost, they would have similarly high and uniform albedo values. Ice with lower albedo 
indicates that it is refrozen. 
 
 Figure 4.5 images of isocontour albedo profiles further support that deliquescence 

was responsible for the growth and movement of these spheroids. Higher albedo 

gradients show higher concentration of pixel filling. Hence, these images adequately 

separate the spheroids and dark albedo regions from the uniform, low gradient, albedo of 

the lander strut.  
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Figure 4.5. Albedo isocontour images of spheroids on a strut of the Phoenix Lander (A1-A3). The 
colorscale in Fig. 4.2 is used. Higher filled regions depict higher albedo gradients and lower filled regions 
depict lower albedo gradients.  
 
 

 

 

 

Table 4.4. Broadband spectral signature of frost/snow [Perovich, 1996], melt ponds [Perovich, 1996], and 
Mars soil [Smith et al., 2009; McCord and Elias, 1971],  

 

. The calculations of η and their uncertainties are 
discussed in Section 4.5. 

 Table 4.4 indicates that the broadband spectral parameter 

η ≡
aNIR − aBG

aNIR

,       (4.6) 

where aNIR and aBG

 Figure 4.6 shows the spectral fingerprint of liquid brines on pond-like and flow-

like features on polar dunes starting to defrost in the spring [Kereszturi et al., 2009; 

Mohlmann et al., 2010] (Figs. 4.7 and 4.8 show photometric evidence for liquid brines in 

this and nearby areas), confirming suggestions that significant amounts of liquid saline 

water form seasonally on Mars surface [Kereszturi et al., 2009; Mohlmann et al., 2010]. 

As expected, the flow front is dominated by liquid. Furthermore, it can be seen from 

Figure 4.7 that the slow moving and narrow dark albedo front abruptly terminates at L

 are the albedo at near-infrared (NIR) and blue-green (BG), can be 

used to distinguish liquid brines from frost/snow and soil. Indeed, η ≅ -6 to -8 would be a 

fingerprint of liquid brines because none of the substances likely to be present on the 

martian surface have this low value. 

s= 

238°. This is an important result, because debris flows due to dry-ice evaporation leads to 

fan-shaped formations at the down slope regions [Blair and McPherson, 1994]. Possibly, 

Material η 
Melt Ponds -8 to -6 
Frost/Snow -1.5 to 0 
Mars Soil 0.5 to 1 
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the components within the dark albedo region are either being absorbed by the surface or 

evaporating into the atmosphere. Our analysis also indicates the presence of bulk 

amounts of liquid brines (Fig. 4.7 A1-A2) that evaporates as it gets warmer, leaving 

bright salts at the surface (Fig. 4.7 A3-A4). Eqn. (4.5) is applied to each image, and then 

the value of η is calculated for each pixel. Radiometrically calibrated blue green and near 

infra-red HiRISE images [Delamere, 2010] are used in the analysis. This analysis does 

not provide details to the depth or concentration of brines in these regions. 

 
Figure 4.6. Broadband spectral analysis of flow-like and pond-like features on a sand dune on Richardson 
crater at Mars’ south polar region (north is on the right). The image depicts the values of the parameter η, 
with white isolines at -6 enclosing areas containing liquid brines. As expected from deliquescence, flow-
like and pond-like features are surrounded by frost. A combination of frost and soil dominates the rest of 
the images. The time difference between the two images is 19 Sols. CRISM measurements indicate that 
water and CO2

 

 surface frost are present in this area, supporting our analysis. Color images and photometric 
analysis of this area are presented in Fig. 4.8.  
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Figure 4.7. Photometric analysis of images (in the visible) of flow on a slope (north is on the right) of 
Richardson crater at Mars south polar region [Kereszturi et al., 2010; Kereszturi et al., 2009; Mohlmann 
and Kereszturi, 2009]. The images span a period of 72 Sols. White isolines at 0.1 indicate areas dominated 
by the liquid phase. Black isolines enclose areas with albedo 0.3. This does not necessarily indicates the 
presence of liquid in visible HiRISE images because the images are biased towards red (Table 4.1) and 
smaller albedo values are necessary to indicate the liquid phase (Fig. 4.2). The color scale shown in Figure 
4.2 of the main text is also used in these images. The mean ground temperature at A1, A2, A3 and A4 are 
164 K, 185 K, 255 K and 262 K. However, the local temperature at the flow-like features can be higher 
because the dark flow-like features absorb more solar radiation than the surrounding areas and the 
deliquescence of many salts is a highly exothermic reaction. It has been suggested that liquid films of water 
or brines cause these flows [Kereszturi et al., 2010; Kereszturi et al., 2009; Mohlmann and Kereszturi, 
2009].  
 

 

 
Figure 4.8. Color images and photometric analyses of the flow-like feature shown in Fig. 4.6. Courtesy of 
NASA/U. of Arizona/Ball Aerospace. (Left) False color HiRISE image of the flow-like feature showing that 
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it is darker than the light-brown sand mainly covered by frost. The image suggests the presence of frost on 
the dune crest and slope, and this is confirmed by CRISM measurements [Kereszturi et al., 2010]. (Right) 
Photometric analysis indicates that the flow-like feature has the low albedo of liquid. Isolines at 0.1 in 
white enclose areas dominated by liquid. Isolines at 0.3 in black does not necessary enclose liquid because 
HiRISE visible images are biased towards red (Table 4.1) and therefore a smaller albedo value is required 
to indicate the presence of the liquid phase (Fig. 4.2).  
 

4.4 Deliquescence and the potential for life on Mars 

 Salts in contact with ice are subject to water vapor pressures equal to that of the 

saturation value over the ice, and therefore deliquesce if the ice is warmed above the 

eutectic temperature of their saline solutions. During fall/winter, frost accumulates 

uniformly on the ground of the polar region. As the ground temperature increases early in 

the spring, water frost becomes warm enough for some of the salts in contact with it to 

deliquesce before the frost sublimates. Therefore, deliquescence occurs in frost-covered 

areas at which the temperature exceeds the eutectic temperature of salts in contact with it, 

before the frost sublimates. This implies the existence of an optimum zone between the 

polar cap and mid latitudes where deliquescence occurs seasonally at the surface. The 

location and extent of this zone is discussed next. 

 Phoenix found significant amounts of perchlorates, sulfates, sodium, and 

magnesium ions in the martian soil, likely from magnesium and sodium perchlorate 

hydrates [Hecht et al., 2009; Smith P. H. et al., 2009; Kounaves et al., 2010]. The 

deliquescence relative humidity of magnesium perchlorate 8-hydrate is about 0.5 and its 

eutectic temperature is ~200 K. At this temperature, a water vapor partial pressure of ~0.1 

Pa is sufficient to cause deliquescence [Renno et al., 2009]. Humidity measurements and 

the detection of the formation of fogs and clouds at temperatures of ~210 K indicate that 

the mean diurnal value of the water vapor pressure at the Phoenix landing site was ~1 Pa. 

This is further corroborated by observing sublimation of the extensively exposed water 

ice table below the lander (“Holy Cow”) which is near the landing strut of interest. This 

value is consistent with satellite measurements indicating total atmospheric column water 

vapor of ~50 pr-µm if the water vapor is assumed to be well mixed in the planetary 

boundary layer [Whiteway et al., 2009]. Thus, deliquescence of magnesium perchlorate 

can occur in areas of the polar region at which the peak ground temperature reaches 

values between 200 K and 210 K. Since the efflorescence temperature can be 

substantially lower than the eutectic temperature [Renno et al., 2009], the hydration of 
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perchlorate is an exothermic reaction, and local (e.g., inside valleys and depressions such 

as craters) humidity values can be larger than regional, liquid water can be present 

poleward of the 200 K maximum ground temperature isotherm and equatorward of the 

210 K isotherm. 

 Deliquescence is also likely to occur in the shallow subsurface of Mars, where 

salts and ice are present and the temperature exceeds the eutectic value, because the 

topsoil would inhibit sublimation. Therefore, liquid brines should be common on Mars. 

This testable hypothesis has important implications for the habitability of Mars because 

microbes thrive in terrestrial brines [Boetius et al., 2009; Mikucki et al., 2009; Junge et 

al., 2001]. Traces of methane and formaldehyde discovered in the martian atmosphere 

could be the products of microbial reactions, such as methanogenesis and incomplete 

oxidation of methane [Moran et al., 2005]. Analyses of martian soil samples indicate the 

presence of calcium carbonate, possibly magnesium carbonate, iron oxyhydroxides, 

smectites, iron sulfate, magnesium sulfate, and serpentine. Together with the evidence for 

liquid brines, this suggests that Mars could be habitable today. 

 To continue this search for liquid brines on Mars, more in-depth multi-spectral 

analyses of the polar regions should be done.  Cross correlation between HiRISE and 

CRISM spectra data can provide further support to these findings and improve the 

accuracy. Instruments that can detect liquid phases with very high sensitivity should be 

incorporated in future missions to regions between the polar caps and mid-latitudes of 

Mars.   

 

4.5 Error analysis 
 
 The error or uncertainty in the reflectance calculation is estimated by 

differentiating Eqn (4.5). Neglecting  the smallest terms, we find that the error is 

 

δRλ ~ Rλ
ice δDNdark

DNice − DNdark







.     (4.7) 

 



 

 130 

It follows from the DNdark and DNice

δRλ Rλ

 values of each image analyzed in this Chapter that 

the uncertainty of the reflectance calculation is at most ~ 10% for all images, 

except the HiRISE blue-green image that has an error of ~20%.  Other important sources 

of errors are the assumptions that Iλ Rλ
dark≅ 0 on the darkest pixels on shadows, and that ≅ 

0. We estimate that these assumptions produce errors much smaller than ~10%. This 

estimation is based on the fact that the darkest shadows have a fraction of the brightness 

of liquid brines, which according to Figure 4.2 have albedo or reflectance of ~0.1. 

Therefore, the overall uncertainty of the reflectivity analysis is ~10%.  

The error in the calculation of the broadband spectral parameter defined by Eqn 

(4.6) of the main text can be estimated by differentiating it. Neglecting the smallest 

terms, we find that the error is 

 

δη ~
δaNIR

aNIR

+
δaBG

aNIR

.      (4.8) 

 

Since aλ ≅ Rλ δη η, it follows from Eqn (4.7) that  ~ 20%. 

 

4.6  Spacecraft images used  

 The images of the Phoenix spheroids and the laboratory experiments used in this 

Chapter are full resolution raw images. The RAC raw monochromatic images are 

obtained from the Max Planck Institute for Solar System Research, Lindau, Germany. 

The HiRISE images are radiometrically calibrated images downloaded from the NASA 

Planetary Data System (PDS). Figures 4.6 and 4.8 uses HiRISE color images 

PSP_003175_1080.COLOR.JP2 and PSP_003386_1080.COLOR.JP2, and visible with 

red filter images PSP_003175_1080.RED.JP2 and PSP_003386_1080.RED.JP2. Figure 

4.7 uses HiRISE images number PSP_003175_1080, PSP_003386_1080, 

PSP_003742_1080, and PSP_003953_1080.  
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C H A PT E R  5 
 

 
Summary 

 
  

 This dissertation provides a detailed exploratory study of supersonic plume-

surface interactions and its applications to engineering and planetary science. We divide 

the problem into three steps by investigating: (i) the flow physics of jets impinging on 

impermeable surfaces, discussed in Chapter 2; (ii) jet-induced cratering dynamics within 

granular systems, discussed in Chapter 3; and (iii) the discovery of water on Mars, 

discussed in both Chapters 3 and 4. The physics of supersonic jet interactions, in 

particular pulsed jets, with both impermeable surfaces and granular systems is discussed 

in detail by analyzing results from theoretical calculations, laboratory experiments and 

numerical simulations. These results uncovered three unique processes: (i) plate shock 

dynamics due to pulsed jets, (ii) diffusive gas explosive erosion and (iii) deliquescence on 

Mars. The main highlights of this research were the discovery of a new erosion process, 

named “explosive erosion”, the accurate predictions of erosion at the Phoenix landing 

site, and the discovery of liquid saline water on present-day Mars. Photometric and 

broadband spectral analysis using data from both the MRO HiRISE camera and the 

Phoenix RAC and SSI cameras were used to confirm these findings. Our experimental 

and numerical results were used by NASA to assess the risks associated with the landing 

phases of both the Phoenix and Mars Science Laboratory missions. Moreover, they 

enabled the Phoenix science team to determine the contamination of its landing site. This 

study is only the first step into investigations of granular flow physics in extreme 

environments and the search for liquid brines on present-day Mars.  

 Although much of the future work has been discussed within each individual 

chapter, the need for further studies of jet-induced soil erosion in various planetary 
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environments is overwhelming.  The behavior of granular media is quite different in these 

extreme conditions, low atmospheric and gravitational regimes. It is critical to understand 

for the development of landing and launching architectures, propulsion systems and 

sample acquisition systems, for survivability of crew and spacecraft and to further 

planetary science. This area of research can significantly benefit from NASA’s future 

proposed plan for robotic space exploration with emphasis in technology development.  

 The discovery of evidence for liquid brines as presented in Chapter 4 and the 

confirmation of water ice on the northern polar region as discussed in Chapter 3 has made 

a strong case for liquid water to sporadically exist on Mars. These discoveries have 

recently led to many other investigations that support the existence of liquid brines on 

Mars [Kereszturi et al., 2009; Mohlmann et al., 2010a; Mohlmann et al., 2010b; Davila et 

al., 2010].  These findings in conjunction with methane emissions from the martian 

surface [Mumma et al., 2003] have excited the public and made a viable case for 

astrobiological microbial life.   
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A PPE NDI X  A  
 
 

Underexpanded supersonic plume surface interactions: applications for 

spacecraft landings on planetary bodies 

 
A.1 Introduction 

 Supersonic jet interactions with the ground or flat surface are a complex fluid 

dynamics problem with many nonlinearities. These nonlinearities arise from shock-wave 

surface interactions, stagnation bubble formation and the propagation of wall jets along 

the surface. Lamont and Hunt [1980] studied the flow field and surface interactions due 

to axisymmetric underexpanded supersonic nitrogen jets at distances between one and 

three nozzle exit diameters. Steady state numerical simulations, conducted by Wu et al 

[2002] at these distances, show good agreement with Lamont and Hunt’s experimental 

results. Most of literature concentrates on studies where the nozzle pressure ratios (NPR) 

are below 10 [Lamont and Hunt, 1980; Carling, 1974]. NPR is the ratio of nozzle 

chamber pressure to ambient pressure.  

 By applying Schlieren imaging and ground pressure sensors along with numerical 

simulations, important shock structures such as the plate shock and stagnation bubble 

were identified. A plate shock is a reflected and detached shock wave from a surface due 

to the impingement of a supersonic jet [Lamont and Hunt, 1980] and this is observed in 

many applications such as solar wind forming a curved bow shock reflection from the 

Earth’s surface [Vergin et al., 2001] to a planar bow shock formed during an Apollo 

capsule reentry into the Earth’s atmosphere [Mehta, 2008]. Stagnation bubble 

(recirculation zones) can form below the plate shock and has only recently received more 

attention due to its effects on acoustic noise production [Henderson et al, 2005; Carling 

and Hunt, 1974].  The third structure of importance is the propagating wall jet which can 

reach supersonic speeds, demonstrate compression and expansion regimes and decay as a 

function of axial distance from the impingement point [Carling and Hunt, 1974].  These 

flow features are within the far-field or shock wave interaction regime, and are 

considerably different than the flow structures observed in the near-field regime. 
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 The near-field regime is within the first nozzle exit diameter from the nozzle exit 

plane. Near-field supersonic jet characteristics are dependent on the nozzle chamber 

stagnation pressure, nozzle area ratio and atmospheric pressure as discussed in Section 

2.6.1. There are three types of flow characteristics which are first observed at this regime: 

overexpansion, underexpansion and perfect expansion of the jet [Scroggs and Settles, 

1996]. All three flow characteristics which are described in more detail in Section 2.6.1 

are observed when rockets launch into space and as discussed in this Appendix lead to 

different far-field surface interactions.        

 The main focus of this study is to investigate the flow physics of plume ground 

interactions from exhaust plumes of rocket motor engines during planetary landings, 

specifically for environments of Mars. For appropriate simulations, this requires different 

flow requirements than observed for past studies conducted by Lamont and Hunt [1974], 

Krothapalli et a [1999], Henderson et al. [2005] and other researchers focused on the 

acoustic nature of impinging jets.  Rocket plumes exhausting into near-vacuum planetary 

environments demonstrate higher exit Mach numbers on the order Mach ~5 with nozzle 

pressure ratios greater than 1000, an order three times larger in magnitude for those 

observed in acoustic studies [Henderson et al., 2005]. Rocket plumes interact with the 

surface at much higher altitudes between ~100d and ~5d, where d is the nozzle exit 

diameter [Clark, 1971], to decelerate the spacecraft and to ensure a successful soft 

landing. In contrast to previous studies, all of our tests were conducted at reduced 

atmospheric pressures which spanned from the martian to terrestrial environments. The 

largest difference between previous jet impingement studies is the engine mode can be 

either pulsed or steady during landings and attitude corrections (Chapter 2). Comparative 

studies between these two modes are limited. 

 This Appendix will look at numerical and experimental ground interaction data 

between pulsed and steady underexpanded supersonic jets exhausting from simulated 

Phoenix Rocket Engine Module (REM) and Mars Science Laboratory Main Landing 

Engine (MLE) nozzles. More importantly, this Appendix will focus on these interactions 

associated with jets exhausting from high altitudes of h > 20d. We will then compare our 

experimental sub-scale temporal and spatial results with numerical simulations at full-

scale to provide further insight in the complex flow physics and to ascertain the reliability 
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of our scaling laws. This study was performed to reduce mission risk for both of NASA’s 

recent Mars missions.   

 

A.2 Scaling Laws 

 To adequately simulate room-temperature underexpanded supersonic gas jets and 

satisfy the flow physics and shock structure of rocket plume impingement, scaling laws 

are necessary to develop. Although derived and first introduced in Section 2.6.2.2, here 

we provide further insight into these parameters. These scaling relations can be applied to 

various experimental tests performed in understanding rocket plume effects on soil 

erosion and flat surface features. The first parameter is the exit Mach number (Me = 

Ue/ae) of the plume where Ue and ae are the jet velocity and sound speed, respectively. 

This parameter is a function of the nozzle area ratio and specific heat ratio of the 

propellant. The exit Mach number determines the compressibility flow regime, the 

strength of the shock structure and influences the supersonic core length [Scroggs and 

Settles, 1996]. Given the nozzle area expansion ratio, the exit Mach number is calculated 

from the 1-D isentropic area-Mach relation (Eqn. A1). The second scaling law is the 

hypersonic similarity parameter (Eqn. A2), which is the ratio of kinetic (KE) to internal 

energy (IE) of the plume, determines the specific energy density of the plume. The 

derivation of this scaling law is presented from basic calorically perfect thermodynamics 

(Eqns. 2.14-2.19, Chapter 2). The third parameter is the jet expansion ratio (e), which is 

the ratio of the plume exit pressure to the ambient pressure (Eqn. A3), and this parameter 

determines the near-field flow physics and expansion of the exhausting jet. This 

parameter is derived from considering the ratio of pressure forces between the exhaust 

plume and atmosphere at the nozzle exit. For e < 1, the jet is over-expanded and for e > 1, 

the jet is underexpanded which also directly corresponds to the expansion angle of the jet 

boundary with respect to the normal [Clark, 1971]. For e = 1, the jet is perfectly 

expanded which rarely occurs in our applications due to changing atmospheric pressures 

during launch and landings of rockets and spacecrafts.  The fourth parameter is the 

Reynolds number of the jet (Eqn. A4), which is determined from its nozzle exit 

conditions. This is the ratio of inertial to viscous forces that determines the flow regime. 

Most rocket plumes and supersonic jets are within the turbulent regime. The fifth 
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parameter is the Strouhal number, which is the ratio of the inertial force associated with 

unsteady flow characteristics to the inertial force due to the velocity gradient (Eqn. A5). 

This nondimensional number is applied for pulsed jets [Chotaupalli et al., 2009]. These 

parameters for both the full-scale and subscale analysis are tabulated in Table A1.  The 

dimensional quantities used to calculate these scaling parameters are tabulated in Table 

A2. We will discuss how these various parameters, in particular the jet expansion ratio 

and Strouhal number, change the flow physics at the far-field/interaction regime. The 

following scaling laws (Eqns. A2-A5) theoretically define the plume structure and ground 

interactions:  
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Where γ is the specific heat ratio of the propellant, Pe and Pamb are nozzle exit and 

atmospheric pressures, Ue is the jet velocity at the nozzle exit, D or d is the nozzle exit 

diameter, Ae and A* are the nozzle exit area and throat area, m is the molecular mass of 

the exhaust products, Te is the exhaust temperature at the nozzle exit, Cp and Cv

 

 are the 

constant pressure and volume specific heats of the plume, R is the plume gas constant, µ 

is the jet viscosity and ρ is the jet density, and f is the pulse frequency.  

 



 

 138 

 
_______________________________________________________________________________________ 

  MSL MLE Phoenix REM 
  ¼ scale full-scale ½ scale full-scale 
      

Hypersonic similarity k 14.8 14.0 12.7 11.4 
Jet expansion ratio e 2.9 – 2.1 - exp 

3.5 - num 
6.8 – 2.2 - flt 

6.8 – 4.1 - num 
~4.4 - exp 
4.5 - num 

3.8 - flt 
4.7 – num 

Reynolds Number Re 24.5 – 14.7 x 105 

23.3 x 10
-exp 

5
8.4 – 5.0 x 10

 - num 
5

 
 - flt 12.7 x 10 3.4 x 105 

Mach Number 

5 

M 5.14 e 5.08 4.77 4.67 
Strouhal Number St 0 0 4.4 x 10 3.3 x 10-4 

Table A1. Scaling parameters; exp-experiment; num-numerical simulation; flt-spaceflight conditions 
-4 

 

 
  Phoenix REM:100% throttle MSL MLE:100% throttle 
  ½ scale full-scale ¼ scale full-scale 
      

Min area (m2 A) 3.83 x 10* 15.3 x 10-5 6.9 x 10-5 110.3 x 10-5 
Exit area (m

-5 
2 A) 0.00079 e 0.00318 0.00193 0.03089 

Expansion ratio Ae/ A 20.7 * 20.7 28.0 28.0 
Mass flow rate (kg/s) m  0.11 0.16 0.28 1.52 
Chamber temp. (K) T 300 c 1114 300.0 1218.2 
Chamber press. (kPa) P 1240 c 1240 1765 1765 
Exit density (kg/m3 ρ) 0.194 e 0.026 0.202 0.023 
Exit pressure (Pa) P 3091 e 3241 2837 2927 
Exit temperature (K) T 54 e 217 47 202 
Exit Mach M 4.8 e 4.7 5.1 5.1 
Exit velocity (m/s) v 713 e 1929 721 2123 
Thrust (N) F 80 321 206 3313 
Time (s) t 0.75,1.5,3.0 < 2.0 1 ~ 6 
Pulse frequency (Hz) f 10 10 N/A N/A 
Pulse width (ms) PW ~65 55 N/A N/A 
Altitude (m) h/d 8.4-25 8.4-80 34.5 34.5 – 50.0 
Slope (deg) Ф 0 ~0 0.0, 22.5 0.0, 22.5 
Specific heat ratio γ 1.40 1.38 1.40 1.38 

TABLE A2. Dimensional parameters. 
 

A.3 Experimental Methods 

A.3.1 Jet-ground interactions due to the subscale MSL MLE thruster plumes 

 The experiments were conducted at NASA Ames Research Center in a 4000 m3 

vacuum test chamber at the Planetary Aeolian Laboratory (PAL) which is directed by 

Arizona State University. The vacuum chamber has a height of 30 m and a diameter of 

~15 m and it can be evacuated to 350 Pa by a steam ejector driven vacuum system. The 

chamber was backfilled with air for all tests conducted. Its’ average temperature was 

approximately 280 K with an average relative humidity of 5-10%. For our tests, we 

varied the atmospheric pressure within the vacuum chamber between 0.7 kPa and 101.3 
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kPa.  Due to the steam ejectors and large chamber volume, atmospheric pressure and 

temperature were constant during the entire test duration.  

 Dry nitrogen flows from the 14 MPa high pressure supply cylinder which is 

controlled by a regulator to two reservoir tanks in parallel that are set to a specified total 

pressure dependent on the throttle levels to be simulated (Fig. A1). The total pressure in 

the reservoir tanks are set to ~1850 kPa for 100% MLE throttle setting. The other two 

settings used are 60% and 30% throttle. To minimize the loss of total pressure as a 

function of time, the regulator supplies the needed flow rate to prevent premature choking 

(Fig. A1). We can remotely set the controls for operating the jet such as duration, pulse 

width, pulse frequency and total pressure within the nozzle chamber (Pc).  The flow then 

passes through a solenoid valve, which is remotely activated, and into a converging-

diverging nozzle. The solenoid valve and propellant system performance was tested to 

ensure a relatively constant Pc

 

 that simulates the profiles from the MLE hot-fire tests. A 

schematic of the experimental setup is shown in Figure A1.  
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Figure A1 . Isometric view  (top) and general plumbing and electrical schematic (bottom) of MSL MLE 
plume impingement test setup at the NASA Ames Research Center.  
 

 A converging-diverging nozzle with an area ratio of 28 was used to match the 

nozzle contours on the main landing engines (MLE) of the Mars Science Laboratory 

(MSL) Descent Stage spacecraft [Sengupta et al., 2009]. The subscale nozzle was canted 

to 22.5º to accurately simulate the nozzle orientation and configuration on the MSL 

Descent Stage (Fig. A2).  The experimental nozzle is ¼ scale of the MLE flight system 

with an exit Mach number of 5. The parameters that we varied are the nozzle pressure 

ratio (NPR) or the jet expansion ratio (e), and ground slope. The NPR ranged from 12 to 

1200 and the jet expansion ratio spanned between 0.02 and 3.00. The MLE simulations 

are operated at an altitude of 35d with ground slopes of 0º and 22.5º. The test matrix is 

included in Table A3. This simulates the lowest altitude the MSL descent stage 

approaches the surface prior to separation of the MSL rover [Sengupta et al., 2009]. 

Other important nozzle and test specifications, such as area ratio, exit diameter, etc are 

tabulated in Table A2.   The exhausting jet impinges onto a 1.2 m x 1.8 m aluminum 

plate (iplate) of which 24 surficial fast responsive piezoresistive pressure sensors are 

located (Fig. A1). These sensors are then recorded at 1 kHz by a simultaneous sampling 

data acquisition system.  These pressure sensors are scattered in high concentration near 

the expected impingement point, denoted as an “x”, with lower concentration outward 

from this point. The ground pressure contour plots use linear interpolation between 

sensor data points. The stagnation pressure within the inlet nozzle chamber (Pc) is 

recorded by a fast responsive pressure transducer at 1 kHz.   



 

 141 

Test Atmos.(Pa) Ground 
(deg) Height (m) Throttle Level (%) 

1 800 0.0 1.73 60.00 
2 733 0.0 1.73 60.00 
3 933 0.0 1.73 100.00 
4 1470 0.0 1.73 100.00 
5 1530 22.5 1.73 96.67 
6 1610 22.5 1.73 91.67 
7 1730 22.5 1.73 86.67 
8 1730 22.5 1.73 80.00 
9 1800 22.5 1.73 73.33 

10 1840 22.5 1.73 68.33 
11 1870 22.5 1.73 63.16 
12 1880 22.5 1.73 56.84 
13 1930 22.5 1.73 53.68 
14 2000 22.5 1.73 47.37 
15 2000 22.5 1.73 44.21 
16 2030 22.5 1.73 41.05 
17 2070 22.5 1.73 37.89 
18 2110 22.5 1.73 34.74 
19 2470 1.9            1.73 31.58 
20 2530 1.9 1.73 28.42 
21 101325 22.5 1.73 100.00 
22 101325 0.0 1.73 100.00 

Table A3. Test Matrix 

     

 Two transparent baffle planes at 90º as seen in Figure A1 (Plexiglass) are used in 

our experiments to simulate the effects of the outboard thrusters shown in Figure A2 as 

done for the Phoenix-based experiments [Romine et al., 1973; Huseman and Bomba, 

2000]. Only one MLE per quadrant is firing during descent. The jets from symmetrically 

opposing thrusters stagnate at the midline between the two engines. These planes were 

also used to minimize the complexity of the experiment.  
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Figure A2.Top-down schematic of the Mars Science Laboratory Descent Stage with superimposed baffles 
to simulate outboard thrusters as implemented in experimental testbed. Courtesy of NASA/JPL-Caltech 
 

A.3.2  Jet-ground interactions due to the subscale Phoenix REM thruster plumes 

 For the full-scale and subscale Phoenix REM nozzles, the jets were pulsed with 

similar initial conditions described in Table A2. Although during Phoenix descent, where 

twelve engines were firing, we used a single nozzle to validate the numerical solutions at 

University of Michigan. The plume interactions with the surface at a 0º slope for the 

Phoenix spacecraft lasted less than 2 s which decreased in altitude from ~60d to 8.4d, 

touchdown altitude (as discussed in Section 3.8) [Desai et al., 2009]. The parameters that 

we varied were the jet expansion ratio and the altitude from 8.4d to 25d. Similar 

impingement plate and diagnostic pressure sensors were used as described in the previous 

section. A more detailed experimental setup for the subscale Phoenix cases is presented 

in Chapter 2, Section 2.6.2.1.    

 

A.4 Numerical Methods 

A.4.1 Jet-ground interactions due to MSL MLE thruster plumes 

 Computations were carried out using the OVERFLOW 2.1 code, a three-

dimensional time-marching implicit code that uses structured overset grid systems 
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[Buning, 1999].  The full Navier-Stokes equations were solved over the entire domain 

including the nozzle internal flow, where a total temperature, total pressure boundary 

condition was used to satisfy inlet conditions.  Nozzle interior, nozzle enclosure, jet 

plume, and far-field domain grids of ~12 million cells were generated to encompass the 

experimental setup with viscous spacing at solid wall surfaces.  A shear stress turbulence 

(SST) model with compressibility correction was used for all computations, as it has been 

shown to preserve jet plume velocity profiles better than other models available in the 

solver [Nichols, 2000].  All simulations for full-scale and sub-scale studies were steady-

state solutions.   

 

A.4.2 Jet-ground interactions due to Phoenix REM thruster plumes 

 Two flow solvers were used to obtain numerical solutions for both full-scale and 

subscale flow physics of the interaction of the underexpanded supersonic thruster plumes 

from the Phoenix REM nozzle with the flat surface. Transient and steady-state solutions 

were developed from these numerical solvers. Both 3-D and axisymmetric solutions were 

developed. The two numerical codes used were Aerosoft GASP [Walters et al., 1990] and 

ANSYS FLUENT [ANSYS Inc., 2009]. GASP was used to model both full-scale and 

subscale cases.  

 Transient and steady state Reynolds averaged Navier-Stokes equations were 

solved by the GASP code, using both axisymmetric and 3-D density based solver. To 

resolve the shock waves, the Van Leer flux splitting scheme is used which is dissipative 

and leads to the smearing of shocks [Van Leer et al., 1990]. A Reynolds Stress turbulence 

model was used. To obtain time accurate results, a dual implicit time stepping derived 

solution is selected. A single species frozen flow model is assumed. Total pressure and 

temperature are the inlet boundary conditions and the outlet is a Riemann subsonic 

inflow/outflow which takes into consideration the potential entrainment of exhaust near 

the nozzle. The pressure inlet boundary condition for the transient simulations was forced 

by using test data from both the hot-fire rocket motor tests and cold flow experimental 

tests. Grid independence is applied to both axisymmetric and 3-d meshes. Internal nozzle 

flow solution was calculated as well as external to the nozzle.  For the 3-d models, a 

symmetry plane is developed between the pair of thrusters to obtain the solution for a 60° 
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wedge of the spacecraft [Huseman and Bomba, 2000; Gulick et al., 2005]. This was done 

because 180° and 60° wedges showed very similar flow fields and ground pressure 

results due to the development of stagnation planes formed by the exhaust plume 

interactions of the two pairs of descent thrusters [Gulick et al., 2005].  This also 

decreased the complexity of the flow domain. Four million grid cells were generated for 

the fine mesh 3-D models. 

 Another numerical solver called ANSYS FLUENT was applied to further confirm 

the results of the experimental test data. The turbulence model used was the 

renormalization group (RNG) of k-ε [Papp and Ghia, 1998] and to confirm that 

dissipation did not significantly affect the shock wave profiles, an inviscid case was also 

run. Transient axisymmetric and 3-D solutions with a 1 μs dual implicit time stepping 

scheme with adaptive grid meshing was applied to resolve the shock waves in the flow 

domain. Pressure inlet and outlet were the applied boundary conditions. Convergence 

was observed for 2nd

    

 order upwind discretization schemes for all state parameters.  

A.5 Results and discussion 

 Spatial and temporal ground pressure profiles along with Mach contours are used 

to analyze the flow physics of supersonic impinging jets by mainly varying the jet 

expansion ratios and Strouhal numbers. Correlation of this data with temporal Pc profiles 

and other initial conditions such as nozzle exit pressure (Eqn. A6), mass flow rate (Eqn. 

A7) and thrust (T) (Eqn. A8) added insight into the physics where TC m,  and R are the 

nozzle chamber stagnation temperature, mass flow rate and propellant gas constant, 

respectively.  These values are tabulated in Table A2. All ground pressure values (Pg) are 

normalized by Pc
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A.5.1 Experimental results due to subscale MSL MLE thruster plumes 

  For the temporal ground pressure profiles, we record the ground pressure rise and 

settling times, maximum and steady state pressure values, atmospheric pressure (vacuum 

chamber) and Pc profiles. All these steady tests were performed for one second duration. 

We observe transient ground overpressures on the order of 100% to 30% increase from 

its’ steady state values for e > 2 (Fig. A3, solid line). However, no repetitive ground 

shock frequencies were observed for these cases. These overpressures span from 0.1 s to 

~0.3 s during the Pc rise due to engine start-up as observed in Figure A3 (dashed line).  

There is a steady-state ground pressure regime that lasts from 0.3 s to ~1.0 s. After this 

point, there is a simultaneous rapid ground pressure decline with a sudden decrease in the 

Pc

 

 due to engine shut-down. For e < 2, there are no characteristic overpressure and 

exhibits relatively steady and much smaller pressure amplitudes as seen from Figure A3 

A,B. At e = 0.02 (Earth atmospheric pressure), the ground pressure maximum is well 

below 0.001. 
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Figure A3. Temporal maximum ground pressure (peak) and PC 

 

profiles of steady impinging jets at an altitude of 
~35d for varying jet expansion  ratios of Test 22 (A), Test 11 (B), Test 1 (C) and Test 2 (D). See Movie D7 and 
D8 for Test 2 and Test 22, respectively.  

  For the spatial ground pressure profiles, we developed ground pressure contour 

maps at the maximum overpressure value at t = 0.25 s (Fig. A4) and steady-state values at 

t = 0.45 s. From these contour maps, we observe that at e = 2.09 and e = 2.83, there is a 

radial pressure footprint which is bounded by the sensors and it is ~2d in diameter (Fig. 

A4 C,D). There is a large normalized pressure gradient,∇ , (Eqn. A9) of 0.017 at e = 2.83 

determined from the periphery of the footprint. For e = 0.02, we do not observe these 

large pressure gradients ( 001.0<∇ ) and there is a modest increase in pressure that spans 

a distance of ~7d as seen in Figure A4A. For e = 0.93 and less, the pressure gradient is 

much smaller in magnitude )0025.0( <∇  and more gradual, typical of a Gaussian 

distribution. The normalized pressure gradient is defined as follows:  
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x
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Figure A4. Ground spatial pressure profiles of steady impinging jets at an altitude of 35d for varying jet 
expansion ratios for test cases presented  in Fig. A3. The colorbar depicts the normalized ground pressure values. 

 

  Figure A5 shows how the jet expansion ratio affects normalized impingement 

pressure (Pg/Pc) from our experiments. We observe for our tests that there is a maximum 

for overpressure (Pg/Pc = 0.005) and steady ground pressure (Pg/Pc = 0.015) values for e 

> 2. The overpressure is defined as the difference between maximum and steady-state 

ground pressure values. This is an increase by a factor of 5 compared to amplitudes at e < 

2. These amplitudes are relatively constant between e = 2 to e = 0.25 with a slight 

increase in the steady ground pressure magnitude (Pg/Pc

 

). We notice a minimum in 

steady and overpressures at e = 0.02.  
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Figure A5. Normalized maximum ground pressure vs. jet expansion ratio curve at an altitude of ~35d.  
 

 Normalized ground pressure rise rates are how quickly the normalized ground 

pressure values rise to the maximum amplitude due to engine start-up. Figure A6 shows 

the rise rates (1/s) as a function of the jet expansion ratio. We observe a linear increase in 

the pressure rise rate with increasing jet expansion ratio for e > 0.5. We observe the 

largest rise rates for e > 2 with an increase by a factor of ~4 from the values compared to 

e < 1.5. The normalized settling rates, which determine how quickly the ground 

overpressure values settle to its’ steady-state values, do not show a characteristic trend 

with respect to the jet expansion ratio.  
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Figure A6. Rise rate vs. jet expansion ratio curve at an altitude of ~35d.  
 

A.5.2 Experimental results due to Phoenix REM thruster plumes 

  For experimental results in understanding pulsed jet effects on ground pressure 

(non-zero Strouhal numbers), we used two different jet expansion ratios: e ~4.5 – 3.8 

(moderately underexpanded) and e = 0.02 (highly over-expanded) at an altitude of 8.4d. 

The most interesting feature in the temporal pressure profiles analysis at e = 4.4 are the 

transient overpressures observed during engine start-up and shut-down phases as 

described in detail in Section 2.6.5. These peaks demonstrated normalized rise rates on 

the order of 6.0. These overpressures were repeatable and did not demonstrate hysteresis. 

 The spatial ground pressure profile for e = 4.4 were also radial with a pressure 

footprint diameter of ~3.2d. As noted for the MSL experimental measurements, for 

highly over-expanded jets, the pressure footprint was more diffuse with a smaller 

magnitude and a Gaussian distribution and did not indicate large pressure gradients as 

observed for moderately under-expanded jets. As discussed in Section 2.6.5, the spatial 

pressure profile for moderately underexpanded jets is non-Gaussian and there is minor 

pressure peaks observed at ± 1.6d due to the effects of oblique tail shocks. 
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A.5.3 Numerical results due to MSL MLE thruster plumes 

 Numerical results are first used to compare subscale ground pressure spatial and 

temporal profiles and near-field plume structure with measured quantities. Once in 

similar agreement, Mach contours can be used in conjunction with ground pressure 

profiles to understand the flow physics. This approach was used to obtain an 

understanding of our observations. 

 The Mach contours for the MLE plumes have a maximum Mach number of ~10 

with a shock cell length of 14d.  Approximately 2.5 shock cells are formed within the 

plume. As can be seen from Figure A7, the plumes are highly collimated even to 

distances greater than 35d. This is a very important characteristic that will be discussed in 

a later section. We observe characteristic flow features such as a plate shock with a 

diameter of ~2d and wall jet as observed by Lamont and Hunt [1968]. Due to an oblique 

jet interaction, the wall jet predominantly propagates in a +x direction as shown in Figure 

A7.  

 

 
Figure A7. Full-scale and subscale MLE plume shock structure and axial static pressure profiles. (a,b), Full-
scale and subscale numerical solutions of the Mach contour at an altitude of ~35d for MLE plumes at 100% 
throttle; (c,d), Full-scale and subscale numerical solutions of Mach  (red line) and static pressure (black line) 
profiles as a function of x/de (axial distance along the plume).  
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 All solutions were for steady-state conditions and hence only steady ground 

spatial pressure profiles are recorded (Fig. A8). This exhibits a radial pressure footprint 

with high pressure gradients of 0.026 and a diameter of 1.75d. There is an asymmetry in 

the profile and the highest pressure regions reach a nondimensional value of 0.028, which 

is approximately 0.5d from the plume centerline. The average ground pressure value 

within the footprint area is within the range of 0.018. 

 
Figure A8. Numerical solutions between (b,d) subscale and  (a,c) full-scale spatial ground pressure profiles of 
MLE plume interactions at 35d at 100% throttle. Subscale and full-scale numerical solutions of normalized 
ground pressure profiles (Pg/Pc) as a function of x/de 

 
along the dotted lines shown in the a and b panels. 

  From Figure A9, we observe good agreement between numerical solutions and 

experimental measurements for normalized spatial ground pressure profiles at e ~3. The 

pressure footprint diameter, normalized maximum ground pressure values and pressure 

gradients are similar for both simulation and measurements. The numerical solution show 

a slightly smaller pressure footprint (see Results section). There are some minor 

discrepancies in the features such as the lack of capturing the high pressure asymmetry 

region which is due to lower measurement resolution than the numerical simulation and 

sensitivity in turbulence modeling.    
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Figure A9. Numerical solution compared to measured quantities at t = 0.1 s and t = 0.45 s for steady 
underexpanded N2

 
 jet impingement at e ~3 at an altitude of 35d (Test 3). 

A.5.4 Numerical results due to Phoenix REM thruster plumes 

    Transient and steady state solutions were developed for the pulsed supersonic jets 

impinging at the surface at various altitudes. Simulations at two altitudes are presented 

here: 8.4d and 25d. Numerical simulations show that an underexpanded supersonic jet 

with an e = 4.4 at an altitude of 25d results in the development of a normal plate shock 

with a diameter of ~2d and wall jets that propagate in the ±x direction (see Chapter 2, 

Fig. 2.8). Two shock cells are observed with a length of ~12d within the plume structure 

at an altitude of 25d. Here, once again, the plume structure is collimated as observed for 

the MLE thruster plume numerical simulations.  

  According to Chapter 2, Section 2.6.5, the numerical simulations and 

experimental measurements at an altitude of 8.4d show good agreement in both temporal 

and spatial ground pressure profiles at the far-field and near-field regimes for 

underexpanded jet at e ~4.4. They both show ground overpressures at a 20 Hz frequency 

and similar quasi-steady ground pressure magnitude, footprint area and pressure 

gradients. We also observe good agreement between numerical simulation and 

shadowgraph imaging in the plume shock structure at the near-field regime (Fig. A10). 

The numerical simulation exhibits a plume expansion angle from the nozzle exit plane of 

approximately 25º. This also shows good agreement with the findings from Clark et al., 

[1971]. This value is somewhat less for our shadowgraph images which show an 

expansion angle of 22º.  However, there are a few discrepancies described in Section 

2.6.5 
 



 

 153 

 
Figure A10. (a) Shadowgraph image of a near-field underexpanded  jet (e ~4.4) at < 5 ms during engine start-up 
and (b) during full-throttle and (c) numerical solution during full-throttle 
 

A.5.5 Jet expansion ratio 

 The jet expansion ratio is one of the most important factors in determining ground 

pressure profiles at high altitudes (h > 5d). The jet expansion ratio influences the near-

field and far-field plume structure as discussed in Section 2.6.1. For e > 1 

(underexpanded jets) the plume nozzle exit pressure is greater than the ambient pressure. 

This leads to the formation of expansion fans at the lip of the nozzle, causing the plume 

to expand outward with respect to the normal increasing the plume expansion angle (θ > 

0º). For e < 1 (overexpanded jets), the plume nozzle exit pressure is less than the ambient 

pressure. This leads to the formation of reflected oblique shock waves that cause a 

decrease in the plume expansion angle with respect to the normal (θ < 0º). For e = 1 

(perfectly expanded), the plume nozzle exit pressure is similar to the ambient pressure. 

This prevents the formation of expansion and shock waves and the plume expansion 

angle is zero. As a result of the low planetary atmospheric pressure on Mars and the 

moon, most of the thruster jets observed during spacecraft landings on these celestial 

bodies is underexpanded.  

  From Figure A5, it can be seen that the normalized ground pressure value 

increases by a factor of five for jet expansion ratio greater than 2. It can also be seen that 

for very low e on the order of 0.02 the ground pressure was minimal.  Numerical 

simulations that were validated by experimental tests show in Figure A11 that the Mach 

contours and plume structure are also considerably different between e ~4.5 and e = 0.02. 
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For moderately underexpanded jets (e ~4.5), the plume structure has compressed and 

collimated shock cells that are formed until a downstream distance is reached when 

plume and ambient static pressure are in equilibrium. This downstream distance, 

supersonic core length (x), is considerably larger for moderately underexpanded jets as 

compared to highly over-expanded jets (e ~0.02) as shown in Figure A11. This 

classification of jets may develop a stable plate shock at the surface and a propagating 

wall jet.  

 The relatively larger ambient pressure for highly over-expanded jets (e << 1) 

leads to the formation of reflected oblique and normal shock waves which may occur at 

the diverging section of the nozzle. Boundary-layer separation at the diverging section 

can lead to attenuation of the jet [Shimshi et al., 2009]. Once a strong normal shock wave 

forms at the diverging section (Fig. A11), this results in the propagation of very weak 

shock waves which leads to flow separation and shock wave instability. The shock wave 

is further attenuated by the interaction and mixing of the shock with the dense shear layer 

at the jet boundary which leads to Kelvin-Helmholtz instabilities. Due to overexpansion, 

the atmospheric free surface boundary pinches the jet inward, leading to an axial increase 

in the turbulent mixing layer. This decreases x and results in the rapid decay of the plume 

structure to a fully turbulent subsonic jet with a linear spreading profile (b = const*L), 

where L is the axial plume length that is both turbulent and subsonic [White, 1991]. As a 

result of the spreading profile, large altitudes and subsonic flow field, normal plate 

shocks are not developed above the surface. This prevents the formation of large pressure 

gradients at the surface as well as the formation of supersonic wall jets.  

 For e >> 1, highly underexpanded jets shown in Figure A12, we also observe a 

decrease in normalized ground pressure profiles and this is due to a large plume 

expansion angle. The shock propagation of a large expansion plume results in a large 

areal plate shock as observed by Clark et al. [1971] which significantly reduces the 

normalized ground pressure since pressure is inversely dependent on area.  Another 

mechanism may be due to the increased pressure losses due to a normal shock wave or a 

Mach disk formed within the near-field regime at high e as opposed to the unsteady 

oblique shock waves developed in the far-field regime at lower jet expansion ratios.  
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Figure A11. Numerical solution of velocity contour comparison between steady underexpanded (Mars) and 
highly overexpanded (Earth) supersonic jets at an altitude of 25d.  
 

 
Figure A12. Normalized centerline ground pressure vs. jet expansion ratio for nitrogen jets and rocket plumes at 
an altitude of ~35d.  
 

  We presented data of the comparison of supersonic nitrogen jets and rocket 

plumes from monopropellant and bi-propellant rocket motors at an altitude of ~35d (Fig. 

A12). All nitrogen jets and rocket plumes demonstrate an exit Mach number of ~5 



 

 156 

[Clark, 1971; Romine et al., 1973; Stitt and Latto, 1963]. The monopropellant rocket 

motors use hydrazine as the fuel which combusts at a TC of greater than 1000 K, 

releasing N2, H2 and NH3

 This analysis of jet expansion ratio is quite important to consider, because these 

values are dependent on the propulsion system and atmospheric density of the planets for 

our application.  We can decrease the effects of thruster plumes on the surface by 

changing the propulsion system requirements or by landing at a different latitude and 

longitude on planets. For example, the atmospheric pressure on Mars can change from 

~350 Pa to 1000 Pa depending on the location and time of day [Taylor et al., 2009]. 

 as low density exhaust species (Chapter 2). The bi-propellant 

uses methyl hydrazine as the fuel and nitric oxides as the oxidizer [Clark, 1971]. We 

show good agreement in the trend between nitrogen jets and rocket plumes in which the 

highest normalized ground pressure values have jet expansion ratios between 2 and 5 as 

observed in our studies (Fig. A12). Rocket plumes also exhibit minimal normalized 

ground pressure values for highly over-expanded (e < 0.5) and underexpanded jets (e >> 

5).  Hence, to obtain accurate risk assessment of spacecraft landings on Mars and the 

moon without changing the thrust conditions, it is critical to study these interactions at 

the appropriate atmospheric environments so that the jet expansion ratio is accurately 

simulated. 

 

A.5.6 Supersonic core length  

 Supersonic core length can be inferred from ground pressure profiles. An indirect 

approach in measuring the supersonic core length is by varying the distance from a flat 

surface and monitoring the ground pressure. Supersonic core that propagates to the flat 

surface results in the formation of a plate shock which leads to steep pressure gradients as 

observed in Figure A4. We conclude that there are large differences in the supersonic 

core length and spatial ground pressure profiles for highly overexpanded and moderately 

underexpanded jets at an altitude of 35d. In contrast to moderately underexpanded jets, 

we observe a very diffuse and Gaussian pressure profile for highly overexpanded jets (e = 

0.02) as depicted in Figure A4 and this leads to rapid decay of the plume structure which 

demonstrates a core length of less than ~5d as shown in Figure A11. The experiments 

indicate that the supersonic core length developed by MLE plumes (e ~3) propagate to at 
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least a distance of 37d. This is also supported by Mach contours generated by the 

numerical simulations (Fig. A7). Numerical solutions show that REM plumes (e ~4.4) 

have a supersonic core length of at least 25d (Fig. A13).  This is further supported by 

Inman et al. [2009] which shows with Planar Laser-Induced Fluorescence (PLIF) imaging 

that a collimated moderately underexpanded (e = 5.4) turbulent nitrogen jet at Mach 2.6 

has a supersonic core length to a distance of 31d. Scroggs and Settles [1968] show with 

Schlieren imaging that the supersonic core length increases with jet expansion ratio and 

Mach number. They recorded supersonic core lengths on the order of 35d for e = 4 and a 

Mach number of 2.2.  

 
Figure A13. Subscale and full-scale numerical solutions of the Mach contours of the Phoenix REM plumes at an 

altitude of 25d. [Gulick, 2006] 
  From Figure A14, we determine the length of the shock cell, xs, as a function of 

the jet expansion ratio. We see an increase in the shock cell length at higher NPR than at 

lower corresponding values [Inman et al., 2009]. The shock cell length increases 

logarithmically with increasing jet expansion ratio and increases linearly with nozzle exit 

diameter. Shock cell length may have a weak dependence on Me.  
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Figure A14. Normalized plate shock diameter and shock cell length as a function of the jet expansion ratio 
at an altitude of ~35d.  
 

A.5.7 Plate shock dynamics 

  Plate shock dynamics lead to large ground pressure fluctuations and gradients at 

the surface as briefly discussed in Section 2.6.5.1. Figure A15 shows a numerical solution 

for the formation of a plate shock at the surface from a Mach 4.7 underexpanded jet (e 

~4.4). Prior to initial jet impact, shock waves accelerate toward the surface which 

initiates coalescing of the plume density and gas compression. After jet impingement, an 

unstable normal shock wave, plate shock, is formed above the surface and a transient 

high plume density is observed below the plate shock. This concentrated and localized 

plume density at high velocity results in larger ground pressures relative to subsonic flow 

fields. Hence, the large differences in ground pressure observed with varying jet 

expansion ratios. Overpressure due to plate shock formation is observed for both steady 

(MLE) and pulsed (REM) exhaust plumes (Figs. 2.6 of Chapter 2 and A3). Overpressure 

occurs when the shock wave first impinges on the surface and the overpressure settles to 

quasi steady-state value upon stable formation of the plate shock. The non-Gaussian and 

high pressure gradients are characteristic of plate shock formation (Section 2.6.5) and the 

footprint is similar to the shock diameter.  

 There are some major differences in the shock dynamics between pulsed and 

steady (MSL) descent jets. The initial overpressure peak due to the MLE plumes are 

smaller than observed for the Phoenix cases and virtually absent during the engine shut-

down phase and this may be due to the development of a much weaker normal shock at 
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the surface. This could be attributed to a larger axial distance the shockwaves need to 

travel and the slope of the inclined surface. This could also be attributed to slower 

stagnation pressure rise and fall rates. Large instabilities in the plate shock may delay the 

formation of a fully-developed shock. Most importantly, the characteristic ground shock 

frequency observed for pulsed jets was entirely absent in these steady jet cases. This is 

mainly the result of engine cycling. However, during plate shock formation and collapse, 

high instability due to axial plate shock oscillations is observed by Movie D3 (Appendix 

D). This instability is further supported by the highly variable settling trend for e > 1.5. 

Plate shock formation is also a function of the jet expansion ratio and altitude.  

 
 

Figure A15. Numerical solutions of (a) Mach and (b) density contours of a pre and post normal shock wave 
interaction. Black bar depicts the length of the nozzle exit diameter.  
 
 From observations, a stable plate shock may not form for supersonic jets at e 

below 1.75 at altitudes of 35d and greater.  As we approach a jet expansion ratio of one, 

shock cells within the plume disappear and lead to greater shock wave and static pressure 

attenuation at these large distances. This is also supported by Inman et al. [2009] which 

also shows a significant drop in the ground pressure at jet expansion ratios near and 

below unity. 

  A significant decrease in normalized ground pressure magnitude for e < 2 may be 

attributed to the plate shock within the expansion regime of the shock cell. Large pressure 

fluctuations occur depending on whether the plate shock is within the expansion or 

compression regimes of the shock cell [Romine et al., 1973]. This is unlikely the result of 

our study due to the fact that successive points with decreasing jet expansion ratios 
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ranging from e = 1.90 to e = 0.30 (changing shock structure profiles) lead to relatively 

constant normalized ground pressure magnitudes. Hence, the significant decrease in 

ground pressure (Fig. A12) is mainly due to the inability for a plate shock to develop at 

these expansion ratios and large downstream distances.    
 From Figure A14, the plate shock diameter is independent of both NPR and Me

    

, 

but shows logarithmic dependence on the jet expansion ratio and linear dependence on 

the nozzle exit diameter. These length scales profiles were determined by both numerical 

and experimental observations noted in this Appendix.  

A.5.8 Comparisons between subscale and full-scale tests 

 To ensure similar plume structure and ground pressure profiles between our 

subscale tests and exhaust plumes from both MSL and Phoenix rocket motors, scaling 

parameters derived in Section 2.6.2.2 were used. There parameters govern the flow 

regime, specific plume energy density, compressibility and unsteady effects and the jet 

expansion ratio. Our goal is to determine whether these theoretical scaling parameters 

accurately determine the plume flow dynamics between cold gas jets and rocket plumes. 

These parameters are approximately similar between subscale and full-scale cases for 

both test programs (Table A1): Phoenix REM and MSL MLE. Experimental 

measurements (Chapter 2) and numerical solutions show that the Mach number, shock 

structure and spatial and temporal pressure profiles are in good agreement between cold 

flow subscale and full-scale systems, Phoenix rocket exhaust plumes, at altitudes of 25d 

and 8.4d. This is observed for both single and dual thruster systems. For example, Figure 

A16 shows a numerical solution of a full-scale temporal and spatial ground pressure 

profiles for a full-scale rocket plume interaction from a single Phoenix descent engine 

(note the similarity in Fig. 2.9). Good agreement in ground pressure magnitude and 

spatial profile is observed for dual thruster systems as shown in Figures 2.10 and 2.11 for 

a mean altitude of ~23d. The numerical solutions of the Mach contours between the 

subscale and full-scale MLE plumes show relatively good agreement in both magnitude 

and shock structure (Fig. A7). The numerical solutions and experimental observations of 

the spatial ground pressure profiles between the MLE subscale and full-scale cases also 
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show relatively good agreement in pressure footprint area, normalized magnitude, 

asymmetry and pressure gradients (Fig. A8).  

 
Figure A16. Full-scale (singe Phoenix REM plume interaction) numerical results of the spatial (t = 0.036 s) and 
temporal normalized ground pressure profiles at an altitude of 8.4d at Mars atmospheric environment. [Gulick, 
2006] 
 

 Numerical simulations were used to characterize the effects of rocket plumes on 

the ground at various altitudes.  There are no large discrepancies observed for the 

numerical solutions of the Phoenix test cases, but the MSL test cases did show some 

minor differences. The ground pressure magnitude for the MSL cold gas jets is greater 

than the rocket plumes by a factor of 0.25. The plumes at subscale conditions are more 

compacted and collimated than for the full-scale case. The subscale jets also exhibit more 

frequent and shorter shock cells within the collimated plume. This most likely is 

attributed to a difference in the jet expansion ratio (Table A1). 

 Subscale experimental spatial and temporal ground pressure measurements show 

relatively good agreement with the full-scale numerical solutions for rocket plume 

impingement. The Phoenix and MSL test cases show few discrepancies, but overall show 

similar pressure footprint area, normalized magnitude and pressure gradients. Due to 

limited pressure sensors and a decrease in resolution, we were not able to capture the 

asymmetry. Due to limitations in obtaining low vacuum in the chamber, we were not able 
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to achieve exactly the same jet expansion ratio for the MLE cases as seen for the full-

scale numerical simulations (Table A1). As a result of this extensive study, these scaling 

parameters applied to cold gas jets are critical in properly simulating rocket plume 

impingement effects. Further controlled experimental studies between full-scale rocket 

motors and supersonic cold gas jets are needed to confirm these results   

 

A.5.9 Erosion effects due to plume-soil interactions 

 Soil erosion due to jet impingement is very sensitive to ground pressure. The 

temporal and spatial profiles and magnitude of the ground pressure can determine which 

erosion processes are dominant as discussed in Chapter 3. Hence, it is important to 

accurately simulate both the thruster inlet stagnation pressure and the atmospheric 

pressure environments of planetary bodies.  

  

A.6  Conclusions.  

  This research investigation was ultimately undertaken to assess landing site 

alteration due to rocket plume impingement during spacecraft landings. The first 

approach, presented here, is to provide insight into plume shock structure and dynamics 

and their effect on ground pressure profiles.  From our extensive numerical and 

experimental analyses, we show that moderately underexpanded jets (e between two and 

five) demonstrate collimated shock structures, compact radial pressure footprints, large 

supersonic core lengths, plate shock dynamics and maximum pressure loads. For e less 

than 2 and greater than 10, we illustrate a significant decline in the ground pressure loads 

by a factor of four with large Gaussian pressure footprints which is mainly attributed to 

large changes in the plume shock structure. We show that the plate shock dynamics is 

responsible for the following effects at the surface: increases the pressure gradients, 

fluctuations and average magnitudes and develops pressure asymmetry and 

overpressures. Therefore there is sensitivity in both shock structure and ground pressure 

dynamics to both the jet expansion ratio and Strouhal number (pulsed or steady). Most 

importantly, the flow dynamic studies at Mars atmosphere (e ~2-5) show that rocket 

plumes possess large collimated shock cells greater than ~10d and generate maximum 

ground pressure load with respect to either lunar or terrestrial atmospheric regimes. 
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Hence, extensive numerical and experimental investigations of plume interactions with 

large variations in the scaling parameters defined in Table A1 are needed to reduce 

mission risk associated with landing spacecrafts on Mars.  

 We observe good agreement between measurements and numerical solutions for 

both subscale REM and MLE nozzle plumes at various altitudes. This validates the 

numerical solvers as well as provides insight to the flow physics occurring at the surface. 

We also observe relatively good agreement in shock structure and ground pressure 

dynamics between subscale and full-scale systems. Most importantly, these results show 

that the scaling laws developed can properly simulate the ground interaction physics due 

to rocket exhaust plumes. 

 The next approach is using this study to understand jet-induced erosion 

mechanisms due to spacecraft landings (as discussed in Section 5.6). The plate shock 

dynamics and plume structure directly affects the ground pressure which influences 

particular erosion mechanisms and cratering dynamics as discussed in detail in Appendix 

C. 
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Supplementary Information for Chapter 3 
 

B.1 Calculations of crater dimensions and ammonia contamination at the Phoenix 

Landing Site using RAC images. 

  The radius of exposed ice under the lander was estimated by the analysis of 

images using the centerline -Y (eastern) footpad coordinates of the Phoenix spacecraft as 

a reference. These coordinates were provided in the Payload Frame (Eq. B1) which was 

converted to Lander Centerline Frame (Eqn. B2). By observing images of “Snow Queen” 

(Fig. B1) which showed the outer portion of the exposed ice, we were able to 

approximately assess the distance between the outer exposed ice and the –Y footpad 

edge. This distance scales from 1.2 to 0.9 footpad diameters (dfootpad). As a result by 

applying equation B4 and estimating the radius of soil deposition near the centerline of 

the spacecraft (rcl) (Fig. 3.9), the ice exposed by the rocket plume impingement spans a 

length in the –Y direction, Lc, between 65 and 55 cm. Approximating that a crater with 

an elliptical profile was produced per every four descent thrusters (Fig. 3.9), we 

geometrically calculated the crater dimensions such as its perimeter (pc), semi-major 

length (ac), semi-minor length (bc), volume (Vc) and mass of total ejecta (mc) by 

applying equations B6 to B9 to known quantities such as the crater depth and angle of 

repose (ϴr). Although soil depths greater than 10 cm have been recorded within 

Phoenix’s workspace, the average depths between 5 cm and 10 cm were used in our 

calculations. Shadow projection on the martian surface were used to estimate the soil 

depth. It should be made clear that these are approximations generated from limited RAC 

images. No adequate digital elevation maps were created to confirm these values. By 

knowing the time during descent when ground effects begin until touchdown of the 

spacecraft, tL, the average normalized erosion rate (Eqn. B10) estimated from the 

Phoenix landing site is between 35 and 100.    
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Figure B1. Subsurface ice, “Snow Queen”, shown exposed below the lander near the eastern footpad 
(RS005EFF896662260_11736MDM1). Courtesy of NASA/JPL-Caltech/U. of Arizona/Max Planck Inst. 
 

-Y footpad centerline in payload frame: [x, y, z]payload

-Y footpad centerline (FC) in lander frame: [x, y, z]

 = [7.4, 53.6, 107.0] cm     (B1) 

lander

Lander centerline (LC) in lander frame: [x, y, z]

 = [60.8, 107.0, 123.1] cm     (B2) 

lander
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  The total mass of ammonia,
3NHm , that may have interacted with the ice surface 

due the Phoenix landing propulsion system was determined based on a pair of thrusters’ 

exhaust properties such as the mass flow rate, m , and mass fractions, f (Eqn. B11). The 

mass fraction of ammonia of 0.49 was determined from the Phoenix hot thruster firing 

tests performed in a vacuum chamber at Mars atmospheric conditions (Chapter 2). The  t‘ 

is the time differential between tL and the time to expose the subsurface ice (< 1 s).  
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(B11)        ) (0.45   6 
33

tfmm NHNH ′=   
 

B.2 Jet-soil interaction dimensional analysis  

 Buckingham-Pi dimensional analysis theory was used to obtain dimensionless 

parameters given the important input conditions needed for describing jet-soil 

interactions. A jet with velocity, U, density, ρa and viscosity, μ, exhausting from a nozzle 

diameter, D, interacts with granular media with a particle diameter of d, density, ρp

m

, 

porosity, n, shear strength, Y, and depth, l. The jet of mass flow rate, , interacts with 

the granular media for a certain time duration, t, at an altitude, h, from the surface, 

generates a pore pressure differential ΔP within the granular media, and leads to the 

formation of a crater with a volume of Vc

cm

.  We are able to calculate the average erosion 

rate,  due to the various erosion processes. There are 15 dimensional parameters (nPI) 

which satisfy three units (pPI

 According to previous literature and normalizing the particle mass transport rate 

equations [Greeley and Iversen, 1985], we believe that only a few parameters as shown in 

Section 3.2.1 need to be matched to produce dynamically similar flows. The bulk particle 

Reynolds number (Re

): length, time, and mass. Hence, 12 pi terms are needed to 

govern the physics.  

p

d

) for fluid flow through a packed bed is shown in equation B18 

with particle diameter, , and porosity, n is dependent on jet density, ρa, jet viscosity, µ 

and impinging jet velocity, U.  The Rep values increase by many factors during the 

DGEE process due to an increase in soil porosity. The Kn is dependent on the Boltzmann 

constant, kB, the ambient atmospheric pressure and temperature, Pamb and Tamb, diameter 

of the atmospheric molecule, σ, and particle size. Based on Kn at the surface atmospheric 

conditions of Mars and experiment, the flow dynamics are within the continuum regime. 

We have tabulated other dimensionless numbers such as Kn, γ and nozzle area ratio for 

completeness (Table 3.3). From dimensional analysis theory, all the pi terms calculated 

from the experiments should be equal to the pi terms seen at full-scale to ensure complete 

similarity (Eqn. B29) [Barenblatt, 2003]. This is difficult to achieve for granular 

processes, but some pi terms have negligible effects on the physics being studied as 

discussed in Section 3.2.1.    
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B.3 Normalized crater dimensions from site-alteration experiments at NASA Ames 

– PAL  
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

†Crater volume calculation. Tests 1-11, 21-22: 1/6 x Vc from Equation 3.11. Tests 12-20, 23-24: 1 x Vc

Table B1. Normalized crater dimensions 
      

 

B.4 Calculations of soil volume fraction from photometric analysis 

 According to Valverde et al. [2003], reflectance vs. soil volume fraction profile 

has been used to determine the soil volume fraction during the fluidized regime. Other 

researchers described in Chapter 3 have also used these photometric techniques to 

determine soil volume fraction (fs

Test 

) or soil density. The intensity of the backscatter of light 

(I) is recorded for various soil volume fractions as depicted in Figure B2. The more 

closely the particles are packed together (higher soil volume fraction), the higher the 

number of photons reflected [Hapke, 2008], causing an increase in the areal energy 

density of light recorded by the CMOS sensor of the camera that uses a linear gamma 

  
Crater 
depth 

Crater 
radius

Exposed 
† radius 

 (a.u.) (a.u.) (a.u.) 
    
1 6.4 17.6 13.6 
2 1.6 19.5 13.8 
3 1.6 19.8 13.7 
4 7.5 28.8 10.3 
5 7.4 24.6 11.4 
6 7.7 24.3 10.7 
7 5.1 25.9 -- 
8 5.9 24.3 -- 
9 6.0 25.6 -- 
10 4.8 24.3 -- 
11 1.6 27.3 2.6 
12 2.1 4.8 -- 
13 0.2 4.8 -- 
14 2.6 4.8 -- 
15 1.1 6.1 -- 
16 2.2 3.0 -- 
17 1.0 7.2 -- 
18  1.3 8.0 -- 
19 2.0 8.4 -- 
20 2.0 8.0 -- 
21 1.6 35.2 20.0 
22 6.4 35.8 18.1 
23 1.1 4.0 -- 
24 1.3 3.6 -- 
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function. This correlates to a higher reflectance (the ratio of reflected to incident light 

energy) since the incident light energy on the test section is constant during all 

experiments.  

 According to Figure B2, our experiments show a linear correlation between 

reflectance and soil volume fraction with a correlation coefficient of 0.98. This is in good 

agreement with experiments performed by Valverde et al., [2003]. We calibrated the 

reflectance intensity (RI) from high resolution monochromatic images at three different 

stages: zero soil volume fraction (58 RI = no sand grains), 1.0 soil volume fraction (256 

RI = a wooden object with close to unity in porosity) and the nominal soil volume 

fractions (pre-jet impact) for various granular media. The high RI observed for the 1.0 

soil volume fraction case may partially be attributed to specular reflectance [Hapke, 

2008]. As a result, larger uncertainty in fs may exist at I greater than ~200 RI. In a 

separate experiment with similar optical setup, we compressed the fine sand and recorded 

its porosity (soil volume fraction) and reflectance intensity. We did this for one case and 

use four data points available to determine the reflectance vs. soil volume fraction 

relationship (or calibration curve).  All experiments were illuminated by 1500 Watts 

(~104

 More data points can be used to improve the fidelity of this calibration curve, but 

these results along with other published articles support a linear trend. According to 

Hapke [2008], this relationship is only valid for soils with an albedo smaller than ~0.9. 

The empirical equation (Eqn. B31) derived from this curve for crushed walnut shells 

sized to fine sand determines the soil volume fraction from the reflectance intensity of 

high speed and high resolution monochromatic images.  

 lux) of light (Fig. 3.4C).  

15.199
344.65−

=
If s     (B31) 
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Figure B2. Reflectance vs. soil volume fraction for laboratory simulations with fine sand simulant 
composed of crushed walnut shells (Tests 4-20).  
 
B.5  Calculations of radial distance of dust lifting by VSE and crater volume ratio 

  Conservation of mass of the rocket exhaust plume is applied in determining the 

radial distance at which VSE dominates (Eqns. B32 and B33). We assume that the 

compressibility effects of the impinging plume is negligible at large radial distances (r) 

from the centerline (e.g., outside the crater). Assuming steady-state, the freestream 

velocity (u∞) at the centerline height (z) of the exhaust plumes (Eqns. B34 and B35) 

needs to be larger than the threshold freestream velocity (U∞t

m
) to move sand grains 

[Greeley and Iversen, 1985]. The jet mass flow rate from all 12 nozzles, , at the 

impingement region were approximated from the nozzle exit conditions. The threshold 

freestream velocity is dependent on u*t (Eqn. 3.6), the aerodynamic roughness length (z0

(B32)       0)( =⋅∇+
∂
∂

u
t a
a ρ

ρ

) 

and the von Karman constant (κ) and described by equation B34. The aerodynamic 

roughness length is the height above the surface at which the flow velocity is zero and an 

increase in this length scale increases the value of shear stress required to initiate grain 

movement.  The roughness length is dependent on the sand grain size. Hence, the radial 

distance at which VSE lifts sand grains can be calculated from equations B32-B35.  
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(B35)          grains sand of Lifting      )( tUzu ∞∞ >  

 We calculated the volume fraction of the landing site within the Phoenix 

workspace that was eroded and denoted this term as the crater volume ratio. This is the 

ratio of crater volume calculated from Section 3.2.2, Vc, to a reference soil volume, Vref

lD
V

V
V c

ref

c
2)40(

 Ratio VolumeCrater 
π

==

 

which is the amount of undisturbed regolith (prior to landing) that extends to a radius of 

40D from the spacecraft centerline (Eqn. B36). This is approximately the Phoenix work 

space area. The total crater volume is calculated (Eqn. 3.10) from the erosion caused by a 

pair of Phoenix thrusters and multiplied by six to represent all the REMs as depicted in 

Fig. 3.3A. The average crater volume ratio is obtained from experiments with soil depths 

of 5 cm and 20 cm with each type of simulant at Mars atmospheric pressure (Tests 1, 2, 

9, 20, 21-24). These ratios derived from the experiments are compared to the crater 

volume ratio calculated at the Phoenix landing site (Appendix B.1). We approximate the 

Phoenix landing site by a flat surface with soil of uniform depth over an impermeable 

layer (subsurface ice). 

      (B36) 

B.6  Images of rocket plume – induced cratering of landing sites from previous 
spaceflight missions to Mars and the Moon 
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Figure B3 Rocket plume-induced erosion of the Viking 1 and 2 Landing Sites at the mid-latitude regions of 
Mars. Minor cratering observed 30 cm from the engine centerline (left side of image). Camera Images: 
12A01-BB1 and 12A081-BB1. Courtesy of NASA Planetary Data System.  
 

 
Figure B4. Rocket plume-induced erosion of the Apollo 12 Landing Site at the mid-latitude regions of the 
Moon. Lunar descent engine observed at the top of the figure [NASA AS11-40-5920] Courtesy of NASA . 
Surface scrubbing mainly observed and noted by astronauts Neil Armstrong and Buzz Aldrin [Orloff and 
Harland, 2006] 
 

 
Figure B5. Rocket plume-induced erosion of the Surveyor 6 Landing Site at the mid-latitude regions of the 
Moon. Crater site shown by white arrow. Courtesy of NASA., Crater depth was observed to be less than 1 
cm. [Mason and Nordmeyer, 1969] 
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B.7  Shadowgraph and Schlieren images of shock waves in gas media 
 

 
Figure B5. (A) Shadowgraph images of helical instability in an underexpanded jet with a stagnation 
pressure to ambient pressure ratio of 4. Courtesy of Laboratory for Turbulence Research in Aerospace and 
Combustion (LTRAC) at Monash University.  (B) Schlieren image of supersonic flow over a bluff body. 
Courtesy of Avco Everett Research Laboraotry, Inc. (C) Shadowgraph of a bullet traveling at Mach 1.5. 
Courtesy of Rochester Institute of Technology. (D) Computer generated Schlieren image of emergence of 
supersonic bullet.   
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A PPE NDI X  C  
 
 

Cratering on planetary bodies due to spacecraft landings 
 

C.1 Introduction 

 
  Due to increasing payload mass requirements and landing accuracy to improve 

science return, landed missions to Mars and the moon must use retro-propulsive engines 

to achieve their final propulsive descent to the surface. In 2012, the Mars Science 

Laboratory (MSL) will be the latest NASA rover to use retro-propulsive descent with the 

addition of a sky-crane maneuver to increase altitude above the surface at engine cut-off 

at ~6 m above the surface.  

  The quantification of surface alteration that occurs as a result exhaust plume 

interactions during landing is an engineering and science challenge [Scott et al., 2006]. 

The reflected plumes can entrain the eroded media resulting in a particulate-environment 

with the potential to damage coatings and contaminate mechanisms and instruments on 

the lander. The hot exhaust gases, namely ammonia (NH3

 To quantify this environment a subscale test program was conducted to measure 

the flux of entrained particulates and resultant excavation from exhausting a standard 

Mars Landing Engine into representative Martian media. These results are compared to 

both spaceflight data and previous experimental studies conducted in support of the 

NASA Apollo, Surveyor, Viking and Phoenix planetary missions. Findings from this 

research program and their theoretical context are presented in this Appendix. 

), can also present a thermal 

and compatibility materials issues. The dusty environment and ionized species in the 

plume can create radar interference [Pollard et al, 2007; Ho et al., 2007]. Lastly and most 

importantly, the cratering that results beneath the plume can both alter the chemical state 

and mechanical stability of the landing site with obvious scientific and engineering 

implications. 

 Underexpanded, supersonic exhaust plumes impinging the surface during landing 

create a complex environment for the lander and rover (Fig. C1). Due to the well 

collimated nature of these plumes at martian atmospheres (Chapter 2) in addition to 
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limited energy dissipation in the shock-cell structure, these plumes intersect the surface 

with high (>2000 Pa) surface impingement pressure resulting in various cratering 

processes. As observed in Section A.5.3, the MLE plumes remain collimated to distances 

of greater than ~35d.  

 

 

 
Figure C1. Numerical simulation of velocity magnitude from two engines impinging the surface for a sky-
crane landing architecture. Note the location of the rover between the reflected plumes. 

  The plume impingement ground-interaction environment is dependent upon the 

thruster exit plane properties, Mars ambient environment (pressure, density), and soil 

properties. The soil mechanics applicable to this environment include viscous shear 

erosion (VSE), bearing capacity failure (BCF), diffusion-driven flow (DDF) [Metzger et 

al., 2009], diffused gas erosion [Scott and Ko, 1968] and explosive erosion (DGEE) (see 

Section 3.4).   

 VSE describes removal of media by surface shear forces from the impinging jet. 

VSE is characteristic of highly over-expanded exhaust plumes which lead to a rapid 

dissipation of the shock structure and modest surface pressures (see Section 3.5.1). VSE 

was experienced by the Apollo program where the vacuum environment of the lunar 

surface resulted in diffuse, un-collimated plume expansion. Due to the modified 18-

nozzle Viking engines which reduced the ground pressure below the threshold value due 

to enhanced turbulent mixing, VSE was the dominant mechanism leading to shallow 

craters [Shorthill et al, 1976]. VSE is achieved when the shear strength (τs) of the soil is 
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exceeded by the shear stress of the impinging jet (τj

)1(0 Cjs <−ττ

) as shown in equation C1. This is 

further characterized by the threshold friction velocity by Greeley et al., 1988 which 

states that erosion rate will increase when there is larger deviation between plume and 

threshold friction velocities.  

 

  BCF, sometime referred to as pressure cratering, occurs when the gas 

impingement pressure or normal stress (σ) exerted by the jet exceeds the shear strength 

(τs

)2(0 Cs <−στ

) of the soil (see Section 3.5), resulting in cratering of the media [Metzger et al., 2009]. 

This process usually occurs in conjunction with diffusion-driven flow.  

 

As first discovered by the Viking era research, Mars landings are sensitive to this 

mechanism due to the development of highly collimated plumes. This mechanism would 

dominate over VSE for a threshold with a surface impingement pressures exceeding 

~2000 Pa [Romine et al., 1973].   

 The final mechanism of interest shows that the most violent removal of regolith 

by jet interactions occurs by DGEE as observed during the Phoenix landing (see Section 

3.4). This mechanism forced by impinging pulsed jets develops locally fluidized regions 

and forms cyclic granular shock waves which propagate within the soil media. This led to 

a large exposure of subsurface water ice (~1.6 m in diameter) under the lander. Temporal 

and spatial pressure gradients within the soil as described by Darcy’s equation (Eqn. C3) 

may be used to describe this mechanism, as shown in Section 3.6, and diffusion-driven 

flow (Longwell et al., 2002; Metzger et al, 2009).  

)3(222 C
t
p

k
np

∂
∂

=∇
µ  

Where permeability (k), porosity (n), gas viscosity (µ), the soil pore pressure (p), and 

relevant plume properties define the physics of this type of erosion.  

C .2 M ethodology 

  A subscale cold gas thruster test was conducted with an experimental approach 

similar to that taken of the Phoenix studies (see Chapter 3). The test parameters are 
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shown in Table C1. As shown in Figure C1, a quarter-scale Viking-type Mars lander 

engine with a nozzle exit diameter (d) of 5 cm was constructed and mounted to a quarter 

symmetry test-bed with a 22.5 degree cant angle.  Two clear baffle planes at 90º on either 

side of the engine were used to simulate the neighboring thruster plumes as shown in 

Figure A2, representing a nominal configuration of 4 engines interacting with each other 

as discussed in Section 2.6. The nozzle geometry and configuration were simulated to 

match the dimensions of the MSL descent stage spacecraft. Quarter symmetry was 

selected to minimize complexity and cost of multiple engine operation. It is also known 

that the stagnation plane interaction with neighboring jet plays a major role in the erosion 

process [Romine et al., 1973]. A high-speed video camera was positioned to capture the 

erosion dynamics through the baffle plane at the impingement site. 

 
Figure C2. (Left) Schematic of test-bed indicating thruster mounting location, altitude variation, and 
symmetry planes which are similar to the configuration of the MSL descent stage. (Right) Photo of test-bed 
with soil media in place at NASA Ames Research Center. 
 

  Similarity parameters were used to scale the earth-based test to represent a Mars 

landing environment, i.e. the plume expansion and gravity. These parameters are 

tabulated in Table 3.6 and extensively described in Section 3.2.1. The soil cohesion, 

porosity, angle of repose, and ambient pressure conditions were similar to that 

experienced for a normal Mars landing. Two particle sizes were investigated, 100 and 

1000 µm, intended to represent the bimodal distribution of Mars. The test soil media are 

ground walnut shells with 1/3 the density of pure silica (primary Mars soil constituent). 
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The lower density of the test-media provides Froude scaling for the earth’s higher gravity 

relative to Mars, therefore matching the ballistic coefficient simulating lifting, 

entrainment, and particle trajectories expected in a 1/3 gravity environment of Mars.  

Also, erosion and deposition rates scale with densimetric Froude number [Greeley et al, 

1985]. The operating gas is nitrogen yielding a ratio of specific heats similar to that of the 

hydrazine exhaust products (NH3, N2, H2

The test was conducted in a large vacuum chamber at NASA Ames Research 

Center Planetary Aeolian Laboratory (PAL). As mentioned previously, matching Mars 

ambient surface pressure is required to simulate the supersonic plume expansion and gas 

diffusion into the soil bed.  

). Two ground slopes were investigated; 0 and 

22.5 degrees. As the engine was mounted at 22.5º, a normal impingement angle was 

achieved by raking the soil media to achieve a 22.5º ground slope. 

Parameter Value 
  
Nozzle Diameter (cm) 5 
Jet Expansion Ratio 4.3-0.0 
Mach Similarity Parameter 15 
Mach Number 5.1 
Froude Number  300 - 50  
Reynolds Number 25-15 x 105 
Shear strength parameter ~0.6 
Normalized threshold friction velocity  0.04 - 0.01 
Ambient Pressure (Pa) 950-650 
Plume Gas N
Ratio of Specific Heats 

2 
1.4 

Media Particle size (µm) 100,1000 
Exit Pressure (Throttle level) (Pa) 2800 – 850 

Table C1. Test parameters 

 
  The test matrix explored soil erosion as a function of engine throttle level, altitude 

above the surface, ground slope, and media size (Table C2). Run durations were for 1 s 

each. High-speed video (500 frames per second) of the approximate axisymmetric crater 

formation and post-test measurement of eroded depth and diameter were used to obtain 

erosion rate (instantaneous and average). The quarter-space technique was used to 

adequately visualize the crater growth process. Throttle conditions were determined and 

controlled from a pressure transducer in the engine chamber and pressure regulator and 

valve in the feed system.  Particle tracking of the video data was also performed to 

determine that particle entrainment velocities. Most importantly, these tests were all done 
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at steady jet conditions (not pulsed) to similar throttle conditions expected during the 

MSL sky-crane maneuver.  

Test Duration (s) Media 
(µm) 

Ground 
Slope 
(deg) 

Non 
Dimensional 
Altitude 

Throttle (%) 

      
2 1 100 0 35 60 
4 1 100 22.5 35 60 
5-8 4 100 0 35 100,60,30,60 
12-13 2 100 22.5 50 100,60 
14-16 3 1000 22.5 35 100,60,30 
17-18 2 1000 22.5 50 100,60 
19-21 3 1000 0 35 100,60,30 
22-23 3 1000 0 50 100,60,60 

Table C2. Test matrix. 

 
In order to provide a consummate comparison wherever feasible of cratering due 

to spacecraft landings from both spaceflight data and experiments, we calculated the 

erosion rates, densimetric Froude number, threshold friction velocity and jet expansion 

ratio for all cases in terrestrial, lunar and martian environments. All erosion rates 

recorded are calculated from the final crater profiles. We use a paraboloid equation (Eqn. 

3.10) to calculate the final crater volume. The mass flow rate, thrust and nozzle exit 

conditions are calculated from isentropic relations and measured stagnation chamber 

pressures. The densimetric Froude number is obtained from particle properties and nozzle 

exit conditions. The erosion rate is normalized by the exhaust mass flow rate. The values 

for controlled tests and spaceflight data are indicated by open and closed symbols, 

respectively. The square, circle and triangle symbols indicate VSE, BCF/DDF and DGEE 

dominant processes, respectively. These erosion processes are ascertained from high-

speed visual imaging, ground pressure profiles and final crater morphologies 

characterized in Chapter 3. The spaceflight derived data indicated as solid symbols are 

more approximate due to limited visual observations of the altered landing site and high 

variability in the regolith’s particle sizes. 

C .3 R esults 

 High speed video data was collected for all 23 runs listed in Table C2. High speed 

imaging revealed that bearing capacity failure and diffusion-driven flow of the soil was 

the primary erosion mechanism as observed in Section 3.5.2. This process is shown for 
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the 100 (Fig. C3B) and 1000 µm media (Fig. C3A) respectively. After steady supersonic 

jet impingement with the surface, the soil was excavated into a cylindrical crater with an 

average diameter of ~6 cm within 0.8 s for both soil media. The granular flow was 

significantly more turbulent and the profile was more parabolic for the larger media. 

Particle tracking of the video data yielded initial entrainment velocities on the order of 

0.1 to 2 m/s, depending on the condition and time in the excavation process. Rapid 

collapse and filling of the transient crater after engine shut-down leads to the post-test 

crater image shown in Figure C4B. Figure C4A shows the differences in soil depth prior 

to plume impingement, during maximum cratering, and after the re-deposition of the soil 

particles. As a result, the average erosion rates for these processes are much smaller than 

those observed from transient erosion rates. For experimental tests done at earth 

atmospheric pressure resulting in a highly over-expanded exhaust plume, we observe 

minimal to no cratering at altitudes of 35d.   

 
Figure C3. High-speed image at maximum crater growth for Test 19 (A) and Test 5 (B). See Movie D9 and 

D10. 
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Figure C4. (A) Image has an overlay that shows the image post processing analysis that captured the crater 
evolution of Test 2, allowing measurement of the instantaneous and average erosion rate. (B) Image of a 
post-test crater of Test 2. 
 

  Figure C5 is a plot of the measured erosion rate of tests conducted at an altitude of 

35d. The overall finding is that the erosion rate was highly dependent on particle size, 

throttle level, and ground slope. There was a non-linear, direct dependence with throttle 

level, related to the nonlinear increase in surface impingement pressure from the jet with 

the soil. The normal impingement angle significantly increased erosion, relative to the 

cases where the jet was at a 22.5 degree angle relative to the ground.  The 1000 micron 

media also experienced a higher erosion rate for the same altitude and throttle level, 

likely related to the increased porosity and enhanced jet penetration which may have 

resulted in a larger contribution to diffusion-driven flow. The altitude dependence was 

not clear. The finding here is that ground erosion is most sensitive to throttle level and 

ground slope and to a lesser degree altitude.  

 

 
Figure C5. Erosion rate as a function of throttle level, particle size, and ground slope, for a non-dimensional 
altitude of 35d. 
      

To elucidate the differences between the various erosion processes due to 

planetary landings (e.g. VSE, BCF/DDF, DGEE and DGE), we have tabulated in Table 
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C3 the crater profiles (depth and size) from spaceflight missions and experimental tests in 

support of these missions. Since there is usually more than one rocket nozzle used during 

landing, we normalize the crater dimensions with respect to the equivalent nozzle 

diameter (deq) (Eqn. C4) where b is the number of nozzles and Ae

π
e

eq
bA

d
4

=

 is the nozzle exit area.    

       (C4) 

Table C3. Normalized mean erosion depth and size for various planetary surface missions and vacuum 
chamber experimental tests.. Measurements are made per descent engine cluster.  

C .4 Discussion 

  Particulate ejecta and their subsequent entrainment in the reflected plume 

resulted. The collimated nature of the plume and its effect on soil erosion can be seen in 

Figure C3. The steep cylindrical crater is also formed as influenced by the shock structure 

which demonstrates large pressure gradient loads. At altitudes below 50d, the ground 

Studies 
  

Erosion depth 
(y/deq

Erosion size 
) (x/deq

Comments 
) 

APOLLO 11 ~0.0 ~1.2 (erosion) Surface scrubbing 
SURVEYOR 5 & 7 <0.1 ~9.3 – 3.1 

(erosion) 
Surface scrubbing 

VIKING 1 ~0.2 – 0.1 ~5.0 – 3.8 
(crater) 

10 cm x 20 cm crater 

VIKING 2 ~0.3 – 0.2 ~8.8 – 6.3 
(crater) 

3 6-cm diameter craters 

PHOENIX ~0.8 – 0.5 ~47.2 (erosion) Exposed ice (~12.9) 
  ~14.5 (crater) 3 ~85-cm diameter craters 
Viking WSTF Test 1 <0.1 ~0.0 No craters 
Lunar Nominal    
Viking WSTF Test 2 ~0.2 ~7.6 18 5-cm diameter craters 
Sand dune  (crater)  
Phoenix ARC Test 1 3.0 – 0.8 ~23.2 – 21.8 Extensive cratering  
S-type walnut shells  (crater)  
Phoenix ARC Test 2 3.1 – 0.8 ~15.8  Exposed surface (~12.9) 
B-type walnut shells  (crater) Extensive cratering 
Phoenix ARC Test 3 3.1 – 0.8 >31.7 Exposed surface (~11.6) 
F-type walnut shells  (crater) Extensive cratering 
Phoenix ARC Test 4 0.6 3.5 Minor erosion 
C-type walnut shells  (crater)  
MSL ARC Test 1 ~0.7 ~6.2 Transient steep crater 
S-type walnut shells  (crater)  
MSL ARC Test 2 ~0.7 ~8.0 Transient steep crater 
C-type walnut shells  (crater)  
Phoenix ARC Earth Test 1 0.5 4.9 Parabolic crater 
S-type walnut shells (pulsed)  (crater)  
Phoenix ARC Earth Test 2 1.0 2.9 Parabolic crater 
S-type walnut shells (steady)  (crater)  
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pressure with respect to changing altitude is non-linear due to whether the shock cell near 

the surface is within the expansion or recompression regime. This leads to the smaller 

dependence of altitude on erosion rates. 

Although there is significant scatter in the data due to various initial conditions of 

each study, it can be seen from the jet expansion ratio vs. erosion rate profiles, in Figure 

C6 that the most erosion takes place within the Mars atmospheric regime. The jet 

expansion ratio between 2 and 5 leads to a well-collimated shock structure which leads to 

large ground pressure values as observed in Chapter 2. Hence, the atmospheric 

environment, ground pressure footprint and profile are important to accurately simulate 

the erosion processes. A decrease in erosion rates is observed for the lunar (e >100) and 

terrestrial (e <1) atmospheric regimes. This shows similar correlation to normalized 

ground pressure-expansion ratio profiles shown in Figure A12.  

 

 
Figure C6. Normalized erosion rate vs. jet expansion ratio for both controlled experimental studies and 
spaceflight missions. [Romine et al., 1973; Land and Scholl, 1969; Rajaratnam et al, 2002; Shorthill et al, 
1976; Mason and Nordmeyer, 1969; Mason, 1970] 
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 The most prevalent cratering mechanism during spacecraft landings to date is 

VSE as observed for the NASA Apollo, Surveyor and Viking missions. This occurs for 

relatively low ground pressure values when the shear stress forces of the jet exceed the 

cohesive and friction forces of the granular medium. Figure C7 shows the characteristic 

erosion rate profile, normalized erosion rate vs. densimetric Froude number (Fr), of all 

jet-induced erosion processes on planetary bodies due to spacecraft landings. Relative to 

the large variations of particle diameter (ranging from 1 µm to greater than 1500 µm), the 

ratio of dynamic pressure of the exhaust plumes to specific weight of granular media for 

each study are similar for each erosion process. For VSE dominant process (shown as a 

green curve in Fig. C7), there is a semi-log linear rise in erosion rate (gravitational 

regime) to a maximum at Fr ~50 and then a decline (shear strength regime) to Fr ~1000. 

Since the dynamic pressure to specific weight is relatively constant for all tests within 

each erosion mechanism, with decreasing Fr, the granular particle sizes increase which 

inhibits its’ movement due to increase in particle weight and this is known as the 

gravitational regime. With increasing Fr, the particle sizes decreases which results in an 

asymptotic decrease in erosion rates due to the increase in the interparticle cohesive 

forces (Fig. C7) and accounts for the shear strength regime. These curves were developed 

from landing site and experimental data. Scattering of the data is primarily due to 

variations in specific weight and dynamic pressure.  This is further supported by green 

curve in Figure C8, normalized erosion rate- normalized threshold friction velocity 

profiles for VSE. It can be seen that as the threshold friction velocity increases, the 

erosion rate asymptotically decreases for this cratering mechanism due to increases in the 

interparticle forces. This is also observed by the derivation of the particle mass transport 

rate equation by Greeley et al. [1988].  
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Figure C7 . Normalized erosion rate vs.densimetric Froude number for both controlled experimental studies 
and spaceflight missions.[Romine et al., 1973; Land and Scholl, 1969; Rajaratnam et al, 2002; Shorthill et 
al, 1976; Mason and Nordmeyer, 1969; Mason, 1970] 
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Figure C8. Normalized erosion rate vs. normalized threshold friction velocity for both controlled 
experimental studies and spaceflight missions. [Romine et al., 1973; Land and Scholl, 1969; Rajaratnam et 
al, 2002; Shorthill et al, 1976; Mason and Nordmeyer, 1969; Mason, 1970] 
 
 The second erosion process which may dominate is the combination of bearing 

capacity failure (BCF) and diffusion-driven flow (DDF) which was observed from recent 

experiments performed in this study. This occurs when the pressure loads of the jets 

exceeds soil shear strength and forms steep parabolic/cylindrical craters that are partially 

redeposited immediately after jet termination. The erosion rate and final crater size are on 

the average larger than those observed for VSE as shown in the blue curve in Figure C7. 

Similar characteristic Froude-erosion rate curves as observed in VSE are seen where an 

asymptotic decrease in erosion rate is observed due to the shear strength regime. No 

characteristic trend of the erosion rate as function of the threshold friction velocity is 

observed for the BCF/DDF process.   

 The new erosion process named diffusive gas explosive erosion (DGEE) due to 

pulsed underexpanded impinging jets in tenuous atmospheres does not obey this 

characteristic erosion rate curve for the range of Fr studied. We observe a semi-log linear 

increase in erosion rate with Fr (red curve in Fig. C7) and the decreasing trend are not 

observed. This is mainly due to the local fluidization and granular shock wave formation 

and propagation associated with this erosion mechanism. The fluidization breaks 

interparticle forces, separating the particles from one another, and as a result, the erosion 

rate is mainly dependent on the pressure gradient, shock strength and particle weight. 

Hence, craters in fine simulant are the largest as indicated in Figure C7. Soil permeability 

and atmospheric pressure both affect the developing pressure gradient. The shear strength 

regime is absent for the DGEE process or it may be observed at much higher Fr numbers. 

This is also supported by erosion rate-threshold friction velocity profiles shown by the 

red curve in Figure C8 where we observe a similar linear increase due to a stronger 

correlation to particle weight (size). DGEE produces erosion rates many orders of 

magnitude larger than other jet-induced cratering mechanisms. To provide a qualitative 

assessment, the erosion effects at the Phoenix landing site are compared to previous 

planetary missions (Table C3).  

  Erosion rate characteristic curves most particularly can provide information on the 

amount of external cohesion present. The erosion rates are averaged values from tests 
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performed with dry martian simulant at depths between 5 cm and 20 cm, the range 

recorded at the landing site [Smith et al, 2009]. From the red curve in Fig C7 and particle 

size distribution determined by the Optical Microscope [Goetz et al., 2010], we show that 

external cohesion is present at the Phoenix landing site due to a deviation from the DGEE 

characteristic curve. External cohesive agents would show a decrease in normalized 

erosion rates for similar Fr. The external cohesion may be attributed to salts and pockets 

of brines within the regolith as observed by Renno et al. [2009]. If we can quantify the 

cohesion present, these curves can more accurately determine soil properties at various 

landing sites. More importantly, we may be able to assess the effect of brines on soil 

cohesion.  

  It should be noted that these trends are mainly to provide qualitative insight into 

the cratering physics associated with jet interactions. More in-depth analyses for all 

erosion processes need to be investigated and correlated to this study.   

 

C.5 Conclusions 

  Rocket engine plumes interacting with the ground on Mars result in a particulate 

erosion and contamination environment. Experimental results obtained from this study 

indicate that the erosion caused by steady supersonic jets at an altitude of ~35d is 

dominated by BCF/DDF. The resultant erosion rate was found to be highly dependent on 

particle size, throttle level and ground slope. A smaller correlation was seen with altitude 

due to under-expanded shock-cell structure. More importantly, erosion rates are directly 

dependent on ground pressure which is a function of the jet expansion ratio. To properly 

simulate the erosion dynamics due to impinging rocket plumes, this study shows that the 

jet expansion ratios between full-scale and subscale tests should be satisfied. Densimetric 

Froude number and threshold friction velocity parameters show a characteristic curve for 

both the VSE and to a lesser degree BCF/DDF processes. However, DGEE does not obey 

these characteristic curves due to significantly different cratering physics explored in 

Chapter 3.  
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Supplementary Movies 
 

 All supplementary movies can be found at http://deepblue.lib.umich.edu

 

.  

Movie D1: Animation of the Entry, Descent and Landing (EDL) sequence of the NASA 

Phoenix Mars spacecraft. Courtesy of NASA/JPL-Caltech/U. of Arizona.  

http://phoenix.lpl.arizona.edu/videos_pr.php  

 

Movie D2: Transient axisymmetric numerical simulation of the Mach contours for a 

pulsed supersonic jet interacting with a flat surface at a nozzle-surface distance of 25d. 

 

Movie D3: Transient axisymmetric numerical simulation of the Mach contour and spatial 

ground pressure profiles for a pulsed Phoenix REM plume interacting with a flat surface 

at a nozzle-surface distance of 8.4d (Phoenix touchdown altitude). Courtesy of Lockheed 

Martin Space Systems. 

 

Movie D4: High speed video of the ‘explosive erosion” dynamics observed in Test 9 

(Table 3.4) at 500 frames per second with a resolution of 1280 by 1024 pixels. The 

camera was placed approximately normal to the baffle plane, imaging approximately a 2-

D axisymmetric section of the crater growth process.  The time duration of the video is 

~1.2 s. Granular shock waves, soil fluidization regions and ejecta particle velocities were 

tracked.  Similar dynamics were observed for the silt and silt/fine sand simulants.   

 

Movie D5: High speed video of the viscous shear erosion dynamics observed in Test 17 

(Table 3.4). The erosion dynamics due to the viscous shear erosion process is studied 

using similar camera settings as Movie D4. The time duration of the video is ~1.7 s. 

Similar dynamics are also observed at lower impingement pressures on Mars, indicating 

VSE at Mars atmosphere. 
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Movie D6: High speed video of bearing capacity failure/diffusion-driven flow dynamics 

in Test 18 (Table 3.4). The erosion dynamics due to the bulk shear failure process is 

studied using similar camera settings as Movie D4. The time duration of video is ~1.6 s.   

 

Movie D7: Transient simulation of ground pressure spatial profiles for Test 2 (Table A3). 

 

Movie D8: Transient simulation of ground pressure spatial profiles for Test 22 (Table 

A3). 

 

Movie D9: High speed video of bearing capacity failure/diffusion-driven flow dynamics 

in Test 19 (Table C2). This is for a 22.5 degree canted subscale nozzle. The erosion 

dynamics is studied using similar camera settings as Movie D4. The time duration of 

video is ~2 s. 

  

Movie D10: High speed video of bearing capacity failure/diffusion-driven flow dynamics 

in Test 5 (Table C2). This is for a 22.5 degree canted subscale nozzle. The erosion 

dynamics is studied using similar camera settings as Movie D4. The time duration of 

video is ~2 s. 
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APPENDIX F 
 

Aerial view of the Phoenix Landing Site on Mars 
 

 

 
Vertical projection of more than 500 images taken from the Surface Stereo Imager camera showing the 
NASA Phoenix Lander at the landing site. Courtesy of NASA/JPL-Caltech/U. of Arizona/Texas A&M 
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	Effects of the Phoenix Lander descent thruster plume on the Martian surface
	2.1  Introduction
	The final descent and touchdown phase of the Phoenix Lander is controlled by twelve hydrazine (N2H4) monopropellant retro-rocket engines in pulsed mode, which could result in the impingement of some of the exhaust products onto the Martian regolith at the landing site.  The Phoenix engines use pulse frequency and duty cycle control to dynamically throttle power during descent [Wong et al., 2002].
	There was concern among the Phoenix Science Team that the exhaust products could interact with and alter the natural compounds in the Martian soil.  There was also concern that unburned hydrazine and potential impurities in the fuel could contaminate the landing site.  Finally, site-alteration and dust lifting by the interaction of the pulsed jets with the Martian regolith was also a concern. These same concerns are applicable for the MSL descent stage spacecraft. 
	To address these issues, the Phoenix Science Team performed extensive analysis of the hydrazine fuel, the thruster exhaust products, and the dynamical interaction of the exhaust plume with the surface.  These efforts included: (1) selecting the cleanest, driest propellant available for the Mission; (2) assaying and documentation of the Mission propellant; (3) conducting experimental plume signature identification during the hot-fire engine qualification testing of the flight motors using a batch of the Mission propellant;  (4) capturing sample exhaust gases from these tests for use in future laboratory analysis; (5) extensive laboratory testing, computational modeling and analysis; and, (6) preserving a batch of the Mission propellant and a back-up rocket motor for potential future testing, should this be warranted.  Computational and experimental studies have been performed on the products of the catalytic hydrazine decomposition in order to understand the potential physical interactions of the rocket plume with the Martian surface.
	A very brief discussion of two of the Phoenix Lander primary scientific instruments that would benefit from the plume diagnostics data and analysis efforts is included in this section to provide context for the investigation.  A more detailed description of these instruments is included in other manuscripts in this special issue [Boynton et al., 2007; Kounaves et al., 2007].
	The Microscopy, Electrochemistry and Conductivity Analyzer (MECA) is a combination of scientific instruments including a wet chemistry laboratory (WCL), optical and atomic force microscopes, and a thermal and electrical conductivity probe. MECA determined acidity, salinity, and composition by mixing soil samples with small amounts of water.  MECA examined the soil grains to provide information on mineralogy and origin.
	The Thermal and Evolved Gas Analyzer (TEGA) is a combination of high-temperature ovens and a mass spectrometer that was used to perform chemical analysis of Martian soil and ice samples.  TEGA was used to detect volatiles, soil mineralogy, and potential organics that may be resident on the Martian surface.
	Understanding the physics of rocket plume impingement on planetary surfaces is important for the survivability of the spacecraft during terminal descent and touchdown phases of the Entry, Descent and Landing (EDL) sequence [Whetsel et al., 2000]. Limited investigations of steady-state rocket plume interactions with the Martian soil surface were conducted for the Viking mission by NASA researchers in the 1970s [Grover et al., 2005].  The dynamics of the interaction of an under-expanded jet plume flow field, where the nozzle exit pressure is greater than the ambient (back) pressure, with the surface is quite complex.  Indeed, instabilities in the flow occur because of the co-existence of subsonic, transonic, and supersonic regions within the flow [Krothopalli et al., 1999].  For this reason, computational simulations must be tested with data from experiments [Janos and Hoffman, 1968].
	This Chapter discusses the objectives of plume diagnostics and interaction research efforts and explains why they are important to the Phoenix science mission.  We present the methodology and results from three research efforts: (1) spectral diagnostics of the rocket engine exhaust gases, (2) analysis of plume gases using gas chromatography and mass spectrometry, and (3) physical interactions of the rocket plume with an impermeable surface.  We conclude with a brief discussion on planned future work and how these data will help with the scientific measurements on Mars.
	2.2 Objectives
	There are two main phases focused in this Chapter. The first phase is determining the composition of the rocket plume from the Phoenix descent engine. The second phase is the study of transient rocket plume interactions with a flat surface. First phase, the hydrazine fuel used in the Phoenix Lander is high purity grade (99% by weight) but still contains impurities such as water (< 1%), ammonia (< 0.3%), aniline (< 0.003%), and trace organics (< 0.005%).  There was a significant level of uncertainty among the science team as to the exact composition of the exhaust products and it was decided to perform additional experimental and numerical studies on the Phoenix landing system rocket engines. Second phase, the understanding of the physical interaction of thruster plumes with the Martian surface is also crucial for assessments of dust lifting and spacecraft contamination. However, detailed experimental investigations of pulsed rocket plume interaction with the ground and the Martian regolith are currently not available [Mehta et al., 2007].  We conducted computational simulations and laboratory experiments in conjunction with detailed scaling analysis to study these interactions and postulate their effects on dust lifting.  We report such measurements here and show that they are consistent with numerical simulations.   
	Table 2.1.  MR-107N (Phoenix) descent engine specifications 
	2.3 Analysis of the plume gases with Fourier transform infrared diagnostics 
	2.3.1 Chemical reaction modeling
	The primary product of hydrazine decomposition is ammonia
	3N2H4 ( 4NH3 + N2.  (2.1)In the presence of sufficient heat, the ammonia will further decompose into N2 and H2
	2NH3 ( N2 + 3H2.  (2.2)The catalyst beds in the Phoenix landing system engines are made of iridium and rhodium metals affixed to a porous ceramic alumina.  The combustion temperature within the catalyst bed reaches ~1200 K. The decomposition of N2H4 with an iridium catalyst can be expressed by [Lyon, 1971]
	N2H4 ( 4/3(1 – x)NH3 + 1/3(1 + 2x)N2 + 2xH2,  (2.3)where, x is the fraction of originally formed ammonia that has dissociated into N2 and H2. A rhodium catalyst produces nitrogen and hydrogen in equal quantities [Sayer, 1970] 2N2H4 ( 2NH3 + N2 + H2.  (2.4) Chemical equilibrium modeling was performed to provide some insight on interpretation of Eqns. 2.1– 2.4. The predicted plume properties are shown in Table 2.2. The left column is the output from the NASA Gordon-McBride [McBride and Gordon, 1996] chemical equilibrium code.  The right column is the results from similar calculation performed by the engine manufacturer.  The manufacturer’s code is a modified version of the Gordon-McBride code that allows for quenching the NH3 decomposition inside the combustor.  Eqns. 2.1–2.4 show that the products in hydrazine monopropellant rocket exhaust plume can significantly vary, with possible major species mole fractions of
	NH3:  10%–80%
	H2:      0%–67%
	N2:    20%–33%
	N2H4:  Unknown
	As mentioned in the Section 2.2, the hydrazine fuel used in the Phoenix Lander is high purity grade.  A purity analysis was performed by the engine manufacturer to ensure that the fuel was in compliance with military specification MIL-P-26536.  The results from the purity analysis are shown in Table 2.3.
	2.5 Analysis of the plume gases using gas chromatography-mass spectrometer
	2.5.2 GC-MS Results
	2.5.3 Interpretation of the results
	2.6 Flow physics of pulsed supersonic jet impingement at Mars pressure
	An experimental testbed was developed to simulate the flow physics of the exhaust from a Phoenix pulsed rocket engine and its interaction with a flat surface.  Indeed, all requirements for simulating these interactions were determined using non-dimensional scaling parameters.  Numerical simulations were used to help the physical interpretation of the experimental results.
	2.6.2 Experimental and computational methodologies

	2.6.2.1 Experimental methodology
	2.6.3 Experimental results
	First, a single full-scale descent engine was numerically modeled and we observed good agreement with data from subscale experiments. This profile is shown in Figure A16, Appendix A. This was an important result, because it partially confirmed the validity of our scaling laws. Full-scale rocket test firing at simulated martian conditions that record both temporal and spatial ground pressures are needed to fully validate these laws.  
	Once numerical and experimental results showed relatively good temporal and spatial agreement, the numerical code GASP was used to model full-scale three-dimensional cases for adjacent thruster plumes impinging at the surface. The computational domain spans a 60° wedge where two engines are modeled and is bounded by symmetry planes [Gulick, 2006]. This domain is then extrapolated to obtain the Mach and pressure contour profile of the full 360° Phoenix Lander as shown in Figure 2.11. More details in regards to the development of the flow domain and boundary conditions are described in Appendix A.4.2.  Due to adjacent plume interactions and non-linear shock/shock interactions as described in the previous section, the plate shock demonstrates noncoplanarity and oscillates in three-axes, leading to both asymmetric high pressure regions (Fig. 2.11A) and ground pressure fluctuations (Fig. 2.11B) during the quasi-steady regime. Most importantly, characteristic overpressure peaks are observed during rapid engine start-up and shut down, suggesting the mechanism of plate shock formation and collapse. These numerical simulations show that the spatial ground pressure profiles between the full-scale (Fig. 2.11) and subscale (Fig. 2.10) systems show good agreement and further confirm the use of these scaling laws. 
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