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ABSTRACT

High frequency amplification, filtering and nonlinearity in a computational model of
mammalian cochlear mechanics

by

Julien Meaud

Chair: Karl Grosh

In this thesis the active and nonlinear dynamics of the mammalian cochlea in response

to acoustic stimulation are simulated using a computational model of the physics and

physiology of the cochlea. The model is based on a three-dimensional representation

of the cochlear partition and intracochlear fluid and includes the electrical domain

and linear feedback from outer hair cell (OHC) somatic motility.

A linear version of the model of the cochlea is first used to assess the role of struc-

tural longitudinal coupling in cochlear mechanics. Longitudinal coupling in the TM

and BM mechanics is found to improve the predictions compared to a locally reacting

model as it broadens the frequency response of the BM to acoustic stimulation and

reduces the duration of the impulse response.

The linear model of the cochlea is then used to investigate the identity of the

cochlear amplifier - prestin-based somatic motility or hair bundle (HB) motility. A

nonlinear six-state channel model of the active HB is linearized for small harmonic

perturbation around the operating point and implemented in the macroscopic model

of the cochlea. A calcium binding event models fast adaptation of the transduc-

xiii



tion current and active HB force generation. The macroscopic simulations show that

somatic motility underlies cochlear amplification and that the active HB force is in-

sufficient to modulate the response of the BM to low intensity acoustic stimulation.

However, the reduction of the sensitivity of the transduction channel to HB deflec-

tion due to the fast adaptation mechanism controls the energy delivered by somatic

motility and thereby the sensitivity of the BM to acoustic stimulation, stabilizing the

cochlea.

The nonlinear dynamics of the cochlea are simulated by introducing a physiologi-

cally relevant nonlinearity in the mechanotransduction channel. An efficient alternat-

ing frequency/time method is used to compute the stationary response of the cochlea.

The model predicts a realistic compressive response and generation of harmonic dis-

tortion in response to a single tone. The simulations of two tone interaction on the

BM - two tone suppression and distortion products - are also in good agreement with

published experimental data.

xiv



CHAPTER I

Introduction

1.1 Mammalian hearing mechanics

The role of the mammalian ear is to convert sound into neural impulses transmit-

ted to the brain. The ear accomplishes its function with remarkable characteristics.

For example, young humans can distinguish between frequencies only 0.2% apart and

detect timing differences of 6 to 10 µs between sounds [29]. The mammalian ear

responds to sounds over a very broad frequency range (about 10 octaves). Moreover

it is very sensitive to low level acoustic input since subatomic internal movements

(less than thermal noise induced movements) can be detected and transduced by the

mammalian ear. It has a very broad dynamic range and can respond to sounds that

have an energy a million times higher than the threshold of detection. To accomplish

its goal with these characteristics the mammalian ear has evolved and has become

a very complex nonlinear system. It consists of three parts: the external ear, the

middle ear and the inner ear.

The external ear collects the sound pressure waves and channels them toward the

tympanic membrane or eardrum. In response to acoustic stimulation the eardrum

converts the acoustic wave to mechanical vibrations. These vibrations are transmitted

through the bones of the middle ear (malleus, incus and stapes) to the oval window

of the inner ear. The inner ear consists of the cochlea (the organ of hearing) and of

1



the vestibular apparatus (the organ of balance). The mechanics of the mammalian

cochlea is the subject of this thesis.

1.2 Anatomy of the mammalian cochlea

The cochlea converts mechanical vibrations to neural impulses (electrical signals).

It is spiral shaped and consists of three fluid-filled ducts (with a nearly incompressible

fluid) : the scala vestibuli, scala media and scala tympani. The scala media and

scala tympani are separated by the cochlear partition; the scala vestibuli and scala

media are separated by Reissner’s membrane which is acoustically transparent. The

scala tympani and scala vestibuli connect at the apical end of the cochlea through

an orifice called helicotrema. A membrane-covered opening called round window is

present on the wall located at the basal end of the scala tympani. Because of the

near incompressibility of the cochlear fluids, the presence of the round window is

necessary to allow movements of the oval window, of the fluid and of the cochlear

partition during acoustic stimulation. To facilitate the analysis of its mechanics, the

cochlea is often represented using an uncoiled model, as shown in Fig. 1.1. The effect

of coiling on the mechanics of the cochlea is probably limited to apical locations [92].

The cochlear partition comprises the basilar membrane (BM), the tectorial membrane

(TM) and the organ of Corti (between the BM and the TM). The organ of Corti (OoC)

consists of different cells and structures, notably the reticular lamina (RL) which is

parallel to the TM, and the outer hair cell (OHC) between the BM and the RL. The

sensory cell of the cochlea, also located on the cochlear partition, is the inner hair

cell (IHC). Both the IHCs and OHCs have stereocilia or hair bundle (HB) that insert

into the apical surface of the IHCs and OHCs (see Fig. 1.2). The stria vascularis (StV)

is an important structure (to maintain the ionic balance of the cochlea) occupying

the lateral wall of the scala media.

2



x

yz

BM

ST

SV

RW

OW

H

Figure 1.1: Idealized and uncoiled box model of the cochlea. x corresponds to the
longitudinal direction, y to the radial direction and z to the vertical di-
rection. The BM becomes wider and thinner as x increases, making its
stiffness and resonant frequency lower. The cochlear partition (that in-
cludes the BM as well as the organ of Corti and the TM) separates the
two ducts. The organ of Corti and the TM are not shown on the figure for
clarity. The Reissner’s membrane that separates the SV and scala media
is not shown as it is acoustically transparent. The SV and ST connect
at the end to the cochlear partition through an orifice called helicotrema
(H on the figure). Acoustic stimulation excites the stapes attached to
the OW. The RW vibrates to allow movement of the OW, of the nearly
incompressible fluid and of the cochlear partition.

tip-link

stereocilia

OHC main body

uhb

transduction 

channels

transduction 

lateral 

links

Figure 1.2: OHC and its stereocilia. Each OHC has 3 rows of stereocilia. The rows
are connected by horizontal lateral links and by the tip-links. When
the stereocilia is deflected by a displacement uhb, the tip-link opens the
transduction channels and allows current (carried mostly by potassium
and also by calcium) to enter the cell.
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1.3 Passive cochlear mechanics

Von Bekesy published in 1960 [7] his measurements of the response of the BM

to acoustic stimulation in human cadavers using stromboscopic flashes of ordinary

visible light (which limited the smallest measurable amplitudes to about 500nm [50]).

He observed that the BM is tuned locally to specific frequencies and was awarded

the Nobel prize in medicine in 1961 for his findings. At the base (close to the oval

window) the BM responds primarily to high frequency sounds and at the apex to low

frequency sounds. The geometrical [42] and mechanical properties of the structure

of the cochlear partition, and particularly of the BM [60], are varying longitudinally.

This explains the tonotopic tuning of the BM which acts as a spectral analyzer.

During acoustic stimulation, the fluid pressure difference between the scala tym-

pani and scala vestibuli (due to the oval window excitation) forces the cochlear parti-

tion to vibrate. Because of the tonotopic tuning of the BM and of the fluid coupling, a

longitudinally propagating wave travels on the BM until it reaches what is called the

best place (BP). At the BP the resonant frequency of the cochlear partition matches

the frequency of the excitation. The TM moves relative to the the RL due to the

vibrations of the organ of Corti induced by the vibrations of the BM. Because of this

motion and of the viscosity of the fluid, the fluid in the interstitial space between the

TM and the RL moves and deflects the HBs of the inner hair cells (which are not

attached to the TM). The transduction channels on the HBs of the IHCs opens and

current depolarizes the IHCs, which sends a signal to the brain.

However, the BM is poorly tuned in the measurements from Von Bekesy. These

measurements and the theory derived from them are not sufficient to explain the

sharper tuning of the neural responses.

4



1.4 Active cochlear mechanics

1.4.1 Response to single tone

Rhode [123] measured in 1971 the response of the BM to high frequency acoustic

stimuli in living animals using the Mössbauer effect (which can measure displacements

in the nanometer range). He showed that, in contrast to the postmortem response,

the BM of the living cochlea is highly sensitive and sharply tuned to low level stimuli.

At a given longitudinal location, the peak frequency of the BM in response to low

intensity stimulation in the living animal is called characteristic frequency (CF) of

the location. These results have been validated by more recent measurements using

the same method [142, 130] or alternative techniques [112, 20, 35, 159]. For instance,

in the guinea pig [112, 20, 35, 159], the gain of the BM response relative to the stapes

vibrations at CF for 10dB SPL tone is 35 to 40dB higher response in a living animal

than the maximum postmortem gain (see Fig. 1.3). Moreover the peak frequency

of the dead animal is lower than the CF. At frequencies significantly lower or higher

than the frequency of the peak, the response is linear for any intensity of the input.

When the magnitude of the stimuli is raised, the BM response becomes less sharp,

the gain decreases and the peak shifts to a lower frequency. At 100dB SPL the BM

response in a living animal is very similar to the response seen in a dead animal, with

a peak at a frequency about half an octave lower than with a lower intensity stimulus,

as well as a low gain and quality factor. Despite this nonlinear compressive response

of the BM, there is not much harmonic distortion [20, 124] as the second harmonic

component is about 30dB lower than the fundamental at CF. Moreover the DC shift

is limited at basal locations, except at high intensity [23].

The response of the cochlea at more apical locations is more controversial [24, 83].

It is more difficult to take measurements of the BM vibrations at the apex. Different

conclusions about the mechanics of the cochlea at low frequencies have been drawn
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Figure 1.3: Experimental gain of the BM velocity relative to the stapes velocity in
response to acoustic stimulation at the 17kHz best place. The gain is
plotted as a function of frequency for different sound intensities. The
experimental data is from [159]. Away from the characteristic frequency
(17kHz) the gain is independent of the sound intensity, which indicates a
linear response. Close to the CF, the BM gain is nonlinear as it is more
sensitive, more sharply tuned and has a higher peak frequency at low
intensity than at high intensity.

from these experiments. The work presented here focuses on the response at basal

locations.

1.4.2 Two tone interaction: two tone suppression and distortion products

The response of a linear system to the sum of two harmonic stimuli is the super-

position of the response to each stimulus. However in a nonlinear system such as the

cochlea the principal of superposition does not apply. For example, an interesting

phenomenon, first observed in psychoacoustic experiments, and later measured by

Rhode [125] in the BM vibrations, is called two tone suppression [134, 109, 25]. Two

tone suppression can be observed if the BM response to the sum of two tones of fre-

quency f1 and f2 is measured at the BP of f1. For these experiments f1 is called the

probe frequency and f2 the suppressor frequency. The magnitude of the f1 component

of the BM response is reduced by the presence of the suppressor. Another interesting
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two tone interaction is the presence of distortion products in the BM response to the

sum of two tones of frequency f1 and f2 [131, 133]. The BM response can be mea-

sured not only at the frequencies primary tones f1 and f2, but also at combination

frequencies (of the form n1f1 + n2f2, where n1 and n2 are signed integers).

1.4.3 Otoacoustic emissions

Another interesting characteristic of the cochlea of living animals is the observation

of the sound emitted by the ear, called otoacoustic emission (OAE) and discovered

by Kemp in 1978 [78]. For instance, in more than 50% of the population [50], sound

can be measured at the external canal in the absence of acoustic stimulation (these

emissions are called spontaneous otoacoustic emission (SOAE)). When the ear is

stimulated simultaneously by two tones with frequency f1 and f2, the presence of

distortion product otoacoustic emission (DPOAE) can be measured in the ear canal at

a cross-product frequency [133] (mostly at the frequency 2f2−f1). DPOAEs are linked

to the generation of distortion products on the BM. Another type of OAEs, electrically

evoked otoacoustic emission (EEOAE), are measured if the ear is stimulated by an

electrical AC signal [100]. The understanding of the generation and propagation of

OAEs is a very important topic in cochlear mechanics since the measurements of

OAEs are used as a noninvasive diagnostic tool in humans.

1.5 The cochlear amplifier

1.5.1 Description

Different researchers have analyzed the experimental data and concluded that the

high sensitivity of the BM response to low intensity acoustic stimulation, its nonlin-

earity and the generation of OAEs can only be explained by the presence of an active

mechanism called cochlear amplifier [79, 34, 37, 33]. The cochlear amplifier locally
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adds energy to the traveling wave to overcome the energy dissipated by viscous drag

in the subtectorial space. The cochlear amplifier has been introduced phenomeno-

logically in some cochlear models by a negative damping term [37, 106] to predict

the high sensitivity of the BM. In the active cochlea, a wave travels on the BM until

it reaches the passive BP. Close to the BP, the cochlear amplifier adds energy to

the traveling wave. Because of this active feedback the BM is very sensitive to low

intensity acoustic stimuli. This theory can also predict the presence of OAEs. If

the active feedback mechanism is too high, the system can become unstable which

could explain the presence of SOAEs. The compressive behavior of the BM as well as

the generation of harmonic distortion, distortion products on the BM and DPOAEs

would be due to the saturating nonlinearity of the cochlear amplifier.

The identity of the cochlear amplifier is one of the major unresolved debates in

cochlear mechanics [4]. The cochlear amplifier has been explained alternatively by

two different mechanisms, summarized in Fig. 1.4 and described next: OHC somatic

motility combined with HB mechanotransduction or HB motility.

1.5.2 OHC somatic motility

In the prevailing theory of cochlear amplification the active mechanism is located

in the main body of the outer hair cells (OHCs). Due to vibrations in the organ

of Corti caused by the difference in the pressure of the fluid accross the cochlear

partition, the HBs of the OHCs (which are directly connected to the TM) are deflected

by the relative shear motion between the TM and the RL. When the HBs are deflected,

transduction channels opens and current flows through the OHCs which causes a

depolarization of the cell. The main body of OHCs (called soma) has been observed

to be electromotile by Brownell in 1984 [10, 11] as it generates a force when it is

depolarized, due to the action of the motor molecule prestin [158]. This force can act

at high frequencies [43] to amplify the BM and TM motion.
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Figure 1.4: The two theories of cochlear amplification. In both theories in response
to acoustic stimulation the HB of OHC are deflected and transduction
current enters the cell. In the case of somatic motility the presence of
potassium causes the main body of the OHC to exert an axial force due
to the activity of prestin. In the case of HB motility a calcium binding
event closes the transduction channels and generates a force perpendicular
to the OHC length.

Some experiments partially validate the theory that somatic motility underlies

cochlear amplification. Genetic mutations of prestin in the cochlea of the mouse

[87, 46, 32, 16] have given ways to test this theory. The most convincing evidence

is with the prestin knock-in mice [32] (these mice do not exhibit somatic motility

but have the same passive OHC stiffness as wild-type mice). The cochlea of these

mice is less sensitive than the cochlea of wild-type mice, which shows, as claimed

by the authors, that prestin-based OHC somatic motility is necessary for cochlear

amplification. Perfusion of salicylate in perilymph [141] also shows that somatic

motility plays an essential role in cochlear amplification, as salicylate simultaneously

alters force production by prestin and reduces the sensitivity of the BM to acoustic

stimulation.

One argument against this theory is that the large capacitance and resistance of

the basolateral portion of the OHC should act a low-pass filter on the transmembrane

voltage [140], with a cutoff frequency of about 1kHz at basal locations [66], much
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lower than the CF. Therefore isolated OHC would not be able to produce the force

necessary for high frequency cochlear amplification. However theoretical [31, 147, 73]

and computational [121, 99] studies have shown that somatic motility might be the

cochlear amplifier despite the the basolateral filter. The RC cutoff issue will be

analyzed using the computational model of the cochlea developed in this thesis.

1.5.3 HB mechanotransduction and passive HB mechanics

The theory of somatic motility as the cochlear amplifier requires the HB of the

OHC to act as a mechanoelectrical transducer. Each HB consists of about 80 stere-

ocilia, organized in three rows of increasing height. The number of transduction chan-

nel per stereocilia corresponds approximately to the number of transduction channels

[127]. When the HB are deflected, the increase in the tension of an elastic element

called gating spring opens the mechanically gated transduction channel [27, 67, 93].

The opening of the channel allows mechano-electrical transduction (MET) to occur.

Ionic current (potassium mostly, but also calcium) flows through the channel towards

the OHC HB and main body. The MET current is a saturating nonlinear function

of the HB deflection. The current reaches its saturating value for a HB deflection

of about 1µm in the mammalian HB in vitro [80]. In the somatic motility theory

of cochlear amplification, this saturation of the transduction channel is responsible

for the nonlinearity of the cochlear amplifier [108, 90]. Another potential source of

nonlinearity is the reduction of the overall stiffness of the HB during channel gating

due to mechanism called gating compliance [67].

1.5.4 Active HB dynamics: fast adaptation and HB motility

MET also exhibits a time dependent phenomenon called adaptation that is ob-

served experimentally when the HB are deflected by a flexible or rigid fiber in vitro:

after an initial rise (due to channel opening) there is a decrease of the current (due to
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closing of some of the transduction channels) called adaptation, with two characteris-

tic time constants. Adaptation has been first observed in nonmammalian vertebrates

[41, 28] but has recently been discovered in mammals as well [81, 128]. The rate of fast

adaptation in the mammalian HB has been measured in a submillisecond time scale

[81, 128, 8]; the slower component is in milliseconds [8]. When the HB are deflected

by a flexible fiber, force production by the HB can be measured in the mammalian

HB simultaneously to the adaptation of the transduction current [80, 8]. Calcium

binding to the transduction channel or to an entity closed to the channel has been

hypothesized to cause fast adaptation[17, 9, 94]. Slow adaptation and slow force pro-

duction have been generally assumed to be due to the slipping of a myosin molecule

on an actin cytoskeleton [5, 144].

HB motility underlies cochlear amplication in the inner ear of the nonmammalian

vertebrate [96]. In these species the HBs have been shown to provide mechanical

work on a cycle by cycle basis for small stimuli [95] and to oscillate spontaneously

[94] at frequencies of a few Hz in in vitro experiments. This has not been observed

so far in the mammalian HB but this might be due to the low speed of the experi-

mental techniques. Some authors have claimed that the active HB force could be the

mammalian cochlear amplifier [69, 122].

1.6 Mathematical models of the mammalian cochlea

Many computational models of the mammalian cochlea have been developed over

the years so as to validate and develop new theories of cochlear mechanics. These

models can make predictions than can be compared to measurements or can suggest

new experiments. Some models are simple from a theoretical and computational point

of view as the fluid in the ducts is reduced to a 1D partial differential equation and

the cochlear partition by one degree of freedom, the BM displacement or velocity.

For example one series of models from De Boer [75, 74, 77] can make some realistic
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predictions of the active and nonlinear stationary response of the cochlea. The ad-

vantage of this type of model is the low computational cost and the low number of

parameters. However the physics of the cochlea is highly simplified which limits the

predictive capacities of these models. Other cochlear models are either fully three

dimensional [84, 56] or based on a 1D fluid representation and a model for the organ

of Corti micromechanics [2, 15, 14, 91, 108, 48, 49, 52, 105, 104, 90, 68, 148] so as to

implement more physiologically relevant mechanisms of cochlear amplification.

The work presented in this thesis is based on the models developed in Profes-

sor Grosh’s laboratory. Anand Parthasarthi developed the finite element method to

simulate the response of the cochlea to acoustic stimulation and a first iteration of

the cochlear model [117, 116]. Sriprya Ramamoorthy [120] and Niranjan Deo [38]

improved the model to use more physiological models and parameters. The resulting

model, described in [121], nicely predicts some of the features of the response of the

cochlea to acoustic and electrical stimulation. The model is based on a three dimen-

sional representation of the fluid and includes a micromechanical model of the organ

of Corti kinematics. Both somatic motility and mechanoelectrical transduction are

linearized so as to predict the active dynamics of the cochlea to low intensity stimuli.

1.7 Motivations and objectives

The mammalian inner ear is an amazing organ that needs to be better understood.

The function of the ear is similar to a microphone as it converts sound to an electrical

signal. However it has better characteristics than any currently designed microphone.

A better understanding of the cochlea might suggest alternative ways to design better

microphones or sensors that mimic the mammalian cochlea. Moreover due to our

lifestyle and the frequent exposure to potentially harmful sound, as well as to the

aging population in developed countries, more and more people suffer from hearing

loss (one half of the Americans over 75 years suffer from hearing loss according to
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the National Institute of Health). A better understanding of cochlear mechanics is

critical to explain the failures of the system (causing deafness) and to find ways to

protect and repair hearing.

A mathematical model of the cochlea is used as a tool to test and develop theories

of cochlear mechanics. The model predictions can help to validate the existing theories

about cochlear mechanics as well as establishing alternative or new theories. In

particular, the properties of the mechanical structures and active mechanisms can be

easily altered in a mathematical model (contrary to experiments) in order to test their

role and effects on cochlear mechanics. This could for example help to design new

drugs that could target specific structures or cells of the organ. The active response

of the cochlea, both in terms of amplification, distortion and the generation of OAEs

is particularly important. The model results could also suggest new experiments or

new diagnostic tools for hearing loss.

More specifically, the objective of this work is to pursue the development of a

predictive model of the guinea pig cochlea, based on the physiology and physics of

the system. The analysis focuses on the basal region of the cochlea and the predictions

of more apical locations are for future work. The objectives can be divided into two

parts, one on the linear response of the cochlea, and the other on the nonlinear

response. For the linear response of the cochlea, the objectives are:

1. To improve the prediction of BM response to low intensity acoustic stimuli. The

previous model of the cochlea [121] predicts a too sharply tuned BM response

and an impulse response that is too long compared to experimental data. This

is an important deficiency of the model as the cochlea needs both to be very

sensitive and have a fast transient capture to low intensity stimuli. Introducing

structural longitudinal coupling in the model is shown in Chapter III to improve

the predictions of the model.

2. Identify the mechanism (somatic motility and/or HB motility) responsible for
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the active dynamics of the cochlea. The contribution of the active HB dynamics

to cochlear amplification needs to be predicted. A nonlinear model of active

HB dynamics (both fast adaptation of the transient current and HB motility)

is linearized for small harmonic stimuli and implemented in the macroscopic

model of the cochlea in Chapter IV. The effect of the active HB dynamics

on cochlear mechanics, as well as of the RC filtering on somatic motility, are

analyzed.

The second part of this thesis has for objective the prediction of the nonlinear re-

sponse of the cochlea to acoustic stimuli. Interesting predictions can be made using

a linear model of the cochlea. However some characteristics of the cochlea can only

be captured and understood using a nonlinear model:

1. A computationally efficient methodology is used to compute the stationary re-

sponse of the cochlea to a single tone in Chapter V. The prediction of a realistic

compressive response of the BM and well as harmonic distortion validate the

previously developed linear approach.

2. The same computational method is used to predict the response to two tones in

Chapter VI. The mechanisms underlying two tone suppression and distortion

product generation are analyzed.
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CHAPTER II

Linear frequency domain model of the cochlea

2.1 Introduction

The computational model of the guinea pig cochlea described in this chapter is

based on Ramamoorthy et al. [121]. The main addition to the previous model is the

addition of structural longitudinal coupling to the BM and TM so as to predict a

more broadly tuned BM response to low intensity acoustic stimulation and a shorter

impulse response (see Chapter III). The parameters have been changed to use more

physiological values and to improve the predictions of the model. This model is also

used as a basis for the investigation of the role of HB motility and fast adaptation

of the transduction current in cochlear amplification (see Chapter IV). A nonlinear

version of the cochlear model is used in Chapters V and VI.

The model of the cochlea includes the fluid (with a three dimensional representa-

tion), the structure (with a model for the organ of Corti that includes the BM, and

a bending and a shearing mode for the TM) and electrical degrees of freedom (to

represent the potentials in the scalae of the cochlea). The structural and electrical

degrees of freedom are coupled via somatic motility and HB mechanoeletrical trans-

duction. For completeness, all the elements of the cochlea (included those developed

previously) are described briefly in this chapter. A time dependence exp(−iωt) is

used.
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2.2 Structural model and fluidic model

The subsections about the basilar membrane and membrane have been reproduced

with permission from Meaud, J. and Grosh, K., Journal of the Acoustical Society of

America, 127, p1411-1421, (2010). Copyright 2010, Acoustical Society of America.

2.2.1 Basilar membrane

The BM is an anisotropic and inhomogenous structure, with collagen fibers run-

ning in the radial direction [146]. Von Bekesy [7] observed that longitudinal coupling

appears to be significant in the BM of dead animals. However in a later study in

live guinea pigs Voldrich [156] found that longitudinal coupling in the BM is negligi-

ble. Therefore many researchers have modeled the BM as a locally reacting structure

[15, 49, 91, 106, 121]. More recent measurements in the cochlea of the mongolian ger-

bil [101] quantifies longitudinal coupling in the BM and organ of Corti and indicates

that longitudinal coupling is significant and increases from the base to the apex of

the cochlea. Liu and White [89] used the published experimental data to compute

the material properties of the BM described by an orthotropic plate model (and used

as a basis for the parameters of the BM, shown in Table B.1. The governing equation

for the BM motion modeled as an orthotropic plate is:

Pbm(x, y) =
2

b
Cbmu̇bm +Mbmübm

−
∂2

∂x2

(

Dxx
∂2ubm
∂x2

+Dxy
∂2ubm
∂y2

)

− 2
∂2

∂x∂y

(

Ds
∂2ubm
∂x∂y

)

−
∂2

∂y2

(

Dyy
∂2ubm
∂y2

+Dxy
∂2ubm
∂x2

)

(2.1)

where Pbm is the pressure applied by the fluid and the OHC on the BM [121], Cbm is

the BM viscous damping per unit area, Mbm is the mass of the BM per unit area, b is

the width of the BM (see Fig. 1.1) and ubm(x, y) the BM displacement. Dxx, Dyy , Dxy

and Ds are the orthotropic plate bending stiffnesses of the BM. The locally reacting
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model of the BM used in the previous cochlear model [121] (and for comparison in

Chapter III) corresponds to Eq. 2.1 when Dxx = Dxy = Ds = 0.

Cooper observed that the radial profile of the BM deformation in response to acoustic

stimulation is similar to a simply supported beam mode shape [21], despite the BM

inhomogeneity, the fluid loading and the presence of OHCs and other structures.

Therefore, as in Ramamoorthy et al. [121], we approximate the BM displacement by

a simply supported mode shape: ubm(x, y) = u0bm(x) × sin(
π(y+ b

2
)

b
) for − b

2
≤ y ≤ b

2
,

where b is the width of the BM. The radial dependence is integrated out (see [116]).

The width of the BM, b, and the thickness of the BM, t, vary as a function of x and

are based on the measurements from Fernandez [42] in the cochlea of the guinea pig.

The values of the BM parameters are listed in Table B.1.

2.2.2 Tectorial membrane

The TM is a gelatinous structure with three different noncollageneous glycopro-

teins (α-tectorin, β-tectorin and otogelin). β-tectorin is an essential structural com-

ponent providing longitudinal coupling in the TM (as shown by Ghaffari [54]). A

mouse with genetically modified β-tectorin exhibits an enhanced tuning and reduced

sensitivity in the BM response in the high frequency region [137], which suggests that

the TM plays a key role in tuning and that TM longitudinal coupling is important

for cochlear mechanics. The mechanical properties of the TM have been measured

in gerbils [161, 129] and in guinea pigs [145, 47] as well as in mice [1, 58, 57]. The

measurements in [57] show that the TM has frequency dependent properties. More-

over, although direct comparison between different measurements is difficult because

of the difference in the experimental methods, the data shows that the TM of mice

(that have a higher frequency range than guinea pigs) is much stiffer than the TM

of the guinea pigs and gerbils (that have a lower frequency range than guinea pigs).

Zwislocki and Cefaratti found that the TM is significantly less stiff than the HBs
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[161] in the gerbil cochlea. However some more recent measurements led to contra-

dictory conclusions about the relative stiffness of the TM (which in turn influences

the kinematics). Some studies in the mouse cochlea have found that the TM is sig-

nificantly stiffer than the HB [1, 57]. If this is the case, then the TM would then

move as rigid body from the limbal attachment provided that the TM region near

the spiral limbus is more compliant than the main body of the TM (see [121]). Re-

cent measurements in the gerbil and guinea pig cochlea found that the TM has a

stiffness within an order of magnitude of the HB [145, 129]. In this case, the TM

would then deform elastically from the limbal attachment (if the limbal attachment

is stiffer than the TM, as suggested by [58, 47]). Richter et al.[129] showed that

the TM stiffness varies longitudinally with a higher radial stiffness at basal locations

than at more apical locations. Shoelson et al.[145] did not observe the presence of a

stiffness gradient in the TM of the guinea pig but observed a longitudinal and radial

inhomogeneity. Estimates of the shear modulus and Young’s modulus were derived

in [129] and [145] based on an isotropic model of the TM. As noted in these papers

some caution must be taken in interpreting these results because of the isotropic

and homogenous assumptions of the model. Because of its microstructure the TM

is anisotropic as shown by Gavara and Chadwick [47] using atomic force microscopy

measurements of the elastic moduli. Ghaffari et al. [55] demonstrated that the TM

isolated from the mouse cochlea is capable of supporting shear waves that propagate

in the longitudinal direction of the cochlea (see Fig. 2.1). Such waves would not be

possible without significant longitudinal stiffness in the TM. While the mechanical

properties of the TM estimated from these experiments are somewhat different with

those from Chadwick’s group [47], both estimates of modulus are consistent with a

slow shear wave whose phase velocity is comparable to that of the traveling wave in

the cochlea near the frequency-dependent peak response location.

As shown in Fig. 2.1, each cross section of the TM is modeled as a two degree of
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Figure 2.1: Illustration of the TM model. (a) Three dimensional model of the TM.
The x-coordinate corresponds to the longitudinal direction. (b) Cross-
sectional view of the TM showing external forces (per unit length) acting
on the TM. The HBs apply forces in the shear (Fhb/tms) and bending
(Fhb/tmb) directions. Fluid forcing due to the viscous fluid interaction in

the subtectorial space is given by a force (Ff = Cf
subu̇s) in the shear di-

rection proportional to the relative shear velocity between the TM and
the RL, u̇s. The TM elasticity in the cross section is modeled by a lin-
ear spring (Ktms) applying a force in the shear direction and a rotational
spring (Mtmb) applying a force in the bending direction. The plane sec-
tions (y − z) shear relative to one another. As in Ghaffari et al. [55],
internal viscous (Aeff

tm ηxy
∂u̇tms

∂x
) and elastic (Aeff

tm Gxy
∂utms

∂x
) coupling is in-

cluded.

19



freedom system with deformation in the radial or shear direction (utms) and in the

normal or bending direction (utmb). The TM is characterized at each (y − z) plane

by its effective stiffness and mass per unit length. The bending and shear motion

varies in the longitudinal direction (x) and hence the cross-sections move relative to

one another. Longitudinal viscoelastic coupling of the shear motion of the TM is

included (with a shear modulus Gxy and a shear viscosity ηxy) while TM bending

rigidity is neglected. The governing equation for the shear motion of the TM is:

Fhb/tms(x) =Ktmsutms + Cf
subu̇s +Mtmsütms

−
∂

∂x

(

Aeff
tm Gxy

∂utms

∂x
+ Aeff

tm ηxy
∂u̇tms

∂x

)
(2.2)

where Fhb/tms is the external force (per unit length) applied by the HB of the OHC

in the shear direction [121], Cf
sub is the damping coefficient due to the viscosity of the

fluid in the subtectorial space, us is the relative shear displacement between the TM

and the RL, and Aeff
tm is an effective cross-sectional area of the TM. Because of its

inhomogeneity [145], anisotropy [47] and of its frequency dependent properties [1, 57]

it is difficult to estimate the values for the effective TM shear stiffness and mass. Here

we chose the TM stiffness per unit length, Ktms, based on the values published by

Richter et al. [129] for the radial TM stiffness of the gerbil (as discussed in Appendix

A). Hence the TM stiffness is within one order of magnitude of the HB stiffness

published in [150]. For the TM shearing mass, we take into account the longitudinal

variation observed in the TM cross section area in [129] and choose the value to fit the

predictions of the BM response to acoustic stimulation with published experimental

data. As in [121], the governing equation for the TM bending motion is:

Fhb/tmb(x) = Ktmbutmb + Ctmbu̇tmb +Mtmbütmb, (2.3)

where Fhb/tmb is the external force (per unit length) applied by the HB of the OHC
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in the bending direction [121], Ctmb is the structural damping coefficient of the TM

bending mode, Ktmb and Mtmb are the stiffness and mass per unit length of the TM

bending mode. The values of the TM parameters are listed in Table B.2.

2.2.3 Organ of Corti kinematics

The BM mode, the TM bending and shearing modes are linked by the kinematics

of the organ of Corti. The pillar cells and Deiter’s cells are assumed to be rigid links.

The pillar cells rotates around the BM attachment point. The RL lamina is modeled

as ridid beam rotating around the attachment to the pillar cells with a rotational

spring (with an equivalent stiffness per unit lenth, Krl). With this assumption, the

model of the organ of Corti kinematics can be represented by Fig. 2.2. More details

about the model for the kinematics can be found in [38, 121].

2.2.4 Passive hair bundle model

As in [38, 121], the effect of mechanoelectrical transduction (gating compliance

[67]) and fast adaptation (HB motility) on the HB mechanics is not included. The

HB is modeled by a linear stiffness, Khb. The equation for the force applied by the

HB on the TM and RL is:

(Fhb)j = KhbLhbθhb/rlj (2.4)

where Lhb is the length of the HB and θhb/rlj is the rotation of the HB relative to the

RL, given by:

θhb/rlj =
uhbj
Lhb

+
urlj

LR0
− δjL1

(2.5)

where uhbj is the shear displacement of the apical end of the HB relative to its basal

end and urlj is the displacement of the RL at the attachment of the HB relative to

the displacement of the RL at its pivot point (as in [121], and δj = 1 if j = 1, =0 if

j = 2 and =-1 if j = 3.
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Figure 2.2: Organ of corti kinematics. The BM mode and the TM radial and bending
modes are linked by the organ of Corti. The reticular lamina rotates as
a rigid beam abound its attachment to the top of the pilar cells. The
HB of the OHC rotates around their attachment point at the RL and the
TM. The OHCs can compress or elongate along their length. Reprinted
with permission from Ramamoorthy S, Deo, N.V. and Grosh, K., Journal
of the Acoustical Society of America, 121, 2758–2773, (2007). Copyright
2007, Acoustical Society of America.
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The stiffness of the mammalian HB has been measured in vitro [151, 80, 8]. Al-

though the stiffness of the HB was measured with a large deflection (about 1µm,

which could damage the HB) by Strelioff [151], the values in the simulation is based

on his measurements because it is the only measurement in the guinea pig and because

the stiffness was measured at different longitudinal locations.

2.2.5 Fluid and fluid/structure interaction

The fluid in the cochlear duct is modeled as inviscid and incompressible and is

governed by the Laplace equation:

∇2P = 0 (2.6)

Rigid wall boundary conditions are used for the bony walls of the cochlea. The fluid

is coupled to the stapes, to the oval window and to the BM via the linearized Euler

equation:

∇P = −iρfωVf (2.7)

where ρf is the density of the fluid and Vf is the velocity of the fluid (which is equal

to the velocity of the structure at the interface). To limit the computational cost,

the fluid pressure is decomposed into three symmetric radial mode shapes: ψn(y) =

cos(nπ(y+w/2)
w

) (n = 1, 3, 5) for −w
2
≤ y ≤ w

2
, where w is the width of the duct. The

radial dependence is integrated out (see [117]).

2.3 Electrical model and electrical/structural coupling

2.3.1 Electrical model

At each cross section, four degrees of freedom represent the fluctuating part (AC)

of the potential in the scala vestibuli (φsv), the potential in the scala media (φsm),
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Figure 2.3: Electrical model. At each cross section four degrees of freedom represent
the scala vestibuli, scala media, OHC and scala tympani potentials. Lon-
gitudinal cables connect the different cross section to model propagation
of current along the length of the cochlea. The OHC are represented by
an electrical circuit with an apical part (with a conductance proportional
to the HB deflection to model mechanotransduction) and basolateral part
(with a current source to account for somatic electromechanical coupling).
Reprinted with permission from Ramamoorthy S, Deo, N.V. and Grosh,
K., Journal of the Acoustical Society of America, 121, 2758–2773, (2007).
Copyright 2007, Acoustical Society of America.

the intracellular outer hair cell potential (φohc) and potential in the scala tympani

(φst). The potential in the three scalae are connected by electrical cables to model

longitudinal progagation of current in the scalae. Two current sources are included

to model HB conductance changes with HB deflection and OHC somatic motility, as

described next. The electrical model can be represented by Fig. 2.3. The equations

governing the electrical degrees of freedom are then obtained using the Kirchoff laws,

as described in [38, 121].
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2.3.2 Outer hair cell somatic motility

The properties of somatic motility (the OHC stiffness and capacitance) are nonlin-

ear function of the OHC transmembrane voltage [61]. However, based on experimen-

tal [85] and theoretical observations [108, 90], the physiologically relevant variations

in the transmembrane voltage are assumed to be small under acoustic stimulation.

Therefore, based on the model developed in [154, 39], each OHC is modeled (as in

the previous model of the cochlea [38, 121]) by linearized piezoelectric-like expressions

relating the OHC deformation, ucomp
ohcj

, and fluctuating part of the transmembrane volt-

age, ∆φohcj , to the OHC force (per unit length), Fohcj , and current (per unit length),

Iohcj :

Fohcj = Kohc u
comp
ohcj

+ ǫ3∆φohc (2.8)

Iohcj =
∆φohc

Zm

+ iωǫ3 u
comp
ohcj

. (2.9)

where Kohc is the OHC stiffness (per unit length), ǫ3 is the electromechanical coupling

coefficient (per unit length), Zm is the basolateral impedance of the OHC, and the

subscript ohcj refers to each OHC where j corresponds to the row number, j = 1, 2, 3.

2.3.3 Mechanoelectrical transduction

The model for HB mechanoelectrical transduction for the simulations of Chapter

III is described here. In contrast to the MET channel model in [38, 121], the transduc-

tion current depends here on the rotation of the HB relative to the RL instead of the

relative shear deflection of the HB. The transduction current is proportional to the

open probability of the transduction channel. The effect of adaptation of the trans-

duction current of mechanotransduction [81, 128] is not modeled. According to the

gating spring theory of mechanoelectrical transduction [67, 93], the open probability
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can be modeled by the following Boltzman function:

P0j =
1

1 + exp
[

−
fgsγLhbθhb/rlj

kBT

] (2.10)

where fgs is the single channel gating force, γ is the geometrical gain factor (relating

the displacement in the tip link direction to the displacement at the top of the HB),

kB is the Boltzman constant and T is the temperature and θhb/rlj is the rotation of

HB relative to the RL. In the linear model of the cochlea, the transduction current is

linearized with respect to the HB deflection for small HB deflections. The linearized

expression for the HB conductance change, δGaj , for a small HB rotation relative to

the RL, δθhb/rlj is:

δGaj =
∂Ga

∂θhb/rl
δθhb/rlj = Gmax

a

fgsγ

kBT
P s
0 (1− P s

0 )Lhbδθhb/rlj (2.11)

where Gmax
a is the maximum saturating conductance of the HB and P s

0 is the resting

open probability. In response to a larger HB deflection the transduction channel

saturates. The HB conductance change ∆Gaj in response to a large HB rotation

∆θhb/rlj is given by:

∆Gaj = Act×Gmax
a

fgsγ

kBT
P s
0 (1− P s

0 )Lhb∆θhb/rlj (2.12)

where Act is a number between 0 and 1. In response to acoustic stimulation the

HB deflection is a function of the longitudinal location x. Hence Act should be a

function of x. However, as previously [121], Act is considered to be independent of

x for the simulations. The response of the cochlea to moderate or high intensity is

simulated using the linear model of the cochlea with the following expression for the
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transduction current:

(Ihb)j = (G0
a − iωCa)(φsm − φohc) + Act× (Vsm − Vohc)

Gmax
a fgsγ

kBT
Lhb∆θhb/rlj (2.13)

where (G0
a − iωCa) is the passive electrical impedance of the apical part of the OHC,

(Vsm − Vohc) is the resting transmembrane potential and Act is a number between

0 and 1 that is called “activity level”. The validity of this linearized approach to

model the response of the cochlea to moderate or intense stimuli will be discussed in

Chapter V.

The parameters of the HB mechanoelectrical transduction are Gmax
a , γ, fgs and P s

0 .

The best estimate of the saturating conductance, Gmax
a , is the measurement by He [63]

in the hemicochlea. He measured a conductance of 34.7nS for a basal HB in the adult

gerbil hemicochlea and 17.3nS for a more apical HB. The experimental values must be

corrected to account for in vivo conditions including a lower in vivo calcium concen-

tration (a factor of 3 [63]), higher temperature (a factor of 1.6 assuming a Q10 around

1.3 [81]) and potassium as opposed to the sodium based endolymph for experiment (a

factor of 1.25 [81]) for a six-fold increase of the conductance to a value of 208nS. Even

higher in vivo values of Gmax
a are expected for two reasons. First, as shown in Fig. 2c

in [63], they were not able to completely saturate the current in their most sensitive

cells because of constraints on the maximum displacement to maintain a tight seal for

the patch clamp. So larger in vitro currents and conductances are possible. Second

the hemicochlear preparation likely induces some damage to the OHC; damage that

would reduce the maximum current measured. Based on the dimensions of the HB

and of a finite element model of the HB, Nam [103] predicted the geometrical gain

factor to be about 0.25 for a basal HB and 0.11 for an apical HB. The single channel

gating force can be estimated based on measurements of the response of the trans-

duction channel to HB deflection. Published values for the mammalian HB are about
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5pN [155, 8]. The transduction channel and therefore the cochlear amplifier would

have the maximum sensitivity if the transduction channel resting probability is 0.5

in vivo. Two sets of experimental data [160, 20] suggest that the resting probability

slightly deviates from its optimal value (0.5); a value of 0.4 is used for the simulations.

2.4 Linear finite element formulation

A Bubnov-Galerkin finite element method [70, 117] is used to discretize and solve

the equations. The radial dependence for the BM and fluid equations is first elim-

inated by integration of the assumed radial mode shapes. The weak form is then

derived from the strong form of the equations. With the modal decomposition the

three dimensional model is reduced to a series of 2D models which can then be post-

processed to synthesize the full result. In this study, a discretization of 741 nodes in

the longitudinal direction (x) and 41 nodes in the z-direction was used (this was de-

termined to be sufficiently converged for our purposes [117]). Linear shape functions

are used for the TM shear and bending displacements and for the electrical degrees

of freedom. Bilinear shape functions are used for the fluid. Hermitian shapes func-

tions are used for the BM displacement (due to the higher order of the BM governing

equation). The resulting matrix equation has the form:













Kf Qfs 0

Qsf Ks Qse

0 Qes Ke

























p

u

φ













=













ff

0

0













. (2.14)

where Kf is the fluid stiffness matrix, Ks is the structural stiffness matrix, Ke is

the electrical stiffness matrix, Qsf = Qsf are the fluid/structure coupling matrix, Qse

is the structural-electrical coupling matrix, Qes is the electrical-structural coupling

matrix and ff is the fluid forcing due to the vibrations of the stapes. Note that
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Qse 6= Qes (because of the current source due to the MET channel) and therefore the

matrix of the system is not symmetric. The finite element formulation is coded in

Fortran 90.
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CHAPTER III

Role of structural longitudinal coupling in cochlear

mechanics

3.1 Introduction

Most mathematical models of the cochlea, including [38, 121], consider the struc-

ture to be locally reacting. For example, in [121], the only sources of longitudinal

coupling are the fluid and the longitudinal electrical cables; the different cross-sections

of the BM and of the TM do not interact directly (Gxy = 0 and ηxy = 0 for the TM in

Eq. 2.2, and Dxx = Dxy = Ds = 0 for the BM in Eq. 2.1). The previous model [121]

predicts the high sensitivity of the BM to low intensity acoustic stimulation. However

the tuning of the BM response is predicted to be much sharper than in experimental

data. Moreover the duration of the impulse response is much longer than in measure-

ments. In this chapter it is shown that adding structural longitudinal improves the

model predictions.

This chapter has been reproduced with permission from Meaud, J. and Grosh,

K., Journal of the Acoustical Society of America, 127, p1411-1421, (2010). Copyright

2010, Acoustical Society of America. The article has been edited to follow the logical

order of this thesis.
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Table 3.1: Mechanical quality factor (Q10dB) and CF in the different models and in
the experimental data.

Model Q10dB CF
LR 15.2 16.7Hz
TM-LC 7.0 16.2kHz
BM-LC 9.2 17.5kHz
TMBM-LC 5.7 16.6kHz
Experimental data [159] 6.5 16.5kHz

3.2 Effect of structural longitudinal coupling on the model

predictions

In this section the predictions of the response of the cochlea to acoustic stimulation

with four different combinations for the TM and BM model are compared so as to

predict the effect of longitudinal coupling in active cochlear mechanics. In the first

(results shown with a thin solid line in Figs. 3.1, 3.2 and 3.3), a locally reacting model

of the TM and of the BM (denoted as the LR model) is used. By this we mean that

there is no longitudinal mechanical coupling in the TM or the BM (as in Ramamoorthy

et al.[121]). The fundamental components of the second model (denoted as the TM-

LC model) are identical to the first, except that longitudinal coupling is now included

in the representation of the TM according to Eq. 2.2 (results shown with a thick

dashed line). In the third model (denoted as BM-LC model), longitudinal coupling

is introduced in the BM according to Eq. 2.1 (results shown with a thin dashed

line). In the fourth model (denoted as TMBM-LC model), longitudinal coupling is

included in both the TM and the BM (results shown in thick solid line). In order to

achieve the same BM gain at the characteristic frequency (CF) for the four models,

the electromechanical coupling factor of the OHC (ǫ3 in Eq. 2.9) for the TM-LC,

BM-LC and TMBM-LC are respectively about 69%, 27% and 79% higher than for

the LR model.
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3.2.1 Frequency response of the BM

In Fig. 3.1, frequency domain model predictions of the gain in basilar membrane

(BM) velocity relative to the stapes velocity at a basal location (x = 0.4cm) with

and without longitudinal coupling in the TM and/or in the BM are compared. As

shown in Fig. 3.1 and Table 3.1, the LR predicts a high mechanical quality factor

(Q10dB = 15.2). In the BM-LC model the Q10dB is reduced (Q10dB = 9.2). The

TM-LC model predicts that the Q10dB (Q10dB = 7.0) is much lower than in the LR

model and lower than in the BM-LC model. The Q10dB predicted by the TMBM-

LC (Q10dB = 5.7) is slightly lower than that by the TM-LC model. Longitudinal

coupling has a small effect on the CF for a given location. Longitudinal coupling in

the TM slightly reduces CF (by about 4%) while longitudinal coupling in the BM

slightly increases the CF (by about 5%), as shown in Fig. 3.1 and in Table 3.1.

For reference, the magnitudes of the BM gain predicted by the four models with no

activity (Act = 0) are shown in Fig.3.2. The passive response predictions are almost

indistinguishable. The passive LR model is slightly more sensitive than the other

models (by less than 2dB).

The prediction for the phase of the BM relative to the stapes in the active models

is shown as a function of frequency in Fig. 3.3. In the LR model (shown with a thin

solid line) the phase accumulation at high frequency is about 8 cycles while it is only

about 5 to 6 cycles in the other three models. The absolute value of the slope of the

phase in the LR model and of the BM-LC model (shown with a thin dashed line) is

higher than in the TM-LC (shown with a thick dashed line) and TMBM-LC (shown

with a thick solid line) models. Hence models with longitudinal coupling in the TM

have a different behavior than those with no longitudinal coupling or coupling in the

BM only.
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Figure 3.1: Effect of longitudinal on the BM gain. The model preditions for the
BM gain in the active case (80% activity) are plotted as a function of
frequency. As in Ramamoorthy et al. [121], the gain is normalized to the
maximum passive model gain. Thin solid line: active LR model response.
Thick dashed line: active TM-LC model response. Thin dashed line:
active BM-LC model response. Thick solid line: active TMBM-LC model
response. The values for ǫ3(x) for the different models are given in Table
B.5. The four models are capable of predicting realistic maximum gains
but at these activity levels the Q10dB for the LR and BM-LC models are
always much higher than that predicted by the TM-LC and TMBM-LC
models.
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Figure 3.2: Effect of BM longitudinal coupling of the passive predictions. The model
preditions for the BM gain in the passive case (0% activity) are plotted
as function of frequency. As in Ramamoorthy et al. [121], the gain
is normalized to the maximum passive gain. Thin solid line: passive LR
model response. Thick dashed line: passive TM-LC model response. Thin
dashed line: passive BM-LC model response . Thick solid line: passive
TMBM-LC model response. The effect of longitudinal coupling (in the
BM or in the TM) is not significant on the passive BM frequency response.
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Figure 3.3: Effect of longitudinal coupling on the phase predictions. The model pred-
itions for the BM phase relative to the stapes in the active case (80%
activity) are plotted as function of frequency. Thin solid line: active
LR model response. Thick dashed line: active TM-LC model response.
Thin dashed line: active BM-LC model response. Thick solid line: active
TMBM-LC model response.
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3.2.2 Uncoupled structural longitudinal coupling space constants

The effect of TM and BM longitudinal coupling on the acoustic response of the

BM can be explained by the evaluation of the space constants for the shear motion

of the TM and the transverse motion of the BM uncoupled from the other structures

and the fluid. The analysis of these predictions allows to estimate the spatial extent

of a single row of OHC forcing due to longitudinal mechanical coupling in the TM

and BM.

The TM is attached to the reticular lamina by 3 rows of HBs (each with a stiffness

per unit length Kst) and to the spiral limbus (with a stiffness per unit length Ktms).

The force applied by the HB on the TM in the shear direction is given by Fhb/tms =

−3Kstus. Therefore, according to Eq. 2.2, if the longitudinal variations of Atm,

Gxy and ηxy are locally neglected, the complex wavenumber characteristic of TM

longitudinal coupling, ktms, is given by:

ktms =
(

−
Ktms + 3Kst − ctmsiω −Mtmsω

2

Atms(Gxy − iωηxy)

)1/2

(3.1)

If we integrate out the radial dependence of the BM displacement and neglect

locally the longitudinal variations of b and of the basilar membrane properties, the

BM governing equation is reduced to:

Fbm(x) = Cbmu̇
0
bm(x) +

b

2
Mbmü

0
bm(x)

−
b

2

[

Dxx
∂4u0bm
∂x4

− 2(Dxy +Ds)(
π

b
)2
∂2u0bm
∂x2

+Dyy(
π

b
)4u0bm

]

, (3.2)

where Fbm is the force per unit length applied by the pressure and the OHC [121].

The complex wave number characteristic of BM longitudinal coupling, kbm, is solution
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of the following equation:

Dxxk
4
bm + 2(

π

b
)2(Dxy +Ds)k

2
bm +Dyy(

π

b
)4 −Mbmω

2 −
2

b
Cbmiω = 0 (3.3)

The space constants characteristic of structural longitudinal coupling are then

given by:

λtms =
1

|Imag(ktms)|
and λbm =

1

|Imag(kbm)|
(3.4)

where Imag represents the imaginary part of the complex wave number.

The predictions of the space constants for BM longitudinal coupling and TM lon-

gitudinal coupling (given by Eqs. 3.1, 3.3 and 3.4) as a function of the frequency

(normalized to CF) are shown in Fig. 3.4. These equations represent the effect of

the two structures in isolation from the fluid and other structures. Even though the

two constants are similar at low frequencies, the space constant characteristic of TM

longitudinal coupling is more than three times higher close to CF. The TM resonance

frequency is close to the CF whereas the BM resonance frequency is much higher.

Hence TM longitudinal coupling couples a higher number of OHC. Longitudinal cou-

pling with a space constant λ can be considered significant over a distance of about

5 × λ [102]. Hence, at CF the TM longitudinal coupling can couple about 30 rows

of OHC and the BM longitudinal coupling can only couple about 10 rows of OHCs.

Therefore, as seen in Fig. 3.1, the presence of TM longitudinal coupling has a more

significant impact on the BM response than the presence of BM longitudinal coupling.

Our results (Figs. 3.1, 3.3 and 3.4) show that the dominant source of structural

longitudinal coupling in the cochlea is the TM viscoelasticity. Our goal is to develop

a mathematical model of the cochlea that is as simple as possible but can accurately

predict the measurements of the BM response. Hence in the following results only

the TM-LC model is used.
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Figure 3.4: Space constants characteristic of BM longitudinal coupling (λBM) and
TM longitudinal coupling (λTM). The space constants are plotted as a
function of the frequency (normalized to the CF). For BM longitudinal
coupling there are two space constants because the Eq. 3.3 is quadratic
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2. At low frequencies the space constants for the BM and the TM
are similar (about 20µm for the BM and 12µm for the TM). But close
to CF, the space constants characteristic of TM longitudinal coupling is
more than three times as high as the space constant characteristic of BM
longitudinal coupling.

3.2.3 Parameter sensitivity

TM longitudinal coupling is characterized by the shear modulus (Gxy) and shear

viscosity (ηxy) coefficients. Ghaffari et al. [55] determined the longitudinal shear

modulus (Gxy) and shear viscosity (ηxy) using a mathematical model of the TM

similar to what we propose and their measurements of the shear traveling wave in

a mouse TM at acoustic frequencies. The results show that the shear modulus is

higher at the base than the apex. Using the TM material properties measurements,

Gavara and Chadwick [47] estimated the shear wave velocity at a basal and more

apical location in the guinea pig. Based on their value for the shear wave velocity, the

shear modulus (Gxy = v2sρ) is 0.67kPa for a basal location and 0.44kPa at a more

apical location. We use for the shear modulus the same spatial variation as for the

radial stiffness of the TM (Gxy(x) = G0 exp(αtmx)). The values of the shear modulus
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are of same order of magnitude as the values in [47]. In Ghaffari et al. [55], the phase

angle of the complex shear modulus at the CF of the basal location (about 80kHz)

is approximately 65◦. For the guinea pig, at x=0.4 (CF=17kHz), and if the phase

angle at 17kHz of the shear modulus is the same as in the mouse at 80kHz, the shear

viscosity should be about 0.04Pa.s.

In the theoretical results shown thus far, the shear modulus at the base is G0 =

7kPa and a constant value of 0.05Pa.s is used for the shear viscosity. Varying these

parameters affects the predictions of the BM magnitude in response to acoustic stim-

ulations only for frequencies near the CF as the results in Fig. 3.5 show. Increasing

the shear modulus Gxy reduces the gain at the peak location (a few dB) and makes

the response less sharp, as seen in Fig. 3.5(a). Increasing the shear modulus is akin

to increasing the longitudinal coupling of the TM, hence this result is consistent with

differences seen in the TM-LC and LR models (see Fig. 3.1). Increasing the shear

viscosity ηxy reduces the gain, Q10dB of the BM response and the phase accumulation

at frequencies higher than the CF, as shown in Figs. 3.5(c) and 3.5(d). The TM

shear viscosity plays an important role in modifying the slope of the phase at the CF;

increasing the shear viscosity reduces the phase slope. For this range of parameters,

the overall qualitative nature of the response predictions is not altered even though

some of the quantitative details are affected.

3.2.4 Longitudinal coupling stabilizes the linearized cochlear model

Introducing longitudinal coupling, particularly in the TM, stabilizes the linear

model. For the parameters chosen in this paper, the linearized LR model is at the

limit of stability for a 25 dB BM gain whereas the linearized TM-LC model is well

under the stability limit for the BM gains seen experimentally (e.g., 35dB). The

stability limit is found by increasing the MET sensitivity until the impulse response

is no longer finite and bounded (i.e., the system is unstable). Numerical experiments
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Figure 3.5: Model sensivity to TM parameters variations. (a and b) Effect of changing
the shear modulus, G, on the amplitude (a) and phase (b) of the BM gain
relative to the stapes (legend in (b)). (c and d) Effect of changing the
shear viscosity, η, on the amplitude (c) and phase (d) of the BM gain
relative to the stapes (legend in d). For all simulations the activity is
kept constant (86% activity).
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(results not shown) indicate that this change in the stability of the system is only

due to the addition of longitudinal coupling and not to the modifications of the OHC

parameters between the two models. A key finding of this work is that the cochlea is

stabilized, in part, by the longitudinal coupling of the TM and that this stabilization

allows for the cochlea to achieve higher stable levels of gain than would be possible

without the longitudinal coupling.

3.2.5 Power delivered by somatic motility to the BM

Further processing of the results for the LR and TM-LC models to determine the

power delivered to the BM by the OHC are shown in Fig. 3.6 (results shown with

a thin line and thick line, respectively), for a location near the 17kHz best place.

For both models, the OHCs are predicted to convert electrical to mechanical power

and deliver power to the BM for frequencies lower than the CF. In the LR model,

the OHCs deliver significant mechanical power to the BM in a narrower range of

frequencies near the CF than in the TM-LC model (as normalized by the maximum

mechanical power delivered to the system by the OHC). We attribute this to the

coupling of multiple OHCs by the structural longitudinal coupling.

3.3 Comparison to experimental data

Longitudinal coupling in the TM mechanics has been shown in the previous section

to have the dominant effect on the BM response to acoustic stimulation. In this section

the predictions of the TM-LC model are compared to experimental measurements of

the BM response to acoustic stimulation.

3.3.1 Frequency response of the BM

In Fig. 3.7(a) and in Fig. 3.8, predictions of the BM gain by the TM-LC model

are compared to experimental data for guinea pigs from de Boer et al. [35] and Zheng
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Figure 3.6: Power delivered by the somatic force to the BM. The absolute value of the
power of the OHC active (somatic) force on the BM (P som

ohc/BM), normalized
to the value at the CF, is plotted as a function of frequency. Thick dashed
line: P som

ohc/BM in the TM-LC model. Thin solid line: P som
ohc/BM in the LR

model. For both models the parameters are the same as in Fig. 2. The
sign of the power (P on the figure) is indicated on the figure to show the
frequency region where the OHC somatic forces add power to the BM
(P som

ohc/BM < 0) and the frequency region where it removes power from the

BM (P som
ohc/BM > 0). For both models the OHC somatic force adds power

to the BM for frequencies less than the CF and up to about 20kHz.
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al. [159]. Even though the protocols for these two experiments were different (in de

Boer et al. [35] bands of flat-spectrum pseudo-random noise stimulations were used

while Zheng et al. [159] used pure tone acoustic signals), the same model is able

to replicate important characteristics for both experiments. The model is a linear

model and the variation from the fully active model to the passive model is achieved

by decreasing the mechanoelectrical transducer (MET) sensitivity (as discussed in

Ramamoorthy et al.[121] and in Chapter II). The frequency responses of the basilar

membrane track with the experimental data from deBoer et al. at different SPLs (Fig.

3.7(a)) when the gain of the MET channels is reduced. The TM-LC model predicts

around 35dB gain for low level acoustic stimulation. As seen in experimental results,

the shift in the peak frequency between the fully active and passive cases is about

half an octave. The BM gain curve becomes sharper as the activity is raised. The

mechanical quality factor predicted by the TM-LC model is more consistent with the

experimental measurements than the results from the locally reacting model (see Fig.

3.1). The Q10dB values predicted by the TM-LC model at the highest activity match

approximately the experimental values for low SPL stimulation. For instance, Q10dB

is 7.7 in the fully active TM-LC model compared to 6.5 in Zheng et al. experiment

[159] (compare the heavy solid and dashed curves in Fig. 3.8). The TM-LC model

prediction for the BM phase follows closely the data from de Boer et al. (see Fig.

3.7(b)). Note that the phase data are not available from Zheng et al. [159]. The

phase accumulation at high frequency is about 5.0 cycles in the active TM-LC model

compared to 4.5 cycles in the 20dB SPL experiment. The phase accumulation at CF

is about 2 cycles in both the model and the experiment. The model predictions for

the phase slope at CF are slightly higher than in the experimental data.

For all four models it is possible to choose parameters to replicate the level of gain

seen in the experimental results for low level sound (see Ramamoorthy et al. [121]

and Fig. 3.7(a)). But, as seen in Fig. 3.1, only the TM-LC and BMTM-LC models
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Figure 3.7: Comparison of the TM-LC model response with experimental data from
deBoer [35]. The TM parameters are G0 = 7kPa and η=0.05 Pa.s. Solid
lines: model BM gain for 86% activity, 56% activity and 0% activity;
dash lines: guinea pig data at 20, 80 and 100dB. (a) Normalized (to the
maximum passive response) BM magnitude in dB (b) BM phase relative
to the stapes in cycles.

replicates the Q10dB .

The simulations of the gain at different longitudinal locations of the cochlea follow

the expected trend, as shown in Fig. 3.9. The peak of the BM gain curves shifts to

lower frequency as the location approaches the apex, accompanied by a lower gain

and Q10dB (see also Ramamoorthy et al.[121]).

3.3.2 Impulse response

By taking the inverse Fourier transform of the frequency response, an impulse

response can be derived from the experiments and simulations. Results from the

TM-LC theory are compared to measurements from de Boer [35] in Fig. 3.10. The

oscillations of the response continue up to about 1ms in experimental data (Fig.

3.10(b)) and 1.4ms (Fig. 3.10(a)) for the model simulations in the active case. This
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Figure 3.8: Comparison of the TM-LC model response for the gain with experimental
data from Zheng et al. [159]. The TM parameters are G0 = 7kPa and
η=0.07 Pa.s. Solid lines: model BM responses for 100% activity (thick
line) and 0% activity (thin line); dash lines: experimental data at 10dB
(thick line) and 100dB SPL (thin line).
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Figure 3.9: Panoramic view of the predictions of the BM gain. The predictions
of the BM response relative to the stapes are plotted as a function
of frequency in the TM-LC model at different longitudinal locations
(x = 0.4cm,0.5cm,0.6cm,0.7cm and 0.8cm). The active (81% activity)
model responses are shown with a thick solid line. The passive model
responses are shown with a thin solid line. As the location approaches
the apex, the peak of the BM gain curve shift to a lower frequency, the
magnitude of the BM gain is lower and the tuning of the response is less
sharp.
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is a considerable improvement over the LR theory, which incorrectly predicted a

much longer impulse response in the active case, with oscillations that continue up

to 3ms [121]. In the passive case the oscillations are about 0.4 to 0.5ms both in the

experimental results and the model simulations. Note that for the passive case, the

model is relatively insensitive to TM longitudinal coupling as both models match the

experimental results quite well for the impulse response. The model also predicts

the same zero crossings of the passive and active response for the first few cycles,

consistent with observations from de Boer et al. [35]. Fig. 3.10 shows that the

duration of the impulse for the model and experiments are roughly the same. However,

there are differences as the predicted maximum amplitude is reached at 0.8ms while

experimentally the peak occurs at 0.5ms. This may be due to the slight differences

in the signal processing, but more likely it is due to some deficiencies in the model

(notably the nonlinearity), as minor differences in phase-frequency relations between

theory and experiments are also seen.

3.3.3 Comparison to data from mutant mice

The role of TM longitudinal viscoelastic coupling is partially corroborated by the

experimental results of Russell et al. [137] where they used a β-tectorin knockout

mouse which possesses reduced longitudinal coupling (as measured by Ghaffari [54])

and showed sharper tuning, as we have predicted. Our model shows that the TM

properties do not have a significant influence on the shape of the passive frequency

response; such a finding is consistent with measurements of the BM response in

mutant mice with a detached TM [86]. The BM-LC model predicts a Q10dB that is

lower than in the LR model but still much higher than in the experimental data. Since

the BM resonance is at a much higher frequency than CF, the effect of longitudinal

coupling in the BM equation is not as dramatic on the tuning of the BM response as

the effect of longitudinal coupling in the TM. Because of the mechanical connection
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Figure 3.10: Impulse response. The normalized theoretical and experimental impulse
response functions are plotted as function of time. (a)TM-LC model
impulse response . Dashed line: passive response. Solid line: active
response (86% activity) (b) Normalized experimental BM impulse re-
sponses from de Boer [35] at 10 dB SPL (solid line) and 100dB SPL
(dashed line).
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to the HB and the fact that our model predicts that the shear resonance of the TM

corresponds to the CF at the base of the cochlea, the TM appears to be the most

important structure determining the broadness of the active frequency response (at

a basal location).

When we implement our TM-LC model with a significantly reduced shear modulus

and shear viscosity while keeping other parameters constant, the BM gain is higher

and the cochlear model is unstable at high activity. If such an instability were present

when TM longitudinal coupling is reduced, then we should expect an increase in the

gain and the presence of broad band otoacoustic emissions. However, in measurements

by Russell et al.[137], the mutant mouse with reduced TM longitudinal coupling (as

shown by Ghaffari [54]) has a reduced BM sensitivity compared to the wild type

mouse and broad band otoacoustic emissions have not been reported. This apparent

contradiction between model predictions and experimental results indicates that the

mutant mouse cochlea might develop with a reduced MET sensitivity and/or OHC

somatic force compared to a wild-type mouse. In order to predict the same gain at

the CF, a lower value of the electromechanical coupling coefficient of the OHC (ǫ3 in

Eq. 2.9) is used in the LR model than in the TM-LC model. Note that both values

of ǫ3 are realistic, within 50% of the experimental estimate from Iwasa et al.[72].

3.4 Conclusions about the role of structural longitudinal cou-

pling in cochlear mechanics

This model demonstrates that the TM is a crucial structure for active cochlear

mechanics because of its connectivity to the HBs. Hence the presence of the TM

and of OHC somatic motility is essential to assure a high BM sensitivity. Our model

predictions for the BM frequency response and impulse response show that TM lon-

gitudinal coupling, and to a lesser extent, BM longitudinal coupling, are critical for a
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well-functioning cochlea. The human ear needs to have both a high frequency selec-

tivity and a short impulse response as well as a high sensitivity. This tradeoff between

frequency discrimination and transient capture is controlled mostly by the longitudi-

nal viscoelastic properties of the TM. The same longitudinal coupling is responsible

for stabilizing the highly sensitive cochlea.
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CHAPTER IV

Effect of active hair bundle mechanics and fast

adaptation on prestin-based high frequency

cochlear amplification

4.1 Introduction

The identity of the mammalian cochlear amplifier, whether based on outer hair

(OHC) somatic motility (linked to the action of prestin), OHC hair bundle (HB)

motility (linked to adaptation of the transduction current, [67, 126]), or some combi-

nation of these effects remains an ongoing debate [4, 119] because of the difficulty in

isolating the two effects in a conclusive in vivo experiment in a sensitive preparation.

We approach this problem by constructing a theoretical model including both active

modalities in a way that their contributions can be evaluated.

According to the most widely accepted theory, the active process in the mam-

malian cochlea is driven by the conversion of electrical to mechanical energy by a

voltage sensitive transmembrane protein, prestin [158], in the OHC lateral wall (e.g.,

see [3]). When the HBs of the OHCs are deflected due to vibrations in the organ

of Corti (OoC), the HB transduction channel opens and the current depolarizes the

OHC. The resulting transmembrane potential produces a force [11] at high frequencies

[43]. Recent experiments that alter force production by prestin, either by perfusion
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with salicylate [141] or genetic mutation [87, 32], have proven that prestin based

motility is necessary for normal cochlear function. The main criticism of the somatic

force generation hypothesis is that the lowpass filtering due to the OHC basolateral

membrane electrical impedance reduces the potential associated with a HB generated

current so that the somatic force is unable to amplify the motion of the structures of

the OoC [140]. However, we have previously predicted [121, 97] that the OHC trans-

membrane potential arising from acoustic stimulation is sufficient for somatic motility

alone to provide high frequency amplification. In the present study, we examine the

role of HB adaptation on the active process at high frequencies and determine if this

prediction still holds once HB forcing is included into the mathematical model.

Of course, the presence of HBs is also requisite as the channels must be activated

(i.e., opened) in order for the time varying transduction current to flow. Once opened,

calcium mediated fast adaptation will occur. Over that past five years, fast adaptation

[81, 128, 80, 8] and force production [80, 8] on a submillisecond time scale have been

reported in mammalian HBs. Slow adaptation and force production [8] are also

observed, however this modality likely does not play a direct role in cycle-by-cycle

amplification. From the measurements, it is now reasonable to assume that HBs

can generate forces on a time scale commensurate with high frequency sound, but

it is not clear that this force has sufficient authority to influence the response of

the BM or other cochlear structures. Different models, based on the gating spring

model of transduction [93], have been developed to predict the active HB dynamics.

Fast adaptation has been modeled by different mechanisms that promote channel

reclosure or reduce tension in the gating spring through the binding of calcium to

some moiety in the channel [157, 67, 9, 94]. The theoretical analysis of Sul and

Iwasa of an individual HB, calls into question whether HBs can act as the sole source

of amplification at high frequencies, as the HB cannot produce enough mechanical

energy to overcome the viscous damping in the subtectorial gap in mammals [152].
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We reexamine this result in the context of a complete cochlear model.

In this chapter, fast adaptation, and its effect on transduction channel filtering

and HB mechanics, is coupled to OHC somatic motility in the linear mechanical-

electrical-acoustical mathematical model of the cochlea described in chapter II. The

nonlinear dynamics of the HB, based on a six state channel reclosure model of the

HB [17], is linearized for small harmonic stimuli and then incorporated into our

global model. The advantage of this approach is that we explicitly separate the

contributions of each active modality and analyze their influence on the mechanics

of the hearing organ, estimating, for instance, if forces are sufficient to modulate the

BM response. Moreover, we model the effect of introducing pharmacological agents

(such as salicylate [141]) or varying ionic concentrations on the cochlear response.

4.2 Active outer hair cell hair bundle model

4.2.1 Active nonlinear HB model

We describe here the nonlinear model of the HB dynamics used a basis for the

linearized HB model. As in [152, 17], fast adaptation is modeled by a reclosure

mechanism. The slow adaptation motor is assumed to set the resting tension in the

gating spring but not to affect the dynamics of the HB at the frequencies considered

here. The six-state transduction channel model, with two calcium binding sites is

described in Fig. 4.1. In this model, calcium binding of some moiety in the channel

causes a reduction in the intrinsic energy difference between the closed and open states

of the channel. When an external force, Fext, is applied to the HB, the differential

equation governing the motion of the HB is given by:

chb
duhb
dt

+Nγtgs +Ksp(uhb −Xsp) = Fext , (4.1)
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Figure 4.1: Six states channel reclosure model of the HB. The HB has two binding
sites and six states: closed (state 1), open (state 2), open and bound to one
calcium ion (state 3), open and bound to two calcium ions (state 4), closed
and bound to two calcium ions (state 5) and closed and bound to one
calcium calcium (state 6). Calcium binding reduces the intrinsic energy
difference between the open and closed state of the channel (modeled by
r3 and r5). The transition rates governing the transduction channel at
the operating point x = 0 are indicated on the figure.

where chb is the damping coefficient of the HB due to the viscous fluid, N is the

number of transduction channels per HB, tgs is the tension in each gating spring, Ksp

is the stiffness of the stereocilia pivot, Xsp is a constant and uhb is the displacement

at the tip of the HB, in a direction perpendicular to the length of the HB (uhb = 0

corresponds to equilibrium). The tension in each gating spring is given by:

tgs = kgs

(

x− xa − P0d
)

(4.2)

where kgs is the gating spring stiffness, d is the gating swing, P0 is the open probability

of the transduction channel, xa is the position of the slow adaptation motor (assumed

to be a constant) in the tip link direction, and x is the displacement of the HB in the

tip link direction (x = γuhb where γ is the geometrical gain factor).

As in [17, 8], the two binding sites are assumed to have the same affinity to calcium

(modeled by the dissociation constant in the open state Ko
D, and in the closed state,

Kc
D) and calcium binding coefficient (denoted as Ko

B in the open state and Kc
B in the

closed state). The calcium concentration is denoted as Co
fa and Cc

fa for the open and
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closed states, respectively.

The energy difference between the open and closed states of the channel is given by:

∆E = fgsx+∆E0 − nCaǫCa (4.3)

where fgs is the single channel gating force in the tip link direction (fgs = kgsd)

and ∆E0 is the energy difference between the unbound open and closed states of

the channel at x = 0 (due to the resting tension of the gating spring and to the

intrinsic energy difference between the open and closed states of the channel), nCa

is the number of calcium ions bound to the channel (nCa = 0, 1 or 2) and ǫCa is a

constant energy that represents the reduction in the intrinsic energy difference of the

channel due to calcium binding (based on a thermodynamic analysis of the HB [152],

ǫCa = kBT ln(
Ko

D

Kc
D
)). The equations for the rates of calcium binding and unbinding

and of channel opening and closing are detailed Appendix C.

4.2.2 Linearized active HB model

Using a similar approach as in [152], the nonlinear equations governing the dy-

namics of the HB are linearized for small pertubations about the resting state and

reduced to Eq. 4.8. Using the additional constraint
∑6

i=1 Pi = 1, the equations of

the kinetic scheme of the six states channel (Fig. 4.1) can be reduced to the following

nonsingular matricial form:

dP

dt
= A(

fgsx

2kBT
)P (4.4)

where P is the vector formed by the probabilities of each state P = [P1P2P3P4P5] and

A is a 5 × 5 matrix that is a function of the HB deflection x. The vector of resting

probabilities for xs = 0, Ps, is found by solving A(0)Ps = 0.

Using the same approach as in [152], the nonlinear differential equations govern-

ing the dynamics of the HB (Eqs. 4.1 and 4.4) are consistently linearized around
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equilibrium. For small harmonic perturbations δFext, the nonlinear model response

(δx, δP) around the stationary point (xs,Ps) can be linearized. We assume a time

dependence e−iωt. Eq. 4.4 becomes:

δP =
fgs

2kBT
(A(

fgsx

2kBT
) + iωI)−1A′(

fgsx

2kBT
)Psδx (4.5)

where I denotes the 5× 5 identity matrix and A′ the derivative of A with respect to

its argument. The change in the open probability is given by δP0 = δP2 + δP3 + δP4.

A description of the optimization of the parameters of the transduction channel model

can be found in Appendix E and the computation of the effect of calcium on HB

dynamics and cochlear mechanics (Fig. 4.6) can be found in Appendix D. The values

for the physical parameters of the HB are given in Table 4.1.

Parameter Description Optimal value
Ko

D calcium dissociation constant in the open state 12.43µM
Kc

D calcium dissociation constant in the closed state 2.0µM
Ko

B calcium binding coefficient in the open state 1.23ms−1µM−1

Kc
B calcium binding coefficient in the closed state 12.3ms−1µM−1

∆E0 energy difference between the open and closed 0.2054kBT
state at rest

∆ENA
0 energy difference between the open and closed

when adaptation is not included 0.8439kBT
state at rest

k1 rate of channel opening 2.89× 105s−1

Table 4.1: Parameters of the transduction channel at the 17kHz best place.

4.2.3 HB model without fast adaptation

Without adaptation, the HB is modeled as a two state channel, with only states

1 and 2 (shown in Fig. 4.2). The intrinsic barrier and resting open probability P s
0

are assumed to be the same as when adaptation is taken into account. This requires

the energy difference between the open and closed state (∆ENA
0 ) to have a different

value than in the case with adaptation (∆E0). The rates of channel opening, kNA
co
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Figure 4.2: Model of the HB when fast adaptation is not taken into account. The
channel has two states, open (2) and closed (1). The transition rates at
the operating point x=0 are indicated on the figure. They are chosen so
that the resting open probability is the same as in the 6 states channel
model.

and closing, kNA
oc without adaptation are given by:

kNA
co = k0co exp(

∆ENA
0 −∆E0

2kBT
) (4.6)

kNA
oc = k0oc exp(−

∆ENA
0 −∆E0

2kBT
) (4.7)

4.3 Isolated hair bundle

4.3.1 The HB MET sensitivity and active HB force are related

In the nonlinear model of the HB, the active reclosure mechanism (see section 4.2)

is responsible for the active HB mechanics and fast adaptation of the transduction

current. Because the physiologically relevant displacements of the HB are small for

low intensity acoustic stimulation, the nonlinear model of the HB is linearized for
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small fluctuations about equilibrium (similar to the approach in [152]). The equa-

tions relating time harmonic oscillations of radian frequency ω in the HB force, δFhb,

transduction channel current, δi0, and HB displacement, uhb, are:

δFhb =
[

Kpass −Kact(ω)
]

uhb

δi0 = Gmax
a J(ω)V suhb

(4.8)

where Kpass is the passive HB stiffness, Kact(ω) the complex active dynamic stiffness

of the HB due to gating compliance [67] and fast adaptation, J(ω) represents the

sensitivity of the transduction channel to HB deflection, V s is the resting potential

across the HB, and Gmax
a is the maximum saturating conductance of the entire HB.

J(ω) and Kact(ω) are given by:

J(ω) =
γfgs
kBT

TF (ω) (4.9)

Kact(ω) =
Nγ2f 2

gs

kBT
TF (ω) (4.10)

where TF (ω) is the nondimensional complex valued frequency dependent transduc-

tion channel filter (see SI), fgs is the single channel gating force in the tip link direction

(chosen to be 5pN [8, 152]), kB is Boltzmann’s constant, T is the temperature, N

is the number of transduction channels per HB, and γ is the geometrical gain factor

relating HB motion to the tip link motion [67].

The mechanical energy generated by the HB per cycle depends on the imaginary

part of the active stiffness in the following manner:

Ehb =
π

2
Imag

[

Kact(ω)
]

|uhb|
2 (4.11)

where for this sign convention Ehb > 0 represents dissipation and Ehb < 0 gener-

ation. These relations reveal that HB energy generation (Eq. 4.11), the mechano-
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electric transducer (MET) sensitivity (given by Gmax
a J(ω)V s) and the active HB force

(Kact(ω)uhb) are related and depend on the same frequency dependent filter, TF (ω),

as shown in [152]. HB energy generation is proportional to f 2
gs while the MET sensi-

tivity is proportional to Gmax
a V sfgs. The parameters of the transduction channel have

been optimized to maximize the peak of the mechanical energy delivered by the HB.

The HB parameters are then adjusted so that the transduction channel filter varies

spatially and is tuned to the local characteristic frequency (CF) (see Appendix E).

4.3.2 The transduction channel is a poorly tuned bandpass filter and the

dynamics of fast adaptation reduces the MET channel sensitivity

The magnitude and phase of the transduction channel filter, TF (ω), are plotted

as a function of frequency in Fig. 4.3a-b for an isolated HB at the 17kHz best place

(BP). In a model without adaptation, the transduction channel filter is a low pass

filter with a cutoff frequency of 126 kHz, limited by kinetics of channel activation.

When the fast adaptation mechanism is included, TF (ω) is a poorly tuned bandpass

filter, with a barely discernible peak at 17.0 kHz, the CF. At CF, |TF (ω)| and hence

the MET sensitivity (see Eqs. 4.8 and 4.9), are about 23% lower with adaptation

than without adaptation. The phase of TF (ω) is around 5 degrees so that the MET

current lags the HB displacement, but only by a small amount. The broad tuning

of the transduction filter is also manifest in the real part of the active HB stiffness,

Kact(ω), as shown in Fig. 4.3c. The passive bundle stiffness (0.15 mN/m at this

location) is reduced only by 3% by the positive active stiffness.

4.3.3 Energy dissipation and generation by the effects of HB fast adap-

tation and channel activation are small

The mechanical energy generated by the HB as computed from Eq. 4.11 is shown

in Fig. 4.3d for a HB located at the 17 kHz BP. The magnitude of the energy dis-
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Figure 4.3: Predictions of the transduction filter function, active stiffness and energy
generation for a single isolated HB. The predictions are plotted versus
frequency for a single isolated HB at the 17 kHz BP. These results vary
spatially with frequency in a way described in Appendix E (Fig. E.1). In
each plot, the thick solid line represents the predictions with fast adap-
tation and channel activation included in the model and the dashed line
represents the results with only channel activation included. (A) Mag-
nitude and (B) phase of the transduction channel filter, TF (ω) (defined
by Eq. 4.9) which relates the MET current to HB displacement. (C)
The real part of the active HB stiffness, Kact

hb (ω). (D) Mechanical energy
(positive is dissipation, negative generation) by the HB for a 0.5nm HB
displacement. The energy dissipated by viscous drag in the subtectorial
space is shown in a thin solid line.
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sipated or generated by the HB is predicted to be much smaller than the energy

dissipated by viscous drag of the HB through the surrounding fluid, except at the

lowest frequencies. As in [152], the model without fast adaptation predicts that the

HB dissipates mechanical energy over all frequencies. With fast adaptation, the HB

delivers mechanical energy at frequencies less than CF, with a peak at 2.9 kHz. How-

ever, the magnitude of the energy generated at this frequency is less than the energy

dissipated by viscous drag. At frequencies above 11.5 kHz, the HB dissipates energy,

but the amount of energy dissipated is small, more than two orders of magnitude less

than viscous drag at CF, for instance.

4.4 Simulations of the acoustic response of the cochlea

4.4.1 A complete cochlear model including somatic motility and HB ac-

tivity predicts the BM response to low intensity sound stimulation

The response of the BM to low intensity acoustic stimulation is simulated using

the macroscopic mathematical model of the cochlea described in Chapter II. The

model includes HB mechanoelectrical transduction and can include any combination

of somatic motility and HB activity (fast adaptation and HB motility, modeled by

Eq. 4.8). The predicted frequency dependence of the normalized BM displacement at

the 17kHz BP is shown in Fig. 4.4. The passive model of the BM response (without

somatic motility or HB activity) exhibits a broad peak, as observed in measurements

at high intensity or postmortem [159]. With HB activity and somatic motility, the

BM response approximately matches the sensitivity (with a 35dB gain relative to a

passive model), tuning (with a mechanical quality factor, Q10dB , of 7.7 versus 6.5 in

the experiment) and peak frequency (about 17kHz) of the experimental response to

low intensity acoustic input [159]. However, when HB activity is included and somatic

motility is not included, the response reverts nearly to that of a passive model. If
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Figure 4.4: BM response to acoustic stimulus for three different cochlear models. Dis-
placement of the BM in dB normalized to the maximum passive response
due to acoustic stimulation at the 17kHz best place. Thick solid line:
prediction with somatic motility and HB activity (fast adaptation and
active HB mechanics). Thick dashed line: prediction of a passive model.
Thin solid line: theoretical prediction of HB activity only without somatic
motility.

somatic motility is included in the model but HB activity is not included, the model

actually predicts an unstable response (determined using the inverse Fourier transform

of the frequency response as in [121]) and hence we do not show this result. The

presence of fast adaptation reduces the MET sensitivity (Fig. 4.3(a)) which makes

the system with somatic motility and HB activity less sensitive and more stable.

4.4.2 Somatic motility, not HB motility, amplifies motion for frequencies

near CF

When we speak of energy generation, we mean net conversion to mechanical energy

from some other form of energy on a cycle-by-cyle basis. Somatic motility can convert

electrical energy (in the form of the resting endocochlear potential) to mechanical

energy (e.g., [121]) in a nearly reciprocal fashion [71] while HB activity can transfer

chemical energy to mechanical energy during the binding process [17, 152]. The results

for an individual HB presented in Fig. 4.3d are now revisited by making predictions
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Figure 4.5: Mechanical energy generated by the active processes per cycle. The en-
ergy for a 0.5nm BM displacement is plotted as a function of frequency.
(A) Energy generated by somatic electromotility. (B) Energy generated
by HB activity. The active process generates mechanical energy on the
left of the dashed line and dissipates mechanical energy for higher fre-
quencies.

in a global cochlear model. The mechanical energy delivered per cycle by the somatic

force is given by:

Esom = πIm
[

ǫ3∆φohc × (ucomp
ohc )∗

]

, (4.12)

where ∗ denotes the complex conjugate and Im[·] the imaginary part of a complex

number. The mechanical energy delivered per cycle by the somatic force and the HB

force is plotted as a function of frequency in Fig. 4.5 for a 0.5nm BM displacement.

The upper limit of energy generation derived from somatic motility is 20.5 kHz while

that for HB motility is 11.5 kHz. Hence, the HB dissipates mechanical energy at CF.

Moreover, the energy dissipated by the HB is about two orders of magnitude lower

than the energy delivered by the somatic motility at CF.

4.4.3 The gain of the BM response to acoustic stimulation depends on the

somatic electromechanical coupling coefficient and on the calcium

concentration

We varied the electromechanical coupling coefficient (ǫ3 in Eq. 2.9) in order to

determine the effect of a small reduction in prestin activity, as might be induced by

61



14 16 18 20
10

20

30

40

Frequency (kHz)
N

o
rm

al
iz

e
d

 B
M

   
  

 d
is

p
la

ce
m

e
n

t 
(d

B
)

 

 

ε
3

 , C
 fa
 o

1.1 x  C
fa
o

0.9 x ε
3

Figure 4.6: Effect of changes in the OHC somatic electromechanical coupling coeffi-
cient, ǫ3, and in the endolymphatic calcium concentration, Co

fa, on the
predictions of the BM response to acoustic stimulation. The normalized
BM gain is plotted as a function of frequency. Thick solid line: initial
values for ǫ3 and Co

fa. Thin solid line: Co
fa is increased by 10%. Thin

dashed line: ǫ3 is reduced by 10%.

intracellular perfusion of salicylate [141]. In Fig. 4.6, the BM gain in response to

low intensity acoustic stimulation is reduced by 6.5 dB when ǫ3 is reduced by 10%,

similar to reductions seen in salicylate perfusion experiments. A small increase of

the calcium concentration at the fast adaptation site (when the channel is open),

Co
fa, by 10% results in a 2.3 dB reduction in the gain through a reduction of the

amplitude of TF (ω). Alterations of the calcium concentration can be induced by

disturbance of endolymph calcium homeostasis (for example due to endolymphatic

hydrops in Meniere’s disease [139]) or exposure to loud sounds [45] although the

relation between these conditions and the calcium concentration is less clear than for

the effect of salicylate on electromotility.

4.5 Discussion

In our model we can explore a variety of ways for HB and somatic force generation

and HB filtering to alter the mechanics and response of the cochlea. At the outset we

envisioned several potential scenarios for their interaction at high frequencies, includ-

ing some sort of synergistic amplification by both processes. We found a very different
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cooperation between the two modalities. Somatic motility provides the amplification

at CF. Fast adaptation serves to reduce the MET channel sensitivity and assist in

the maintenance of the system’s stability. HB amplification somewhat ameliorates

the dissipative effects of channel gating, but neither the added energy nor the amount

of dissipation are significant compared to dissipation by the HB moving through the

fluid (see Fig. 4.3d). The analysis concluding that the energy generated per cycle by

an isolated HB was not sufficient to influence high frequency global cochlear mechan-

ics was confirmed by our simulations (see Fig. 4.5). The somatic-based amplification

mechanism proposed here is consistent with measurements where intracochlear per-

fusion of salicylate [141] or prestin-knockin mutation [32], interventions known to

disrupt the prestin-based transduction, also reduce cochlear output (either in the BM

gain or auditory thresholds) as in our model (Fig. 4.6).

4.5.1 RC filtering of the OHC transmembrane voltage does not preclude

somatic motility from acting as the cochlear amplifier

Our results show that somatic motility can be the underlying source of high fre-

quency mammalian cochlear amplification despite lowpass filtering of the transducer

currents by the basolateral membrane of the OHC. In our model, the OHC cutoff

frequency is 280Hz at the 17 kHz BP. At this location, in a sensitive cochlea, a sound

input at 17kHz of around 20 dB SPL gives rise to a BM displacement of 0.5 nm

[20]. For such a displacement, we predict a transduction current of 0.75 nA and a

transmembrane potential of 310 µV for an OHC at this location. There is strong

evidence that these are physiologically realistic values. In our model, the value of

the HB saturating conductance, Gmax
a , is set to 323 nS at the 17 kHz BP. Using the

in vitro hemicochlea preparation at room temperature, He et al. [63] measured a

conductance of 34.7nS for a basal HB in the adult gerbil hemicochlea. If this value

is corrected for the differences between the experimental conditions and the in vivo
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conditions (as discussed in Chapter II), the expected in vivo value is 208nS. This

value is about 50% lower than the value we used. Even higher in vivo values of Gmax
a

are expected in vivo, as discussed in Chapter II. The largest in vitro current mea-

sured by [63] is 2.4 nA. Using the same temperature and ionic corrections as above,

along with a factor of 2 for a larger in vivo resting DC potential, our estimate of

the largest current is 28 nA, larger than our theoretical estimate near threshold of

0.75 nA. Moving to a discussion of the voltage, we predict an OHC transmembrane

potential that is higher than the only in vivo transmembrane measurements [85] at

these frequencies. This is expected, as discussed in [63, 29, 136, 44], because the

microelectrode measurement underestimates the receptor potential due to the leak

conductance around the electrode, the piercing of the OHC membrane (which may

reduce the driving DC receptor potential), the loss of sensitivity due to the overall

surgical preparation, and any mechanical constraints due to the microelectrode pen-

etration. Extracellular potential measurements are less invasive and our prediction

(0.1mV for a 0.5nm BM displacement) is in good agreement with the measurement

based estimate of [44] (about 0.08mV for a 0.3nm BM displacement) for a cochlea in

good physiological condition.

Our theoretical model predicts the response that would be measured in a pristine

sensitive cochlea. Hence, the quantitative differences are reasonable in view of the

differences between the model and measurement configurations. We show that a

submillivolt transmembrane potential is converted to an active somatic force of 34

pN at CF (less than 1% of the in vitro maximal values of about 10nN [72]), a force

sufficient to provide for the 35-40 dB gain difference between sensitive and insensitive

conditions in vivo.

In order to achieve a transduction current of 0.75 nA, two additional factors

are of central importance. First, an electromechanical resonance of the OoC-TM

system, due to the interaction of the TM mass [162, 59], the compliance and kinematic
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constraints of the structures of the OoC, and the active somatic force, magnifies

the HB shearing motion and maintains the appropriate phase of the HB transducer

current. This electromechanical resonance is responsible not only for the sharp tuning

of the transducer current, but also for that of the BM motion. This tuning does not

arise from either the intrinsic tuning of somatic electromotility (which is not tuned

[43]) nor from HB filtering (which was shown here to be poorly tuned in Fig.4.3(a)).

The second important factor is the longitudinal propagation of electrical current in

the scalae and interstitial space. By artificially altering the numerical values of the

fluid conductances in our model, we tested the effect of longitudinal propagation of

current in the scalae and the interstitial space on our predictions. Including this

conductance path provides for roughly 5 dB of additional gain in the present model

due to an increase in the transmembrane potential that drives somatic motility.

4.5.2 Could HB motility be the amplifier?

In our model, we find that if we use a higher single channel gating force, such

as 24pN as used in [103], and faster kinetics for adaptation that active HB force

can have a more prominent role in high frequency cochlear amplification. Higher

values of fgs, however, are not supported by the literature [8, 155]. The calcium

binding coefficients we use at the base of the cochlea are near the upper limit for

a diffusion limited reaction [6]; hence it is unlikely that the kinetics can be much

faster. Therefore, it does not appear that HB forcing is responsible for cochlear

amplification at high frequencies. For lower frequency hearing, nearer to the apex of

the cochlea, HB forcing may play a more important role [122]. Continued system level

and cellular level biophysical measurements along with fully nonlinear mathematical

models are still needed to completely describe the response of the cochlea. In light

of our small-signal modeling results, we conclude that, in the base of the mammalian

cochlea, prestin mediated somatic motility of outer hair cells is the mechanism by
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which stored electrical energy is converted into mechanical energy driving cochlear

amplification and providing for acoustic compression so essential to normal hearing.
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CHAPTER V

Nonlinear response of the cochlea to a single tone:

compressive nonlinearity, harmonic distortion and

DC shift

5.1 Introduction

In the previous chapters the dynamics of the cochlea were linearized for small

harmonic stimuli around the operating point so as to simplify the analysis and limit

the computational cost. However, the cochlea is a weakly nonlinear system. In this

chapter we are interested in the prediction of the stationary nonlinear response of

the cochlea to a single tone. The nonlinear model and the method used to compute

the nonlinear dynamics of the cochlea in response to stationary acoustic stimulation

are first described. Simulations of the response to a single tone are then presented

and compared to experimental measurements and to the linear formulation so as to

validate the model and method.
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5.2 Nonlinear finite element formulation and algorithm

5.2.1 Problem formulation

The analysis of Chapter IV showed that the active HB forcing does not under-

lie cochlear amplification and can be ignored. Moreover, somatic motility and the

basolateral membrane capacitance depend nonlinearly on the OHC transmembrane

voltage [62], but the changes in the transmembrane voltage are small under acous-

tic stimulation (based on experimental [85] and theoretical observations [90]) so that

somatic motility and membrane capacitance can be described in vivo by linearized re-

lations. Therefore, as in other models of nonlinear active cochlear mechanics [108, 90],

the nonlinearity of mechanotransduction is hypothesized to be the dominant source

of nonlinearity in the cochlea. In the time domain, the current flowing through the

HB, Ihb, is given by:

Ihb = Ga(θhb/rl)V + CaV̇ , (5.1)

where Ga(θhb/rl) is the conductance of the HB and is a nonlinear function of the

rotation of the HB relative to the RL, θhb/rl, Ca is the OHC apical capacitance and V

is the HB transmembrane potential. The pertubation in the HB current, ihb, is given

by:

ihb = G0
avhb + Ca ˙vhb +

[

Ga(θhb/rl)−G0
a

]

V s
hb +

[

Ga(θhb/rl)−G0
a

]

vhb (5.2)

where V s is the resting HB transmembrane potential, v is the pertubation of the HB

transmembrane potential from its resting value and G0
a is the resting value of the HB

conductance. The nonlinear term
[

Ga(θhb/rl)−G0
a

]

vhb is ignored, as it is small. The

validity of this approximation as well as of the linearization of somatic motility can

68



be verified a posteriori. Eq. 5.2 is reduced to:

ihb = G0
avhb + Ca ˙vhb +

[

Ga(θhb/rl)−G0
a

]

V s
hb (5.3)

where the HB conductance, Ga(θhb/rl), is modeled by a nonlinear function. The

effect of fast adaptation on mechanotransduction [128] is not included for simplicity.

In agreement with experimental measurements of the response of the transduction

channel to deflection [80], the transduction current is modeled by a simple saturating

Boltzman function:

Ga(θhb/rl) = Gmax
a

1

1 + exp
[

−
Lhbθhb/rl−X0

∆X

] , (5.4)

where Gmax
a , X0 and ∆X are defined as in Chapter II and Lhb is the length of the HB.

In the time domain, the equations governing the nonlinear dynamics of the cochlea

have the following form:

Md̈+Cd̈+Kd+ nl(d) = F (5.5)

where M, C and K are the mass, damping and stiffness matrices (derived from

the equations of Chapter II), d is the vector of the degrees of freedom (structural

displacements, fluid pressures and potentials), nl(d) is a vector that is a nonlinear

function of the vector d (due to mechanoelectrical transduction) and F is the external

force vector.

5.2.2 Harmonic decomposition in the frequency domain

The Fourier components of any variable x are denoted as Xm. The values of the

variable x at the discrete time tq = (q−1)T
NFFT

, where q = 1,...,NFFT and NFFT is an

integer, are denoted as xp. The stationary response of the cochlea can be written as
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d(t) =
∑

∞

m=0Dmexp(−imω0t) where ω0 is the radian frequency of the excitation and

each Fourier component Dm satisfies the following equation:

[

K− imω0C− (mω0)
2M

]

Dm +NLm

[

d(t)
]

= Fm (5.6)

Only a few Fourier components are used for the computation, as for any variable x,

x(t) =
∞
∑

m=0

Xmexp(−imω0t) ≈

Nh
∑

p=1

Xm(p)exp(−im(p)ω0t) (5.7)

where Nh is the number of harmonic components used for the simulations and m is

a function mapping the index p to one of the nonnegligible harmonic components.

For the problem solved here, the only nonlinear term is in the structural electrical

coupling (due to the nonlinearity of mechanoelectrical transduction). Therefore we

have solve Nh nonlinear systems of size Ndof , given by:













Ks Qsf Qse

Qfs Kf 0

QLin
es 0 Ke

























Um

Pm

Φm













+













0

0

NLm(u)













=













0

(Fp)m

0













(5.8)

where Ks, Qsf , Qfs, Kf and Ke are defined in Chapter II, QLin
es is the part of the

electrical structural matrix due to somatic electromechanical coupling and (Fp)m is

the mth harmonic component of the forcing on the fluid due to the stapes vibrations.

For a single tone stimulation, (Fp)m = 0 except for the fundamental.

5.2.3 Algorithm: alternating frequency/time scheme

An iterative algorithm, named alternating frequency time (AFT) method and

developed by Cameron [13], is used to solve Eq. 5.8. The nonlinear forcing from

the transduction current is calculated the time domain and then the solution of the
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system is computed in the frequency domain. The algorithm alternates between the

frequency and the time domains using the Fourier and inverse Fourier transforms.

For the problem considered here, the algorithm, based on a fixed point iteration, is

the following:

1. Start with an initial guess (k = 0) in the frequency domain D
(0)
m(p) where

p=1,...,Nh. We chose to start with D
(0)
m(p) = 0.

2. Start of iteration k. Calculate the HB deflection in the frequency domain

(Uhb)
(k)
m(p), where p = 1,...,Nh, using the kinematic relation between the HB

deflection and the BM and TM displacements.

3. Calculate the inverse fast Fourier transform (IFFT) of the HB deflection to

obtain (uhb)
(k)
q , where q = 1,...,NFFT .

4. Calculate the nonlinear function nl(u) at the discrete times tq, nl(uhb)
(k)
q , where

q = 1,...,NFFT , using Eq. 5.4.

5. Calculate the fast Fourier transform (FFT) of the funtion nl(u) to obtain the

nonlinearity in the frequency domain NL(u)
(k)
m(p)

6. Solve the Nh linear systems given by Eq. 5.8. The nonlinear term is set to

NL(u)
(k)
m(p). The solution of the system is denoted as D

(k+1)
m(p)

7. Check for convergence. If converged, stop. If not, start the iteration k + 1.

For the DC shift, the algorithm described here does not converge. Therefore, a

modified Newton’s iteration is used instead of the fixed point iteration. To limit the

computational cost, the matrix ∂NL(u)
∂U

is calculated only once, at the start of the first

iteration. The other components of the response are computed with a fixed point

iteration.
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5.2.4 Implementation of the algorithm

At each iteration, the algorithm requires the solution of a ndof × ndof linear sys-

tem (where ndof is the number of degrees of freedom) for each harmonic component.

However, the matrix of the system depends only on the frequency but is independent

of the magnitude of the degrees of freedom and of the iteration. A LU decomposi-

tion algorithm is used to solve the linear systems. A typical simulation requires the

computation of the solution for different magnitudes of stapes displacement (Ninput

different magnitudes of stapes displacement) at different frequencies (Nfreq different

frequencies). To mimimize the computational cost, the computation is carried out in

the following order:

1. For one input frequency, calculate the matrices of the system for each harmonic

component.

2. Compute the LU decomposition of the systems.

3. Compute the harmonic component of the solution for each magnitude of stapes

displacement using the AFT algorithm and the LU decomposition previously

computed.

4. Repeat the process for the next input frequency.

This implementation of the algorithm requires the storage in memory of the LU

decomposition of Nh matrices of size ndof ×ndof . The matrices are stored in memory

using profile storage. The number of operations necessary to factorize each matrix is

c1 = O(ndofb
2) where b is the bandwidth of the matrix. The number of operations

required to solve the system is c2 = O(ndofb) for each iteration of the algorithm. The

overall computation cost is:

ctot =
[

ndofb
2 +NiterNinputndofb

]

NhNfreq, (5.9)
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where Niter is the number of iterations required for convergence. The required memory

and the computation time grow linearly with the number of harmonic components.

From a convergence study a low number of harmonic components is required (see

5.3.1). Instead of checking for convergence using a convergence criterion, the algo-

rithm is considered to have converged when the number of iterations, Niter, reaches

30 (for reasons discussed in 5.3.1).

5.3 Nonlinear response of the cochlea to single tone

5.3.1 Convergence and performance of the algorithm

The alternating time/frequency method introduces numerical error in the solution,

due to three approximations: the finite number of discrete time points used for the

FFT calculations, NFFT , the finite number of harmonic components, Nh, and the

finite number of iterations, Niter. NFFT does not really affect the computational cost

of the algorithm for the problem considered here and can be chosen sufficiently high

(128 in the simulations) to obtain accurate results.

The relative error in the BM displacement (see Appendix F) is plotted as a function

of the number of iterations in Fig. 5.1, at CF and at CF/2. The fundamental

does not require a high number of iterations to converge to the solution. After 20

iterations the relative error in the fundamental is already less than 0.1. However for

the DC shift, 2nd and 3rd harmonic components, a higher number of iterations is

required for better accuracy (especially at the 2nd harmonic). After 30 iterations

the error is less than 0.1 at CF and about 0.1 at CF/2, which is sufficient for our

simulations. The relative error is plotted as a function of Nh in Fig. 5.2 at CF and

at CF/2. For all the harmonic components the relative error tends to decrease as

the number of computed harmonic component increases. Obtaining the fundamental

with a reasonable accuracy only requires the computation of the fundamental, as
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Figure 5.1: Relative error in the BM displacement as a function of the number of
iterations. The error is computed at CF (a) and at CF/2 (b) for the dif-
ferent harmonic components. The converged solution used as a reference
for the computation of the relative error (see Appendix F) is the solution
after 60 iterations. For all the simulations four harmonic components (the
DC shift, the fundamental, the 2nd harmonic and the 3rd harmonic) are
computed.

the relative error is about 0.01 both at CF and CF/2. The DC shift and the 2nd

harmonic component requires the computation of three components (the DC shift,

the fundamental and the 2nd harmonic). The 3nd harmonic requires the computation

of four components. The number of iterations and harmonic components required to

obtain the converged components of the response of the BM, as well as the required

memory and computational time are summarized in Table 5.1. If the simulation is run

for only one magnitude of stapes displacement the nonlinear model is more expensive

than the linear model. However if the simulation is run for many different magnitude

of stapes displacement (or many different activity levels with the linear model) the

computational cost per harmonic component in the nonlinear model is lower than the

cost for the fundamental in the linear model.
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Figure 5.2: Relative error in the BM displacement as a function of the number of
harmonic components. The error is computed at CF (a and b) and at
CF/2 (c and d). In a and c the DC shift is one of the computed component.
In b and d the DC shift is not computed. The converged solution used
for reference for the computation of the relative error (see Appendix F) is
the solution with with 8 harmonic components (including the DC shift).
All simultations are with 30 iterations.

Table 5.1: Number of harmonic components, number of iterations, memory and com-
putational time required for convergence.

Component Nh Niter Required Computational Computational
RAM time time

Nfreq = 1 Nfreq = 200
Ninput = 1 Ninput = 15

Fundamental 1 < 20 1.40GB 13s 4.5 hours
DC 3 30 2.32GB 52s 22.0 hours
2nd harmonic 3 30 2.32GB 52s 22.0 hours
3rd harmonic 4 30 3.77GB 68s 28.2 hours

Linear 1 1 0.688GB 10s 8.4 hours
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Figure 5.3: Magnitude and phase of the fundamental of the BM displacement at the
17kHz BP in response to a single tone. a. Normalized magnitude of
the gain and b. phase of the the fundamental of the BM displacement
(relative to the stapes) at the 17kHz BP in response to a single tone,
plotted as a function of frequency. Solid lines: model predictions for a
10−4nm, 10−2nm, 1nm, and 100nm stapes displacement. Dashed lines:
experimental data from Cooper [20] for a 100dB, 50dB, 20dB and 10dB
SPL acoustic stimulation. Both for the experimental data and for the
model predictions, the gain are normalized to the value of the gain at the
lowest intensity of stimulation.
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5.3.2 Fundamental of the BM displacement in response to a single tone

The magnitude and phase of the fundamental of the BM displacement in response

to harmonic vibrations of the stapes are plotted as a function of frequency at the

17kHz BP in Fig. 5.3. The model predictions compare nicely with the measured

magnitude of the BM displacement (Fig.5.3(a)) to acoustic stimulation by Cooper

[20]. At low intensity, the response is sharp and highly sensitive. As the intensity

of the stimulation is increased, the response peak shifts to a lower frequency, the

response is less sharply tuned and less sensitive, as seen in the experimental data. At

frequencies significantly lower than the CF, the gain is independent of the intensity of

the stimulus; this indicates a linear response. At CF, the gain is higher at low intensity

than at high intensity, indicative of a compressive nonlinearity. The predictions for

the phase of the BM displacement relative to the stapes, shown in Fig. 5.3, exhibit the

commonly observed trends in the BM response to acoustic stimulation [110, 20, 159].

The slope of the phase curve at CF is steeper and the value of the phase at CF is

slightly higher at low intensity than high intensity; the phase slope and the value of

the phase at CF (about 3 cycles) are similar to the values from Cooper [20]. Compared

to the experimental data, the phase accumulation at frequencies higher than CF is

predicted to be higher (about 8 cycles) than in the measurements (about 3 cycles);

however the measurements at frequencies significantly higher than the CF at low

intensity of stimulation are not reliable, as the magnitude of the BM displacement is

very small.

The dependence of the BM response on the intensity of stimulation is quantita-

tively analyzed in Fig. 5.4. In Fig. 5.4(a) the BM displacement at CF (17kHz) is

plotted as a function of the stapes displacement. In agreement with the results of

Fig. 5.3(a), the model predicts a compressive nonlinearity at CF, as observed in the

experimental data from Zheng et al. [159] and Cooper [20]. However, contrary to

both sets of experimental data, the BM response is linear at very low intensity (up to
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about 2 × 10−4nm of stapes displacement). Moreover, the BM displacement is also

predicted to be linear at very high intensity (more than 2nm of stapes displacement);

this cannot observed in the experimental data as such a high intensity of stimulation

would likely damage the cochlea. The phase of the BM displacement relative to the

stapes at CF is plotted as a function of the stapes displacement in Fig. 5.4(b). As

observed in [110] the phase lag of the BM displacement relative to the stapes is re-

duced as the intensity of stimulation is increased. However the change in the phase

is limited (less than 140 degrees). The mechanical quality factor, Q10dB , is shown

to decrease as the magnitude of the stapes displacement is increased in Fig. 5.4(c),

from a value of 6.5 to 1.4. The peak frequency at the 17kHz best place decrease from

17kHz at the lowest intensity of excitation to 13.3 kHz at the highest intensity (Fig.

5.4(d)).

5.3.3 Comparison of the predictions of the nonlinear model to the pre-

dictions of the nonlinear model

The predictions of the magnitude and phase of the BM displacement in response

to acoustic stimulation by the linear model (described in Chapter II) and by the non-

linear model of the cochlea are compared in Fig. 5.5. The activity levels of the linear

model are chosen so that the gain of the BM displacement predicted by the linear

model matches the gain of the BM displacement predicted by the nonlinear model.

The linear model with an activity of 100% corresponds to the consistent linearization

of the nonlinear model for small harmonic stimuli. Therefore, as expected, the 100%

active linear model and the nonlinear model with a very small stapes displacement

predict the same sharply tuned and highly sensitive BM response. For very large

stimuli (a 100nm stapes displacement), the passive linear model (0% activity) and

the nonlinear model also predict the same poorly tuned response. However, at inter-

mediate intensity, the predictions of the linear model with the appropriate activity
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Figure 5.4: Dependence of the BM response to single tone acoustic stimulation at the
17kHz BP on the magnitude of stapes displacement. a BM displacement
at CF. The model predictions (thick solid line) are compared to the mea-
surements from Zheng [159] (dashed-dotted line) and Cooper [20] (dashed
line) in the guinea pig cochlea. b Phase relative to the stapes at CF. c
Mechanical quality factor Q10dB. d Peak frequency. The predictions are
plotted as a function of the stapes displacement.

have small quantitative differences with the predictions of the nonlinear model. The

peak frequency predicted by the linear model is slightly higher than predicted by

the nonlinear model. Moreover, the phase accumulation at high frequencies does not

match the predictions by the nonlinear model. In the linear model the saturation of

the MET channel is assumed to be uniform (and modeled by an activity level between

0% and 100%), which is not the case in the nonlinear model. Therefore differences

in the predictions by the two models are to be expected. But overall there is good

qualitative agreement between the nonlinear and linear models.
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Figure 5.5: Comparison of the predictions by the nonlinear and linear models of the
magnitude and phase of the BM displacement at the 17kHz BP. a. Nor-
malized magnitude and b. phase of the fundamental of the BM displace-
ment at the 17kHz BP predicted by the nonlinear and linear models,
plotted as a function of the frequency of the fundamental. Thick solid
lines: nonlinear model predictions for a stapes displacement of 10−5nm,
10−2nm,1nm and 100nm. Thin dashed lines: linear model predictions
with an activity (see Chapter II) of 100%, 75%, 26% and 0%.

5.3.4 Harmonic distortion on the BM response to acoustic stimulation

Harmonic distortion has been reported in the BM response to acoustic stimulation

[23, 20, 124, 118]. The nonlinearity of the MET channel generates harmonic distortion

in the model. The magnitudes of the fundamental, 2nd harmonic and 3rd harmonic

of the BM displacement at the 17kHz best place in response to stapes displacement

are plotted as a function of the frequency of the fundamental in Fig. 5.6(a), for a

large stapes displacement (3.16nm). The model predictions are in good qualitative

agreement with the experimental data from Cooper in the base of the guinea pig

cochlea [20]. At this intensity of stimulation, the peak of the fundamental is at about

15kHz. The 2nd harmonic has two main peaks: one for a fundamental frequency close
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Figure 5.6: Magnitude and phase of the harmonic distortion components as a func-
tion of frequency. The magnitude of the fundamental, 2nd harmonic and
3rd harmonic of the BM displacement in response to stapes vibrations at
the 17kHz best place, are plotted as a function of the frequency of the
fundamental, for a 3.16nm stapes displacement. Thick solid line: funda-
mental. Thin solid line: 2nd harmonic. Thin dashed line: 3rd harmonic.
a Magnitude b. Phase. The phase of the 2nd harmonic has been divided
by two and the phase of the 3rd harmonic has been divided by three
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to CF (17kHz) and one for a fundamental frequency equal to CF/2 (8.5kHz). The

peak at CF/2 is predicted to be 20dB lower than the value of the fundamental at the

same frequency; Cooper [20] measured a difference of 11dB. The 3rd harmonic has

three peaks: one at CF, one at CF/2 and one at CF/3. To analyze the propagation

of the 2nd and 3rd harmonic on the BM, the phase of the 2nd harmonic and 3rd

harmonic have been respectively divided by two and three and plotted as a function

of the fundamental frequency along with the phase of the fundamental in Fig. 5.6(b).

The fundamental and the 2nd harmonic (respectively 3rd harmonic) have the same

group velocity if the phase of the 2nd harmonic divided by two (resp. of the 3rd

harmonic divided by three) has the same slope as the phase of the fundamental. The

phase predictions of Fig. 5.6 indicate that for frequencies between 10 and 15kHz, 2nd

harmonic and 3rd harmonic propagate along with the fundamental. This means that

as the wave travels on the BM, the signal is distorted but the distorted components do

not travel indepently of the fundamental; distortion is locally generated, as suggested

by the fluid pressure measurements in [114]. However, for frequencies between 7

and 10kHz and between 15 and 25kHz, the 2nd harmonic travels indepently of the

fundamental as the phase slope of the 2nd harmonic divided by two does not match

or run parallel to the phase of the fundamental.

The generation and propagation of harmonic distortion can be better analyzed

by looking at the spatial plot of magnitude and phase of the fundamental and 2nd

harmonic, shown in Fig. 5.7. In Fig. 5.7(a) and (b) the magnitude and phase of the

fundamental and 2nd harmonic are plotted as a function of x for a 8.5kHz tone with

a 3.16nm stapes displacement; in Fig. 5.7(c) the fundamental and 2nd harmonic

component of the force delivered by somatic motility are plotted as a function of

x for a 8.5kHz tone. From x = 0.2 to x = 0.3 the fundamental travels on the

BM and generates locally harmonic distortion; the 2nd harmonic does not propagate

indepently of the fundamental. However, as the wave approaches the 17kHz BP
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(x=0.4cm), the 2nd harmonic is amplified (because the frequency of the 2nd harmonic

is close to the CF) by the somatic force (the 2nd harmonic of the somatic force

reaches a maximum slightly basally of the 17kHz BP) and can travel indepently of

the fundamental. The traveling wave of the 2nd harmonic becomes an evanescent wave

after the 17kHz BP since its magnitude decreases quickly as x increases. Distortion

is again locally generated from x = 0.45cm to x = 0.75cm. Then the 2nd harmonic

propagates indepently of the fundamental and reaches a peak close to the 17kHz BP.
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Figure 5.8: Magnitude of the fundamental and 2nd and 3rd harmonic components
of the BM displacement as a function of the stapes displacement at the
17kHz BP. a. For a 8.5kHz tone. b. For a 17kHz tone

The level and frequency dependent characteristics of harmonic distortion, can also

be analyzed in a plot of the magnitude of the fundamental and harmonic distortion

components at different frequencies as a function of the stapes displacement, as shown

in Fig. 5.8. For a fundamental frequency of 8.5kHz (Fig. 5.8(a)) the response of the

fundamental is linear. The 2nd and 3rd harmonic exhibit an expansive nonlinearity

(as the slope is greater than 1dB/dB) at moderate intensities, as observed in [20].

When the intensity of the stimulus is further raised, the magnitude of the harmonic

distortion components decreases. At CF (Fig. 5.8(a)), the fundamental exhibits a

compressive nonlinearity, as shown in Fig. 5.4(a). The 2nd and 3rd harmonic are
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predicted to have a fast growth with respect to increase in the stapes displacement

for small stapes displacement. For higher stapes displacement the 3rd harmonic grow

slowly with respect to the stapes displacement, and the 2nd harmonic decreases for

stapes displacement greater than about 1× 10−2nm. In the data from Cooper at CF

[20], the 2nd and 3rd harmonic are lower than the noise floor for low SPL and both

grow slowly as the level of stimulation is increased.

5.3.5 DC shift

Despite the presence of even order distortion on the BM [23, 20], there is only

limited evidence for a DC shift in the BM displacement [23] at the base. Due to

the nonsymmetry of the MET channel (a non zero value for X0 in Eq. 5.4), the

model predicts a DC shift in the BM displacement. The fundamental and the DC

shift in the BM displacement are plotted as a function of the stapes displacement

at the 17kHz BP for a 17kHz single tone in Fig. 5.9(a). At all intensities the DC

shift is predicted to be positive, which means that the BM moves toward the scala

vestibuli. At very low intensity of stimulation, the DC shift is very small compared

to the fundamental. In the data from Cooper and Rhode [23] in the hook region

(very high frequency) region of the cochlea the DC shift is under the noise floor and

cannot be measured at low intensity. At higher intensity the DC shift is predicted

to have the same order of magnitude as the fundamental, with a value of about 3nm

for a 10−2nm BM displacement. For very high intensity the DC shift saturates and

reaches a value of about 6 nm. This prediction is significantly higher than the value

measured by Cooper and Rhode in the hook region of the cochlea of the cat (a DC

shift toward the scala vestibuli of 0.2nm at 100dB SPL for a 20kHz tone at the 30kHz

BP). However, in addition to a possible difference due to the different frequency region

and species, higher values of the DC shift are expected closer to or at CF since the

cochlear amplifier has a more dramatic effect on the BM vibrations close to the CF,
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Figure 5.9: Fundamental and DC shift in the BM displacement. The fundamental is
shown with a thick solid line and the DC shift with a thin dashed line.
(a) at CF as a function of the stapes displacement (b) as a function of
frequency for a 3.16× 10−2nm stapes displacement.

as shown in Fig. 5.9(b). The fundamental and DC shift are plotted as function of

frequency for a small stapes displacement in Fig. 5.9(b). At low intensity the DC shift

is predicted to be tuned to the same frequency as the fundamental, with a sharper

tuning than the fundamental.

5.3.6 OHC transmembrane potential

In the model cochlear amplification is due to somatic motility driven by the OHC

transmembrane potential. The DC shift and harmonic distortion in the BM response

arise from the DC shift and harmonic distortion in the transmembrane potential

caused by the the saturation of the MET channels. Therefore the transmembrane

potential is an important prediction of the model. Unfortunately due to the difficulty

in measuring the OHC intracellular potential in a sensitive preparation, there is only

one set of in vivo experimental data, from Kössl and Russell [85], that can be used for

comparison. The fundamental of the transmembrane potential is predicted to grow

linearly at low intensity in Fig. 5.10(a). The model predicts a fundamental of about

2.5mV and a positive DC shift of about 20mV at high intensity. Kössl and Russell[85]
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measured a similar level dependence for the transmembrane potential, but a lower

magnitude, with an AC part of about 1mV (if uncorrected for the RC cutoff) and a

positive DC shift of about 5mV at 100dB SPL. As discussed in Chapter IV, the mea-

surements are likely to underestimate the in vivo transmembrane potential. The 2nd

and 3rd harmonic in the transmembrane potential exhibit the same level dependence

as the same components of the BM response. In Fig. 5.10(b) the transmembrane

potential is shown to be sharply tuned to CF at low intensity of stimulation.
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Figure 5.10: DC shift, fundamental, 2nd harmonic and 3rd harmonic in the OHC
transmembrane potential. (a) at CF as a function of the stapes dis-
placement (b) as a function of frequency for a 3.16 × 10−2nm stapes
displacement.

5.4 Discussion

5.4.1 The saturation of the HB mechanotransduction channel is the dom-

inant source of nonlinearity

The model predicts the nonlinear compressive response of the BM response to

acoustic stimulation because of the saturation of the MET channels. All other sources
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of nonlinearity are neglected, including the nonlinearity of somatic motility. The va-

lidity of this approximation can be assessed based on the value of the transmembrane

potential predicted by the model. The fundamental and DC shift in the OHC trans-

membrane potential are predicted to be about respectively 2.5mV and 20mV at very

high intensity. For a 20mV transmembrane potential change He and Dallos [61]

measured a change in the somatic stiffness of less than 10%. Therefore, given the

predicted magnitude of the DC and AC values of the transmembrane potential in

response to acoustic stimulation in vivo, somatic motility can be approximated to be

linear. The same conclusion was reached by Liu and Neely [90], although their model

did not include BM displacement and transmembrane potential DC shifts.

The second linear approximation concerns the term
[

Ga(θhb/rl) − G0
a

]

vhb that is

neglected in Eq. 5.2. At high intensity (ustapes = 1nm) the value of the DC shift

and fundamental in the HB transmembrane potential are predicted to be respectively

25mV and 9mV . These values are about one order of magnitude lower than the

resting HB transmembrane potential (146mV at the 17kHz BP). Therefore the term
[

Ga(θhb/rl)−G0
a

]

vhb can be neglected as a first order approximation.

As discussed in Chapter IV, the HB force cannot contribute signicantly to cochlear

amplification and nonlinearity and does not need to be included in the computation.

However fast adaptation of the transduction current (which is not included in the

nonlinear model) can have a significant effect on amplification by somatic motility

(as discussed in chapter IV). In addition to its effect on the amplification at the

lowest intensity of stimulation, fast adaptation could have an effect on the nonlinear

growth of the fundamental of the BM response since fast adaptation depends on the

magnitude of the HB deflection.
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5.4.2 Harmonic distortion generation and DC shift

The model predictions for harmonic distortion on the BM are in good agreement

with the data from Cooper [20]. The highest distortion component is the 2nd har-

monic, which is mostly present in the response at frequencies close to CF and close

to CF/2. Moreover the predictions of the phase of harmonic distortion show that the

2nd harmonic can travel indepently of the fundamental, as shown by the pressure

measurements from Olson[114] in a sensitive cochlea. However, note that, contrary

to the experimental data [20], the 2nd harmonic main peak is at different frequency

than the peak of the fundamental at high intensity of stimulation. The origin for this

discrepancy between the model predictions and the experimental data is not clear,

but might be due to some deficiencies in the micromechanical model of the organ of

Corti.

The generation of the 2nd harmonic requires the nonlinearity of the MET channel

to be noncentered (X0 not equal to 0) which generates a DC shift in the BM dis-

placement. A DC shift was observed by Cooper and Rhode [23] but the magnitude

of the DC shift predicted by the model is higher than the measured value. One of the

possible reason for this quantitative difference is that slow adaptation of the trans-

duction current, which is not included in the model, might act as a high pass filter

that filters out the DC component. Much larger DC shifts have been measured at

apical locations [24].

5.4.3 Efficient method to compute the stationary response of the cochlea

The AFT method used here to compute the response of the cochlea to a single

tone is computationally efficient. As the number of nonlinear equations is very low in

cochlear mechanics, the computational cost of the FFT calculations is not significant.

Moreover, because the nonlinearity in cochlear mechanics is weak, only a few harmonic

components are required for good accuracy. Therefore the method is much faster than
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a time domain method [90] and is more flexible and accurate than the Quasi-Linear

method [75]; it is reduced to the Quasi-Linear method if only the fundamental of the

response is computed. It is simpler to implement than the harmonic balance method

[88]. The AFT scheme is similar to the algorithm used by Nobili and Mammano [108].

However a convergence study was carried out here to compute only the harmonic

components that have an effect on the BM vibrations. The algorithm presented here

can be extended to predict the stationary response of the cochlea to two tones, such

as two tone suppression and distortion products.
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CHAPTER VI

Nonlinear response of the cochlea to two tones:

two tone suppression and distortion products

6.1 Introduction

Two tone suppression and distortion products are interesting nonlinear charac-

teristics of the response of the cochlea to two tones. Two tone suppression has been

observed in the auditory nerve fibers [138] and in the response of OHC and IHC

[143, 109] and of the BM [135, 111, 19, 51, 124] to acoustic stimulation. In this

chapter we are interested in the prediction of suppression in the BM response to

acoustic stimulation. Two types of suppression are observed in response to two tones,

depending on the value of the suppressor tone compared to the probe tone. High

side suppression is the case where the frequency of the suppressor is higher than the

frequency of the probe; low side suppression is the case where the frequency of the

suppressor is lower than the frequency of the probe. Two tone suppression on the

BM is hypothesized to arise from the saturation of the cochlear amplifier [53, 76].

The other type of nonlinear two tone interaction, distortion products, has been

recorded in the nerve fibers [12], IHC [113], BM [131, 132, 26, 64, 124] and in-

tracochlear pressure [40] and is considered to be the source of DPOAEs. Both in

DPOAEs measurements and in BM displacement measurements, the distortion prod-
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uct most commonly measured in response to two tones of frequencies f1 and f2 and

with the highest magnitude are the cubic terms 2f1−f2 and 2f2−f1. The generation

and propagation of distortion products on the BM are simulated in this chapter.

Due to the nonlinearity of mechanotransduction, the model of the cochlea pre-

sented in Chapter V can be used to predict the stationary response of the cochlea

to two tones. The adaptation of the method of Chapter V to the simulation of two

tone interaction is first described. Then the predictions of the model of two tone

suppression and two tone distortion on the BM are analyzed. The comparison to

measurements of suppression and distortion products on the BM as well as the mech-

anisms for suppression, distortion products generation and propagation are discussed.

6.2 Methods

6.2.1 Algorithm and choice of the harmonic components

As in Chapter V, the Alternating Frequency/Time [13] scheme is used to compute

the stationary nonlinear response of the cochlea. When the cochlea is stimulated by

two primary tones, of frequency f1 and f2 (where f1 and f2 are not incommensurate

frequencies), the cochlea generates distortion products at combination frequencies

(of the form n1f1 + n2f2, where n1 and n2 are signed integers). Since f1 and f2

are not incommensurate frequencies, we can find a radian frequency ω0 such that

f1 and f2 are multiples of 2πω0. The response of the cochlea is decomposed as

d(t) =
∑Nh

p=1Dm(p)exp(−im(p)ω0t). The Nh harmonic components are chosen in

the following order:

1. The first three components are the DC shift and the response to the two pri-

maries.

2. The two cubic distortion components, 2f1 − f2 and 2f2 − f1 are computed, if

they correspond to a positive frequency.

92



3. If there are other components to be computed, the component with the lowest

minimum of the difference between its radian frequency (m(p)ω0) and the radian

frequency 2πf1 and of the difference between its radian frequency and the radian

frequency 2πf2 is first computed. The same criterion is then applied to choose

among the remaining components, until Nh components have been computed.

6.2.2 Convergence and performance of the algorithm

Similarly to single tone simulations (Chapter V), the accuracy of the solution

depends on the number of iterations, Niterations, and on the number of harmonic

components, Nh. The influence of the number of iterations for two tone simulations

is not studied here; 30 iterations are used for all the simulations. The convergence

of the algorithm with respect to the number of harmonic components, Nh, for the

computation of two tone interaction is described next.

The objective of the two tone supression simulations is to accurately predict the

magnitude of the probe tone, particularly at its BP. The relative error in the probe and

suppressor components of the BM displacement at the BP of the probe component

(x = 0.4cm) and the root mean square (RMS) value (over the length of the cochlea)

of the relative error are plotted as a function of the number of harmonic components

in Fig. 6.1 for a high side (23kHz) and for a low side suppressor (10kHz). The

equations used to compute the relative error and the RMS value of the relative error

are in Appendix F. Both for the low side and for the high side suppressor, only

the computation of the probe and suppressor components are necessary to accurately

compute the probe and suppressor components of the response, as the relative error

is than 10−2 at the probe BP and the RMS value of the relative error is less than 0.1,

which is sufficient for our analyses.

The primary goal of the distortion products simulation is to compute the cubic

distortion component, 2f1− f2. The convergence of the algorithm for the simulations
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Figure 6.1: Error in the BM displacement as a function of the number of harmonic
components for two tone suppression simulations. The magnitude of the
probe component of the stapes displacement is 0.01nm; the magnitude of
the suppressor component is 3.16nm. In a and c the frequencies of the
primaries are fprobe = 17kHz and fsuppressor = 10kHz. In b and d the
frequency of the primaries are fprobe = 17kHz and fsuppressor = 23kHz.
The error in the probe component of the BM displacement at the 17kHz
BP (x = 0.4cm) is plotted in a and b; the root mean square (RMS) value
(over the length of the cochlea) of the relative error is plotted in c and
d. The converged solution used as a reference in the computation of the
error (see Appendix F) is the solution with 10 harmonic components. The
points that do not appear on the plot correspond to errors that are too
small too be measured.
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of distortion products on the BM is analyzed in Fig. 6.2. If the frequency of the

primaries are not too close to each other (for example a ratio f2/f1 of 1.26 in Figs.

6.2(a) and (b)), only four components (the DC shift, the two primaries and the 2f1−f2

component) are required to accurately compute the value of the 2f1 − f2 component

(the RMS value of the relative error is about 10−6 with four harmonic components).

The solution with four harmonic components is indistinguishable from the solution

with 14 components in Fig. 6.2(e). However, if the frequencies of the two primaries

are closer to each other (a ratio f2/f1 of 1.1 in Fig. 6.2(c) and (d)), a higher number

of harmonic components is required. At the 17kHz BP, the error is reasonable for 4

harmonic components (the relative error is less than 0.1); but the RMS value of the

relative error is almost 0.1 with 4 harmonic components. Some small differences can

be seen in Fig. 6.2(f) between the solution with four components and the solution

with 14. With 12 harmonic components, the RMS value of the relative error is less

than 10−2.

6.2.3 Energy delivered by somatic motility

The average power delivered by somatic motility to the harmonicm of the solution

is given by:

(Psom)m =
1

2
Re

[

ǫ3∆φohcm × (−iωm(u
comp
ohc )m)

∗

]

, (6.1)

where ∗ denotes the complex conjugate. In order to analyze the model predictions,

we are interested in the power delivered to the probe tone, denoted as (Psom)probe, in

the case of two tone suppression simulations; we are interested in the power delivered

to the two primaries and to the cubic distortion component (2f1 − f2) in the case of

distortion products simulations.
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Figure 6.2: Convergence of the algorithm for two tone distortion products as a func-
tion of the number of harmonic components. In the left panels the fre-
quencies of the primaries are f1 = 23kHz and f2 = 29kHz; in the right
panels the frequency of the primaires are are f1 = 19kHz and f2 = 21kHz.
The relative error in the BM displacement at the 2f1−f2 BP (x = 0.4cm)
is plotted in a and b as function of the number of harmonic components,
Nh; the root mean square (RMS) value of the relative error in the BM
displacement, over the length of the cochlea, is plotted in c and d as a
function of Nh. The converged solution used as a reference in the com-
putation the error (see Appendix F) is the solution with 14 harmonic
components. Thin solid line: for the f1 component; thin dashed line:
for the f2 component; thick solid line: for the 2f1 − f2 component. The
2f1−f2 components of the BM displacement is plotted as a function of x in
e and f. Solid line: approximate solution (using 4 harmonic components);
dashed line: converged solution (using 14 harmonic components).
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6.2.4 Definition of suppression

In this chapter, the suppression in the BM diplacement, Sbm, and in the power

delivered by somatic motility to the probe component, Spower, (in the case of two tone

suppression) is defined as the difference in dB between the probe component of the

BM diplacement (respectively in the power delivered to the probe component) when

the cochlea is stimulated only with the probe tone, uprobebm

∣

∣

∣

no suppressor
(respectively

P probe
ohc

∣

∣

∣

no suppressor
) and its value when the cochlea is stimulated by the probe and

suppressor tones, uprobebm

∣

∣

∣

with suppressor
(respectively P probe

ohc

∣

∣

∣

with suppressor
):

Sbm = 20log10

[

∣

∣

∣
uprobebm

∣

∣

∣

no suppressor
∣

∣

∣
uprobebm

∣

∣

∣

with suppressor

]

(6.2)

Spower = 20log10

[

∣

∣

∣
P probe
ohc

∣

∣

∣

no suppressor
∣

∣

∣
P probe
ohc

∣

∣

∣

with suppressor

]

(6.3)

For single tone stimulation, we define self-suppression, SS, as the difference in

dB between the gain of the BM relative to the stapes for a reference value of stapes

displacement, urefstapes to the gain of the BM relative to the stapes for the given value

of stapes displacement, ustapes:

SS(ustapes) = 20log10

[ubm(u
ref
stapes)

urefstapes

]

− 20log
[ubm(ustapes)

ustapes

]

(6.4)

6.3 Two tone suppression

6.3.1 Effect of a suppressor on the response to the probe tone

The predictions of the model for the displacement of the BM at the 17kHz BP

with a 17kHz probe tone and a suppressor are shown in Fig. 6.3. Both for a high

side suppressor (23kHz, shown in the right panels) and a low side suppressor (10kHz,
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shown in the left panels), the model predicts that the presence of the suppressor

reduces the magnitude of 17kHz component of the BM diplacement for low inten-

sity of probe stimulation, in agreement with experimental data [135, 111, 19]. At

higher intensity of the probe tone the effect of the suppressor becomes more limited.

Therefore the suppressor reduces the nonlinearity of the response of the BM to the

probe tone. The plot of Fig. 6.3(c) and (d) of the probe and suppressor components

of the BM diplacement and of their sum show that the suppressor displacement at

the 17kHz is a linear function of the suppressor displacement at the stapes, which

is expected because of the frequency separation between the probe (17kHz) and the

suppressor (23kHz and 10kHz). Consistently to the results of Fig. 6.3(a) and (b), the

magnitude of probe component on the BM decreases as the intensity of the suppres-

sor is increased. Despite the prediction of suppression both for a high side and a low

side suppressor, they are some quantitative differences between the two cases. In the

case of a 23kHz suppressor (Fig. 6.3(d)), the suppressor starts to suppress the probe

component of the BM displacement for a suppressor component lower than the probe

component; moreover there is a range of suppressor component of stapes displacement

where the sum of the suppressor and probe components of the BM displacement is

lower than the unsuppressed response to the probe tone. These observations are in

agreement with the measurements of high side suppression from Cooper [19]. For a

10kHz suppressor (Fig. 6.3(c)), the sum of the suppressor and probe components of

the BM displacement is always greater than the unsuppressed probe component, and

the suppressor starts to reduce the magnitude of the probe displacement when the

magnitude of the suppressor component of the BM displacement is higher than the

probe component as observed experimentally [19].
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Figure 6.3: Predictions of the model for the magnitude of the BM displacement at the
17kHz BP with a probe tone of 17kHz and a suppressor. In a and c a low
side suppressor of 10kHz is used. In b and d, a high side suppressor with
a frequency of 23kHz is used. In a and b the probe component of the BM
displacement is plotted as a function of the the probe component of the
stapes displacement without a suppressor (thick solid line), with a 1nm
(thin dashed line), 3.16nm (thin solid line) and 10nm (thick dashed line)
suppressor component of the stapes displacement. In b and d, the probe
component (thick solid line), the suppressor component (thin dashed line)
and the sum of the two components (thin solid line) are plotted as the
function of the suppressor component of the stapes displacement, for a
3.16× 10−2nm probe component of the stapes displacement.
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6.3.2 Effect of the suppressor on the spatial response

The mechanism of high side and low side two tone suppression can be analyzed

using the spatial plots of Fig. 6.4 of the BM displacement, power delivered by somatic

motility to the probe component and suppression in the BM displacement and in the

power delivered by somatic motility, as a function of x. Without the suppressor,

for the intensity of stimulation considered here, the probe component of the BM

displacement has a peak at x = 0.35cm (Fig. 6.4(a) and (b)) and somatic motility

delivers energy from the base of the cochlea to a location slightly apical of the peak

of the BM displacement, x = 0.5cm (Fig. 6.4(c) and (d)).

The peak of the 10kHz suppressor is at x = 0.6cm (Fig. 6.4(a)). In that case

the effect of the suppressor is to slightly reduce the magnitude of the BM displace-

ment at locations basal to the peak of the probe and reduce more significantly the

displacement at the peak and locations slightly apical of the peak (Fig. 6.4(a)). The

suppressor reduces the power delivered by somatic motility around the peak of the

probe component of the BM displacement. (Fig. 6.4(c)). Moreover with the sup-

pressor somatic motility delivers power only up to x = 0.4cm. The maximum of the

suppression in the displacement and in the power is slightly apical (x = 0.4cm) of the

peak of the probe (Fig. 6.4(e)).

The situation is different in the case of a 23kHz suppressor. The peak of the

suppressor is at x = 0.2cm (Fig. 6.4(b)). Because the transduction channels saturates

when both the suppressor and the probe components of the BM displacement are high,

the suppressor reduces the BM displacement (Fig. 6.4(b)) and the power delivered

by somatic motility (Fig. 6.4(d)) at locations basal to the peak of the probe and

apical of the peak of the suppressor, with a maximum suppression at x = 0.25cm for

the energy and x = 0.3cm for the BM displacement (Fig. 6.4(f)). Although both

high side and low side suppression are due to saturation of the transduction channel,

quantitative differences in the predictions and measurements for high side and low
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Figure 6.4: Predictions of the model for high side and low side suppression as a func-
tion of x. As previously, the probe frequency is 17kHz. In a,c and e the
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suppressor frequency is 23kHz (high side suppression). For all plots, the
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suppressor component are plotted as a function of x. In c and d, the
power delivered by somatic motility to the probe component of the re-
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side are to be expected due to the difference in the location of maximal suppression.

6.3.3 Effect of the suppressor on the phase of the probe tone

Two tone suppression reduces the gain of the BM response to the probe tone.

A similar reduction of the gain, called self-suppression, is observed in a single tone

stimulation when the intensity of the stimulation is increased (see Chapter V); self-

suppression is accompanied at CF by a phase lead since a slight reduction in the phase

lag of the BM relative to the stapes is seen as the BM gain relative to the stapes is

reduced. If two tone suppression had the same effect on the BM displacement as

self-suppression, we should expect suppression to be accompagnied by a phase lead

at the BP of the probe. However, the model simulations show that this simple theory

is not sufficient to predict the effect of the suppressor on the response of the BM to

the probe tone. The effect of the suppressor on the phase of the probe tone relative to

the stapes is analyzed in Fig. 6.5. The predictions of the phase change as a function

of the suppression for a low side suppressor (represented by circles in Fig. 6.5) follow

approximately the predictions for self-suppression, both in the fully active model

(Fig. 6.5(a)) and in the model with reduced activity (Fig. 6.5(b)). Most of the model

data for low side suppression predict a phase lead, as observed in experimental data

[111, 19]. However the predictions are different for high side suppression (shown with

the crosses in Fig. 6.5). For the fully active model (Fig. 6.5(a), the model predicts a

phase lag for low levels of suppression (less than 20dB) and a phase lead for higher

levels of suppression. When the activity of the model is reduced (by reducing the

value of the somatic electromechanical coupling coefficient, ǫ3, in Fig. 6.5(b)), the

phase lag for low level of suppression is reduced (less than 0.05 cycles) and the phase

lead for high level of suppression is increased (up to 0.25 cycles).

Measurements are contradictory for high side suppression [135, 111, 19], as Rug-

gero et al. [135] and Nuttall et al. [111] measured a phase lag, whereas Cooper[19]
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measured a phase lead. The model predictions might give an explanation for this

discrepancy. In the fully active cochlea high side suppression is predicted to be ac-

companied by phase lag at low level of suppression (for suppression of less than 20dB),

as measured by Ruggero et al. [135] and Nuttall et al. [111]), and phase lead at higher

intensity; note that, as discussed and predicted by Kanis and de Boer [76], that the

phase data in [111] seems to transition from phase lag to phase lead when the sup-

pression is about 20dB. In the model with reduced somatic force generation (Fig.

6.5(b)) (which could be due to damage during the recordings) the phase lag at low

intensity is very small; the difference between the data in [19] and in [135, 111] might

be due to some differences in the health of the cochlea during the measurements.

6.4 Distortion products

6.4.1 Generation and propagation of distortion: analysis in the spatial

domain

The generation and propagation of the cubic distortion component, 2f1 − f2, is

analyzed in Fig. 6.6 using a spatial plot of the magnitude of the distortion and pri-

mary components of the BM displacement, of their phase relative to the stapes, and

of the power delivered by somatic motility to these components of the response. The

frequencies of the primaries, f1 = 19kHz and f2 = 21kHz, are chosen so that the

frequency of the cubic distortion component, 2f1 − f2 is 17kHz. The peak of the f2

component is at x = 0.23cm; the peak of the f1 component is at x = 0.32cm. Distor-

tion is generated in the region where the f1 and f2 components overlap. Consistent

with this idea, a local peak can be observed at x = 0.3cm in the power delivered by

somatic motility to the 2f1 − f2 component; this peak corresponds to the location of

maximal distortion generation.

The phase of the 2f1−f2 component has a positive slope to the left of this location;
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Figure 6.5: Effect of the suppressor on the phase of the probe component of the BM
displacement at the probe BP. The frequency of the probe is 17kHz. The
change in the phase is plotted as a function of the suppression in dB.
Circles: low side suppressors. Crosses: low side suppressors. Solid line:
self suppression. a. In a fully active model. b. In a model with reduced
activity (the OHC electromechanical coupling coefficient ǫ3, is reduced to
61% of its initial value. For two tone suppression, the probe component
of the stapes displacement is 3.16 × 10−2nm; the change in the phase
is defined as the difference in the phase of the probe component of the
BM displacement relative to the stapes with the suppressor compared to
its value without the suppressor. For the case of self-suppression, the
reference for the stapes displacement is 3.16× 10−2nm; the change in the
phase is defined as the difference in the phase of the BM displacement
relative to the stapes for a given probe displacement and its value for the
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this means that the distortion propagates as a slow backward propagating wave on

the BM toward the stapes. The magnitude and phase of the distortion components

are complicated between x = 0.3cm and x = 0cm because the BM displacement is

the sum of the slow backward propagation of distortion, of the local distortion of

the primaries (that propagates in the forward direction), of the reflection of the slow

backward wave on the stapes (this reflection propagates as a slow forward traveling

wave) and possibly of the reflection of a fast compressional backward wave (that also

propagates on the BM as a slow forward traveling wave).

The phase of the 2f1 − f2 component has a negative slope to the right of x =

0.3cm; this means that the distortion propagates in the forward direction. As the

traveling wave of the distortion component propagates in the forward direction it

approaches the 17kHz BP (which is apical of the location of the location of maximal

distortion generation). The distortion component is amplified close its BP as the

power delivered by somatic motility is maximum. Therefore the 2f1 − f2 component

reaches a maximum magnitude close to the 17kHz BP (0.4cm), at x = 0.395cm for

this intensity of stimulation.

6.4.2 Spectrum of the BM response to two tones

The frequency spectrum of the BM displacement predicted by the model for pri-

mary tones of 19kHz and 21kHz is shown in Fig. 6.7. At the location of maximum

distortion products generation (results shown in the left panels) the primary compo-

nents have the highest magnitudes. Odd order distortion products (cubic distortion,

2f1 − f2 = 17kHz and 2f2 − f1 = 23kHz, and 5th order distortion at 15kHz and

25kHz) are generated. Even order distortion products are also present but have a

much lower magnitude. Note the constrast with the results of Fig. 5.6 for single

tone stimulation in Chapter V; the 2nd order distortion has the highest magnitude

in single tone stimulation while the cubic distortion components have the highest
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Figure 6.6: Spatial plot of the primaries and cubic distortion product 2f1 − f2. The
frequencies of the primaries are f1 = 19kHz and f2 = 21kHz, the cubic
distortion product frequency 2f1− f2 is 17kHz. The two primary compo-
nents of the stapes displacement are both 3.16×10−9nm. Thin solid line:
f1 component; thin dashed line: f2 component; thick solid line: 2f1 − f2
component. a. Magnitude of the BM displacement as a function of x. b.
Phase of the BM displacement relative to the stapes. c. Power delivered
by somatic motility to the different components of the response. The lo-
cation of the peak displacement of the f1, f2 and 2f1−f2 components are
indicated by vertical dashed line. The location of the maximum 2f1 − f2
generation (which corresponds to a local maximum in the power)is indi-
cated by a solid vertical line.
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magnitude in two-tone stimulation. The components of highest order have a lower

magnitude. At the 2f1−f2 best place (shown in the right panels), frequencies close to

17kHz are amplified by the cochlear amplifier while the other components are filtered

out. Therefore at low intensity the 2f1 − f2 cubic distortion component has a higher

magnitude than the primary components and then 5th order 15kHz component has a

higher magnitude than the 3rd order 23kHz component.

6.4.3 Dependence of DP on the level of the primaries

The predictions of the cubic distortion component, 2f1− f2, depends on the mag-

nitude of the primary components of the stapes displacement, as shown in Fig. 6.8. If

the value of the two primary components are kept the same, as in Fig. 6.8(a), the DP

component of the BM displacement is predicted to grow at a fast rate with respect of

the stapes displacement (2.8dB/dB) for very low magnitude of stapes displacement

(less than 5×10−4nm) then grows with a slower rate, until a maximum is reached for

primary components of stapes displacement of magnitude 10−2nm to 1nm, depending

on the value of the ratio f2/f1. The predictions are in good agreement with the data

from Robles et al. [131, 132] who observed (in the chinchilla) a monotonic growth

of the cubic distortion product from about 30dB SPL to 70dB SPL, with a rate of

1.3dB/dB at relatively low intensity of stimulation (about 30dB SPL), and a decrease

for higher level of stimulation. In Fig. 6.8(b) the magnitude of the f2 component of

the stapes displacement is kept constant and the magnitude of the f1 component is

varied. The model predictions are in very good agreement with experimental data

[26, 132]. The distortion product grows at low intensity of the f1 component with the

same rate as in the measurements (2dB/dB), then reaches a maximum (that depends

on the value of the f2 displacement), and decreases at higher intensity of the f1 com-

ponent. The magnitude of the 2f1 − f2 component is plotted as a function of the f2

component of the stapes displacement for a fixed f2 component at the stapes in Fig.
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Figure 6.7: Predictions of the frequency spectrum when the cochlea is stimulated
by two tones of frequencies f1 = 19kHz and f2 = 21kHz. Left panels:
at the location of maximum distortion products generation (x=0.3cm).
Right panels: at the 2f1 − f2 BP (x=0.4cm). The magnitude of the
two primary components of the stapes displacement are the same, and is
increased from 10−3nm (a and b) to 10nm (e and f). The magnitudes of
the different components of the BM displacement, in dB relative to 1nm,
are plotted for the different harmonic component; the frequency of the
components is indicated on the horizontal axis.

108



6.8. In that case the distortion product is a linear function of the f1 component at

low intensity of stimulation, as the rate of growth is 1dB/dB, as in the experimental

data [132]. The distortion product reaches a maximum and then decreases at higher

intensity of stimulation.

6.4.4 Dependence of the 2f1−f2 distortion component on the ratio of the

frequencies of the primaries

The generation and the amplification of distortion products, and particularly of

the cubic distortion component 2f1 − f2, depend on the ratio of the frequencies of

the primaries, f2/f1, a shown in Fig. 6.9. For low or moderate intensity of the

primary components of the stapes displacement (10−4nm or 10−2nm), the model

predicts that the cubic distortion is maximum for a ratio of 1.15 to 1.2, which is similar

to the experimental data in [132]. For larger stapes displacement, the magnitude of

the 2f1 − f2 is also a nonmonotonic function of the frequency ratio but the model

predictions are significantly different from the experimental data, with a maximum

magnitude predicted to be for high values of the frequency ratio.

6.5 Discussions

6.5.1 The model predicts a realistic response of the cochlea to two tones

The predictions of nonlinear two tone interactions is a good test of the model

as there is extensive published experimental data. By introducing a nonlinearity in

the mechanoelectrical transduction channel the model predicts two tone suppression

and two tone distortion products in good agreement with the measurements. These

predictions are a further validation of the theory that somatic motility is the cochlear

amplifier and that the nonlinearity of the cochlea arises from the nonlinearity of

the transduction channels. Both in the model predictions and in the experimental
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Figure 6.8: Dependence of the 2f1 − f2 component on the magnitude of the primary
components of the stapes displacement at the 2f1−f2 BP. The magnitude
of the 2f1−f2 component of the BM displacement is plotted as function of
the stapes displacement a. The magnitude of the two primary components
at the stapes are the same. The horizontal axis is the magnitude of each
of the primary components of the stapes displacement. Thick solid line:
f2/f1 = 1.1; thin solid line: f2/f1 = 1.15; thin dashed line: f2/f1 = 1.26.
b. The magnitude of the f2 component of the stapes displacement is
fixed, to 10−4nm (thick solid line), 10−2nm (thin dashed line) and 1nm
(thick dashed line). The ratio f2/f1 is 1.1. The horizontal axis is the
f1 component of the stapes displacement. c. The magnitude of the f1
component of the stapes displacement is fixed to 10−4nm (thick solid line),
10−2nm (thin dashed line) and 1nm (thick dashed line). The ratio f2/f1
is 1.1. The horizontal axis is the f2 component of the stapes displacement.
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Figure 6.9: Effect of the frequency ratio f2/f1 on the prediction of the cubic distortion
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BP for f1 and f2 components of the stapes displacement of the same
magnitude. Thick solid line: for a 10−4nm stapes displacement. Thin
dashed line: for a 10−2nm stapes displacement. Thick dashed line: for a
1nm stapes displacement.

data, the magnitude of the cubic distortion product is a nonlinear function of the

level of the primaries and of the frequency ratios; three mechanisms contribute to

the complex nature of distortion products: the generation of distortion products

(due to the nonlinearity of the transduction channels in the region where the two

primaries overlap), the amplification of the distortion product close to its BP and

the suppression of the primaries and of the distortion products. The nice predictions

of the characteristics of distortion products suggest that the model captures well

the dynamics of the cochlea (including the vibrations of the organ of Corti) at high

frequencies.

6.5.2 Deficiencies of the model for low side suppression

Despite some realistic predictions about two tone suppression and a good capture

of the quantitative differences between high side and low side suppression there are

some deficiencies in the results for a low side suppressor. If the frequency of the
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suppressor is less than about 5kHz, the displacement required to suppress the BM

displacement is much higher than in experimental data. Moreover phasic suppression

(modulation of the response to the probe component by a low frequency suppressor)

is not as pronounced in the model predictions (results not shown) as in experimental

data [19, 51]. These deficiencies of the model could be due to an incorrect prediction

of the HB deflection (which induces an inaccurate prediction of the transduction

current) at low frequencies for basal locations, since the effect of a low frequency

suppressor on a high frequency probe depends on the prediction of the transduction

current at low frequencies. At low frequency compared to the CF, the transduction

current does not influence the prediction of the fundamental of the BM displacement;

therefore a wrong value of the HB deflection at low frequency does not affect the

low frequency response of the cochlea (of the fundamental) to a single tone at basal

locations.

6.5.3 Propagation of distortion products in the cochlea

The way distortion products propagate from its location of generation to the

stapes to emit DPOAEs is controversial as two alternative theories coexist. One

theory, supported notably by measurements of the DPOAEs delay [98], is that a

slow backward traveling wave propagates on the BM toward the stapes; the other,

supported by measurements of the phase of the BM motion at different longitudinal

locations [64] or at different frequencies on the BM [36], is that a fast compressional

wave travels in the cochlear fluids (at the speed of sound). In the second theory a slow

forward propagating wave is seen on the BM as the fast wave is reflected on the stapes

and round window. The model results are in agreement with the first theory. Some

further investigation of the directions of wave propagation using different boundary

conditions at the stapes is needed. In the current formulation the stapes are forced to

vibrate with a prescribed displacement; a more realistic model for acoustic stimulation
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would be to apply a force or to couple the stapes to a middle ear model. Another

reason of the difference between the model predictions and the measurements of the

phase of the distortion product on the BM could be due to coupling of the fluid to

the TM that could induce a nonsymmetry in the intracochlear fluid pressure field; in

the current model the fluid is not directly coupled to the TM.
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CHAPTER VII

Conclusions and future work

7.1 Conclusions

In this thesis a mathematical model of the cochlea has been used to simulate

the response of the mammalian cochlea to acoustic stimulation so as to analyze and

improve our understanding of cochlear mechanics. The model is based on the physi-

ology of the cochlea and includes the acoustic, mechanical and electrical domains and

active feedback from somatic motility. The analyses were focused on the response

at basal locations. The parameters of the model are based on measured properties

of the mammalian cochlea, and more specifically of the guinea pig cochlea when the

data is available. Significant insight has been gained regarding the role of structural

longitudinal coupling, the identity of the cochlear amplifier, the role of fast adapta-

tion in cochlear amplification and the nonlinear response of the cochlea using this

theoretical approach.

To analyze the role of structural longitudinal coupling, models for the BM and

the TM, based on experimental data, were implemented in a linear version of the

macroscopic model of the cochlea. Structural longitudinal coupling was found to be

critical for normal hearing as it controls the sharpness of tuning, the sensitivity of

the BM and the speed of transient capture of the BM response to acoustic stimuli.

Although the classical theory of cochlear mechanics is based on a locally reacting
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representation of the cochlear partition, the locally reacting version of the cochlear

model results in a BM response much sharper than experimental data; therefore

longitudinal coupling is necessary for more realistic predictions. In the formulation

used in this thesis, introducing longitudinal coupling in the BM and TM mechanics

does not increase the computational cost. The viscoelasticity of the TM is particularly

important to broaden the response of the BM as it can couple a large number of OHCs.

Several research groups have recently tried to measure the material properties of the

TM [58, 55, 129, 47]. These measurements have been essential to implement a realistic

model of the TM in this thesis. The TM plays an important role in this model of

the cochlea, as the resonance of the TM shear mass enhance the transduction current

close to the CF; moreover the IHC are deflected by the fluid motion due to the relative

shear motion betwen the TM and RL. Unfortunately, measurements of the response

of the cochlea to acoustic stimulation have been focused on the BM and not on the

TM, due to historical reasons and to the difficulty in accessing the TM. Because of the

critical role of the TM in cochlear amplification and IHC stimulation, measurements

of the TM response (as well of the organ of Corti vibrations) to acoustic stimulation

seem necessary to improve our understanding of the cochlea. These measurements

would give important information to validate and improve this cochlear model.

The highly debated issue of the identity of the cochlear amplifier was addressed

in this thesis. The theoretical approach used here, with the linearized version of

an active HB model implemented in the linear macroscopic model of the cochlea,

gives some good insight regarding the role of the two active processes (active HB

dynamics and prestin based somatic motility) in mammalian cochlear mechanics. In

the theory of mammalian cochlear amplification developed here, somatic motility is

the cochlear amplifier as the active HB does not deliver enough energy to modulate

the BM vibrations. However, fast adaptation of the transduction current, due to

the active HB dynamics, controls the sensitivity of the transduction channel to HB
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deflection, and thereby stabilize the cochlea by reducing the energy delivered by

somatic motility. The RC filtering of the OHC transmembrane potential does not

preclude somatic motility from acting as the cochlear amplifier, mostly because of

the high value of the HB conductance as well as of a resonance in the organ of Corti.

The values used as a parameter for the HB conductance, and predicted for the OHC

transmembrane potential, are somewhat higher (but within a reasonable range) than

the best experimental estimates [63, 85]. Efforts to measure these quantities in a

sensitive in vivo setup would give data to test the theory. The model predicts that

somatic motility is necessary to assure a sensitive and tuned BM response to acoustic

stimulation, which is consistent with experimental manipulations of prestin activity

[141, 32].

Finally, the nonlinear mechanics of the cochlea have been predicted using a non-

linear version of the model of the cochlea. An iterative frequency domain approach

(alternating frequency/time method [13]) was used to limit the computational cost.

Due to the weak nonlinearity of the cochlea and to the low number of nonlinear

equations governing its dynamics, this method is particularly efficient. Introducing

a physiologically relevant nonlinearity in the transduction channel results in realistic

predictions of the compressive nonlinearity and harmonic distortion in response to a

single tone and of two tone suppression and distortion products on the BM in response

to two tones. Nonlinear predictions are a good test of the model because of the exten-

sive amount of experimental data to compare the predictions to. The parameters have

been slightly modified to better match the measurements of the nonlinear response

of the cochlea. There are still some quantitative differences between experimental

data and the model predictions, most significantly for the threshold of nonlinearity

in single tone stimulation and the characteristics of low side suppression. This could

be do to some deficiencies in the micromechanical model, possibly in the prediction

of the HB deflection as a function of frequency. But overall the model predictions are
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consistent with the theory that somatic motility is the cochlear amplifier and that

the nonlinearity of the cochlea is due to the nonlinearity of the MET channels.

A computational model such as this one relies on experimental measurements.

One

7.2 Future work and unresolved issues

Significant progress in the understanding of mammalian cochlear mechanics has

been gained using the analyses presented in this thesis. However, the model of the

cochlea could be extended and improved.

The effect of the fast adaptation mechanism on the nonlinear mechanics of the

cochlea still needs to be investigated since it has been ignored in the nonlinear cochlear

model. Using the linear analysis, the active HB force has been shown to be too small

to significantly modulate the BM response to acoustic stimulation. However, the

reduction in the MET sensitivity due to fast adaptation plays an important role in

the sensitivity of the cochlea to low intensity stimulation. The effect of fast adap-

tation of mechanotransduction is nonlinear, as no adaptation is seen for very large

HB deflection. Implementation of a nonlinear version of the active HB dynamics in

the nonlinear model of the cochlea is still needed to further validate and refine the

theory established in this thesis about the role of the active HB dynamics in cochlear

mechanics.

Another part of the model that could be improved concerns the micromechanics

of the organ of Corti. The lack of current experimental data about the dynamics of

the organ of Corti makes it difficult to validate the micromechanical model. Some

ongoing research in Freeman’s group [65] and Nuttall’s group [18] focus on the in vivo

imaging and measurements of the vibrations of the organ of Corti during acoustic

stimulation. These measurements could be used to improve the micromechanical

model. Some potential improvements include introducing longitudinal coupling in
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the RL, the modeling of the phalangeal process, and including a mass for the RL,

OHC and Deiter’s cells. The micromechanical model could also be extended to model

the fluid in the subtectorial space and the fluid forcing on the IHCs.

The model predictions at apical locations are not very realistic and still require

some effort. One of the important question at the apex is the role of HB motility and

somatic motility at these locations. There are some qualitative differences between

the mechanics of the cochlea at basal and apical locations according to experimental

measurements of the mechanical vibrations at apical locations [24, 22, 82, 83], which

could be due to a more prominent role of HB motility at the apex of the cochlea. The

improvement of the model at apical locations and the investigation of the role of the

two active processes at low frequency are still needed.

Finally, the predictions of distortion products on the BM could be pursued to an-

alyze in details their propagation on the BM and the generation of DPOAEs. Reverse

wave propagation of DPOAEs on the BM is a controversial topic in cochlear mechan-

ics due to the different conclusions based on the measurements of the characteristics

of DPOAEs [98] and of the phase of distortion products on the BM [64, 36]. A better

understanding of the way distortion products leave the cochlea (as a slow backward

propagating wave on the BM or as fast compressional fluid in the fluid) is needed

for a better use of DPOAEs as a noninvasive diagnostic tool of abnormal hearing.

The influence of different boundary conditions and of fluid forcing on the BM on the

predition of wave propagation and the coupling of the cochlear model to a middle ear

model could be studied. If the model can successfully replicate experimental data of

distortion products generation and propagation on the BM and DPOAEs emission,

the predictions of the spectrum and delays of DPOAEs could be then used to test

different hypothesis of abnormal emissions in relationships with the mechanics of the

cochlea.
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APPENDIX A

Estimation of the TM stiffness per unit length,

Ktms.

Richter et al.[129] measured the TM radial stiffness in the gerbil hemicochlea using

a piezolectric probe of diameter d = 25µm. For static measurements, the governing

equation Eq. 2.2 for the TM radial displacement of the TM is given by (neglecting

the variations of Aeff
tm and Gxy as a function of x):

fext(x) = Ktmsutms − Aeff
tm Gxy

∂2utms

∂x2
, (A.1)

where fext is the force per unit length applied by the probe. The probe deforms the

TM with the following mode shape:

utms(x) = U if |x− x0| <
d

2

utms(x) = Ue−
|x−x0|

λ if |x− x0| >
d

2

(A.2)

where x0 is the center of application of the probe force, U is the displacement of the

TM at the probe tip and λtm =

√

Aeff
tm Gxy

Ktms
. Therefore the stiffness measured by the
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probe is:

K =

∫ (x0+d/2)+

(x0−d/2)−
fext(x)dx

U
= Ktmsd

(

1 + 2
λtm
d

)

(A.3)

With the parameters used in our simulations, at x = 0.4cm (which corresponds to

the 17kHz BP in the guinea pig), Ktms = 4.2kPa, Gxy = 2.1kPa, Aeff
tm = 3120µm2,

so that λtm = 40µm and K = 4.2×Ktmsd = 0.44N/m. In the gerbil cochlea, at the

17kHz BP, Richter et al. measured K = 0.255N/m (when the TM is detached from

the stereocilia).
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APPENDIX B

Parameters of the macroscopic model of the

cochlea.
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Table B.1: Basilar membrane properties (x is in m)
Properties Value in Value in Ref

Chapters III and IV Chapters V and VI

Dxx(N.m) 0 in LR and TM-LC
6.5× 10−11 in BM-LC
and TMBM-LC 4× 10−11 [89]

Dxy(N.m) 0 in LR and TM-LC
3.1× 10−11 in BM-LC
and TMBM-LC 10× 10−11 [89]

Ds(N.m) 0 in LR and TM-LC
4.3× 10−11 in BM-LC
and TMBM-LC 4.3× 10−11 [89]

Dyy(N.m) 1.9× 10−9( hbm

7×10−6 )
3 1.8× 10−9( hbm

7×10−6 )
3 [60, 121]

Mbm ρbmhbm ρbmhbm [121]
where ρbm = 1000kg/m3 where ρbm = 1000kg/m3

Cbm(N.s/m
2) A2

210.01
Ltm

Lst
+ 0.85× 10−1 A2

210.01
Ltm

Lst
+ 0.5× 10−1

b (m) (80 + 54× 10−2x)× 10−6 (80 + 54× 10−2x)× 10−6

h (m) (7− 2.86× 10−2x)× 10−6 (7− 2.86× 10−2x)× 10−6

Table B.2: Tectorial membrane properties (x is in m)
Properties Value in Value in Reference

Chapters III and IV Chapters V and VI

Aeff
tm A0

tme
50xkg/m A0

tme
50xkg/m

A0
tm = 2600µm2 A0

tm = 2600µm2 based on[129]
Ktms 1.4× 104e−αtmxN/m2 0.42× 104e−αtmxN/m2 based on [129],

with αtm = 300m−1 with αtm = 300m−1 see Appendix B

Mtms 0.9ρtmA
eff
tm 0.9ρtmA

eff
tm

ρtm = 1200kg/m3

Gxy 7.0e−αtmxkPa 8.0e−αtmxkPa [47]
ηxy 0.05Pa.s 0.02Pa.s 0.20 Pa.s in the

mouse TM [55]
Ctms(N.s/m

2) 0.01× Ltm

Lst
0.01× Ltm

Lst

Ktmb 1.4× 104e−αtmxN/m2 0.42× 104e−αtmxN/m2 based on [129],
with αtm = 300m−1 with αtm = 300m−1 see Appendix B

Mtmb 0.77ρtmA
eff
tm 0.77ρtmA

eff
tm

Ctmb(N.s/m
2) 0.5× 10−1 1.0× 10−1
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Table B.3: Organ of Corti properties (x is in m)
Properties Value in Value in Reference

Chapters III and IV Chapters V and VI
Khb(N/m

2) 5.8× 104exp(−0.033x) 5.2× 104exp(−0.033x) [151]
Kohc(N/m

2) 6.0× 103exp(−0.0315x) 6.3× 103exp(−0.0315x)
Krl(N/m

2) 6.0× 103exp(−0.0315x) 6.3× 103exp(−0.03.15x)

Table B.4: Geometrical parameters (x in m)
Properties Value Reference
LRo 40µm [107]

Lpc
b
3

[107]
L1 13µm [107]
L0 0.5b [107]

Lt
Ltm

3
[107]

α 25degrees to 45 degrees (apex) [147]
β = α assumed
θ1 60 degrees [107, 30]
θ2 60 degrees [107, 30]
Lohc 20µm (base) - 6µm (apex) [147]
Lhb 1µm (base) -6µm (apex) [29]
Duct height for SV,ST 0.1cm [42]
Duct Width (W) 0.1cm [42]
Duct length (L) 1.85cm [42]

Table B.5: Somatic motility and mechanotransduction parameters (x in m)
Prop. Value in Value in Value in Ref.

Chapter III Chapter IV Chapters V
and VI

ǫ3 ǫ03 × (1 + 10x) ǫ03 × (1 + 10x) ǫ03 × (1 + 10x) [72]
(N/m/mV) where ǫ03 = where ǫ03 = where ǫ03 =

−1.04× 10−5 (TMLC) 1.04 × 10−5 −1.04 × 10−5

−0.784 × 10−5 (BMLC)
−1.12× 10−5 (TMBMLC)

−0.616 × 10−5 (LR)

fgs (pN) 5 5 10 [8]

γ 0.5×10−6m
Lhb

0.5×10−6m
Lhb

0.5×10−6m
Lhb

[103]

Gmax
a (nS) 462exp(−αGx) 795exp(−αGx) 357.5exp(−αGx) [63]

αG = 0.0215m−1 αG = 0.0225m−1 αG = 0.0225m−1
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Table B.6: Electrical parameters (x in m)
Properties Value Reference
G0

a 100µS/m [31]
1/Rm 5100µS/m (base) - 360 µS/m (apex) [66]
Ca 50nF/m [31]
Cm 1800nF/m (base) - 4200nF/m (apex) [66]
Vsm − Vohc (150-1000x)mV [149]
Rvl 10Ωm [149]
Rtl 4Ωm [149]
Rvm 25Ωm [149]
rsv 3MΩ/m [149]
rsm 5MΩ/m [149]
rst 150MΩ/m [149]
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APPENDIX C

Equations governing the nonlinear six state

transduction channel model.

The equations governing the six state model of the HB dynamics (Fig. 5) are

described next.

When the channel is open, the binding and unbinding rates are denoted as k2 and

r2k2, where

k2 = Ko
BC

o
fa (C.1)

r2 =
Ko

D

Co
fa

(C.2)

When the channel is closed, the binding and unbinding rate are denoted as r4k4 and

k4 where

k4 = Kc
BK

c
D (C.3)

r4 =
Cc

fa

Kc
D

(C.4)

Note that k2 and k4 are assumed to be independent, which means that Ko
B and Kc

B

have different values.
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When no calcium ion is bound to the channel (states 1 and 2), the rate of channel

opening k0co, and closing, k0oc, are given by:

k0co = k1 exp(
fgsx

2kBT
) (C.5)

k0oc = r1k1 exp(−
fgsx

2kBT
) (C.6)

where x is the displacement of the HB in the tip link direction, k1 is a constant and

r1 is given by:

r1 = exp
(−∆E0

kBT

)

(C.7)

where ∆E0 is a constant energy. The reaction coordinate of gating in the closed to

open transitions [17], is assumed to be 0.5 for simplicity. When 1 or 2 calcium ions are

bound to the channel (nCa = 1 or 2), the rates of channel opening, knca
co and closing,

knCa
oc (where nCa = 1, 2) are given by:

knCa
oc = k2nCa+1 exp(

fgsx

2kBT
) (C.8)

knCa
co = r2nCa+1k2nCa+1 exp(−

fgsx

2kBT
) (C.9)

where r3 and r5 are given by:

r2nCa+1 = exp
(∆E0 − nCaǫCa

kBT

)

,where nCa = 1, 2 (C.10)

and k3 and k5 are given by:

k2nCa+1 = k1r1exp(
nCaǫCa

2kBT
),where nCa = 1, 2 (C.11)
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APPENDIX D

Computation of the effect of calcium on the model

predictions.

The derivation of the equations governing the response of the HB for small per-

tubations in the external calcium concentration Co
fa (Fig. 4) are described next. The

vector of the probabilities, P, is governed by the following equations at equilibrium:

A(
fgs(x− xa)

2kBT
, Co

fa)P = 0 (D.1)

where the matrix A is a function of fgs(x−xa)
2kBT

and of the extracellular calcium con-

centration Co
fa. Only the rate k2 and the ratio r2 depends on Co

fa. If P
s denotes the

vector of resting probabilities with the resting calcium concentration and the position

of the HB, xs, and of the slow adaptation motor, xsa are xs = xsa = 0 the change

in the equilibrium probabilities of the channel for small pertubations in the calcium

concentration is governed by the following equation:

0 = A
∂P

∂Co
fa

δCo
fa +

[∂(x − xa)

∂Co
fa

fgs
2kBT

∂A

∂(x− xa)
+

∂A

∂Co
fa

]

PsδCo
fa (D.2)
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so that the pertubations in the resting probabilities are:

∂P

∂Co
fa

δCo
fa = −A−1

[∂(x− xa)

∂Co
fa

fgs
2kBT

∂A

∂(x − xa)
+

∂A

∂Co
fa

]

PsδCo
fa (D.3)

The slow adaptation motor force, fmot, is assumed to be independent of the cal-

cium concentration. At equilibrium, the equation governing the slow adaptation

motor [153] is:

fgs − kes(xa − xes)− fmot = 0 (D.4)

where kes is the extent spring stiffness (to account for incomplete adaptation [144]).

For small pertubations in the calcium concentration,

∂xa
∂Co

fa

=
kgs

kes + kgs
(
∂x

∂Co
fa

− d
∂P0

∂Co
fa

) (D.5)

At equilibrium, the equation governing the displacement of the HB, Eq. 5, is

reduced to:

Nγfgs +Ksp(uhb −Xsp) = Fext. (D.6)

For small pertubations in the calcium concentration,

Nγkgs(
∂x

∂Co
fa

−
∂xa
∂Co

fa

− d
∂P0

∂Co
fa

) +Kspγ
∂x

∂Co
fa

=
∂Fext

∂Co
fa

(D.7)

To determine the new operating point would require solving Eqs. D.3, D.5 and

D.7. However, the right hand side in Eq. D.7 depends on the forces in the cochlea at

equilibrium and on the resting position. Rather than computing the equilibrium in

our macroscopic model of the cochlea, we make an approximation so as to uncouple

the resting position of the HB from the other equilibrium displacements and forces

in the cochlea. We chose to neglect the change in the external force: if we assume

that ∂Fext

∂Co
fa

= 0, the pertubations in the resting probabilities, resting HB position and
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Parameter Description Value
kes Extent spring stiffness 5mN/m
Ksp Stereocilia pivot stiffness 3.3mN/m

resting motor position is found by solving Eqs. D.3, D.5 and D.7, with the right hand

side of Eq. D.7 set to 0.

The dynamics of the HB in response to small harmonic pertubations is then com-

puted using Eq. 4.5. The matrix of the system, A, is evaluated for the new operating

point of the HB with the new calcium concentration and the resulting HB and slow

adaptation motor position (Pn,xn,xna), where:

Pn = Ps +
∂P

∂Co
fa

δCo
fa (D.8)

xn =
∂x

∂Co
fa

δCo
fa (D.9)

xna =
∂xa

∂Co
fa

δCo
fa (D.10)

The parameters necessary to compute the effect of calcium on acoustic stimulation

are listed in Table D.
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APPENDIX E

Optimization of the transduction channel

The parameters of the HB model (the rates k1, k2, k4 and the ratio r1, r2 and r4)

are chosen to maximize the energy generated by the HB. The value of k3, k5, r3 and

r5 are then computed by Eqs. C.11 and C.10. Instead of using k1, k2 and k4 for the

optimization, nondimensional parameters are used: R1 = k1
ωref

, R2 = k2
ωref

and rKB
,

where ωref is a reference angular frequency and rKB
is given by:

rKB
=
Kc

B

Ko
B

(E.1)

ωref is chosen to equal to k1 (so that K1 = 1). The angular frequency, ω, is varied
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between 0.01×ωref and 10×ωref . The following optimization problem [115] is solved:

maximize f(R2, rKB
, r1, r2) = max

ω

[

Ehb(ω,R2, rKB
, r1, r2)

]

with respect to R2, rKB
, r1, r2

subject to 0.3 ≤ P s
0 ≤ 0.7

0.1ωref ≤ ωpeak

0.01 ≤ R2 ≤ 4

0.01 ≤ rKB
≤ 10

exp(−20) ≤ r1 ≤ 1.0

0.05 ≤ r2 ≤ 1.0

The objective function f , is the maximum of the energy generated by the HB

over the frequencies considered here. The parameters are optimized to maximize this

objective function. The resting probability, P s
0 , is constrained to be between 0.3 and

0.7. ωpeak denotes the peak radian frequency of the transduction channel sensitivity

|J(ω)|; it is constrained to be at least 0.1ωref . The other constraints are the upper and

lower bounds on the optimization variables. The opposite of the objective function

(−f) is minimized using the routine fmincon in MATLAB for nonlinear constrained

minimization with a line search algorithm. The optimal values of the optimization

parameters are listed in the second column of Table S2. Only the upper bound on

the ratio of the calcium binding coefficient, rKB
, is an active constraint.

The magnitude and phase of the transduction channel filter, as well as the real

part of the active HB stiffness and mechanical energy generated by the HB are plotted

as a function of the normalized frequency Ω = ω
ωref

in Fig. E.1. The magnitude of the

transduction channel is maximal for Ω = 0.37 and the mechanical energy generated

by the HB is maximal for Ω = 0.065. We found that the energy that the HB can

deliver is too small to have a significant impact on cochlear amplification. However the
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Figure E.1: Response of the HB with optimal parameters, as a function of the nondi-
mensional frequency Ω. a. Magnitude and b. phase of the transduction
channel filter, TF (ω). c. Real part of the active HB stiffness and d.
mechanical energy generated by the HB per cycle for a 0.5nm HB dis-
placement. Thick solid line: adaptation is included. Thin dashed line:
adaptation is not taken into account

Parameter With K1 = 1.0 For peak frequency of 17kHz
R1 1.0 2.7027
R2 0.107 0.2892
rKB

10 10
r1 0.8143 0.8143
r2 0.4974 0.4974
r4 0.1256 0.1256

energy delivered by somatic motility depends on the sensitivity of the MET channel

[121]. Therefore in the macroscopic simulations of the cochlea we chose to tune the

transduction channel filter, TF (ω), to the CF. This can be obtained by dividing the

value of R1 and R2 by 0.37. The resulting nondimensional parameter values are shown

in the 3rd column of Table E for the 17kHz best place.
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APPENDIX F

Computation of the error in the nonlinear

simulations

We denote ũmbm(x) the approximate solution of the component m of the BM dis-

placement at the location x and umbm(x) the converged solution of the component m

of the BM displacement at the location x. The relative error at the location x in the

component m of the BM displacement is defined as:

E(x,m) = |
ũmbm(x)− umbm(x)

umbm(x)
| (F.1)

The root mean square of the relative error in the component m of the BM dis-

placement is:

RMSE(m) =

√

√

√

√

1

Nx

Nx
∑

ix=1

E(x(ix), m)2 (F.2)

where Nx is the number of spatial points in the longitudinal direction (Nx = 741 has

been used for the simulations).
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