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CHAPTER I

Introduction

Electrical activity in networks of neurons is an essential part of most brain func-

tions. In Part I of this dissertation, we focus on the particular brain function of

biological timekeeping, and develop the first detailed mathematical model of the elec-

trophysiology of the specific neuronal network responsible for the generation of circa-

dian (∼24-hour) rhythms in mammals. In Part II of this dissertation, we develop a

new statistical method for inferring the functional connectivity of neuronal networks

from multi-neuronal spike trains that is applicable in many different brain areas.

1.1 Part I

Circadian rhythms are 24-hour oscillations in physiological processes and behav-

ior, such as metabolism and the sleep/wake cycle. Disruption of the circadian system

due to night-shift work or travel across time zones (jet lag) can cause negative health

effects such as sleep disorders, and has also been linked to higher rates of cancer, bipo-

lar disorder, and Alzheimer’s disease. Mammalian circadian rhythms are controlled

by a group of about 20,000 neurons in the hypothalamus called the suprachiasmatic

nucleus (SCN). While individual SCN neurons can have an internal molecular clock

mechanism consisting of clock genes and transcriptional/translational feedback loops,

SCN neurons are also coupled to each other and it is their electrical activity that sends
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the timing signal to other brain regions.

In Chapter 2, we develop a model of action potential firing in the SCN network.

With this model we can simulate and track the action potentials of thousands of

model SCN neurons, while experimentally it is only possible to record the activity of

a few dozen SCN neurons at the same time. Our simulations predict that subgroups,

or clusters, of SCN neurons form within which neurons synchronize their firing at a

millisecond time scale. Furthermore, our simulations demonstrate how this clustering

leads to the silencing or adjustment of neurons whose firing is out of phase with the

rest of the population at the 24-hour time scale, giving insight into how the circadian

clock may operate at the network level.

In Chapter 3, we explore a prediction of our model that SCN neurons can ex-

hibit unusual depolarized states. This prediction has been verified by experimental

recordings, and we use the model to show that the observed electrical behaviors can

be explained by existing data on ionic currents measured within SCN neurons. These

behaviors are surprising as they run counter to the traditional view that SCN neurons

express time of day by changing their firing frequency, with high rates during the day

and lower rates at night. We find that clock-containing SCN neurons are actually not

firing at all during the afternoon, when they were thought to be firing the fastest.

In Chapter 4, we refine our model to gain insight into these depolarized states.

We make predictions regarding their role in intercellular communication within the

SCN, and in the ability of external light input to phase shift the circadian clock.

1.2 Part II

In multi-neuronal recordings from other brain areas, precise firing sequences with

fixed time delays between neurons have been observed. To determine whether the

detected temporal patterns of firing are meaningful, it is important to know whether

they are occurring more or less often than would be expected due to chance alone.
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To address this question, we have developed statistical methods for assessing when

the number of occurrences of precise firing sequences is significant. The significant

patterns discovered in multi-neuronal data can be used to infer the functional con-

nectivity between neurons, and potentially represent circuits in the underlying neural

tissue.

In Chapter 5, we develop a method for analyzing the significance of sequential fir-

ing patterns that goes beyond the currently available techniques by allowing the null

hypothesis to include “weak dependence” among neurons and by rank ordering signif-

icant patterns according to the “strength of influence” among participating neurons.

We demonstrate the effectiveness of our method on simulated neuronal networks.

In Chapter 6, we develop a method for assessing significant patterns when we do

not have a count of all the occurrences of a pattern, but rather a count for a certain

well-defined subset called the “non-overlapped” occurrences. The motivation for this

work is that a class of data mining algorithms has recently been shown to be able to

efficiently obtain the non-overlapped counts. Since our approach is computationally

efficient, we can detect significant patterns involving many neurons whereas previous

methods were limited to patterns involving only a few neurons. We demonstrate

the effectiveness of our method on simulated neuronal networks, and then apply the

method to discover the significant connections in spike train data from cultures of

cortical neurons.
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CHAPTER II

Clustering predicted by an electrophysiological

model of the suprachiasmatic nucleus

2.1 Introduction

Circadian (∼24-hour) clocks within cells time many biological processes in a broad

range of organisms. In mammals, timing is coordinated by the bilateral suprachias-

matic nuclei (SCN) of the hypothalamus. This neuronal network processes signals

from the body and the external world, coordinates intracellular rhythms throughout

the SCN, and sends signals to the rest of the body to time rhythms in other tissues.

While the majority of recent circadian research has focused on the intracellular events

that generate timekeeping, there is a growing interest in the network behavior of the

SCN (Herzog , 2007); (Liu et al., 2007); (Freeman et al., 2008). This network operates

on multiple scales, as each unilateral SCN contains approximately 10,000 heteroge-

neous neurons which control rhythms on the time scale of 24 hours by the generation

of action potentials on time scales quicker than a second.

Because of the complexity of the SCN, many researchers have turned to math-

ematical modeling to help understand its behavior. Several mathematical models

exist for the intracellular generation of circadian rhythms (Leloup and Goldbeter ,

2003; Forger and Peskin, 2003, 2005; Forger et al., 2007) and for the behavior of the
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overall circadian system (Daan and Berde, 1978; Kronauer et al., 1999; Forger et al.,

1999). Recent modeling work has focused on the synchronization of cellular clocks

within the SCN on a 24-hour time scale (Indic et al., 2007, 2008; To et al., 2007;

Bernard et al., 2007; Gonze et al., 2005; Bush and Siegelman, 2006) and is part of a

growing field studying coupled oscillators (Strogatz , 2000). However, none of these

aforementioned studies explicitly model the generation of action potentials by SCN

neurons.

Mathematical modeling has also become an established tool for understanding

the firing behavior of neurons, beginning with the publication of the Hodgkin-Huxley

model of action potential generation in the squid giant axon (Hodgkin and Huxley ,

1952). Despite the wealth of experimental data on the electrical activity of SCN

neurons, and the well-established modeling techniques in the field of computational

neuroscience, modeling the electrical activity of the SCN is relatively new. A Hodgkin-

Huxley-type model for the electrical behavior of a single SCN neuron has recently

been developed (Sim and Forger , 2007). Here, we use this model to generate the first

detailed mathematical model of the electrical activity of the SCN at the tissue level.

The electrical activity of the model SCN could be studied on multiple time scales.

One could focus on the 24-hour time scale and coarse changes in the frequency of

neuronal firing. On this slow time scale, the model would be similar to previous

studies (Rohling et al., 2006a,b; Brown and Piggins , 2009). Instead, we focus on the

electrical activity over a shorter time scale (up to 1 minute), where the circadian clock

within individual neurons can be thought of as occupying a set circadian phase. Thus,

we are interested in the specific neuronal signals which encode a set circadian phase,

analogous to the position of hands on a clock. Even the dynamics of neuropeptides

such as vasoactive intestinal peptide (VIP), which can synchronize 24-hour rhythms

(Aton et al., 2005), are likely slow on this fast time scale (Pakhotin et al., 2006).

On this fast time scale, our model can predict the activity of every neuron within
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the network. We will study the patterns that emerge, including synchronous or

asynchronous firing of action potentials across the network. Since we will discuss

both the phase of circadian rhythms (time scale of hours) and the phase of neuronal

firing (time scale of seconds), we will use the term “circadian phase” to refer to the

former and the term “neuronal phase” to refer to the latter in order to delineate these

two cases.

Several neurotransmitters have been proposed as candidate synchronizing factors

within the SCN, such as VIP, gastrin-releasing peptide (GRP), and γ-aminobutyric

acid (GABA). Of these, only GABA is synthesized by most, if not all, SCN neurons

(Aton and Herzog , 2005). GABA receptors are also found all throughout the SCN,

and, while GABA is known to mediate predominantly inhibitory postsynaptic cur-

rents, there is also evidence that GABA can be excitatory in the SCN (Choi et al.,

2008). In this chapter we use a mathematical model of the electrophysiology of SCN

neurons in a network with fast GABAA inhibition and excitation to predict the elec-

trical activity of the SCN. Since current experimental techniques can only record from

a small percentage of SCN neurons, this model gives the first glimpse of the electrical

activity of all SCN neurons simultaneously.

2.2 Methods

2.2.1 Network model

We simulated the electrophysiology of the SCN using networks of N=10,000 inter-

connected SCN neurons. The dynamics of each neuron i, i = 1, . . . , N , was modeled

using the Hodgkin-Huxley formalism including sodium, potassium, calcium, back-

ground, and synaptic currents as in Sim and Forger (2007). The model equations for

the ith neuron were:
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C
dVi
dt

= gNam
3
ihi(ENa−Vi)+gKn

4
i (EK−Vi)+gCarifi(ECai−Vi)+gL(EL−Vi)+Isyni

(t)

dqi
dt

=
qi,∞ − qi
τqi

qi = mi, hi, ni, ri, fi (2.1)

The model parameters were taken from the literature or fit to experimental data

on individual ionic currents within SCN neurons (see Sim and Forger (2007) for a

complete description of the model formulation). All parameter values used in this

chapter are given in Appendix A and were identical to Sim and Forger (2007), except

for the equilibrium values of the sodium gating variables m∞ and h∞, which were

given slightly modified forms based on re-evaluation of experimental data (data not

shown):

mi,∞ =
1

1 + exp(−Vi+35.2
8.1

)
(2.2)

hi,∞ =
1

1 + exp(Vi+62
4

)
(2.3)

However, we note that all of the behaviors reported in this chapter can be obtained

using the m∞ and h∞ functions that originally appeared in Sim and Forger (2007)

as well (data not shown).

To model inhibitory GABAA coupling in the SCN, we induce an inhibitory current

in all neurons which are postsynaptic to a neuron that just fired. We based the

form of this inhibitory postsynaptic current (IPSC) on experimental measurements

of spontaneous inhibitory postsynaptic potentials (IPSPs) recorded in SCN neurons

(Kim and Dudek , 1992). On average, the spontaneous IPSPs reported in Kim and

Dudek (1992) had a rise-to-peak time of 7.2 ms and a decay time constant of 14
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ms. To produce IPSPs with a similar decay in our model, we use IPSCs that decay

exponentially with a time constant of 2 ms. Since the rise time of IPSPs is fast

compared to their decay, we assume the rise of the IPSCs are instantaneous to gain

computational efficiency. The coupling among SCN neurons is implemented through

the synaptic current Isyn(t):

Isyni
(t) = −gsyn

N∑
j=1

∑
k

cijexp(−(t− tj,k)/2) (2.4)

The coupling strength is set by the parameter gsyn (higher gsyn values result in

larger amplitude postsynaptic currents). The binary matrix c keeps track of which

neurons are connected (cij=1 if neuron j is presynaptic to neuron i and 0 otherwise,

j = 1, . . . , N), and tj,k is the time of the kth spike from cell j. By specifying the

connectivity matrix in different ways, we simulated different types of connectivity in

the SCN. For example, to simulate all-to-all coupling (every SCN neuron connected

to every other SCN neuron), we set cij=1 for all i, j. For sparse connectivity, for each

neuron we randomly choose a subset of the N neurons as presynaptic to that neuron

(e.g. to simulate 10,000 neurons with 10% connectivity, for each i we set cij=1 for

1,000 randomly chosen j’s). To simulate an uncoupled network, we set cij=0 for all i, j

(or alternatively we set gsyn=0). To model excitatory GABAA coupling in the SCN,

we simply reverse the sign of all synaptic currents entering a subset of the neurons.

All simulations and analysis were conducted using C and MATLAB R2007a (The

Mathworks Inc., Natick, MA). The equations were solved using a fifth-order Runge-

Kutta method with adaptive stepsize control (Press et al., 1992) and a maximum

time step of 1 ms.

2.2.2 Neuronal heterogeneity

Dissociated SCN neurons grown in low-density cultures maintain circadian rhythms

in their electrical activity, but the circadian phase is not synchronized across neurons
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(Welsh et al., 1995). Thus at any given point of time, the state of the intracellular

clock within each neuron is not identical throughout the population. Moreover, since

the concentration of intracellular calcium, [Ca2+]i, is under the control of the clock

(Ikeda et al., 2003), we would expect there to be variation in the levels of [Ca2+]i across

a population of isolated neurons as a function of the circadian phase of their intra-

cellular clocks. Since [Ca2+]i is related to the model parameter ECa (the equilibrium

potential for calcium) through the Nernst equation, we simulate this heterogeneity

by assigning different values of ECa to the neurons in our network. We take each

neuron’s ECa,i from a normal distribution with a mean of 61 mV and a standard de-

viation of σECa
. This gives each neuron a slightly different intrinsic firing frequency.

To simulate identical neurons, we set σECa
=0.

Although the intracellular calcium concentration is not the only factor that con-

tributes to the heterogeneity of SCN cells, we find that varying [Ca2+]i alone is suffi-

cient to create significant changes in the intrinsic firing rate of our model SCN neurons.

Alternatively, variations in calcium channel conductance (gCa) or potassium channel

conductance (gK) could be used to alter firing rates in the model as shown in Sim

and Forger (2007).

2.2.3 Noise mechanisms

Synaptic transmission can be a highly unreliable process, with the probability of

neurotransmitter release at an individual synapse ranging from 0.1 to 0.9 in central

neurons in vitro (Koch, 1999). We simulate this type of synaptic noise by treating

synaptic transmission as a binary event with a probability of success p. Whenever

a presynaptic neuron fires a spike, for each postsynaptic neuron we draw a random

number q from a (0,1) uniform distribution, and if q ≤ p we induce a postsynaptic

current in that neuron. Setting p=1 makes synaptic transmission 100% reliable, while

setting p=0 corresponds to uncoupled neurons.
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In addition to synaptic transmission being a probabilistic event, there is also ran-

domness in the amplitude of the postsynaptic response. In a study of a rat neocortical

pyramidal cell, the variance in the size of evoked postsynaptic potentials was as large

as the mean (Koch, 1999). To incorporate this type of variability in our simulations,

for each successful synaptic transmission we randomly choose the synaptic conduc-

tance for that event to be anywhere in the interval [gsyn ± k × gsyn/2]. Setting k=0

corresponds to no randomness in the amplitude of postsynaptic currents. In this

chapter we limit ourselves to k ≤1.

2.2.4 Order parameters

To quantify the synchrony of a population of spiking neurons, we compute an or-

der parameter R (Garcia-Ojalvo et al., 2004; Golomb and Rinzel , 1994). Golomb and

Rinzel (1994) defined the order parameter as the ratio of the time-averaged fluctua-

tions of the population-averaged voltage across all N neurons, V (t) = 1
N

∑N
i=1 Vi(t),

over the population average of each cell’s time-averaged Vi fluctuations:

R =
var(V )

1
N

∑N
i=1 var(Vi)

(2.5)

If the population is completely disordered then R ≈0, on the other hand if the

population is fully synchronized then R ≈1. An intermediate R value indicates partial

synchronization.

In addition to R, we also calculate the higher-order parameters, zn, which detect

the segregation of a population of coupled oscillator into n clusters as described in

Golomb and Hansel (2000):

zn =
1

N

N∑
i=1

einφi (2.6)

where φi is the neuronal phase of the ith neuron (defined below). For example, if a
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population forms 3 equally sized clusters oscillating 1/3 out of neuronal phase with

each other, then z1=z2=0 while z3=1. We define φi as:

φi(t) =

(
t− tlap
tnap − tlap

)
× 2π (2.7)

where tlap is the time of the last action potential from neuron i before t, and tnap is

the time of the next action potential from neuron i after t. Neurons which did not

fire were excluded from higher-order parameter analyses.

2.3 Results

Here, we describe results from simulations that predict the electrical activity of the

SCN. Our simulations contained 10,000 individual SCN neurons which communicated

via inhibitory GABA postsynaptic potentials. Inhibitory coupling did not lead to

desynchronized firing throughout the SCN, rather we found that large “clusters” of

SCN neurons fired synchronously (e.g. see Fig. 2.1B-C).

We then studied how the clustering depends on network properties such as the

synaptic strength and density, as well as the amount of heterogeneity in the neuronal

population. Our simulations tracked the electrical behavior of every SCN neuron

within a lobe. Since it is only possible to experimentally record from 100 or fewer

of the 10,000 SCN neurons, we make testable predictions about the clustering of

electrical activity in recordings from a small number of neurons by analyzing the

behavior of 100 neurons randomly sampled from the 10,000 neurons in our simulations.

2.3.1 Order and Disorder in the SCN

Simulation of 10,000 uncoupled SCN neurons (gsyn=0) with random initial states

showed spontaneous, desynchronized firing. In these uncoupled network simulations,

we found no evidence of coordinated firing throughout the SCN (see Fig. 2.1A-B).
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This disordered state was characterized by an order parameter near zero (R=1.35E-

4 ± 3.39E-5, mean ± SD of 100 simulations for the uncoupled case with different

initial conditions). To simulate the effect of fast GABAA inhibitory post-synaptic

potentials, the most prevalent signal among SCN neurons, we modeled inhibitory

coupling between SCN neurons. Our initial simulations coupled each neuron to all

other neurons (all-to-all coupling). While neurons in these simulations started in

random initial states, we found that coordinated behavior emerged within the first few

seconds of the simulations. The inhibitory coupling caused the formation of clusters

where large fractions of the SCN fired synchronously. Given sufficient time, we found

that this clustered firing behavior occurred for all coupling strengths. Figure 2.1C-F

shows this behavior for two coupling strengths. In each case, three groups of firing

neurons were formed and the time between the firing of each cluster was approximately

constant. Here, the order parameter R was approximately 1/3, which indicated partial

synchronization and also suggested the presence of three synchronously firing groups

(R=0.29 ± 5.91E-4 over 100 simulation replications with gsyn=0.001). We verified

the existence of a 3-cluster state visually using the voltage traces and by calculating

higher-order parameters z1 through z5 (e.g. see Figures 2.1 and 2.2). We consistently

found agreement between the clustered state seen visually and the values of R and

higher-order parameters. We also noticed that the order parameter decreased slightly

for the higher coupling strength (R=0.27 ± 5.91E-4 over 100 simulation replications

with gsyn=0.01). In this case the SCN was divided into four clusters, three clusters

firing out of neuronal phase with the other clusters and a fourth group of neurons

that did not fire. These results led us to hypothesize that GABAA coupling could

indeed produce an ordered state of the SCN.

At both coupling strengths, we found that the size of the clusters varied depending

on initial conditions. For example, with gsyn=0.001 the size of the largest of the three

clusters ranged from 3,379 to 3,459 while the size of the smallest cluster ranged from
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3,194 to 3,286 over the 100 simulation replications. With gsyn=0.01, the number of

neurons that were silenced ranged from 1,376 to 2,178.

2.3.2 Exploring Network Properties of the SCN

Many of the network properties of the SCN, such as the coupling strength and

the degree of connectivity, are difficult to measure experimentally. We can explore

such properties using our model, and determine if the clustering behavior persists

for a wide enough range of parameter values to include those likely present in the

SCN. We first lowered the coupling strength (Fig. 2.2A-B) and found that even at

very low coupling strengths (e.g. 100 fold less than those used in Fig. 2.1E-F),

clustering of neuronal states still emerged. The transition from a disordered state

to an ordered state was delayed by up to a minute at low coupling values. Figure

2.2B shows a network that is transitioning to the ordered state and the consolidation

of spikes into a cluster. We also explored higher coupling strengths, and found that

for gsyn ≥0.1 all-to-all coupling produced large hyperpolarizations of the membrane

(data not shown).

In the actual SCN, a given neuron only synapses onto a fraction of other SCN

neurons. To explore the effect of partial connectivity, we performed a series of sim-

ulations with increasing connectivity, beginning with simulations where each neuron

synapses onto just 1% of the network up to simulations with 99% connectivity. In

each simulation the specific synaptic connections were chosen randomly. For each

connected SCN, we also simulated a variety of coupling strengths. At the moderate

and high coupling strengths, clusters began forming within the first 60 seconds of

simulation with network connectivity as low as 5-10% (Fig. 2.2C). At low coupling

strength and low connectivity, clustering was not observed during the first 60 seconds

of simulation (Fig. 2.2C), but clusters did form after a long initial transient (data

not shown) similar to the simulations shown in Fig. 2.2A.
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Figure 2.1: Formation of clusters in simulations of 10,000 homogeneous suprachias-
matic nuclei neurons. (A,B) Uncoupled neurons. (A) Spike raster of 100
randomly chosen neurons demonstrate that without coupling each neuron
spikes regularly with its phase dependent only on initial conditions. No
patterns in spike timings across the population are evident. (B) Voltage
traces of the 100 neurons for the 20th second of simulation. Order param-
eter R ≈0 and low values of the higher-order parameters (z1 through z5 at
t=19 sec) indicate the voltage trajectories are completely asynchronous.
(C,D) Inhibitory all-to-all coupling, gsyn=0.001. Neurons quickly segre-
gate into 3 clusters; within each cluster all neurons spike in synchrony
and follow the same voltage trajectory. (D) The blue, black, and green
clusters contain 3406, 3364, and 3230 neurons, respectively. The presence
of 3 clusters is confirmed by the higher-order parameter z3=1.00 at t=19
sec. The 3 clusters themselves fire out of phase with each other, resulting
in an R value around 0.29. (E,F) Inhibitory all-to-all coupling, gsyn=0.01.
Neurons almost immediately segregate into 4 clusters, 3 of which consist
of spiking neurons while the neurons in the 4th cluster never spike. (F)
The blue, black, green, and red clusters contain 2865, 2844, 2793, and
1498 neurons, respectively. z3=1.00 at t=19 sec (calculated based on the
phases of spiking neurons only) confirms there are 3 clusters of spiking
neurons. The presence of the silenced cluster leads to a slightly lower R
value (0.27) than the 3-cluster state.
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Recordings from small populations of SCN neurons show that at a given time of

day there is heterogeneity in the firing frequencies of individual neurons (Brown and

Piggins , 2007). We simulate heterogeneity in firing frequency through variation in

the equilibrium potential for calcium (ECa) of the neurons. The rationale for this

approach is that ECa is related to the intracellular calcium concentration of SCN

neurons, which has been demonstrated to be under the control of the circadian clock

(Ikeda et al., 2003). Moreover, a study by Quintero et al. (2003) suggests a correlation

between the firing frequency of a SCN neuron and the state of its intracellular clock

(Brown and Piggins , 2007). By allowing different values of ECa for the neurons in

our simulation, each neuron has slightly different dynamics and firing frequency corre-

sponding to the circadian phase of its intracellular clock. When these heterogeneous

SCN neurons were simulated, we found that clustering could still occur. However,

larger amounts of heterogeneity required larger coupling strengths for clustering (Fig.

2.2E). The firing within clusters from the heterogeneous network was not perfectly

synchronized, referred to as “smeared clusters” (Golomb and Hansel , 2000), and not

all neurons were firing as part of a cluster during the 60th second of simulation (Fig.

2.2F). This explains why the order parameters for these simulations were below 1/3.

While the majority of GABA transmissions between SCN neurons are inhibitory,

excitatory effects of GABA have been reported in a minority (less than 25%) of SCN

neurons (Choi et al., 2008). To test whether such excitatory responses affect the be-

havior of our network simulations, we had GABA induce EPSPs rather than IPSPs

in a subset of the neurons in our network. Even if 25% of the neurons responded to

GABA with excitation, the network simulations and clustering behavior were rela-

tively unaffected. However, if the majority of connections were excitatory, the net-

work could organize into a state where all neurons fire synchronously in one cluster

(data not shown). Interestingly, having an excitatory effect of GABA on a minority

of neurons in the network seems to lead to increased coherence within the clusters
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compared to an all-inhibitory network (compare Fig. 2.2F and 2.3B) suggesting a

possible functional role for excitatory GABA in the SCN.

2.3.3 Dynamic Clustering in the SCN

A morphometric study by Guldner (1984) estimated an average of 11,900 neurons

and 1,264 synaptic appositions per neuron in the SCN of female rats. Based on this

experimental estimate, we, from now on, examine closely the results of simulations

with 10% connectivity in order to predict the firing behavior of the SCN. In simula-

tions with 10% connectivity and heterogeneity (σECa
=0.5), we detected the presence

of clusters with near synchronous firing by calculating the instantaneous firing rate

of the population (the total number of spikes being fired across the SCN in each

millisecond) as shown in Figs. 2.4A-B. Without coupling (gsyn=0), there was a rel-

atively constant low level of firing across the network throughout time (Fig. 2.4A).

With coupling (gsyn=0.1), there were extended periods of inactivity with very little

firing across the network punctuated by bursts of 500 or more neurons firing syn-

chronously (Fig. 2.4B). Each time a cluster fired, the total number of neurons firing

together was not necessarily the same as in the previous firing of that cluster (Fig.

2.4B). This behavior can be understood via the raster plot in Fig. 2.4C, showing

spiking from 100 neurons randomly chosen from the network. The neurons are sorted

vertically according to their earliest spike time (after the 15th second) to make the

three clusters clearly visible. The membership of the clusters was not constant but

rather changed over time, referred to as “dynamic clustering” (Terman et al., 2008).

A few examples of individual neurons that do not reliably fire within the same cluster

throughout the 5 seconds of simulation are shown in Fig. 2.4C: (1) neuron 57 orig-

inally fired with the middle cluster, but after two cycles it switched and joined the

bottom cluster; (2) neuron 78 initially fired with the top cluster, but did not fire in

the last several cycles; and (3) neuron 25 was silent for the first 14 cycles, but then
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Figure 2.2: Clustering depends on network properties. (A,C,E) Each R value is
computed for the 60th second of a 10,000 neuron simulation. In A-D the
neuronal population is homogeneous. (A) As the coupling strength (gsyn)
decreases, it takes longer for the 3-cluster state to form (R ≈0.3). Sim-
ulations are with all-to-all coupling. (B) Voltage traces of 100 randomly
chosen neurons for the 45th second of simulation with gsyn=0.0001 and
z3=0.95 at t=44 seconds indicate that the network is transitioning to the
3-cluster state but that some neurons have not yet joined a cluster. (C)
The synaptic density (% connectivity) of the network affects the degree
of clustering. With very low connectivity, the network behaves as if the
neurons are uncoupled. For each coupling strength (gsyn), as the con-
nectivity is increased there appears to be a value at which the network
transitions from a disordered state (R ≈0) to one that exhibits some or-
der (R > 0). As the connectivity approaches 100% (all-to-all coupling),
the network goes to the 3-cluster state (R ≈0.3). At lower connectivities,
R values close to 0.3 are occasionally seen for certain initial conditions
(data not shown). (D) Voltage traces of 100 neurons randomly chosen
from a network with gsyn=0.0005 and 16% connectivity show 3 clusters
still in the process of forming (z3=0.87 at t=59 sec). (E) As the amount of
heterogeneity in the intrinsic firing rate and dynamics of the neuronal pop-
ulation (σECa

) is increased, the degree of order in the network decreases.
Simulations are with 10% connectivity. (F) Clustering is still evident in a
network with gsyn=0.1, 10% connectivity, and σECa

=0.5 (z3=0.97 at t=59
sec).
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Figure 2.3: Clustering persists in the presence of some excitatory connections. (A)
Each R value is computed for the 60th second of a 10,000 neuron sim-
ulation. As the percentage of neurons in the network that respond to
GABA with excitation rather than inhibition is increased from 0 to 25%,
little effect is seen on the clustering behavior (R nearly constant). Sim-
ulations are with 10% connectivity and σECa

=0.5. (B) The coherence of
neurons within each cluster appears to be enhanced by including excita-
tory effects of GABA in 25% of neurons in the network compared with
the all-inhibitory network of Fig. 2.2F (z3=1.00 at t=59 sec).

fired with the bottom cluster in the last two cycles.

2.3.4 Output Signal of the SCN

The clustering of SCN neurons has a major effect on the firing rate of individual

neurons, which is the main output signal of the SCN. When uncoupled, simulated

heterogeneous neurons fired regularly between 3 and 3.9 Hz (firing rates approxi-

mately normally distributed, 3.45 ± 0.11 Hz). When coupled, the majority of neu-

rons (∼6,000) fired at around 3 Hz, but a substantial portion (∼2,000 neurons) were

silenced. The remaining neurons fired at rates anywhere between 0 and 3 Hz. By

comparing an individual neuron’s firing rate when uncoupled to its firing rate in the

coupled network, we see that neurons with lower intrinsic firing rates are silenced

(compare Fig. 2.5A and C). Also, neurons that have higher intrinsic firing rates are

slowed down to 3 Hz (compare Fig. 2.5B and D). Thus, the coupling and the result-

ing clustering of SCN neurons allows the majority of heterogeneous SCN neurons to
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Figure 2.4: Dynamic clustering in a 10,000 neuron network with sparse coupling and
heterogeneity. (A) Uncoupled neurons with heterogeneity. The instan-
taneous firing rate of the population, calculated as the number of action
potentials per millisecond, randomly fluctuates around a mean value of
50 throughout the simulation. (B) Sparse coupling (10% connectivity,
gsyn=0.1) with heterogeneity (σECa=0.5). The instantaneous firing rate
of the population is near zero for most of the time bins, punctuated by
bursts of activity where up to 500 neurons fire in the same millisecond time
bin. (C) The spike raster of 100 randomly chosen neurons reveals that
these bursts of spiking activity correspond to three clusters of neurons.
However, unlike the clusters in homogeneous networks with all-to-all cou-
pling, the size and membership of the clusters in heterogenous networks
with sparse coupling are not constant over time. The neurons are sorted
vertically so that during the 15th second of simulation the neurons that
spike together in a cluster are plotted contiguously. Neuron 57 is initially
in the middle cluster but by the 16th second of simulation has joined
the bottom cluster. Neuron 78 initially fires with the top cluster 4 out
of 5 cycles but then does not fire during the next 3 seconds of simula-
tion. Neurons 1 through 24 do not fire at all during these five seconds of
simulation.
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agree on a single firing rate (interquartile range of firing rates was 0.1 Hz for neurons

in Fig. 2.5B and 0 Hz for neurons in Fig. 2.5D), while most neurons that are too

slow to keep up with this rate are silenced. Presumably this coordination of firing

rates strengthens the output signal of the SCN in order to more reliably time rhythms

throughout the body.

We also computed interspike interval (ISI) histograms (Fig. 2.5E-F) for indi-

vidual neurons in a coupled simulation in order to compare to previously published

experimental data on SCN firing. In Kononenko and Dudek (2004), recordings from

neurons in slices of rat SCN revealed two distinct firing behaviors for SCN neurons.

Some of the neurons they recorded from exhibited “regular” firing, characterized by

an approximately normal ISI distribution, while other SCN neurons exhibited slower

“irregular” firing, characterized by a skewed ISI distribution with a long right tail.

We find both of these behaviors in our network simulations: a neuron firing regularly

at ∼3 Hz shows an approximately normal ISI distribution (Fig. 2.4F) while a neuron

firing irregularly at ∼0.5 Hz exhibits a skewed ISI distribution (Fig. 2.5E).

2.3.5 Clustering in the Presence of Synaptic Noise

Synaptic transmission is stochastic and not 100% reliable (Koch, 1999). To inves-

tigate the effect of this stochasticity on the coupled network, we simulated synaptic

noise by varying the probability with which presynaptic spikes resulted in a postsy-

naptic current (Fig. 2.6A). We also incorporated variation in the magnitude of the

postsynaptic currents in response to a presynaptic spike (Fig. 2.6B). Even when both

of these sources of noise are present, the instantaneous firing rate of the population

indicates that clustering still persists (Fig. 2.6C). Since we find clustering in a noisy

network of sparsely connected heterogeneous SCN neurons, we predict that clustering

may indeed be occurring in the SCN in vivo.
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Figure 2.5: Effect of dynamic clustering on the output signal of the SCN. (A-B)
10,000 uncoupled neurons (same simulation as Fig. 2.4A). The firing rates
of individual neurons (averaged over the last 10 seconds of simulation) are
normally distributed due to heterogeneity in the equilibrium potential for
calcium (ECa) across the network. (A) Histogram of the firing rates for
the 2,500 neurons with the slowest intrinsic firing rate (ECa ≤60.66 mV).
(B) Histogram of the firing rates for the 2,500 neurons with the fastest
intrinsic firing rate (ECa ≥61.33 mV). (C-D) Sparse coupling (10% con-
nectivity, gsyn=0.1) with heterogeneity (σECa

=0.5) (same simulation as
Fig. 2.4B). Around 6,000 neurons fire regularly with a cluster at around
3 Hz while almost 2,000 are silenced. The remaining neurons have inter-
mediate firing rates due to switching between clusters or being silenced
transiently. The neurons that have slower intrinsic firing rates (due to
the state of their intracellular clock) tend to be silenced by the network,
while neurons with medium to higher intrinsic firing rates (again due to
the state of their intracellular clock) are slowed down to agree on a firing
rate of 3 Hz. (C) Histogram of the firing rates for the 2,500 neurons
with the slowest intrinsic firing rate (ECa ≤60.66 mV). (D) Histogram of
the firing rates for the 2,500 neurons with the fastest intrinsic firing rate
(ECa ≥61.35 mV). (E) Interspike interval (ISI) histogram for an individ-
ual neuron with an average firing rate of 0.5 Hz. The ISI distribution is
skewed to the right, matching experimental data from irregularly firing
SCN neurons Kononenko and Dudek (2004). (F) ISI histogram for an
individual neuron with an average firing rate of 3 Hz. The ISI distribu-
tion is approximately normal, matching experimental data from regularly
firing SCN neurons (Kononenko and Dudek , 2004).
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Figure 2.6: Clustering persists in the presence of synaptic noise. (A) The probability
of a successful synaptic transmission is lowered from 100% reliable (p=1)
to no transmission (p=0). Clustering is unaffected in simulations with
gsyn=0.1, 10% connectivity, and σECa

=0.5 up to approximately p=0.5.
For p=0.2-0.5, the network switches to a more disordered state, although
three smeared clusters are still present. For p < 0.2, no clustering is
detected. (B) Variability in the amplitude of IPSCs is increased from no
variability (k=0) to the maximum variability possible while still ensuring
all PSCs are inhibitory (k=2) with gsyn=0.1 (see Material and Methods
for details). Clustering persists throughout this range (simulations are
with 10% connectivity, σECa

=0.5, and p=1). (C) Simulation with both
types of synaptic noise (gsyn=0.1, 10% connectivity, σECa

=0.5, p=0.5, and
k=1). The instantaneous firing rate of the population, calculated as the
number of action potentials per millisecond, indicates clustering persists
despite this noise.
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2.4 Discussion

Based on simulations of the SCN as an inhibitory network, we predict that the SCN

forms clusters where neurons fire in near synchrony. Furthermore, we predict that the

membership of these clusters may change over time. While these are novel predictions

with respect to the SCN, clustering has been reported before in a number of other

models of inhibitorily coupled oscillators. Several studies report clustering in globally

coupled phase-only oscillators, e.g. Golomb et al. (1992) and Okuda (1993). Golomb

and Rinzel (1994) observe clustering in a model of globally coupled reticular thalamic

neurons, and note that adding noise to the neuronal dynamics can cause neurons to

hop from cluster to cluster. Golomb and Hansel (2000) observe smeared clusters

in either heterogeneous or sparse networks of integrate-and-fire neurons. Terman

et al. (2008) studies dynamic clustering in sparsely connected excitatory-inhibitory

networks. In our study we have tried to include many features of the physiology

and complexity of the SCN by studying a predominantly inhibitory network with

heterogeneity, sparse connectivity, and synaptic noise. Future work could include

modeling electrotonic coupling and synaptic delays. To our knowledge this study is

the first to suggest clustering in the SCN.

While clustering has appeared in many other neuronal models, there are rela-

tively few studies that report having found clustering in experimental recordings.

One example is Terman et al. (2008), which hints that dynamic clustering may be

present in recordings from neurons within the insect antennal lobe. Without report-

ing clustering explicitly, there are several other experimental studies that indicate the

importance of inhibition in synchronizing neurons in the hippocampus, thalamus, and

the locust olfactory system (see discussion in Tiesinga and Jose (2000)). In Traub

et al. (1996), GABAA receptor-mediated inhibition was shown to be the mechanism

behind synchronization in hippocampal slices. Tiesinga and Jose (2000) distinguish

weak synchronization, where the average neuronal activity of the population is peri-
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odic without each neuron firing in each period, from strong synchronization, where

each neuron fires within a short interval of each other, and claim that weak synchro-

nization is consistent with the experimental recordings in Traub et al. (1996). While

such synchronization has not yet been reported in experimental studies of the SCN, we

predict that such synchronization may indeed be occurring in the SCN since GABAA

receptor-mediated inhibition leads to clustering (a form of weak synchronization) in

our model. Our model also predicts that such clustering will only occur if there is

sufficient coupling strength and connectivity to overcome heterogeneity of circadian

phase in the network. These conditions may not be met in cultures of dissociated

SCN neurons or SCN slices, or admittedly even in vivo. If this is the case, then

we would not expect clustering to occur in the SCN. However, if clustering is found

in the SCN, the SCN would be a viable experimental system to study properties of

clustering.

If clustering does occur in the SCN, what might its role be in terms of rhythm

generation? One possibility is that many neurons firing in near synchrony could po-

tentially send a stronger signal to other brain areas than individual neurons firing

out of neuronal phase with each other. Additionally, if the firing rate of individual

SCN neurons communicates time of day information, then the formation of clusters

tends to either silence or adjust the firing rate of neurons whose intracellular clocks

are out of circadian phase with the population average. Also, in our simulations, we

have found that for the same parameters, different 3-cluster solutions are possible

depending on initial conditions. Chandrasekaran et al. (2009) points out that such

behavior allows a single network of neurons to be able to transmit multiple pieces of

information in the form of temporal codes. This ability could be extremely useful for

the SCN, given that it is a relatively small brain structure but needs to time many di-

verse rhythms throughout the body. We have focused on GABAergic neural coupling

in this chapter since GABA is by far the most prevalent intrinsic neurotransmitter
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in the SCN. However, we do note that there have been reports of neuronal synchro-

nization in the SCN in the absence of synaptic transmission (Bouskila and Dudek ,

1993).

Using our modeling framework, many more details of SCN anatomy and physi-

ology could be incorporated. For example, the SCN is commonly believed to have

distinct subdivisions, a ventral “core” and a dorsal “shell”, with characteristic neu-

ropeptide expression and projections (Moore and Silver , 1998). In our model, we

could simulate this by giving a subset of neurons in the network certain properties,

e.g. by making them VIPergic or possessing the VIP receptor VPAC2, and then

control which other subsets of neurons they are connected to in accordance with the

known densities of projections. We also plan to integrate this model with existing

detailed models of the intracellular clock to help understand the link between the

molecular biology and electrophysiology of circadian timekeeping.
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CHAPTER III

Daily electrical silencing in the

mammalian circadian clock

3.1 Introduction

SCN neurons are thought to encode the time of day by changing their firing fre-

quency, with high rates during the day and low rates at night (Gillette et al., 1995;

Mrugala et al., 2000; Cutler et al., 2003). According to this view, during the day

SCN neurons would be expected to fire repetitively, while at night they would be

expected to fire irregularly or be quiescent at a hyperpolarized membrane potential.

One of the predictions of the model in Sim and Forger (2007) was the existence of

an additional quiescent state at a depolarized membrane potential. While similar

depolarized steady-states exist in other neuronal models, e.g. Morris-Lecar (Rinzel

and Ermentrout , 1998), the conventional wisdom is that mammalian neurons cannot

survive and function at such depolarized states. However, the existence of a de-

polarized quiescent state in SCN neurons was recently confirmed experimentally by

patch-clamp recordings performed by Mino Belle, in the laboratory of Hugh Piggins

at the University of Manchester.

Belle et al. (2009) was able to distinguish two classes of SCN neurons, those that

expressed a key clock gene period1 (“per1 neurons”) and those that did not (“non-
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per1 neurons”), by recording from mice that expressed an enhanced green fluorescent

protein (EGFP) reporter of per1. Prior to recording, the mice were housed in a 12:12

hour light:dark schedule, where Zeitgeber Time (ZT) 0 corresponds to lights-on and

ZT12 corresponds to lights off. Whole-cell recordings from per1 and non-per1 neurons

in SCN brain slices were made across the projected day-night cycle, and showed a

marked difference in the electrophysiological behavior of these two populations during

the day. Non-per1 neurons had a higher firing rate throughout the day than at night

(Fig. 3.1B1-F1), as would be expected of SCN neurons. On the other hand, per1

neurons did not follow this characteristic pattern and instead during the day sustained

an electrically excited state and did not fire action potentials– a depolarized quiescent

state as predicted by the Sim-Forger model (Fig. 3.1D GB).

In addition to the depolarized quiescent state, per1 neurons also exhibited other

complex electrical behaviors that were dependent on the time of day. In the late

morning, per1 neurons rapidly transitioned between quiescence and oscillations in

membrane potential, indicating bistability of these two states (Fig. 3.1C). In the

afternoon, some per1 neurons exhibited depolarized low amplitude membrane os-

cillations (DLAMOs) (Fig. 3.1D GA). At night, per1 neurons had a much more

hyperpolarized resting membrane potential (RMP), and behaved more similarly to

non-per1 neurons, than during the day (Fig. 3.1E-G).

These data suggest that SCN neurons do not encode circadian phase solely through

changes in firing frequency, but also by traversing from firing to a range of non-firing

depolarized states. Understanding this circadian variation in electrical activity is

critical to understanding the circadian timekeeping system as a whole. In mammals,

neuronal membrane events have been shown to play a major role both in synchronizing

the circadian clock to the external environment, and in the output pathway through

which the clock’s rhythmic signals modulate physiological processes and behavior

(Lundkvist and Block , 2005). While the generation of the rhythmic signals themselves
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is typically believed to be due to molecular feedback loops involving clock genes and

their protein products, several studies suggest that neuronal membrane activity may

also play a crucial role in the generation of rhythms (Lundkvist and Block , 2005;

Nitabach et al., 2005). Indeed, in the fruit fly Drosophila, electrical silencing stops

rhythms in clock gene expression (Nitabach et al., 2002).

In this chapter, we use mathematical modeling to demonstrate that the complex

electrical behaviors observed in per1 neurons (Fig. 3.1B-G) can be explained by

existing data on ionic currents measured within SCN neurons.

3.2 Methods

3.2.1 Model of per1 neurons

We adapted our model of unidentified SCN neurons from Chapter 2 to account

for the enhanced electrical excitability of per1 neurons by increasing the reversal

potential for the leak current, EL (see Appendix A). Also, while the model from

Chapter 2 exhibited bistability between firing and quiescent states, the model APs

had a higher amplitude than the membrane potential oscillations observed in Fig.

3.1C. With a small change in the fit of the Na+ current, which still matched the

experimentally measured Na+ currents fit in the original Sim-Forger model (see Fig.

3.2), the model could more accurately reproduce the behavior of Fig. 3.1C. Noise

in the applied current (Iapp) was generated as in Chapter 2 and was rectified to

be positive or negative for ESPCs or IPSCs, respectively (see Appendix A). Initial

conditions for all simulations were V=-45, m=0.34, h=0.045, n=0.54, r=0.01, and

f=0.04 unless indicated otherwise. All simulations shown used ode15s, a stiff variable

order solver in MATLABr (R2007a, Natick, MA, USA).
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3.2.2 Circadian variation of cellular properties

Day-night differences in certain cellular properties within SCN neurons have been

reported by several studies. Pennartz et al. (2002) demonstrated that the magnitude

of L-type Ca2+ current in SCN neurons is significantly higher during the day than

at night, while Pitts et al. (2006) found that BK-type K+ current is greater at night

than during the day. We modeled the diurnal variations in these currents as changes

in gCa and gK , respectively.

Ikeda et al. (2003) showed there is also a circadian rhythm in intracellular calcium

concentration, [Ca2+]i, within SCN neurons. In Chapter 2, we mentioned that changes

in [Ca2+]i can be related to one of our model parameters, the reversal potential

for calcium current (ECa), through the Nernst equation. However, because there

is a several order of magnitude difference in [Ca2+]i and the extracellular calcium

concentration ([Ca2+]o) in mammalian neurons, K+ ions actually make a significant

contribution to the reversal potential of calcium channels (Hille, 2001). Therefore, the

relationship between [Ca2+]i and ECa is more accurately described by the Goldman-

Hodgkin-Katz (GHK) voltage equation. The GHK voltage equation for a calcium

channel with slight permeability to potassium ions is (Somjen, 2004):

ECa =
RT

F
ln

(
PK [K]o + (PCa/2)[Ca2+]o
PK [K]i + (PCa/2)[Ca2+]i

)
(3.1)

with R = 8.315 J/(◦K mol), T = 295◦K, F = 96, 480 coloumbs/mol, [Ca2+]o=2.4

mM, [K]o=3 mM, [K]i=143.5 mM, and a permeability ratio of PCa/PK of 1000:1.

Using the Nernst equation, the 25% change in [Ca2+]i reported by Ikeda et al.

(2003) corresponds to a 10% change in ECa (Sim and Forger , 2007). However, based

on the GHK equation the effect of the rhythm in [Ca2+]i on ECa is much smaller

(< 1%). In this chapter, when we simulate the circadian variation in [Ca2+]i we use

Equation 3.1 to calculate ECa.
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3.2.3 Bifurcation analysis

Our model represents a per1 neuron as a dynamical system, with a set of variables

describing the state of the neuron and a set of differential equations governing the

time evolution of the state variables. Useful insights into the behavior of a dynamical

system can be gained through bifurcation analysis. Bifurcations are sudden, quali-

tative changes in the behavior of a dynamical system that arise from small, smooth

changes in system parameters (Izhikevich, 2007). Bifurcation diagrams depict the

stability of the steady-state and periodic solutions of a dynamical system as a func-

tion of its parameters. A classic example is the bifurcation diagram showing the how

the membrane potential V varies as a function of the applied current I in the Morris-

Lecar model (Rinzel and Ermentrout , 1998). As I is increased, the solution changes

from a steady-state to an oscillatory state and then back to a steady-state. These

solutions correspond to a hyperpolarized quiescent state, repetitive spiking, and a

depolarized quiescent state, respectively.

Due to known circadian variations in calcium and potassium currents within SCN

neurons (Pennartz et al., 2002; Pitts et al., 2006), the bifurcation parameter of interest

for our per1 neuron model is not applied current, but the conductances gCa and

gK . To perform bifurcation analysis on the per1 neuron model, we used the Oscill8

Dynamical Systems Toolset (Conrad , 2006).

3.3 Results

We considered the effect of variation in calcium and potassium currents on the be-

havior of our per1 neuron model using simulation and bifurcation analysis. We found

that as calcium conductance (gCa) was increased, the model behavior transitioned

from a hyperpolarized quiescent state to repetitive spiking, and then ultimately to a

depolarized quiescent state (Fig. 3.3). Conversely, as potassium conductance (gK)
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was increased, the model behavior transitioned from a depolarized quiescent state to

repetitive spiking, and then ultimately to a hyperpolarized quiescent state (Fig. 3.4).

We then incorporated into the model circadian variations in gCa and gK based

on experimentally observed circadian rhythms in calcium and potassium currents

in SCN neurons. We modeled gCa as being higher during the day than at night, in

accordance with the rhythm in L-type Ca2+ current reported in Pennartz et al. (2002),

and modeled gK as being lower during the day than at night, in accordance with the

rhythm in BK-type K+ current reported in Pitts et al. (2006). The conductance

values chosen to simulate per1 neurons at various circadian phases are shown in Fig.

3.5. We find that simulations based on these rhythms in ionic conductances are able

to reproduce the complex electrical behavior of per1 neurons observed throughout a

day-night cycle (compare Fig. 3.6 to Fig. 3.1B-G). Although a variation in only one

ionic current could cause transitions from a hyperpolarized steady state to repetitive

firing, and also from repetitive firing to a depolarized steady state, circadian rhythms

in both K+ and Ca2+ currents were required to faithfully reproduce the fine details

of these transitions.

To study the bifurcations in model behavior as a function of the time of day, we fit

sine functions with a period of 24 hours to the rhythms in gCa and gK as shown in Fig.

3.5. We then used the phase of these sine functions, q, as a bifurcation parameter

representing circadian phase in the bifurcation diagram shown in Fig. 3.7. Our

bifurcation analysis revealed that as the day progresses, transitions in the behavior

of per1 neurons occur when a quiescent state gains or loses stability through Hopf

bifurcations. This common mathematical structure has been found in many other

neural systems and corresponds to Type II excitability (spiking emerging with nonzero

frequency) in Hodgkin’s original classification system (Rinzel and Ermentrout , 1998).

The changes in stability of the hyperpolarized rest state we observed at night in per1

neurons are similar in character to those seen in other neurons (Paydarfar et al.,
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2006). However, per1 neurons are different from other neurons in that a second Hopf

bifurcation occurs during the day, where an unusually depolarized rest state becomes

stable or unstable. The physiological importance of these bifurcations is that minor,

molecular clock-driven changes in certain ionic conductances can have a major effect

on the bioelectrical output of the neuron. Near bifurcation points, neurons can exhibit

the type of behaviors seen in per1 neurons, such as low-amplitude oscillations in

membrane potential or noise-induced transitions between oscillatory and quiescent

states (Rinzel and Ermentrout , 1998; Izhikevich, 2007).

The model behaviors do not depend on the initial state of the neuron and can

be achieved with a variety of parameter choices. To illustrate this, we simulated

the model with the same parameter settings as Fig. 3.6 but with a different initial

membrane voltage, and found the same behaviors (Fig. 3.8). We also incorporated

into our model a circadian variation in intracellular calcium concentration, [Ca2+]i, as

measured in Ikeda et al. (2003). However, the effect of this rhythm in [Ca2+]i (roughly

100 to 400 nM from trough to peak, Fig. 3.9B) on the model parameter ECa is minimal

based on Equation 3.1. Figure 3.9C-H shows that when the [Ca2+]i rhythm is taken

into account, the same electrical behaviors are predicted as in previous simulations.

The bifurcation diagram in Fig. 3.9A indicates that if the amplitude of the rhythm

in [Ca2+]i was in the micromolar rather than millimolar range, then its effect on the

electrical behavior could be much stronger.

To demonstrate that the model results can be achieved with a variety of param-

eter settings, we repeated the simulations assuming a different extracellular calcium

concentration, leading to a different setting for ECa based on Equation 3.1. Using

a shifted rhythm in gCa, we produced the same electrical behaviors and a similar

bifurcation diagram as the previous simulations (Fig. 3.10).

As a further verification of our model, we were able to reproduce the firing patterns

characteristic of per1 neurons receiving depolarizing or hyperpolarizing current pulses.
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A depolarizing current pulse can drive a per1 neuron that is firing APs into a DLAMO-

like state, or into a depolarized quiescent state. A hyperpolarizing current pulse

applied to a per1 neuron that is either firing APs or in the depolarized quiescent

state leads to a high-amplitude rebound spike. Figure 3.11 shows the experimental

data, and Fig. 3.12 is the model reproduction of these signature behaviors.

3.4 Discussion

In this chapter, we have shown through mathematical modeling that known rhythms

in ionic currents can account for the complex electrical behaviors observed in per1

neurons. Importantly, not all SCN neurons exhibited these behaviors, but rather just

those that appear to contain the intracellular molecular clock machinery. The notion

that there are two distinct populations of SCN neurons has been put forth previously

by other researchers. Antle et al. (2003) proposed that the SCN is composed of a

population of nonrhythmic “gate” cells, which serve to synchronize a population of

rhythmic “oscillator” cells. Our results suggest the possibility that in terms of elec-

trical activity, per1 neurons play the role of gate cells and their depolarized quiescent

state is the signal which synchronizes the firing rate rhythm of the non-per1 oscillator

cells. This suggestion draws a parallel between the mammalian and fly circadian sys-

tems. In Drosophila, electrical silencing of clock neurons of a certain type (pigment

dispersing factor (PDF) neurons), resets the phase of clock neurons of another type

(non-PDF neurons) (Wu et al., 2008).

The Antle et al. (2003) gates and oscillators model was based in part on the

finding of Jobst and Allen (2002) that cells in a particular subregion of the SCN

do not express a circadian rhythm in their firing rate. However, Belle et al. (2009)

recorded from both per1 and non-per1 cells throughout the mid-coronal plane of

the SCN, suggesting that neither rhythmically nor nonrhythmically firing cells are

localized to a particular subregion.
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Quintero et al. (2003) reported a linear correlation between firing frequency and

the level of EGFP fluorescence in per1 neurons. The Belle et al. (2009) results suggest

a more complicated relationship between per1 expression and membrane events, as

the EGFP rhythm peaks in the late day around the time that Belle et al. (2009) finds

that per1 neurons are not firing at all. However, studies from both groups show a

day-night difference in resting membrane potential (RMP) in per1 neurons (Kuhlman

and McMahon, 2004; Belle et al., 2009). Our mathematical modeling indicates an

increase in K+ conductance is responsible for this change in RMP. This prediction is

supported by the findings of Kuhlman and McMahon (2004) and by data from the

mollusk Bulla gouldiana, where a circadian variation in K+ conductance contributes

to a rhythm in the RMP of clock (basal retinal) neurons (Lundkvist and Block , 2005).

The Sim-Forger model prediction of a depolarized quiescent state in SCN neurons

has been verified experimentally by patch-clamp recordings of per1 neurons. The

modeling of per1 neurons in this chapter demonstrated how these clock-containing

neurons transition through a series of complex electrical behaviors throughout the

course of a day. In the next chapter, we will continue to explore these complex

states through a refined model of per1 neurons, and make predictions regarding the

functional role of these states in several aspects of circadian timekeeping.
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Figure 3.1: Electrical behavior of per1 neurons (green) and non-per1 neurons (red)
throughout the day:night cycle. (A and A1) Scatter plot of resting mem-
brane potential (RMP) versus Zeitgeber Time (ZT) for per1 and non-per1
cells. (B and B1) Morning per1 and non-per1 cells at moderate RMP
firing action potentials (APs). (C) Late-morning per1 cell in transitional
phase displaying bistability of quiescence and membrane potential oscil-
lations. (D) Afternoon to late-afternoon per1 cell displaying depolarized
low-amplitude oscillations (DLAMOs) [group A (gA)] or in a depolarized
quiescent state [group B (GB)]. (C1) Non-per1 neurons do not display
bistability or depolarized RMP, but remain at moderate RMP, generat-
ing APs. (E and D1) Dusk per1 and non-per1 cells at moderate RMP
around the time of lights-off. (F and E1) Early night per1 and non-per1
cells quiescent at hyperpolarized RMP, receiving excitatory postsynaptic
potentials (EPSPs). (G and F1) Late-night per1 and non-per1 neurons
at moderate RMP. All experimental data shown was collected by Mino
Belle.
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Figure 3.2: Na+ current recorded in unidentified SCN neurons in response to voltage
steps. Model predictions (curves) and experimental data (dots, Jackson
et al. (2004)). These curves show that our choices of m∞ and h∞ match
experimental data.
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Figure 3.3: Modulating just the calcium conductance can cause transitions between
the two rest states (B and F) and spiking (C and D). (A) Bifurcation dia-
gram summarizing the behaviors seen as a function of gCa. (B-F) Voltage
traces for various settings of gCa. For these simulations, we fixed ECa = 54
mV and gK = 16 nS and did not include any randomly-generated post-
synaptic currents.
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Figure 3.4: Modulating just the potassium conductance can cause transitions between
the two rest states (B and F) and spiking (D and E). (A) Bifurcation
diagram summarizing the behaviors seen as a function of gK . (B-F)
Voltage traces for various settings of gK . For these simulations, we fixed
ECa = 54 mV and gCa = 65 nS and did not include any randomly-
generated postsynaptic currents.
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Figure 3.5: Circadian variation of parameters used to simulate a light:dark cycle.
Circadian phase is represented by known rhythms in Ca2+ and K+ ionic
conductances. Changes in gCa and gK were based on Pennartz et al.
(2002) and Pitts et al. (2006) respectively. The points shown for gCa and
gK were used to simulate panels A through F in Fig. 3.6. The lines shown
are the functions gCa = 62 + sin(2πq/24) and gK = 17 − 5sin(2πq/24),
for q from 0 to 24.
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Figure 3.6: Simulations predicting the electrophysiological behavior of SCN clock
neurons observed throughout a day-night cycle. These simulations use
a revised version of the Sim-Forger model (Sim and Forger , 2007) specific
for per1 neurons and incorporate randomly generated post-synaptic po-
tentials. (A to F) Panels are similar to experimental data in Fig. 3.1B-G,
and show that known rhythms in ionic currents (Fig. 3.5) can explain the
experimentally observed behaviors.
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Figure 3.7: Bifurcation diagram summarizing the behaviors seen through a circa-
dian cycle (thick lines indicate stability of the steady-state solution).
The phase (q) of the two sine functions shown in Fig. 3.5, gCa =
62 + sin(2πq/24) and gK = 17 − 5sin(2πq/24), was used as a bifurca-
tion parameter representing circadian phase. Oscillations emerge through
Hopf bifurcations (HB) when a quiescent state gains or loses stability.
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Figure 3.8: Robustness of model predictions to choice of initial membrane voltage. In
Fig. 3.6, an initial voltage of V=-45 mV was used for simulation. Here, we
show that the same behaviors were predicted when a more hyperpolarized
initial voltage (V=-80 mV) was used. In both cases, the traces shown
begin after 1 second of simulated time.
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Figure 3.9: Simulations incorporating circadian variation in intracellular calcium con-
centration. (A) Bifurcation diagram summarizing the behaviors seen as
a function of [Ca2+]i, using the GHK voltage equation to set ECa. (B)
Circadian variation in [Ca2+]i, as measured in Ikeda et al. (2003). (C-H)
Simulations incorporating circadian changes in [Ca2+]i, gCa, and gK give
the same model predictions as Figs. 3.6 and 3.8.
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Figure 3.10: Robustness of model predictions to choice of extracellular calcium con-
centration. (A-F) In Figs. 3.6 and 3.8, the reversal potential of the
calcium current (ECa) was set at 54 mV based on the GHK voltage equa-
tion with [Ca2+]o=2.4 mM. Here, we instead set ECa at 73 mV based on
GHK with [Ca2+]o=5 mM. (G) We found that the same rhythm in K+

conductance as in Figs. 3.6 and 3.8, combined with a shifted rhythm
in Ca2+ conductance of gCa = 52 + sin(2πq/24), produced the same
electrical behaviors (A-F) and a similar bifurcation diagram (H) as the
previous simulations.
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Figure 3.11: Firing patterns characteristic of per1 cells. (A-B) Response to depolar-
izing pulses (1 s, 30 pA) in the morning. (C) Overlay of representative
responses to hyperpolarizing pulses (500 ms, -10 to -30 pA) during early
morning. (D) Response to hyperpolarizing pulse (500 ms, -20 pA) later
in the day. Black arrows indicate a rebound spike, where the ampli-
tude of the first AP is higher than other APs in the same trace. All
experimental data shown was collected by Mino Belle.
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Figure 3.12: Simulations reproducing the firing patterns characteristic of per1 neu-
rons described in Fig. 3.11. (A-B) Model response to depolarizing
pulses in the morning. (C-D) Model shows a high-amplitude rebound
spike (black arrows) in response to a hyperpolarizing pulse. Parameter
settings: (A) and (C) have the same parameters as Fig. 3.6A, (D) has
the same as Fig. 3.6C, and (B) has the same as Fig. 3.6B but with
gK=15 nS.
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CHAPTER IV

Refinement and predictions

of a per1 neuron model

4.1 Introduction

In this chapter, we refine our mathematical model of SCN electrophysiology based

on experimental data presented in Belle et al. (2009). We also test our model by

considering and incorporating aspects of other recently published models of SCN

electrophysiology (Kim and Jeong , 2008; Clay , 2009; Vasalou and Henson, 2010;

Kononenko and Berezetskaya, 2010).

In Chapter 3, we demonstrated through mathematical modeling that the depo-

larization of the membrane potential seen in per1 neurons in the afternoon could

be accounted for by a reduction in potassium conductance. This was confirmed by

current-clamp recordings made in Belle et al. (2009) which showed that blocking

calcium-activated potassium (KCa) channels could significantly depolarize per1 neu-

rons. In this chapter we extend our model to incorporate KCa currents and study

their role in depolarized low amplitude membrane oscillations (DLAMOs) and the

depolarized quiescent state.

Two of the recently published models involving SCN electrophysiology, Kim and

Jeong (2008) and Vasalou and Henson (2010), do include a KCa current. Vasalou and
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Henson (2010) developed a firing rate model for SCN neurons to study how firing

correlates with circadian gene expression. The Vasalou and Henson (2010) model

was focused on behavior at the 24-hour time scale rather than the millisecond time

scale, and so did not consider the dynamics of individual ionic currents in detail.

Therefore Vasalou and Henson (2010) does not provide a mathematical description

of the KCa current in SCN neurons that we can incorporate directly into our model.

Kim and Jeong (2008) presents a Hodgkin-Huxley-type model of SCN neurons, the

same formalism used in Sim and Forger (2007) and Chapters 2 and 3. However, the

KCa current in Kim and Jeong (2008) was not based on data from SCN neurons in

particular, rather its form was taken from the neuronal model repository ModelDB

(Hines et al., 2004) and implemented without modification. In this chapter, we fit a

model of KCa current specifically to experimental data from SCN neurons (Jackson

et al., 2004).

We then use our refined model to make predictions about several key processes

involved in the regulation of circadian rhythms: the accumulation of intracellular

calcium ions, intercellular communication within the SCN, and the ability of the

clock to be phase-shifted by light (photic gating).

4.2 Methods

4.2.1 Model of KCa current in SCN neurons

The first mathematical model of the electrophysiology of SCN neurons was in-

troduced in Sim and Forger (2007). This Hodgkin-Huxley-type model was fit to

published data on ionic currents in SCN neurons and included an inward sodium

current (INa), an inward calcium current (ICa), an outward potassium current (IK),

and a leak current (IL). The Sim-Forger model was adapted to account for the en-

hanced electrical excitability of per1 neurons in Chapter 3, and in this chapter we
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will refine the model further by incorporating a KCa current. Since KCa currents are

primarily calcium-dependent, we will also need to incorporate intracellular calcium

dynamics into the model. Calcium dynamics are extremely complex and involve many

different mechanisms, such as buffering, uptake into intracellular stores, and extru-

sion through membrane pumps. Another recent model of SCN neurons (Vasalou and

Henson, 2010) does include several of these mechanisms. However, because many of

the details of the action of these mechanisms in SCN neurons have not been measured

experimentally, we will instead use a very simple model of calcium dynamics. Our

model represents all of these calcium handling mechanisms with a single term for the

removal of free calcium ions from the cytoplasm, as in Booth et al. (1997). In our

model, calcium enters the cytoplasm through voltage-gated calcium channels only;

we do not consider release from intracellular stores. Thus, the concentration of free

intracellular calcium ions ([Ca2+]i) is determined by the equation:

dCa

dt
= −kICa − bCa (4.1)

where Ca represents [Ca2+]i, k converts Ca2+ current (pA) to Ca2+ concentration

(mM), and b is the Ca2+ removal rate. Following Yamada et al. (1998), we calculate

k as 1
zFVs

, where z=2 is the charge of a calcium ion, F=96,485 C/mol is Faraday’s

constant, and Vs is the volume of a thin spherical shell just below the membrane

where the binding of intracellular calcium ions to KCa channels occurs. A shell depth

of 0.1 µM is a common choice for models where [Ca2+]i is relevant for KCa channel

activation (Yamada et al., 1998; McCormick and Huguenard , 1992). We set k=1.65×

10−4 mM/ms, which corresponds to a SCN cell radius around 5 µM (Klein et al.,

1991) and a shell depth of 0.1 µM. With k fixed, the only free parameter in Equation

4.1 is the removal rate b, which we set based on [Ca2+]i measurements in SCN neu-

rons from Irwin and Allen (2009). When Irwin and Allen (2009) applied a constant

hyperpolarizing current to a SCN neuron to inhibit AP firing and hold the membrane
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potential at around -60 to -70 mV, [Ca2+]i maintained a steady state of around 50

nM. When we applied a constant hyperpolarizing current in our model to inhibit AP

firing, we found that setting b=10 ms−1 resulted in a steady state value of Ca (50

nM) consistent with the Irwin and Allen (2009) data.

The KCa current in our model is activated by Ca. To determine the parameters

for IKCa
in our model, we relied heavily on KCa current measurements in SCN neu-

rons obtained by Jackson et al. (2004) using action potential clamp. In this protocol,

a spontaneous action potential is recorded and then played back to the cell as the

command voltage. Figure 12 of Jackson et al. (2004) shows the total calcium current

and the total KCa current evoked during an action potential. Initially, the inward

calcium current outweighs the outward KCa current, but during the AP this relation-

ship reverses and the net current becomes outward. We simulated this type of action

potential clamp experiment in our model, and with the aid of the fminsearch rou-

tine in MATLABr chose parameters for IKCa
that could reproduce this relationship.

Figure 4.1 shows that during a simulated AP, ICa is initially greater than IKCa
, but

quickly IKCa
becomes greater and the net current (ICa + IKCa

) becomes outward, as

in the Jackson et al. (2004) data. The deflection in the voltage trajectory, or “hump”,

visible during the falling phase of the model AP in Fig. 4.1A is not seen in the exper-

imental data. For simplicity, we have modeled the KCa current as calcium-dependent

and voltage-independent, whereas KCa currents in SCN neurons likely have both

calcium-dependent and voltage-dependent components (Teshima et al., 2003; Cloues

and Sather , 2003). The lack of voltage-dependence in our model of KCa current may

contribute to the imperfection in the shape of the model APs.

The model equations follow Yamada et al. (1998):

IKCa
= gKCa

c2(V − EK) (4.2)

where V is the membrane potential, EK is the equilibrium potential for K+ ions, gKCa
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Figure 4.1: Simulated action potential clamp experiment used to fit IKCa
parameters.

(A) Membrane potential during a model per1 neuron action potential.
(B) ICa and IKCa

during the action potential. The net current, ICa+IKCa
,

is initially inward but then quickly reverses and becomes outward as in
Figure 12 of Jackson et al. (2004).

is the maximal KCa conductance, and c is a calcium-dependent gating variable with

the dynamics:

dc

dt
=
c∞ − c
τc

(4.3)

c∞ =
α(Ca)

α(Ca) + β
(4.4)

τc =
500

α(Ca) + β
(4.5)

where c∞ is the steady-state fraction of open KCa channels, τc is the time constant
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for opening and closing of KCa channels, and α(Ca) = 107Ca2 and β = 5.6 are the

opening and closing rates, respectively.

Our full model for the electrophysiology of per1 neurons is now as follows:

dV

dt
= − 1

C
(INa + ICa + IK + IKCa

+ IL + Isyn) (4.6)

where C is the membrane capacitance, and Isyn are noisy synaptic currents as de-

scribed in Sec. 4.2.2.

4.2.2 Noise mechanisms

The two primary sources of stochasticity in neuronal firing are randomness in

the gating of ion channels (“channel noise”), and variability in synaptic processes

(“synaptic noise”) (White et al., 2000). Synaptic noise arises from multiple sources,

including the fundamentally probabilistic nature of neurotransmitter release and ran-

domness in the firing patterns of presynaptic neurons. Here, we model synaptic noise

by incorporating randomly generated post-synaptic currents, both inhibitory (IPSCs)

and excitatory (EPSCs), through the Isyn term in our model. The IPSCs and EPSCs

were generated independently with the same Poisson rate, and had exponential rise

and decay as in Chapter 3.

Channel noise is incorporated into our simulations in Sec. 4.3.7 by including

stochastic subthreshold voltage-dependent cation (SVC) channels as described in

Kononenko and Berezetskaya (2010). Kononenko and Berezetskaya (2010) modeled

a single SVC channel as having 2 closed states, slow-closed (bsc) and fast-closed (bfc),

and one open state (bo). The transitions between these 3 states are shown in Fig.

4.2. The transition rates are governed by the time constants τo=0.2 ms, τfc=1 ms,

and the voltage-dependent slow-component:
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τsc =
256

exp(V+90
5

) + exp(−V+90
125

)
+ 4 (4.7)

Figure 4.2: SVC single channel state transition diagram

A neuron is modeled as having N single SVC channels that open and close ran-

domly and independently. The total SVC current, ISV C , is given by:

ISV C = No(t)gSV C(V − ESV C) (4.8)

where gSV C=0.04 nS is the single channel conductance, ESV C=0 mV is the reversal

potential, and No(t) is number of open channels at time t. To determine No(t) we

follow the probabilistic procedure described in Kononenko and Berezetskaya (2010).

To verify our implementation of this procedure, we repeated the simulations shown

in Figure 1C of their paper, which confirmed that the voltage-dependence of the

single-channel current in our simulations agrees qualitatively with their results (Fig.

4.3).

4.2.3 Numerical techniques

The simulations were performed using ode15s, a stiff variable order solver in

MATLABr (R2007a, Natick, MA, USA). Oscill8 Dynamical Systems Toolset (Con-

rad , 2006) was used for bifurcation analysis of the model.
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Figure 4.3: Simulations of ISV C for a single channel (N=1) at different holding poten-
tials to illustrate the voltage dependence of the channel open probability.
Simulation results agree qualitatively with Figure 1C in Kononenko and
Berezetskaya (2010).

4.3 Results

4.3.1 Membrane depolarization

In Belle et al. (2009), concomitant application of the KCa channel blockers iberi-

otoxin and apamin significantly and irreversibly depolarized per1 neurons. When the

blockers were applied in the early morning to per1 neurons that were firing APs, upon

depolarization they began to exhibit DLAMOs. When the blockers were applied to

per1 neurons in the late morning, upon depolarization they first exhibited DLAMOs

and then entered the depolarized quiescent state. To simulate the effect of these

blockers, we put the model in an AP producing state and then steadily reduced gKCa
.

Figure 4.4 shows that as gKCa
is reduced, the model behavior transitions from firing

APs to DLAMOs and ultimately to the depolarized quiescent state.
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Figure 4.4: Simulated block of KCa current. (A) Exponential decay of gKCa
used to

simulate the effect of KCa blockers iberiotoxin and apamin. (B) Model
per1 neuron starts out producing APs (inset 1), but as gKCa

is reduced
model behavior transitions first to DLAMOs (inset 2) and then the de-
polarized quiescent state (inset 3). The scale bars shown in inset 3 apply
to all insets.

4.3.2 Ionic currents underlying DLAMOs

To determine the ionic mechanisms responsible for producing DLAMOs, we bath-

applied various channel blockers to a per1 neuron producing spontaneous DLAMOs

in the afternoon (Fig. 4.5A, experimental data collected by Mino Belle). DLAMOs

persisted in the presence of the sodium channel blocker tetrodotoxin (TTX), with

only minor effects on the shape of the oscillations observed. Application of the L-

type calcium channel blocker nimodipine reversibly abolished DLAMOs. We then

repeated these experiments with our model by simulating the effect of the channel

blockers (Fig. 4.5B). We started with the model in the DLAMO state, with gNa=229

nS and gCa=26 nS. We then simulated the application of TTX by setting gNa to

0, and in agreement with the experimental data found that the DLAMOs were not
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abolished. To simulate the effect of nimodipine, we reduced gCa. We did not set

gCa to 0 because nimodipine specifically blocks L-type calcium current, while in our

model gCa represents the total calcium current (not just L-type). We chose a value

for gCa of 20 nS (a 23% reduction) to simulate nimodipine because Jackson et al.

(2004) estimated that 20-40% of total voltage-gated calcium current in SCN neurons

is through L-type channels. Again in agreement with the experimental recordings,

we found that DLAMOs were abolished in simulated nimodipine. (The simulations

in Fig. 4.5B included synaptic noise, see Fig. 4.13A for simulations without noise.)

Figure 4.5: Role of L-type Ca2+ and TTX-sensitive Na+ channels in mediating
DLAMOs. (A) Current-clamp recordings. Afternoon per1 neuron dis-
playing DLAMOs (top trace). Application of TTX (1 µM) does not abol-
ish DLAMOs (middle trace). Application of nimodipine (2 µM) abolishes
DLAMOs (bottom trace). All experimental data shown was collected by
Mino Belle. (B) Model simulations. Model per1 neuron (gNa=229 nS,
gCa=26 nS) displaying DLAMOs (top trace). Simulated application of
TTX (gNa=0) does not abolish DLAMOs (middle trace). Simulated ap-
plication of nimodipine (gCa=20 nS) abolishes DLAMOs (bottom trace).

These results indicate that Ca2+ current is more important than Na+ current for

producing spontaneous DLAMOs in SCN neurons. To explore the mechanisms behind

these oscillations, we look at the time course of the currents that are active in the

model during DLAMOs (Fig. 4.6). During the rising phase of the oscillation, both

ICa and IK are activated and oppose each other. Closer to the peak of the oscillation,
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IKCa
activates and contributes to the repolarization of the membrane in the falling

phase. Thus, it appears that the interplay between inward Ca2+ current and outward

KCa current is the key mechanism underlying the oscillations.

Figure 4.6: Ionic currents active during DLAMOs. (A) Membrane potential of a
model per1 neuron displaying DLAMOs. (B) ICa, IKCa

, and IK during
DLAMOs. The interplay between ICa and IKCa

is critical in producing
the oscillations.

In Belle et al. (2009), it was reported that application of nimodipine on per1

cells in the morning caused a significant and reversible depolarization of the resting

membrane potential (RMP). At first glance this result may seem counterintuitive, as

one might expect that inhibiting an inward current like L-type calcium would cause

a hyperpolarization. Nevertheless, our model reproduces this behavior as shown by

the bifurcation diagram in Figure 4.7. When the model is in an oscillatory state,

the RMP (depicted by the thin black line) increases as gCa is reduced. The model

indicates that the depolarization is due to the effect inhibiting inward Ca2+ current

has on the outward KCa current. For example, reducing gCa from 23 to 22 nS (which

depolarizes the model RMP by 0.2%) causes a 4% decrease in ICa but a 13% decrease

in IKCa
.

Analysis of the model also reveals that DLAMOs can be understood mathemati-
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cally as a small amplitude limit cycle arising from a Hopf bifurcation. The bifurcation

diagram in Figure 4.7 shows that if gCa is reduced far enough, the steady state so-

lution of the dynamical system will transition from a limit cycle to a stable node

(depicted by the thick black line), which corresponds to the depolarized quiescent

state.

Figure 4.7: Bifurcation diagram illustrating that inhibiting ICa can depolarize the
membrane. As gCa is reduced, the model steady state solution for the
resting membrane potential (thin black line) increases. The system un-
dergoes a Hopf bifurcation around gCa=24 nS (point labeled HB 3 in main
panel and inset). To the left of the bifurcation point, there exists a sta-
ble node (thick black line in main panel and inset) corresponding to the
depolarized quiescent state. To the right of the bifurcation point, there
exists a stable limit cycle corresponding to DLAMOs. The amplitude of
the oscillations are indicated by the green and yellow lines in the inset.

4.3.3 Ca2+ response

The calcium concentration inside a cell not only controls the activation of KCa

currents, but also plays a critical role in many other cellular processes such as muscle

contraction and synaptic plasticity (Koch, 1999). Due to the importance of Ca2+ as
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a signal transduction element, [Ca2+]i is tightly regulated, and an excess of calcium

ions can lead to cell death (Verkhratsky and Toescu, 1998). Calcium ions have also

been shown to induce per1 expression (Tischkau et al., 2003). Since the magnitude

of Ca2+ influx through voltage-gated calcium channels follows a circadian rhythm in

SCN neurons (Pennartz et al., 2002), calcium is a potential link between membrane

potential and the clock gene expression cycle. Indeed, a circadian rhythm in [Ca2+]i

in SCN neurons has been observed Ikeda et al. (2003). For these reasons, we are

interested in using our model to predict the accumulation of [Ca2+]i that occurs

during DLAMOs.

First, we consider the [Ca2+]i response in a thin shell just below the membrane

where [Ca2+]i is relevant for KCa channel activation. As discussed in Sec. 4.2.1,

[Ca2+]i in this shell is represented in our model by the variable Ca. We simulated

the model in a state that produced spontaneous action potentials, and tracked the

level of [Ca2+]i (Fig. 4.8A). We then simulated the model in a state that produced

spontaneous DLAMOs, and again tracked [Ca2+]i (Fig. 4.8B). We find that during an

AP, [Ca2+]i reaches a higher level (670 nM) than it does during a DLAMO (500 nM).

However, in between APs [Ca2+]i decays to around 1 nM, while during the trough of

a DLAMO [Ca2+]i is still near 200 nM.

Many of the other cellular processes governed by Ca2+ do not take place in a

thin shell near the membrane, but occur throughout the cytosol or in the nucleus.

Measurements of cytosolic [Ca2+] in SCN neurons has been obtained using fluorescent

probes (Ikeda et al., 2003; Irwin and Allen, 2009). We will denote the concentration

of Ca2+ in the cytosol as [Ca2+]c, and will use the same approach to model [Ca2+]c

as we used to model the concentration of Ca2+ in the shell near the membrane:

dCac
dt

= p(−kcICa − bcCac) (4.9)

Equation 4.9 is the same as Eq. 4.1, except here we have an additional factor p = 0.001
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which represents the fraction of Ca2+ ions in the cytosol which are not bound. We

calculate kc as 1
zFVc

=5.73× 10−6 mM/ms, where the volume of the cytosol, Vc, is

taken to be the volume of a spherical cell with radius 5 µM. We determine bc based

on [Ca2+]c imaging data in SCN neurons from Irwin and Allen (2009). In Irwin and

Allen (2009), when [Ca2+]c was measured in response to a 10-20 Hz train of action

potentials, [Ca2+]c was found to rise from around 50 nM and then saturate between

150 nM and 200 nM. In our model, when we set bc=0.1 and simulate action potentials

at around 7 Hz, we find that Cac rises from less than 50 nM and then saturates at

200 nM (Fig. 4.9A and C). We then simulated DLAMOs, and found that Cac rose to

a value of around 1200 nM before saturating (Fig. 4.9B and C). The model predicts

that a SCN neuron exhibiting DLAMOs would have a 6-fold higher level of [Ca2+]c

than a SCN neuron producing APs. Sustaining such a high level of [Ca2+]c might be

expected to be toxic to the cell, however the data discussed in Chapter 3 showed that

per1 neurons do indeed sustain DLAMOs for an extended period of time. Thus, our

modeling suggests that per1 neurons must have special calcium-handling mechanisms

which allow them to survive in depolarized states.

4.3.4 Intercellular communication

As discussed in Chapter 2, the SCN is a network of neurons and it is the electri-

cal activity of this network that communicates the time of day signal to other brain

areas. Therefore, it is interesting to consider what effect, if any, a neuron exhibiting

DLAMOs would have on other neurons in the SCN. Since GABA is the most preva-

lent neurotransmitter in the SCN and is typically responsible for fast inhibition, we

simulated networks of two neurons coupled by an inhibitory GABAA synapse in order

to predict the effect of DLAMOs on intercellular communication. We modeled the

GABAA synapse using the formalism of Destexhe and Sejnowski (2001):
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IGABA = gGABAs(V − EGABA) (4.10)

where s(t) denotes the fraction of open channels with the dynamics:

ds

dt
= αr[T ](1− s)− ads (4.11)

with ar=5 mM−1ms−1, ad=0.18, EGABA=-75 mV, and gGABA=0.45 nS. [T ] denotes

the concentration of neurotransmitter released into the synaptic cleft by a presynaptic

spike, and is dependent on the voltage of the presynaptic neuron:

[T ] =
Tmax

1 + exp(−Vpre−VT
Kp

)
(4.12)

with Tmax=1 mM, VT=2 mV, and Kp=5 mV.

For our two-neuron networks, we took the pre-synaptic neuron to be a per1 neuron,

and the post-synaptic neuron to be a non-per1 neuron modeled using the parameters

from Sim and Forger (2007). When a non-per1 neuron is not receiving any input, it

fires APs at 4.7 Hz (Fig. 4.10C). We simulated a pre-synaptic per1 neuron exhibiting

either spontaneous APs (Fig. 4.10A) or spontaneous DLAMOs (Fig. 4.10B). When

the pre-synaptic neuron is firing APs, the post-synaptic non-per1 neuron fires APs

at about 3.3 Hz (Fig. 4.10D). When the pre-synaptic neuron is exhibiting DLAMOs,

the post-synaptic neuron fires APs at about 2.3 Hz (Fig. 4.10E). Thus, we predict

that a per1 neuron exhibiting DLAMOs can actually have a stronger inhibitory effect

on the firing of its post-synaptic targets than a per1 neuron firing APs.

Although GABA is typically an inhibitory neurotransmitter, there is evidence

that GABA can also play an excitatory role within the SCN. Wagner et al. (1997)

reported that GABA functions as an excitatory neurotransmitter in the SCN during

the day. However, more recent data suggests that while GABA inhibits most SCN

neurons, some level of GABA-mediated excitation was present regardless of the time
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of day (Choi et al., 2008). Choi et al. (2008) find that in a subset of SCN neurons, the

reversal potential for GABA is above the threshold for firing action potentials, leading

to excitatory responses to GABA signaling in these neurons. We can simulate this

by raising EGABA for the synapse in our model. We repeated the simulations shown

in Fig. 4.10, but with EGABA set to -30 mV rather than -75 mV, and gGABA lowered

to 0.05 nS. In this case, we found that the effect of the pre-synaptic neuron on the

post-synaptic neuron was the same whether the pre-synaptic neuron was firing APs or

exhibiting DLAMOs. For these simulations, when a non-per1 neuron is not receiving

any input, it fires APs at 2.7 Hz. When the pre-synaptic neuron was either firing

APs or exhibiting DLAMOs, the post-synaptic neuron fired APs at an elevated rate

of 3.3 Hz (simulations not shown).

4.3.5 Photic gating

Light pulses can phase shift circadian rhythms during the night but not during the

day, a phenomenon known as photic gating. The mechanisms underlying photic gating

in the circadian clock are not clear (Lundkvist and Block , 2005). The SCN receives

photic information through the retinohypothalamic tract. This pathway involves

glutamatergic input to SCN neurons via NMDA receptors. Pennartz et al. (2001)

proposed that reduced NMDA receptor activity during the day prevents light signals

from reaching the SCN, leading to the “dead zone” for photic phase shifts during

the day. Here, we hypothesize that the inability of light to cause phase shifts during

the day is due to per1 neurons being in the depolarized quiescent state and thereby

unresponsive to glutamatergic input.

To test this hypothesis in the model, we simulated two coupled neurons. The pre-

synaptic neuron was firing regular action potentials, which induced a NMDA current

in the post-synaptic neuron. The NMDA synapse was modeled as in Destexhe and

Sejnowski (2001):
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INMDA = gNMDAsB(V )(V − ENMDA) (4.13)

where ENMDA=0 mV, gNMDA=0.6 nS, and s(t) has the same form as Equation 4.11

but with ar=0.072 mM−1ms−1 and ad=0.0066.

Under normal physiological conditions, the NMDA receptor is blocked by magne-

sium ions, which can be removed if the post-synaptic neuron is depolarized. B(V )

represents the magnesium block:

B(V ) =
1

1 + exp(−V−VH
16.13

)
(4.14)

where VH is the half activation and is given by:

VH = 16.13 ln
[Mg2+]

3.57
(4.15)

where VH ≈10 mV for a physiological [Mg2+] of 2 mM.

We find that when the per1 neuron is in the depolarized quiescent state (Fig.

4.11A), the excitatory input it receives has very little effect on its electrical behavior

(Fig. 4.11B). The model indicates that the lack of an effect can be explained due to

the sodium channels already being inactivated in the depolarized quiescent state, thus

preventing any further depolarization despite the excitatory input. We hypothesize

that this phenomenon, known as depolarization block, could be playing a role in

preventing light from phase shifting the clock during the afternoon dead zone.

Unlike photic input, non-photic input (e.g. food access or other arousal-inducing

stimuli) can phase shift the clock during the day (Piggins and Cutler , 2003). Further-

more, photic input can phase shift the clock during the day in the presence of non-

photic stimuli (Mino Belle, personal communication). Microinjection of neuropeptide

Y (NPY) into the SCN region phase advances rhythms during the day, emulating the

effect of non-photic stimuli (Piggins and Cutler , 2003). NPY and GABA both relay
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non-photic information from the intergeniculate leaflet to the SCN via the geniculo-

hypothalamic tract (Piggins and Cutler , 2003). Since NPY and GABA both convey

non-photic information, and GABA is known to have a predominantly inhibitory ef-

fect on SCN neurons, we modeled NPY as having an inhibitory effect on SCN neurons

by adding a constant hyperpolarizing current of -0.5 pA to simulate injection of NPY.

This current brought the neuron out of depolarization block and caused it to start

firing (Fig. 4.11C), perhaps explaining why non-photic input is able to phase shift

the clock in the afternoon. We then induced synaptic NMDA currents as before,

but now found that the excitatory input caused an increase in the firing rate of the

per1 neuron (Fig. 4.11D). We hypothesize that this phenomenon could explain the

observation that light can phase shift the clock during the afternoon dead zone when

non-photic input is also present.

4.3.6 TTX-induced oscillations

Belle et al. (2009) was the first report of spontaneous depolarized membrane po-

tential oscillations in SCN neurons. However, both Pennartz et al. (2002) and Jack-

son et al. (2004) previously reported depolarized membrane potential oscillations in

unidentified SCN neurons in the presence of TTX. Subsequent application of nimodip-

ine silenced these TTX-induced oscillations, similar to the effect nimodipine has on

DLAMOs. In Fig. 4.12 we demonstrate that our model can also produce TTX-

induced oscillations. We first simulated a per1 neuron firing APs as our control. This

simulation had all the same parameter values that we used to simulate DLAMO (Fig.

4.5B top trace), except for an increased gKCa
. We then simulated TTX by setting

gNa to 0, and the model behavior went from APs to depolarized oscillations. Keeping

gNa=0, we then simulated nimodipine in the presence of TTX by setting gCa to 20,

and found that the oscillations were silenced.
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4.3.7 Channel noise

The depolarized oscillations seen in per1 neurons are quite noisy (Fig. 4.5A). It is

difficult to determine how much of the observed noisiness is due to randomness in ion

channel dynamics versus synaptic events. We have shown that incorporating synaptic

noise into our simulations is capable of producing noisy oscillations similar to those

recorded experimentally (Fig. 4.5B). Of course, this does not rule out the possibility

that the stochastic nature of the opening and closing of ion channels is also playing

a role. If the number of channels of a particular type in a cell is large enough, the

randomness of individual channel responses average out and deterministic equations

for channel gating should give a reasonable approximation of the whole-cell current.

On the other hand, if the number of channels of a particular type in a cell is not

large, then the randomness of individual channel responses may not average out and a

stochastic gating model would be more appropriate for that channel type. Kononenko

and Dudek (2004) identified a subthreshold voltage-dependent cation (SVC) channel

present in SCN neurons with high single-channel conductance but low channel density

(possibly as few as 75 SVC channels per cell). Kononenko and Berezetskaya (2010)

formulated a stochastic model of these SVC channels and added a SVC current to

the Sim and Forger (2007) model.

Here we study the effect of SVC channels on a model per1 cell in DLAMO. The

voltage-dependence of SVC channels is such that their open probability is significantly

greater in the DLAMO voltage range than it is for more hyperpolarized potentials.

We find that in the absence of synaptic noise, as few as N = 5 SVC channels are

enough to produce noisy oscillations similar to our DLAMO recordings (Fig. 4.13B).

Kononenko and Berezetskaya (2010) also added a persistent or “slowly inactivat-

ing” sodium current, INa,S, to the Sim-Forger model. We did not study this current

here because INa,S is TTX-sensitive, and our data indicates that TTX has very little

effect on DLAMOs (Fig. 4.5A). Thus, we reasoned that INa,S does not play a critical
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role in DLAMOs.

4.3.8 K+ channel activation

The IK current in our model is based on an outward voltage-dependent fast recti-

fying K+ current recorded in SCN neurons by Bouskila and Dudek (1995). Bouskila

and Dudek (1995) obtained an activation curve for this current based on the assump-

tion that IK is linearly proportional to the driving force (V-EK), which they justified

by noting that the instantaneous current-voltage relations were linear between -70 and

10 mV. Clay (2009) reviewed the determination of K+ channel activation curves from

K+ channel currents, and on the basis of several studies in squid giant axon and other

preparations argues that IK has a non-linear dependence on (V-EK) for physiologi-

cal conditions which is well described by the Goldman-Hodgkin-Katz (GHK) current

equation. Clay (2009) then revisited the Bouskila and Dudek (1995) data and fit an

activation curve for their IK based on normalization using GHK rather than (V-EK).

The revised activation curve is steeper and shifted leftward on the voltage axis relative

to the original curve. The Clay (2009) curve is given by (αn/(αn + βn))4 with:

αn =
−0.01(V + 30)

exp(−0.08(V + 30))− 1
(4.16)

βn = 0.125exp(−V + 40

30
) (4.17)

For all the simulations described in this chapter up to this point, we used the

original Bouskila and Dudek (1995) activation curve rather than the Clay (2009)

curve. However, all of our simulation results can be obtained using either activation

curve as demonstrated by Figs. 4.14 and 4.15.
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4.4 Discussion

In this chapter, we refined our model of per1 neurons to include calcium-activated

potassium currents. Our refined model can reproduce the TTX-induced oscillations

reported in unidentified SCN neurons in Pennartz et al. (2002) and Jackson et al.

(2004), while the original model from Sim and Forger (2007) cannot (data not shown).

Based on our modeling results, we predict that TTX-induced oscillations occur only

in per1 neurons, and do not occur in non-per1 neurons. This prediction can be tested

experimentally by making patch-clamp recordings from the SCN of mice expressing

the green fluorescent protein reporter for per1 as described in Chapter 3.

We also used our refined model to make predictions about intercellular communi-

cation in the SCN. Based on simulations with two coupled cells, we predicted that a

pre-synaptic neuron exhibiting DLAMOs can have a stronger inhibitory effect on a

post-synaptic neuron than a pre-synpatic neuron firing APs. This prediction can be

tested experimentally using the dual-patch technique, where two cells are recorded

from simultaneously. Also, this finding based on two coupled cells indicates it would

be very interesting to revisit network simulations with thousands of SCN neurons as

performed in Chapter 2, but with distinct populations of per1 and non-per1 neurons

in the network.

Our predictions in this chapter regarding photic gating of the circadian clock

centered on the concept of depolarization block. Outside of Belle et al. (2009), de-

polarization block has not been reported in SCN neurons and the idea is somewhat

controversial. Nevertheless, depolarization block is an established phenomenon in

neurons in other brain areas. For example, Wong et al. (2005) shows depolariza-

tion block in mammalian intrinsically photosensitive retinal ganglion cells (ipRGCs),

which are actually upstream of SCN neurons in the non-image forming visual path-

way. Furthermore, depolarization block can be seen in a variety of neuronal models,

including the classical Hodgkin-Huxley model (Borisyuk and Rinzel , 2005).
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Figure 4.8: Ca2+ dynamics during APs and DLAMOs. (A) Model producing spon-
taneous APs with gCa=26 nS, gK=3 nS, and gKCa=200 nS. [Ca2+]i peaks
at 670 nM during an AP, and decays to near zero (1 nM) in betwen APs.
(B) Model producing spontaneous DLAMOs with gCa=26 nS, gK=3 nS,
and gKCa=4 nS. [Ca2+]i is around 500 nM at the peak of the oscillation,
and around 200 nM at the trough.
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Figure 4.9: Ca2+ in a cell displaying DLAMOs. Release of hyperpolarizing current (-
5.5 pA) allows model per1 neuron to spontaneously fire APs (A) or display
DLAMOs (B). (A) Model per1 neuron firing APs with a frequency around
7 Hz. Each AP leads to a [Ca2+]c increase of about 5 nM, consistent with
Irwin and Allen (2009). (B) Model per1 neuron displaying DLAMOs with
a frequency around 8 Hz and [Ca2+]c response. (C) [Ca2+]c saturates at
around 200 nM during APs (bottom trace), and at around 1200 nM during
DLAMOs (top trace).
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Figure 4.10: Role of DLAMOs in intercellular communication. Simulations of pre-
synaptic per1 neurons connected to post-synaptic non-per1 neurons via
an inhibitory GABAAsynapse. The neuron shown as (A) is firing APs
and is connected to neuron (D), the neuron shown as (B) is exhibiting
DLAMOs and is connected to neuron (E), and neuron (C) is not con-
nected to any other neurons and so serves as a control for the firing rates
of the post-synaptic neurons. The pre-synaptic APs from (A) caused
(D) to fire more slowly than the uncoupled neuron (C), but the pre-
synaptic DLAMOs from (B) caused (E) to fire even more slowly than
(D). Non-per1 neurons were modeled using the parameters from Sim
and Forger (2007).
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Figure 4.11: Role of depolarized quiescent state in photic gating. (A) Simulation of
a per1 neuron in the depolarized quiescent state, not receiving NMDA
or NPY input. (B) The per1 neuron from (A) receiving NMDA but not
NPY input. The excitatory input has very little effect on the electrical
behavior of the neuron, due to sodium channel inactivation (depolar-
ization block). (C) The per1 neuron from (A) receiving NPY but not
NMDA input. The NPY input brings the neuron out of depolarization
block and it fires APs. (D) The per1 neuron from (A) receiving both
NMDA and NPY input. The NMDA input causes the neuron to fire at
a faster rate than in (C). Taken together, these simulations indicate that
depolarization block can explain why photic stimuli (NMDA input) can-
not phase shift the clock during the afternoon, while non-photic stimuli
(NPY input) can.
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Figure 4.12: Membrane potential oscillations in SCN neurons in the presence of TTX.
Model per1 neuron generating APs (control simulation, gNa=229 nS,
gCa=26 nS, gKCa

=200 nS). Simulated application of TTX (gNa=0) in-
duces depolarized oscillations, and simulated application of TTX plus
nimodipine (gNa=0, gCa=20 nS) silences the oscillations. These simula-
tions reproduce the behavior of Figure 3B from Jackson et al. (2004),
which shows the effect of cumulative application of 300 nM TTX and 2
µM nimodipine to a SCN neuron firing spontaneously.

Figure 4.13: Role of ISV C , L-type Ca2+, and TTX-sensitive Na+ channels in mediat-
ing DLAMOs. Simulations use all the same parameters as Figure 2B,
except here there is no synaptic noise Isyn. (A) Model per1 neuron with
no noise (N=0 SVC channels). (B) Model per1 neuron with N=5 SVC
channels.
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Figure 4.14: Role of IK activation, L-type Ca2+, and TTX-sensitive Na+ channels in
mediating DLAMOs. Simulations use all the same parameters as Fig.
4.5B, except here we use the Clay (2009) activation curve for IK and
increased values of gCa. Model per1 neuron (gNa=229 nS, gCa=43.7 nS)
displaying DLAMOs (top trace). Simulated application of TTX (gNa=0)
does not abolish DLAMOs (middle trace). Simulated application of
nimodipine (gCa=30 nS) abolishes DLAMOs (bottom trace).

Figure 4.15: IK activation and membrane potential oscillations in SCN neurons in the
presence of TTX. Simulations use all the same parameters as Fig. 4.12,
except here we use the Clay (2009) activation curve for IK . Model per1
neuron generating APs (control simulation, gNa=229 nS, gCa=26 nS).
Simulated application of TTX (gNa=0) induces depolarized oscillations,
and simulated application of TTX plus nimodipine (gNa=0, gCa=20 nS)
silences the oscillations.
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CHAPTER V

Statistical significance of sequential firing patterns

in multi-neuronal spike trains

5.1 Introduction

Sequential firings with fixed time delays are frequently observed in simultaneous

recordings from multiple neurons. Such temporal patterns are potentially indicative

of underlying microcircuits and it is important to know when a repeatedly occurring

pattern is statistically significant. These sequences are typically identified through

correlation counts. In this chapter we present a method for assessing the significance

of such correlations. We specify the null hypothesis in terms of a bound on the con-

ditional probabilities that characterize the influence of one neuron on another. This

method of testing significance is more general than the currently available methods

since under our null hypothesis we do not assume that the spiking processes of dif-

ferent neurons are independent. The structure of our null hypothesis also allows us

to rank order the detected patterns. We demonstrate our method on simulated spike

trains.

Detection of temporal firing patterns among groups of neurons is an important

task as these patterns are potentially indicative of functional cell assemblies or micro-

circuits present in the underlying neural tissue (Hebb, 1949; Brown et al., 2004). Com-
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putational methods (e.g., the two-tape algorithm (Abeles and Gerstein, 1988)) which

discover repeating occurrences of precise firing sequences in simultaneous recordings

from multiple neurons have been used to assess activity patterns in cortical struc-

tures in vivo (Nadasdy et al., 1999), in slice preparations (Ikegaya et al., 2004), and

in cultures of dissociated cortical neurons (Rolston et al., 2007). Methods such as

the two-tape algorithm count the occurrences of a precisely timed pattern (e.g., the

3-neuron pattern A[T1]-B[T2]-C where a spike from neuron A is followed by a spike

from neuron B after a delay of T1 time units and a spike from neuron C after a fur-

ther delay of T2 time units) by finding correlations among time shifted spike trains.

Several methods have been developed to determine the statistical significance of such

patterns based on how many times they occur (Prut et al., 1998; Tetko and Villa,

2001; Abeles and Gat , 2001). To assess significance, often one employs a null hy-

pothesis that assumes that all neurons spike as (possibly nonhomogeneous) Poisson

processes and that different neurons are independent. In a class of empirical methods

(Hatsopoulos et al., 2003; Amarasingham, 2004; Gerstein, 2004), one generates many

surrogate data streams by systematically perturbing the spikes in the original data.

The significance of a pattern is then determined by noting the difference in correla-

tion counts (or in any other statistic derived from the counts) for these patterns in

the original data and in the surrogate streams. These “jitter” methods allow for a

lot of flexibility regarding the assumed statistical model for a spike train because the

perturbations can be designed to preserve any assumed distribution for inter-spike

intervals. However, the implicit null hypothesis here amounts to assuming indepen-

dence because spike trains of different neurons are independently perturbed to obtain

the surrogate spike trains.

In this chapter, we present a method for analyzing the statistical significance of

sequential firing patterns that goes beyond the currently available techniques by al-

lowing the null hypothesis to include “weak dependence” among neurons, and by rank

75



ordering significant patterns according to the “strength of influence” among partic-

ipating neurons. The ability to discriminate significant patterns representing strong

influences from those representing weak influences is a useful feature considering that

the cortical network has been described as a skeleton of strong connections in a sea

of weaker ones (Song et al., 2005).

5.2 Methods

5.2.1 Correlation Count

For simplicity of exposition, we first explain the method for a pattern of only two

neurons, A[T ]-B. Suppose we find the number of repetitions of this pattern in the

data using simple correlation as follows. Let t1, t2, . . . , tn denote all time instants at

which there is a spike from any neuron in the data. Let:

fAB =
n∑
i=1

IA(ti)IB(ti + T ) (5.1)

where for any neuron x, Ix(t)=1 if there is a spike from x at time t and zero otherwise.

Note that fAB is simply a correlation integral which counts the number of spikes from

A that are followed by a spike from B with a delay of exactly T time units, and hence

counts the number of repetitions of our pattern. If we want to allow for some small

random variations in the delay we can define the indicator variable Ix(t) to take value

1 if there is a spike in a time interval of length ∆ centered around t. (For example, we

can take ∆ to be the time resolution in our measurements. From now on we assume

that ∆ is small enough so that the probability of getting more than one spike from

the same neuron in ∆ is negligible). Most current methods for detecting sequential

firing patterns rely on correlation counts as described above. Since the focus of this

chapter is on statistical significance (and not on computational efficiency), we simply

assume that one can calculate such counts for pairs of neurons and for various delays
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T of interest. The question of interest is “how large should the count be to conclude

that the pattern represents a significant positive influence of A on B?” (By a positive

influence of A on B, we mean that A and B are correlated in the sense of having a

high value for the count given by Eq. 5.1. We do not mean to imply that A causes B

to fire, since any method that relies only on correlations can not distinguish between

true causation and accidental correlation).

Since we want to address this question in a classical hypothesis testing framework

without assuming independence, we need to choose a null hypothesis that includes

as many models as possible of interdependent neurons without any “strong” positive

influences between pairs of neurons. In addition, we want the null hypothesis to

contain a parameter to denote the strength of influence so that we can rank order all

significant patterns.

5.2.2 Significance test

Here we characterize the strength of influence between any pair of neurons in

terms of a conditional probability as proposed in Sastry and Unnikrishnan (2010).

Let e(B|A, T, t) denote the conditional probability that B will fire at time t + T (or

more precisely, in a time interval around t + T given that A has fired at time t).

We assume that e(B|A, T, t) is the same for all t and hence denote it by e(B|A, T ).

(The implications of this and other assumptions are discussed in Sec. 5.2.3.) We

employ the following composite null hypothesis: Any model of interacting neurons is

in our null hypothesis if it satisfies e(Y |X,T ) ≤ e0 for all neurons X, Y and a set of

specified delays T , where e0 is a user-chosen constant. The parameter e0 is essentially

a threshold on the conditional probability below which positive influences are deemed

“weak”. For example, if all neurons are independent homogeneous Poisson with rate

5 Hz and ∆=1 ms, the conditional probability for any pair is about 0.005. Hence, if

we choose e0=0.05, it means that when we reject the null hypothesis we can say that
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the influences represented by the pattern are at least 10 times stronger than those in

the case of independence.

To get a test for statistical significance we need to calculate a bound on the

probability that, under this null hypothesis, the count fAB is above a given threshold.

For this, we proceed as follows. Suppose L is the total time duration of the data and

let the random variable NA(L) denote the total number of spikes by neuron A during

this time. Define:

SAB =

NA(L)∑
i=1

Xi (5.2)

where Xi are independently and identically distributed 0-1 random variables with

Pr[Xi=1]=(1-Pr[Xi=0])=p. If we take p = e(B|A, T ), it is easy to see that SAB is

equivalent to fAB since every time there is a spike from A, with probability p a spike

from B would follow with the appropriate delay. Now we assume that the spiking of

A is Poisson. This implies that, since the Xi’s are 0-1 random variables, SAB is also

a Poisson random variable (Ross , 1996). The mean and variance of SAB are given by

Ross (1996):

E[SAB] = E[NA(L)]E[Xi] (5.3)

V ar[SAB] = E[NA(L)]E[X2
i ] (5.4)

Since under the null hypothesis, e(B|A, T ) ≤ e0, taking p = e0 will allow us to get

a bound on the probability of SAB exceeding a threshold.

The test of statistical significance is as follows. Let e0 be the bound on conditional

probability that we choose for our null hypothesis and α be the allowed Type I error.

Let λA be the rate of firing for the first neuron in the pattern and L be the total

time duration of the data. Set λZ=e0LλA. Using the cumulative distribution of a
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Poisson random variable with parameter λZ , we calculate the M needed to satisfy

Pr[Z > M ]≤ α. This M is the threshold on the count of the pattern for us to

be able to reject the null hypothesis and declare the pattern to be significant. To

calculate M , we need λA. This can be estimated from the data as the average rate

of firing for neuron A. Figure 5.1D shows the threshold M as a function of e0. The

method is easily generalized to longer patterns. Consider pattern A[T1]-B[T2]-C.

We get counts fABC by 3-point correlations. We define SABC as before but with

p=e(B|A, T1)e(C|B, T2). SABC would be same as fABC if all influence of A on C

comes through B. Even otherwise, SABC would be a lower bound on the correlation

count and hence it is enough to bound the probability of SABC exceeding a threshold.

Since all conditional probabilities are bounded above by e0 under our null hypothesis,

we can calculate the needed threshold by taking λZ=e2
0LλA. For a pattern involving

n neurons, we calculate the threshold M needed to satisfy Pr[Z > M ]≤ α where

λZ=en−1
0 LλA.

5.2.3 Discussion of methodology

We assume that the conditional probability e(B|A, T, t) is independent of t. This

conditional probability is well defined whether or not A is connected to B. If most of

the contribution to this conditional probability comes from the A to B synapse then

this assumption amounts to saying that the synaptic strength does not change much

during the time interval of data recording. On the other hand, if A is not connected

to B, then the assumption is essentially an assumption on the stationarity of some

relevant network-level statistics of joint probabilities of relevant groups of neurons.

Under such a stationarity assumption, even patterns that are due to network activity

rather than microcircuits can be handled using our method.

Our null hypothesis does not assume that the spiking processes of different neurons

are independent. When we reject the null, we can assert with a high confidence that
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the count for this pattern can not be this high unless the strengths of influences

among these neurons (measured in terms of conditional probabilities) are above the

threshold e0. One value for e0 corresponds to independence of neurons which is what

is assumed in the null in existing methods. Our method of user-chosen e0 allows the

user another dimension of flexibility to discover patterns significant at different levels

of strength of influence. This we feel is the main novelty of the method proposed

here.

To derive our test of significance we assumed that the first neuron in the pattern

is Poisson. This allowed us to show that the count of a pattern is Poisson even if the

neurons are not independent. For our method, the essential thing is that the pattern

count is Poisson. Other researchers have also assumed that the count is Poisson, as

long as the occurrences of patterns are stochastically independent as one would expect

them to be under most physiological conditions (Abeles and Gat , 2001). In this sense

we do not feel that our assumption is too restrictive. In practice, we found that

the analytically derived threshold of our method works well even when the Poisson

assumption is not strictly satisfied.

5.3 Results

5.3.1 Network simulations

We simulated a network of 25 neurons, labeled A through Y , with three embedded

patterns (G-M -R, I-S-C, W -O-L). A schematic of the network and details of the

patterns are given in Fig. 5.1A. The synaptic strengths of these patterns (expressed

as a conditional probability) ranged from 0.05 to 0.15 in accordance with the range

of strengths found in typical recordings from the cortex (Abeles , 1991). The nominal

firing rate of each neuron (5 Hz) was modulated at time intervals of ∆=1 ms based on

all inputs the neuron received (details of the neuronal network simulator used for this
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chapter are given in Patnaik et al. (2008)). All neurons had an absolute refractory

period of 1 ms, and all synapses had delays between 1 and 10 ms. In addition to the

embedded patterns, each neuron was randomly connected to 25% of the other neurons

in the network with strengths chosen uniformly from the interval [0.0025, 0.01]. With

an average firing rate of 5 Hz, the unconditional probability of a neuron firing in an

interval of length ∆ is about 0.005, which is also the conditional probability if the

neurons are independent. Hence the interval from which the strengths of the random

connections were chosen spanned a factor of 2 on either side of the independent case

and modulated the firing rate of the neurons from 2.5 Hz to 10 Hz based on the input

received.

Our method of assessing significance assumes that the number of times a pat-

tern occurs is Poisson distributed. Due to the absolute refractory period and the

modulation of firing rates based on spiking of other neurons, the spiking processes of

individual neurons are not approximately Poisson as shown in Fig. 5.2A. However,

the count for one of the embedded patterns, G-M -R, was approximately Poisson (Fig.

5.1C and 5.2B). Indeed, in simulations with L=300 s, the count of G-M -R was still

approximately Poisson distributed when random connections spanned a factor of 5 on

either side of independence (Fano factor for count of G-M -R was 0.97 ± 0.04 (mean

± s.e.m) based on 20 trials of 50 simulations).

5.3.2 Assessing and rank ordering significance of patterns

We simulated our network for 1,000 replications and compared the distribution of

actual pattern counts in the simulated data to our analytically calculated thresholds

for the patterns to be significant at different values of e0. Figure 5.3A demonstrates

our method was effective in assessing the varying strengths of the embedded patterns

via the user-chosen parameter e0.

We then ran the two-tape algorithm (Abeles and Gerstein, 1988) on a simulated
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Figure 5.1: Network simulation, pattern count, and count threshold characteris-
tics. (A) Schematic of a 25-neuron network with three 3-neuron chains
of strong excitatory connections. The delays (in ms) and strengths
(as conditional probabilities) in the chains are (denoted as Neuron 1
[delay,strength]-Neuron 2,. . .): G[3,0.05]-M [7,0.05]-R; I[8,0.1]-S[4,0.1]-
C; and W [5,0.15]-O[6,0.15]-L. Simulation settings: L=300s, λ=5 Hz,
refractory period 1 ms, random connections as described in text, fir-
ing rates updated every 1 ms. (B) Raster plot of 20 s worth of data
from the simulation. There are two occurrences of the pattern G-M -
R in the data shown here, but one cannot easily identify the patterns
using visual inspection. (C) Count histogram of the pattern G-M -R
over 1,000 simulations demonstrating that the count of a pattern is ap-
proximately Poisson distributed. Red circles are the Poisson distribution
with λ=(0.052)(300)(5)=3.75. (D) Threshold calculated for n=3-,4-, and
5-neuron patterns with Type I error α=0.05 as a function of pattern
strength for λA=5 Hz and L=300 s.
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Figure 5.2: Simulation results showing that even when the counts of the first neuron in
the pattern are not approximately Poisson, the count of the pattern is still
approximately Poisson as long as the random connections strengths are
not too high. Simulation settings: L=300 s, λ=5 Hz, refractory period 1
ms, random connections with 25% connectivity, firing rates updated every
1 ms. For each simulation, random connection strengths were uniformly
drawn from a range of values. The x-axis indicates the maximum possible
random connection strength (in terms of how many times stronger than
independence) for each simulation. (A) Fano factor of neuron G over
1,000 simulations (50 trials of 20 simulations) demonstrating that the
count of neuron G is not approximately Poisson distributed unless there
are no random connections. (B) Fano factor of pattern G-M -R over 1,000
simulations (50 trials of 20 simulations) demonstrating that the count of
pattern G-M -R is approximately Poisson distributed with weak random
connections.
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dataset to count the occurrences of all 3-neuron patterns that occurred at least twice

(with a maximal delay of 200 ms between the first and last spikes in any pattern).

We found 3,340 3-neuron patterns that occurred at least twice (Fig. 5.3B). Since so

many patterns exceed the threshold, we need some additional criteria to select which

of these individual patterns are the best candidates for further analysis. Abeles and

Gerstein (1988) remarked that this selection process is very important, and called for

future research to be conducted in this area. Using our framework, by having different

values for e0 in the null hypothesis, we can ask what patterns are significant at what

value of e0 and thus rank order patterns. This is easily seen from Fig. 5.3B, where we

show count thresholds corresponding to different values of e0. For example, if we chose

e0=0.05 (i.e., conditional probability is ten times that in the case of independence),

then the number of candidates came down to 4. Thus, our compound null hypothesis

with the user-chosen parameter e0 helps one distinguish the most interesting patterns

for further investigation, e.g. to correlate to behavioral events, from weaker patterns

that may only be marginally significant. The commonly used “jitter” methods of

determining significance of patterns are not useful in this regard. Of the 3,340 3-

neuron patterns that occurred more than twice, creating 100 surrogate data streams

using spike jitter as in Date et al. (1998) tells you that 808 patterns have a p-value

less than 0.05, but gives little information about which of these patterns are the best

candidates to select for further analysis. Another example demonstrating how the

parameter e0 in our null hypothesis provides a convenient handle for further analysis

of the significant patterns is given in Table 5.1.

The patterns discovered as significant as shown in Fig. 5.3B are “rare”, in the

sense that only a very small fraction of the spikes of the neurons (less than 1%)

contribute to the occurrence of patterns. The raster scan of part of the data on a

typical simulation run of our network is shown in Fig. 5.1B, where we also highlight

a few occurrences of one of the patterns. The embedded patterns are not obvious
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No. of 3-node patterns that occurred more than once 6,115
No. of these patterns deemed significant. . .

using basic spike jitter 1,640
using threshold e0 = independence 6,115

using threshold e0 = 2 × independence 6,115
3 × 2,167
4 × 1,024
5 × 375
6 × 131
7 × 43
8 × 28
9 × 20
10 × 18
11 × 9
12 × 6
13 × 4
14 × 3
15 × 1
16 × 1
17 × 0

Table 5.1: Simulation results showing that using our method e0 gives an extra handle
to control false positives. Simulation settings: L=300 s, λ=5 Hz, refractory
period 1 ms, random connections with strengths uniformly distributed
between 0.00025 and 0.1 with 25% connectivity, firing rates updated every
1 ms. No strong patterns embedded. To determine pattern significance
using basic spike jitter, 100 surrogate data streams were created by jittering
all spikes with a jitter window of 2 ms.

upon visual inspection. In the full data for Fig. 5.3B (which is of 300 s duration), the

patterns W -O-L and I-S-C occur 32 and 14 times respectively. The total number of

spikes from neurons W , O, L, I, S, and C are, respectively, 1486, 1733, 1753, 1579,

1692, and 1646.

In Sec. 5.2.3, we mentioned that the conditional probability, e(B|A, T ), is well

defined even when A is not connected to B. We show, in Fig. 5.3C, how our method

can be useful in analyzing certain patterns that result due to network activity rather

than two neurons directly influencing each other. We used a network of 50 neurons

where each neuron was randomly connected to 25% of other neurons with strengths
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between 0.0025 and 0.01. Neurons 1 to 48 were each connected to both 49 and 50

through weak connections (strength 0.01). All connections into 49 had delays of

100 ms, all connections into 50 had delays of 200 ms, and the random connections

had delays between 1 and 200 ms. The connection strengths were such that input

from a subset of the 48 neurons was enough to make both 49 and 50 likely to fire.

Synchronous firing of a random subset of the 48 neurons (7.2 of them on average) was

induced via an external input that fired with a rate of 5 Hz. Thus the pattern 49[100

ms]-50 was expected to occur often even though there is no connection between 49

and 50. The pattern 49[100 ms]-50 had the highest count and was significant, by our

analytical method, at e0=0.13 (Fig. 5.3C), while no other 2-neuron patterns were

significant at this e0. Note that this pattern has a long delay, which is typical of the

precisely timed patterns that have been found to repeat in experimental recordings

(Abeles , 1991). An example showing the use of our method to detect patterns arising

from network activity in the form of “synfire chains” (Abeles , 1982, 1991) is given in

Figs. 5.4 and 5.5.

5.3.3 Comparison with other methods

The parameter e0 in our compound null hypothesis helps in rank ordering signifi-

cant patterns as shown in Fig. 5.3A. Initially this may appear unnecessary because in

any significance analysis, a given value of count (or any other statistic) provides a p-

value for rejecting the null and it might be possible to rank order significant patterns

using their p-values. However, this is often not feasible because the p-values do not

actually give proper indication of relative strengths of different patterns. To demon-

strate this, we simulated our network with random connections and two embedded

patterns of different strengths (I-S-C with strength 0.1, and W -O-L with strength

0.15). We then computed p-values for the significance of these two patterns using a

variety of methods in the literature (see Fig. 5.6). The first method we considered
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Figure 5.3: Rank ordering of patterns discovered in network simulations by connec-
tion strength. (A) Count densities of embedded patterns over 1,000 repli-
cations of a 600 second simulation of the 25-neuron network with random
connections and strong connections as shown in Fig. 5.1A. Thresholds
corresponding to e0=0.005 (independence), 0.06, and 0.11. (B) Two-tape
algorithm counts of all patterns that occur more than twice in 300 seconds
of simulation. Simulation settings as in Fig. 5.1A, with only two strong
patterns embedded (I-S-C with strength 0.1, and W -O-L with strength
0.15). Thresholds corresponding to e0=0.005, 0.05, and 0.10 demonstrate
the ability to discriminate strong significant patterns from weaker ones.
(C) Two-tape algorithm counts of all patterns that occur more than twice
in 20 seconds of the “network activity” simulation as described in Sec.
5.3.2, demonstrating the usefulness of our method for patterns generated
by mechanisms other than microcircuits.
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Figure 5.4: Simulation schematic of a synfire chain. Neurons 1 through 10 were trig-
gered to fire synchronously with a rate of 5 Hz. Each of neurons 1 through
10 synapses onto neurons 21 through 30, with a connection strength of
0.01 and a delay of 10 ms. Likewise, neurons 21 through 30 then synapse
onto 41 through 50, neurons 41 through 50 onto 61 through 70, neurons
61 through 70 onto 81 through 90, and neurons 81 through 90 onto 101
through 110. Simulation settings: L=20 s, λ=5 Hz, refractory period
1 ms, firing rates updated every 1 ms, random connections with 25%
connectivity, strengths 0.0025 to 0.01, and delays 1 to 10 ms.
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Figure 5.5: Patterns detected resulting from synfire chain. Out of the network shown
in Fig. 5.4, imagine we have recorded from 52 of the neurons: neurons 11
through 20, 31 through 40, 51 through 60, 71 through 80, 91 through 100,
and neurons 1 and 110. If we mine this data using the two-tape algorithm
with a window size of 100 ms, we find that 1[50 ms]-110 is the strongest
pattern even though there is not a direct connection between these two
neurons. This demonstrates our method can detect precisely timed pat-
terns resulting from network activity in addition to microcircuits.
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(Abeles and Gat , 2001) is also based on the assumption that pattern counts are Pois-

son distributed, and significant 3-neuron patterns were detected as deviations from a

smoothed version of a count matrix containing the triplet pattern counts for all delay

combinations between 1 and 20 ms. We also considered three jitter-based methods:

basic spike jitter (Date et al., 1998), pattern jitter (Harrison and Geman, 2009), and

NeuroXidence (Pipa et al., 2008). With the parameters chosen, all four methods iden-

tified both I-S-C and W -O-L as significant (details on how each of these methods

was implemented is given in Appendix B). The Abeles and Gat (2001) calculation,

as well as spike jitter and pattern jitter, reported p-values of 0.000 for both patterns.

NeuroXidence reported a p-value of 0.004 for I-S-C and 0.000 for W -O-L. Since the

p-values are all close to zero for the two patterns with strong connections, these meth-

ods can not be used for comparing relative strengths of significant patterns. Using

our method, if we choose e0 corresponding to independence as the null hypothesis,

then the p-values are 0.000 for both patterns as well. However, using our analytically

derived expression for count threshold, we can determine the maximum value of e0

for which the observed count will make the pattern significant. This e0 value is 0.07

for I-S-C and 0.12 for W -O-L, giving a relative strength ratio for the two patterns

of 1.7, which is close to 1.5, the ratio of the true conditional probabilities.

While we have demonstrated that the p-values for the significant patterns can not

be used for rank ordering the strength of patterns, it may appear that the actual

counts of the patterns themselves can be used for rank-ordering. This would not

be proper if the firing rates of the first neurons in the patterns are different. In

a simulation with the same pattern strengths as before but where neuron I fired

nominally at 5 Hz and neuron W fired nominally at 1 Hz, the count of I-S-C was 19

and the count of W -O-L was 9, even though W -O-L has stronger synapses. In this

situation, our method of ranking patterns based on the highest value of the parameter

e0 at which the observed count is significant still correctly ranks W -O-L (e0=0.12)
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ahead of I-S-C (e0=0.09).

5.4 Discussion

In this chapter we presented a method for assessing significance of sequential

firing patterns using correlation counts as the statistic. We represent the “strength

of influence” of A on B by the conditional probability that B fires after a prescribed

delay following A. We state our composite null hypothesis in terms of a parameter

e0 which is an upper bound on all such pair-wise conditional probabilities. There

are two attractive features of this method. Firstly, we can rank order significant

patterns in terms the highest value of e0 at which the pattern (which repeats a certain

number of times in the data) is still significant. The second interesting feature of the

method is that we can now include many models of interdependent neurons in our

null hypothesis (based on the value chosen for e0). When we declare a pattern such

as A[T1]-B[T2]-C to be significant, we can conclude that a spike by A has a “strong”

chance of eliciting a spike from B with delay T1 and a spike from C after a further

delay of T2. Here “strong” would denote that the relevant conditional probabilities

can not be less than e0. Thus, our idea of casting the null hypothesis in terms of

a bound on conditional probabilities allows for a richer level of significance analysis

compared to other methods, as we demonstrated through simulation experiments.

The method presented can assess significance of sequential firing patterns only

when the underlying influences are excitatory. Using a similar null hypothesis with a

lower bound on a conditional probability which is much smaller than the case under

independence, it may be possible to find how low the correlation count should be for

us to conclude that there are significant inhibitory influences.

We have given a simple test of significance based on the counts calculated through

multi-point correlations. As mentioned earlier, the motivation is that such correla-

tions are what are presently used for detecting such patterns. However, using correla-
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Figure 5.6: Comparison to other methods. Calculation of P-value for significance of
patterns I-S-C (A) and W -O-L (B) using basic spike jitter. (C) P-values
for the excess of patterns I[8]-S[4]-C and W -[6]-O[5]-L were calculated
using various methods from the literature. Since the p-values are close to
zero for both patterns, they cannot be used to assess the relative strength
of the two patterns. Our method can rank order the strength of the
patterns based on the maximum e0 at which the pattern is still significant.
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tion counts to detect interactions among a large group of neurons is computationally

intensive. Since our test will directly give the threshold needed for the count, given

any pattern, we do not need to actually obtain the true correlation count which would

be required if we wanted to estimate the conditional probability. We only need to

ascertain whether a pattern occurs more than some number of times, which leads

to better computational efficiency. Further computational efficiency can be obtained

by employing data mining algorithms for discovering patterns that count the non-

overlapped occurrences of a pattern (Patnaik et al., 2008; Sastry and Unnikrishnan,

2010), rather than all occurrences as the method presented in this chapter requires.

We will develop statistical inference methods for counts based on these data mining

algorithms in the next chapter.
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CHAPTER VI

Inferring functional connectivity in

neuronal networks using frequent episodes

6.1 Introduction

In the previous chapter, we developed a test of significance for sequential firing

patterns in multi-neuronal spike trains based on counting all the occurrences of a

pattern. Recently, an alternative method for detecting such patterns was introduced

that counts a certain well-defined subset of the occurrences of a pattern, rather than

all occurrences, in order to gain computational efficiency (Patnaik et al., 2008; Sas-

try and Unnikrishnan, 2010). In this chapter, we develop a test of significance for

patterns based on this type of count. We also introduce a heuristic method for deter-

mining from these patterns a graph representing the functional connectivity among

the neurons. We demonstrate our methods on simulated neuronal networks as well

as data from cultures of cortical neurons.

6.1.1 Frequent episode discovery of sequential firing patterns

In Patnaik et al. (2008) and Sastry and Unnikrishnan (2010), sequential firing

patterns in multi-neuronal spike data are detected using frequent episode discovery,

a popular framework in the field of temporal data mining (Mannila et al., 1997). The
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input data for frequent episode discovery is a sequence of events 〈(E1, t1), (E2, t2), . . .〉,

where Ei represents the event type and ti is the time of the ith event. The sequence

is ordered so that ti ≤ ti+1 for all i. In the context of multi-neuronal spike trains, the

events are spikes, the event type is the label of the neuron that spiked (or the label of

the electrode that recorded the spike), and the time stamps are the time of the spike.

The following is an example event sequence consisting of 12 events with 5 different

event types:

〈(A, 1), (B, 3), (A, 5), (D, 5), (C, 6), (E, 9), (A, 10),

(E, 14), (B, 15), (B, 17), (C, 18), (C, 20)〉 (6.1)

Temporal patterns in the event sequence are called episodes. A serial episode

is an ordered tuple of event types, for example (A-B-C) is a serial episode with

3 event types (referred to as a 3-node serial episode). In the event sequence 6.1,

the events 〈(A, 1), (B, 3), (C, 6)〉 are an occurrence of the episode (A-B-C). The ob-

jective in frequent episode discovery is to detect all episodes whose frequency ex-

ceeds a user-specified threshold. The frequency of an episode can be defined in

many different ways. Perhaps the most natural frequency measure for an episode

would be the total number of occurrences, of which there are 15 in event sequence

6.1. Another possible frequency measure is the maximum number of distinct oc-

currences, where distinct occurrences are defined as occurrences which do not share

any events. In event sequence 6.1, we have at most 3 distinct occurrences (for ex-

ample, 〈(A, 1), (B, 3), (C, 6)〉, 〈(A, 5), (B, 15), (C, 18)〉, and 〈(A, 10), (B, 17), (C, 20)〉).

A third possibility, introduced in Laxman et al. (2005), is the maximum number of

non-overlapped occurrences. Two occurrences are said to be non-overlapped if no

event associated with one occurrence occurs in between the events associated with
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the other. In event sequence 6.1, we have at most two non-overlapped occurrences

(for example, 〈(A, 1), (B, 3), (C, 6)〉, and 〈(A, 10), (B, 15), (C, 20)〉). Regardless of the

frequency measure chosen, the occurrences of serial episodes are typically detected us-

ing finite state automata (Laxman et al., 2007). Laxman et al. (2007) shows that the

non-overlapped frequency measure enables the use of more computationally efficient

counting procedures than the other measures, and proposes an algorithm that can

obtain the maximum number of non-overlapped occurrences using only 1 automaton

per episode. In contrast, the number of automata needed per episode to obtain the

total number of occurrences or the maximum number of distinct occurrences is in

principle unbounded (Laxman et al., 2007).

Patnaik et al. (2008) employed the non-overlapped frequency measure to detect

patterns in spike data. An additional temporal constraint, motivated by the nature of

neuronal communication, was also placed on the type of patterns detected (Patnaik

et al., 2008). When considering the frequency of an episode, only occurrences which

satisfied a user-specified inter-event interval constraint were counted. This constraint

requires that the difference between the times of every pair of successive events in an

occurrence of serial episode be within an interval of the form [Tlow, Thigh]. For example,

suppose the interval of interest is [4,6] and we are counting non-overlapped occurrences

of the 3-node serial episode (A[4,6]-B[4,6]-C). In event sequence 6.1, we have just 1

occurrence: 〈(A, 10), (B, 15), (C, 20)〉. The inter-event constraint can be generalized

so that different time intervals are applied for different pairs of events within a serial

episode. Patnaik et al. (2008) presents an efficient algorithm for discovering all serial

episodes with inter-event interval constraints, which we refer to as sequential patterns.

Sequential firing patterns are useful for unearthing the functional connectivity

between neurons because they can account for the delays inherent in synaptic com-

munication. For example, suppose there is a single synapse mediating communication

from neuron A to neuron B. In such a scenario, spikes from A will have an effect
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on the probability of B spiking, but only after some time delay due to the chemical

processes involved in synaptic transmission. The delay can vary depending on the

type of neurotransmitter acting at the synapse. For example, AMPA synapses are

typically fast-acting with delays of 5 ms or less, while the action of GABAB synapses

can be as slow as 250 ms (Destexhe and Sejnowski , 2001).

6.1.2 Statistical significance of sequential patterns

While Patnaik et al. (2008) detailed an algorithm for detecting sequential patterns

that repeat frequently (i.e. above a user-specified threshold), it did not present any

statistical theory for determining when these patterns are repeating more often than

one would expect by chance. This issue was taken up in Sastry and Unnikrishnan

(2010) by constructing a probabilistic model to represent the counting algorithm.

Recurrence relations were then derived to solve for the first two moments of the non-

overlapped count for an episode, and a bound on the probability of the non-overlapped

count for that episode exceeding some value was obtained using the Chebyshev in-

equality. This bound was then used to test for the statistical significance of the

episode. In this chapter, we improve on the Sastry and Unnikrishnan (2010) results

by developing a model which allows us to obtain closed-form expressions for the first

two moments of the non-overlapped count. We also explore methods of obtaining

tighter bounds than those given in Sastry and Unnikrishnan (2010).

6.2 Methodology

6.2.1 Distribution of the total number of occurrences of a serial episode

In the previous chapter, we worked with a model where the total number of

occurrences of a serial episode were Poisson-distributed. That model was based on

the assumption that the firing of the first neuron in an episode was stationary, and
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followed a homogeneous Poisson process with rate λ. In this chapter, for convenience

we will instead work with the discrete-time counterpart of a Poisson process, the

Bernoulli process. We discretize time into bins of fixed size ∆, where ∆ is small

enough so that there is at most one spike per neuron in an interval. We observe

the firing of a group of J neurons over a time period consisting of L intervals, and

assume for now that the neurons are firing independently. For each neuron we have a

Bernoulli process Xj(t), t = 1, . . . , L, j = 1, . . . , J representing whether or not neuron

j fires in interval t. Let Pj be the probability of firing in an interval (= 1−exp(−λj∆))

and denote the number of firings during L intervals as Nj for neurons j = 1, . . . , J .

Then the Nj’s are independent binomial(L, Pj) random variables.

We will now consider the case when we have dependence among neurons. Suppose

we have two neurons A and B with one-directional dependence: A influences B, but

B does not influence A (written as A→ B), and that there is a delay of T time units

between the time A fires and when it affects the probability of B firing (A
T→ B). Since

the firing of A is unaffected by B, its firings are iid Bernoulli random variables with

success probability PA. The firing of neuron B is due to a mixture of two processes;

it can fire on its own or due to excitation by A. Since each of these processes are

independent over time, the firing of B across different intervals remains independent.

The mixture probability of B firing in any interval t is:

P (XB(t) = 1) =

P (XB(t) = 1|XA(t− T ) = 1)P (XA(t− T ) = 1)

+ P (XB(t) = 1|XA(t− T ) = 0)P (XA(t− T ) = 0)

= PAPB|A + (1− PA)PB|Ā (6.2)

P (XB(t) = 0) = 1− P (XB(t) = 1) (6.3)
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Thus, B is marginally a Bernoulli process with P c
B = PA PB|A + (1−PA) PB|Ā, where

the superscript c stands for combined. This result extends to chains of multiple

neurons (e.g. B and C are both still marginally Bernoulli processes if we have a

structure like A→ B → C), or other feed-forward structures (e.g. B and C are both

still marginally Bernoulli if we have a structure like A → B and A → C), as long

as there are no loops or cycles. In other words, our approach is valid if the network

structure is a directed acyclic graph.

We will have an occurrence of the serial episode (A-B) with inter-event time

constraint T , written as A[T ]−B, if a firing of A is followed by a firing of B after T

time units. Consider the binary process IE(t) that equals 1 if XA(t) = 1∩XB(t+T ) =

1, for t = 1, . . . , L − T . This is an iid Bernoulli process with success probability

PE = PAPB|A. Thus the total number of occurrences of the episode A[T ]−B during

L intervals, denoted N , has a binomial distribution with parameters (L−T ) and PE.

The expected value and variance of N are:

E[N ] = (L− T )PE (6.4)

V ar[N ] = (L− T )PE(1− PE) (6.5)

6.2.2 Distribution of the number of non-overlapped occurrences of a se-

rial episode

We have that the total number of occurrences N (of a serial episode E with a time

delay of T in data of length L) is distributed binomial(L−T, PE). We are interested

in the distribution of the number of non-overlapped occurrences of the episode, which

we denote M . We note that M ≤ N , and partition N as follows: consider the jth

non-overlapped occurrence of E, and let Rj be the total number of occurrences of E

that occur between the (j − 1)th and jth non-overlapped occurrence.
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Figure 6.1: Illustration of occurrences for example episode A[5]−B. The total number
of occurrences in L = 20 bins is N = 6, consisting of M = 3 non-
overlapped occurrences and R1 +R2 +R3 = 3 overlapped occurrences.

Proposition: N has the same distribution as

N = M +
M∑
j=1

Rj. (6.6)

where the Rjs are iid binomial(k, PE) random variables and are independent of M .

Figure 6.1 illustrates the partitioning of N into M and R.

We can readily compute the expected value and variance of M . Taking expecta-

tions of both sides of Equation 6.6, we have:
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E[N ] = E[M ] + E[
M∑
j=1

Rj]

= E[M ] + E[M ]E[R1] (by independence of M and R)

and rearranging terms gives:

E[M ] =
E[N ]

1 + E[R1

=
L− T

1/PE + k
(6.7)

Taking the variance of both sides of Equation 6.6, we have:

V ar[N ] = V ar[M ] + V ar[
M∑
j=1

Rj] + 2Cov[M,
M∑
j=1

Rj] (6.8)

using the Law of Total Variance, we can write the V ar[
∑M

j=1Rj] term from the RHS

of Equation 6.8 as:

V ar[
M∑
j=1

Rj] = E[V ar[
M∑
j=1

Rj|M ]] + V ar[E[
M∑
j=1

Rj|M ]]

= E[MV ar[R1]] + V ar[ME[R1]]

= V ar[R1]E[M ] + E[R1]2V ar[M ]

and writing the 2Cov[M,
∑M

j=1 Rj] term from the RHS of Equation 6.8 as:

2Cov[M,

M∑
j=1

Rj] = 2(E[M
M∑
j=1

Rj]− E[M ]E[
M∑
j=1

Rj]

= 2(E[M2]E[R1]− E[M ]2E[R1]

= 2E[R1]V ar[M ]
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gives:

V ar[N ] = V ar[M ] + V ar[R1]E[M ] + E[R1]2V ar[M ] + 2E[R1]V ar[M ]

= V ar[M ](1 + 2E[R1] + E[R1]2) + V ar[R1]E[M ]

We can now solve for Var[M] by rearranging terms:

V ar[M ] =
V ar[N ]− V ar[R1]E[M ]

1 + 2E[R1] + E[R1]2

=
(L− T )PE(1− PE)

(1 + TPE)(1 + 2TPE + T 2P 2
E)

=
V ar[N ]

(1 + TPE)3
(6.9)

The closed-form expressions for the mean and variance of M derived here agree

with the mean and variance of M based on the recurrence relations derived in Sastry

and Unnikrishnan (2010). In both approaches, the moments depend on the three

parameters L, T , and PE. Table 6.1 shows a comparison of the values obtained by

the two approaches for several parameter settings.

In Sastry and Unnikrishnan (2010), the mean and variance of M are then used to

get a bound on the probability that M will exceed some value based on the Chebyh-

shev inequality. The Chebyshev inequality guarantees that for any arbitrary distri-

bution, no more than 1/k2 of the distribution’s values are more than k standard

deviations away from the mean:

Pr(|X − µ| ≥ kσ) ≤ 1

k2
(6.10)

where X is a random variable with expected value µ and finite variance σ2. For

example, suppose we have L=300000, T=500, and PE=0.001 as in the last row of
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Closed-form expressions Recurrence relations
L T PE E[M] Var[M] E[M] Var[M]

0.000025 0.5 0.5 0.5 0.5
20000 5 0.0005 10.0 9.9 10.0 9.9

0.001 19.9 19.7 19.9 19.7

0.000025 0.5 0.5 0.5 0.5
20000 50 0.0005 9.7 9.3 9.7 9.3

0.001 19.0 17.2 19.0 17.3

0.000025 0.5 0.5 0.5 0.5
20000 500 0.0005 7.8 5.0 7.8 5.0

0.001 13.0 5.8 13.0 5.9

0.000025 1.5 1.5 1.5 1.5
60000 5 0.0005 29.9 29.8 29.9 29.8

0.001 59.7 59.0 59.8 59.2

0.000025 1.5 1.5 1.5 1.5
60000 50 0.0005 29.2 27.8 29.3 27.9

0.001 57.1 51.7 57.2 51.9

0.000025 1.5 1.4 1.5 1.4
60000 500 0.0005 23.8 15.2 23.8 15.3

0.001 39.7 17.6 39.7 17.7

0.000025 7.5 7.5 7.5 7.5
300000 5 0.0005 149.6 148.8 149.7 149

0.001 298.5 295.2 298.8 296.1

0.000025 7.5 7.5 7.5 7.5
300000 50 0.0005 146.3 139.2 146.4 139.4

0.001 285.7 258.5 285.9 259.6

0.000025 7.4 7.2 7.4 7.2
300000 500 0.0005 119.8 76.6 119.9 76.7

0.001 199.7 88.7 199.9 88.9

Table 6.1: Mean and variance of the number of non-overlapped occurrences of an
episode based on the closed-form expressions derived here and the recur-
rence relations derived in Sastry and Unnikrishnan (2010)

Table 6.1. Then M is a random variable with µ=200 and σ=9.4. If we observe M

many times, the Chebyshev inequality with k=4.47 gives that 95% of the time M will

be between 158.0 and 242.0. However, because this bound is distribution-independent

it can be very conservative. To see how conservative the bound is in this case, we

used simulation to generate many observations of M with these parameter settings.

The simulation procedure was as follows:
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initialize t = 1, M = 0
while t ≤ L− T do

Draw random number r between 0 and 1
if r < PE then
M = M + 1
t = t+ T

else
t = t+ 1

end if
end while

Using the above algorithm, we simulated 10,000 replications of M for L=300000,

T=500, and PE=0.001. We found that M was between the Chebyshev bounds in

100% of the simulations. Based on the simulation results, we can use an interval

of 181 to 218 to bound 95% of the values. This bound is 56% tighter than the

corresponding Chebyshev bound, as shown in Figure 6.2.

6.2.3 Inferring connection strengths

The usefulness of having a model for the number of non-overlapping occurrences

of an episode is that it allows us to go from the count of that episode to an estimate

of the strength of the connection between the neurons involved in the episode. Given

a count M for an episode with span T in data of length L, we can invert Equation

6.7 to solve for the probability of that episode occurring at any instant:

P̂E =

(
L− T
M

− T
)−1

(6.11)

Suppose the episode of interest is A[T]-B, then the probability of occurrence is

PE = P (B|A)×PA. We can use P̂E and an estimate of PA from the data (P̂A = NA/L)

to get P̂B|A. This conditional probability, denoted e(B|A, T ) in the previous chapter

and es(A,B, T ) in Sastry and Unnikrishnan (2010), is a useful measure of the strength

of the interaction between A and B. For example, say we have obtained the non-

overlapped count of two episodes, MA[500]−B = 200 and MC[500]−B = 250, in data of
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Figure 6.2: Histogram of M for 10,000 simulation replications with L=300000,
T=500, and PE=0.001. The 95% bounds based on simulation (green
lines, M=[181, 218]) are much tighter than the 95% Chebyshev bounds
(red lines, M=[158, 242]).

length L=300000. Our estimate of PE for these two episodes would be 0.001 and

0.0014 respectively. Assuming that both A and C spike at a rate of 5 Hz, then

we have P̂B|A = 0.20 and P̂B|C = 0.28, which indicates that the connection from

C to B is stronger than the connection from A to B. However, because the firing

rate of B does not enter into these calculations there can be situations where the

conditional probability does not tell the whole story. For example, suppose in the

same spike train we also counted another episode, MC[500]−D = 150. This would give

P̂E = 0.00067 and P̂D|C = 0.13, leading to the conclusion that the connection from C

to B is stronger than the connection from C to D. This conclusion may be incorrect

though if the firing rate of B is much higher than that of D. Suppose the firing rate

of B on its own is 20 Hz, then PB=0.02. The P̂B|C we obtained earlier is 14 times

greater than PB. If the firing rate of D on its own is 5 Hz, then PD=0.005. The

P̂D|C we obtained earlier is 26 times greater than PD, indicating that the C to D

105



connection is actually stronger than the C to B connection. This illustrates that the

firing rate of both neurons involved in the episode should be taken into account when

drawing conclusions about the strength of the connection between them. We define

the strength ratio s = PY |X/P (Y ). If X and Y are independent, then s = 1. We can

use s in a data-mining context to find strong connections the same way that e0 was

used in the previous chapter. Let s0 be a user-defined threshold that is bigger than

one. We say that the excitatory influence of X on Y is “strong” if s > s0.

In the same way that we use Equation 6.11 to obtain P̂E from the count M , if

we have a confidence interval for M we can invert it to get a confidence interval

(CI) for P̂E. A straightforward way of getting a CI for M is through simulation.

Continuing with our previous example, say we have an episode A[500] − B with a

count of 200 and P̂E=0.001. Using Algorithm 6.2.2, we simulate 10,000 replications

of M with L = 300000, T = 500, and PE = 0.001 and find a 95% CI for M of

[181, 218] as shown in Figure 6.2. Inverting this interval using Equation 6.11 gives

a 95% CI for P̂E of [0.00087, 0.0011]. This leads to a 95% CI for ŝ of [34.8, 44].

Since the lower confidence limit for ŝ is greater than 1, we conclude there is a statisti-

cally significant excitatory connection A
500→ B. Unfortunately, obtaining a CI for M

through simulation is too slow to be a practical approach in a typical data analysis

situation. On a dual-core Pentium machine with a 1.66 GHz processor and 2 GB

RAM, simulating 1,000 replications of M with Algorithm 6.2.2 coded in MATLABr

for parameter settings corresponding to Figure 6.2 takes approximately 10 seconds.

Since multi-electrode arrays can have 500 or more recording electrodes, determining

the statistical significance of each episode needs to be extremely fast as the number of

different episodes to be evaluated is likely to be in the thousands. Thus, we examined

the appropriateness of using a normal approximation to M for episode A[500] − B.

We generated 10,000 normal random variables with mean of 199.7 and standard de-

viation of 9.4, based on the mean and variance expressions for our P̂E. We then
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Figure 6.3: QQ plot comparing the distribution of M obtained from simulation to
a normal distribution. On the y-axis are the quantiles of 10,000 simu-
lation replications of M with L = 300000, T = 500, and PE = 0.001.
On the x-axis are 10,000 normal random variables with mean and stan-
dard deviation corresponding to these parameter settings. The plot is
linear except at the extreme tails, indicating that the distribution of M
is approximately normal for these parameter settings.

constructed a quantile-quantile (QQ) plot to compare these normal random variables

to our simulation replications for M . The QQ plot in Figure 6.3 is linear, indicating

that a normal distribution is a good approximation for the distribution of M in this

case.

A 95% CI for M based on the normal approximation can be obtained easily as

[µ− 1.96σ, µ+ 1.96σ], which gives [181.3, 218.1] in this case. This is very close to the

95% CI obtained through simulation, and indeed Table 6.2 shows that the normal-

based CI is close to the simulation-based CI for most of the parameter settings we

considered in Table 6.1. The exception is when the expected counts are very low,

such as in the first row of Table 6.1. Here the normal-based lower confidence limit is

a negative value, which is inappropriate since the distribution of M , being a count, is
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Figure 6.4: 95% CI for ŝ based on normal approximation for several strengths s.
When s = 2, the CI for ŝ does not include 1. This is the weakest connec-
tion strength for which the connection strength is statistically significant
(compared to independence) with these parameter settings. The CI for ŝ
with s = 5 does not overlap with the CI for s = 2, so we can resolve these
two connection strengths. As the strength increases, more separation
between s values is required to resolve the strengths.

non-negative. However the normal-based upper confidence limits do appear to match

the simulation upper confidence limits even when the expected counts are low. Thus,

for statistical inference in this chapter we will use normal-based CIs, and set the lower

confidence limit to 0 if it happens to be negative.1 In Figure 6.4, we show examples

of using our normal-based approximation to infer connection strengths.

1Although a normal approximation forM appears to be valid for wide range of parameter settings,
in some situations it may be desirable to perform statistical inference using a better approximation
for the distribution of M . In other work, we have accomplished this by first obtaining the moment
generating function (MGF) of M based on Equation 6.6 (Diekman et al., In Preparation). We can
then use the MGF to obtain the first 4 moments of the distribution of M , and then approximate
this distribution very closely using a polynomial function of a normal random variable that matches
these first 4 moments (Diekman et al., In Preparation).
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Simulation Quantiles Normal Quantiles
L T PE 0.025 0.975 0.025 0.975

0.000025 0 2 -0.9 1.9
20000 5 0.0005 4 17 3.8 16.1

0.001 12 29 11.2 28.6

0.000025 0 2 -0.9 1.9
20000 50 0.0005 4 16 3.8 15.7

0.001 11 28 10.9 27.1

0.000025 0 2 -0.9 1.8
20000 500 0.0005 4 12 3.4 12.2

0.001 8 18 8.3 17.7

0.000025 0 4 -0.9 3.9
60000 5 0.0005 20 41 19.2 40.6

0.001 45 75 44.6 74.8

0.000025 0 4 -0.9 3.9
60000 50 0.0005 20 40 18.9 39.6

0.001 43 72 43.0 71.2

0.000025 0 4 -0.9 3.8
60000 500 0.0005 16 32 16.2 31.4

0.001 32 48 31.4 47.9

0.000025 3 13 2.1 12.9
300000 5 0.0005 127 174 125.7 173.5

0.001 266 334 264.8 332.2

0.000025 3 13 2.1 12.8
300000 50 0.0005 124 170 123.2 169.4

0.001 255 318 254.1 317.2

0.000025 3 13 2.1 12.7
300000 500 0.0005 103 137 102.6 137.0

0.001 181 218 181.2 218.1

Table 6.2: Comparison of 95% confidence intervals for M based on simulation and the
corresponding normal approximation for a variety of parameter settings.
As long as the CI does not include 0, the normal approximation seems to
be reasonable.

6.3 Results

6.3.1 Simulated neuronal networks

To test the ability of our methods to detect functional connections between neu-

rons, we applied them to spike data generated by a simulated neuronal network. We
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simulated a network of 25 neurons, with each neuron i (i = 1, . . . , 25) firing inde-

pendently as a Bernoulli process with a success probability of Pi(t)=0.005 in each

discrete time bin t (t = 1, . . . , L). We chose a bin size of ∆ = 1 ms, giving each

neuron a baseline firing rate of 5 Hz. We then embedded a certain number of strong

connections among the neurons. For the first set of simulations, for each neuron i

we randomly chose one other neuron j (i 6= j) as the post-synaptic target. This

connection was then randomly assigned a delay k between 1 and 10 ms. If neuron i

spikes at time t, then the spiking probability of its post-synaptic target j is elevated

in the (t + k)th time bin, so that Pj(t + k) > 0.005 (for the first simulation we set

Pj(t + k) = 0.2). Different neurons may have the same post-synaptic target, so it is

possible for a neuron j to be receiving an excitatory signal from multiple pre-synaptic

neurons in a single time bin, elevating Pj(t+ k) above 0.2.

We generated 300 seconds of spike data from this type of network, and then

counted the number of non-overlapped occurrences for all possible 2-node episodes

(625 different neuron pairs), with delays T ranging from 1 to 500 ms. For each episode

counted (312,500 in all), we obtained a 95% CI for ŝ. We then classified any episode

which had a lower confidence limit for ŝ greater than 1 as representing a connection

between those neurons with delay T . For the simulated network we know the ground

truth, that there are 25 true connections. Our procedure identified 224 connections,

including all 25 true connections so the sensitivity of the test (also known as recall)

was 1.2 Despite 199 false positives, the specificity of the test was nearly 1 because the

number of true negatives is far greater than the number of true positives. Therefore,

instead of specificity, we calculated the precision of the test, which comes out to just

0.11. Precision and recall can be combined into a single measure of the performance

2Sensitivity is the proportion of actual positives which are correctly identified as such, or true
positives/(true positives + false negatives). Specificity is the proportion of actual negatives which
are correctly identified as such, or true negatives/(true negatives + false positives). Precision is
the proportion of returned positives that are true positives, or true positives/(true positives + false
positives).
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of the test, called the F-measure (van Rijsbergen, 1979):

F = 2× precision× recall

precision + recall
(6.12)

For this test we get F = 0.20. Instead of classifying episodes with a lower confi-

dence limit for ŝ greater than 1 as connections (i.e. s0 = 1), we can make the criteria

more strict so that only episodes with a lower confidence limit for ŝ greater than 2

are classified as connections (i.e. s0 = 2). This test still has perfect recall, and higher

precision (0.63) so a higher F (0.77). With s0 = 3, the test again has perfect recall

and higher precision (0.93), so a higher F (0.96). With s0 = 4, the test has perfect

recall and precision, so F=1. Figure 6.5 compares the true connectivity graph and

the inferred graphs at the different s0 thresholds.

We can continue to increase s0 up to 10 and maintain perfect performance of the

test (F=1), but beyond s0 = 10 we start to have some false negatives and so no

longer have perfect recall as shown in Figure 6.6.

6.3.1.1 False edge elimination

For Simulation #1, with s0 = 3 we had two false positives: connections 4[13]− 20

and 5[276] − 11. In Table 6.3, which lists the true connections for this simulation,

we see that 4 → 6 with a delay of 6 and 6 → 20 with a delay of 7 are both true

connections. This could explain why 4[13]− 20 shows up as significant– not because

of a direct connection 4 → 20, but because of two indirect connections 4
6→ 6

7→ 20

whose delays add up to 13. In fact, there are other possible relationships among 3

neurons, besides a chain such as A→ B → C, that could also lead to false positives

when only 2-node episodes are considered. For example, suppose we had the following

connections: A
T1→ B and A

T2→ C, where T2 > T1. Not only would this likely lead to

the 2-node episodes A[T1]−B and A[T2]−C being frequent, but potentially B[T3]−C

(where T3 = T2 − T1) as well. In this case A[T1] − B and A[T2] − C would be true
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Figure 6.5: For Simulation #1, the inferred connectivity graph with s0 = 4 is identical
to the true graph.
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Figure 6.6: For Simulation #1, the test has perfect precision and recall for s0 = 4
through s0 = 10.
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positives, but B[T3]− C would be a false positive.

i→ j k
1→ 24 10
2→ 22 9
3→ 1 9
4→ 6 6
5→ 14 1
6→ 20 7
7→ 9 5
8→ 15 4
9→ 15 6
10→ 2 2
11→ 12 6
12→ 11 3
13→ 22 10
14→ 9 8
15→ 20 3
16→ 23 3
17→ 7 6
18→ 21 7
19→ 12 1
20→ 25 5
21→ 4 1
22→ 13 2
23→ 6 6
24→ 14 9
25→ 4 3

Table 6.3: True connections for Simulation #1.

In general, there are 4 possible feed-feedforward structures involving 3 neurons as

shown in Figure 6.7. A chain of 3 neurons, which we refer to as an α-type structure,

is likely to produce the false positive A[T1 + T2]− C. A β-type structure is likely to

produce the false positive B[T2]−C. The γ-type structure is not likely to produce any

false positives, as A[T1]−B, B[T2]−C, and A[T1 +T2]−C would all be true positives

if returned. The δ-type structure is also not likely to produce any false positives, as

there is no reason to expect that A[T1]−B would be returned as a positive.

Suppose we analyze a dataset at the 2-node level and find that A[T1]−B, B[T2]−

C, and A[T1 + T2] − C are all significant. How can we determine which of the 3-

114



Figure 6.7: The 4 possible feed-forward structures involving 3 neurons. α-type, β-
type, and γ-type structures are all likely to lead to the same set of frequent
2-node episodes: A[T1]− B, B[T2]− C, and A[T1 + T2]− C. The δ-type
structure is likely to lead to A[T1 +T2]−C and B[T2]−C being frequent
but not A[T1]−B.
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neuron structures is most likely to have produced the data? We propose the following

heuristic method. First, we count the occurrences of the 3-node episodeA[T1]−B[T2]−

C, which we denote as MABC . (Likewise, we denoted the counts of B[T2] − C and

A[T1 + T2] − C as MBC and MAC respectively). We then obtain adjusted 2-node

counts MBC′ and MAC′ by subtracting the 3-node count from the original 2-node

counts: MBC′ = MBC − MABC and MAC′ = MAC − MABC . MBC′ represents the

number of occurrences of B[T2] − C where an A did not occur T1 time units before

the B, and MAC′ represents occurrences of A[T1 +T2]−C where a B did not occur T1

(T2) time units after (before) the A (C). We map each of the adjusted 2-node counts

to a PE′ , and compute the following adjusted ratios:

sBC′ =
PE:BC′

(1− PA)PBPC
(6.13)

sAC′ =
PE:AC′

PA(1− PB)PC
(6.14)

We then compare the lower confidence limit of s′ to s0 to determine if the con-

nection is significant. For example, the count of 4[13] − 20 in our first simulation,

M4[13]−20, was 9. This maps to P̂E:4[13]−20 = 0.000453, and ultimately a 95% CI for

ŝ4[13]−20 of [3.2, 15.3], which is significant for s0 = 3. The count of the 3-node episode

4[6] − 6[7] − 20 is 6, so the adjusted 2-node count M4[13]−20′ = 3. This maps to

P̂E:4[13]−20′ = 0.000150, and the lower 95% confidence limit for ŝ4[13]−20′ is less than

3, so the connection is no longer significant for s0 = 3. Thus, information about a

3-node episode has led us to determine that a connection which appeared significant

at the 2-node level is not actually a true connection. We refer to this procedure as

pruning or false edge elimination.

Since information about 3-node episodes can be useful in eliminating false edges,

we would like to obtain all the relevant 3-node episode counts. However the com-
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binatorial explosion of the number of episodes begins to be a consideration, as even

with just 25 neurons there are 15,000 different 3-neuron combinations, and so for

T = 1, . . . , 500 there are over 7 million episodes to be counted. Instead of counting

all possible 3-node episodes, we will count a subset of them using a level-wise can-

didate generation scheme. In level-wise procedures, such as the Apriori algorithm

of Agrawal et al. (1993), candidate generation for the (n + 1)th level takes the set of

frequent episodes of size n and combines them in different ways to obtain a set of

candidate episodes of size n+1. We will generate the 3-node candidates to be counted

based on the 2-node episodes that were found to be significant using the following

scheme described in Patnaik et al. (2008) for candidate generation with intervent time

constraints. Let α and β be two 2-node significant episodes, where the second node

of α is the same as the first node of β. A candidate 3-node episode γ is created by

appending to α the inter-event delay and last node of β. For example, in our first

simulation we had a set of 40 significant 2-node episodes with s0 = 2, which results

in a set of 310 candidate 3-node episodes. After counting the occurrences of these 3-

node episodes, we now want to use these counts to eliminate false edges at the 2-node

level. If we have counted the 3-node episode A[T1] − B[T2] − C, it is possible that

the true network structure is α-type (see Figure 6.7) and therefore at the 2-node level

A[T1 + T2] − C was a false edge. It is also possible that the true network structure

is β-type and that B[T2] − C was a false edge, or that the true network structure is

γ-type and that neither A[T1 + T2]−C nor B[T2]−C were false edges.3 Thus we go

to our set of significant 2-node episodes, and if any of them match A[T1 + T2]−C or

B[T2] − C, we subtract MABC from their counts and determine if M ′
AC or M ′

BC are

significant with s0 = 2. If not, we conclude that A[T1 + T2]− C or B[T2] − C was a

false edge and remove it from our list of significant 2-node episodes.

3If we have counted the 3-node episode A[T1]−B[T2]− C, it is not likely that the true network
structure is δ-type, as there is no reason to expect that A[T1]−B would be found significant if that
were the case.
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In our first simulation, we would not necessarily expect any false B[T2]−C edges,

because we limited each neuron to just 1 post-synaptic target making a true beta-type

structure impossible. However, with s0 = 2 we do find 3 false A[T1 +T2]−C edges. In

addition to 4[13]− 20 which we discussed previously, 14[14]− 15 and 11[9]− 11 were

also found to be false edges. Indeed, inspection of Table 6.3 confirms that 14[14]− 15

is not a true connection, and rather its significance at the 2-node level was just due

to occurrences of 14[8]− 9 followed by occurrences of 9[6]− 15. Likewise, 11[9]− 11

is not a true connection but was significant due to occurrences of 11[6]− 12 followed

by 12[3] − 11.4 Removing these 3 false edges raises our precision with s0 = 2 from

0.63 to 0.68.

For our second simulation, we increased the number of post-synaptic targets per

neuron to two, for a total of 50 true connections. We again simulated 20 seconds of

data, counted all 2-node episodes, determined significant connections at the 2-node

level, generated and counted candidate 3-node episodes, and used their counts to

prune false edges. We repeated this procedure for simulations with 3 post-synaptic

targets per neuron (75 total connections) as well. The true connectivity graphs for

these simulations are shown as Figure 6.8. With pruning, we are able to infer both of

these graphs from the spike data with perfect precision and recall (s0=5 for Simulation

#2, s0=4 for Simulation #3). Figure 6.9 shows that pruning improves the F -measure

performance of the test in both of these simulations for low settings of s0.

6.3.2 Analysis of Cultured Cortical Neurons

Wagenaar et al. (2006) made available to the public an extensive set of multielec-

trode array (MEA) recordings from cultured cortical neurons. Half-hour recording

4These two connections, 11[6] − 12 and 12[3] − 11, constitute a cycle, thus our assumption that
neuron 11 spikes as Bernoulli processes is violated. As stated in Sec. 6.2.1, our analysis method
is technically valid only for directed acyclic graphs (DAGs). For our simulations, we chose the
connections randomly and so did not force the network structure to be a DAG. We will come back
to this point later in Sec. 6.4 section.
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Figure 6.8: (A) For Simulation #2, each neuron has 2 post-synaptic targets for a
total of 50 connections in the network. We can infer the true connectivity
graph from the spike data with s0=5 using pruning. (B) For Simulation
#3, each neuron has 3 post-synaptic targets for a total of 75 connections.
We can infer the true connectivity graph from the spike data with s0=4
using pruning.

Figure 6.9: For Simulations #2 and #3, pruning gives a higher precision test for low
settings of the s0 threshold.
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sessions were performed across 58 different cultures during their first five weeks of

development. Wagenaar et al. (2006) focused on characterizing “population bursts”

in the spiking activity of the cultures. Such bursts, defined as brief periods of time

during which the firing rate of several cells or electrodes greatly exceeds the baseline

rate, are a common feature observed in cultures of many different types of neurons.

Here, our focus is not to characterize the bursts but rather to detect precisely timed

spiking patterns involving multiple neurons. From these patterns we can estimate

the strength of functional connectivity between different neurons in the culture. Our

analysis methods assume that the firing rates of individual neurons are relatively sta-

tionary in the analysis window. Thus, for our analysis it is important that we choose

analysis windows which do not contain bursts.

6.3.2.1 Data Pre-Processing

We began our analysis with culture 2-1-35, meaning the first culture from the

second batch after 35 days in vitro (DIV). This culture was “densely” plated with

approximately 50,000 cells, and on DIV 35 was characterized by Wagenaar et al.

(2006) as having bursts of fixed size, with a frequency of between 2 and 10 bursts per

minute. The input data for our analysis were the timestamps of the spikes recorded

on 56 different electrodes (we did not work with the raw voltage waveforms them-

selves). For our analysis we discretized the time axis with a bin size of ∆=1 ms. To

identify bursts we used the array-wide spike detection rate (ASDR) measure, defined

in Wagenaar et al. (2006) as the number of spikes per unit time summed over all

the electrodes in the array. Averaged over the entire 30 minute recording, the ASDR

for a 100 ms window in culture 2-1-35 was about 20. We considered the culture to

be bursting anytime the ASDR in a 100 ms window exceeded 50, corresponding to

a 2.5-fold increase over the average. For example, we will consider the spikes in the

first 120 seconds of recording from culture 2-1-35. In the raster plot shown in Figure

120



Figure 6.10: Spike raster of first 120 seconds from culture 2-1-35.

6.10, bursts are visible at around 10 and 100 seconds. In Figure 6.11, we see that

the ASDR greatly exceeds the threshold of 50 during these bursts. The ASDR also

exceeds 50 in windows around 40 and 57 seconds.

To obtain sections of the data suitable for our analysis, we looked for 20 second

stretches which did not contain any windows that exceeded the threshold. Addi-

tionally, we required these 20 second segments to begin and end at least 2 seconds

away from any window that exceeded the threshold (this was to avoid including any

windows that happened to catch the very beginning of a burst, as well as the brief

periods of extremely low spiking activity that appear to occur immediately following

a burst). The first 120 seconds contained one such segment (60 to 80 seconds). In the

30 minutes of data from culture 2-1-35, we found 23 suitable segments. We analyzed

each of these segments individually. (See Appendix C for an assessment of how well

this dataset appears to meet our model assumptions).
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Figure 6.11: ASDR (window size 100 ms) of first 120 seconds from culture 2-1-35.
Burst threshold of 50 shown in red.

6.3.2.2 Detecting Precisely Timed Spiking Patterns

In each segment, we looked for precisely timed spiking patterns by counting the

number of non-overlapping occurrences of serial episodes. Recall that a 2-node serial

episode is defined as a spike from any neuron i followed by a spike from another neuron

j after a fixed delay of T time units. With 56 electrodes, there are 3,080 possible

2-node episodes (where i 6=j), and we counted the non-overlapping occurrences of all

such episodes for T = 1, 2, ..., 200 ms. From these counts, we estimated the probability

of each episode occurring in any bin using Equation 6.11, and then calculated 95%

confidence intervals for each episode’s ŝ in each segment. If the lower confidence limit

of ŝ was greater than 1, then we considered that episode to be significant in that

segment. We repeated this for each episode and each segment. Based on the set of

significant 2-node episodes, we generated and counted candidate 3-node episodes and

used these counts to obtain a CI for ŝ′ for each episode in each segment. Table 6.4

shows the 47 episodes that were significant in at least half of the 23 segments after
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pruning of false edges.

# i[k]− j # i[k]− j
1 37[6]-38 25 55[6]-77
2 42[1]-62 26 78[2]-77
3 78[1]-87 27 78[2]-48
4 68[1]-87 28 68[3]-77
5 41[2]-82 29 68[1]-78
6 41[1]-21 30 32[1]-21
7 78[1]-48 31 48[1]-46
8 42[1]-32 32 41[4]-21
9 48[1]-47 33 55[5]-77
10 78[1]-77 34 68[2]-78
11 41[3]-62 35 68[3]-48
12 46[1]-35 36 68[2]-77
13 42[1]-21 37 41[1]-32
14 68[1]-48 38 68[3]-78
15 41[1]-82 39 32[1]-46
16 41[3]-21 40 24[7]-28
17 41[2]-42 41 41[4]-32
18 41[3]-42 42 55[5]-78
19 55[1]-56 43 55[5]-48
20 41[4]-62 44 78[2]-68
21 77[1]-48 45 55[5]-68
22 68[1]-77 46 41[2]-32
23 78[1]-68 47 24[1]-32
24 41[3]-32

Table 6.4: 2-node episodes significant in at least half of the 23 segments of culture
2-1-35

Although we considered episodes with delays of up to 200 ms, all the significant

episodes had delays of less than 10 ms. Fast delays such as this are consistent with

the timescale of the action for AMPA, a common excitatory neurotransmitter in the

cortex.

Overall, our 2-node results are consistent with the patterns reported in a previous

study of precisely timed patterns in these cultures (Rolston et al., 2007). Specifically,

of the thirteen 2-node patterns mentioned in Rolston et al. (2007), six of them were

also found to be significant in our analysis (68-78, 78-77, 77-48, 41-42, 42-32, and

37-38).
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Figure 6.12: Functional connectivity in culture 2-1-35.

6.3.2.3 Tracking connections over time

To visualize the functional connectivity present in culture 2-1-35, we draw a net-

work graph (Figure 6.12) based on our pruned list of significant 2-node episodes. If

there is a significant episode with any delay for an i− j pair, we draw a directed edge

i→j connecting them.

We repeated our method for finding significant patterns in earlier recordings made

from the same culture on DIV 33 and 34 (cultures 2-1-33 and 2-1-34). We find fewer

significant connections on these days than we did on DIV 35, indicating that the
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Figure 6.13: Functional connectivity in cultures 2-1-33 and 2-1-34.

connectivity in the culture is still evolving (Figure 6.13).

Some connections do show up as significant on all three days, namely 41-21 and

55-56. The 41-21 connection is actually significant at multiple different delays, as

shown in Table 6.5.

i[T ]− j ŝT
55[1]-56 44.8
41[1]-21 67.8
41[3]-21 48.0
41[4]-21 22.2

Table 6.5: Average strength of 41[T]-21 and 55[T]-56 connections on 2-1-35

This may be due to multiple connections between 41 and 21, or due to a single

connection with a variable, or “sloppy”, delay. In either case, for the sake of com-

parison of the strength of connections among i − j pairs it is useful to obtain some

aggregate measure of the influence of i on j across multiple delays. We compute a

strength ratio accounting for sloppy delays as follows. Say we are interested in delays

1 through n ms. If neurons i and j were independent, then the probability of a spike

by neuron i being followed by a spike from neuron j in at least one of the following

n time bins would simply be:
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Figure 6.14: Average strength of connections 41→21 and 55→56 over several days.

PEagg = 1−
n∏

T=1

(1− PET
) (6.15)

We calculated this aggregate P̂Eagg for 41→21 and 55→56 with n=10. We then get

an overall ratio as:

ŝagg =
P̂Eagg

nP̂iP̂j
(6.16)

for culture 2-1 DIV 31 through 35 and plot the results as Figure 6.14.

We see that the strength of the 41→21 connection is relatively stable over the 5

days of recordings, while the strength of the 55→56 is relatively stable the first 4 days

and then increases sharply on the last day.

6.4 Discussion

In this chapter, we developed a test of statistical significance for the number of

non-overlapped occurrences of a serial episode. The motivation was that these are

the type of counts obtained by data mining algorithms used in the literature to an-

alyze multi-neuronal spike trains. We demonstrated through simulation of neuronal
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networks that our methods are effective in estimating the strength of a connection

between two neurons, and in inferring the graph representing functional connectivity

among neurons. Due to our modeling assumption that neurons spike as Bernoulli

processes, our methodology is technically valid only when the connectivity network

among neurons is a directed acyclic graph. However, even when our simulated neu-

ronal networks did include some cycles, our methods were still able to recover the

connectivity graph. Nevertheless, methods that are technically valid for cyclic graphs

will be explored in our future work.

Our method for inferring the connectivity graph uses 3-node episode counts to

prune false edges that were determined to be significant at the 2-node level. In future

work, we will extend this idea to higher-order structures, such as those represented

by 4- and 5-node episodes. Doing so will require a framework that can handle the

combinatorial difficulties associated with modeling higher-order patterns. In our pre-

liminary work, directed loglinear models appear to be a promising solution to this

problem (Diekman et al., In Preparation).
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CHAPTER VII

Conclusion

In Part I of this dissertation, we developed a detailed mathematical model of the

electrophysiology of the SCN, the neuronal network responsible for the generation

of circadian rhythms in mammals. In Part II, we developed statistical methods for

inferring the functional connectivity of neuronal networks from multi-neuronal spike

train data.

A natural extension of this dissertation is to infer the functional connectivity of

the SCN from multi-neuronal spike train data recorded from SCN neurons. We will be

pursuing this direction in future work. Some adjustments to our statistical methods

may be required to make them well-suited for analysis of SCN data. For example, our

methodology assumes stationarity of neuronal firing in the analysis window. While

the electrical activity of SCN neurons is known to nonstationary on the 24-hour time

scale, on a much shorter time scale the stationarity assumption may be reasonable. In

addition, we have focused primarily on the detection of excitatory connections using

our methods. Since the most prevalent neurotransmitter in the SCN is GABA, the

majority of connections in the SCN are likely inhibitory. Our methods can be used

to detect significant inhibitory connections, but doing so often requires a larger data

analysis window. Larger analysis windows will increase the computational burden,

and also potentially make the stationarity assumption less appropriate.
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Several research groups have reported that GABA can also be excitatory in the

SCN, but the extent of this phenomenon is not yet clear due to conflicts in the findings

of the various reports. Most of these studies conducted intracellular recordings of

SCN neurons. Instead, we could assess the evidence for excitatory connections in

the SCN using extracellular recordings, by applying our statistical methods to SCN

spike trains. Freeman et al. (2010) applied cross-correlation analysis to SCN spike

trains, and found evidence for both excitatory and inhibitory communication between

neurons. The level of connectivity was estimated to be 3-4% of that expected by all-

to-all coupling. A study applying our methods to infer the level of connectivity in

the SCN would provide a useful comparison to the results of Freeman et al. (2010).

The statistical methods we developed in Part II of this dissertation targeted as-

sessing the significance of precise firing sequences with fixed time delays between

neurons. Such sequential firing patterns were detected as serial episodes. A serial

episode is an ordered tuple of event types (neurons), and is said to occur in the data

stream only when the neurons making up the episode fire in the prescribed order.

The frequent episode discovery framework can also be used to detect parallel episodes

(Patnaik et al., 2008). A parallel episode is an unordered set of neurons, and is said

to occur in the data whenever all the neurons making up the episode fire within some

prescribed time window, regardless of the order in which they fired. As such, count-

ing the occurrences of parallel episodes in SCN spike trains could be used to detect

evidence of the clustering of firing predicted by our SCN network model in Chapter 2.

Raajay (2009) develops a method for estimating the statistical significance of parallel

episodes. Alternatively, the computational algorithm presented in Pipa et al. (2008),

NeuroXidence, could also be used to evaluate the evidence for clustering in SCN spike

trains.
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APPENDIX A

Model Parameters and Equations

Model parameter values used for all simulations, unless specified otherwise in the

text:

Table A.1: Parameter values
C Whole cell capacitance 5.7 pF
gNa Sodium conductance 229 nS
ENa Sodium reversal potential 45 mV
gK Potassium conductance 14 ns (Ch. 2); 3 nS (Ch. 4)
EK Potassium reversal potential -97 mV
gCa Calcium conductance 65 nS (Ch. 2); 26 nS (Ch. 4)
ECa Calcium reversal potential 61 mV (Ch. 2); 54 mV (Chs. 3,4)
gL Leak conductance 1/11 nS
EL Leak reversal potential -29 mV (Ch. 2); -7 mV (Chs. 3,4)
gKCa

Calcium-activated potassium conductance 4 nS

For the applied current (Iapp) in Chapter 3, there were random IPSCs and EPSCs in

Figs. 3.6-ACF, 3.8-ACF, 3.9-CEH, 3.10-ACF, and 3.12. There were random IPSCs

in Figs. 3.6-B, 3.8-B, 3.9-D, and 3.10-B. There were random EPSCs in Figs. 3.6-DE,

3.8-DE, 3.9-FG, and 3.10-DE.
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Equations for the gating variables of the voltage-dependent currents:

m∞ =
1

1 + exp(−V+35.2
8.1

)

τm = exp

(
−V + 286

170

)
h∞ =

1

1 + exp(V+62
4

)
(Chs. 2,3)

h∞ =
1

1 + exp(V+62
2

)
(Ch. 4)

τh = 0.51 + exp

(
−V + 26.6

7.1

)
n∞ =

1

(1 + exp(V−14
−17

))0.25

τn = exp

(
−V − 67

68

)
r∞ =

1

1 + exp(−V+25
7.5

)

τr = 3.1

f∞ =
1

1 + exp(V+260
65

)

τf = exp

(
−V − 444

220

)
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APPENDIX B

Implementation of Existing Methods

The code used for performing spike jitter (Date et al., 1998) and pattern jitter

(Harrison and Geman, 2009) was downloaded from http://jitter.stat.cmu.edu. The

source code for NeuroXidence (Pipa et al., 2008) was downloaded from

http://www.NeuroXidence.com. We used the NeuroXidence Windowed V3 34

Release.

Spike jitter: Each spike was independently and uniformly jittered over jitter

windows of length L. This is repeated N times to create N surrogate spike trains.

For the results reported in Fig. 5.6 we used the following parameter settings: N=1000,

L=2 ms, LMethod = ‘centered’, and GMethod = ‘integer’.

Pattern jitter: Again spikes are jittered over a window of length L, but the sur-

rogate spike trains and the original spike train are required to have identical patterns

of spiking (and not spiking) in the R bins preceding each spike (Harrison and Geman,

2009). The parameter R thus controls the amount of recent spike-history effects that

are preserved. For the results reported in Fig. 5.6 we used the following parame-

ter settings: N=1000, L=2 ms, R=50 ms, LMethod = ‘centered’, and GMethod =

‘integer’.
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NeuroXidence: While NeuroXidence is designed for analysis of synchronous

spiking of neurons and not sequential patterns with fixed time delays, it can be used

to analyze sequential patterns by shifting each spike train by the corresponding delays

in the pattern to create synchronous spiking events (Pipa et al., 2008). Therefore,

for the analysis shown in Fig. 5.4, we first shifted the spike train of neuron I so that

each spike occurred 8 ms earlier. Likewise we shifted the spike train of neuron C by

12 ms, neuron O by 6 ms, and neuron L by 11 ms. The 300 seconds of data was then

divided up into 60 separate “trials” each 5 seconds in duration. The time scale of

fine temporal cross-structures of interest, Input.tau c, was set as 5 ms and the slow

time scale, Input.tau r, was set as 15 ms. NeuroXidence generates surrogate data by

jittering entire spike trains by Input.tau r. The number of surrogates was set as 25,

and the p-values shown in Fig. 5.6 were the p-values for excess joint-spike events of

I,S,C and W ,O,L with the Input.test level set at 0.01.

Smoothed Count Matrix: To implement the test for significance of precise

firing sequences described in Sections 3.1 to 3.4 of Abeles and Gat (2001), a 20 ms by

20 ms count matrix was constructed and then smoothed using a Gaussian kernel with

a standard deviation of 5 and a hole at (0,0) without correcting for edge effects. We

only calculated p-values for our patterns of interest, I-S-C and W -O-L. The p-values

reported in Fig. 5.6 do not include the adjustment shown as Eq. 3 in Abeles and Gat

(2001).
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APPENDIX C

Assessing the Model Assumptions

Our model for the occurrences of an episode assumes that the total number of

occurrences, N , follows a binomial distribution with parameters L−T and PE. To test

whether this assumption is appropriate for the cortical culture data analyzed here, we

focused on the 41[1]-21 connection in culture 2-1-34. In this recording session, there

were 63 different 20 second segments which did not contain and were not near any

bursts. For each segment, we estimated P̂E based on the number of occurrences of

41[1]-21 over the whole segment (L=20000), and then subdivided the segment further

into 20 chunks. For each 1 s chunk, we then looked to see if we had 0, 1, or more

than 1 occurrences of 41[1]− 21. The totals for each of these bins was then compared

to what we would expect for a binomial distribution with a success probability of P̂E

with L = 1000. We performed a χ2 goodness of fit test with 1 degree of freedom and

P=0.05 for each of the 63 segments. The test failed to reject the null hypothesis in

58 out of the 63 segments, leading us to conclude that our model assumptions seem

appropriate for this dataset.
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