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Summary
Leukotrienes (LTs), including cysteinyl LTs (CysLTs) and LTB4, are potent lipid mediators that
have a role in the pathophysiology of asthma. At least two receptor subtypes for CysLTs,
CysLT1 and CysLT2, have been identified. The activation of the CysLT1 receptor is responsible
for most of the pathophysiological effects of CysLTs in asthma, including increased airway
smooth muscle activity, microvascular permeability, and airway mucus secretion. LTB4 might
have a role in severe asthma, asthma exacerbations, and the development of airway
hyperresponsiveness. CysLT1 receptor antagonists can be given orally as monotherapy in
patients with mild persistent asthma, but these drugs are generally less effective than inhaled
glucocorticoids. Combination of CysLT1 receptor antagonists and inhaled glucocorticoids in
patients with more severe asthma may improve asthma control and enable the dose of inhaled
glucocorticoids to be reduced while maintaining similar efficacy. The identification of
subgroups of asthmatic patients who respond to CysLT1 receptor antagonists is relevant for
asthma management as the response to these drugs is variable. CysLT1 receptor antagonists
have a potential anti-remodelling effect that might be important for preventing or reversing
airway structural changes in patients with asthma. This review discusses the role of LTs in
asthma and the role of LT modifiers in asthma treatment.

Introduction

Leukotrienes (LTs), including cysteinyl LTs (CysLTs) (LTC4,
LTD4, and LTE4) and LTB4, are potent lipid mediators that
derive from arachidonic acid through the 5-lipoxygenase (5-
LO) pathway [1–5]. The pathway for the complete synthesis of
CysLTs is highly expressed in several types of inflammatory
cells and becomes activated during allergic airway inflam-
mation [3, 5]; other cell types like platelets and endothelial
cells, while lacking the complete synthetic pathway, can
produce CysLTs from the chemically reactive intermediate
LTA4 via mechanisms of intercellular transfer [5].

LTs have a central role in asthma [1–4, 6], but their
importance may vary among asthmatic patients. CysLTs
induce a variety of pathophysiological responses that
contribute to asthma, while the role of LTB4 in disease
expression may be more restricted.

This review will examine the role of LTs in asthma and the
therapeutic implications of LT pathway inhibition for asthma.

Biosynthesis and metabolism of leukotrienes

LTs derive from the enzymatic activity of 5-LO (Fig. 1).
Arachidonic acid, esterified in plasma membrane phos-

pholipids, is cleaved by the action of various phospholi-
pase A2 isoenzymes and the released fatty acid is
transformed by 5-LO into LTA4. This LT is subsequently
metabolized by LTA4 hydrolase into LTB4 and by LTC4

synthase or other members of the membrane-associated
proteins in eicosanoid and glutathione metabolism (MA-
PEG) superfamily, including microsomal glutathione
transferase 2, into LTC4 [5]. This, in turn, is metabolized
by a g-glutamyl transpeptidase into LTD4, which is then
cleaved by a dipeptidase to LTE4. The highly reactive LTA4

has an estimated half-life of o3 s [5]. LTC4, LTD4 and LTE4

are known as CysLTs due to the common cysteine in the
side chain. Initiation of LT biosynthesis requires cellular
activation of phospholipase A2 and 5-LO by stimuli
including IgE receptor cross-linking on mast cells, and
also involves the five-lipoxygenase-activating protein
(FLAP) that binds and facilitates the transfer of arachido-
nic acid to 5-LO [2, 3, 5]. The intracellular compartmenta-
lization of 5-LO varies between different cell types. 5-LO
is mainly expressed in granulocytes, monocytes, macro-
phages, and mast cells [3]. Eosinophils and mast cells can
produce large amounts of LTC4 from an endogenous pool
of arachidonic acid. Human bronchial fibroblasts, that
constitutively express 5-LO, FLAP, LTA4 hydrolase, and
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LTC4 synthase, produce CysLTs and LTB4 in vitro [7].
However, fibroblasts and other structural cells have a
lower capacity for LT synthesis than do leucocytes [1].
Cells that do not express 5-LO, including platelets, ery-
throcytes, and endothelial cells can also produce CysLTs
and/or LTB4 through the transcellular metabolism of
LTA4 synthesized by activated neutrophils [5]. After their
intracellular formation, CysLTs and LTB4 are released to
the extracellular space through specific carrier proteins
that are potential targets for new anti-LT drugs [3].

Receptors, mechanism of action, and biological effects of
leukotrienes in the airways

Two G-protein coupled receptor subtypes for CysLTs
(CysLT1 and CysLT2) have been identified [8, 9] (Fig. 1).
Evidence supporting the existence of other CysLT recep-
tors is growing rapidly [10–14]. In mice lacking CysLT1

and CysLT2 receptors, LTE4 increases vascular permeabil-
ity, suggesting the existence of a third CysLT receptor that
responds preferentially to LTE4 [10]. In sensitized mice,
intranasal LTE4 potentiates pulmonary inflammation in
response to low-dose aerosolized antigen [12]. This effect
persists in mice lacking both CysLT1 and CysLT2 receptors
but not in mice lacking P2Y12 receptors, indicating that
the P2Y12 receptor is required for pro-inflammatory
effects of LTE4 [12]. Although LTE4 has little activity at
CysLT1 and CysLT2 receptors [13], inhalation of LTE4

increases airway inflammatory cells [15, 16] and airway
hyperresponsiveness (AHR) in asthmatic patients [17],

particularly in those with aspirin-sensitive asthma (ASA)
[13]. A G-protein-coupled receptor (GPCR) GPCR17, that
responds both to CysLTs and uracil nucleotides [14], is a
ligand-independent, constitutive negative regulator for
the CysLT1 receptor at the cell membrane [11]. GPR17
negatively regulates CysLT1 receptor-mediated inflamma-
tion in the lung following intranasal sensitization and
challenge with the house dust mite in mice [18]. Many of
the effects of CysLTs that are relevant to the pathophysiol-
ogy of asthma are mediated by the activation of the
CysLT1 receptor [1, 2], which is expressed in mast cells,
monocytes, and macrophages, eosinophils, basophils,
neutrophils, T and B lymphocytes, pluripotent haemo-
poietic stem cells (CD341), airway smooth muscle cells,
bronchial fibroblasts, and vascular endothelial cells [7, 8,
19]. The CysLT2 receptor is expressed in human peripheral
basophils [20], endothelial cells [21], cultured mast cells
[9], in peripheral blood eosinophil from patients with
asthma [22], and in nasal mast cells and eosinophils in
patients with active seasonal allergic rhinitis (AR) [23]. In
human cultured mast cells, CysLT2 activation induces IL-8
synthesis that may promote neutrophilic inflammation
[9], a characteristic of acute and severe asthma. The role of
the CysLT2 receptor in acute asthma, and more generally
in allergic airway inflammation is currently largely
unknown. The development of selective CysLT2 antago-
nists [24] should facilitate its elucidation. CysLT1 and
CysLT2 receptor activation triggers increased intracellular
calcium [8, 25], but the complete signal transduction
pathway from each receptor is incompletely understood.
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Fig. 1. Biosynthetic pathway of leukotrienes (LTs), LT receptors, and mechanisms of action of anti-LT drugs (modified with permission from Montuschi
et al. [2]). CysLT, cysteinyl leukotrienes; FLAP, five-lipoxygenase-activating protein; GSH, glutathione; 5-LO = 5-lipoxygenase; PLA2, phospholipase A2.
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Two LTB4 receptor subtypes (BLT1 and BLT2), that like
CysLT1 and CysLT2 are cell-surface G protein-coupled
seven transmembrane domain receptors, have been iden-
tified [26, 27]. Both receptor subtypes are expressed in a
human mast cell line (HMC-1) [28]. BLT1 receptors are
expressed in human bronchial fibroblasts [7], neutrophils,
and monocytes/macrophages [29]. A subset of CD81 T
cells expressing BLT1 receptors have been identified in
BAL and lung tissue from patients with asthma, but not
from healthy subjects [30]. BLT1 expression on Ag-primed
T cells [30] and dendritic cells [31] is required for the
development of AHR in mice. The absence of BLT1 receptors
or their antagonism on these cells markedly reduces aller-
gen challenge-induced AHR and airway inflammation in
mice [30–32]. Taken together, these data suggest a possible
role for LTB4 in AHR and allergic airway inflammation in
asthmatic patients. Glucocorticoids upregulate BLT1 expres-
sion on corticosteroid-resistant inflammatory cells includ-
ing neutrophils, monocytes, and effector memory CD81 T
cells [29, 33]. The number of CD81 T cells is increased in
patients with steroid-resistant asthma compared with those
with steroid-sensitive asthma [30]. This corticosteroid-resis-
tant LTB4/BLT1 pathway may contribute to the development
of inflammation in allergic diseases that do not respond to
glucocorticoids [29], including steroid-resistant asthma for
which the inhibition of this pathway might have a ther-
apeutic benefit. However, the biological significance of
LTB4-induced activation of effector CD81 T cells in asth-
matic patients is yet to be established. The lack of effect of
LTB4 receptor antagonists in allergen-induced early or late-
phase airway obstruction in asthmatic patients [34] argues
against an important role for LTB4 in acute bronchocon-
striction. A possible contribution of BLT2 to airway inflam-
mation and asthma is beginning to be appreciated [35]. LTB4

is a physiologically relevant peroxisome proliferator-acti-
vated receptor (PPAR) activator in cells of the immune
system [36]. PPAR-a activation, a direct effect of intracellu-
larly generated LTB4 binding to the nuclear receptor and not
of secreted LTB4 acting through its cell-surface receptors
[36], reduces levels of LTB4 by stimulating its degradation,
thereby limiting the pro-inflammatory effects of LTB4 [36].

CysLTs induce pathophysiological responses similar to
those that are observed in patients with asthma [1–3]. LTC4,
LTD4, and LTE4, the most potent endogenous bronchocon-
strictors, have similar contractile activity on human airway
smooth muscle in vitro, an effect that has been confirmed by
bronchoprovocation studies in healthy subjects [3]. Patients
with asthma are hyperresponsive to inhalation of LTC4,
LTD4, and LTE4 [3]. CysLTs are elevated in adults and
children with exercise-induced bronchoconstriction (EIB)
[37, 38]. CysLTs increase pulmonary microvascular perme-
ability in experimental animals and increase mucus secre-
tion in isolated animal and human airways [3]. These effects
can contribute to bronchial obstruction in patients with
asthma. CysLT inhalation in asthmatic patients increases

sputum eosinophil counts and induces the recruitment of
eosinophils into airway mucosa [39]. However, the role of
direct vs. indirect mechanisms in the eosinophil chemotactic
effect of CysLTs remains to be completely defined.

In addition to their local airway effects, CysLTs exert
several effects that contribute to the inflammatory process
that characterizes asthma [4, 40]. CysLTs (1) modulate
leukopoiesis induced by granulocyte–macrophage col-
ony-stimulating factor, IL-5, and IL-3 and prime progeni-
tor cells to differentiate into mature blood cells; (2) cause
leucocyte migration from the bone marrow into the
circulatory system; (3) induce chemotaxis of eosinophils,
increasing their cellular adhesion and transendothelial
migration into the airways; (4) increase eosinophil survival
in response to mast cell and lymphocyte paracrine signals;
and (5) activate mast cells, eosinophils, T lymphocytes,
monocytes, and basophils [4, 40]. CysLTs have a central role
in pulmonary inflammation induced by allergen challenge,
as reflected by the reduced Th2 cell-dependent inflamma-
tory response in LTC4 synthase null mice [41].

CysLTs might participate in the process of airway
remodelling that includes eosinophilic inflammation, air-
way smooth muscle cell hyperplasia, mucus gland hyper-
plasia, mucus hypersecretion, and collagen deposition
beneath the epithelial layer and in the lung interstitium
at sites of leucocyte infiltration [42].

LTB4 may contribute to airway narrowing by producing
local oedema and increasing mucus secretion, although
LTB4 has no bronchoconstrictor effect in healthy subjects
and patients with asthma [2, 3]. LTB4 might be functionally
involved in the neutrophilic phenotype of asthma that
characterizes patients with severe asthma [43] or asthma
exacerbations due to its potent chemoattractant activity for
neutrophils. LTA4 hydrolase inhibition attenuates allergic
airway inflammation and AHR in a mast cell-dependent
murine model of allergic airway inflammation [44]. Persis-
tently elevated plasma LTB4 concentrations in children 1
month after an asthma exacerbation [45], and elevated LTB4

concentrations in EBC in adults with mild asthma [46] and
children with mild-to-moderate persistent asthma [47],
could indicate a pathophysiological role of LTB4 in persis-
tent asthma of lesser severity [48]. However, the pathophy-
siological role of LTB4 in asthma is not completely defined
and requires further studies. Selective CysLT1 receptor
antagonists have only a modest inhibitory effect on AHR
[4, 49]. By contrast, a possible role for LTB4 in AHR is
suggested by the fact that chronic treatment with zileuton,
which reduces the synthesis of both CysLTs and LTB4,
decreases AHR in asthmatic patients [50, 51] concomitant
with a reduction of ex vivo LTB4 production [51]. Unlike
CysLT1 receptor antagonism [52], 5-LO inhibition is very
effective in promoting chronic improvement in nasal func-
tion in patients with ASA at baseline [50]. These data
suggest that LTB4 may have a pathophysiological role in
the nasal manifestations of ASA. Alternatively, or
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additionally, nasal symptoms in patients with ASA could be
due to activation of CysLT2 receptors or distinct LTE4

receptors [10–14], which are not blocked by CysLT1 receptor
antagonists.

Measurement of leukotrienes in biological fluids in
patients with asthma

LTs have been measured in EBC [46, 47, 53–61], sputum
[55, 62, 63], BAL fluid [64], and urine [65–67] in patients
with asthma. Several studies reported increased LT concen-
trations in EBC in both adults and children with asthma [46,
47, 53–61], but this methodology requires standardization
[56, 68, 69]. Sputum CysLT concentrations are elevated in
asthmatic patients, reflecting asthma severity [63]. LT con-
centrations are increased in BAL fluid in patients with
asthma, including those with nocturnal asthma [64]. Mea-
surement of LTs in BAL fluid, sputum, and EBC is likely to
reflect pulmonary synthesis of these mediators.

Urinary measurement of LTE4, the stable end-metabolite
of CysLTs and therefore the most abundant CysLT excreted
in the urine, is used for assessing the systemic synthesis of
CysLTs, because circulating concentrations of LTs are usual-
ly undetectable [65]. No or slight differences have generally
been reported in urinary LTE4 concentrations between
healthy and atopic asthmatic subjects under basal condi-
tions [65]. By contrast, urinary LTE4 excretion is elevated
after allergen challenge in atopic patients with asthma [3,
65], in aspirin-sensitive asthmatics under basal conditions
[66, 70], in patients with nocturnal asthma [64], in severe
asthma [71], and during asthma exacerbations [67].

The effects of leukotriene modifiers in asthma

Selective CysLT1 receptor antagonists that have been ap-
proved for clinical use in asthma include montelukast,
zafirlukast, and pranlukast. Zileuton, a 5-LO inhibitor, has
been approved for the prevention and chronic treatment of
asthma in adults and children 12 years of age and older in
the United Kingdom and United States. FLAP inhibitors such
as MK-886 [72], MK-0591 [73], and veliflapon (BAY-X-
1005, DG-031) [74] were shown to be effective in clinical
trials with patients with asthma in the mid-1990s, but,
unlike CysLT1 receptor antagonists, these compounds
were not marketed [75]. Novel FLAP inhibitors including
2190914 (AM-103) [76, 77] and GSK-2190915 have en-
tered phase II trials for the treatment of asthma [75].

Montelukast is the most prescribed CysLT1 receptor
antagonist in Europe and North America, whereas pranlu-
kast is only marketed in Japan and other Asian countries.
Zafirlukast was the first anti-LT that was approved in
Europe, but it is not frequently prescribed due to possible
food and drug interactions, and the twice-daily adminis-
tration regimen [2, 3]. Selective CysLT1 receptor antago-
nists and 5-LO inhibitors appear to have similar efficacy

in short-term treatment studies and challenge models,
suggesting that most of the anti-asthmatic effects of
anti-LTs are due to CysLT1 antagonism [3]. However, the
strength of this assumption is limited by the lack of direct
comparisons of the two classes of agents in large patient
populations. The use of zileuton has been limited by a
modest but distinct incidence of hepatic enzyme elevation
that is not observed with montelukast, and its short half-
life, which initially demanded four times daily adminis-
tration [3]. A twice-daily controlled-release formulation
of zileuton was subsequently approved by the Food and
Drug Administration (FDA) [1].

At least two properties of selective 5-LO inhibitors
that distinguish them from CysLT1 receptor antagonists
deserve emphasis and further investigation: (1) their greater
effects on AHR in asthmatic patients than those of CysLT1

receptor antagonists [4]; and (2) their greater efficacy in
reducing nasal symptoms in patients with ASA [50].

CysLT1 receptor antagonists improve symptoms and lung
function, and reduce exacerbation rate, the use of b2 bron-
chodilators, and airway and blood eosinophilia in adults
and children with asthma of varying severity [1–4]. In
patients with persistent asthma who are undertreated and
remain symptomatic while taking short-acting b2-agonists
alone, CysLT1 receptor antagonists provide a prompt
improvement in asthma control, although low-dose inhaled
glucocorticoids are generally more effective than CysLT1

receptor antagonists as first-line maintenance therapy [78].
As add-on therapy, LTRAs are effective for acute asthma

[79, 80]. When added to standard therapy in adults with
asthma exacerbations, intravenous montelukast (7 mg) sig-
nificantly improves airway obstruction throughout the 2 h
after administration, with the onset of action as early as
10 min, indicating a possible therapeutic role for CysLT1

receptor antagonists in severe acute asthma [79, 80]. How-
ever, the utility of oral montelukast in this setting has not
been studied and intravenous formulation is not being
clinically developed at present.

CysLT1 receptor antagonists are effective in reducing
early and late asthmatic responses induced by allergen
inhalation [81, 82]. Unlike budesonide, montelukast
inhibits the maximal early asthmatic response, whereas
both drugs attenuate the late asthmatic response [81].
However, anti-LTs reduce allergen-induced AHR to a
lesser extent than do inhaled glucocorticoids [81]. This
could be explained by the fact that AHR is multifactorial
and relatively independent of the acute inflammatory
response mediated by LTs. Moreover, inhaled glucocorti-
coids inhibit numerous airway inflammatory cells and
mediators that are pivotal in the AHR pathophysiology,
whereas anti-LTs selectively block LT-mediated eosinophilic
inflammation [81]. However, while the anti-inflammatory
effects of glucocorticoids are undoubtedly broader than
those of anti-LTs, effects of anti-LTs may be unexpectedly
pleiotropic, in part via their ability to exert indirect
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inhibitory effects on the synthesis or actions of cytokines [1,
40]. CysLT1 receptor antagonists are also effective in redu-
cing allergen-induced asthmatic response in children [83].

In Europe, CysLT1 receptor antagonists are currently
indicated for preventing EIB [3]. Montelukast given at a
dose of 10 mg once daily protects against exercise-
induced bronchconstriction over a 12-week period in
adults with asthma [84]. Treatment with CysLT1 receptor
antagonists reduces the time to recovery from the max-
imal decrease in forced expiratory volume in 1 s (FEV1),
the maximal decrease in FEV1, and the area under the FEV1

vs. time curve after exercise [84]. These effects are observed
as soon as two hours after a single oral dose of montelukast
(10 mg) and are maintained up to 24 h [85, 86]. Montelukast
is more effective that salmeterol in the chronic treatment of
EIB over a period of 8 weeks in adults with mild asthma, as
demonstrated by effect size, persistence of effect and higher
tolerability during the study period [87]. CysLT1 receptor
antagonists are effective in EIB in children [88], although
generally less effective than inhaled glucocorticoids in
children with EIB with persistent asthma [89].

CysLT1 receptor antagonism and 5-LO inhibition protect
against the reduction in FEV1 in response to aspirin
challenge [3] and improve asthma control in aspirin-sensi-
tive patients over and above the therapeutic response to
glucocorticoids, an effect that is independent of the baseline
urinary LTE4 [50, 90].

Some aspects of the clinical pharmacology of CysLT1

receptor antagonists deserve further discussion: (1) their role
as monotherapy in patients with asthma; (2) their additive
efficacy with inhaled glucocorticoids and their possible
steroid-sparing action; (3) the variability in their therapeutic
response across the population; (4) their potential anti-
remodelling effect in the airways and (5) their safety.

In North America, monotherapy with CysLT1 receptor
antagonists is a common therapeutic option for patients
with mild asthma [91, 92]. However, inhaled glucocorticoids
are generally preferred because of their greater efficacy as
first-line agents in both adults and children with asthma
[93, 94]. Nonetheless, LTRAs are not an unreasonable choice
for a controller in patients who cannot tolerate inhaled
glucocorticoids or prefer a non-steroid agent [91, 92].

In patients with asthma not sufficiently controlled with
inhaled glucocorticoids alone, add-on therapy with mon-
telukast to a constant dose of inhaled budesonide improves
asthma control [95] to a level comparable to that achieved
by doubling the dose of budesonide [96]. The advantage of
this therapeutic strategy would be the reduced risk of
side-effects due to long-term administration of high-dose
inhaled glucocorticoids [96]. In patients whose symptoms
remain uncontrolled with inhaled fluticasone alone, the
addition of montelukast is a therapeutic option [97],
although the addition of a long-acting b2-agonist (LABA)
is generally more effective for preventing exacerbations
requiring systemic steroids, and for improving lung func-

tion, symptoms and the use of rescue b2-agonists [98, 99]. In
patients with well-controlled asthma based on symptoms
and lung function testing, the addition of pranlukast to the
combination of inhaled glucocorticoids and LABAs gives
better control of airway inflammation compared with
therapy with the combination of inhaled glucocorticoid/
LABA alone [100, 101]. In children with mild persistent
asthma, montelukast withdrawal can result in enhanced
airway inflammation, as reflected by fractional-exhaled
nitric oxide (FENO) concentrations, and worsening of lung
function [102].

Add-on therapy with CysLT1 receptor antagonists
enables a reduction in the dose of inhaled glucocorticoids
required to control asthma [96, 103]. As the LT pathway is
relatively steroid-resistant [104], the combination of
LTRAs and inhaled glucocorticoids can increase therapeu-
tic efficacy in subgroups of patients whose asthma is LT-
driven. AHR to LTD4 and urinary LTE4 concentrations in
adults with mild asthma are not affected by inhaled
fluticasone (500 mg b.i.d. for 2 weeks) [104]. Treatment
with inhaled fluticasone (100 mg b.i.d. for 4 weeks) reduces
LTE4 concentrations in EBC by 18% in children with
intermittent and mild persistent asthma [60]. Taken
together, this evidence indicates that inhaled glucocorti-
coids have limited, if any, effects on the biosynthesis of
CysLTs and AHR to CysLTs in patients with asthma [104].

The therapeutic response to CysLT1 receptor antagonists
in both adults and children with asthma is variable [96,
105, 106], but this is also true for inhaled glucocorticoids,
and undoubtedly, all classes of medications. Identification
of LTRA and/or inhaled glucocorticoid responders
might have important clinical implications, as a tailored,
individualized approach to asthma management and
assessment is preferable for asthma control than a strategy
directed to the best outcome in a group of patients
[94]. Certain phenotypic features have been linked to a
therapeutic response to inhaled fluticasone; these include
higher FENO concentrations, serum IgE, and eosinophil
cationic protein concentrations, total blood eosinophil
counts, and lower levels of methacholine FEV1 provoca-
tive concentration (PC)20 and of pulmonary function
[94, 105]. A therapeutic response to montelukast is
associated with younger age, shorter disease duration,
higher urinary LTE4 concentrations [94, 105], and elevated
LTE4 concentrations in EBC [53]. In patients with asthma,
the response to inhaled glucocorticoids decreases with
the increasing body mass index, whereas the response
to montelukast remains intact [107]. Studies on bio-
molecule profiles in biological fluids and genetic poly-
morphisms of the 5-LO pathway and CysLT receptors
[108] may in the future help to predict the therapeutic
response to CysLT1 receptor antagonists. At present, it is
not possible to predict in individual patients whether they
will respond to LTRAs mandating that a therapeutic trial
be performed.
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In a mouse model of asthma, CysLT1 receptor antago-
nists not only prevent allergen-induced airway changes
but also reverse established structural changes including
subepithelial fibrosis and airway smooth muscle cell layer
thickening – effects not achieved by glucocorticoid
treatment [109]. These findings suggest a possible role of
CysLTs in airway remodelling [42] and may have impor-
tant implications for the management of patients with
asthma as they might indicate new therapeutic effects of
CysLT1 receptor antagonists. In patients with asthma,
inhaled glucocorticoids also reduce basal membrane thick-
ening [110] and subepithelial collagen deposition [111],
although these effects seem to have limited impact on the
clinical evolution of asthma [112]. In one study, montelu-
kast at a dose of 10 mg once daily for 8 weeks reduced
myofibroblast accumulation in the airways observed in
biopsies of patients with asthma following low-dose aller-
gen challenge [113]. However, whether CysLT1 receptor
antagonists prevent airway remodelling and/or reverse
established airway structural changes in asthmatic patients
require further research.

CysLT1 receptor antagonists are generally considered to
be safe and well tolerated, with headache and gastric
discomfort being the most common side effects [3]. How-
ever, an association between treatment with CysLT1

receptor antagonists and severe adverse events including
Churg–Strauss syndrome [114] and suicidality [115] has
been reported. An aetiologic role for CysLT1 receptor
antagonists in the Churg-Strauss syndrome has been
deemed previously unlikely [3]. However, a recent analy-
sis of the FDA adverse event reporting system database
has shown that LTRA therapy was a suspect medication in
most confirmed cases of Churg–Strauss syndrome
reported [114]. In the majority of cases treated with an
LTRA, Churg–Strauss syndrome could not be explained by
either glucocorticoid withdrawal or pre-existing Churg–-
Strauss syndrome [114]. Based on a limited number of
postmarketing suicide-related adverse experience reports,
the FDA issued a warning raising concerns about the
suicidality potential of montelukast and other CysLT1

receptor antagonists [115]. However, no completed sui-
cides were reported in any studies [115], and in fact, data
from clinical studies indicate that adverse experiences
possibly related to suicidality were rare and were similar
between montelukast and placebo or active-control groups
[115, 116]. There are limited prospective, comparative
studies examining the safety of CysLT1 receptor antagonists
in pregnancy [117]. Montelukast does not appear to increase
the baseline rate of major malformations [117, 118]. The
lower birth weight observed in infants born to women
treated with montelukast could be attributed to severity/
control of the maternal asthma [117, 118].

Oral administration of CysLT1 receptor antagonists
provides a single therapeutic approach to both AR and
asthma. In asthmatic patients with AR, a combined treat-

ment approach that includes montelukast and budesonide
is more effective in reducing airflow obstruction com-
pared with doubling the dose of budesonide, indicating
that this strategy increases therapeutic efficacy, poten-
tially reducing the number of side-effects [119].

Conclusions

Most of the knowledge of the pathophysiological role of
LTs in asthma is currently limited to CysLT1 receptor-
mediated effects, whereas the roles of the CysLT2 receptor
and other emerging receptors are largely unknown.
CysLT1 receptor antagonists are generally less effective
than inhaled glucocorticoids, but there is a substantial
heterogeneity of clinical responsiveness among individual
patients. It is not currently possible to predict whether an
individual asthmatic will respond to these agents. Among
responders, CysLT1 receptor antagonists provide a thera-
peutic alternative to inhaled glucocorticoids in mild
persistent asthma. In patients with more severe asthma
who respond to CysLT1 receptor antagonists, the addition
of these drugs to inhaled glucocorticoids improves asthma
control and enables the dose of inhaled gluococorticoids
to be reduced without compromising efficacy. LTRAs are
also useful in exercise-induced asthma.

The potential effect of CysLT1 receptor antagonists or
novel LT synthesis inhibitors in preventing and reversing
structural changes that characterize airway remodelling, as
well as the role of LTB4 in asthma, requires further study.
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