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2Université Victor Segalen, 33076 Bordeaux, France

3Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
∗email: helene.jacqmin-gadda@bordeaux.inserm.fr

Summary. Latent class models have been recently developed for the joint analysis of a longitudinal quantitative outcome
and a time to event. These models assume that the population is divided in G latent classes characterized by different risk
functions for the event, and different profiles of evolution for the markers that are described by a mixed model for each class.
However, the key assumption of conditional independence between the marker and the event given the latent classes is difficult
to evaluate because the latent classes are not observed. Using a joint model with latent classes and shared random effects,
we propose a score test for the null hypothesis of independence between the marker and the outcome given the latent classes
versus the alternative hypothesis that the risk of event depends on one or several random effects from the mixed model in
addition to the latent classes. A simulation study was performed to compare the behavior of the score test to other previously
proposed tests, including situations where the alternative hypothesis or the baseline risk function are misspecified. In all the
investigated situations, the score test was the most powerful. The methodology was applied to develop a prognostic model
for recurrence of prostate cancer given the evolution of prostate-specific antigen in a cohort of patients treated by radiation
therapy.
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1. Introduction
Latent class models (LCMs) have been recently developed for
the joint analysis of a longitudinal quantitative marker and a
time to event (Lin et al., 2002, Lin, McCulloch, and Rosen-
heck, 2004; Proust-Lima, Joly, and Jacqmin-Gadda, 2009).
Similar to random effect joint models (Henderson, Diggle, and
Dobson, 2000), they have been used to develop prognostic
tools for the event based on repeated measures of the marker
(Lin et al., 2002; Proust-Lima and Taylor, 2009), to study
natural history of chronic diseases (Proust-Lima et al., 2009),
or to take informative dropout into account in longitudinal
studies (Lin et al., 2004). LCMs assume that the population
is divided in G latent classes characterized by different evo-
lution profiles for the marker and different risk functions for
the event. Typically, they combine a mixture model for longi-
tudinal data (Verbeke and Lesaffre, 1996) and a proportional
hazard model depending on the latent class. On the other
hand, shared random effect models assume that the risk of
event depends on the random effects from the mixed model
describing the repeated measures of the marker. The likeli-
hood of LCM is a sum over the classes and thus is easier to
compute than the likelihood of a shared random effect model
that includes integrals without closed form.

Joint LCMs are a good choice when the change over time
of the marker is very heterogeneous and that this heterogene-
ity is associated with different level of risk for the event. This

is the case in the study of prostate cancer recurrences after
treatment by radiation therapy. Indeed, the posttreatment
prostate-specific antigen (PSA) change over time was found
to be very different between cured patients and patients in
whom prostate cancer subsequently recurred. Typically, PSA
level falls and remains at low level for cured patients whereas
rising PSA levels are observed before recurrence (Proust-Lima
et al., 2008). In such a case, the usual assumption in shared
random effects model that the random slopes has a Gaussian
distribution with common mean and variance in the overall
population is not tenable. Thus, a joint LCM was proposed to
describe the subpopulations of patients characterized by dif-
ferent risks of recurrence associated with different PSA pro-
files of change (Proust-Lima and Taylor, 2009). This work is
motivated by the development of a prognostic tool for prostate
cancer recurrence using a cohort of patients treated by radia-
tion therapy for prostate cancer at the University of Michigan
(the UM data set) (Taylor, Yu, and Sandler, 2005).

Selection of the number of classes and model checking are
difficult issues for LCM. The key assumption of conditional in-
dependence between the marker and the event given the latent
classes is difficult to evaluate because the latent classes are not
observed. When parameters from LCMs are estimated, pos-
terior class membership probabilities may be estimated using
Bayes’ theorem, allowing posterior classification of the sub-
jects. It has been shown that the distribution of the outcomes
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conditional on the posterior classes tended toward their dis-
tribution conditional on the latent classes (Bandeen-Roche
et al., 1997; Lin et al., 2002). Based on this result, the con-
ditional independence between the marker and the time to
event may be checked by conditioning on the posterior clas-
sification. The methods proposed in the literature differ in
three ways. Firstly, some authors (Roy, 2003; Guo, Wall, and
Amemyia, 2006) randomly allocated the N subjects to the G
classes using the estimated posterior class-membership prob-
abilities and then tested the dependence within each class.
This leads to tests with decreasing power when the number
of classes increases. Lin et al. (2002, 2004) performed a global
test of dependence adjusting for the posterior classes that
avoids the loss of power, and to account for the uncertainty
of the classification, they carried out a weighted analysis on
N × G pseudosubjects using the posterior probability as
weight. Secondly, some authors (Lin et al., 2002, 2004) es-
timated a survival model to test if the risk of event depended
on a function of the marker evolution when adjusted for the
posterior class, whereas others (Roy, 2003; Lin et al., 2004)
estimated a mixed model to test if the repeated measures of
the marker depended on a function of the time to event after
adjustment for the posterior class. Thirdly, in the literature,
various functions of the marker or of the time to event are
used as explanatory variables in the regression model. When
the posterior analysis is carried out using a mixed model, the
failure indicator or the ratio of the number of events observed
over the follow-up time appear as the most obvious functions
of the time to event to include as explanatory variables (Roy,
2003; Lin et al., 2004), but the censoring of time-to-event
blurs the results and decreases the power of the test. In a
survival analysis, Lin et al. (2004) tested the association be-
tween the risk of event and the last observed value of the
marker. However, this is problematic when the marker mea-
sures are very sparse or irregular. Lin et al. (2002) introduced
the marginal expectation of the marker at the current time as
the explanatory variable, but this choice is also questionable
as the marginal expectation is a weighted mean of the covari-
ates, whereas the interest is mainly in the residual dependence
between the event and the repeated measures adjusting for co-
variates and classes. It appears more sensible to introduce as
explanatory variable the estimated subject-specific expecta-
tion or the empirical Bayes’ estimates of the random effects.

To avoid posterior classification and choice of a particular
function of the marker or of the time to event as covariate,
Proust-Lima et al. (2009) have previously suggested testing
conditional independence by comparing the mean of the con-
ditional residual of the marker given the time to event between
censored and uncensored subjects. A simulation study showed
the validity and usefulness of this test but it is expected to
have poor power under some form of conditional dependence,
for instance, when the risk of event depends on the marker
evolution rather than the mean level.

Another strategy is to compare the LCM with a more flex-
ible model where residual dependence is possible between the
event and the marker. A joint LCM with shared random ef-
fects (Beunckens et al., 2008) is a good alternative as it allows
dependence through both the latent classes and the random
effects. This alternative model remains convenient for het-
erogeneous population and the correlation structure is more

flexible as the risk of event depends also on the quantita-
tive random effects. However, estimation of such models is
very difficult as it involves potential numerical problems from
both models: numerical integration for the shared random-
effect model and possible local maxima for the LCM. Thus,
in this article, we develop a score test for the null hypothesis
of independence between the marker and the event given the
latent classes versus the alternative hypothesis that the risk
of event depends on one or several random effects from the
mixed model. As a score test, it only requires estimation of
the null model (the LCM).

The next section describes the joint LCM whereas Section 3
presents the score test for conditional independence. A sim-
ulation study is performed in Section 4 to compare differ-
ent versions of the score test with the previously proposed
tests when the alternative is correctly specified and when it
is misspecified. In Section 5, the methodology is applied to a
data set to develop a prognostic model for the recurrence of
prostate cancer given PSA measures.

2. The Joint LCM
2.1 Class Membership Probability
The LCM assumes that the population of N subjects can be
divided into G unobserved subpopulations represented by la-
tent classes. For each subject i, i = 1 , . . . , N , the latent class
membership is denoted by a latent variable ci , which equals
g if subject i belongs to latent class g. The individual prob-
ability of belonging to class g is explained by covariates X i1

through a multinomial logistic regression:

πig = P (ci = g) =
eξ 0g +X T

1i
ξ 1g

G∑
l=1

eξ 0l +X T
1i

ξ 1l

, (1)

where ξ 0g is the intercept for class g and ξ 1g is the q1-vector
of class-specific parameters associated with the q1-vector of
time-independent covariates X 1i . For identifiability, ξ 01 = 0
and ξ 11 = 0. Each latent class g is then characterized by a
specific marker evolution and a specific risk of event described
below.

2.2 Marker Evolution
The evolution of the longitudinal outcome is assumed to fol-
low a linear mixed model (Laird and Ware, 1982) specific to
each class g. Denoting Y i the vector of marker measurements
for subject i, the model may be written:

Yi |c i =g ,b i g
= Zi (μg + big ) + X2i βg + εi , (2)

with εi ∼ N (0, Σi ) and big ∼ N (0, ω2
g B), where ω1 = 1 and B

is an unstructured q × q-matrix; Zi is the ni × q matrix of
covariates associated with the q-vector of random effects big ;
Zi can typically include 1 for a random intercept and possibly
a polynomial function of time. We assume no overlap between
variables included in Zi and X 2i , so that no constraint is
required on μg . Covariates in X 2i may be time dependent or
not. Thus the conditional distribution of Yi given ci = g is
Gaussian with mean Eig = Ziμg + X 2i β g and variance V ig =
ω2

g ZiBZT
i + Σi .
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2.3 Survival Model
Let us define (T i , δi ), where T i is the minimum between T ∗

i

the time to event and Ci the time of censoring. The indicator
of event δi equals 1 if T ∗

i � Ci and 0 if Ci < T ∗
i . We assume

that a parametric proportional hazard model describes the
risk of event in latent class g:

λ(t | ci = g) = λ0g (t; ζg )eX T
3i

γ g , (3)

where X 3i is a q3-vector of covariates associated with the vec-
tor of parameters γg that may be specific to the latent classes,
and λ0g (t; ζ g ) is a parametric baseline risk function in latent
class g.

In this work, we focus on the case where T ∗
i is the time

to a clinical event. Marker measurements after the event are
excluded from the data set because the objective is to describe
the link between the risk of event and the marker change over
time preceding the event. In Section 6, we discuss the case
where T ∗

i is a time to dropout.

2.4 Likelihood
We denote θ the vector of parameters of the joint LCM de-
fined by equations (1), (2), and (3) that includes ξ 0g , ξ1g ,
μg , βg , ωg , ζ g , γg for g = 1, . . . , G, and the variance param-
eters from the matrices Σi and B. Parameter estimation is
achieved by a maximum likelihood method for a given num-
ber of latent classes G. Using the conditional independence
assumption between the marker and the time to event given
the latent classes, the individual contribution of subject i to
the likelihood is:

Li (θ) =
G∑

g =1

πig f (yi | ci = g; θ)λ(Ti | ci = g; θ)δ i

×S(Ti | ci = g; θ), (4)

where S(T i | ci = g; θ) is the survival function, and the global
log likelihood is l(θ) =

∑N

i=1 log Li (θ).

3. Score Test for Conditional Independence
3.1 Model under the Alternative Hypothesis
We propose a score test for the null hypothesis of conditional
independence between the time to event and the marker dis-
tribution given the classes versus the alternative of conditional
independence given the classes and the random effects big .
Thus the joint LCM described in Section 2 is the null model,
whereas the model under the alternative is a joint LCM with
shared random effects defined by equations (1), (2), and the
following survival submodel:

λa (t | ci = g, big ; θ, η) = λ0g (t; ζg )eX 3i γ g +bT
i g

η
. (5)

The vector of parameters η links the risk of event with the
random effects from the heterogeneous mixed model. Under
the null hypothesis, H 0 : η = 0, the risk of event depends on
the marker evolution only through the latent classes.

The associated survival function under the alternative hy-
pothesis H a is:

Sa (t | ci = g, big ; θ, η) = exp
{
−Λ0(t | ci = g; ζg )

×exp
(
X3i γg + bT

ig η
)}

.

Under the assumption that Y i ⊥ T ∗
i | ci = g, big and that

missing measures of the marker before the event are missing
at random, the individual contribution to the likelihood for
this alternative model is given by:

Lai (θ, η) =
G∑

g =1

πig

∫
f (yi | ci =g, big ; θ)λa (Ti | ci =g, big ; θ, η)δ i

×Sa (Ti | ci = g, big ; θ, η)f (big ) dbig , (6)

and the global log likelihood may be written:

la (θ, η) =
N∑
i=1

log Lai (θ, η).

The alternative model may be easily extended by replacing
bT
ig in equation (5) by any vector-valued function of the ran-

dom effects or by allowing the parameter η to be dependent
on the classes (ηg ). In the latter case, H0 would be ηg = 0 ∀g.
One could also be interested in dependence on the current in-
dividual deviation from the mean, which is a time-dependent
variable (typically b0ig + b1ig t in a model with random in-
tercept and slope). In this case, the integral in the survival
function would not always have an analytical solution and we
could not obtain a general formula for the score test whatever
the parametric choice for λ0g (t; ζ g ). However, in the simula-
tion study, we evaluate the power of the proposed score test
against this misspecified alternative.

3.2 Derivation of the Score Statistic
In the following section, for brevity we delete explicit de-
pendence on fixed parameters and we denote f g (yi | big ) =
f (yi | ci = g, big ; θ), and f g (yi ) = f (yi | ci = g; θ). For
the time-to-event submodel, we use λag (T i | big ), Λag (T i | big )
and Sag (T i | big ), respectively, for the risk function, the cu-
mulative risk function, and the survival function given the
random effects and the classes under H a . When η = 0, de-
pendence on big and subscript a disappear leading to λg (T i ),
Λg (T i ), and λg (T i ).

The score statistic for H 0 : η = 0 versus H a : η �= 0 is
U (η, θ) = ∂ la

∂ η
=

∑N

i=1
1

L a i

∂ L a i
∂ η

computed for η = 0. Simple
calculations show that:

∂λag (Ti | big )
∂η

= λag (Ti | big )big and

∂Sag (Ti | big )
∂η

= −Sag (Ti | big )Λag (Ti | big )big

∂

∂η
{λag (Ti | big )δ i Sag (Ti | big )}

= λag (Ti | big )δ i Sag (Ti | big )big [δi − Λag (Ti | big )] .

Thus,

∂Lai

∂η
=

G∑
g =1

πig

∫
fg (yi | big )λag (Ti | big )δ i Sag (Ti | big )

× [δi − Λag (Ti | big )]big f (big ) dbig

and
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∂Lai

∂η

∣∣∣∣
η =0

=
G∑

g =1

πig λg (Ti )δ i Sg (Ti )[δi − Λg (Ti )]

×
∫

fg (yi | big )big f (big )dbig

=
G∑

g =1

πig fg (yi )λg (Ti )δ i Sg (Ti )[δi − Λg (Ti )]

×
∫

big f (big | yi )dbig .

Finally,

U (0, θ) =
N∑
i=1

G∑
g =1

P (ci = g | yi , Ti , δi )
[
δi − Λg (Ti )

]

×E(big | ci = g, yi ). (7)

The posterior expectation E(big | ci = g, yi ) is computed
using properties of the multivariate Gaussian distribution by
E(big | ci = g, yi ) = ω2

g BZT
i V −1

ig (yi − Eig ).
Formula (7) shows that the score statistic is an estimate of

the covariance between the residuals from the survival model
and the class-specific empirical Bayes’ estimates of the ran-
dom effects weighted by the posterior class-membership prob-
ability. One can carry out a univariate test for the dependence
on a specific random effect (random intercept for instance) or
a multivariate test evaluating the dependence on the vector
of random effects. Thus, the vector big in the last term in for-
mula (7) includes only the random effects that are assumed
to be associated with the risk of event under the alternative
hypothesis.

3.3 Asymptotic Variance of the Score Statistic
When the parameters θ are known, the statistic U (0, θ) is
asymptotically normally distributed with mean 0 and vari-
ance Iη η = E{− ∂ 2la

∂ η ∂ η T | η =0}, which is approximated by the
observed information matrix:

Varas (U ) = − ∂2la
∂η∂ηT

∣∣∣∣
η =0

.

With simple calculations detailed in Web Appendix A, we
obtain:

Varas (U ) = −
N∑
i=1

G∑
g =1

P (ci = g | yi , Ti , δi )

×{[δi − Λg (Ti )]2 − Λg (Ti )}E
(
big bT

ig

∣∣ cig = 1, yi

)

+

{ G∑
g =1

P (ci = g | yi , Ti , δi )

× [δi − Λg (Ti )]E(big | ci = g, yi )

}

×
{ G∑

g =1

P (ci = g | yi , Ti , δi )

× [δi − Λg (Ti )]E(big | ci = g, yi )

}T

where E(bigbT
ig | ci = g, yi ) is computed using properties of the

multivariate Gaussian distribution by E(bigbT
ig | ci = g, yi ) =

Var (big | ci = g, yi ) + E(big | ci = g, yi )E(big | ci = g, yi )T ,
where Var (big | ci = g, yi ) = ω2

g B − ω2
g BZT

i V −1
ig ZiB .

The score statistic and the variance are computed by re-
placing θ by θ̂ obtained under H0. Neglecting uncertainty due
to the estimation of parameters θ, under the null hypothesis,
the test statistic U (0, θ̂)T Var(U )−1U (0, θ̂) follows asymptoti-
cally a χ2

m distribution, where m is the size of η.

3.4 Robust Variance of the Score Statistic
As the score statistic is a sum over the subjects U (0, θ̂) =∑N

i=1 Ui (0, θ̂), Freedman (2007) recommended to estimate
Var(U (0, θ̂)) using the empirical covariance matrix of the sum-
mands that may be more robust than the asymptotic esti-
mate. More precisely:

Varem (U ) =
N∑
i=1

Ui (0, θ̂)Ui (0, θ̂)T − U (0, θ̂)U (0, θ̂)T /N.

This variance estimate is easy to compute and accounts for the
uncertainty due to parameter estimation, but it is an estimate
of the variance of U at the true value η, whereas Varas (U ) is
computed under H0. If the variance of U increases under H a ,
as for homogeneity score tests (Commenges et al., 1994), the
test using Varem(U ) could be slightly less powerful. In the next
section, we compare the test statistics using the two variance
estimates.

4. Simulation Studies
4.1 Objective and General Design
The aim of the simulation study was to evaluate the type I
error and the power of the score test when the alternative is
correctly specified, that is when data are generated using a
LCM with shared random effect, and when the alternative is
misspecified. In both cases, we compared four versions of the
score test with three tests previously proposed:

• The univariate score test for dependence on the random
intercept using either the asymptotic variance Varas (U )
or the empirical variance Varem(U );

• The multivariate score test for dependence on the vector
of random effects using either the asymptotic variance
or the empirical variance;

• The test proposed by Proust-Lima et al. (2009), which
is a simple comparison of the means of the standard-
ized conditional residuals of the marker given the event
(Y i − E(Y i |T i , δi )) between censored and uncensored
subjects; and

• Two Wald tests performed in a weighted linear mixed
model adjusted for the posterior classes for testing de-
pendence either on the failure indicator (denoted WMM1
for weighted mixed model) or on the failure indicator di-
vided by the follow-up time (WMM2).

A few comparisons were also performed using random class
allocation according to the posterior class-membership prob-
abilities, but results were very close to those of the weighted
analysis (results not shown). The sample size was either
N=100 or N=500 and the marker was measured every year
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from time 0 to censoring or failure time. The censoring time
was uniformly distributed between 3 and 12.

4.2 Simulation Study 1: Shared Random Effect
For the first set of simulations, data were generated according
to the following joint LCM with shared random effects and
two latent classes with probabilities πi1 = πi2 = 0.5 or πi1 =
0.2 and πi2 = 0.8:

Yij |c i =g = (μ0g + b0i ) + (μ1g + b1i ) × tij + εij

and

λ(t)|c i =g = ζ1g ζ2g (ζ1g t)ζ 2g −1exp(η1b0i + η2b1i ).

Parameter values for the mixed model were those estimated
for the intercept and the linear trend in a two-class model
without covariate applied to the UM data. The class-specific
parameters were μ01 = 2.8, μ02 = 1.4, μ11 = 1.3, μ12 = 0.2,

σε = 0.3, and bi = ( b0i

b1i
) ∼ N (( 0

0
), ( 0.5 −0.03

−0.03 0.12
)). Parameters

for the Weibull distribution were chosen to obtain about 70%
and 30% of event in the two classes.

Under H 0, η1 = η2 = 0. When η1 > 0 and η2 = 0, the event
distribution depends only on the random intercept, and thus
on the mean level of the marker, whereas when η1 = 0 and
η2 > 0, the event distribution depends only on the random
slope. The former favors the three previously proposed tests
and the univariate score test for dependence on the random
intercept, which are all sensitive to the mean marker difference
between censored subjects and cases, whereas the latter favors
the bivariate score test for dependence on the two random
effects. The estimated model was a joint LCM with two classes
assuming conditional independence.

Results are presented in Table 1. For the four score tests,
the type I error is close to the nominal value 5%. As expected,

Table 1
Estimated type I error and power over 500 simulations for several tests of conditional independence given the latent classes

when data are generated by a two-LCM with shared random effects

Test N = 100 N = 500

η1 0 0.3 0.5 1 0 0 0 0.3 0.5 1 0 0
η2 0 0 0 0 1 2 0 0 0 0 1 2

π1 = π2 = 50%
Univ. asy. score test 6.2 25.6 55.8 97.0 7.2 9.6 4.4 88.8 99.8 100 19.0 51.0
Univ. emp. score test 6.8 24.8 55.8 97.2 6.0 10.4 4.4 88.8 99.8 100 18.0 50.8
Biv. asy. score test 5.6 20.6 45.8 94.6 38.8 90.0 4.4 81.0 99.8 100 98.8 100
Biv. emp. score test 6.0 22.0 47.2 94.4 39.2 90.8 5.2 80.4 99.8 100 99.0 100
Residual test 2.8 10.0 25.8 64.6 3.4 4.8 5.6 55.2 89.6 100 4.4 35.6
WMM1 4.8 14.2 32.2 84.0 4.2 6.2 4.0 54.6 93.8 100 7.4 19.8
WMM2 3.6 6.8 14.6 42.8 3.6 3.2 2.6 13.8 35.6 72.2 3.4 5.8

π1 = 20% π2 = 80%
Univ. asy. score test 5.2 22.6 47.8 95.0 7.6 9.2 3.8 73.4 99.2 100 12.2 35.6
Univ. emp. score test 5.4 22.2 49.6 94.6 8.6 8.8 4.2 73.0 99.2 100 11.8 36.0
Biv. asy. score test 4.0 16.2 37.8 90.2 32.6 78.9 3.6 64.8 98.6 100 95.2 100
Biv. emp. score test 4.0 16.8 40.0 90.6 34.0 80.7 3.6 65.4 98.6 100 94.8 100
Residual test 5.2 5.8 15.2 56.3 6.8 13.6 4.2 25.8 69.4 100 23.2 60.2
WMM1 5.0 13.6 37.8 86.0 3.8 6.1 3.8 51.6 95.8 100 4.6 11.2
WMM2 3.2 4.6 13.2 34.5 5.6 5.3 4.6 13.2 27.0 66.8 4.8 6.4

WMM1: Wald test of dependence on δ i in a weighted mixed model.
WMM2: Wald test of dependence on δ i /T i in a weighted mixed model.

the power increases with the sample size, and when η1 or η2

increase. It is slightly lower when πi1 = 0.2 and πi2 = 0.8; this
may be due to a lower rate of events in the whole sample (40%
instead of 50%). The use of the empirical variance estimate
instead of the asymptotic variance estimate has little impact
on the results. When the risk of event depends only on the
random intercept, the univariate score test for dependence on
the random intercept is slightly more powerful than the bi-
variate score test. However, the power of the univariate score
test is very bad compared to its bivariate counterpart when
the risk of event depends on the random slope. Thus we rec-
ommend the use of the multivariate score test of dependence
over the entire vector of random effects in any case.

The three other tests have a lower power compared to the
score test even when the risk of event depends only on the
random intercept. When η1 > 0, WMM1 is more powerful
than WMM2 and the test comparing residual means. In the
less favorable scenario of dependence on the random slope
(η2 > 0), these three tests have extremely low power, but the
test of residual means is slightly better than the two tests
based on posterior classification. The test of residual means
is slightly conservative with N = 100 and πi1 = πi2 = 0.5
whereas WMM2 is conservative for N = 500 and πi1 = πi2 =
0.5. In any case, WMM2 is the least powerful.

The same set of simulations was conducted to evaluate the
impact of misspecifying the baseline risk function. Data gen-
eration was unchanged but the estimated model assumed a
stepwise constant baseline risk with three steps. This mis-
specification has little impact on the behavior (power and
type I error) of the score test, which remains much more pow-
erful than the other tests (see Web Table 1). An alternative
set of simulations using a mixed model with a quadratic time
trend and three random effects led to similar conclusions (Web
Appendix B and Web Table 2).
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Table 2
Estimated power over 500 simulations for several tests of conditional independence given the latent classes when a two-LCM

was estimated on data generated by a three-LCM

Class π1 = 0.06, π2 = 0.11, π1 = 0.06, π2 = 0.83,
probabilities π3 = 0.83 π1 = π2 = π3 π3 = 0.11

Scenarios 1 2 3 1 2 3 1 2 3
Rate of events (%) 18.5 18.5 19.5 61.9 61.9 43.5 75.0 75.1 35.7

Univ. asy. score test 61.0 34.8 48.6 100 65.8 75.4 99.6 52.6 44.2
Univ. emp. score test 59.8 36.4 41.2 100 67.6 75.6 99.6 53.2 47.4
Biv. asy. score test 94.2 78.0 70.6 100 100 88.0 99.6 80.2 63.2
Biv. emp. score test 96.2 84.8 56.8 100 100 88.6 99.6 80.4 68.6
Residual test 12.4 15.8 6.0 100 58.0 44.8 99.6 82.6 13.2
WMM1 60.4 36.0 31.6 100 65.2 53.6 99.4 46.6 22.4
WMM2 30.2 14.2 18.2 39.8 13.4 12.0 52.4 29.8 12.0

WMM1: Wald test of dependence on δ i in a weighted mixed model.
WMM2: Wald test of dependence on δ i /T i in a weighted mixed model.

4.3 Simulation Study 2: Misspecified Alternatives
The first aim of this simulation study was to compare the
power of the tests to detect an inadequate number of classes in
the estimated models. Data were generated using a three-class
model without shared random effect (η1 = η2 = 0), whereas
the estimated model had only two latent classes. Thus, when
estimating the two-class model on the simulated data, the
conditional independence assumption between the longitudi-
nal marker and the time to event does not hold (because the
risk of event is different in the three classes) but the corre-
lation structure is different from the one assumed under the
alternative hypothesis when developing the score test.

To be close to the application data, we considered only sam-
ples of size N = 500 and a scenario with very heterogeneous
class-membership probabilities was simulated. In scenario 1,
the parameters for the survival model, for the mixed model,
and for the class membership probabilities were chosen to
mimic the three-class model estimated on the UM data set in
the application (using only the intercepts and linear trends in
the mixed model). The percentages of events were 98%, 83%,
and 4% in class 1, 2, and 3, respectively, and intercepts and
slopes were μ01 = 3.0 and μ11 = 2.9 in class 1, μ02 = 2.7 and
μ12 = 1.03 in class 2, and μ03 = 1.4 and μ13 = 0.17 in class
3. In this scenario, the three classes had very different risk
functions and evolution profiles. Then, two other scenarios
were simulated, reducing either the difference between evolu-
tion profiles for the marker (scenario 2) or the difference in
the risks of event (scenario 3). In scenario 2, the mixed model
parameters were μ01 = 3.0 and μ11 = 2.0 in class 1, μ02 =
2.7 and μ12 = 1.03 in class 2, and μ03 = 2, and μ13 = 0.5
in class 3; in scenario 3, the percentages of events were 83%,
33%, and 4% in class 1, 2, and 3, respectively. In the three
scenarios, the variance parameters were identical to the first
simulation study and we evaluated three combinations of class
membership probabilities:

• πi1 = 0.06, πi2 = 0.11, πi3 = 0.83: heterogeneous prob-
abilities corresponding to values estimated on the appli-
cation data set with the three-class model;

• πi1 = 0.33, πi2 = 0.33, πi3 = 0.33: homogeneous proba-
bilities; and

• πi1 = 0.06, πi2 = 0.83, πi3 = 0.11: heterogeneous prob-
abilities where the class with median risk and median
change over time has the largest probability.

Results are presented in Table 2. All the tests are more
powerful for scenario 1, where the discrimination among the
three classes is the largest both for the risk of event and the
marker evolution. In all the situations except one, the bi-
variate score test is the most powerful with increasing power
when the class sizes are homogeneous and thus the number of
events is higher. The superiority of the bivariate score test is
particularly clear in the situation mimicking the application
data (πi1 = 0.06, πi2 = 0.11, πi3 = 0.83, and event rate about
19%) because the power of the other tests is greatly reduced
when the rate of event is low. The behavior of the test compar-
ing the residual means highly depends on the data structure:
its power is dramatically low for the data sets that mimic the
application (πi1 = 0.06, πi2 = 0.11, and πi3 = 0.83) and it is
the highest when the median class is the largest (πi1 = 0.06,
πi2 = 0.83, and πi3 = 0.11).

Another simulation study was performed for the misspeci-
fied alternative defined by a dependence of the risk of event
on the current subject-specific deviation from the mean (data
generated with λg (t) = λ0g exp (ηb0i + b1i × t) with an ex-
ponential baseline risk). In this case also, the two score tests
for the alternative λg (t) = λ0g (t) exp (ηb0i ) or λg (t) = λ0g (t)
exp(η1b0i + η2b1i ) were more powerful than the other tests
(Web Table 3).

5. Application
We considered data from a prospective cohort that included
patients treated by external beam radiation therapy (EBRT)
for localized prostate cancer at the UM between 1988 and
2004 (Taylor et al., 2005). After the end of EBRT, patients
were followed up until clinical recurrence of prostate cancer or
last contact with repeated measures of PSA, a biomarker of
progression of prostate cancer. Clinical recurrence was defined
as any of the following: distant metastases, nodal recurrence,
or any palpable or biopsy-detected local recurrence 3 years
or later after radiation; any local recurrence within 3 years of
EBRT if the most previous PSA was >2 ng/ml; and death
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Table 3
Comparison of five latent class joint models estimated on the

UM data set with one to five latent classes

# Log- Score
classes likelihood BIC test∗ WMM1∗∗

1 −2877.2 5852.5 170.4 (p < 0.001) 7.9 (p < 0.001)
2 −2595.1 5331.2 30.7 (p < 0.001) 3.1 (p < 0.01)
3 −2529.6 5243.1 12.1 (p < 0.01) 1.34 (p = 0.18)
4 −2502.4 5231.5 5.6 (p = 0.2) 1.47 (p = 0.14)
5 −2490.9 5251.5 4.4 (p = 0.3) 1.92 (p = 0.06)

∗Trivariate score test for conditional independence (with asymptotic
variance).

∗∗Wald test for dependence on the failure indicator δ i in a weighted
linear mixed model adjusted for posterior classes.

from prostate cancer. The aim of this analysis was to distin-
guish profiles of evolution of posttreatment PSA associated
with different risks of clinical recurrence after adjustment for
pretreatment prognostic factors. Such analysis may help to
define tools for early detection of patients at high risk of re-
currence based on repeated measures of PSA (Proust-Lima
and Taylor, 2009).

Patients were included in the analysis if (1) they had a
prostate cancer with clinical stage T1–4 and neither positive
nodes or metastases, (2) they had at least 1 year follow-up
without clinical recurrence after end of EBRT, (3) they did
not receive any salvage androgen deprivation therapy during
the follow-up, and (4) they had at least two repeated measures
of PSA before the end of follow-up.

Repeated measures of PSA were logarithmically trans-
formed using Y ij = ln (PSAi (tij ) + 0.1 ng/ml) to satisfy
the Gaussian assumption from the mixed model. The end-
point of interest was the first clinical recurrence, so that all
the PSA measures collected after the end of treatment and be-
fore this point were included. Previous analyses of this data
set (Proust-Lima et al., 2008) showed that posttreatment evo-
lution of ln(PSA(t)+0.1) exhibited a decline in the first years
after EBRT well fitted by the function of time f 1(t) = ((1 +
t)−1.5 − 1), and a subsequent stable or increasing (long-term)
linear trend. Thus the mixed model for PSA evolution was
defined by

Yij |c i =g = (μ0g + b0ig ) + (μ1g + b1ig )f1(t) + (μ2g + b2ig )t + εij

with εi ∼ N (0, σ2In i
) and big = (b0ig , b1ig , b2ig )T ∼ N (0,

ω2
g B).
The time-to-event model was a proportional hazard model

with class-specific Weibull baseline risk functions and three
pretreatment prognostic factors as covariates: Gleason score
(a scale that measures grades of prostate cancer) in three cat-
egories (7 and 8–10 versus 2–6), T-stage category (3–4 ver-
sus 1–2), and the pretreatment level of PSA transformed to
ln(PSA + 0.1).

The sample included 459 subjects with a median of 8 (in-
terquartile range [IQR] = [5–12]) repeated measures of PSA
and a median follow-up of 5.16 (IQR = [2.68–7.69]) years.
During the follow-up, 74 patients (16.1%) underwent a clin-
ical recurrence with a median time to recurrence of 2.77

(IQR = [1.87–4.41]) years. The mean pretreatment PSA in
the logarithm scale was 2.18 (SE = 0.90), 41 (8.9%) patients
had a clinical T-stage of 3 or 4 and, respectively, 173 patients
(37.7%) and 34 patients (7.4%) had a Gleason score of 7 and
above 7.

Five joint LCMs from one to five classes were estimated,
and for each of them, Table 3 displays the log likelihood, the
Bayesian information criterion (BIC) (Schwartz, 1978), and
two tests for conditional independence: the trivariate score
test using the asymptotic variance, and the Wald test for de-
pendence on the failure indicator in a weighted linear mixed
model adjusted for posterior classes. According to the BIC, we
retained the four-class model. The score test decreased con-
tinuously from one to five classes and was nonsignificant for
the models with four and five classes. Thus the assumption
of conditional independence was not rejected for the selected
model with four classes. In contrast, the test statistic WMM1
decreased from one to three classes, became not significant
for three classes but then slightly increased till five classes.
However, the simulation study showed that this test was less
powerful. We can also point out that the test comparing the
means of the conditional residuals was never significant. This
was consistent with the simulations because the class-specific
initial levels were close in the four classes and the class mem-
bership probabilities were small for the three classes with high
recurrence risk.

The four estimated class membership probabilities were
π1 = 1.78%, π2 = 4.4%, π3 = 11.1%, and π4 = 82.6%. The
estimated mean evolutions in the four classes are presented
in Figure 1A and the associated survival functions in Figure
1B. Class 4 had a very low risk of recurrence and posttreat-
ment PSA evolution was characterized by a low level at end of
EBRT followed by a short-term decrease and long-term sta-
bility over 8 years. Classes 1, 2, and 3 corresponded to three
groups of patients with increasing risk of recurrence associ-
ated with an increase of PSA level from 1 year of treatment.

Adjusted for the four latent classes, pretreatment PSA level
was no longer associated with the risk of recurrence (β =
0.047, SE = 0.13) whereas T-stage above 2 (RR = 2.0, p =
0.05) and Gleason score of 7 (RR = 2.9, p < 0.01) or above
7 (RR = 3.0, p = 0.03) remained independent risk factors of
recurrence.

6. Discussion
We have proposed a score test for the basic assumption of
joint LCMs, that is, the conditional independence assump-
tion between the time to event and the repeated measures
of the marker given the latent classes. This procedure avoids
posterior classification required by other methods. As a score
test, it has theoretical validity and is simple to compute be-
cause computations are performed under the null hypothe-
sis of conditional independence. In addition, the test statistic
has a meaningful interpretation as the covariance between the
residuals from the survival model and the class-specific em-
pirical Bayes’ estimates of the random-effects weighted by the
posterior class-membership probabilities.

More importantly, the simulations have shown that the
score test is more powerful than three previously proposed
tests even against two misspecified alternative hypotheses. In
particular, it has a good power to detect when the number
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Figure 1. (A) Predicted mean evolution of PSA in the four
latent classes and (B) associated probability of being free of
recurrence.

of classes is too small and thus it can be used to validate the
model selected using BIC. Note however that, for some appli-
cations, the number of classes may be driven by heterogeneity
in the marker evolution without link with the risk of event.
The simulations have also shown that the score tests using
either the asymptotic variance or the empirical variance have
similar behaviors.

Although the pattern mixture models may be preferred in
this context (Dantan et al., 2008), joint LCMs are sometimes
used for joint modeling time to dropout and longitudinal data
to estimate without bias the change over time of the marker
taking informative dropout into account (Lin et al., 2004). If
we denote ym

i the missing postdropout measures and yo
i the

observed predropout measures, the aim is to estimate f (yo
i ,

ym
i ). In this case, the likelihood (6) for the alternative model

relies on the assumption that (yo
i , ym

i ) ⊥ T ∗
i | ci = g, big , which

is uncheckable as ym
i is not observed. As is often discussed, a

test of the dropout mechanism is not possible without strong
and uncheckable assumptions (Diggle and Kenward, 1994).

In the simulation study, the behavior of the test compar-
ing the conditional residuals means was found to be highly

dependent on the data structure. More thorough investigation
of the distribution of these residuals through graphical anal-
yses could probably be useful to highlight departures from
model assumptions, but the mean comparison alone is too
crude to identify some residual correlation structures. Tests in
regression models adjusted for the posterior latent classes also
exhibited mediocre power. The power could probably be im-
proved by combining a test for the dependence of the marker
on the time to event in a mixed model and a test for the depen-
dence of the time to event on the marker in a survival model,
but the score test is simpler and powerful against different
alternatives. Moreover, the score test can be easily extended
to other joint models using another time-to-event model or a
logistic model for binary data.

7. Supplementary Materials
Web Appendices and Tables referenced in Section 3.3, 4.2,
and 4.3 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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