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Summary. The work is motivated by a quantitative magnetic resonance imaging study of the
differential tumour–healthy tissue change in contrast uptake induced by radiation. The goal is
to determine the time in which there is maximal contrast uptake (a surrogate for permeability)
in the tumour relative to healthy tissue. A notable feature of the data is its spatial heterogeneity.
Zhang and co-workers have discussed two parallel approaches to ‘denoise’ a single image
of change in contrast uptake from baseline to one follow-up visit of interest. In this work we
extend the image model to explore the longitudinal profile of the tumour–healthy tissue contrast
uptake in multiple images over time. We fit a two-stage model. First, we propose a longitudinal
image model for each subject.This model simultaneously accounts for the spatial and temporal
correlation and denoises the observed images by borrowing strength both across neighbouring
pixels and over time.We propose to use the Mann–Whitney U -statistic to summarize the tumour
contrast uptake relative to healthy tissue. In the second stage, we fit a population model to the
U -statistic and estimate when it achieves its maximum. Our initial findings suggest that the
maximal contrast uptake of the tumour core relative to healthy tissue peaks around 3 weeks
after initiation of radiotherapy, though this warrants further investigation.

Keywords: Mann–Whitney U -statistic; Markov random field; Population model; Quantitative
magnetic resonance imaging; Reversible jump Markov chain Monte Carlo methods;
Spatial–temporal model

1. Introduction

This work is motivated by a pilot imaging study investigating the effects of radiation therapy on
the vascular permeability of high grade gliomas, which are a particularly virulent type of brain
cancer. Despite advances in both radiotherapy and chemotherapy, the overall survival time of
a glioma patient has not significantly increased from a median survival of 1 year from diagnosis
(Curran et al., 1993).

Researchers hypothesize that tumour vasculature damage due to radiation would disrupt the
blood–tumour barrier (BTB), at least transiently, allowing larger molecules to cross the BTB. If
true, this suggests that chemotherapy should begin during the time when the damage to the BTB
is at its peak. For instance, if the damage to the BTB peaks early during radiotherapy, greater
tumour control could be achieved by starting chemotherapy during this time, in contrast with
the current practice of sequentially administering radiotherapy followed by chemotherapy.
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11 subjects, who had been diagnosed with high grade gliomas, participated in this study
conducted at the Department of Radiation Oncology, University of Michigan School of Medi-
cine. The subjects underwent standard-of-care radiation therapy over a course of 4–6 weeks. Six
imaging sessions were scheduled for each subject. The first image was obtained approximately
1 week before the onset of radiotherapy. The other five images were acquired at weeks 1 and 3
during therapy, and at 1, 3 and 6 months post therapy. Two T1-weighted magnetic resonance
images, one before and one after the injection of the contrast enhancement agent—gadolinium
diethylenetriaminepentaacetic acid—were obtained at each examination. All images were reg-
istered to the baseline computed tomography image that was used for planning treatment. The
molecular weight of the gadolinium compound is approximately that of many chemotherapeutic
molecules. Therefore, the contrast uptake (the volume of the compound that crosses the BTB,
which is quantified as the log-ratio of the contrast-enhanced T1-weighted magnetic resonance
imaging (MRI) image to the non-enhanced T1-weighted MRI image, e.g. Fig. 1) is a good
surrogate of vascular permeability and may represent the volume of chemotherapeutic drug
that crosses the BTB. The contrast uptake image is an example of quantitative MRI (QMRI),
as it quantitates a physiological process, in this case vascular permeability. This is in contrast
with an anatomical MRI examination that only allows visualization of anatomical structures
and abnormalities and whose values have no absolute quantitative interpretation: only relative
meaning.

Despite a large body of literature on medical image analysis, especially functional MRI,
proper statistical analysis of QMRI data is limited. Two important features of QMRI data are
spatial correlation and heterogeneity. Although they seem to be discordant features, an exam-
ination of Fig. 1 reveals that contrast uptake in healthy tissue is quite homogeneous and we
would expect that there is high spatial correlation (at least locally). The tumour, which is visible
in the upper left quadrant, is much more heterogeneous with respect to its contrast uptake. This
heterogeneity can, roughly, be divided into two relatively homogeneous regions: the core of the
tumour and its periphery, or annulus. The core of a tumour is typically hypoxic (low oxygen
content due to a lack of blood supply) and appears dark, indicating low contrast uptake (e.g.
Fig. 1). Conversely, the annulus is typically rich in neovasculature (newly formed blood vessels
that are typically disorganized and leaky) and appears lighter in shade, indicating high contrast
uptake (e.g. Fig. 1). It is known that hypoxia is protective against damage due to radiation and
chemotherapy. Therefore, the core is usually a source of tumour regrowth after therapy. The
focus of this imaging study is on demonstrating that radiation therapy can transiently increase
vascular permeability in the core of a tumour.

In many QMRI studies, spatial information is ignored (e.g. Cao et al. (2005), Moffat et al.
(2005) and Hamstra et al. (2005)). Zhang et al. (2008, 2010) developed an appropriate statistical
model (a Gaussian hidden Markov random-field (MRF) model) that smooths the QMRI data
while respecting the heterogeneity within the tumour, as well as between the tumour and healthy
tissue. They proposed both a maximum likelihood and a Bayesian estimation method for image
smoothing with edge preservation. However, their work focused on a single image—the change
in contrast uptake from baseline to week 3—and thus ignored the temporal aspects of the data.
In this paper we extend their Bayesian approach to account for the temporal profile of the
contrast uptake in addition to the spatial correlation of the data.

We summarize the ‘true’ contrast uptake of the tumour relative to healthy tissue at each visit
with the Mann–Whitney U-statistic. We build population models treating the U-statistic as the
response variable to investigate the population temporal profile of the tumour–healthy tissue
contrast uptake. The best population model is chosen on the basis of the predictive distribution
criterion that was proposed by Gelfand et al. (1992).



Image Analysis of Tumour–Healthy Brain Change Contrast 823

−
0.

5

0.
0

0.
5

1.
0

−
0.

5

0.
0

0.
5

1.
0

−
0.

5

0.
0

0.
5

1.
0

−
0.

5

0.
0

0.
5

1.
0

−
0.

5

0.
0

0.
5

1.
0

−
0.

5

0.
0

0.
5

1.
0

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

F
ig

.1
.

O
bs

er
ve

d
co

nt
ra

st
up

ta
ke

y j
fo

r
su

bj
ec

t
1:

(a
)

ba
se

lin
e

y 1
;(

b)
1

w
ee

k
af

te
r

in
iti

at
io

n
of

tr
ea

tm
en

t,
y 2

;(
c)

3
w

ee
ks

af
te

r
in

iti
at

io
n

of
tr

ea
tm

en
t,

y 3
;

(d
)

1
m

on
th

af
te

r
co

m
pl

et
io

n
of

tr
ea

tm
en

t,
y 4

;(
e)

3
m

on
th

s
af

te
r

co
m

pl
et

io
n

of
tr

ea
tm

en
t,

y 5
;(

f)
6

m
on

th
s

af
te

r
co

m
pl

et
io

n
of

tr
ea

tm
en

t,
y 6



824 X. Zhang, T. D. Johnson, R. J. A. Little and Y. Cao

In the next section we describe the details of the model proposed. In Section 3 we outline
its implementation. Results from simulation studies and the motivating study are presented in
Section 4. A small sensitivity analysis is also conducted in the same section. We conclude the
paper with a discussion of the model and ideas for future research.

2. Model specification

In this section, we first describe a longitudinal image model at the subject level that borrows
strength both across pixels and over time. Later, we summarize the differential tumour–healthy
tissue response to radiation by using the U -statistic, and then we build a population model
treating the U -statistic as the outcome of interest.

2.1. Longitudinal image model
We build a longitudinal image model for each subject by using the following notation. Let j
index the visits at time t1, t2, . . . , tJ . Since we assume that the images are registered over time for
each subject, we use a common index i (i=1, 2, . . . , N) to denote pixels regardless of visit (pixel
i at time tj and pixel i at time tj′ are the same pixel). We denote the observed contrast uptake of
pixel i at time tj by yij and write the image at time tj in vector form as yj = .y1j, . . . , yNj/T and
all J images as y = .yT

1 , . . . , yT
J /T.

2.1.1. Distribution of the data
We decompose the observed contrast uptake into a true contrast uptake and a measurement
error, i.e. yij = νij + eij where eij ∼ N.0,σ2

e /, or [yij|νij,σ2
e ] ∼ N.νij,σ2

e /, for all i and j, as
the normality assumption is justified in the MRI literature (e.g. Liang and Lauterbur (1999),
chapter 8, and Lei and Udupa (2002)). The νij denotes the unobserved true contrast uptake
of pixel i at time tj. We write in vector form νj = .ν1j, . . . , νNj/T and ν = .νT

1 , . . . ,νT
J /T, the

temporal and spatial structure of which is specified in the following section.

2.1.2. Prior distributions

(a) We specify a flat (improper) prior distribution for the standard deviation of the measure-
ment error, i.e. P.σ2

e /∝1.
(b) The decomposition of the observed contrast uptake into the ‘truth’ and conditionally

independent noise in the above section is similar to that of Zhang et al. (2008, 2010). They
imposed a spatial structure (an MRF prior; Besag (1974)) directly on the ‘true’ change in
contrast uptake. Their model is sufficient when analysing a single image, i.e. the observed
change in contrast uptake from baseline to week 3. However, we need additional mod-
elling of the longitudinal perspective when analysing multiple QMRI images taken over
time.

Since the true contrast uptake evolves over time during and after radiotherapy, we
conceptualize the true contrast uptake at time tj as the true contrast uptake from time
tj−1 plus a change in contrast uptake and an evolution error. Here, ‘evolution error’ is in
the sense that the true contrast uptake evolves over time with uncertainty. We borrow the
terminology of measurement and evolution error from dynamic linear models (West and
Harrison (1999), chapter 2) owing to the similarity of the structure of the proposed image
model and dynamic linear model. For j > 1, this is formalized as νij = νi,j−1 + δij + "ij,
"ij ∼N.0, τ2

ij/, where δij is the structural ‘change’ (since E.νj|νj−1, δj, τ2
j /=νj−1 +δj)
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and "ij is the evolution error of pixel i at time tj. To keep the notation consistent, we define
νi0 ≡ 0. Hence, [νij|νi,j−1, δij, τ2

ij] ∼ N.νi,j−1 + δij, τ2
ij/ for all i and j. Although δ1 is the

expectation of the true contrast uptake at the first visit (i.e. E.ν1|ν0, δ1, τ2
j /=δ1), we refer

to δj as the true change in contrast uptake. We write in vector form δj = .δ1j, . . . , δNj/T,
δ = .δT

1 , . . . , δT
J /T, τ2

j = .τ2
1j, . . ., τ2

Nj/T and τ2 = .τ2
1

T
, . . . ,τ2T

J /T.
(c) Since radiation is administered in a gradient fashion, with the highest dose delivered to

the tumour and tapering off in healthy tissue as a function of distance from the tumour,
it is reasonable to assume that its effect (change in contrast uptake) is spatially cor-
related. Meanwhile, there is spatial heterogeneity within and surrounding the tumour.
This motivates us to model the change in contrast uptake at each visit with an MRF
prior, which not only accounts for the spatial correlation in the change but also respects
the distinct boundaries between tumour and healthy tissue. Zhang et al. (2008, 2010)
successfully applied MRF in modelling the observed change in contrast uptake (yij −yij′ ),
which can be considered as the ‘prototype’ of the model proposed if we force "ij ≡0.

Specifically, let δij .i=1, 2, . . . , Nj/ assume one of Mj possible values .μ1j, . . . ,μMjj/ at
time tj. We write in vector form μj = .μ1j, . . . ,μMjj/T and μ= .μT

1 , . . . , μT
J /T. We assign

a uniform prior distribution for the Mj possible values: μkj ∼uniform.μmin,μmax/ for all
1 � k � Mj, where μmin and μmax are the minimum and maximum observed change in
contrast uptake.

(d) Similarly to step (c), let τ2
ij .i = 1, 2, . . . , Nj) assume one of Mj possible values at time

tj, .σ2
1j, . . . ,σ2

Mjj/. We assume, a priori, σ2
kj ∼ Inv-gamma.ασ,βσ/ for all 1 � k �Mj. We

write in vector form σ2
j = .σ2

1j, . . .,σ2
Mjj/T, and σ2 = .σ2T

1 , . . . , σ2
J

T/T. We setασ=2:5 and
βσ = 5, such that the prior mode of σ2

kj is 0.3. Later, in Section 4.1, we investigate the
sensitivity of the results to other choices of ασ.

(e) We introduce hidden MRF labels Zij on the state space Sj ={1, . . . , Mj}. Let Zij index
the value of δij and τ2

ij out of the Mj choices, i.e. δij =μkj and τ2
ij =σ2

kj when Zij =k. The
MRF prior on the hidden labels takes the form

P.Zj = zj|βj, Mj/=g−1.βj, Mj/ exp.βj

∑
i∼i′

I[zij = zi′j]/,

where I[·] is the indicator function, i∼ i′ denotes that pixels i and i′ are neighbours (i.e.
immediately adjacent) and

g−1.βj, Mj/=∑
Zj

exp.βj

∑
i∼i′

I[zij = zi′j]/

is the normalizing constant to be estimated via thermal integration (Ogata, 1989;
Gelman and Meng, 1998). This model is also known as the Potts model in statistical
physics (Potts, 1952). The collection of hidden labels, zj = .Z1j = z1j, . . . , ZNj = zNj/T, is
called a configuration. We also write z= .zT

1 , . . . , zT
J /T. The spatial regularization param-

eter βj controls the strength of the spatial correlation of the labels; for example, large βj

encourages smoother configurations.
(f) A priori, we assume that Mj is uniform on the integers from Mmin to Mmax, where Mmin =2

and Mmax =20, such that the number of components is allowed to vary over a reasonable
range. We write in vector form M = .M1, . . . , MJ /T.

(g) Let βj ∼ uniform.0,βmax/, where βmax = 3. Similarly, we write in vector form β =
.β1, . . . ,βJ /T.

Note that we compute the ratio of the normalizing constant g.βj, Mj/ off line on the grid
values of βj = 0, 0:1, . . . , 3:0 and M = 2, 3, . . . , 20 (appendix 1 of Zhang et al. (2010)). Its value
on non-grid points is computed via linear interpolation. Furthermore, our model induces the
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following covariance structure at each pixel over time. The covariance of the observed contrast
uptake at the same pixel at any two visits (j1 and j2) is the variance of the true contrast uptake
at the earlier visit (jmin =min.j1, j2/), i.e. cov.yij1 , yij2/=var.νijmin/.

2.1.3. Joint distribution and conditional posterior distributions
Given the distribution of the data and the priors, the joint distribution is

P.σ2
e /

J∏
j=1

(
P.Mj/P.βj/P.Zj|βj, Mj/

Mj∏
k=1

[
P.μkj/P.σ2

kj/
∏

i∈Dkj

{P.νij|νi,j−1,μkj,σ2
kj/P.yij|νij,σ2

e /}
])

,

where Dkj ={i : Zij =k} is the collection of pixels with the same label k at time tj, i.e. a compo-
nent. The conditional posterior distributions of μkj, σ2

kj, νij and σ2
e have closed form owing to

conjugacy. By Bayes’s theorem the conditional posterior distributions of Zj and βj satisfy

P.Zj|·/∝g−1.βj, Mj/ exp.
∑
i∼i′

βjI[zij = zi′j]/
Mj∏
k=1

∏
i∈Dkj

σ−1
kj exp{−0:5σ−2

kj .νij −νi,j−1 −μkj/2},

P.βj|·/∝g−1.βj, Mj/ exp.
∑
i∼i′

βjI[zij = zi′j]/,

for j =1, . . . , J .

2.1.4. Marginal posterior mean of contrast uptake
Following Zhang et al. (2010), we characterize the contrast uptake by its posterior mean, i.e.

νij =νi,j−1 +
Mj∑
k=1

μkjP.Zij =k|y/:

It can be estimated via Markov chain Monte Carlo draws δ
.t/
ij and ν

.t/
i,j−1 at iteration t (1� t �

T / : ν̂ij =T −1ΣT
t=1.ν

.t/
i,j−1 +δ

.t/
ij /, where δ.t/

ij =μ
.t/
kj when z

.t/
ij =k. Other statistics of interest can be

generated in similar ways.

2.2. Summarizing differential tumour–healthy tissue response
Although the longitudinal image model that was detailed in the above section estimates the true
contrast uptake by smoothing the images, it does not directly answer the question of interest:
when is there maximal contrast uptake in the tumour relative to healthy tissue? We, therefore,
propose to use the Mann–Whitney U -statistic as a non-parametric and robust measure of sepa-
ration in the true contrast uptake of tumour and healthy pixels. The U -statistic is interpreted as
the probability that a randomly drawn value from the tumour .νT/ is greater than a randomly
drawn value from healthy tissue (νH). Compared with other non-parametric measures of differ-
ences between two sample distributions, e.g. the Kolmogorov–Smirnov statistic and Kullback–
Leibler divergence, the U -statistic distinguishes νT >νH from νH >νT. When the distributions
are discrete, the U -statistic is particularly easy to compute: U =Pr.νT >νH/+0:5 Pr.νT =νH/.
This is the method that is used in this paper. Large values of U suggest good separation of the
two distributions. In the ideal case, when the two distributions are perfectly separated, U attains
its maximum value of 1.

One benefit of using the U -statistic as a summary statistic of the differential tumour–healthy
tissue contrast uptake is that a subject’s healthy brain tissue serves as the control for the tumour
tissue. As we have observed in some cases, the contrast uptake images from one visit can be
overall brighter or darker than from another visit because of MRI machine receiver gain (e.g.
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y4 in Fig. 1 is brighter than the rest of the visits). In such situations, the U -statistic is invariant,
i.e. P.νT >νH/=P.νT +d>νH +d/ for an arbitrary shift in images intensities d.

The tumour core and annulus need to be examined separately because of their pathologic
differences (Section 1). We divide each tumour into its core and annulus by applying the edge
preserving smoothing that was discussed in Zhang et al. (2010) to the baseline contrast uptake
image and then use the 95th percentile of the posterior mean (baseline contrast uptake) image
as the threshold between tumour core and annulus. In principle, the threshold of tumour core
versus annulus should be high (e.g. the 95th percentile of healthy tissue) to protect the bulk of
healthy brain tissue. We are not aware of systematic or optimal choice of such a value. Therefore,
we conduct a sensitivity analysis on our choice in Section 4.4.2.

2.3. Population model
In building the population model, we introduce a subject index h .1 � h � H/. We denote
the posterior mean of the U -statistic for subject h at time thj .1 � j � Jh/ by Ahj (the grey
profiles in Figs 2(a) and 2(c)). Since the U -statistic is bounded between 0 and 1, we apply a
logit transformation to Ahj before fitting the population model, i.e. logit.Ahj/ = log.Ahj/ −
log.1−Ahj/.

The subject profiles in Figs 2(a) and 2(c) indicate the need for separate models for the tumour
core and annulus. Considering the limited number of visits for each individual, we opt for a
piecewise linear function of time (days since the initiation of radiation, thj) with a single variable
change-point as the population mean model. The change-point location τ is treated as a model
parameter. As considerable intersubject variability is seen in the profiles, we introduce individual
random effects to capture the intersubject variability in the patient population, e.g. a random
intercept, a random slope for the second linear segment or both. We define [t]+ = max.0, t/.
Explicitly, the models M1, M2 and M3 that we consider are respectively

logit.Ahj/=α+β1thj +β2[thj − τ ]+ +b0h + ehj,

logit.Ahj/=α+β1thj + .β2 +b1h/[thj − τ ]+ + ehj,

logit.Ahj/=α+β1thj + .β2 +b1h/[thj − τ ]+ +b0h + ehj,

where b0h ∼N.0,φ2/ and b1h ∼N.0,ψ2/ are the individual-specific random intercept and slope
respectively, and ehj ∼N.0,σ2/ is the error term. We specify the following prior distributions for
model parameters: φ2 ∼ Inv-gamma.aφ, bφ/, ψ2 ∼ Inv-gamma.aψ, bψ/, σ2 ∼ Inv-gamma.aσ, bσ/

and τ ∼ uniform.0, 183/ and an improper flat prior density for θ = .α,β1,β2/T, i.e. P.θ/ ∝ 1.
These result in a proper joint posterior distribution. We set aφ=aψ =aσ =1, bφ=bψ =0:1 and
bσ =0:5 such that φ2, ψ2 and σ2 are on reasonable scales, a priori.

We evaluate the adequacy of the population models via a cross-validation approach (Gelfand
et al., 1992), which aims to validate the conditional predictive distributions when each observa-
tion is left out. We denote the remaining data by A\hj when the jth visit of subject h is left out
and we use a checking function dhj = logit.Ahj/−E[logit.Ahj/|A\hj], where E[logit.Ahj/|A\hj]
is the posterior predictive mean of logit.Ahj/.

The overall fit of a candidate model is evaluated as the sum of squares of the checking func-
tions, i.e. D =Σh,jd2

hj. The best-fitting model is the model with the smallest D (Gelfand et al.,
1992).

A straightforward approach is to fit the population model multiple times with one observa-
tion left out each time. Instead, we use the method that was described in Chen et al. (2000)
to simplify the posterior predictive check. We denote the posterior distribution by P.θ|·/ and
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Fig. 2. Results on (a), (b) tumour core versus healthy tissue and (c), (d) tumour annulus versus healthy
tissue: (a), (c) posterior mean of the U -statistic for all subjects and pointwise posterior mean and 95% credible
interval of the population mean; (b), (d) posterior distribution of the change-point location τ

the distribution of the data by P.Ahj|θ/. It follows from P.θ|A/ ∝ P.θ|A\hj/P.Ahj|θ/, where
A = .Ahj, A\hj/, that

dhj = logit.Ahj/−
∫ ∫

logit.Ahj/P.Ahj|θ/P.θ|A\hj/ dθ dAhj .1/

= logit.Ahj/−

∫ ∫
logit.Ahj/P.Ahj|θ/P.θ|A/=P.Ahj|θ/ dθ dAhj∫

P.θ|A/=P.Ahj|θ/ dθ

:
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This equation depends only on P.θ|A/ and not on P.θ|Ahj/. Therefore, the population model
needs to be fitted only once with all the observations.

3. Sketch of implementation

We implement the subject level longitudinal image model by running separate Monte Carlo
chains for each subject. At every iteration, we update the parameters for the Jh visits of subject
h sequentially. At time tj, the conditional posterior distributions of μj, σ2

j and νj have closed
form and are updated via standard Gibbs sampling steps. The spatial regularization parame-
ter βj requires a Metropolis–Hastings step. We use the Swendsen–Wang algorithm (Swendsen
and Wang, 1987; Higdon, 1998; Zhang et al., 2010) to update the hidden configurations. The
most challenging part of the sampler is to update the number of components for each visit via
reversible jump Markov chain Monte Carlo methods. The transdimensional proposal follows
Zhang et al. (2010) with some modifications (see Appendix A for details). We then compute the
empirical U -statistic for the tumour core and annulus separately on the basis of the posterior
draws of νT and νH at that iteration. After all parameters indexed by visits have been updated,
we finish the current iteration by drawing σ2

e via a Gibbs step and proceed to the next iteration.
We use the posterior mean of the U -statistic from all iterations after burn-in in the second-

stage population model. The conditional posterior distributions of θ, φ2, ψ2 and σ2 have closed
form by Bayes’s theorem and are updated via Gibbs steps. The change-point location τ is updated
via a Metropolis–Hastings step. The best model is chosen via cross-validation (Gelfand et al.,
1992). The Markov chain Monte Carlo estimate of dhj in equation (1) is

d̂hj = logit.Ahj/−
S−1

S∑
s=1

logit.A.s/
hj /=P.Ahj|θ.s//

S−1
S∑

s=1
1=P.Ahj|θ.s//

,

where .A.s/, θ.s// are posterior draws at iteration s .1� s�S/. We fit models M1–M3 and select
the model with the smallest D̂=Σh,jd̂

2
hj.

4. Results

To evaluate the performance of the longitudinal image model, we conduct a series of simulation
studies under various scenarios. For each scenario, we generate multiple simulations, indexed
by l=1, 2, . . . , L. We compute the average mean-squared error aMSE and average bias abias for
the true contrast uptake estimate for simulation l at time tj, both averaged over all pixels in the
same image:

aMSE.νl
j/=N−1

N∑
i=1

.ν̂ l
ij −ν l,true

ij /2,

abias.νl
j/=N−1

N∑
i=1

.ν̂ l
ij −ν l,true

ij /,

where ν l,true
ij is the true contrast uptake that is used to generate the lth simulation and ν̂ l

ij is its
estimate (i.e. posterior mean). We also define the average aMSE and abias across the L sim-
ulations as MSE.νj/=L−1ΣL

l=1aMSE.νl
j/ and bias.νj/=L−1ΣL

l=1abias.νl
j/. To illustrate the

benefits of modelling the temporal correlation, we compare this method with a set of cross-sec-
tional models on the simulated data, i.e. fitting an independent model for the observed contrast
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uptake image at each visit by following Zhang et al. (2010). Essentially, the cross-sectional model
assumes that yij =ηij +eij, eij ∼N.0,ω2

ij/, where the values of ηij and ω2
ij are indexed by hidden

label Zij, i.e. ηij = ξkj and ω2
ij =υ2

kj when zij =k. We then run the algorithm on the real data set
and summarize the differential tumour–healthy tissue response with the U -statistic, and select
the best-fitting population model for the tumour core and annulus separately.

4.1. Simulation study of random change images
We assume that there are six images .J = 6/ on a 128 × 128 lattice. We divide the lattice into
regions of various shapes (Fig. 3). The same skeleton is used for all visits. For each visit, we
assign the same true change to all pixels in the same region (δij = δi′j for all i and i′ in the same
region at the same visit j), which is independently and randomly drawn from eight candidate
levels, i.e. Mj = 8 and μj = .−5:95, −4:25, −2:55, −0:85, 0:85, 2:55, 4:25, 5:95/T for all j. We
set the standard deviation of all evolution errors to 0.7, i.e. σkj = 0:7 for all j and k. The stan-
dard deviation of the measurement errors is σe =1. Figs 4(a)–4(c) shows an example of the true
change images. We follow the model assumptions and generate the true contrast uptake images
from νij =νi,j−1 +δij +"ij. The observed images are generated from yij =νij +eij. We generate
20 sets of observed images from 20 true change images in the above fashion .L=20/.

We run the algorithm proposed on each of the 20 simulated data sets. The pixelwise posterior
means of δj and νj for the example data set are displayed in Figs 4(d)–4(f) and 4(j)–4(l). The
posterior mean images of the true change are similar to the corresponding true values. How-
ever, we note that the errors are more likely to occur on the boundaries of two adjacent regions
when they have means that are close to one another. By modelling the temporal correlation, the
posterior mean images of the true contrast uptake (ν̂j) are less noisy than the observed images
.yj/ and the edges between regions with different true values are preserved.

We also compare the proposed longitudinal model with J independent cross-sectional mod-
els, one for each visit. The cross-sectional model assumes that each observed image is a hidden
MRF deteriorated by Gaussian noise. At each time tj, the true pixel mean ηij is the counterpart
of the true contrast uptake νij in the model proposed. We compare aMSEs of the two approaches
averaged over pixels within an image. Both methods have minimal bias. However, the longitu-
dinal approach proposed produces uniformly smaller aMSEs than the cross-sectional model by
borrowing strength over time. Because the noise (both evolution and measurement errors) adds
up over visits, the mean-squared error is non-decreasing as the signal-to-noise ratio decreases

Fig. 3. Skeleton of true change image
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Fig. 4. Simulation study of random true change images in contrast uptake δj , posterior mean δ̂j , observed
contrast uptake yj , and posterior mean of true contrast uptake ν̂j : (a) δ1; (b) δ2; (c) δ6; (d) δ̂1; (e) δ̂2; (f) δ̂6;
(g) y1; (h) y2; (i) y6; (j) ν̂1; (k) ν̂2; (l) ν̂6

for both approaches. The aMSEs of the cross-sectional model increase roughly as multiples of
its baseline value whereas the longitudinal model increases only moderately for the follow-up
visits (j> 1) after borrowing strength across visits. By way of data generation, the true contrast
uptake is essentially continuous. We argue that the posterior draws of ν from the longitudinal
model are on a continuous scale for j>1, whereas the posterior draws of η in the cross-sectional
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model are discrete. This helps to explain why the method proposed fits the data better with
smaller aMSEs.

We investigated the sensitivity of the results to alternative choices of the hyperprior, i.e. βσ
equal to 1 and 5 instead of 3. MSE.νj/ is not sensitive to the choice of λ—the change in aMSE
is less than 5%.

4.2. Simulation study of no treatment effect
We generate a second set of simulations by assuming no treatment effect. We assume that the
regions within the outer ring are the ‘tumour’ with relatively low baseline contrast uptake,
whereas the rest of the regions are ‘healthy tissue’. At baseline t1, we assign the tumour regions
with means randomly drawn from .−5:95, −4:25, −2:55, −0:85/, and the means of the healthy
regions are drawn from .−2:55, −0:85, 0:85, 2:55, 4:25, 5:95/, i.e. the tumour has lower values on
average than the surrounding regions at baseline. The rest of the parameters remain the same as
in the above section. We assume no structural change in contrast uptake for all subsequent visits,
i.e. no treatment effect or δj = 0 for j > 1. The νj and yj are then generated following model
assumptions. We generate 20 sets of such data sets and run the algorithm proposed on each set.
The aMSEs of the proposed longitudinal model are significantly smaller than the MSEs of the
cross-sectional model (Table 1) with the comparative advantage increasing over time.

4.3. Simulation study of treatment effect
We simulate a third scenario assuming a treatment effect. At baseline, δ1 is generated in the
same way as the no-treatment-effect scenario. During the hypothetical radiotherapy period (t2
and t3), we assume that the tumour regions are more responsive to radiation than are the healthy
regions—the structural changes in the tumour regions are higher on average than in the healthy
regions, i.e. the mean values are randomly drawn from (2.55, 4.25) and .−0:85, 0:85/ respectively.
Hence, the structural change in the centre regions is brighter than the surrounding regions
during the treatment period. Assuming no long-term treatment effect after its completion, we
set δj =0 at times t4, t5 and t6. The rest of the parameter values are the same as in Sections 4.1
and 4.2. Again, 20 sets of such simulations are generated (L=20). The mean-squared errors of
the longitudinal model proposed are once again smaller than the mean-squared errors of the
cross-sectional model (Table 1) with the difference increasing over time.

Table 1. aMSE and bias of the method proposed versus a cross-sectional approach—simulation studies of
random-change images, no treatment effect and treatment effect

Effect aMSEs (×10−1) for the following values of j:

j =1 j =2 j =3 j =4 j =5 j =6

Random
Longitudinal 2:60±0:03 3:28±0:07 3:45±0:05 3:54±0:04 3:89±0:08 5:20±0:08
Cross-sectional 5:22±0:47 9:81±0:40 14:32±0:73 19:90±1:18 24:27±1:09 29:2±1:18

No treatment effect
Longitudinal 3:04±0:10 3:75±0:05 3:74±0:05 3:85±0:04 3:92±0:03 5:67±0:07
Cross-sectional 5:64±0:16 11:45±0:79 17:01±1:07 21:35±0:95 25:59±0:72 29:62±0:78

Treatment effect
Longitudinal 2:71±0:15 3:48±0:19 3:80±0:07 3:83±0:04 3:93±0:03 5:62±0:07
Cross-sectional 5:63±0:16 9:83±0:65 14:66±0:81 20:30±1:51 25:26±1:70 30:36±1:99
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4.4. Application
With satisfactory results from the simulation studies, we fit the real data with the image model
proposed. Taking subject 1 for example, it takes about 4.5 h to complete 60000 iterations on a
Sun X2200 machine with a central processor unit speed of 2.6G Hz and 16 Gbytes of random-
access memory. The posterior mean of true contrast uptake (Fig. 5) smooths the observed
images (Fig. 1). The posterior mean image of true change in contrast uptake (Fig. 5) reveals a
differential pattern for the diseased and healthy tissue.

4.4.1. Population model
The tumour boundary was outlined by a radiation oncologist. We use the 95th percentile of
baseline healthy tissue contrast uptake to segment the tumour core from the annulus. This
roughly corresponds to the division of the tumour into enhanced (annulus) and non-enhanced
(core) regions in the original analysis of Cao et al. (2005). We fit separate population models
for them (see Fig. 2(a) for the core and Fig. 2(c) for the annulus). The population models are
fitted after applying a logit transformation of the posterior means of the U -statistics, and then
transformed back to its original scale as discussed in Section 2.2.

For the tumour core, the best-fitting model is M3 with both a random intercept and a random
slope for the second linear segment (Table 2). It profiles the steep increase in the population
mean soon after the initiation of radiotherapy, and the moderate decrease afterwards. The
change-point is around 10 days after the initiation of radiotherapy (the mode is 10 days, and
the first and third quartiles are 9 and 14; Fig. 2(b)). The full and broken black curves in Fig. 2(a)
display the posterior mean and its pointwise 95% credible interval of the population mean. The
population mean reaches its maximum at around 3 weeks after the initiation of radiation. We
see that the profile of one subject (the bottom subject in Fig. 2(a)) is notably different from the
rest of the subjects. We refit the model excluding this subject. The parameter estimates do not
change substantially (Table 2).

Model M2 is the best-fitting model for the tumour annulus (Table 2). Fig. 2(c) shows that the
population mean first decreases and then remains rather flat. The posterior distribution of the
change-point location centres near 1 week after the initiation of radiotherapy (the mode is 7
days, and the first and third quartiles are 6 and 10; Fig. 2(d)). We also note that the profile of
one subject fluctuates more than usual in Fig. 2(c) and refit the model excluding this subject;
the parameter estimates are listed in Table 2. The change in the parameter values is small.

Assuming that contrast uptake is a reasonable surrogate of vascular permeability, and hence
the delivery of chemotherapeutic agents, the findings suggest that chemotherapy should begin
no later than 3 weeks after the initiation of radiotherapy. At this time, the relative exposure
of the tumour core potentially reaches its maximum despite the slight decrease in the annulus.
However, this warrants confirmation from more definitive studies, as the number of subjects
in this pilot study is limited. Another implication is that the heterogeneity of tumour response
to radiation may suggest a dynamic treatment modification during the course of radiotherapy,
depending on the tumour’s response.

4.4.2. Sensitivity analysis
In the above analysis, the tumour core and annulus are segmented on the basis of the 95th
percentile. We conduct a sensitivity analysis on other choices of threshold values of the tumour
core versus annulus, i.e. the 90th and 97.5th percentiles of healthy tissue contrast uptake at base-
line. The parameter estimates of the tumour core are given in Table 2. Using a higher threshold,
a larger portion of the tumour with high baseline contrast uptake compared with other core
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Table 2. Sensitivity analysis of posterior parameter estimates for the population model for tumour core and
annulus versus healthy tissue

Parameter 90th percentile 95th percentile 97.5th percentile

All subjects Excluding one All subjects Excluding one All subjects Excluding one

Core
τ 12:6±4:4 12:3±3:5 13:7±7:2 12:9±5:2 16:2±10:1 15:4±8:8
α −0:21±0:21 −0:26±0:19 −0:03±0:24 −0:07±0:22 0:15±0:26 0:10±0:25
β1 0:14±0:05 0:15±0:04 0:13±0:05 0:14±0:05 0:11±0:06 0:12±0:06
β2 .×10−2/ −0:65±0:42 −0:75±0:42 −0:60±0:52 −0:70±0:49 −0:61±0:64 −0:74±0:65
φ 0:69±0:09 0:62±0:08 0:75±0:10 0:67±0:09 0:78±0:10 0:71±0:09
ψ 0:14±0:03 0:15±0:04 0:14±0:03 0:15±0:04 0:14±0:03 0:15±0:04
σ 0:13±0:03 0:14±0:03 0:13±0:03 0:14±0:03 0:13±0:03 0:14±0:03

Annulus
τ 14:1±10:0 15:0±5:3 10:1±5:2 13:6±4:2 8:3±3:0 11:7±3:2
α 3:36±0:26 3:57±0:19 3:77±0:26 3:97±0:18 4:15±0:26 4:38±0:18
β1 −0:17±0:09 −0:13±0:05 −0:23±0:09 −0:17±0:05 −0:29±0:09 −0:22±0:06
β2 .×10−2/ −0:02±0:50 −0:01±0:50 −0:04±0:43 −0:02±0:43 −0:10±0:46 0:01±0:39
ψ 0:02±0:01 0:02±0:01 0:02±0:01 0:02±0:01 0:02±0:01 0:02±0:01
σ 0:65±0:17 0:37±0:09 0:67±0:16 0:36±0:08 0:71±0:17 0:35±0:08

pixels is included in the tumour core. This leads to higher U -values, and hence a larger intercept
term in the population model of the core.

The parameters of the tumour annulus population model are more sensitive to the choice of
the core–annulus threshold (Table 2). As the threshold increases (e.g. the 97.5th percentile), a
larger portion of the tumour with low baseline contrast uptake (compared with other tumour
annulus pixels) is excluded from the tumour annulus, which leads to larger U -values (the prob-
ability of randomly picking a pixel in the tumour annulus with higher baseline contrast uptake
than a healthy pixel is higher), and hence the intercept term in the population model is larger.
Furthermore, the change-point location is shifted towards zero, which reflects a steeper decline
in the U -values soon after the initiation of radiotherapy.

Since the slopes of the two linear pieces are relatively stable, the temporal profile of the differ-
ential tumour–healthy tissue response to radiation is not sensitive to the threshold in the range
of threshold values that was investigated, and nor does the main conclusion.

5. Discussion

A notable feature of the longitudinal image model is that it simultaneously models spatial and
temporal correlations. In many cases, they are modelled separately or sequentially. In this paper
we used hidden MRFs to model the spatial correlation in the structural change of contrast
uptake and build the current true contrast uptake on the true value at the previous visit, to
model temporal correlation in a manner that is computationally tractable.

This work does not entertain the possibility of a change in size of tumour over time. This
study finds that the contrast uptake in tumour core peaks around 3 weeks after the initiation of
radiotherapy. It is reasonable to postulate that the physiological changes (e.g. contrast uptake)
that are detected within this relatively short period of time precede noticeable changes in tumour
size. Therefore, the findings should be robust.
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The image model proposed was fitted for each subject separately. We argue that the number
of subjects in the motivating study is quite limited compared with the heterogeneity of tumours.
Hence, a pixel level population model that adds an additional level to the model hierarchy
would not necessarily improve on the current model and would be more demanding compu-
tationally. However, we consider a continuous spatial–temporal MRF model (e.g. Descombes
et al. (1998)) as a legitimate alternative to the model proposed. Both the spatial and the tem-
poral energy function take the form of a Φ-function (Geman and McClure, 1987; Geman and
Reynolds, 1992) to avoid oversmoothing of the distinct boundaries in the data. Compared with
the model proposed, the model structure is simpler. However, the spatial and temporal param-
eters in the Φ-function need to be specified separately. In addition the temporal energy function
needs to account for the non-evenly spaced scans. These add up to realistic complications to a
seemingly simpler model. Computational difficulty is another potential challenge.

Although the longitudinal image model that was discussed in this paper helps to ‘denoise’
the images by borrowing strength both across neighbouring pixels and over time, the tens of
thousands of pixelwise contrast uptake profiles do not provide useful information individually.
We summarize the differential tumour–healthy tissue responses with the Mann–Whitney U -
statistic, which is intuitive and interpretable. The models and computer algorithms that were
developed are suitable for either two-dimensional or three-dimensional data. To illustrate the
model and algorithm, we analysed the QMRI slice with the largest tumour volume. It is possible
that the results could change to a certain degree if the entire brain volume is used.

Extensions of the model proposed include adding covariate information in the longitudinal
image model, e.g. radiation dose maps, and specifying more flexible functional forms for the
mean model, such as a cubic spline, which better represent the nature of biological response to
radiotherapy.
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Appendix A

We follow Zhang et al. (2010) in transdimensional proposals. We first randomly choose between a split
and a merge proposal with equal probability, unless Mj is on the boundaries, i.e. Mmin or Mmax; then only
a split or merge proposal is valid. When a transdimensional move is proposed (with MÅ

j components),
the new configuration is denoted by zÅ

j = .zÅ
1j , . . . , zÅ

Nj/
T with zij ∈ {1, 2, . . . , MÅ

j }, the new component
parameters are μÅ

j = .μÅ
1j , . . . ,μÅ

MÅ
j j/

T and σÅ
j = .σÅ

1j , . . . ,σÅ
MÅ

j j/
T. The new true contrast is denoted by

νÅ
j .

A.1. Split proposal
If a split proposal is chosen, we randomly pick a component k .1� k �Mj/ to split, i.e. P

split
select.k/=1=Mj .

We need two extra parameters for the Gaussian mean and variance. To match the increase of dimension,
we introduce two independent random variables, u1, u2 ∼beta.2, 2/, and define a bijective transformation
.μÅ

k1
,μÅ

k2
,σÅ2

k1
,σÅ2

k2
/=ψ.μk,σ2

k , u1, u2/ that matches the first two moments, μÅ
k1

=μk −u1σk, μÅ
k2

=μk +u1σk,
σÅ2

k1
=2u2.1−u2

1/σ
2
k and σÅ2

k2
=2.1−u2/.1−u2

1/σ
2
k .

The acceptance rate of a split proposal is the product of prior ratio, likelihood ratio, proposal ratio and
the Jacobian of the bijective transformation.

The prior ratio in a split move (from k in Mj components to k1 and k2 in MÅ
j =Mj +1 components) is
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P.MÅ
j /P.βÅ

j /P.ZÅ
j |βj , Mj/

MÅ
j∏

k=1
P.μÅ

kj/P.σ2
kj

Å/

P.Mj/P.βj/P.Zj|βj , Mj/
Mj∏
k=1

P.μkj/P.σ2
kj/

= βÅ
j

αβ−1 exp.−βββÅ
j /

β
αβ−1
j exp.−βββj/

g−1.βÅ
j , MÅ

j / exp
(∑

i∼i′
βÅ

j I[zÅ
ij = zÅ

i′j ]
)

g−1.βj , Mj/ exp
(∑

i∼i′
βjI[zij = zi′j ]

)

× σ−1
μ exp{σ−2

μ .μÅ
k1j −μμ/

2}σ−1
μ exp{−0:5σ−2

μ .μÅ
k2j −μμ/

2}
σ−1
μ exp{−0:5σ−2

μ .μkj −μμ/2}

× .σ−2
k1j

Å
/
ασ−1

exp.−ββσ−2
k1j

Å
/.σ−2

k2j

Å
/
ασ−1

exp.−ββσ−2
k2j

Å
/

.σ−2
kj /

ασ−1
exp.−ββσ−2

kj /
:

The likelihood ratio term in the split proposal is ΠN
i=1 exp[−0:5σ−2

e {.yij −νÅ
ij /2 − .yij −νij/

2}].
We construct the reversible split and merge move on the equivalence classes, i.e. the lattice is partitioned

into same-labelled equivalence classes. To compute the proposal ratio, we need to calculate the allocation
probabilities that are associated with both moves.

We start with a split move. Let "1, "2, . . . , "L denote the L equivalence classes with label E1, E2, . . . , EL.
The allocation probability of class "l .l=1, 2, . . . , L/ assuming label kÅ .kÅ =1, 2, . . . , Mj +1/ in the pro-
posed configuration zÅ

j is

plÅ
kÅ =P.ZÅ

ij =kÅ, for all i∈ "l/∝ ∏
i∈"l

exp{−0:5σ−2
e .yij −νÅ

ij /2}:

The allocation probability from zÅ
j is Palloc.zÅ

j /=ΠL
l=1p

l
El

. The probability of class "l assuming label k
.k =1, 2, . . . , Mj/ satisfies

pl
k =P.Zij =k, for all i∈ "l/∝ ∏

i∈"l

exp{−0:5σ−2
e .yij −νij/

2}:

The plÅ
k satisfy ΣMj+1

k=1 plÅ
k for all l=1, 2, . . . , L. Let EÅ

l .EÅ
l =1, 2, . . . , Mj +1/ denote the new label of class

"l drawn on the basis of the above probabilities, i.e. plÅ
EÅ

l
=P.ZÅ

ij =EÅ
l , ∀i∈ "l/. Hence, the allocation prob-

ability from configuration zj conditional on the equivalence classes is Palloc.zj/=ΠL
l=1 plÅ

EÅ
l
.

The proposal ratio of a split move is

Psplit.Mj −1/P
split
select.k/Palloc.zÅ

j /

Pmerge.Mj/P
merge
select .k1, k2/Palloc.zj/

:

A.2. Merge proposal
The merge proposal is determined by the above split move. We randomly pick a pair of components
with adjacent means, say k1 and k2 with P

merge
select .k1, k2/ = 1=.Mj − 1/. Inverting the bijective transforma-

tion in the split proposal, the parameters for the new component are μÅ
k =0:5.μk1 +μk2 / and μÅ2

k +σÅ2
k =

0:5.μ2
k1

+σ2
k1

+μ2
k2

+σ2
k2

/. We denote the new set of parameters by μÅ = .μÅ
1 ,μÅ

2 , . . . ,μÅ
M−1/

T and σÅ2 =
.σÅ2

1 ,σÅ2
2 , . . . ,σÅ2

M−1/
T. The proposal ratio of a merge move is the reciprocal of the split move.
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