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Summary. In large cohort studies, it often happens that some covariates are expensive to measure and hence only measured
on a validation set. On the other hand, relatively cheap but error-prone measurements of the covariates are available for all
subjects. Regression calibration (RC) estimation method (Prentice, 1982, Biometrika 69, 331–342) is a popular method for
analyzing such data and has been applied to the Cox model by Wang et al. (1997, Biometrics 53, 131–145) under normal
measurement error and rare disease assumptions. In this article, we consider the RC estimation method for the semiparametric
accelerated failure time model with covariates subject to measurement error. Asymptotic properties of the proposed method
are investigated under a two-phase sampling scheme for validation data that are selected via stratified random sampling,
resulting in neither independent nor identically distributed observations. We show that the estimates converge to some well-
defined parameters. In particular, unbiased estimation is feasible under additive normal measurement error models for normal
covariates and under Berkson error models. The proposed method performs well in finite-sample simulation studies. We also
apply the proposed method to a depression mortality study.
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1. Introduction
In large cohort studies for failure time regression analysis, we
often measure many variables. Among them some are easy to
obtain while others may be costly to measure. One such ex-
ample is a depression mortality cohort study conducted in two
phases at the Indiana University School of Medicine (Callahan
et al., 1998). Phase 1 of the study took place from January
1991 to June 1993 and the whole cohort was screened for
depression, dementia, and alcoholism. Phase 2 of the study
was conducted following phase 1 on a subsample of the co-
hort. Patients were selected based on simple random sampling
stratified on their depression score measured by the Center
for Epidemiologic Studies Depression scale (CES-D). During
the second phase, patients were required to complete an ex-
tended interview that consisted of the Hamilton Depression
Rating Scale (HAM-D) and part of the Sickness Impact Pro-
file (SIP). HAM-D offers higher validity and reliability than
CES-D in measuring response to treatment of depression and
SIP measures the effect depressive symptoms had on physical
and psychosocial functioning of study subjects. Both require
more time and effort to collect than CES-D. A question of in-
terest is to determine whether patients’ depression and quality
of life level are associated with mortality.

This example can be viewed as a survival analysis problem
with covariates subject to measurement error. HAM-D and

SIP scores are better measurements to reflect the true mor-
bidity status but are only available for a subset of the cohort
(called a validation subset) while CES-D score was measured
on all subjects and viewed as a surrogate for HAM-D and
SIP. The mortality information was also available on all sub-
jects. The question of interest is to develop an effective way
to deal with measurement error or surrogate covariates in the
survival analysis framework.

In survival analysis, Cox model is a popular choice. Di-
rect application of the Cox model to the above data detected
significant effects of CES-D score, gender, race, and age on
survival. However, the proportional hazard assumption is in
question. Specifically, the corresponding p-values from the
tests of the proportional hazard assumption based on Schoen-
feld residuals (Grambsch and Therneau, 1994) are 0.090,
0.0005, 0.187, 0.333, and 0.019 for the four covariates and
the overall model, respectively. Because the CES-D scores
are considered as surrogates, we also fit the Cox model us-
ing HAMD&SIP, gender, race, and age as covariates where
HAMD&SIP is sum of the HAM-D and SIP and used as in-
dex for a subject’s morbidity level. We assign same weights
to HAM-D and SIP in coming up with the index due to their
similar ranges. For the subjects who do not have HAM-D
and SIP scores, we use imputed values via a linear regression
(see Section 5.2 for more details). Under such setting, these
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p-values from the tests of the proportional hazard assump-
tion now become 0.133, 0.007, 0.213, 0.314, and 0.026. Still
the proportional hazard assumption is violated.

This leads us to consider alternative models for analysis.
Semiparametric accelerated failure time (AFT) model is a
good alternative (Kalbfleisch and Prentice, 2002, Chapter 7).
The linear structure of the AFT model and the nice inter-
pretation due to its direct modeling of survival time is es-
pecially appealing to medical investigators. Moreover, in our
initial model fitting of the same data set, we found that the
semiparametric AFT model appears to provide a good fit of
the data. The empirical p-values for goodness-of-fit check are
0.692, 0.104, 0.828, and 0.254 for (imputed) HAMD&SIP, gen-
der, race, and age respectively, based on 500 simulated mar-
tingale residual score processes (Lin, Robins, and Wei, 1996;
Peng and Fine, 2006). Figure 1 provides plots of 50 realiza-
tions from the distributions of the score processes (dashed
lines) together with the observed score processes (solid lines).
Hence, we consider dealing with measurement error data un-
der the semiparametric AFT model framework.

By viewing measurement error as a missing data problem,
the inverse-probability-weighted (IPW) method can be ap-
plied for the semiparametric AFT model to deal with covari-
ates subject to measurement error (Yu and Nan, 2006; and
Nan, Kalbfleisch, and Yu, 2009). However, the IPW method
uses outcome or failure time data from the validation subset
only. As we have failure time information for all subjects in
the cohort, this can lead to some loss of information. Aug-
mented inverse-probability-weighted (AIPW) estimator has
been proposed in the Cox model for censored data (Wang
and Chen, 2001; Qi, Wang, and Prentice, 2005) and uncen-
sored data (e.g., Wang and Wang, 2001). Although the class
of AIPW estimators includes the semiparametric efficient es-
timator (Robins, Rotnitzky, and Zhao, 1994), implementation
can be extremely challenging and usually involves solving inte-
gral equations (Nan, 2004). As a popular alternative, the usual
AIPW estimating equation augments IPW equation by con-
ditioning on observed data to reduce computational burden.
As observed by Qi et al. (2005, Theorem 2–4) and Wang and
Wang (2001, Theorem 1 and 2), such AIPW estimators are
asymptotically equivalent to IPW estimators with estimated
weights. The improvement in efficiency may be limited.

Corrected score method was proposed for the Cox model by
Nakamura (1992) and studied by many others (e.g., Hu and
Lin, 2002; Huang and Wang, 2000). These correction methods
rely on approximating average terms among risk sets using
measurement error data. Such methods may be hard to apply
to the semiparametric AFT model setting where risk sets are
defined on the residual scale that depends on observed failure
time, mismeasured or missing covariates, and the true value
of regression coefficients. The residual is defined as the dif-
ference between the failure time and its regression mean. In
contrast, in the Cox regression, risk sets are usually defined by
observed failure time and hence not subject to the influence
of mismeasured or missing covariates.

We have also investigated the simulation and extrapolation
(SIMEX) method due to its conceptual and computational
simplicity (Carroll et al., 2006, Chapter 5). However when
we apply it to semiparametric AFT models in a number of
scenarios (results not shown), the method seems to have very

notable bias (>20% of the mean). We do not have a direct
theoretical explanation for this occurrence of bias. Due to the
connection between SIMEX method and the corrected score
method (Carroll et al., 2006, Section 7.4), we think this may
be caused by the way semiparametric AFT models work with
risk sets and the fact that resulting estimating functions are
nonsmooth (Tsiatis, 1990).

This article applies a regression calibration (RC) method
to the semiparametric AFT model with covariates subject to
measurement error. The RC method has the advantage of
easy implementation. Usually a two-step process can be car-
ried out. The first step is approximation, that is, to replace
missing data by its conditional mean given surrogates and
other available covariates. After this approximation, a stan-
dard analysis such as the logistic regression can be performed
at the second step. Usually variance needs to be inflated to
account for the approximation from the first step. In linear
regression models without censoring, the RC method yields
unbiased estimates for slope parameters when both true and
surrogate covariates are normally distributed (Carroll et al.,
2006, Chapter 4). This is because the difference between the
true covariate and its conditional mean can be absorbed into
the error part of linear regression models. As semiparametric
AFT models are linear regression models with censored data
(see (1) below), this implies that the RC method can also be
an intuitively good candidate for them. Carroll et al. (2006,
Chapter 4) has provided a comprehensive review of the RC
method for analyzing data without censoring. In general, the
RC method does not always lead to consistent estimates. So
it is an approximate method. On the other hand, nice finite-
sample performance has been observed in various applications
that has contributed to its popularity especially among epi-
demiologists (Carroll et al., 2006, Chapter 4).

We also study the stratified random sampling scheme as
in our motivating example for selecting the validation sam-
ple. This design results in neither independent nor identically
distributed observations. Consequently, our development of
asymptotic properties of the RC method rely on results for
exchangeable random variables. Another sampling method,
the i.i.d. Bernoulli sampling, may also be applied as in Wang
et al. (1997). Although simpler and analogous results can be
obtained from the i.i.d. Bernoulli sampling scheme, we con-
sider the more general stratified random sampling scheme that
is known to be more popular in practice.

2. Method
Let T †

i and C i be log-transformed failure and censoring times
for subject i in a cohort of size N. We observe T i ≡ T †

i ∧ C i , a
failure indicator Δi ≡ I{T †

i ≤ C i}, and a d-dimensional vector
of covariates Zi . The semiparametric AFT model postulates

T †
i = β′Zi + ei , i = 1, . . . , N, (1)

where ei ’s are independent and identically distributed with an
unknown distribution F0 and density function f0. Censoring
time C i is assumed to be independent of ei conditioning on
Zi . This model has been discussed extensively in the literature
(e.g., Kalbfleisch and Prentice, 2002, Chapter 7) when Zi are
measured without error.

Let εβ
i = T i − β

′
Zi be the observed residual for sub-

ject i, N i (t, β) = I (εβ
i ≤ t, Δi = 1) the residual counting
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Figure 1. Goodness of fit for the depression mortality data.

process, and Y i (t, β) = I (εβ
i ≥ t) the residual at-risk pro-

cess. When (Zi , T i , Δi ) are observed for the entire cohort,
Tsiatis (1990) introduced the following rank-based estimat-
ing function for β0,

SN (β) =
1
N

N∑
i=1

∫
ρN (t, β)

{
Zi − Z̄(t, β)

}
dNi (t, β), (2)

where ρN (t, β) is a weight function and Z̄(t, β) ≡
D

(1)
N (t, β)/D

(0)
N (t, β) with D

(0)
N (t, β) = N−1

∑N

j=1 Yj (t, β) and

D
(1)
N (t, β) = N−1

∑N

j=1 Zj Yj (t, β).
As in the depression mortality study, we consider the sit-

uation when part of Zi is subject to measurement error or
missing. We also assume that there is an internal validation
subset (Carroll et al., 2006, Chapter 4) on which Zi are ac-

curately measured. Following the notation of Breslow and
Wellner (2007), we focus on the situation when the valida-
tion subset is selected via the following two-phase sampling
scheme. Let Z = (Z ′

1, Z ′
2)

′ with Z1 subject to measurement
error and Z2 always observable. At the first phase, we observe
V = (W, Z2)′ ∈ V where W is a surrogate for Z1. At the sec-
ond phase, a subsample is selected and Z1 is fully observed for
these subjects. The subset is called a validation set because
both Z1 and W are observed. For subjects not in the valida-
tion set, Z1 is missing. A popular selection scheme is strat-
ified simple random sampling. Specifically, V is partitioned
into J strata, or V ≡ V1 ∪ · · · ∪ VJ . Within each stratum Vj

of size N j , a simple random sample of size nj ≤ N j are ran-
domly drawn without replacement for 1 ≤ j ≤ J . We use
a doubly subscripted notation ηj , i to indicate the ith sub-
ject in stratum j, where ηj , i = 1 if the subject is selected
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into the validation set and 0 otherwise. Note that the random
variables (ηj,1, . . . , ηj,N j

) are exchangeable and the J random
vectors (ηj,1, . . . , ηj,N j

) are independent. We further assume
that censoring variable C is independent of T† given observed
covariate data V. In the depression mortality study, Z1 con-
tains the HAM-D and SIP scores, Z2 contains covariates such
as gender, race, and age, whereas W contains CES-D scores.
CES-D scores were stratified into two categories at the first
phase: one with scores 16 or higher and the other with scores
below 16. Simple random samples were then selected from the
two categories in the second phase.

Assume that the conditional mean of Z1i given Z2i and
W i can be modeled by E(Z1 |Z2, W ) = g(Z2, W , α) for
some nuisance parameter α of dimension q. The nuisance
parameter α is usually unknown and can be estimated us-
ing the validation data. Now denote Zj , i (α) = (Z1j , i ηj , i +
(1 − ηj , i ) g(Z2j , i , W j , i , α), Z2j , i )

′ . Let εβ
j , i = T j , i − β ′

1Z1j , i −
β ′

2Z2j , i , N j , i (t, β) = I{εβ
j , i ≤ t, Δj , i = 1}, Y j , i (t, β) = I{εβ

j , i ≥
t} be the residual, its counting process, and at-risk process for
subjects with complete data. Let εβ ,α

j , i = T j , i − β ′
1g(Z2j , i , W j , i ,

α) − β ′
2Z2j , i , N j , i (t, β, α) = I{εβ ,α

j , i ≤ t, Δj , i = 1}, Y j , i (t, β,
α) = I{εβ ,α

j , i ≥ t} be the residual, its counting process, and
at-risk process when Z1j , i is replaced by g(Z2j , i , W j , i , α).
Denote

D
(0)
N (t, β, α) =

1
N

J∑
j=1

N j∑
i=1

{ηj,iYj,i (t, β)

+ (1 − ηj,i )Yj,i (t, β, α)}. (3)

D
(1)
N (t, β, α) =

1
N

J∑
j=1

N j∑
i=1

{
ηj,iZj,i Yj,i (t, β)

+ (1 − ηj,i )Zj,i (α)Yj,i (t, β, α)
}
.

(4)

If α is known, an RC-based estimating function similar to (2)
can be formed as

SN (β, α) =
1
N

J∑
j=1

N j∑
i=1

ηj,i

∫ {
D

(0)
N (t, β, α)Zj,i

−D
(1)
N (t, β, α)

}
dNj,i (t, β)

+
1
N

J∑
j=1

N j∑
i=1

(1 − ηj,i )
∫ {

D
(0)
N (t, β, α)Zj,i (α)

− D
(1)
N (t, β, α)

}
dNj,i (t, β, α) (5)

where Gehan’s weight, D
(1)
N (t, β, α)/D

(0)
N (t, β, α), is used for

the weighting process ρN .
We focus on the above Gehan weighted estimating func-

tion in this article mainly for notational simplicity. How-
ever, our theoretical results should hold for more general
weight functions. Our choice is based on two advantages that
Gehan weighted estimating function has. First, SN (β, α) is a
monotone function (Fygenson and Ritov, 1994; Yu and Nan,
2006), which is a very nice property to have for root finding.
Second, the estimating function does not involve fractions.

Consequently the condition of truncating the stochastic inte-
gration (see (3.1) of Tsiatis, 1990) is not needed in our in-
vestigation of the asymptotic properties of SN (β, α). This
not only prevents potential information loss due to trunca-
tion (Ying, 1993) but also provides less restriction, especially
in the presence of measurement error data.

Since α is unknown, we replace it in (5) by an esti-
mate α̂, which is usually obtainable using existing software
based on the validation data. Consequently, we propose using
SN (β, α̂) = 0 as our estimating equation for β, based on the
RC method. To obtain an estimate for β, we replace missing
Z1 with g(Z2, W, α̂) and perform a full cohort AFT model
analysis to obtain a valid regression estimate β̂N . Despite the
nonsmooth nature of SN (β, α̂) in β, β̂N can be readily ob-
tained using existing computation method in full cohort AFT
models (e.g., Lin and Geyer, 1992; Jin et al., 2003; and Yu
and Nan, 2006).

3. Asymptotic Properties
In this section, we explore asymptotic properties of our pro-
posed estimating function SN (β, α̂) and its corresponding es-
timate β̂N . We show that β̂N converges to some well-defined
parameter that may or may not be equal to the true parame-
ter. When the magnitude of regression coefficient or the mea-
surement error is small, however, bias is in general very lim-
ited (see the comment above Proposition 2). Improvement in
efficiency on the other hand can be quite remarkable com-
pared with analysis using only validation data. This will be
demonstrated numerically in Section 5.

In Proposition 1, we show uniform convergence of D
(0)
N (t,

β, α), D(1)
N (t, β, α), and SN (β, α) to their limits:

d(0)(t, β, α) =
J∑

j=1

νj

[
pj P0 | j {εβ ≥ t}

+ (1 − pj )P0 | j {εβ ,α ≥ t}
]

(6)

d(1)(t, β, α)=
J∑

j=1

νj

[
pj P0 | j {ZI(εβ ≥ t)}

+ (1 − pj )P0 | j {Z(α)I(εβ ,α ≥ t)}
]

(7)

s(β, α) =
J∑

j=1

νj

([
pj P0 | j

{
Zd(0)(εβ, β, α)Δ

}
+ (1−pj )P0 | j

{
Z(α)d(0)(εβ ,α, β, α)Δ

}]
−

[
pj P0 | j

{
d(1)(εβ, β, α)Δ

}
+ (1−pj )P0 | j

{
d(1)(εβ ,α, β, α)Δ

}])
. (8)

Here pj = nj /N j , ν j is the limit of N j /N , and P0 | j (·) =
E(· | V ∈ Vj ) is the conditional expectation in stratum j. Un-
der regularity assumptions including the uniqueness of β∗ that
solves s(β, α0) = 0 at the true α0, we then have the conver-
gence of β̂N to β∗. In Proposition 2, we show the asymptotic
linearity property of SN (β, α̂) and the asymptotic normality
of β̂N .

The following regularity conditions are needed for our
propositions:
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C1. The covariate Z has bounded support.
C2. The number of strata, J, is finite and fixed. For any

stratum j, vj > 0 and
√

N (Nj /N − νj ) = Op (1).
C3. For any given set A ⊂ Rq ,

i. The conditional mean of E(Z1 |Z2, W ) = g(Z2,
W , α) is continuous with respect to α ∈ A and
uniformly bounded.

ii. The class {g(Z2, W , α), α ∈ A} forms a P-
Donsker class.

C4. The true value α0 is an interior point of A such that√
N{α̂ − α0} is asymptotically normal with mean 0.

C5. For each stratum j, both P 0 | j {εβ ≥ t} and P 0 | j {εβ ,α

≥ t} are continuous in β, t, and α. The limit func-
tions d(0)(εβ , β, α), d(0)(εβ ,α , β, α), d(1)(εβ , β, α), and
d(1)(εβ ,α , β, α) are continuously differentiable with re-
spect to β and α.

C6. The solution to s(β, α0) = 0 for β is unique and is an
interior point of B, where B ⊂ Rd is a compact set of
possible parameter values.

Condition C1 commonly holds. Condition C2 is easily sat-
isfied in our case, where the strata are determined by V and
N j follows a binomial distribution with success probability
νj = P (V ∈ Vj ). For Condition C3, suppose g(Z2, W , α) =
h(α0 + αZ Z2 + αW W ), where h(·) is monotone and continu-
ously differentiable, then from Lemma 2.6.15 and 2.6.18 (part
viii) of van der Vaart and Wellner (1996), we know that {h(α0

+ αZ Z + αW W ): α0, αZ , αW ∈ R} forms a VC-subgraph
class. If a VC-subgraph class has an envelope function with
finite second moment, it is P-Donsker. This includes general-
ized linear models for the conditional mean of E(Z1 |Z2, W )
= g(Z2, W , α). Condition C4 consists of expected proper-
ties for estimates of α using validation data based on strati-
fied simple random sampling, for which various methods have
been proposed. Specifically, we have the following asymptotic
representation under the stratified simple random sampling
(Breslow and Wellner, 2007):

(α̂ − α) = N−1H−1
J∑

j=1

{
p−1

j

N j∑
i=1

ηj,i ej,iVj,i

}
+ op (N−1/2),

(9)

where H is the Hessian matrix, ej , i = Z1j , i − g (Z2j , i , W j , i , α)
is the residual and Vj , i = (Z2j , i , W j , i ). Condition C5 is likely
to hold in situations when both the failure time and censoring
time are continuously distributed, given the continuity con-
dition C3.i for g. As a result of C5, s(β, α) is continuously
differentiable in both its arguments. Condition C6 is essential
for the consistency of β̂N .

Proposition 1 provides convergence results of SN (β, α̂) and
β̂N and Proposition 2 provides the asymptotic linearity of
SN (β, α̂) in an N−1/2 neighborhood of β∗ and the asymptotic
normality of β̂N . We delegate the proofs of the propositions
to the Web Appendix due to their length.

Proposition 1: Assume that the number of strata J is fi-
nite. Let d(0)(t, β, α), d(1)(t, β, α), and s(β, α) be defined as
in (6), (7), and (8) correspondingly.

1. Under Conditions C1–C5, we have

sup
β∈B,α∈A, t∈R

∣∣D(0)
N (t, β, α) − d(0)(t, β, α)

∣∣ = op ∗(1),

(10)

sup
β∈B,α∈A, t∈R

∣∣D(1)
N (t, β, α) − d(1)(t, β, α)

∣∣ = op ∗(1).
(11)

Here p∗ denotes in outer probability. See Chapter 1 of
van der Vaart and Wellner (1996) for the definition of
outer probability.

2. Let ‖ · · · ‖ denote the super-norm. Let α1, α2 ∈ A such
that ‖α1 − α2 ‖ → 0 and β1, β2 ∈ B such that ‖β1

−β2 ‖ → 0 as N → ∞. Under Conditions C1–C5,

sup
β∈B

√
N | {SN (β, α1)−SN (β, α2)}

−{s(β, α1)−s(β, α2)} | = op ∗(1), (12)

sup
α∈A

√
N | {SN (β1, α)−SN (β2, α)}

−{s(β1, α)−s(β2, α)} | = op ∗(1). (13)

3. If further the condition C6 holds, then the solution β̂N of
SN (β, α̂) = op ∗(N−1/2) converges to β∗ with probability
1 where β∗ ∈ B solves s(β, α0) = 0.

Note that β∗ may not be equal to β0. In such case, the
estimate resulting from the RC method can be at the best
viewed as an approximation. In the following two important
cases of measurement error models, however, consistent esti-
mation (i.e., β∗ = β0) is obtainable.

The first case is under the general Berkson measurement
error model that specifies the conditional distribution of Z1i

given W i and Z2i . One such example assumes a linear struc-
ture between Z1 and (W , Z2), Z1 = ψ0 + ψ ′

1W + ψ ′
2Z2 +

U , where the error U is independent of (W , Z2). Note that
in this case, T †

i and imputed covariate vector (g(Z2i , W i , α),
Z2i ) still follow a semiparametric AFT model. This can be
seen by writing T † = β1E[Z1 |W , Z2] + β2Z2 + β1U + e.
Hence, if we denote e∗ = β1U + e, then e∗ is independent of
E[Z1 |W , Z2] and Z2. This implies β1 = β∗

1 and β2 = β∗
2.

The second case is under the additive measurement error
model when both Z and its surrogate W are jointly normally
distributed. The additive measurement error model specifies
a linear structure between W and (Z1, Z2), W = γ0 + γ ′

1Z1

+ γ ′
2Z2 + U , where the error U is independent of (Z1, Z2).

In this case, we can rewrite T † = β1E[Z1 |W , Z2] + β2Z2 +
β1(Z1 − E[Z1 |W , Z2]) + e. Then, due to the joint normality
and the fact that (Z1 − E[Z1 |W , Z2]) is uncorrelated with
both E[Z1 |W , Z2] and Z2, we conclude that (Z1 − E[Z1 |W ,
Z2]) is also independent of both E[Z1 |W , Z2] and Z2. As a
result, we can denote e∗ = β1(Z1 − E[Z1 |W , Z2]) + e. Hence
T† still is linearly related to E[Z1 |W , Z2] and Z2, and e∗ can
be treated as an error term independent of E[Z1 |W , Z2] and
Z2. Again we have β1 = β∗

1 and β2 = β∗
2.

In general cases, we may have asymptotic bias. However
such bias is likely to be small when the variation of the term
β1(Z1 − E[Z1 |W , Z2]) is relatively small comparing to the
variation of e. This can happen if either | β1| is small or the
measurement error is small.
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Proposition 2: Assume conditions C1–C6 hold.

1. For any α ∈ A, SN (β, α) is asymptotically linear in an
N−1/2 neighborhood of β∗. In other words, if

√
N |βN −

β∗ | = Op ∗(1), then
√

N{SN (βN , α) − SN (β∗, α)}
=

√
N (βN − β∗)ṡβ(β∗, α) + op ∗(1), (14)

where ṡβ(·, ·) denotes the partial derivative of s with re-
spect to β.

2.
√

N{SN (βN , α̂) − SN (β∗, α̂)} is asymptotically equiva-
lent to

√
N{SN (βN , α0) − SN (β∗, α0)} in the sense that
√

N | {SN (βN , α̂) − SN (β∗, α̂)}
−{SN (βN , α0) − SN (β∗, α0)} |

= op ∗(
√

N |βN − β∗‖).

As a result, SN (β, α̂) is asymptotically linear in an
N−1/2 neighborhood of β∗. That is, for any βN ∈ B such
that

√
N |βN − β∗ | = Op ∗(1),
√

N{SN (βN , α̂) − SN (β∗, α̂)}
=

√
N (βN − β∗)ṡβ(β∗, α0) + op ∗(1). (15)

3. If ṡβ(β∗, α0) is nonsingular, then
√

N (β̂N − β∗) is
asymptotically normal with mean 0.

4. Variance Estimation
From Proposition 2, we see that estimation of the asymptotic
variance of β̂N requires estimation of the asymptotic slope of
SN (β, α̂), which involves estimation of both f 0(·) and censor-
ing distribution. It is known to be hard to estimate (e.g., Lin
and Geyer, 1992; Jin et al., 2003). Here, we adopt the method
proposed by Huang (2002). Similar algorithms have been used
in Nan, Yu, and Kalbfleisch (2006) and Yu and Nan (2006).
Numerical stability in variance estimation has been observed
from these papers. Specifically, we follow the following three
steps.

1. Decompose the estimated asymptotic variance of
N−1/2SN (β∗, α̂) into CCT , where C = (c1, . . . , cd ) and
CT is the transpose of C;

2. Solve equations N−1/2SN (β̃j , α̂) = cj for β̃j , j =
1, . . . , d.

3. Let D = (β̃1 − β̂N , . . . , β̃d − β̂N ). Then, NDDT is a
consistent variance estimator of N 1/2(β̂N − β∗).

For step 2, an effective hybrid Newton method proposed by
Yu and Nan (2006) can be applied. Step 1 requires estimation
of the asymptotic variance of N−1/2SN (β∗, α̂). We delegate the
estimation procedure to Web Appendix B. The essence is to
express

√
NSN (β∗, α̂) asymptotically as a sum of mutually in-

dependent empirical processes. Then, its asymptotic variance
can be estimated by using sample estimates corresponding to
these empirical processes.

5. Numerical Examples
5.1 Simulations
For simplicity, we consider one-dimensional Z and its surro-
gate W. Sample size N is chosen to be 300, 1000, or 3000. Val-
idation sample size n is chosen to be 90 or 120 when N = 300,

200, or 400 when N = 1000, and 400 or 800 when N = 3000.
We generate 500 data sets under each of these scenarios.

The AFT model is log T = βZ + e where the true β0 =
1. Error distribution is from uniform UNIF(−3, 3). Censoring
time C is distributed according to a shifted exponential dis-
tribution with its shift and scale chosen so that the censoring
rate is approximately 70%. For the covariate Z, we consider
two distributions: standard normal and Bernoulli. Under the
first setting when Z is continuous, we generate the surrogate
W according to W = Z + U such that U ∼ N (0, σW ). Under
the second setting when Z is binary, we generate the surro-
gate W so that it is a misclassification of Z via concordance
probability pW = P (W = 1 |Z = 1) = P (W = 0 |Z = 0).
The conditional mean is estimated via least square regression
under the first setting and via sampling frequency under the
second setting.

The validation sets are selected via stratified simple random
sampling. The stratification is based on whether W is less
than 0.5 or not under the first scenario, and whether W is 0
or not under the second scenario. We perform four analyses on
each simulated data set to compare their performances under
various scenarios. The analyses are: full cohort analysis (Full)
where all data are used; validation data only analysis (VA)
where only observations in the validation subset are used;
naive analysis (Naive) where missing Zs are replaced by their
surrogates W; and the RC analysis (RC).

Results are listed in Tables 1 and 2. We let σW and pW

vary to investigate how the quality of the surrogate affects
the estimation. From the simulation results, we see that full
cohort estimates are the most efficient as one would expect.
VA estimates are consistent but not very efficient unless the
validation size is large. The consistency of the VA method
is due to the fact that sampling is based only on covariates
that do not alter the conditional distribution of the outcome.
The Naive method clearly leads to severe bias. On the other
hand, RC estimates have very limited bias and very impressive
efficiency improvement, particularly when the validation size
increases or when measurement error or classification error
diminishes. It also has smaller standard error than the VA
analysis under all scenarios.

We also carry out simulation studies to compare the IPW
and RC methods under the same settings. From Table 3,
we observed a significant amount of reduction in empirical
mean square errors of the RC estimates in almost all cases.
So the RC method can be an attractive alternative to the
IPW method.

5.2 The Depression Mortality Study
We analyze the depression mortality study introduced at the
beginning of the article. Among 3767 patients screened at
the phase 1 of the study, 3155 patients scored below 16 on
the CES-D. Among them a simple random sample of 100
were selected. Among 612 patients who scored 16 or higher
on the CES-D, 300 were selected. At the phase 2 of the study,
the 400 selected patients were required to complete HAM-D
and SIP. There are total 3756 subjects in the analysis data set
with seven cases deleted due to missing information. The total
number of death is 810 and the median follow-up time is 72
months. We study the impact of depression, age, gender, and
race on patient survival. In the original study (Callahan et al.,
1998), more covariates were considered. Here, we use a subset
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Table 1
Simulation results based on 500 data sets under the model log T = βZ + ε (with β0 = 1) where Z is continuous

σW = 0.5 σW = 1 σW = 2

Full VA Naive RC VA Naive RC VA Naive RC

\N = 300, n = 90
Avg β̂ 0.996 1.009 0.840 0.992 0.994 0.577 0.989 0.994 0.251 0.973
SE β̂ 0.210 0.373 0.358 0.233 0.378 0.302 0.279 0.359 0.207 0.320
Avg σ̂(β̂) 0.209 0.386 0.365 0.231 0.391 0.312 0.274 0.398 0.211 0.338
90% CP 88.8% 90.8% 87.4% 86.8% 90.2% 61.0% 88.0% 91.4% 3.2% 89.4%
95% CP 96.0% 95.8% 91.6% 93.4% 94.8% 72.0% 94.4% 96.8% 6.4% 93.4%

N = 300, n = 120
Avg β̂ 1.012 1.004 0.884 1.014 1.007 0.641 1.021 1.032 0.302 1.031
SE β̂ 0.211 0.318 0.320 0.229 0.346 0.279 0.270 0.338 0.193 0.300
Avg σ̂(β̂) 0.211 0.335 0.325 0.229 0.340 0.282 0.265 0.338 0.198 0.308
90% CP 88.4% 89.4% 86.8% 90.2% 86.6% 63.6% 87.8% 89.0% 3.0% 89.8%
95% CP 95.4% 95.4% 93.0% 94.6% 93.4% 74.2% 95.0% 93.2% 6.2% 95.0%

N = 1000, n = 200
Avg β̂ 0.996 1.018 0.970 0.996 1.017 0.834 0.994 0.998 0.551 0.999
SE β̂ 0.109 0.236 0.243 0.114 0.231 0.235 0.129 0.255 0.207 0.167
Avg σ̂(β̂N ) 0.112 0.251 0.255 0.116 0.255 0.242 0.127 0.260 0.204 0.155
90% CP 91.8% 91.8% 90.8% 90.2% 92.4% 83.4% 90.0% 89.8% 28.0% 86.2%
95% CP 96.0% 96.4% 95.4% 96.6% 97.4% 88.6% 95.0% 95.4% 44.0% 94.6%

N = 1000, n = 400
Avg β̂ 1.005 0.983 0.969 1.005 1.005 0.866 1.004 0.992 0.626 1.003
SE β̂ 0.108 0.179 0.171 0.110 0.176 0.164 0.117 0.175 0.145 0.134
Avg σ̂(β̂N ) 0.112 0.175 0.179 0.115 0.178 0.173 0.123 0.180 0.152 0.140
90% CP 91.8% 88.8% 91.8% 91.8% 92.8% 82.2% 90.6% 91.2% 20.4% 91.6%
95% CP 95.8% 93.0% 95.6% 94.8% 95.6% 90.0% 95.0% 95.8% 30.6% 96.4%

N = 3000, n = 400
Avg β̂ 1.000 1.005 0.971 1.001 1.011 0.824 0.999 1.008 0.533 0.999
SE β̂ 0.063 0.169 0.180 0.065 0.169 0.170 0.075 0.183 0.144 0.099
Avg σ̂(β̂) 0.064 0.174 0.178 0.066 0.178 0.168 0.073 0.180 0.140 0.091
90% CP 91.2% 90.6% 89.2% 89.4% 91.2% 71.2% 88.8% 88.8% 5.0% 87.4%
95% CP 96.8% 96.2% 94.4% 96.0% 96.0% 82.2% 94.2% 94.8% 8.8% 92.0%

N = 3000, n = 800
Avg β̂ 1.001 0.996 0.968 0.999 1.001 0.843 0.998 0.993 0.574 0.999
SE β̂ 0.060 0.126 0.123 0.063 0.126 0.118 0.071 0.122 0.099 0.085
Avg σ̂(β̂) 0.064 0.122 0.125 0.065 0.124 0.119 0.072 0.125 0.102 0.085
90% CP 92.6% 88.8% 90.8% 92.4% 89.4% 61.8% 90.0% 92.6% 0.4% 90.0%
95% CP 97.4% 93.6% 95.4% 96.6% 93.4% 72.6% 96.0% 95.8% 1.4% 96.0%

of variables to illustrate our method. There exists a clearly
linear relationship between CES-D and HAMD&SIP (sum of
HAM-D and SIP) scores among the 400 validation subjects.
The estimated correlation coefficient is 0.58. The estimated
reliability ratio is 0.653 (note that the reliability ratios in our
simulation study under the normal covariates are 0.8, 0.5, and
0.2, corresponding to σW of 0.5, 1, and 2).

In our analysis, we first regress HAMD&SIP on CES-D
using the 400 validation subjects. The resulted intercept and
slope estimates are (9.78, 0.52) with standard errors (0.84,
0.04). Then, we apply the RC method. Both the results of
RC and VA methods are listed in Table 4. In the VA analysis,
gender is found to be significantly associated with mortality,
whereas in the RC analysis, age is found to be significantly
associated with the mortality. Note that the coefficients of

HAMD&SIP, FEMALE, and AGE have the same direction as
those based on the VA analysis, but the sign of the coefficient
of BLACK is reversed.

6. Discussion
We have proposed a RC method for estimating parameters in
semiparametric AFT models with covariates subject to mea-
surement error. The method performs well in simulations and
has clear advantage over ad hoc approaches. As our asymp-
totic results are derived under very general assumptions be-
tween the true covariate vector Z1 and its surrogate W, this
method is also applicable for survival data with missing co-
variates as long as reliable calibration between missing and
observed covariates is feasible. In this case, the RC method is
a mean imputation method.
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Table 2
Simulation results based on 500 data sets under the model log T = βZ + ε (with β0 = 1) where Z is binary

pW = 0.9 pW = 0.7 pW = 0.5

Full VA Naive RC VA Naive RC VA Naive RC

N = 300, n = 90
Avg β̂ 1.001 1.042 0.235 1.020 0.933 0.531 0.944 1.003 0.866 0.983
SE β̂ 0.448 0.835 0.812 0.807 0.798 0.821 0.702 0.723 0.858 0.511
Avg σ̂(β̂) 0.455 0.864 0.779 0.861 0.823 0.807 0.731 0.780 0.840 0.536
90% CP 91.2% 89.8% 71.4% 90.4% 91.6% 82.4% 91.0% 90.6% 87.0% 91.0%
95% CP 94.6% 94.0% 78.6% 94.0% 96.0% 89.0% 95.6% 95.4% 93.8% 96.0%

N = 300, n = 120
Avg β̂ 1.036 1.004 0.382 0.995 1.050 0.660 1.065 0.999 0.898 1.030
SE β̂ 0.444 0.719 0.7% 0.712 0.721 0.704 0.675 0.665 0.719 0.511
Avg σ̂(β̂) 0.456 0.730 0.678 0.729 0.714 0.705 0.659 0.675 0.728 0.520
90% CP 91.4% 88.8% 74.4% 90.0% 88.0% 82.0% 89.6% 89.0% 88.0% 89.2%
95% CP 96.0% 94.4% 83.0% 95.0% 93.4% 89.4% 94.6% 94.6% 94.2% 95.6%

N = 1000, n = 200
Avg β̂ 1.005 1.015 0.823 1.016 1.035 0.445 1.032 1.024 0.152 1.001
SE β̂ 0.227 0.522 0.526 0.297 0.526 0.523 0.443 0.532 0.469 0.531
Avg σ̂(β̂N ) 0.237 0.495 0.535 0.288 0.525 0.518 0.434 0.543 0.507 0.547
90% CP 92.4% 89.2% 86.8% 88.2% 89.8% 70.4% 89.2% 90.6% 46.2% 90.8%
95% CP 95.8% 94.8% 93.0% 93.2% 95.0% 79.8% 94.0% 95.2% 60.0% 95.6%

N = 1000, n = 400
Avg β̂ 1.005 1.005 0.887 1.003 1.018 0.610 1.017 1.029 0.363 1.028
SE β̂ 0.232 0.334 0.348 0.266 0.351 0.370 0.335 0.391 0.348 0.389
Avg σ̂(β̂N ) 0.238 0.348 0.380 0.269 0.371 0.372 0.344 0.381 0.362 0.383
90% CP 92.2% 90.2% 91.2% 90.0% 92.8% 71.6% 90.2% 88.8% 44.6% 88.8%
95% CP 98.0% 95.0% 95.8% 96.0% 95.0% 80.8% 95.4% 94.4% 60.0% 95.0%

N = 3000, n = 400
Avg β̂ 0.990 0.997 0.774 0.986 0.996 0.388 0.980 0.957 0.086 0.945
SE β̂ 0.125 0.354 0.370 0.164 0.355 0.372 0.285 0.342 0.373 0.343
Avg σ̂(β̂) 0.136 0.348 0.374 0.170 0.370 0.364 0.277 0.378 0.356 0.383
90% CP 94.0% 89.6% 84.8% 91.4% 91.0% 49.2% 89.8% 92.6% 19.4% 93.0%
95% CP 97.4% 94.6% 90.0% 95.2% 96.4% 61.4% 94.0% 97.8% 27.4% 96.4%

N = 3000, n = 800
Avg β̂ 0.997 0.999 0.849 0.995 1.009 0.518 1.003 0.996 0.221 0.995
SE β̂ 0.134 0.247 0.268 0.156 0.278 0.257 0.221 0.260 0.253 0.261
Avg σ̂(β̂) 0.136 0.245 0.265 0.161 0.259 0.259 0.226 0.265 0.253 0.268
90% CP 90.4% 91.2% 82.8% 90.8% 86.8% 41.0% 92.2% 90.4% 9.4% 90.0%
95% CP 96.0% 94.8% 90.0% 95.6% 92.6% 54.2% 95.4% 95.4% 13.2% 95.0%

Due to the limitation of space, we focus in this article
on additive measurement error models. Multiplicative errors
also arise frequently in practice. While a simple log transfor-
mation can convert multiplicative errors to additive errors,
sometimes special treatment is needed. We refer readers to
Section 4.5 of Carroll et al. (2006) for performing RC methods
with multiplicative error models. Extension to semiparamet-
ric AFT models may be carried out similarly and warrants
further investigation.

The projection technique studied by Chen (2002) for the
Cox model and by Jiang and Zhou (2007) for the additive
hazards model should be applicable in our setting. The pro-
jection estimator is generally consistent and is guaranteed to
have greater efficiency than the estimator based on validation
data only. To apply this technique, there is a need to study the

asymptotic behavior of misspecified AFT models. There are
also some computationally challenging issues because the re-
sulting estimator and its variance involves (products) deriva-
tives of nonsmooth estimating functions under both the true
AFT model and a misspecified AFT model. This approach is
currently under our investigation.

While RC is convenient and often relatively easy to im-
plement, correctly specified maximum likelihood methods to
address covariate measurement error have been shown (in
other models) to be much more efficient than RC methods
(e.g., Spiegelman, Rosner, and Logan, 2000). However, devel-
opment in our setting can require some work due to the semi-
parametric nature of the AFT model. This approach warrants
further investigation, likely in the context of nonparametric
maximum-likelihood estimation.
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Table 3
Simulation results comparing the IPW and RC methods

σW = 0.5 σW = 1 σW = 2

Z continuous IPW RC IPW RC IPW RC

N = 1000, n = 200
Avg β̂ 1.008 0.996 1.007 0.994 1.010 0.999
SE β̂ 0.263 0.114 0.262 0.129 0.267 0.167

N = 1000, n = 400
Avg β̂ 0.988 1.005 0.984 1.004 0.980 1.003
SE β̂ 0.182 0.110 0.175 0.117 0.191 0.134

N = 3000, n = 400
Avg β̂ 0.998 1.001 0.996 0.999 1.001 0.999
SE β̂ 0.173 0.065 0.179 0.075 0.182 0.099

N = 3000, n = 800
Avg β̂ 0.991 0.999 0.995 0.998 1.000 0.999
SE β̂ 0.127 0.063 0.130 0.071 0.137 0.085

pW = 0.5 pW = 0.7 pW = 0.9

Z binary IPW RC IPW RC IPW RC

N = 1000, n = 200
Avg β̂ 1.010 1.001 1.006 1.032 0.998 1.016
SE β̂ 0.590 0.531 0.574 0.443 0.544 0.297

N = 1000, n = 400
Avg β̂ 1.002 1.028 1.007 1.017 0.977 1.003
SE β̂ 0.390 0.389 0.380 0.335 0.368 0.266

N = 3000, n = 400
Avg β̂ 1.015 0.945 0.999 0.980 1.005 0.986
SE β̂ 0.370 0.343 0.362 0.285 0.352 0.164

N = 3000, n = 800
Avg β̂ 0.983 0.995 0.996 1.003 0.995 0.995
SE β̂ 0.274 0.261 0.262 0.221 0.257 0.156

Table 4
Results for the depression mortality study

Validation only analysis RC analysis

Estimate SE p-value Estimate SE p-value

HAMD&SIP −0.007 0.011 0.514 −0.021 0.047 0.652
FEMALE 0.991 0.235 <.0001 0.680 0.697 0.330
BLACK −0.103 0.259 0.691 0.297 0.795 0.709
AGE −0.031 0.017 0.070 −0.036 0.005 <.0001

6. Supplementary Materials
Web Appendices referenced in Sections 3 and 4 are available
under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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