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Abstract

Patients with obsessive-compulsive disorder (OCD) show an increased error-related negativity (ERN), yet previous

studies have not controlled for medication use, which may be important given evidence linking performance mon-

itoring to neurotransmitter systems targeted by treatment, such as serotonin. In an examination of 19 unmedicated

OCD patients, 19 medicated OCD patients, 19 medicated patient controls without OCD, and 21 unmedicated healthy

controls, we found greater ERNs in OCD patients than in controls, irrespective of medication use. Severity of

generalized anxiety and depression was associated with ERN amplitude in controls but not patients. These data

confirm previous findings of an exaggerated error response in OCD, further showing that it cannot be attributed to

medication. The absence in patients of a relationship between ERN amplitude and anxiety/depression, as was found in

controls, suggests that elevated error signals in OCD may be disorder-specific.

Descriptors: Error-related negativity (ERN), Event-related potentials (ERPs), Anxiety, Anterior cingulate cortex

(ACC)

Obsessive-compulsive disorder (OCD) is characterized by intru-

sive thoughts (obsessions) and/or repetitive behaviors (compul-

sions) that are often associated with intense doubt regarding the

correctness of an act or excessive fear about the likelihood of a

bad outcome. Proposals that symptoms are related to an over-

active error detection mechanism that continually signals that

‘‘something is wrong’’ (Pitman, 1987; Schwartz, 1997) have been

supported by research identifying alterations in the neural sub-

strate for error processing in OCD. Errors elicit robust activation

in a network of brain regions including medial frontal cortex

(MFC) (Taylor, Stern, &Gehring, 2007). In particular, the error-

related negativity (ERN, or Ne) component of the event-related

brain potential (ERP), which onsets at the time of error com-

mission (Falkenstein, Hohnsbein, Hoormann, & Blanke, 1990;

Gehring, Goss, Coles, Meyer, & Donchin, 1993) and localizes to

MFC (Dehaene, Posner, & Tucker, 1994; van Veen & Carter,

2002), has emerged as an index of dysfunctional error processing

in OCD. Several groups have found an increased ERN in pa-

tients with clinical OCD (Endrass, Klawohn, Schuster, &

Kathmann, 2008; Gehring, Himle, & Nisenson, 2000; Johannes

et al., 2001; but see Nieuwenhuis, Nielen, Mol, Hajcak, & Velt-

man, 2005 for alternate finding) and undiagnosed subjects with

high ratings of OC symptoms (Hajcak & Simons, 2002).

While the error signal appears to be increased in OCD, pre-

vious studies have not always controlled for other factors that

may influence the ERN. In particular, medications such as sero-

tonin reuptake inhibitors (SRIs) are commonly used to treat pa-

tients with OCD, and many studies of error processing in OCD

have tested groups where some or all patients were taking med-

ication (Endrass et al., 2008; Gehring et al., 2000;Nieuwenhuis et

al., 2005; Ursu, Stenger, Shear, Jones, &Carter, 2003).While the

influence of dopamine in generating and/or modulating the ERN

has perhaps received the most attention (Holroyd & Coles,

2002), evidence now also links serotonergic (Fallgatter et al.,

2004) and noradrenergic systems to performancemonitoring (for

a review, see Jocham&Ullsperger, 2009), pointing to the need to

consider medication status when investigating the ERN in psy-

chiatric populations. A very few studies have examined unmed-

icated patients, but in small samples. Johannes and colleagues

(2001) found increased ERNs in 10 unmedicated OCD patients

compared to healthy controls, suggesting that a hyperactive

ERN is not related to medication. In a direct comparison of

medicated and unmedicated OCD subjects (Endrass et al., 2008),

the ERN was significantly lower in patients taking medication,

but it is possible that this effect was due to differences in illness

severity between the groups. Given that severely ill patients are

more likely to be on medication, disentangling the potential
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confound between medication use and illness severity remains a

methodological challenge.

In order to examine the effects of chronic medication on error

responses in OCD, we examined ERNs in OCD patients free of

psychotropic medication, OCD patients on SRIs, patient con-

trols on SRIs but without OCD, and healthy control subjects free

of psychotropic medication and psychiatric illness. Any effect of

medication on the ERN that is unrelated to OCD would be

expected to be found in both medicated OCD patients and pa-

tient controls, but absent in unmedicated OCD patients and

healthy controls.

Methods

Subjects

Eighty subjects performed the task while electroencephalogram

(EEG) data were acquired. However, two OCD patients were

excluded due to performance on the task; the amount of errors

exhibited by one patient was over 3 standard deviations from the

entire groupmean (4180 errors) and another made fewer than 10

errors. Due to a recent study reporting high internal reliability of

the ERN with 10 errors and moderate reliability with 6 errors

(Olvet & Hajcak, 2009), we also performed all analyses reported

belowwith the inclusion of the subject whomade under 10 errors,

and found results to be unchanged. The final group of 78 subjects

were distributed as follows: 1) 19 OCD patients who were un-

medicated (uOCD), 2) 19 OCD patients taking medication

(mOCD), all of whom were on at least one serotonin reuptake

inhibitor (with the exception of one patient who was taking bu-

proprion), 3) 19 medicated patient controls (mPC), all of whom

were taking at least one serotonin reuptake inhibitor due to prior

history of major depression (in full or partial remission, based on

DSM-IVcriteria), and 4) 21 healthy controls (uHC) free of psy-

chotropic medication and without current or past psychiatric

diagnoses. Demographic and clinical variables of interest were

examined for each group, as shown in Table 1. Unmedicated

OCD and uHC groups were age- and education-matched, as

weremOCD andmPC groups. Group differences in age, years of

education, and scores from the Hamilton Anxiety Rating Scale

(HARS) and Hamilton Depression Rating Scale (HDRS) were

evaluated with separate 2 � 2 ANOVAs using diagnosis (OCD

vs. control) and medication (unmedicated vs. medicated) as be-

tween-subjects factors. Chi-square tests compared gender (all

groups), the proportion of subjects with a history of depression

(uOCD, mOCD, and mPC groups), the proportion in current

treatment for OCD (uOCD and mOCD groups), and the pro-

portion with a history of hospitalizations for OCD (uOCD and

mOCD groups). Independent samples t-tests were used to com-

pare uOCD andmOCD groups on Yale-Brown Obsessive-Com-

pulsive Scale (YBOCS) scores (Goodman et al., 1989), age of

onset of OCD, and illness duration.

Subjects were recruited through paper advertisements posted

around the local community, online advertisements through the

University of Michigan Health System, and, for OCD patients,

from referrals from the Anxiety Disorders Unit of the University

of Michigan Depression Center/Ambulatory Psychiatry clinics.

Patients in both OCD groups met DSM-IVcriteria for primary

diagnoses of OCD and were free of comorbid psychiatric disor-

ders with the exception of tic disorder and/or specific phobia.

Patients with hoarding as a primary symptom were excluded.

OCD patients were accepted if they had current depressive dis-

order not otherwise specified (NOS) or had histories of major

depressive disorder or dysthymia but were in partial or full re-

mission from their depression (79% ofmOCD patients and 53%

of uOCD patients). While all 19 medicated OCD patients were in

treatment for OCD, with 15 out of the 19 being seen in our

Anxiety clinic, many unmedicated OCD patients (13/19) were

recruited through advertisements and were not in any treatment
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Table 1. Demographic Information

uOCD (n5 19) mOCD (n5 19) mPC (n5 19) uHC (n5 21) Group differences Post-hoc comparisons

Age 25.0 (8.0) 30.8 (9.5) 31.7 (10.6) 25.3 (7.5) M: F(1,77) 5 9.2,
p5 .003

mOCD4uHC, uOCD
mPC4uHC, uOCD

all po.05
Education (years) 14.9 (1.8) 16.1 (2.7) 16.8 (2.1) 16 (2.4) ns
Gender 10 F, 9 M 10 F, 9 M 11 F, 8 M 10 F, 11 M ns
HARS 8.9 (3.8) 9.4 (4.8) 4.4 (2.7) 1.3 (1.6) D: F(1,77)5 67.1,

po.001
mOCD4uHC, mPC
uOCD4uHC, mPC

HDRS

M: F(1,77)5 5.0,
p5 .028

mPC4uHC
all po.001

8.8 (2.8) 8.3 (3.6) 4.1 (2.8) 1.2 (1.4) D: F(1,77)5 92.7,
po.001

mOCD4uHC, mPC
uOCD4uHC, mPC

History of depression

D � M: F(1, 77)5 7.9,
p5 .006

mPC4uHC
all po.001

10/19 15/19 19/19 w2 (2)5 12.2,
p5 .002

mPC4uOCD
p5 .002

YBOCS 23.4 (3.5) 21.6 (4.2) ns
Age of onset 12.5 (4.6) 11.7 (5.9) ns
Illness duration (years) 12.5 (8.7) 19.1 (12.3) ns
In current treatment 6/19 19/19 w2 (1)5 19.8,

po.001
History of hospitalizations 3/19 6/19 ns

Note: uOCD5unmedicated OCD; mOCD5medicated OCD; mPC5medicated patient controls; uHC5unmedicated healthy controls. Values in
parentheses represent standard deviations. HARS5Hamilton Anxiety Rating Scale; HDRS5Hamilton Depression Rating Scale; YBOCS5Yale-
Brown Obsessive Compulsive Scale. D5main effect of diagnosis factor; M5main effect of medication factor; D � M5 interaction between
diagnosis and medication factors. Only those effects significant at po.05 are shown, and followed up with post-hoc comparisons using independent-
samples t-tests, except history of depression, which used chi-square tests.



(the 6 patients whowere in treatment were being seen in our clinic

but were not on medication). Despite these differences, the two

OCD groups were similar on many of the demographic and

clinical measures we examined (see Table 1), although medicated

OCD patients were older and had a trend toward longer illness

duration (t(32.4)5 1.9, p5 .067).

Subjects in the mPC group were taking very comparable

medications tomOCD (see Table 2) due to a primary diagnosis of

major depressive disorder that was in full remission (2 subjects

with a history of a single episode and 8 with recurrent episodes)

or partial remission (9 subjects with recurrent episodes). Impor-

tantly, these subjects had no history of OCD and exhibited min-

imal anxiety comorbidity (5 patients total: 1 with panic disorder,

1 with panic disorder and specific phobia, 1 with specific phobia,

and 2 with anxiety disorder NOS), and thus provided partial

control for effects related to histories of depressive episodes

among OCD patients.

All subjects were evaluated by a trained clinician using the

Structured Clinical Interview for DSM-IV (First, Spitzer, Gib-

bon, &Williams, 1996). Depression and anxiety symptoms were

evaluated using Hamilton Ratings Scales for Depression and

Anxiety, respectively, and severity of OC symptoms in OCD

patients was measured using the YBOCS.

Written informed consent as approved by the institutional

review board of the University of Michigan was obtained from

all subjects following a complete description of the study.

Task

We used a modified version of a flanker task in which subjects

pressed one of two buttons based on the identity of a target letter

that was placed in the second, third, or fourth position in a string

of 5 letters. ‘‘Low’’ interference trials were those where both

target and flankers signaled the same button press (‘‘S’’ and ‘‘K’’

lettersFleft button, ‘‘H’’ and ‘‘C’’ lettersFright button), while

‘‘high’’ interference trials elicited errors because the target and

flankers designated opposing responses. Individually tailored re-

sponse deadlines, set at 0.8–1.5 times the mean reaction time

(RT) determined from a practice session, were used to generate

commission error rates between 10–20%. Letter stimuli were

presented on-screen for 300 ms, followed by a blank screen until

the response deadline was achieved. Feedback was presented

immediately following response in order to increase motivation

to perform well and to ensure that subjects maintained their

knowledge of the correct stimulus-response mappings through-

out the experiment. A row of white asterisks were presented for

correct responses, a row of red asterisks were presented for errors

of commission, and a messageF‘‘Too Slow’’Fwas shown if

responses were not within the deadline (i.e., omission error).

Duration of feedback was 700–1300 ms depending on the indi-

vidual subject’s RT on each trial, so that total time between

stimulus presentation and end of feedback presentation was 1800

ms. Following feedback, a blank inter-trial interval (ITI) was

shown for 2000 ms.

The task also varied the incentive value of each trial so that an

error (or correct response) could result in a loss of money (or a

failure to lose), a failure to gain money (or a gain), or no change

in money. Cues showing the amount of money at stake (0, 10, or

50 cents) preceded letter stimuli with durations of 1500–4500 ms

and an average length of 2125ms (in order tomatch a companion

fMRI study). As the incentive was not found to have significant

effects on the ERN, we focus the current report on group effects

on the overall ERN. Money won or lost on each trial was real,

and tallied to provide a bonus at the end of the experiment. A

total of 480 trials (240 low and 240 high interference) were run

over 10 blocks.

In order to determine how subjects evaluated the task and

their performance after completing the experiment, ratings to

three debriefing questions were obtained on a five-point Likert

scale ranging from ‘‘none/not at all’’ (1) to ‘‘always/very’’ (5): 1)

‘‘Did you make any mistakes?,’’ 2) ‘‘Were you ever frustrated

with your performance?,’’ and 3) ‘‘When you made a mistake,

were you flustered? Did you find it hard to get back on track?’’

Data Acquisition and Analysis

Behavioral analyses examined RTon correct trials, commission

error rates, and responses to debriefing questions as dependent

measures in separate 2 � 2 ANOVAs using diagnosis (OCD vs.

control) and medication status (unmedicated vs. medicated) as

between-subjects factors. Omission errors were excluded from all

analyses.

The EEG was recorded from 26 Ag/AgCl scalp electrodes

(FP1, FP2, AFZ, F7, F3, FZ, F4, F8, FC3, FCZ, FC4, T7, C3,

CZ, C4, T8, CP3, CPZ, CP4, P7, P3, PZ, P4, P8, O1, O2) em-

bedded in a nylon mesh cap (Easy-Cap, Falk Minow Systems,

Inc., http://www.easycap.de) using a left mastoid reference and

forehead ground. Averagemastoid reference was derived off-line

using right mastoid data. The electro-oculogram (EOG) was

recorded from Ag/AgCl electrodes above and below the left eye

and external to the outer canthus of each eye. Impedances were

kept below 10 KO. EEG and EOG were amplified by SYN-

AMPS DC amplifiers (Neuroscan Labs, Sterling, VA) and

filtered on-line from .01 to 100 Hz (half-amplitude cutoffs). Data

were digitized at 500Hz and filtered with a nine-point Chebyshev

II low-pass, zero-phase-shift digital filter (Matlab 7.04;
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Table 2. List of Medications in Medicated OCD (mOCD) and

Medicated Patient Control (mPC) Groups

Medications
N in mOCD

group
Average

dosage (mg)
N in mPC
group

Average
dosage (mg)

SSRIs/SNRIs
Citalopram 3 30 1 40
Escitalopram 6 25 9 15
Fluoxetine 4 47.5 2 35
Fluvoxamine 1 250
Paroxetine 1 60
Sertraline 2 162.5 1 100
Venlafaxine 1 300 6 262.5

Benzodiazepines
Alprazolam 3 0.75
Clonazepam 4 0.7 2 0.7
Lorazepam 1 0.5 3 0.7

TCAs
Clomipromine 1 100

Other
Buproprion 2 300 2 300
Buspirone 1 20
Gabapentin 1 600
Methylphenidate 1 54

Note: SSRIs5 selective-serotonin reuptake inhibitors; SNRIs5 seroto-
nin-norepinephrine reuptake inhibitors; TCAs5 tricycle antidepres-
sants. All subjects with the exception of one mOCD patient were
taking a serotonin reuptake inhibitor (SSRI or SNRI). SSRIs were taken
by 17/19 mOCDs and 13/19 mPCs, and SNRIs were taken by 1 mOCD
and 6 mPC subjects. Ten mOCD and 8 mPC subjects were taking more
than one medication. Benzodiazepines were taken as needed.
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Mathworks, Natick, MA), half-amplitude cutoff at 12 Hz. Oc-

ular movement artifacts were corrected using the algorithm de-

scribed by Gratton, Coles, and Donchin (1983).

In order to correct for the fact that the response-locked ERN

will actually reflect some combination of response and stimulus-

evoked components, we applied a method (Zhang, 1998) that

allows for the unique recovery of the response-locked component

based on the stimulus-locked ERP, response-locked ERP, and

the time between stimulus and response on each trial (reaction

time distribution). The method works as follows. We have ex-

perimentally obtained (a) stimulus-aligned ERP average wave-

form, denoted Fs(t); (b) response-aligned ERP average

waveform, denoted Fr(t); and (c) distribution of reaction times

g(t) across the trials. Suppose the stimulus-aligned and response-

aligned ERP waveforms were generated by two underlying com-

ponent waveforms, a stimulus-locked component (‘‘S-compo-

nent’’), denoted fs(t), and a response-locked component (‘‘R-

component’’), denoted fr(t). By reflecting on how Fs(t) and Fr(t)

were constructed and how fs(t) and fr(t) were defined, the fol-

lowing two mathematical equations were derived:

FsðtÞ ¼ fsðtÞ þ
Z

frðt� tÞgðtÞdt ð1Þ

FrðtÞ ¼ frðtÞ þ
Z

fsðtþ tÞgðtÞdt ð2Þ

In convolution notation, they are

FsðtÞ ¼ fsðtÞ þ frðtÞ � gðtÞ ð3Þ

FrðtÞ ¼ frðtÞ þ fsðtÞ � gð�tÞ ð4Þ

We can then solve these equations (3) and (4) either by Fourier

transformation (in frequency domain) or by an iterative proce-

dure (in time domain). In practice, due to discrete sampling in

time domain, we can transform equation (3) and (4) into matrix

notation (Yin, Zhang, Tian, & Yao, 2009), and apply singular

value decomposition (SVD) method to the reaction-time distri-

bution to deal with noise introduced by insufficient number of

trials. In this paper, the time domain SVD method (same as

Fourier transform method in nature) was used, by removing/

truncating small eigenvalues (of the reaction time distribution

matrix) to reduce the influence of noise and improve stability.

After recovery of the response-locked waveform, mean am-

plitude was calculated over a window of 20–120 ms post-re-

sponse (identified from grand-averaged waveforms) with a

baseline of 200 to 100 ms prior to response. Three-way ANO-

VAs with diagnosis (OCD vs. control) and medication status

(unmedicated vs. medicated) as between-subjects factors and

trial type (error vs. correct) as a within-subjects factor were per-

formed separately at electrodes FZ and FCZ. Analyses were

performed separately at these two electrodes because inspection

of the topographical distribution of scalp activity indicated that

the peak of the ERN was located at FCZ for control subjects but

anterior to FCZ for OCD patients (see Figure 1). Pearson’s cor-

relations (two-tailed) of error and correct trial amplitudes with

anxiety (HARS) and depression (HDRS), and for OCDpatients,

YBOCS scores, were used to further interrogate effects identified

by the ANOVAs. The mean number of errors per subject con-

tributing to the analysis was 63.94 (SD: 32.77, range: 15–150).

Results

Behavioral

There were no significant differences between the groups for

mean RT on correct trials, although there was a trend for an

interaction between diagnosis and medication (F(1,74)5 3.3,

p5 .072), with unmedicated healthy controls exhibiting the fast-

est RTs and medicated patient controls exhibiting the slowest

RTs (uOCD: 569.2, mOCD: 566.7, mPC: 597.8, uHC: 532.7ms).

Similarly, there were no differences in the mean percentage of

commission errors between groups (uOCD: 12.5%, mOCD:

14%, mPC: 12.9%, uHC: 13.5%).

Analyses of responses to debriefing questions indicated no

main effects or interactions of group factors on subjects’ eval-

uation of the amount ofmistakes that weremade (p4.25 for all).

Interestingly, despite similar performance accuracy, OCD pa-

tients reported being significantly more frustrated with their per-

formance (F(1,74)5 22.1, po.001) and more flustered when

making a mistake (F(1,74)5 21.9, po.001) than control sub-

jects. No other effects were found, with the exception of a trend

toward unmedicated subjects being slightly more flustered when

making a mistake than medicated subjects (F(1,74)5 3.3,

p5 .073).

Electrophysiological

As expected, there was a highly significant main effect of trial

type (error vs. correct) at both electrodes (FZ: F(1,74)5 175,

po.001; FCZ: F(1,74)5 199.9, po.001), such that amplitudes

weremore negative for errors as compared to correct trials. There

were no main effects of group factors (diagnosis or medication

status); however, there was a significant interaction between trial

type and diagnosis (OCD vs. control) at electrode FZ (F(1,

74)5 4.1, p5 .047), indicating that OCD patients exhibited a

greater ERN than control subjects (� 4.0 vs. � 2.5 mV,
t(76)5 � 1.98, p5 .05), with no difference in amplitude on cor-

rect trials (2.7 vs. 2.4 m V, t(76)5 0.38, p5 .71)1 (Figures 1 and

2). Importantly, there were no 2-way interactions between trial

type and medication status or 3-way interactions involving trial

type, medication status, and diagnosis (all ps40.6), indicating

that the presence of chronic medication did not significantly in-

fluence the ERN. No effects of group factors were found at

electrode FCZ.

Among OCD patients, ERN amplitudes were not signifi-

cantly correlated with YBOCS scores (r5 .17, p5 .32) or with

generalized anxiety or depressive symptoms (HARS: r5 .13,

p5 .43, HDRS: r5 .10, p5 .57) (Figure 3). By contrast, among

control subjects, therewas a significant correlation between ERN

amplitude and HARS (r5 � .35, p5 .027) and HDRS

(r5 � .35, p5 .026), such that greater symptom severity was

associated with an increased ERN. As can be seen fromFigure 3,

these relationships were found within both uHC and mPC

groups for HARS (r5 � .49, p5 .023 and r5 � .41, p5 .082,

respectively) and HDRS (r5 � .39, p5 .081, and r5 � .46,

p5 .050, respectively) scores. Correct trial amplitudes were not
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1When removing the one mOCD patient not taking a serotonin re-
uptake inhibitor (i.e., buproprion), the interaction remained significant,
F(1,73)5 7, p5 .034.

http://www.easycap.de
http://www.easycap.de
http://www.easycap.de


correlated with symptom severity measures for either OCD pa-

tients or controls.

Discussion

Previous studies have identified an increased ERN in patients

withOCD (Endrass et al., 2008; Gehring et al., 2000; Johannes et

al., 2001), yet it has been unclear whether the use of serotonin

reuptake inhibitors among OCD patients may be influencing this

finding given evidence linking serotonergic functioning to the

ERN (Fallgatter et al., 2004; Jocham & Ullsperger, 2009).

Methodologically, it is difficult to separate primary markers of a

disorder from secondary phenomena related to treatment effects

and comorbidity. As such, it may be particularly advantageous

to compare treated and untreated patient groups matched on

symptom severity, along with a treated ‘‘control’’ group with a

diagnosis that is highly comorbid with the primary disorder, as

was done in the current investigation. Our results indicated that

OCD patients exhibited an increased ERN irrespective of med-

ication use, and that medication use in patient controls was not

associated with any elevation in the ERN compared to healthy

controls. This extends previous findings of no effect of acute

administration of selective-serotonin reuptake inhibitor (SSRI)

on the ERN in healthy controls (de Bruijn, Sabbe, Hulstijn,

Ruigt, & Verkes, 2006) to include chronic administration of SRIs

in a patient population. The current findings suggest that ERN

hyperactivity in OCD is not an epiphenomenon of SSRI admin-

istration, and that if serotonergic activity does impact the ERN

(Fallgatter et al., 2004; Jocham&Ullsperger 2009), it may not be

a simple effect of reuptake inhibition.

Does an increased ERN simply reflect greater anxiety and/or

depression in OCD patients rather than being specific to OCD?

Previous studies have indeed found greater ERNs associated

with generalized anxiety (Hajcak, McDonald, & Simons, 2003)

and major depressive disorder (Chiu & Deldin, 2007; Holmes &

Pizzagalli, 2008). Our results indicated that, while OCD patients

exhibited more anxiety and depressive symptoms (in addition to

OC symptoms) than either control group, their level of these

symptoms did not predict ERN amplitude. Intriguingly,

within both control groups, greater anxiety and depression were

associated with increased ERN amplitude. It is possible that the

ERN is normally influenced by levels of negative affect, but that
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Figure 1. Topographic maps of ERN amplitude. Error activity shows a medial frontal focus, with the peak of activity in OCD patients located slightly

anterior to that of control subjects. Scale represents mean activity in mV between 20 and 120 ms post error response.

Figure 2. Error and correct trial waveforms for OCD patients and control subjects. OCD patients (blue lines) exhibited greater amplitude for errors

(solid) but not correct trials (dashed) as compared to control subjects (black lines). Bar graph shows the amplitude of the difference wave

(errorFcorrect) in each group. uHC5unmedicated healthy controls; mPC5medicated patient controls; uOCD5unmedicated OCD patients;

mOCD5medicated OCD patients.



in OCD this mechanism is overshadowed by a disorder-specific

abnormality that is not related to the severity of generalized

anxiety or depressive symptoms.

Although symptoms of depression were related to an increased

ERN in unmedicated healthy and medicated patient controls, a

diagnosis of major depressive disorder in remission was not asso-

ciated with an overall enhancement of the ERN in themPC group.

Such a distinction between effects of current versus prior depressive

symptomatology on the ERN may help explain inconsistencies

among previous studies examining the ERN in depression, which

have identified no differences between remitted depressed patients

and controls (Ruchsowet al., 2004, 2006), but an increasedERN in

moderately depressed patients in a current depressive episode (Chiu

& Deldin, 2007; Holmes & Pizzagalli, 2008).

Our data indicated that ERNs were similarly increased for

medicated and unmedicatedOCDgroups, whichwas unexpected

given previous findings of a reduction in cingulate and orbito-

frontal hyperactivity after a course of medication in OCD pa-

tients (Perani et al., 1995; Saxena et al., 1999). One possibility is

that the medicated group was actually more severely ill prior to

their initiationof treatment, andwouldhave showngreaterYBOCS

scores and ERNs than unmedicated patients had they been tested in

an untreated state. However, as ERN amplitudes were not corre-

lated with YBOCS scores in the OCD group, our data do not

support the hypothesis that the increased ERN found in OCD is a

function of OC symptom severity. Rather, this result provides sup-

port for the notion that ERNhyperactivitymay be a traitmarker of

OCD that is not sensitive to fluctuations in symptom severity and

does not decrease in response to treatment, consistent with a recent

study reporting no change in ERN hyperactivity among children

with OCD after treatment with cognitive behavioral therapy (Ha-

jcak, Franklin, Foa, & Simons, 2008).

While the ERNwas robust for all groups at electrodes FZ and

FCZ, the difference between OCD patients and controls was

greatest at the more anterior electrode FZ. This is likely due to

the slightly anterior topography of the ERN in OCD patients as

compared to control subjects, which may have psychological

significance. Although the ERN is typically thought to have a

source in posterior/dorsal regions of medial frontal cortex/ante-

rior cingulate gyrus (Dehaene et al., 1994; van Veen & Carter,

2002), it has also been shown to correlate with activity in an-

terior/rostral regions of medial frontal cortex (Mathalon, Whit-

field, & Ford, 2003). Anterior MFC is involved in emotion and

social processing (Amodio & Frith, 2006; Bush, Luu, & Posner,

2000; Steele & Lawrie, 2004), and it stands to reason that the

relative contribution of posterior versus anterior regions ofMFC

to the ERN may, in fact, vary based upon the psychological

reaction to making an error. In our study, OCD patients were
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Figure 3.Correlations between ERN amplitude and symptoms of generalized anxiety and depression. Significant relationships were found in the control

group but not in the OCD group. Trend lines are shown for correlations in all control subjects (solid black) and all OCD patients (solid blue), and for

each group separately (unmedicated healthy controls: short dashed light gray; medicated patient controls: long dashed dark gray; unmedicated OCD

patients: short dashed light blue; medicated OCD patients: long dashed dark blue).



more frustrated with their performance and more flustered when

making an error than control subjects. It is possible that the

emergence of the group difference at the more anterior site is due

to a greater contribution of anterior regions ofMFC to the ERN

in OCD patients, in relation to their heightened emotional re-

action. Although speculative, such a hypothesis is consistent with

previous fMRI data identifying error-related hyperactivation of

anterior MFC in OCD patients (Fitzgerald et al., 2005).

There are several limitations to the current study that suggest

avenues for future research. First, performance feedback pro-

vided on a trial-by-trial basis was used to increase motivation,

but may have reduced the response-locked signal by shifting at-

tention away from the response toward the feedback. As it is

conceivable that error feedbackwould bemore salient, and hence

divert more attention, than correct feedback, this feature of the

study may have lead to a disproportionate reduction in the ERN

compared to correct trial ERPs. However, given that there were

no differences in accuracy between groups, this is unlikely to

account for the greater ERN in OCD patients. Second, although

mPCs and mOCDs were nearly all taking some form of SRI

medication, we did not control for the concomitant use of ben-

zodiazepines or non-SRI antidepressant medication. The med-

icated groups had similar proportions of subjects taking these

additional medications, however, and greater use of benzodiaze-

pines among OCD patients cannot explain their exaggerated

ERN relative to controls, since benzodiazepines have been as-

sociated with a reduced ERN (de Bruijn, Hulstijn, Verkes, Ruigt,

& Sabbe, 2004; Riba, Rodrı́guez-Fornells, Münte, & Barbanoj,

2005). Third, among SRI types, there was a greater proportion of

SNRIs being taken by mPCs than mOCD patients. Yet, as nor-

epinephrine release has been shown to increase the ERN (Riba,

Rodrı́guez-Fornells, Morte, Münte, & Barbanoj, 2005), this,

too, would work against the finding of exaggerated the ERN in

the OCD patients. Sample sizes were too small to segregate

medicated subjects based on SSRI, SNRI, and additional med-

ication use, somore detailed analysis of medication effects on the

ERN will require replication with a larger sample. Subjects in-

cluded here were not taking antipsychotic medications, but con-

sidering that these are sometimes used as adjunctive therapy in

OCD and can reduce the ERN (de Bruijn et al., 2006), future

studies should seek to track or exclude their use as well.

In sum, our results indicate that OCD patients have exagger-

ated ERNs that are not due to SRI medication use. The data also

show that greater severity of generalized anxiety and depressive

symptoms is associated with increased ERNs among control

subjects, but that these symptoms do not account for ERN

hyperactivity in OCD patients. Instead, our results suggest that

an increased ERNmay be a neural endophenotype of OCD that

does not fluctuate with symptom severity or decrease with phar-

macological treatment. Future studies would benefit from com-

paring trait and state influences on ERN hyperactivity across

different psychiatric disorders, and by examining genetic influ-

ences on the ERN in OCD, in order to further explore these

effects.
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