BASIC NAVAL A RCHITECTURE INSTRUCTOR'S GUIDE AND PROBLEM SET

Prepared by Giannotti & Associates of Texas, Inc. 703 Giddings Ave. Annapolis, MD 21401

for

The University of Michigan Transportation Research Institute 2901 Baxter Rd. Ann Arbor, MI 48109-2150

Volume I Units 1-11

78490

auchure

Technical Report Documentation Page

1. Report No.	2. Government Accessic	n No. 3. 1	ecipient's Catalog No.	
4. Title and Subtitie			leport Date	
Basic Naval Architecture Instructor C	wide and Problem S		January 1988	
Volume I, Units 1-11			erforming Organization (Code
		8. 1	Performing Organization I	Report No.
7. Author(s) Van Mater, Dr. Paul R.,			UMTRI - 88-54-1	
9. Performing Organization Name and Address		10.	Work Unit No. (TRAIS)	
Giannotti and Associates Inc.,		11.	Contract or Grant No.	
703 Giddings Avenue				84-C-41045
Annapolis, MD 21401		13.	Type of Report and Peric	od Covered
12. Sponsoring Agency Name and Address				
Department of Transportation Maritime Administration			Final	
Washington D.C. 20590		14	Sponsoring Agency Cod	· · · · · · · · · · · · · · · · · · ·
				~
15. Supplementary Notes				
A project of the SNAM	E Ship Production C	Committee Education and	Training Panel	
16. Abetract				
A video lecture course presenting the fundamentals of naval architecture was developed as part of the government- industry-supported National Shipbuilding Research Program (NSRP). This publication, along with Volumes II and III, contains the instructor syllabus, problem sets, and solutions that complement the videotapes. The notes include many of the slides used in the videotapes and are intended to be used by the instructor for overhead transparencies.				mes II and tes include
The following topics are covered in this Dimension Form and Flotation, and Sta	The following topics are covered in this volume: Introduction, Ship Types and Ship Systems, Nomenclature, Dimension Form and Flotation, and Static Stability.			ure,
This material was developed to convey to trade school students the foundations of naval architecture. The level of material presented makes it suitable for engineers transferring into the field of naval architecture, a college level study course for students not majoring in the field (e.g. Ocean Engineering majors) or a naval or merchant marine officer candidate program.			ge level	
The course consists of 45 videotapes (average length of 35 minutes each) presented in a classroom lecture format by Dr. Paul R. Van Mater Jr., of Giannotti and Associates Inc. An additional text is required for the course: <i>Modern Ship Design</i> , Second Edition, 1977, Thomas C. Gillmer, Naval Institute Press, Annapolis, MD 21402.				
Inquiries regarding the purchase of the videotapes should be forwarded to the AVMAST Library, Marine Systems Division, University of Michigan Transportation Research Institute, 2901 Baxter Road, Ann Arbor, MI 48109, (313) 763-2465.				
-				
17. Key Words		18. Distribution Statement		·····
Naval Architecture, Ship Nomencla Stability Ship Types, Ship Systems	ture,			
19. Security Classif. (of this report)	20. Security Classif.	(of this page)	21. No. of Pages	22. Price
Unclassified	Unclassified	(-)	396	
				I

Acknowledgements

The development of this course was funded by the National Shipbuilding Research Program and administered under a contract with the University of Michigan Transportation Research Institute.

Many persons were instrumental in the development of this education material. The seeds that started it growing came from the membership of the Education and Training Panel of the Society of Naval Architects and Marine Engineers' Ship Production Committee. Those seeds were planted by dedicated Panel members in 1982, who then saw the project through to its completion. Their initial effort in concept development, and subsequent follow through in monitoring of the project are gratefully acknowledged.

Appreciation is also expressed to the sub-contractor who developed the project: Giannotti and Associates. The Education and Training Panel feels it was fortunate to have selected this firm to perform the project. The performance of all their personnel was an inspiration to those who monitored its progress. Three persons on Giannotti staff, however, must be given special mention: Dr. Julio Giannotti, Dr. Paul Van Mater, and Mr. David Gardy (of Gardy/McGrath International, Inc.). Dr. Giannotti saw the project as a significant contribution to the profession, and continued to support the effort long after the available funds had been exhausted. Dr. Paul Van Mater, as the project director, provided the extra percentage of effort that has made this instruction set a unique teaching resource on naval architecture. And Mr. David Gardy skillfully produced the video tapes on a low budget. ,

BASIC NAVAL ARCHITECTURE

CONTENTS

Section

1.0	
2.0	Notes To Instructors
3.0	
4.0	Appendix to Problems
5.0	

NOTE: Homework Problems are located at the end of each Unit Lesson Plan. If a homework problem is assigned in more than one lesson plan, then it is located with the Unit where it is first assigned. • , £ , , .

<u>Basic Naval Architecture</u> <u>Section 1.0</u> <u>Topical Coverage of Course</u>

Introduction	t
Ship Types and Ship Systems	nits
Nomenclature	nits
Dimension, Form and Flotation	ts
The Ship and Rest-Static Stability	ts
Ship Hazards and Vulnerability	ts
Submarine Hydrostatics	t
Forces Opposed To Propulsion	nits
Propulsive Forces and Propulsion Systems	nits
Propulsive Requirements and Power Selection	its
Maneuverability and Ship Control	t
The Ship in Motion with The Sea	its
The Strength And Structure Of Ships	its
The Ship Design Process	ts
Shipbuilding Methods <u>3 unit</u> (Units 43,44 and 45)	ts
Total	ts

. • .

<u>Basic Naval Architecture</u> <u>Section 2.0</u> <u>Notes To Instructors</u>

2.1 DESCRIPTION OF COURSE.

This course consists of 45 videotapes covering basic topics in naval architecture, as well as an *Instructor Guide and Problem Set* containing notes to instructors, suggested lesson plans, problems and solutions. The level of material presented also makes it suitable for: graduate engineers transferring into the field of naval architecture; a college level study course for students not majoring in the field (i.e. Ocean Engineering majors) or a naval or merchant marine officer candidate program.

The mathematical background required of the students is two years of high school algebra (including an introduction to trigonometry) and one year of high school geometry. Problems in the course, including topics in numerical integration, are introduced assuming this background. Diagnostic examples are included in the first unit to enable the student to evaluate whether or not his mathematical skills are adequate to cope with the mathematics in the course.

2.2 WAYS IN WHICH THIS COURSE MAY BE USED.

The course is designed so that it may be used in a variety of ways.

(1) In an organized classroom presentation the videotape may be played at the beginning of a class period followed by a classroom instructor presentation in which key points are emphasized, supplementary material is presented, and questions on problems are addressed. The videotapes are not uniform in length; most run between thirty and thirty-five minutes. A class period of one hour to one hour and fifteen minutes will allow the instructor about a half-hour to present his material. <u>A class period of an hour and half, or two fifty-minute periods would be optimal</u>.

- (2) The instructor also may elect to tailor the course to the specific career areas of his students. For example, for an audience which in the future will be heavily involved in the design or erection of ship structures and will have very little contact with propulsion machinery, the section of the course on ship structures could be heavily emphasized, (perhaps with the addition of supplementary material) while the section on propulsion could be drastically curtailed and perhaps limited to reading assignments with no problems or videotapes. However, if the full course coverage is elected together with 30 or more assigned problems, the student can look forward to an intensive learning experience.
- (3) Finally, the tapes and the text may be used in a self-instruct mode. To complete the course through self instruction requires a mature student with determination. For this application, the videotapes would be issued by the sponsoring institution's library or training office to the student to be used at his own pace. An experienced engineer or naval architect should be assigned as the student's monitor to issue and correct problems, and give tests if appropriate.

2.3 TEXT AND RECOMMENDED REFERENCES.

The text selected for this course is:

Modern Ship Design, Second Edition, 1977, Thomas C. Gillmer, United States Naval Institute, Annapolis, MD 21402 (1987 list price - \$21.95, USNI members get 20% discount)

The text was written primarily for midshipmen and naval officer candidates with some college math but without an engineering background. It has been selected because the reading level of the book is appropriate to the anticipated level of students in this course. In addition, the book emphasizes the total process of ship design. Giving the student a perspective on the ship design process is a collateral objective of the course. Certain sections of the book are now obsolescent or obsolete (e.g., the discussion of Navy Department ship procurement procedures), but this has only a very small impact on the value of the book for our purposes.

The text includes a sheet of "Displacement and other Curves: for the DD692 class destroyer." Problems are included in the problem set which use these curves.

A similar book using many of the same text passages and illustrations but aimed at sophomore-level engineering students is recommended as a reference:

Introduction to Naval Architecture, 1982, Thomas C. Gillmer and Bruce Johnson, Naval Institute Press, Annapolis, MD 21402 (\$23.95 list price, USNI members get 20% discount).

There are two books published by the Society of Naval Architects and Marine Engineers which are extremely valuable as references for the instructor, but which are expensive and technically above the level of most of the students who will take this course. Many of the figures used in the videotapes have been taken from one of these two sources.

Principles of Naval Architecture, 1967, John P. Comstock, Editor, Society of Naval Architects and Marine Engineers, 601 Pavonia Avenue, Jersey City, NJ 07306 (list price \$60.00, SNAME members \$40.00)

Ship Design and Construction, 1980, Robert Taggart, Editor, Society of Naval Architects and Marine Engineers, 601 Pavonia Avenue, Jersey City, NJ 07306 (list price \$75.00, SNAME members \$55.00)

The new edition of Principles of Naval Architecture, Volumes I, II, III, 1988-89, Editor Edward V. Lewis, is also available from the Society of Naval Architects and Marine Engineers. Other references which would be useful to the instructor are listed in the lesson plans.

2.4 TIME REQUIREMENTS FOR THE COURSE.

Naval architectural calculations tend to be time consuming, and, as will be emphasized below, the write-up of the calculations in an acceptable engineering format is an important part of the learning experience. Many problems included in this course will require approximately two to three hours to solve and write up. A few are shorter and some are longer. Suggested problem assignments are listed in the lesson; however, the instructor should be selective in choosing the problems he assigns so that the maximum learning value will be achieved in a realistic study time.

The amount of emphasis to be placed on problems is strictly a matter of judgement on the part of the instructor. Some audiences may never have occasion to do engineering calculations in the course of their careers. For this type of audience the simpler and less time consuming problems will provide adequate reinforcement to the course material. For other audiences whose destiny is to provide a more technical level of engineering, calculations will be invaluable. Pre-reading of the assigned material in the text is important and should be stressed by the instructor. Often the videotapes will go into greater depth or present more material than is presented in the text. Pre-reading of the assigned pages in the text will definitely improve assimilation of the material presented on the tapes. The instructor should be prepared to point his students toward important points to study in the text in order to prepare for the following period's tape and instructor presentations. This requires that the instructor stay well ahead of the class in previewing the tapes, text, and problems to be assigned.

For the full course coverage described above with videotapes and instructor lectures, probably a minimum time investment by the student of 120 hours, (including class, study time and problem time) would be required to achieve the minimum course objectives. In most settings, very few students would be able to commit more than 180 hours to the course. Course coverage and problem assignments should be selected by keeping realistic time limitations.

2.5 MATERIALS REQUIRED FOR THE COURSE.

The Instructor Guide and Problem Set and a set of 45 VHS videotapes will be supplied by The University of Michigan Transportation Research Institute. The Instructor Guide and Problem Set includes four sheets of Curves of Form^{*} approximately 18" x 36" in size (for three example ships used in the problems), course information, and notes to the instructor. A set of seventy problems with worked solutions is included together with a note entitled "Engineering Calculations" intended to be used as a handout to students.

REPRODUCTION OF ALL MATERIALS TO BE DISTRIBUTED TO STUDENTS IS THE RESPONSIBILITY OF THE SPONSORING INSTITUTION.

The student should provide a "scientific-type" calculator which, today, is widely available at nominal cost. The calculator must have capabilities for trigonometric functions, logarithms (base 10) and powers (y^x) , all of which are used in the problems. Other features (such as statistical analysis) are commonly found on scientific calculators, but are not necessary for the course.

^{*} These curves are provided in the mailing tube that accompanies the Instructor Guide. The drawings are on mylar and should be reproduced for the student in full scale. The curves include:

¹⁾ Curves of Form, FFG-7 Class Frigate

²⁾ Bonjean Curves and Cross Curves of Intact Stability, FFG-7

³⁾ Curves of Form, U.S.C.G. Bear Class Cutter

⁴⁾ Curves of Form, MARAD PD-214 Mobilization Container Ship

It is strongly urged that all problems be submitted on cross-section paper following good procedure for engineering calculations. The instructor may wish to request a specific type of cross-section for uniformity, or he may even wish to distribute pre-printed calculation sheets used by the sponsoring institution. However, a simple 5x5 quadrille paper (available wherever school supplies are sold) will serve the purposes of the course. Use of tabular formats in calculations is stressed repeatedly in the tapes, and the use of cross-section paper will simplify the preparation of these tables and sketches.

Although not strictly required for the course, the student may find it convenient to purchase several French curves. A #60 and a #109 should be all that are needed to plot the curves required in several of the problems.

2.6 PROBLEMS.

Problems worked by the students serve several important purposes:

- (1) problems reinforce the concepts presented in the course,
- (2) problem solutions develop specific skills in the naval architectural topics presented in the course, and
- (3) working problems and writing up the solution in standard engineering format develops the discipline required to perform any type of engineering calculation.

Concept reinforcement may be achieved by use of the simpler and less timeconsuming problems, but specific skill development and engineering calculation discipline require more practice and a greater time investment. The instructor should select problems with the specific needs of the student in mind.

The student should be encouraged to keep a notebook of corrected problems. The instructor may wish to require that the problem statement be submitted with the solution to ensure that the student's notebook includes the problem statement as well as the solution. The instructor may even wish to return a copy of the correct solution appended to the student's submission. However, if the course is to be offered on a regular basis, the instructor may be assured that these solutions will find their way into the hands of future students.

It takes time to cultivate accuracy. The instructor should not be surprised if very few of his beginning students get exactly the right answer to the problem as they start in the learning process. With time, the student learns to avoid some of the computational pitfalls and his accuracy improves. The use of tabular formats in performing standard calculations is very useful in avoiding errors before they happen, and this should be emphasized in classroom presentations. Errors in the conversion of physical units are also common -- even in the case of experienced engineers. Difficulties in this area can be reduced by requiring the students to carry the units in each quantity involved in the calculation and to cancel units to ensure consistency of units in the result.

The instructor may also wish to provide the students with check values for various stages of the solution. It is very frustrating to a student to spend several hours in developing a solution only to find that he made a mistake in the first step. As students develop computational maturity, this type of assistance can be gradually discontinued.

Problems are listed in the Course Outline for the first unit to which they are relevant. It is not intended that all problems listed be assigned concurrently with the unit. Rather, the instructor should prepare problem assignments which maintain a uniform outside working load for the student. Note that there are periods in the course (e.g. Units 20, 21 and 22) which can be used to assign previously unassigned problems.

Notes entitled "ENGINEERING CALCULATIONS" are presented at the beginning of Section 5.0. The instructor may wish to distribute these, or a similar document of his own selection, at the beginning of the course.

2.7 USE OF COMPUTERS.

Oftentimes, students will have their own personal computers and may ask if computers can be used in the solution of problems.

There are many standard computer programs which can be applied to all the topical areas covered in this course. Today's engineer or engineering technician must become a skilled user of the computer tools available to him, but this does not imply that he must become a skilled computer programmer.

This course is not a course in computer programming. Rather, it is intended to develop the computational skills which still form a large part of engineering practice and which provide the background logic upon which computer programs are written. THE USE OF COMPUTERS AND THE PREPARATION OF COMPUTER PROGRAMS TO SOLVE THE PROBLEMS IN THIS COURSE IS NOT RECOMMENDED. If the development of computer programming will be important in the future to students of the course, then these skills should be taught separately. As a practical matter the instructor will find that if he accepts computer print-outs for problem solutions it will require untenable amounts of time to correct the problems and trace the student's logic through the maze of variable names and subroutines contained in a program listing.

2.8 SPONSORSHIP

The production of the videotapes and course materials has been done by Giannotti & Associates, Inc. and its successor firm, Giannotti & Associates of Texas, Inc., of Annapolis, Maryland and Ventura, California. Video production was done in the studios of Gardy McGrath International, Inc. of Newington, Virginia. Direct sponsorship of the project has been through:

> The University of Michigan Transportation Research Institute Marine Systems Division 2901 Baxter Rd. Ann Arbor, Michigan 48109-2150

Distribution of the videotapes and the instructor Guide will be done by the AVMAST (Audio-Visual-Material-Available-for-Shipyard-Training) Library managed by UMTRI. Inquiries regarding the course or the course materials should be addressed to UMTRI.

2.9 GRAPHICS

A complete set of graphics used in the videotapes are included in the unit lesson plans. The instructor may use these for transparencies to reinforce the videotape presentation.

• ----L -۰... **L**. τ. κ... 2.... , ŧ Ŀ. Years a ۰.

Unit 1	Homework
Basic Naval Architecture - Introduction	Problems - None
Scope and coverage of course. Text, references, materials required. Background required. Math diagnostic examples.	Readings , Gillmer pages - None
	Videotape Information Time= 45 minutes AVMAST# ED23
Unit 2 Basic Naval Architecture - Ship Types and Ship Systems - 1	Homework Problems - articles
The ship as an element in a transportation system. Photos of ship types. General cargo, container, RO/RO, passenger/car ferries, Seabee	Readings Gillmer pages 3-10
and Lash, tankers, various types of bulk carriers, QE2, cruise ships.	Videotape Information Time= 34 minutes AVMAST# ED24
Unit 3 Basic Naval Architecture - Ship Types and Ship	Homework Problems - articles
Systems - 2 Photos of ship types continued. Tugs, offshore supply boats, integrated tug-barge, river	Readings Gillmer pages 11-12
towboats. SWATH, catamaran, SES, ACV, planing boats, hydrofoil craft, offshore drilling and production rigs. Naval ships, submarines, battleship,aircraft carrier.	Videotape Information Time= 34 minutes AVMAST# ED25
Unit 4 Basic Naval Architecture - Ship Types and Ship Systems - 3 Nomenclature - 1	Homework Problems - Nomencla- ture
Merchant ship types by trade. Naval ships as elements in a warfare system. Ship types classified by type of support. Nomenclature -	Readings Gillmer pages 13-15
units. Directions on board ship. Ship dimensions. Weight, displacement, tonnage, load lines.	Videotape Information Time= 37 minutes AVMAST# ED26

Unit 5	Homework
Basic Naval Architecture - Nomenclature - 2	Problems - None
Parts of a ship. Decks and bulkheads. Doors, hatches, scuttles, manholes. Spaces on board ship. Anchoring and mooring.	Readings Gillmer pages - None
	Videotape Information Time= 39 minutes AVMAST# ED27
Unit 6 Basic Naval Architecture - Nomenclature - 3	Homework Problems - None
Boat handling equipment. Cargo handling equipment. Dunnage, sparring and ceiling. Structural nomenclature. Strakes, stringers,	Readings Gillmer pages - None
floors, double and single bottoms, keels, stem castings, stern castings.	Videotape Information Time= 37 minutes AVMAST# ED28
Unit 7 Basic Naval Architecture - Dimension, Form and Flotation - 1	Homework Problems - None
Ship geometry. Dimensions. Freeboard and draft. Displacement and tonnage. Lines drawing. Form coefficients.	Readings Gillmer pages 21-27
	Videotape Information Time= 28 minutes AVMAST# ED29
Unit 8 Basic Naval Architecture - Dimension, Form and Flotation - 2	Homework Problems - 1, 2, 3, 4, 5
Form coefficients example. Centers - CG, CB, metacenter, GM. Moments. Example of LCG calculation.	Readings Gillmer pages 27-37
	Videotape Information Time= 34 minutes AVMAST# ED30

Unit 9	Homework
Basic Naval Architecture - Dimension, Form and Flotation - 3	Problems - 6, 7,10,11, 12
Archimedes Principle. Curves of form and hydrostatic parameters. Bonjean's curves.	Readings Gillmer pages 37-41
	Videotape Information Time= 28 minutes AVMAST# ED31
Unit 10 Basic Naval Architecture - Dimension, Form and Flotation - 4	Homework Problems - 13, 14, 15
Differentiation and integration. Trapezoidal rule. Simpson's rule. Sectional area curve. Displacement calculation example.	Readings Gillmer pages 322-328
	Videotape Information Time= 43 minutes AVMAST* ED32
Unit 11	Homework
Basic Naval Architecture - The Ship at Rest - Static Stability - 1	$D_{1} = 11$ $0 = 0 = 17$ 17
Stable, neutral, unstable equilibrium. Position of the metacenter and equilibrium. GM, GZ, righting moment. Static stability curve. Weight	Readings Gillmer pages 51-58
shifts. BM. Moment of inertia. Rectangular barge example.	Videotape Information Time= 32 minutes AVMAST# ED33
Unit 12	Homework
Basic Naval Architecture - The Ship at Rest - Static Stability - 2	Problems - 29, 30, 31, 34
Transverse weight shift example. Inclining experiment, example. Cross curves of stability. Corrections for actual KG. Corrections to static stability curve	Readings Gillmer pages 58-68
stability curve.	Videotape Information Time= 34 minutes

Unit 13	Homework
Basic Naval Architecture - The Ship at Rest - Static Stability - 3 Negative GM. Longitudinal weight shift example, change of trim. Small weight additions.	D 11
	Videotape Information Time= 27 minutes AVMAST# ED35
Unit 14	Homework
Basic Naval Architecture - The Ship at Rest - Static Static Stability - 4	Problems - 19, 20, 33, 39, 40, 41
Multiple weight additions. Tabular format, example. New drafts. Angle of list. Weight removals.	Readings Gillmer pages 329-331
	Videotape Information Time= 27 minutes AVMAST# ED36
Unit 15	Homework
Basic Naval Architecture - Ship Hazards and Vulnerability - 1	Problems - 26, 42, 43
Floodable length definitions. Floodable length curve. Free surface. Virtual rise of G. Pocketing.	Readings Gillmer pages 71-76
	Videotape Information Time= 30 minutes AVMAST# ED37
Unit 16	Homework
Basic Naval Architecture - Ship Hazards and Vulnerability - 2	Problems - 44, 45
Free communication effect. Added weight versus lost buoyancy. Shock. USN intact stability criteria. CFR 46 stability criteria.	Readings Gillmer pages 79-85, 91-93, 253-255, 333-339
	Videotape Information Time= 36 minutes AVMAST# ED38

Unit	17	Homework
	Basic Naval Architecture - Ship Hazards and Vulnerability - 3	Problems - 47, 48, 49, 50
		Readings
	Subdivision of naval ships. Protection of vital spaces. Assumed damage conditions. CFR 46 requirements. Grounding and stranding.	Gillmer pages 85-90
		Videotape Information Time= 36 minutes AVMAST# ED39
Unit	18	Homework
	Basic Naval Architecture - Ship Hazards and Vulnerability - 4	Problems - 46, 48, 49, 50
	Dry docking. Stability during docking. Example. Freeboard and load lines, merchant ships and naval ships.	Readings Gillmer pages 90-91
		Videotape Information Time= 28 minutes AVMAST# ED40
Unit	19	Homework
	Basic Naval Architecture - Submarine Hydrostatics and Stability	Problems - 21, 22
	Submarine types and features. Ballast tanks. Submerging and surfacing. Submarine stability.	Readings Gillmer pages 41-49, 76-79
		Videotape Information Time= 30 minutes AVMAST# ED41
Unit	20	Homework
	Basic Naval Architecture - Forces Opposed to Propulsion - 1	Problems - Previously Unassigned
	Background. Wave making resistance. Frictional resistance. Froude's Law of Comparison. Residuary resistance. Model	Readings Gillmer pages 95-102, 106-110
	testing. Ship wave systems. Resistance coefficients.	Videotape Information Time= 36 minutes AVMAST# ED42

Unit 21	Homework
Basic Naval Architecture - Forces Opposed to Propulsion - 2	Problems - Previously Unassigned
	Readings
Correlation allowance. Friction formulations. Cf, Cw, Ct curves. Form drag. Bulbous bows.	Gillmer pages 102-114
	Videotape Information
	Time= 35 minutes avmast# ed43
Unit 22	Homework
Basic Naval Architecture - Forces Opposed to Propulsion - 3 Propulsive Forces and Propulsion	Problems - Previously Unassigned
Systems - 1	Readings
Resistance of submarines. Appendage resistance. Resistance in shallow water. Added resistance in a seaway. Hull roughness. Types of propulsors.	Gillmer pages 102-106, 110-114, 115-118
Powering definitions and efficiencies. The screw	Videotape Information
propeller.	Time= 36 minutes avmast# ED44
Unit 23	Homework
Basic Naval Architecture - Propulsive Forces and Propulsion Systems - 2	Problems - 51
Momentum theory. Propeller geometry, wake, slip. Propeller curves. Propeller design.	Readings Gillmer pages 115-124
	Videotape Information Time= 36 minutes AVMAST# ED45
Unit 24	Homework
Basic Naval Architecture - Propulsive Forces and Propulsion Systems - 3	Problems - 52
	Readings
Number of blades. Hull-propeller interactions. The efficiency chain. Cavitation, super-cavitating propellers. Water jets,	Gillmer pages 125-130
controllable pitch propellers, Kort nozzles. Vertical axis propellers.	Videotape Information Time= 37 minutes AVMAST# ED46

Unit	25	Homework
	Basic Naval Architecture - Propulsive Requirements and Power Selection - 1	Problems - 53, 54
		Readings
	Hull types and speed regimes. Scaling laws. Example. Model test expansion - example.	Gillmer pages 133-141
		Videotape Information Time= 30 minutes AVMAST# ED47
Unit	26	Homework
	Basic Naval Architecture - Prcpulsive Requirements and Power Selection - 2	Problems - 55, 56, 57
	Power prediction example. Standard series. Service power margin. Engine selection.	Readings Gillmer pages 141-149
	Diesel engines. Combined plants. Gas turbines. Steam propulsion. Nuclear power. Comparisons.	Videotape Information Time= 37 minutes AVMAST# ED48
Unit	27	Homework
	Basic Naval Architecture - Maneuverability and Ship Control	Problems - Previously Unassigned
	The rudder; force, lift-drag, torque, aspect ratio. Rudder types. Motion of a ship in a turn. Thrusters. Z-drive systems. Active rudders.	Readings Gillmer pages 151-169
	Comparisons.	Videotape Information Time= 37 minutes AVMAST# ED49
Unit	28	Homework
	Basic Naval Architecture - The Ship in Motion with the Sea - 1	Problems - Previously Unassigned
	Definitions. Sinusoidal waves. Trochoidal waves. Regular and irregular waves. Long-crested and short-crested waves. Seaway	Readings Gillmer pages 235-243
	descriptions. Sea spectra. Ship motion computer programs.	Videotape Information Time= 38 minutes AVMAST# ED50

-

Unit	29	Homework
	Basic Naval Architecture - The Ship in Motion with the Sea - 2	
	Designing for ship motions. Rolling. Pitching. Yawing. Translational motions. SWATH ships.	Readings Gillmer pages 243-253
		Videotape Information Time= 36 minutes AVMAST# ED51
Unit	30	Homework
	Basic Naval Architecture - The Strength and Structure of Ships - 1	Problems - 56, 57
	Basic concepts, stress, strain. Stress-strain diagram. Hooke's Law. Neutralaxis. The flexure formula. Secion Modulus. Beams in	Readings Gillmer pages 205-207
	bending.	Videotape Information Time= 36 minutes AVMAST# ED52
Unit	31	Homework
	Basic Naval Architecture - The Strength and Structure of Ships - 2	Problems - 58, 59
	Bending moment. Simple supports. Fixed-end supports. Bending moment and shear force diagrams. Steel handbook.	Readings Gillmer pages 208-209
		Videotape Information Time= 29 minutes AVMAST# ED53
Unit	32	Homework
	Basic Naval Architecture - The Strength and Structure of Ships - 3	Problems - 60, 61
	Section modulus example. Stress analysis example.	Readings Gillmer pages - None
		Videotape Information Time= 33 minutes AVMAST# ED54

.

Unit	33	Homework
	Basic Naval Architecture - The Strength and Structure of Ships - 4	Problems - 62, 63, 64
		Readings
	Loads on the ship's structure. Barge bending moment and shear force example. Stresses in deck and bottom.	Gillmer pages 210-212
		Videotape Information
		Time= 35 minutes AVMAST# ED55
Unit	34	Homework
	Basic Naval Architecture - The Strength and Structure of Ships - 5	Problems - 65
	Ship bending moment, shear force and stress diagrams in still water and in trochoidal waves. ABS requirements. Bending moment estimates.	Readings Gillmer pages 212-216
	Strength and stiffness.	Videotape Information Time= 34 minutes AVMAST# ED56
Unit	35	Homework
	Basic Naval Architecture - The Strength and Structure of Ships - 6	Problems - 66, 67
	Properties of shipbuilding materials. Shipbuilding steels, ductility, toughness,	Readings Gillmer pages 216-219
	Aluminum, GRP. Steel shapes, designation. Steel plate. Stiffened plating.	Videotape Information Time= 35 minutes AVMAST# ED57
Unit	36	Homework
	Basic Naval Architecture - The Strength and Structure of Ships - 7	Problems - 68
	Failure modes for steel structures. Plasticity. Buckling. Fracture, fatigue. Stress concentrations. Structural continuity. Crack	Readings Gillmer pages 219-220
	arrestors. Causes for cracking.	Videotape Information Time= 34 minutes AVMAST# ED58

Unit	37	Homework
	Basic Naval Architecture - The Strength and Structure of Ships - 8	Problems - 69
		Readings
	Framing systems. Structural terminology. Double bottom, single bottom construction. Bow and stern construction.	Gillmer pages 221-227
		Videotape Information
		Time= 31 minutes AVMAST# ED59
Unit	38	Homework
	Basic Naval Architecture - The Strength and Structure of Ships - 9	Problems - 70
	Bulkheads. ABS requirements. Hatch corners, intersections, connections, brackets. Deckhouses. Foundations.	Readings Gillmer pages 228-232
		Videotape Information Time= 35 minutes AVMAST# ED60
Unit	39	Homework
	Basic Naval Architecture - The Strength and Structure of Ships - 10	Problems - Developed by Instructor
		Readings
	The midship section drawing. Section modulus calculation. Typical midship sections. Mariner, FFG-7, "Bear" class cutter, tanker, bulk carrier,	
	RO/RO ship, SL-7 container ship. The weight estimate.	Videotape Information Time= 37 minutes AVMAST# ED61
Unit	40	Homework
	Basic Naval Architecture - The Ship Design Process - 1	Problems - Previously Unassigned
	Merchant vessel design. Mission requirements. The design spiral. Parametric design studies. Feasibility studies. Concept, preliminary,	Readings Gillmer pages 257-262
	contract design phases. Deliverables. Detail design.	Videotape Information Time= 29 minutes AVMAST# ED62

Unit	41	Homework
	Basic Naval Architecture - The Ship Design Process - 2	Problems - Previously Unassigned
	-	Readings
	Concept design example.	Gillmer pages 289-309
		Videotape Information
		Time= 31 minutes avmast# ED63
Unit	42	Homework
	Basic Naval Architecture - The Ship Design Process - 3	Problems - None
	Steps in preliminary design. Contract design. Design margins. Naval ship design and procurement.	Readings Gillmer pages 263-269
		Videotape Information Time= 29 minutes AVMAST# ED64
Unit	43	Homework
	Basic Naval Architecture - Shipbuilding Methods - 1	Problems - None
	Use of the computer in design and manufacturing. CAD/CAM drafting, lofting,	Readings Gillmer pages 271-287
	shell plate development, nesting. Scheduling and critical path analysis, production control. Work measurement and analysis, ordering and inventory control, weight management.	Videotape Information Time= 31 minutes AVMAST# ED65
Unit	Basic Naval Architecture - Shipbuilding Methods -	Homework Problems - None
	2 Steel cutting methods, cold forming and hot forming processes. Older shipbuilding methods.	Readings Gillmer pages 185-203
	Modern shipbuilding methods. Design for ship production. Modules and subassemblies. Zone outfitting. Design of details for ease of construction.	Videotape Information Time= 44 minutes AVMAST# ED66

Unit 45	Homework
Basic Naval Architecture - Shipbuilding Methods -	Problems - None
Launching methods. End launching, key events. Side launching. Launch from floating drydock, graving dock, and moveable platform	Readings Gillmer pages - None
(Synchro-Lift type). Course closure.	Videotape Information Time= 39 minutes AVMAST# ED67

1

. • , , ٠ . • • , • , • •

,

BASIC NAVAL ARCHITECTURE

APPENDIX

T0

PROBLEM SET

CONTENTS:

•

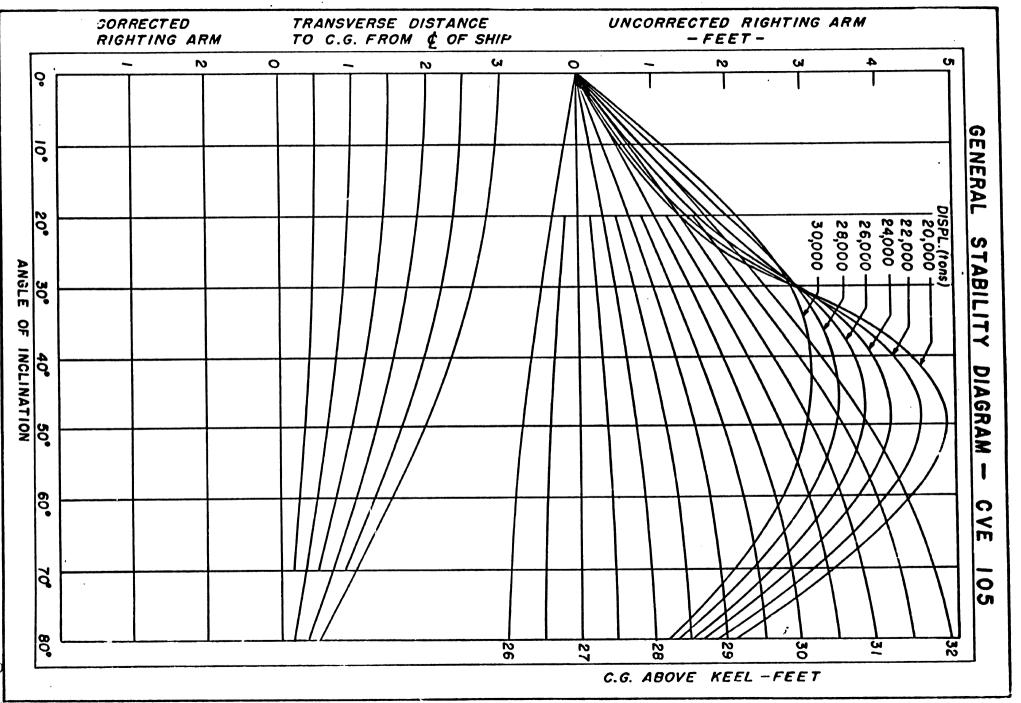
- . Tables of Density and Kinematic Viscosity of Fresh Water
- . Stability Data Sheet and General Stability Diagram for CVE 105
- . Selected Tables Reprinted from <u>Manual of Steel Construction</u>
 - Properties and Dimensions of Selected Steel Shapes
 - Properties of Geometric Sections
 - Decimals of an Inch and Foot Conversion Table
 - Selected Beam Diagrams and Formulas

Excerpts from American Bureau of Shipping <u>Rules for Building</u> and Classing Steel Vessels, 1987

Table of Kinematic Viscosity of Water

Kinematic Viscosity of Fresh Water $\nu \times 10^{5}$ ft ² /sec	Temperature degree F	Kinematic Viscosity of Sea Water $ u_{\star} \times 10^{5}$ ft ² /sec	Kinematic Viscosity of Fresh Water $\nu \times 10^{6}$ ft ² /sec	Temperature degree F	Kinematic Viscosity of Sea Water $v_{e} \times 10^{5}$ ft ² /sec
1.9291	32		1.1937	61	1.2470
1.8922	35		1.1769	62	1.2303
1.8565	34		1.1605	63	1.2139
1.8219	35		1.1444	64	1.1979
1.7883	36		1.1287	65	1.1822
1.7558	37		1.1133	66	1.1669
1.7242	38		i.0983	67	1.1519
.1.6935	39		1.0836	68	1.1372
1.6638	40		1.0692	69	1.1229
1.6349	41	1.6846	1.0552	70	1.1088
1.6068	42	1.6568	1.0414	71	1.0951
1.5795	.43	1.6298	1.0279	72	1.0816
1.5530	44	1.6035	1.0147	73	1.0684
1.5272	45	1.5780	1.0018	74	1.0554
1.5021	46	1.5531	0.98918	75	1.0427
1.4776	47	1.5289	0.97680	76	1.0303
1.4538	48	1.5053	0.96466	77	1.0181
1.4306	49	1.4823	0.95276	78	1.0062
1.4080	50	1.4599	0.94111	79 [.]	0.99447
1.3860	51	1.4381	0.92969	80	0.98299
1.3646	52	1.4168	0.91850	81	0.97172
1.3437	53	1.3961	0.90752	82	0.96067
1.3233	54	1.3758	0.89676	83	0.94982
1.3034	55	1.3561	0.88621	9 4	0.93917
1.2840	56	1.3368	0.87586	85	0.92873
1.2651	57	1.3180	0.86570	86	0.91847
1.2466	58	1 2996			
1.2285	59	1.2817			
1.2109	60	1.2641			

.


These values were adopted by the American Towing Tank Conference in 1942. The fifth significant figures are doubtful.

A.Z.

Table of Density of Water

Density of Fresh Water p lb x sec ² /ft ⁴	Temperature degree F	Defisity of Sea Water P, lb × Bec ² /ft ⁴	Density of Fresh Water p $lb \times sec^2/ft^4$	Temperature degree F	Density of Sea Water ρ_{o} lb x Bec ² /ft ⁴
1.9399	32	1.9947	- 1.9381	61	1.9901
1.9399	33	1.9946	1.9379	62	1.9898
1.9400	*	1. 59 46	1.9377	63	1.9895
1.9400	35	1.9945	1.9375	64	1,9893
1.9401	36	1.9944	1.9373	65	1.9890
1.9401	37	1.9943	1.9371	66	1.9888
.1.9401	38	1.9942	1.9369	67	1.9885
1.9401	39	1.9941	1.9367	68	1.9882
1.9401	40	1.9940	1.9365	69	1.9879
1.9401	41	1.9939	1. <u>93</u> 62	70	1.9876
1.9401	42	1.9937	1.9360	71	1.9873
1.9401	43	1.9936	1.9358	7?	1.9870
1.9400	44	1.9934	1.9355	73	1.9867
1.9400	45	1.9933	1.9352	74	1.9864
1.9399	46	1.9931	1.9350	75	1.9861
1.9398	47	1.9930	1.9347	76	1.9858
1.9398	48	1.9928	1.9344	77	1.9854
1.9397	49	1.9926	1.9342	78	1.9851
1.9396	50	1.9924	1.9339	79	1.9848
1.9395	51	1.9923	1.9336	80	1.9844
1.9394	52	1.9921	1.9333	81	1.9841
1.9393	53	1.9919	1.9330	82	1.9837
1.9392	54	1.9917	1.9327	83	1.9834
1.9390	5 5	1.9914	1.9324	84	1.9830
1.9389	56	1.9912	1.9321	85	1.9827
1.9387	57	1.9910	1.9317	86	1.9823
1.9386	58	1.9908	-		
1.9384	59	1.9905			
1.9383	60	1.9903			

These values were adopted by the American Towing Tank Conference in 1942. The fifth significant figures are doubtful.

I)

STABILITY L A SHEET

-	N	ĸ	4	2	9	70	7b	8	6	100	40I
	of D	Dimensions	Dist. from c.a.	Added (+)	Height above	Added	Removed vertical	 •	ay ^e	Stbd. inclining	Port inclining
Compt. No. , etc. o		Ľ.	of M.		keel.	moments	moments	(<u></u>)	(bx1xy)	moments	moments
	Stat.			tons	₽ €	(+wxkg) ft. tons	(-wxkg) ft. tons	feet*	+	(wxy) # tone	(wxy) ft free
	$\left \right $				1						
					1						
				- 1							
	╉										
	+										
	TOTAL										
					7						
ORIGINAL CONDITION	LION			Ē	FINAL	CONDITION	NO				
DISPLACEMENT (W)	TONS	DISPLACEMENT (W)=W A	EMENT.(V)-M=()	^	-	TONS	Ŷ	NET INCLINING	IG MOMENT	
KG (not cor. for F.S.)		FT. NET VERTICAL MOMEI	TTCAL	NOMENT -	NT• 🛥 wxKg• [70]	(1) - D)		FT. TONS	UOD - LOD = OFF CENTER DISTANCE INCL. ARM AT 0) =	ы Ч	.FT. TONS C.G. (NET
FREE SUNFACE EFFEOT IN SHIPS TANKS -	Ľ	H0, = (W±K0) ± W,	× (9) ± •	uzhg (-			Ľ.	NET INCL. MOM.		Ë
ES FREE SURF. EFFECT & V	• 5	. NET VIRTUAL]	SHIFT . F.	F.S.+ I + 0 y ² V,		F.S. + 6 + 9 35 x W,		KG,		F
) + (+-		-	.17			
				100	-				VINIUAL NG		

A. 7

BASIC NAVAL ARCHITECTURE

Selected Tables Reprinted from

Manual of Steel Construction, Eighth Editions

Manual of Steel Construction

may be ordered directly from the publisher,

American Institute of Steel Construction, Inc. 400 North MIchigan Avenue Chicago, Illinois 60611

		_							_																_
·	Plastic Modulari		5		24	23 78	17	143	21 128	98.0	75.1	67.5 60.4		11	32.5 29.1	21.4	19.0 16.8		9.56	8.17	3.66	2.96	2.26	/ 	
			3							214	33	147	1	8.8	86.4 77.9	72.4			1.12	37.2	29.3	24.7	2	, , ,	1
	Ţ,		5		185	193	83.8	8.8	35.6 25.8	18.5	-		3.84	2.18	2.10	1.78	1.31		0.74	0.30	67.0	0.18	0.10	•	1
					3.42		3.31	3 8	3.22 3.19	3.16	=	3.09 3.07	83	58	2.51	8	1.94		1.52	1.51	0.847	.822	0.773 0.753		1
		Aris Y-Y	S	•.				0		64.2 56.0			35.8	1 -	21.4	13.9	-		7.47 6.24				1.19		1
	te te						112								e		50.0		24.5	7.3	4.66	1.76	2.82		-
s E	Elastic Properties						742		8 454 9 454				1 216		8 <u>1</u> 07 3 95.				_						4
N SHAPES Properties	Elas		•		6.29	6.16 6.06	5.97	5.82	5.74	5.58	5.47	5 8 8 8	5.34		0 5.28 6 5.23	7 5.18		_	6 5.23 6 5.21		4 4.91		9 4 67		_
W SHAPES Properties		Aurs X.X	S		435	262 262	321	263	509	163	19	131	<u>6</u>	87.9	78.0 70.6	J	58.1		\$ %	33.4	25.	21	6 14 9		4
			-				2420			1240			2 G	233	475		350								
		2	ک	64 0	0.46	0.53	0.56	0.65	0.79	6.0			1.39	1.67	1.90		2.90	-	3.66				11.3		
•		5			3.67	3.59 3.59	3.56	3.50	3.4	3.41	3.36	3.34	3.31	3.28	2.72	2.17	2.15		1.73	1.72	5 1.02	8.1	8.0		
	chen	4			1	11	1					 <u>- e</u>			9 57.6	9 60.9	0 51.0 5 40.3		7 38.0 5 29.3	1 23.4	3 29.1	7 24.7	5 22.2		4
	Compact Section Criteria			0	- 10.0	- 11.0	- 11.7	- 13.6	- 14.6	- 17.0	- 21.1	- 24.3	62.6 26. 52 2 28	43.0 31.	- 33.9 .9 35.0	32.	- 36.0 		- 41.7	57.9 53.1		- 51.	5.45 F		4
	S	4	- 12	2 m	2.4	2.9	3.1	3.7		5.6	6.2	0 10		6.6 E4	7.8 8.7 55.		7.0			-		-			\neg
						252 23						86			88		58		6 8				2 2		1
· ·																									_
		Å1	2	1%	1%	1%	1%	1%	11/16		× 2	22		• • • / ••	×.	3%	*	***	*	<u></u>	*:	f 7	: 4']
_	Distance	*	5			21%16			2%		1 // 6	41	*	1%.	12% 12%	*	* *		•¥.	<u>.</u>	~		"he		1
		r	E		_			_	416 2/10		-				416 7/16		416	101/2	10%	7,01	1014	101	101/1		1
ı		less .		213/16	21/10	21/4	2	*1	*1	1			./.	*	**	**	* 4		**						1
		Thickness Lr	Ē					_	_	1.105	066.0	0.810	0.670	0.605	0.640	040	0.515	0.520	0.440		0.425	.265	.225		1
1	Flange		╈			13	_		12%		12%				22	%					•		•		
S S		Mbin 19	- 5			13.005			12.400		12.220			12.000	9.995	8.080	8.005	6.560	6.520	0.4.0	4.030	3.990	970		1
W SHAPES Dimensions	$\left - \right $													_						ė 	•••	r 'm	m 		4
- SH			5	2						*	_				**	**		*			*=				
≥ ïä	Web	Thickness Cu	E	5							**		_		**	**			**		23				-
		F		1.775		1.395			0.870		0.550	0.515	_	065.0	0.360	0.370	0.295	and the second second	0.260		0.260	and the second second	-		
	Ę	. 10	,	16%		15%		_	13%	_	-	12%	-	%Z1	12%	-	12		12%	-	12%	-			
	ď			16.82	15.85	15.41	14.71	14.03	13.71 13.41	13.12	12.71	12.53	12.25	12.12	12.19 12.06	12.19	11.94	12.50	12.34	77.21	12.31	11.95	11.91		
	Ę	۲	~." U	8.8	6.18	74.1	61.8	50.0	41 .7 39.9	35.3	31.2 2 8 .2	25.6	21.1	1.61	17.0 15.6	14.7	11.8	10.3	8.79	co. /	8 9 2 2	17.4	4.16	<u></u>	1
- <u>-</u>		ł		W 12x336	\$13	x252 x230	x210	_	_	_	8 % × ×	× 87 29			88	84	8	12x 35	8 %		2 ª				1
		2		w 12											× 12×	×21 W		W 12			X1 N				

.

••

۰.

· A.7

•

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

			· · · · ·						<u></u>			
* <u>++++</u> **	Plastic Modulus	°,	5.69	61.0 53.1	4 5.9	35.0 31.3	28.3	20.3 17.2 14.0	8.84 7.50	3.35	2.30	
	2 2	Ζ,	1	1130	97.6 85.3	74.6	8.	54.9 8.84 8.85	35.6	21.6	16.0	
	Con al	L'ant	15.1	10.9	3.56	2.48	1.39	1.51 0.98 0.58	0.62	0.23	0.10	}
		•	2.68	2.65	2.59	2.57	2.54	2.01 1.98 1.94	1.37 1.36	0.874	0.810	
J	Aus Y.Y	S	45.3	90.0 34.8	30.1 26.4	23.0 20.6	18.7	13.3 11.3 9.20	5.75 4.89	2.14	1.45	
10	Elastic Properties	-	236	207	134	116	93.4	53.4 45.0 36.6	16.7 14.1	4.29 3.56	2.89	
N SHAPES Properties	Elastic F	•	= 3	8.4	_		4.35	4.32 4.27 4.19	4.38	4.6	3.95	, n
rope	Aris X-X	S	126	98.5	85.9 75.7	60.0	54.6	49.1 42.1 35.0	32.4 27.9 23.7	18.8 16.2	13.8	h 2
S G			716	623 534	394 394	341	272	248 209 170	170 144	96.3 81.9	6.99 53.8)))
	10	۲	0.87	0.96	1.33	1.49	1.78	2.03 2.34 2.81	3.53 4.07	6.45 7.64	9.25	
	Ę		2.88	2.85 2.83	2.79	2.75	2.74	2.18 2.16 2.14	1.55 1.54	1.03	0.99	
	8	F, ''		11			I	1 28.7	54.2 41.8 36.8	39.4 37.2	35.0 24.5	
	Compact Section Criteria	eja	15.0	16.3 17.9	22.1	24.3 27.3	29.4	28.9 31.5 33.6	34.9 39.7 42.4	41.0 42.1	43.4	
	US C C C	F,		11		63.5	53.0	1 2.9	111	11	1.5	
		2/2	4.2	7 .0	9.9 9.9			6.5 7.5 9.1	5.7	5.1 6.1	4.6	
	Non	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	112	88;	2 8	3 7	ę.	33 8 5 33	· 8 % %	19	15	1

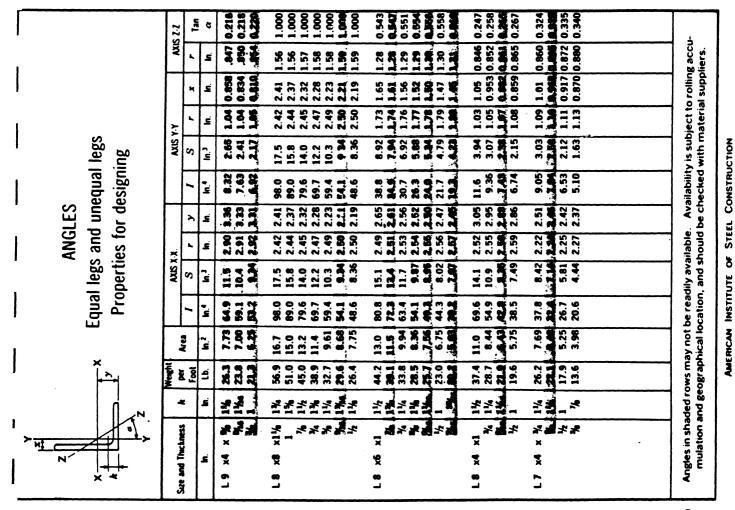
			-		_
		ž	ء	**************************************	
1	Distance	*	£	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		T	£	******* *** ***	
l		Tess	s	<u>zz</u> zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz	
	2	Thickness E/		1.250 1.120 0.990 0.870 0.680 0.680 0.530 0.435 0.395 0.395 0.395 0.395 0.270 0.210 0.210	
	Flange	£		101 201 201 201 201 201 201 201 201 201	
PES ons		la V	Ē	10.415 10.340 10.340 10.130 10.130 10.000 10.000 10.000 10.000 1.965 7.70 5.770 5.770 5.770 5.770 5.770 5.770 5.770 5.770 5.770 3.960	
W SHAPES Dimensions		2 <u>6</u> 2	Ľ	**** *** *** ***	
W S Dim	ŧ	Thickness f.w	_	*********	
		Thickn £w	5	0.755 0.680 0.530 0.470 0.350 0.350 0.350 0.350 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250	
****		6		%111 %111 %101 %101 %101 %101 %101 %101	
		9	٤	11.36 10.60 10.60 10.60 10.03 9.93 9.73 9.93 9.93 9.93 9.93 9.93	
	1	2 <	٦.	222.92 222.92 222.92 222.92 22.92 2.92	_
		Desegnation		W 10x112 x100 x 100 x 100 x 100 x 100 x 100 x 100 x 100 x 100 x 110 x 11	

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

HS.

		_																	
+ <u>+</u> +++	Plastic	kulus	Z,	ы. ³ 36.2	23.9 22.3 22.3	24.9 24.9	16.7	14.4	9.97	10.3 8.85	6.79 6.40	6.23 4.8	3.68	2.2 2 4	2.36	1.88	1.13	0.826 0.653	
	Ë,	Ĩ	Z.	306 306	5. 55 5. 55		6 69	125	77.1	61.2 53.1	44.8	35.4 28.4	19.3	14.5	10.6 8.47	7.42	4.04	2.36	
	Tor	Con al	L L	h.* 12.8						2.82	1.08	0.6	0.55	0.45 0.24	0.37 0.17	0.32.	0.12 0.07	0.0	1
	Γ	Ι	•	1.53 1.53			1.19	1.14	1.03	1.03	0.900	0.954	0.796 0.831	0.734 0.766	0.675 0.705	0.620	0.569	0.516	
		Axis Y-Y	S	M. ³			N 10					3.38	1.96	21	1.30	1.01 0.809 0	0.574 0	0.468 0	RUCTK
	ta ta	. 1	-					24.1	15.7	15.7	20.0	8.5	H.H.	3.17	2.31	1.67	0.903 0.764 0	0.586 0	CONSTRUCTION
PES	Elastic Propertie		-						5.75 1: 5.95 14	4.55 1:	4.72	3.78	3.26 3	2.69 3	2.28 2	2.05	1.56 0	1.15 0	STEEL
S SHAPES Properties		Aus X-X	S					103		50.8 45.4	38.2	29.4	14.4	12.1	8.77 7.37	6.09 4.92	3.39	1.95 1	1 8
l vg		Ž	-	3160 h.				926	8 ⁴	305	279	147	57.6	42.4	26.3 22.1	15.2 12.3	6.79 6.08	2.93	AMERICAN INSTITUTE
	\vdash	 9	 ₹	2.79 31			3.94 12 4.02 11	4.17	4.28	3.32 34 3.46 2)	4.34 21	4.12	1.70		_			38	N N
1	\vdash	ŗ		1.86 1.86			1.43 3.	N.G	1.26 4. 1.26 4.	1.25 3.	1.16 4.	1.09 4.	0.95	0.86 4.63 0.87 4.86	0.81 4.69 0.79 5.02	0.74 4.66	0.65 4.88 0.64 5.13	0.59 4.6	AMERIC
	5	i u	<u>^</u>	3 1	63.6 44.8 28.7	11	112	43.3	19.64	11	<u>86.2</u> 1	63.9	11	<u></u>	<u></u>	<u></u> 	<u></u> 	<u></u>	
	Compact Section Criteria		510	30.6	32.2 38.4 48.0	25.4 30.8	31.5 39.6	25.3 39.0	27.3	17.5 26.0	28.0	32.2	18.1 29.5	15.6 27.8	12.9 25.9	10.1	12.3 20.7	8.6 17.6	1
		<u> </u>		2		 61 00	11	11	11		11	11	11	11	II.	11	11	11	1
1			12	3.7	4.4	<u> </u>	4.0 3.9	4.3	44	4.0	4.7	5.0	44	6.4		5.0	4.5	4.4	1
	No.	25		121 IO	<u>ទី</u> ទ ខ	**	3 5 6 6	5.7	50 42.9	8 8	35 31.8	35. 4	23 18.4	20 15.3	17.25 12.5	14.75 10	9.5 7.7	7.5 5.7	
	Max. Fige.		5 5																_
1			_	' - -			~~	22	**	**	**	**	**	**	*	11	11	11	
		Gip	-		~~~~	1%10 1%10		"%" "%"	9,40 9,40 4,40 4,40 4,40 4,40 4,40 4,40	**	**	**		**	*	 ***	•••	 %	
	nce		+	*	***		14/6 114/6	11/16 11/16	**	**	**	**			**	1%16 %16	× × ×	11/16 1/6	
1	Distance	<u>e</u>	-	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 1 2 2 1 2 2 1 2 2 2 1 2	×1 *1	ork1 %1	1 ¹ ½ 1 ¹ % 1 1 ¹ ½ 1 ¹ %	1% %10			_		**	**				
	Distance	T A Grip	2	2 14 2	20 ¹ / ₄ 1 ³ / ₆ 20 ¹ / ₄ 1 ³ / ₆ 20 ¹ / ₄ 1 ³ / ₆	×1 *1	16% 1% 1%	11/16 11/16	12% 1% % % 6	17/16 11/16	14,0 14 14,0 14 14,0 14	15 25 25 25 25 25 25 25 25 25 25 25 25 25		**	**	•1% •1%	**	•\/. •\/.	TION
		A. Grip	2	14/6 2014 2 14/6	1 2014 1%	16% 1% 16% 1%	16% 1% 1%	15 1 ¹ / ₂ 1 ¹ / ₄	% 12% 1% %.	9 ¹ / ₆ 17/16 11/16 9 ¹ / ₆ 17/16 3/ ₆	9% 1%,e ¼ 9% 1%,e ¼	7% 1% %	6 1 7/16 6 1 7/16	**	- ** ** ** **	3% 1%'e	2 ¹ / ₂ ³ / ₄	1% 1% 1%	ISTRUCTION
	Flange Distance	Thickness T k Grip	2 2 2 2	8 1.090 14/4 2014 2 7/6 1.090 14/4 2014 2 7/6 1.090 14/4 2014 2	7¼ 0.870 7‰ 20½ 1¾ 7% 0.870 7‰ 20½ 1¾ 7 0.870 7‰ 20½ 1¾	7¼ 0.920 ¹³ ¼ 16¾ 13¼ 7 0.920 ¹³ ¼ 16¾ 13¼	6% 0.795 1% 16% 1% 1% 1%	6 ¹ / ₄ 0.691 ¹¹ / ₁₆ 15 1 ¹ / ₂ 1 ¹ / ₆ 6 0.691 ¹¹ / ₁₆ 15 1 ¹ / ₂ 1 ¹ / ₆	5% 0.622 % 12% 1% % %	5 ¹ / ₂ 0.659 ¹¹ / ₁₆ 9 ¹ / ₆ 1 ⁷ / ₁₆ ¹¹ / ₁₆ 5 ¹ / ₄ 0.659 ¹¹ / ₁₆ 9 ¹ / ₆ 1 ⁷ / ₁₆ ³ / ₆	51 0.544 7.6 9% 17.6 12 5 0.544 7.6 9% 17.6 12	5 0.491 ½ 7% 1% 1% ½ 4% 0.491 ½ 7% 1%	4% 0.426 %, 6 1 %, 4 0.426 %, 6 1 %,	3% 0.392 % 5% 1% 1% %	3% 0.359 % 4¼ ¼ % % ~	3¼ 0.326 % 3% 1% 1%	2% 0.293 % 2 ¹ / ₂ % 2 ¹ / ₂ %	2 ¹ / ₂ 0.260 ¹ / ₄ 1 ³ / ₆ 1 ¹ / ₁₆ 2 ³ / ₆ 0.260 ¹ / ₄ 1 ³ / ₆ 1 ¹ / ₁₆	L CONSTRUCTION
APES		T A Grip	2 2 2 2	8 1.090 114, 2014 2 7/4 1.090 114, 2014 2 114, 2014 2	71% 0.870 7% 201% 1% 7% 0.870 7% 201% 1% 7 0.870 7% 201% 1%	0.920 ¹ % ₁₆ 16% 1% 0.920 ¹ % ₁₆ 16% 1%	0.795 13/16 163/4 13/4 13/16 0.795 13/16 163/4 1.5/6 13/16	0.691 11/ ₁₆ 15 11/ ₂ 11/ ₁₆ 0.691 11/ ₁₆ 15 11/ ₂ 11/ ₁₆	0.622 % 12¼ 1% % %	0.659 11/16 91/6 17/16 11/16 0.659 11/16 91/6 17/16 76	0.544 % 9% 1% 1% 1%	5 0.491 ½ 7% 1% 1% ½ 4% 0.491 ½ 7% 1%	4% 0.426 %, 6 1 %, 4 0.426 %, 6 1 %,	3% 0.392 % 5% 1% 1% 8% 3% 3% 0.392 3% 5.% 1% 8%	3% 0.359 % 4¼ ¼ % % ~	0.326 %, 3% ^{1%} , 0.326 %, 3% 1%,	0.293 ⁴ / ₁₆ 2 ¹ / ₂ ⁴ / ₄ 0.293 ⁴ / ₁₆ 2 ¹ / ₅ ⁴ / ₄	0.260 ¹ / ₄ 1 ³ / ₆ 1 ¹ / ₁₆ 0.260 ¹ / ₄ 1 ³ / ₆ 1 ¹ / ₁₆	STEEL
SHAPES		Thickness T k Grip		• 8.050 8 1.090 11/4 2014 2 11/4	7.245 7% 0.870 % 20½ 1% 7.125 7% 0.870 % 20½ 1% 7.000 7 0.870 % 20½ 1%	7¼ 0.920 ¹³ ¼ 16¾ 13¼ 7 0.920 ¹³ ¼ 16¾ 13¼	6% 0.795 1% 16% 1% 1% 1%	6 ¹ / ₄ 0.691 ¹¹ / ₁₆ 15 1 ¹ / ₂ 1 ¹ / ₆ 6 0.691 ¹¹ / ₁₆ 15 1 ¹ / ₂ 1 ¹ / ₆	5% 0.622 % 12% 1% % %	5 ¹ / ₂ 0.659 ¹¹ / ₁₆ 9 ¹ / ₆ 1 ⁷ / ₁₆ ¹¹ / ₁₆ 5 ¹ / ₄ 0.659 ¹¹ / ₁₆ 9 ¹ / ₆ 1 ⁷ / ₁₆ ³ / ₆	5.078 5¼ 0.544 % ₁₆ 9% 1% ₁₆ ¼ 5.000 5 0.544 % ₁₆ 9% 1% ₁₆ ¼	4.944 5 0.491 ½ 7% 1% 1% ½ ½ 4.961 4% 0.491 ½ 7% 1% 1%	4.171 4% 0.426 % 6 1 % 6 1 % 4 4 0.426 % 6 1 %	3.860 3% 0.392 % 5% 1% 1% 8% 3.662 3% 0.392 % 5%	3.355 3% 0.359 % 41/4 7% % -	3.284 3¼ 0.326 % 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.796 2% 0.293 % 2½ % 2% 2% 2% 2% 2% 2% 2% 2% 0.293 % 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2	509 21/2 0.260 1/4 11% 11/16 330 2% 0.260 1/4 11% 11/16	OF STEEL
S SHAPES Dimensions		Lue Wdth Thickness T A Grip 7 A C C C C		1%1a 7/1a 8.050 8 1.090 11/1a 2014 2 %2 %2 7.870 774 1.090 11/1a 2014 2 11/2	% 7.245 7¼ 0.870 ½ 20½ 1¾ % 7.125 7¼ 0.870 ½ 20½ 1¾ ¼ 7.125 7% 0.870 ½ 20½ 1¾ ¼ 7.000 7 0.870 ½ 20½ 1¾	7.200 7¼ 0.920 1% 16% 13% 7.060 7 0.920 1% 16% 13%	%16 6.385 6% 0.795 1%16 16% 1%8 1%16 1/4 6.255 6% 0.795 1%16 16% 1%8 1%16	6.231 6¼ 0.691 1¼ ₆ 15 1¼ ₇ 1¼ ₆ 6.001 6 0.691 1¼ ₆ 15 1¼ ₇ 1¼ ₆	% 5.640 5% 0.622 % 12¼ 1% % ¼ 5.501 5½ 0.622 % 12¼ 1% % %	5.252 51/2 0.659 11/16 91/6 17/16 11/16 5.252 51/2 0.659 11/16 91/6 17/16	1/4 5:078 51/8 0:544 7/16 9% 17/16 1/2 7/16 5:000 5 0:544 7/16 9% 17/16 1/2	% 4:04 5 0:491 ½ 7% 1% ½	1/4 4.171 4/4 0.426 7/16 6 1 7/16 1/6 4.001 4 0.426 7/16 6 1 7/16	1/4 3.860 3/6 0.392 % 51/6 1% % %	1/4 3.565 3% 0.359 % 41/4 7% % ~	¹ / ₄ 3.284 3% 0.326 ³ / ₁₆ 3% ¹³ / ₁₆ ¹ / ₆ 3.004 3 0.326 ³ / ₁₆ 3% ¹³ / ₁₆	2.796 2% 0.293 % 2 ¹ / ₁ 2 ¹ / ₂ % 2.63 2% 0.293 % 2 ¹ / ₂ % 2 ¹ / ₂ %	2.309 2 ¹ / ₂ 0.260 ¹ / ₄ 1 ³ / ₆ ¹¹ / ₁₆ 2.330 2 ³ / ₈ 0.260 ¹ / ₄ 1 ³ / ₈ ¹¹ / ₁₆	OF STEEL
S SHAPES Dimensions	Flange	Width Thickness T A Grip		1%1a 7/1a 8.050 8 1.090 11/1a 2014 2 %2 %2 7.870 774 1.090 11/1a 2014 2 11/2	Na Na 7.245 71% 0.870 76 201/2 17% Na Na 7.125 71% 0.870 76 201/2 13% Na Na 7.125 71% 0.870 76 201/2 13% 1/2 1/2 7000 7 0.870 76 201/2 13%	7,06 7.200 774 0.920 ¹³ 76 16% 13% % 7.060 7 0.920 ¹³ 76 16% 13%	%16 6.385 6% 0.795 1%16 16% 1%8 1%16 1/4 6.255 6% 0.795 1%16 16% 1%8 1%16	Ma 6.251 6¼ 0.691 1¼ ₆ 15 1¼ ₆ 1 ¼ 6.001 6 0.691 1¼ ₆ 15 1¼ ₇ 1¼ ₆	% 5.640 5% 0.622 % 12¼ 1% % ¼ 5.501 5½ 0.622 % 12¼ 1% % %	% 5.477 51/2 0.659 11/16 21/16 11/16 11/16 1/4 5.252 51/4 0.659 11/16 91/6 17/16 7/16	7he 1h 5.078 51h 0.544 7h 9% 17h 1h % 7he 5.000 5 0.544 7he 9% 17he 1h	% % 8 8 8 5 0.491 ½ 7% 1% ½ ½ % % % 4.661 4% 0.491 ½ 7% 1% ½ ½ % % 4.661 4% 0.491 ½ 7% 1% ½	7/16 1/1 4/1 4/1 6 1 7/1 1/4 1/6 1 0.426 7/16 6 1 7/16 1/4 1/6 0.426 7/16 6 1 7/16	7/16 1/4 3.860 3/6 0.392 3/6 51/6 13/16 3/6 1/4 1/4 1/4 3.662 3/6 0.392 3/6 51/6 3/6 3/6 3/6	7/16 1/2 3565 376 0.359 76 41/2 76 76 76 76 76 76 76 76 76 76 76 76 76	¹ / ₇ ¹ / ₈ 3.004 3 0.3256 ¹ / ₉ / ₈ ¹ / ₉ / ₈	%16 %16 2.796 2% 0.293 %16 2% 3% %	Yis 2:509 2/y 0.260 Ys 1% 1/ys 1/s 2:330 2% 0.260 Ys 1% 1/ys	OF STEEL
S SHAPES Dimensions	Web Flange	Thickness t_{u} Width Thickness T k Grip		0.800 11% 1/1 8.050 8 1.090 11/1 201/2 2 11/2 0.620 9 9 9 7.870 77/4 1.090 11/1 201/2 2 11/2	0.745 % % % 7.245 7¼ 0.870 % 20¼ 1% 0.625 % % % 7.125 7¼ 0.870 % 20½ 1% 0.500 ½ ¼ 1.000 7 0.870 % 20½ 1%	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	% % % 6.385 6% 0.795 1% 16% 1% <th< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>%16 %16 5.640 5% 0.622 % 12% 1% %16 7/16 1/4 5.501 5% 0.622 % 12% 1% %16</td><td>14/46 % 5.477 54/2 0.659 11/46 91/6 17/46 14/46 7/16 1/4 5.252 51/4 0.659 11/16 91/6 17/16 %</td><td>0.428 7/₁₆ 7/₁₆ 5.078 51/₈ 0.544 7/₁₆ 9% 17/₁₆ 1/₅ 0.350 % 7/₁₆ 5.000 5 0.544 7/₁₆ 9% 17/₁₆ 1/₅</td><td>% % 8 8 8 5 0.491 ½ 7% 1% ½ ½ % % % 4.661 4% 0.491 ½ 7% 1% ½ ½ % % 4.661 4% 0.491 ½ 7% 1% ½</td><td>7/16 1/1 4/1 4/1 6 1 7/1 1/4 1/6 1 0.426 7/16 6 1 7/16 1/4 1/6 0.426 7/16 6 1 7/16</td><td>7/16 1/4 3.860 3/6 0.392 3/6 51/6 13/16 3/6 1/4 1/4 1/4 3.662 3/6 0.392 3/6 51/6 3/6 3/6 3/6</td><td>7/16 1/2 3565 376 0.359 76 41/2 76 76 76 76 76 76 76 76 76 76 76 76 76</td><td>¹/₇ ¹/₈ ¹/₈ ¹/₈ ¹/₈ ¹/₈ ¹/₈ ¹/₈ ¹/₈ 3.004 3 0.3256 ¹/₈ 3¹/₈ ¹/₈</td><td>%16 %16 2.796 2% 0.293 %16 2% 3% %</td><td>% % % 2.509 21/s 0.260 1/s 11/s % 1/s 2.330 2% 0.260 1/s 11/s 11/s</td><td>OF STEEL</td></th<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%16 %16 5.640 5% 0.622 % 12% 1% %16 7/16 1/4 5.501 5% 0.622 % 12% 1% %16	14/46 % 5.477 54/2 0.659 11/46 91/6 17/46 14/46 7/16 1/4 5.252 51/4 0.659 11/16 91/6 17/16 %	0.428 7/ ₁₆ 7/ ₁₆ 5.078 51/ ₈ 0.544 7/ ₁₆ 9% 17/ ₁₆ 1/ ₅ 0.350 % 7/ ₁₆ 5.000 5 0.544 7/ ₁₆ 9% 17/ ₁₆ 1/ ₅	% % 8 8 8 5 0.491 ½ 7% 1% ½ ½ % % % 4.661 4% 0.491 ½ 7% 1% ½ ½ % % 4.661 4% 0.491 ½ 7% 1% ½	7/16 1/1 4/1 4/1 6 1 7/1 1/4 1/6 1 0.426 7/16 6 1 7/16 1/4 1/6 0.426 7/16 6 1 7/16	7/16 1/4 3.860 3/6 0.392 3/6 51/6 13/16 3/6 1/4 1/4 1/4 3.662 3/6 0.392 3/6 51/6 3/6 3/6 3/6	7/16 1/2 3565 376 0.359 76 41/2 76 76 76 76 76 76 76 76 76 76 76 76 76	¹ / ₇ ¹ / ₈ 3.004 3 0.3256 ¹ / ₈ 3 ¹ / ₈ ¹ / ₈	%16 %16 2.796 2% 0.293 %16 2% 3% %	% % % 2.509 21/s 0.260 1/s 11/s % 1/s 2.330 2% 0.260 1/s 11/s 11/s	OF STEEL
T S SHAPES Dimensions	Web Flange	Lue Wdth Thickness T A Grip 7 A C C C C		24 ¹ / ₂ 0.800 1 ³ / ₂ ³ / ₂ 8.050 8 1.090 1 ³ / ₂ 20 ³ / ₂ 2 1 ⁴ / ₂ 24 ⁴ / ₂ 0.650 ⁹ / ₂ ³ / ₂ 7.870 7 ³ / ₂ 1.090 1 ³ / ₂ 20 ⁴ / ₂ 2 1 ¹ / ₂	24 0.745 % % 7.245 7% 0.870 % 20% 1% 24 0.625 % % 7.125 7% 0.870 % 20% 1% 24 0.500 % % 7.125 7% 0.870 % 20% 1%	20¼ 0.800 11% 7/16 7.200 7¼ 0.920 11% 16% 13% 20% 20% 0.660 11% 3% 7.060 7 0.920 11% 16% 13%	20 0.635 % % % 6.385 6% 0.795 1% 16% 1% 1% 1% 20 0.505 1% 1% 6.255 6% 0.795 1% 1% 16% 1% 1%	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15 0.550 % % 5.640 5% 0.622 % 12¼ 1% %	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 0.428 γ_{he} γ_{he} 5.078 5 γ_{h} 0.544 γ_{he} 9 γ_{he} 1 γ_{he} 1 γ_{he} 12 0.350 γ_{h} γ_{he} 5.000 5 0.544 γ_{he} 9 γ_{he} 9 γ_{he} 1 γ_{he} 1 γ_{he} 12	10 0.594 % % % 4.944 5 0.491 ½ 7% 1% 1% %	8 0.441 7/6 7/4 4.171 4% 0.426 7/6 6 1 7/6 8 0.271 Y ₄ Y ₆ 4.001 4 0.426 7/6 6 1 7/6	7 0.450 ⁷ / ₁₆ ¹ / ₄ 3.860 3 ⁷ / ₆ 0.392 ³ / ₆ 5 ¹ / ₆ 1 ³ / ₁₆ ³ / ₈ 7 0.252 ¹ / ₄ ¹ / ₆ 3.662 3 ⁴ / ₈ 0.392 ³ / ₈ 5 ¹ / ₆ 1 ³ / ₁₆ ³ / ₈	6 0.465 7/a 1/a 3.565 3% 0.359 % 41/a 7% % -	5 0.494 ¹ / ₂ ¹ / ₄ 3.284 3 ¹ / ₄ 0.326 ³ / ₄ 6 3 ³ / ₄ ¹³ / ₁₆ 5 0.214 ³ / ₆ ¹ / ₆ 3.004 3 0.326 ³ / ₆ 3 ³ / ₆ ¹³ / ₁₆	4 0.326 y_{16} y_{16} y_{16} 2.796 $2y_{1}$ 0.293 y_{16} 2^{1}_{7} y_{4} 4 0.193 y_{16} y_{6} 2.663 $2y_{6}$ 0.293 y_{16} 2^{1}_{7} y_{8}	0.349 % % % 2.509 2% 0.260 % 1% 1% 1%	STEEL
	Web Flange	Thickness t_{u} Width Thickness T k Grip		24.50 24½ 0.800 1¾ 1/4 8.050 8 1.090 1¼ 20½ 2 24.50 24½ 0.620 % % 7.870 7/4 1.090 1¼ 20½ 2	24.00 24 0.745 ³ / ₄ ³ / ₄ 7.245 7 ⁴ / ₄ 0.870 ⁷ / ₆ 20 ⁴ / ₇ 1 ³ / ₄ 24.00 24 0.625 ³ / ₆ ³ / ₆ 7.125 7 ⁴ / ₆ 0.870 ⁷ / ₆ 20 ⁴ / ₇ 1 ³ / ₆ 24.00 24 0.500 ¹ / ₇ ¹ / ₆ 7.000 7 0.870 ⁷ / ₆ 20 ⁴ / ₇ 1 ³ / ₇	20.30 20¼ 0.800 ¹ ¾ ₆ ⁷ ¼ ₆ 7.200 7¼ 0.920 ¹ ¾ ₆ 16¾ 1 ¾ 20.30 20¼ 0.660 ¹ ¼ ₆ ³ ‰ 7.060 7 0.920 ¹ ¾ ₆ 16¾ 1 ¾	20.00 20 0.635 ¹ / ₇ ¹ / ₆ 6.385 6 ³ / ₈ 0.795 ¹ / ₁ / ₆ 16 ³ / ₈ 1 ³ / ₆ ¹ / ₈	18.00 18 0.711 11/6 34 6.251 61/4 0.691 11/16 15 11/2 11/16 18.00 18 0.461 7/6 14 6.001 6 0.691 11/16 15 11/5 11/5	15.00 15 0.550 % 4% 5.640 5% 0.622 % 12% 1% % 6% 15.00 15 0.411 % 4 5.501 5% 0.622 % 12% 1% %	12.00 12 0.687 1 ¹ / ₁ / ₆ ³ / ₆ 5.477 5 ¹ / ₂ 0.659 1 ¹ / ₁ / ₆ 9 ¹ / ₆ 1 ⁷ / ₁₆ ¹ / ₁₆	12.00 12 0.428 ⁷ / ₁₆ ¹ / ₁₆ 5.078 5 ¹ / ₁₆ 0.544 ⁹ / ₁₆ 9 ³ / ₁₆ 1 ³ / ₁₆ ¹ / ₁₅ 12.00 12 0.350 ³ / ₂₆ ³ / ₁₆ 5.000 5 0.544 ⁹ / ₁₆ 9 ³ / ₂₆ 1 ³ / ₁₆ ¹ / ₁₅	10.00 10 0.594 % % % 4.944 5 0.491 % 7% 1% 1% % 1% 1% 1% 1% 10.00 10 0.311 % % 7% 1.661 4% 0.491 % 7% 1% 1% 1%	8.00 8 0.441 ⁷ / ₁₆ ¹ / ₄ 4.171 4 ⁴ / ₈ 0.426 ⁷ / ₁₆ 6 1 ⁷ / ₁₆ 8.00 8 0.271 ¹ / ₂ ¹ / ₆ 4.001 4 0.426 ⁷ / ₁₆ 6 1 ⁷ / ₁₆	7.00 7 0.450 ⁷ / ₁₆ ¹ / ₆ 3.860 3/ ₈ 0.392 ³ / ₆ 5/ ₆ 1 ³ / ₁₆ ³ / ₈	6.00 6 0.465 7/14 1/4 3.565 3% 0.359 % 4/4 7% 7% % -	5.00 5 0.494 ¹ / ₇ ¹ / ₈ 3.284 3 ¹ / ₈ 0.326 ¹ / ₉ 3 ¹ / ₈ 1 ³ / ₁₆ 5.00 5 0.214 ³ / ₉ / ₆ 3.004 3 0.326 ¹ / ₉ / ₆ 3 ³ / ₉ 1 ³ / ₁₆	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 3 0.349 % % % 2.509 21/2 0.260 1/4 13% 11/16 00 3 0.170 % 1/6 2.330 23% 0.260 1/4 13% 11/16	OF STEEL
╡ [*] ╢┍╴╘╴┥┍ *	Web Flange	d Thickness $l_{\mu\nu}$ Width Thickness T k Grip		24.50 2414 0.800 1% 8.050 8 1.090 114 2014 2 24.50 2414 0.620 % % 7.870 774 1.090 114 2014 2	24 0.745 % % 7.245 7% 0.870 % 20% 1% 24 0.625 % % 7.125 7% 0.870 % 20% 1% 24 0.500 % % 7.125 7% 0.870 % 20% 1%	20¼ 0.800 11% 7/16 7.200 7¼ 0.920 11% 16% 13% 20% 20% 0.660 11% 3% 7.060 7 0.920 11% 16% 13%	22.0 20.00 20 0.635 % % 5/6 6.385 6% 0.795 1% 16% 1% 1% 1%	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14.7 15.00 15 0.550 % % 5.640 5% 0.622 % 12% 1% %	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12×35 10.3 12.00 12 0.428 ⁷ / ₁₆ ¹ / ₁₆ 5.078 5 ¹ / ₆ 0.544 ⁹ / ₁₆ 9 ³ / ₆ 1 ³ / ₁₆ ¹ / ₇ ¹ / ₇ x31.8 9.35 12.00 12 0.350 ³ / ₈ ³ / ₁₆ 5.000 5 0.544 ⁹ / ₁₆ 9 ³ / ₈ 1 ³ / ₁₆ ¹ / ₂	10×35 10.3 10.00 10 0.594 % % % 4.661 4% 0.491 ½ 7% 1% 1% ½ % 25.4 7.46 10.00 10 0.311 % 4.661 4% 0.491 ½ 7% 1% 1% ½	8x23 6.77 8.00 8 0.441 7/16 7/4 4.171 41/6 0.426 7/16 6 1 7/16 x 18.4 5.41 8.00 8 0.271 7/6 4.001 4 0.426 7/16 6 1 7/16	7x20 5.88 7.00 7 0.450 7/4 1/4 3.860 3/6 0.392 7/6 51/6 1/4 8/6 2/4 1/4 2/6 2/6 1/4 8/6 2/6 2/6 1/4 8/6 2/6 2/6 2/6 2/6 2/6 2/6 2/6 2/6 2/6 2	6x17.25 5.07 6.00 6 0.465 7/14 1/4 3.565 3% 0.359 % 4/4 7/6 %	5x14.75 4.34 5.00 5 0.494 ¹ / ₇ ¹ / ₈ 3.284 3 ¹ / ₈ 0.326 ¹ / ₈ 3 ¹ / ₈ 1 ³ / ₁₆ x10 2.94 5.00 5 0.214 ³ / ₈ ¹ / ₈ 3.004 3 0.326 ³ / ₁₆ 3 ³ / ₈ 1 ³ / ₁₆	4x9.5 2.79 4.00 4 0.326 %16 %16 2.796 2% 0.293 %16 2% % </td <td>3.00 3 0.349 % % % 2.509 21% 0.260 1% 1% 1% 3.00 3 0.170 % % 2.330 2% 0.260 % 1% 1% 1%</td> <td>OF STEEL</td>	3.00 3 0.349 % % % 2.509 21% 0.260 1% 1% 1% 3.00 3 0.170 % % 2.330 2% 0.260 % 1% 1% 1%	OF STEEL

5 3x7.5 ()


Grip d		`	2		0.867	0.90	0.763	0.780	0.799	0 669	0.676	0.692	0.713	0.642	0.661	0.669	0.599	0.615	0.625	0.564	0.571	0.581	0.525	0.529	0.537	0 469	0.493	0:450	0.449	0 416		
	Aus Y.Y	S	Ē		3.78 2.27	3.11	2.06	1.86	1.73	1.65	1.48	1.32	1.16	1.17	1.01	0.962	1.01	0.854	0.781	0.779	0.703	0.625	0.642	0.564	0.492	0.450	0.378	0.343	0.283	0,268	0.73	0.202
		-			9 23	8.13	5.14	4.47	3.88	Je m	3.36	2.81	2.28	2.42	1.93	1.76	1.96	1.53	1.32	1.38	1.17	0.968	1.05	9.866	0.693	0.632	0.479	0.433	0.319	0.305	0.247	0.197
		•	E		7.5	5.62	4.29	64.4	4.61	3.42	3.52	3.66	3.87	3.22	3.40	9 . E	2.82	2.99	3.11	2.51	2.60	2.72	2.13	2.22	2.34	1.83	1.95	1.47	1.56	1.06	1.12	1.17
S NDARC S	Aus X-X	S	с. Ш	6 C 3	93.8 4 6.5	42.0	27.0	24.1	21.5	20.7	18.2	15.8	13.5	13.5	11.3	10.6	11.0	9.03	8.14	7.78	6.93	6.08	5.80	5.06	4.38	3.56	3.00	2.29	1.93	1.38	1.24	1.10
CHANNELS AMERICAN STANDARD Properties		-	Ē	Ę		315	162	Ħ	129	103	91.2	78.9	67.4	6.03	51.0	47.9	4.0	36.1	32.6	27.2	24.2	21.3	17.4	15.2	13.1	8.90	7.49	4.59	3.85	2.07	1.85	1.66
CI		৯২ি		6.21	6.56	6.79	7.55	7.85	8.13	7.55	7.9	8.36	8.81	8.22	8.76	6.8	8.12	8.75	80.6	8.31	8.71	9.14	8.10	8.59	9.10	8.29	8.93	7.84	8.52	6.87	7.32	7.78
4	Shear Center	to to	Ē	0 583	0.767	0.896	0.618	0.746	0.870	0.369	0.494	0.637	0.796	0.515	0.682	0.743	0.431	0.604	0.697	0.441	0.538	0.647	0.380	0.486	0.599	0.427	0.552	0.386	0.502	0.322	0.392	0.461
		İn	E.	0 798	0.777	0.787	0.674	0.674	0.698	0.649	0.617	0.606	0.634	0.583	0.586	109.0	0.565	0.553	0.571	0.532	0.525	0.540	0.514	0.499	0.511	0.478	0.484	0.459	0.457	0.455	0.438	0.436
		Weight Weight per Ft.		8	8 8	33.9	8	x :	20.7	R	52	ຊີ	F.C1	Ŕ	5	13.4	18.75	13.75	11.5	14.75	12.25	8.6	13	10.5	8.2	•	6.7	7.25	5.4	ø	5	4.1

	Max. Floe		Ē	1	***	****	***	***	***	* **	*	*	111	
		Grip	đ.	***	***	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	% % %	***	***	* * *	*	* 1	111	
	ę	*	Ē	17/16 17/16 17/16	***		, <u>,</u> , , , , , ,	***	***	14,6 1,4,1 1,4,6	**	14. 14.	14. 14.	
	Distance	r	Ē	12 ¹ / ₆ 12 ¹ / ₆ 12 ¹ / ₆	****		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	614 614 614	51/4 51/4 51/4	* * *	3 ¹ /2 3 ¹ /2	<u> </u>	***	
		2.3	Π	***	***	****	***	***	***	***	**	**	***	NOIT
NELS STANDARD Isions	2	Average thickness t ₁	Ē	0.650 0.650 0.650	0.501 0.501 0.501	0.436 0.436 0.436 0.436	0.413 0.413 0.413	0.390 0.390 0.390	0.366 0.366 0.366	0.343 0.343 0.343	0.320 0.320	0.296 0.296	0.273 0.273 0.273	CONSTRUCTION
- HELS STAL	Flange	£		3%	3 3 ⁷	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***	2%2	2% 2% 2%	2% 2% 1%	1% 1%	1%	***	
CHANNELS CHANNELS AMERICAN STAN Dimensions		br br	5	3.716 3.520 3.400	3.170 3.047 2.942	3.033 2.886 2.739 2.739	2.648 2.485 2.433	2.527 2.343 2.260	2.299 2.194 2.090	2.157 2.034 1.920	1.885	1.721	1.596 1.498 1.410	OF STEEL
		31~	Ē	* * *	***	****	***	***	***	***	**	۶. ۲.	***	
AM	Web	2		• * *	***	****	***	***	***	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**	**	***	
		Thickness Lu	=	0.716 0.520 0.400	0.510 0.387 0.282	0.673 0.526 0.379 0.240	0.448 0.285 0.233	0.487 0.303 0.220	0.419 0.314 0.210	0.437 0.314 0.200	0.325 0.190	0.321 0.184	0.356 0.258 0.170	AMERICAN INSTITUTE
		d g	Ē	15.00 15.00 15.00	12.00 12.00 12.00	10.00 10.00 10.00	8.6 8.8 8.8	8 8 8 8 8 8 8	7.00	6.00 6.00 6.00	5.00	4.00	3.00 3.00 3.00) Ū
		A	~.' 4	14.7 11.8 9.96	8.82 7.35 6.09	8.82 7.35 5.88 4.49	5.88 4.41 3.94	5.51 4.04 3.38	4.33 3.60 2.87	3.83 3.09 2.40	2.64	2.13	1.76 1.47 1.21	
		Desgnation		C 15x50 x40 x33.9	C 12×30 ×25 ×20.7	C 10x30 x25 x20 x15.3	C 9x20 x15 x13.4	C 8x18.75 x13.75 x11.5	C 7x14.75 x12.25 x 9.8	C 6×13 ×10.5 × 8.2	C 5x 9 x 6.7	C 4x 7.25 x 5.4	C 3x 6 x 5 x 4.1	
													0.1	_

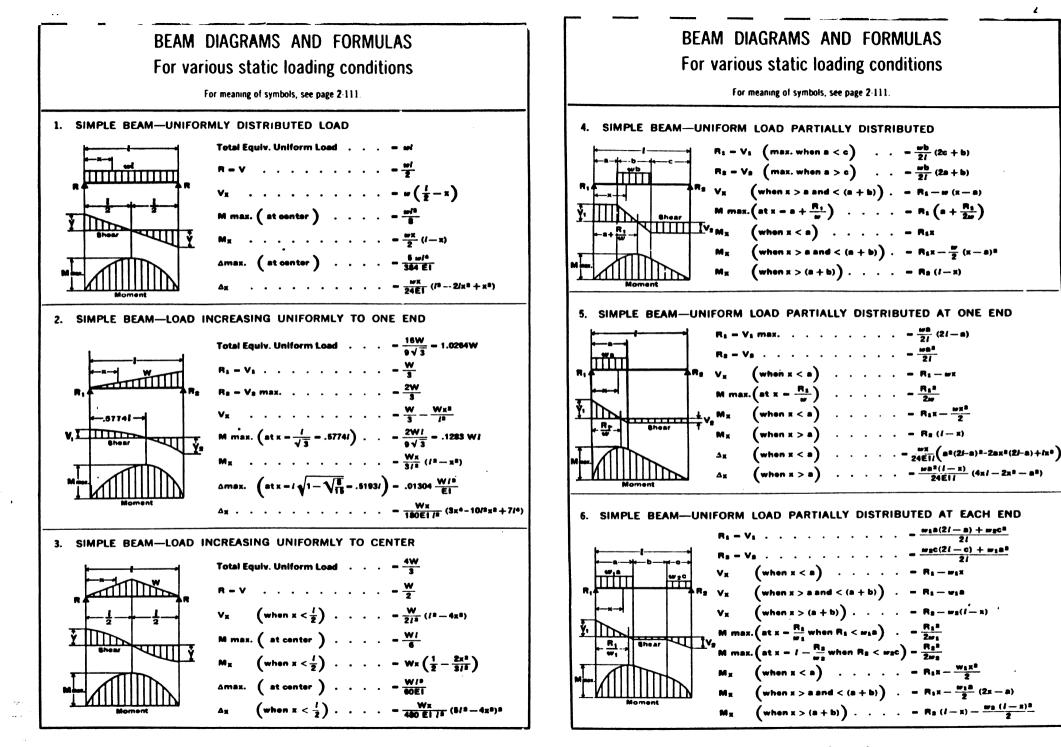
3

A-10

× > .	AKIS 2.2	ue I	8	0000	1.000	888	1.000	0.421 0.428 0.435	0.440		0.350 0.352	1.000	000	8	000		Τ.
	Š	•	2	1.17 1.17 1.17	1.18	1.18	8	0.867 0.866 0.864	0.870	0.877	0.759 0.767 0.772	0.973	0.975	0.983	0.9		accu
E N		x	£	1.86 1.82 1.78	1.7	3 3 3	31	1.12 1.00 1.03	81	176.0	0.763 0.763		1.52	1.43			gles in shaded rows may not be readily available. Availability is subject to rolling acc mulation and geographical location, and should be charked with material econterview
	۲.۲	•	Ē	1.80 1.81 1.83	58.1	1.86	2	1.12 1.12 1.13	1.15	1.17	0.972 0.988 0.996	1.49	1.51	3.5	1.57	<u> </u>	ject to
× *	AXIS Y.Y	s	n.J	8.57 7.63 6.66	5.14	4 .61 3 .53	2.97	2.97 2.55	2.08	3 1	1.23	5.17	4.53	3.16	2.42		dus si v
S		1	h.4	35.5 31.9 28.2	2.12	19.9 17.7 15.4	13.0	9.75 8.68 7.52 7.52	6.27 6.8	8 9	3.34	17.8	15.7	11.3	8.74		Availability is subject to rolling accu-
ual le gning	Π	y	'n	1.86 1.82 1.78	22.5	333	1.62	2.12	8	1.82	2.04 2.04 2.01		1.52	1.43	1.39		1.1
:S ineq desi	XX	•	In.	1.80 1.81 1.83		1.85		1.86	1.91	6. X .	1.92 1.94 1.95	1.49	1.51	3	1.56		lable
ANGLES Equal legs and unequal legs Properties for designing	X:X SIXV	s.	ln. ^J	8.57 7.63 6.66	815	9.53	2.97	7.15 5.31 5.31	9.83 9.83	3.32	4.24 3.24 2.73	5.17	4.53	3.16	2.42		dily ava
A egs a ertie:		-	<u>م</u>	35.5 31.9 28.2	22.1	19.9	13.0	27.7 24.5 21.1 19.3	17.4	13.5 4.11	16.6 12.9 10.9	17.8	15.7	11.3	8.74		be read
rop			۲. ۲	9.73 9.73	6.43 6.43	5 1 1 1 1 1 1 1 1 1 1		7.9 6.94 5.86	4.75	10.7	4.50 3.42 2.87	7.98	3.8	4.75	3.61		y not t
E	Weight	Loot Loot	ġ	37.4 33.1 28.7	21.9	17.2	121	27.2 23.6 20.0 18.1	16.2 14.3	10.3	15.3 11.7 9.8	27.2	20.0	16.2 14.2	12.3		ws ma
	-*	:	٤	***			F		-		1 % %	*	2		×.		ded ro
	Size and Thickness		Ē	X			•	*****		• Ž	×3 ¹ / ₂ × #	×	× 4	4.2	**		Angles in shaded rows may not be readily available
	ize and		-	Г6 Х6				9 	•		L6 x3	L 5 ×5				•	Angle

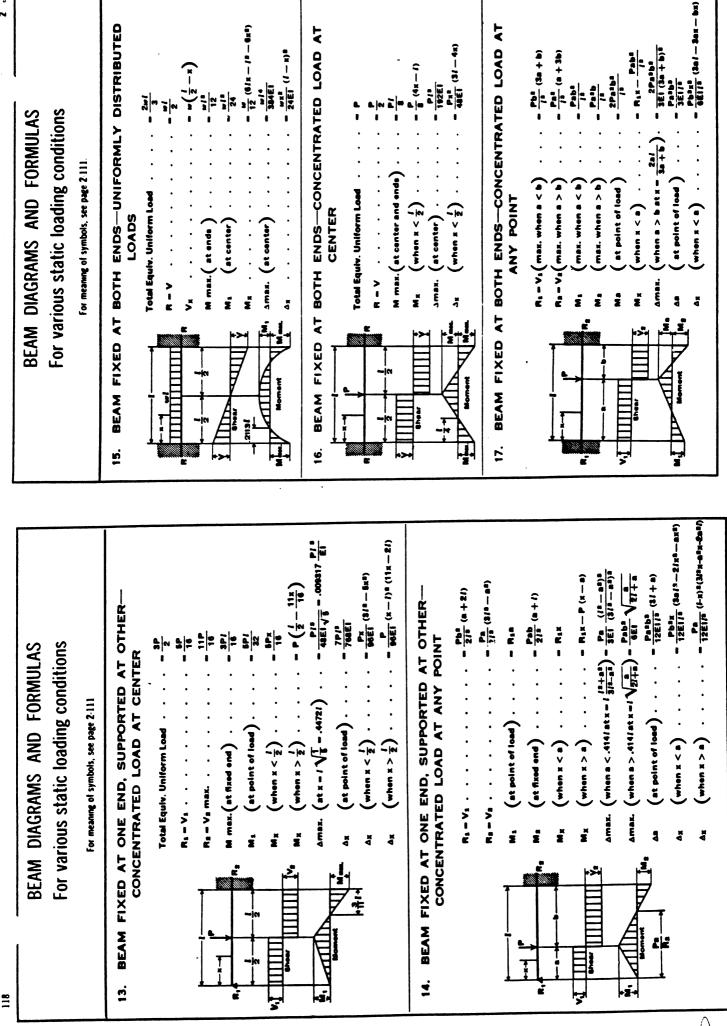
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

*		- 1	હે	1	ł	E	3	5		15	R	1M	162		1	1	2		2		5 9	E	154	3		5
		0 I	9	1	1					.73	9623	0.635		94.0	ļ	Ï						6.953	240	ŧ		ect. 1.9.1
			ડે	١	1		127	I	1 5	12	139	138	152	2	I	١			1	121		1	2	3		ation S
3-4 m		F, = 3	ð	1	1		0.990	I		0.913	0.823	0.831	0.690	0.638	١	1	1		1		0.784	0.754	0.668	0.563		Q_ is shown, the Tee complies with Specification Sect.
bes [E	\square		s	2.69	2.66	5.63	2.61	1.70	5 3	1.67	1.65	1.29	1.27	1.22	2.51	2.49	2.47		9.1	6	157	1.52	1.17	1.12		es with
AL TI / sha / ties	V-Y SUV	S	с Е	22.5	19.7	15.8	13.8	7.89	7.77	5.97	5.35	3.72	3.17	2.56	17.9	15.7	13.4		9.9	87.6	4.12	3.50	2.24	1.74		compli
STRUCTURAL TEES Cut from W shapes Properties		~	5	126	29	87.6	76.2	90.1	25.0	22.5	20.0	11.3	9.55	7.67	93.1	81.3	69.2 50 5		21.6	0.0	14.4	12.2	6.20	4.80		the Tee
TRU tut fr P		У	£	2.03	1.97	8	8.	2.26	2.20	2.16	2.12	2.33	2.29	2.39	1.76	1.70	1.63	3	3.5	6 8		1.88	2.02	2.09		hown.
SO	X-X SIX		s	2.60	2.59	2.55	2.54	2.74	2.72	2.71	2.70		2.76		2.28		2.24		2.41			2.41		2.47		9. 5 2
	V	S	m . ³	15.9	14.1	11.2	6.83	11.2	1.01	8.63	1.79	7.77	6.73	6.21	11.4	10.1	8.59		1.7	0./0	5.35	5.05	4.64	4.09		
		1	ب .	119		82.4	71.8	78.2))) 	59.5	53.5	52.1	44.8	40.1	76.8	67.2	595.9		48.7	27.5	33.1	30.6	27.4	23.5		slue of
		हान		14.5	15.9	19.2	21.4	18.7	22.0	23.2	25.3	25.1	28.4	29.5	14.5	16.0	18.2		19.1	23.4	26.2	26.9	28.9	31.4		Where no value of Ce' or
	Nominal	Weight per Ft.	e	59.5	5		R	35.5	c.75	27.5	22	23	2	17.5	2	.44.5	38.5 33.5		592 587		2	8	15.5	13		Wer


		÷ š +	2	****	*****	11% 1%16 11%	1% 1% 1%	****	212°
	F								
		l'hickness ¢_/	s	1 2% 2% 2%	****	***	ا ** **	*****	**
	Ľ	1		1.060 0.940 0.870 0.770 0.680	0.810 0.750 0.695 0.630 0.570	0.605 0.525 0.425	0.985 0.875 0.760 0.765	0.715 0.630 0.565 0.565 0.430	0.440 0.345
	flange			%11 %11 %11	*****	000	10% 10% 10%	**	5 ¹ /2 5 ¹ /2
		Width br	Ē	11.265 11.200 11.145 11.090 11.035	7.635 7.590 7.555 7.530 7.495	6.060 6.015 6.000	10.425 10.365 10.295 10.235	7.120 7.070 7.035 6.995 6.985	5.525 5.500
STRUCTURAL TEES Cut from W shapes Dimensions		Stem of	h.²	6.21 5.53 4.97 4.41 3.87	4.57 4.13 3.78 3.53 3.19	3.25 2.82 2.65	4.96 4.40 3.76 3.23	3.53 3.09 2.78 2.34	2.18
UCTURAL T from W sha Dimensions		2 <mark> 6</mark>	s	****	****	***	****	****	**
om	Stem	See .	s	*****	*****	***	****	ร้สสร์ร์	2 2 2
ut fr Di		Thickness Lu		0.655 0.590 0.535 0.480 0.480	0.495 0.450 0.415 0.390 0.395	0.360 0.315 0.300	0.585 0.525 0.455 0.395	0.430 0.380 0.345 0.305 0.295	0.255 0.250
SO	F	_		****	******	6 6 %	**** **** ***	27 27 27 27 27 27 27 27 27 27 27 27 27 2	8 7%
	Cepth	4 <u>3</u> 4	2	9.485 9.365 9.295 9.195 9.105	9.235 9.175 9.120 9.055 8.995	9.030 8.950 8.850	8.485 8.375 8.260 8.165	8.215 8.130 8.065 8.005 7.930	7.845 7.845
		Area	~'5	17.5 15.6 14.3 12.7 11.2	10.4 9.55 8.82 8.10 7.33	6.77 5.88 5.15	14.7 13.1 11.3 9.84	8.38 7.37 5.89 5.28	3.4.
		Desig- nation		T 9x59.5 x53 x63 x63 x63 x63 x38	rt 9x35.5 x32.5 x32 x30 x27.5 x27.5	rt 9x23 x20 x17.5	rf 8x50 x44.5 x38.5 x38.5 x38.5	rf 8 x28.5 x25 x23 x22 x22 x20 x18 x18	r a x15.5 x13
	>	Desig- nation				WT 9x23 x20 x17.5		WT &x28.5 x25 x22.5 x20 x20 x18	WT &x15.5 x13

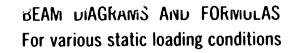
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

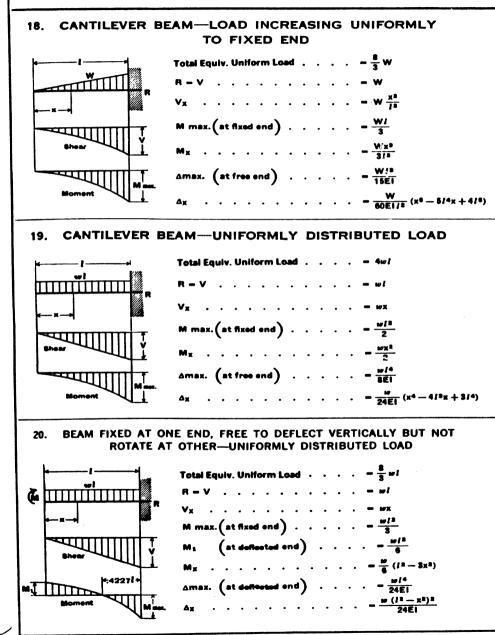
• •

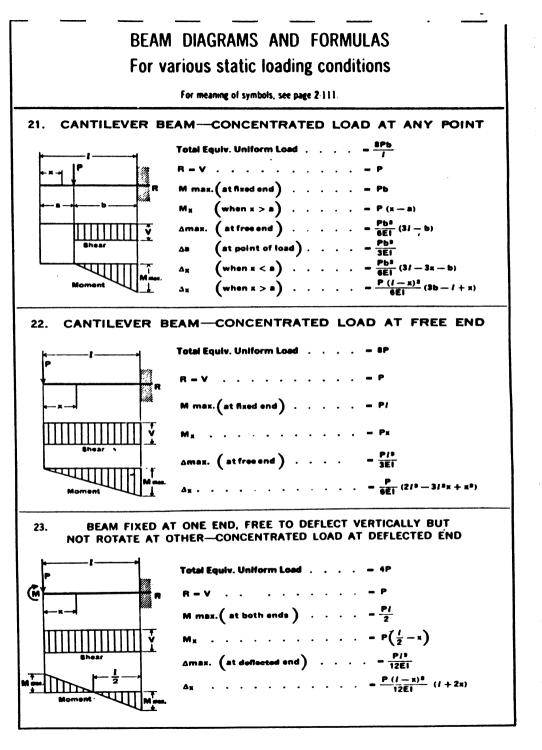

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

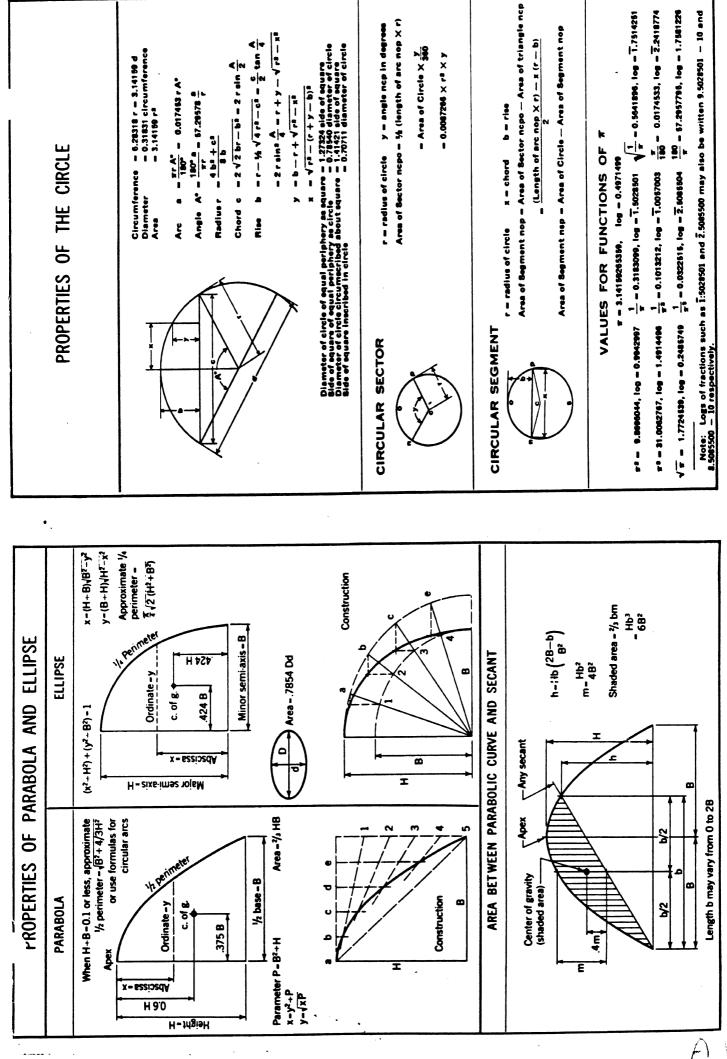
X

BEAM DIAGRAMS AND FORMULAS For various static loading conditions For meaning of symbols, see page 2:111.	10. SIMPLE BEAMTWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED northing and a start		12. BEAM FIXED AT ONE END, SUPPORTED AT OTHER- UNIFORMLY DISTRIBUTED LOAD Total Equiv. Uniform Load $\cdots = \frac{1}{2}$ $n_1 = v_1$ $n_2 = v_4$ max. $n_3 = v_4$ max. $n_{10} = \frac{1}{2}$ $n_{10} = \frac{1}{2}$
BEAM DIAGKAMS AND FORMULAS For various static loading conditions For meaning of symbols, see page 2.111.	7. SIMPLE BEAM-CONCENTRATED LOAD AT CENTER Total Equiv. Uniform Load $\dots \dots	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9. SIMPLE BEAMTWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED Total Equiv. Uniform Load = ⁹ Pa nax. (between loads) = ⁹ Pa max. (between loads) = Pa max. (between loads) = Pa max. (at center) = Pa (it = at : (at e-at i) dx (when x < a) = Pa (at enter) =

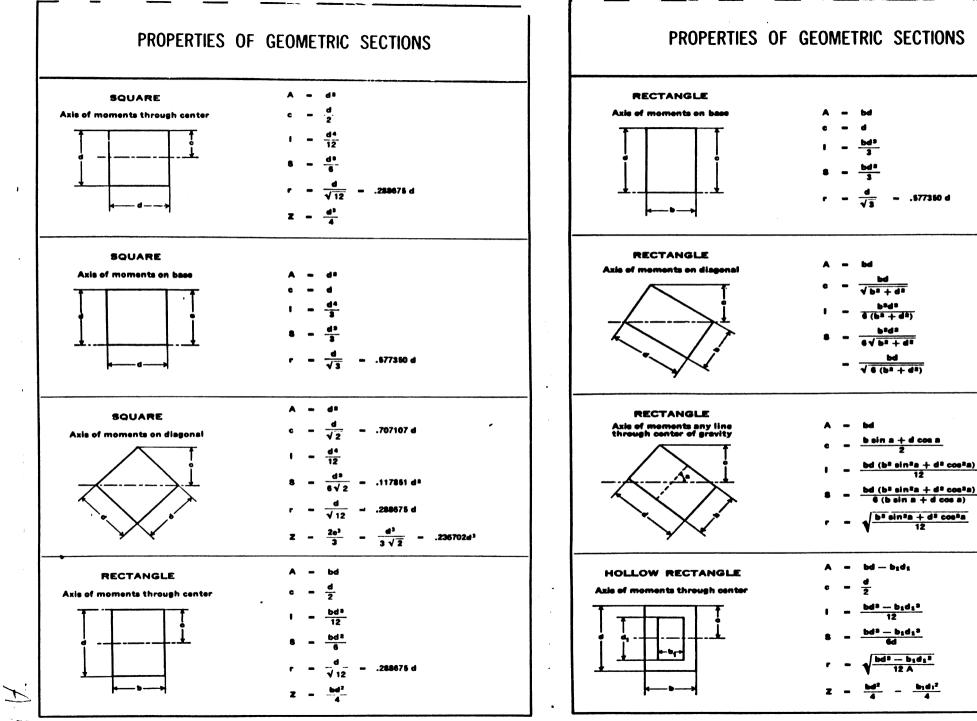

•

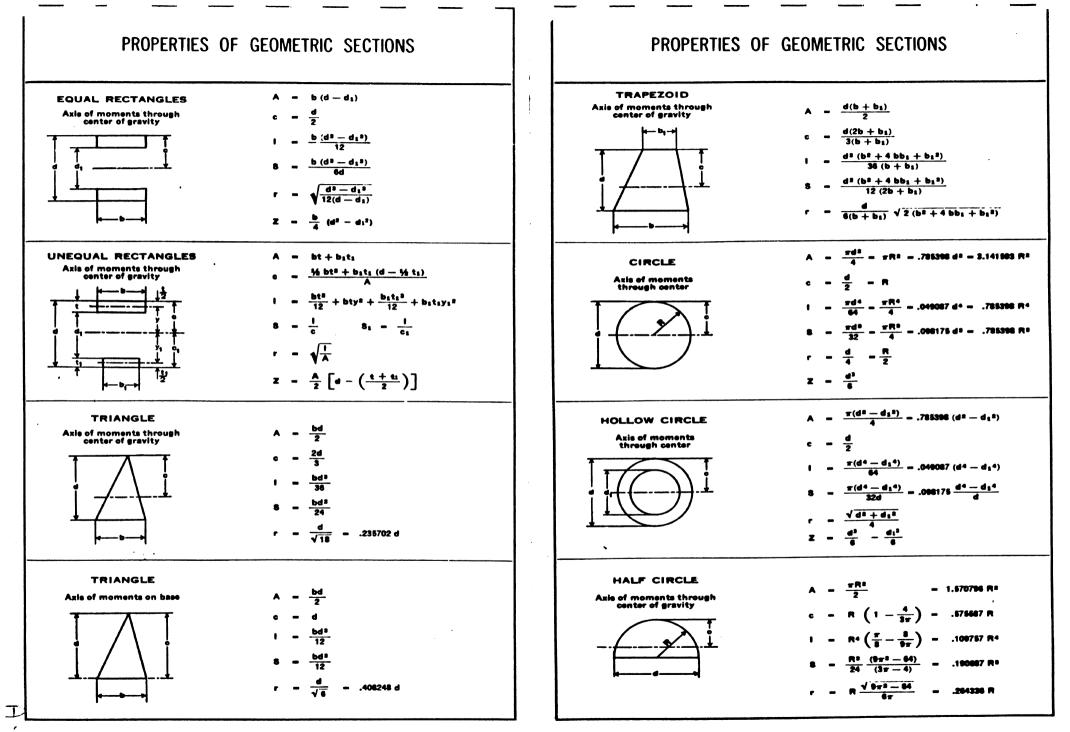

AMERICAN INSTITUTE OF STEEL COMETENION

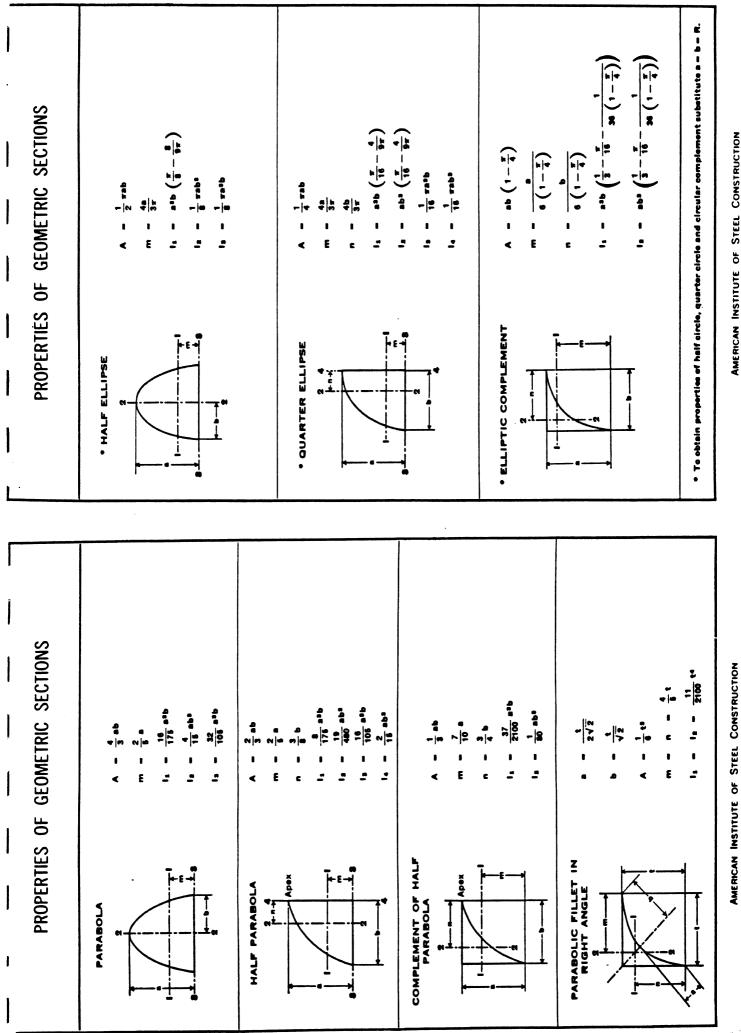

5 A


AMERICAN INSTITUTE OF STEEL CONSTRUCTION

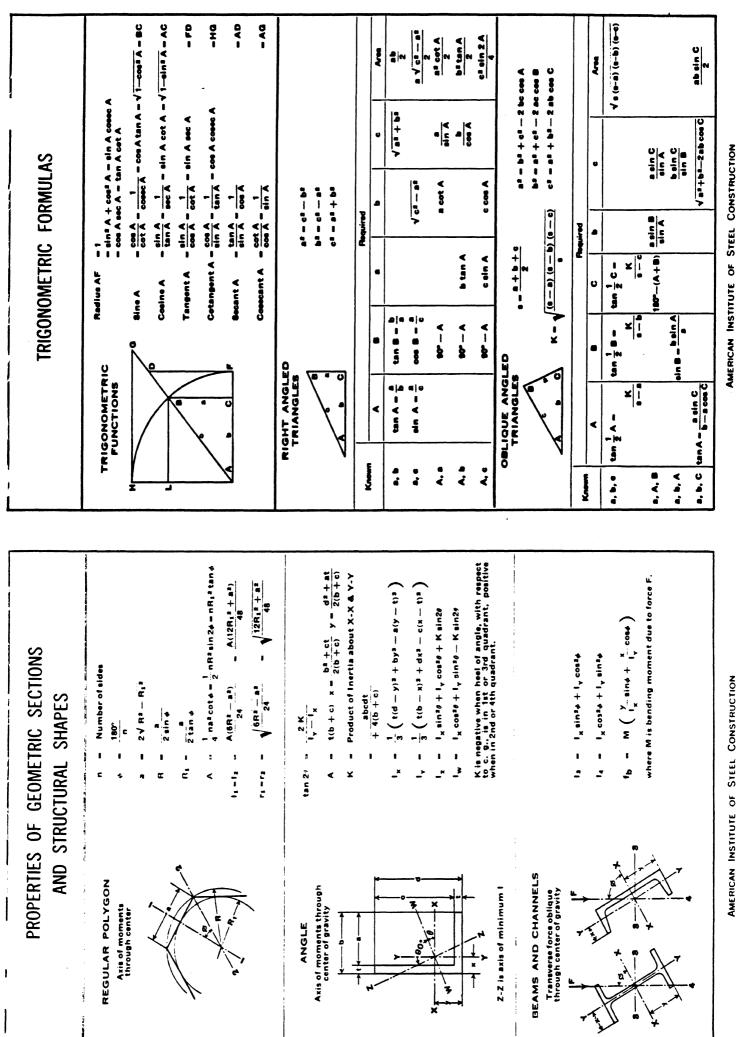
For meaning of symbols, see page 2-111.






AMERICAN INSTITUTE OF STEEL CONSTRUCTION

AMERICAN INSTITUTE OF STEEL CONSTRUCTION


ૼૼૢ

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

, Ç $\widehat{\mathbf{D}}$.

A-31

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Fraction Katha Decimal Millimeters Millimeters Fraction Katha Decimal Millimeters Fraction Katha Decimal Millimeters $1,13$ 2 0.08075 1.981 1.981 1.981 $1.4.081$ <td< th=""><th></th><th></th><th></th><th>DEC For wi</th><th>DECIMALS OF AN INCH For each 64th of an inch With Millimeter Equivalents</th><th>OF AN INCH 4th of an inch eter Equivalents</th><th>ts uch</th><th></th><th></th></td<>				DEC For wi	DECIMALS OF AN INCH For each 64th of an inch With Millimeter Equivalents	OF AN INCH 4th of an inch eter Equivalents	ts uch		
11 015655 0.397 1131 3155 51565 176 4 00555 1.191 1126 31155 51565 176 4 00555 1.191 1126 31155 51565 51565 176 7 1003755 1.2381 1126 3.175 3.6 50375 516655 111 1111 1118755 1.19875 2.7381 1176 3.6655 5.1365 3.175 3.6 603755 5.93975 111 111111111875 1.12875 3.1755 3.175 3.6 0.0 6.530755 6.53375 6.93375 111 $111111111111111111111111111111111111$	I	Fraction	Kathe	Decimal	Millimeters (Approx.)	Fraction	Kethe .	Decimal	Millimeters (Approx.)
V_{Aa} Z 0.0125 0.794 V_{Aa} 3 53125 V_{Aa} 2 0.0875 1.190 V_{Aa} 3 59125 V_{Aa} 4 0.66875 1.190 V_{Aa} 3 50125 V_{Aa} 5 0.078125 1.190 V_{Aa} 3 500375 V_{Aa} 6 0.078125 1.190 V_{Aa} 3 5.00375 V_{Aa} 6 0.078125 1.190 V_{Aa} 3 5.00375 V_{Aa} 10 110625 3.572 V_{Aa} 4 600375 V_{Aa} 112 111055 V_{Aa} 4 600375 V_{Aa} 112 111055 V_{Aa} 4 607375 V_{Aa} 112 110555 V_{Aa} 4 607375 V_{Aa} 10 2.18055 V_{Aa} 4 607375 V_{Aa} 10 2.18055 V_{Aa} 4 607		:	1	.015625	0.397	:	33	.515625	13.097
1.10 1.100 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.10000 </td <td></td> <td>¥32</td> <td>~</td> <td>.03125</td> <td>0.794</td> <td>28/11</td> <td>2</td> <td>.53125</td> <td>13.494</td>		¥32	~	.03125	0.794	28/11	2	.53125	13.494
$\frac{1}{10}$ </td <td></td> <td><u>بر</u>ه</td> <td>r) 4</td> <td>.046875 .0625</td> <td>1.191 1.588</td> <td></td> <td>ጜ ጽ</td> <td>.546875 .5625</td> <td>13.891 14.288</td>		<u>بر</u> ه	r) 4	.046875 .0625	1.191 1.588		ጜ ጽ	.546875 .5625	13.891 14.288
Y_{44} 6 (09375 2.381 Y_{44} 8 (09375 2.381 Y_{44} 8 (09375 2.381 Y_{44} 8 (09375 2.381 Y_{44} 8 (09375 2.3175 Y_{44} 8 (09375 2.3175 Y_{44} 9 (109375 2.3069 Y_{44} 8 (59375 (693375 (69375 (69375 </td <td></td> <td>:</td> <td>ŝ</td> <td>.078125</td> <td>1.984</td> <td></td> <td>15</td> <td>578125</td> <td>AGA AT</td>		:	ŝ	.078125	1.984		15	578125	AGA AT
1 109375 2.778 1.25 3.175 56 60335 $7x$ 100 15825 3.175 3.175 56 60055 60055 $7x$ 10 11855 3.1572 1140655 3.572 1140 66555 3.060 $7x_{10}$ 11 100155 3.572 1140 66555 66655 66735 71805		¥.a	9 19	.09375	2.381		5 8 9	54375	14.004
N_6 8 .125 3.175 N_6 40 675 Y_{Ya} 10 115675 3.572 41 6.0055 Y_{Ya} 10 115675 3.572 41 6.6055 Y_{Ya} 10 115675 3.572 41 6.6055 Y_{Ya} 11 113 .203125 5.159 41 6.6055 Y_{Ya} 13 .203125 5.556 Y_{Ya} 41 .60055 Y_{Ya} 16 .230375 5.556 Y_{Ya} 41 .00 .65 Y_{Ya} 16 .230375 5.556 Y_{Ya} 49 .703175 Y_{Ya} 18 .23175 7.938 Y_{Ya} 49 .703125 Y_{Ya} 28 27.33375 7.938 Y_{Ya} 40 .665 Y_{Ya} 28 28 19 .703155			~	.109375	2.778	ŧ :	3 6 £	.609375	15.478
9 140625 3.572 1 $$ 1 $$ 1 $$ 1 $$ 1 $$ 1 $$ 1 $$ 1 $$ 1 $$ 1 $$ 1 $$ 1 $$		\$	80	.125	3.175	*	40	.625	15.875
γ_{22} 10 .156.25 3.969 γ_{12} 4.763 γ_{12} 6.6625 γ_{12} 111 .171875 4.763 γ_{12} 4.763 γ_{12} 6.6625 γ_{12} 12 .171875 4.763 γ_{14} 4.2 6.6625 γ_{12} 13 .203125 5.159 \cdots 43 6.11875 γ_{12} 16 .21875 5.556 γ_{24} 46 .71875 γ_{14} 16 .203125 5.159 \cdots 49 .790 γ_{14} 16 .203125 5.556 γ_{24} 49 .793 γ_{14} 16 .203055 5.7144 γ_{24} .790 .793 γ_{14} .20125 7.144 γ_{24} .790 .793 .793 γ_{14} .20125 7.144 γ_{24} .790 .796 .790 γ_{14} .20125 17.44 γ_{24} .793 .793		:	6	.140625	3.572	:	41	.640625	16.272
11 $$		22%	9	.15625	3.969	21/32	42	.65625	16.669
12 1000 4.763 176 44 6675 13 203125 5.159 776 44 6675 14 21875 5.556 776 44 6675 15 224375 5.556 776 46 778125 16 226675 6.747 77 47 778375 17 266675 6.747 774375 47 778375 17 256675 6.747 774375 47 778375 17 266675 7.74375 7.7641 779 778075 19 2266875 7.7343 77938 7794 7793675 20 3175 8.7311 7754 779475 779375 21 2296875 8.1344 7756756 81375 81255 22 34375 8.7311 779475 81255 81255 23 359375 9.126 779475 900525 900525 23 3590525 <td< td=""><td></td><td>:,</td><td>=:</td><td>.171875</td><td>4.366</td><td>:</td><td>43</td><td>.671875</td><td>17.066</td></td<>		:,	=:	.171875	4.366	:	43	.671875	17.066
13 .203125 5.159 45 .703125 16 .250 6.350 $\frac{1}{3}$, $\frac{1}{3}$ 46 .71875 17 .234375 5.953 47 .74375 16 .250 6.350 $\frac{1}{3}$, $\frac{1}{3}$ 46 .766655 17 .265625 6.747 49 .750 18 .256625 6.747 49 .766655 18 .265625 6.747 49 .766655 18 .265625 7.144 $\frac{7}{7}$, $\frac{1}{2}$ 49 .766655 18 .265635 7.144 $\frac{7}{7}$, $\frac{1}{2}$ 49 .766655 20 .3155 7.938 $\frac{1}{7}$, $\frac{7}{2}$ 50 .79125 21 .238125 8.334 53 .828125 23 .33955 9.128 55 .99335 23 .359375 9.128 55 .99335 23 .36555 11.1509 55 .995		¥16	12	.1875	4.763	1%	4	-6875	17.463
14 .218/5 5.556 7_{45} 46 .71875 15 .234375 5.553 47 .750 17 .265625 6.747 47 .750 18 .28055 6.747 47 .750 19 .286575 6.747 49 .766555 19 .286675 7.541 49 .766555 19 .286675 7.541 49 .766555 20 .3125 7.938 8.334 51 .766555 21 .236375 8.334 53 .828125 .81255 21 .326125 8.334 53 .82655 .675 22 .34375 9.128 756 .80375 .81255 23 .359375 9.525 7 .55 .80375 .81255 23 .35655 10.319 .75 .55 .90555 .90555 23 .350625 9.922		:	13	.203125	5.159	:	45	.703125	17.859
15 $.234375$ 5.963 $$ 4.7 $.734375$ 16 $.250$ 5.963 $$ 4.8 $.750$ 17 $.265625$ 6.747 $$ 4.8 $.750$ 18 $.28125$ 7.144 74_{242} 59 $.78125$ 19 $.296875$ 7.144 74_{242} 59 $.78125$ 20 $.3125$ 7.938 1.46 $.750$ $.78125$ 21 $.238125$ 8.334 $$ 51 $.296875$ 22 $.34375$ 9.128 $$ 52 $.8134$ 22 $.34375$ 9.128 $$ 55 $.8133$ 23 $.359375$ 9.128 $$ 56 $.875$ 23 $.390625$ 9.922 $$ 56 $.99375$ 24 $.375$ 9.128 $$ 56 $.990625$ 28 $.390625$ 7.421875 11.1113 1.766 $.990525$ 28 $.4375$ 11.1906 <td></td> <td>/32</td> <td>14</td> <td>.21875</td> <td>5.556</td> <td>24,22</td> <td>4</td> <td>.71875</td> <td>18.256</td>		/32	14	.21875	5.556	24,22	4	.71875	18.256
16 250 6360 χ_{4} 48 750 17 266625 6747 49 766 18 266625 6747 49 766 19 266675 6747 49 766 19 266675 6747 49 766 19 266675 6747 49 766 20 268175 7938 134.6 51 796875 21 28125 8334 51 796875 22 34375 9.128 53 23 9.128 53 23 9.128 55 23 9.128 55 23 9.128 55 23 9.2 55		::	15	.234375	5.953	:	47	.734375	18.653
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		*	16	.250	6.350	*	89	.750	19.050
18 $.28125$ 7.144 $^{3}4_{24}$ 50 $.78125$ 20 $.3125$ 7.541 $$ 51 $.796875$ 21 $.328125$ 7.541 $$ 51 $.796875$ 21 $.328125$ 8.334 $$ 51 $.828125$ 22 $.39375$ 8.731 $$ 53 $.828125$ 22 $.39375$ 8.731 $$ 53 $.828125$ 22 $.39375$ 9.128 $$ 53 $.828125$ 23 $.395375$ 9.128 $$ 56 $.893375$ 23 $.395375$ 9.128 $$ 56 $.893375$ 23 $.3755$ 9.228 $$ 56 $$ 26 $.40555$ 10.716 $$ 57 $$ $$ 28 $.4375$ 11.113 $$ $$ $$ $$ $$ 28 $.4375$ 11.100 $$ $$ $$ $$ $$:	17	.265625	6.747	:	64	.765625	19.447
19 68675 7.541 $$ 51 $.796675$ 20 125 7.938 1.46_{10} 52 $.8125$ 21 238175 8334 $$ 53 $.828125$ 22 339375 9128 $$ 53 $.828125$ 22 39375 9128 $$ 53 $.828125$ 23 $$ 9.555 $$ 53 $.828125$ 23 $$ 9.555 $$ 56 $.893375$ 23 $$ 9.555 $$ 57 $.80655$ 26 $$ 9.922 $$ 57 $.899375$ 27 $$ 9.922 $$ 9.922 $$ 9.90625 28 $$ 1016 $$ 9.7 9.90625 $$ 28 $$ 111906 $$ 9.7 $$ 9.90625 29 $$ $$ 9.7 $$ 9.90625 $$		5% 2	18	.28125	7.144	24,22	3	.78125	19.844
20 .3125 7.938 14,4 52 .8125 21 .328125 8.334 53 .828125 22 .34375 8.731 2% 53 .828125 22 .34375 8.731 2% 53 .828125 23 .359375 9.128 53 .893375 23 .359375 9.128 55 .893375 23 .359375 9.128 55 .893375 23 .359575 9.225 % 55 .893375 23 .390625 9.922 57 .899375 26 .4055 10.716 57 .890625 27 .421875 11.113 1% 60 .9375 28 .4375 11.1906 59 .921875 30 .46375 11.1906 60 .9375 31 .444375 11.1906 63 .964375 32 .500 12.700		•	19	. 296875	7.541	:	51	.796875	20.241
21 .328125 8.334 53 .828125 22 .34375 8.731 ?? ₆₆ 54 .84375 23 .359375 9.128 55 .69375 24 .375 9.525 % 55 .89375 26 .395375 9.128 55 .89375 28 .3755 9.225 % 55 .89375 28 .30625 9.922 57 .890625 27 .421875 110.716 59 .90625 28 .4375 11.113 1% 60 .9375 29 .453125 11.106 59 .921875 30 .46875 11.106 60 .9375 31 .46475 12.303 63 .96875 32 .500 12.303 64 1.000		×	ଛ	.3125	926.7	.¥.	25	.8125	20.638
22 $.34375$ 8.731 $?'_{A2}$ 54 $.94375$ 23 $.359375$ 9.128 $$ 55 $.89375$ 24 $.375$ 9.525 $?'_{A}$ 56 $.89375$ 25 $.390625$ 9.525 $?'_{A}$ 55 $.890625$ 25 $.390625$ 9.922 $$ 57 $.990625$ 26 $.40525$ 10.716 $$ 59 $.921875$ 27 $.421875$ 11.113 $1''_{Y_{16}}$ 50 $.921875$ 28 $.4375$ 11.113 $1''_{Y_{16}}$ 50 $.921875$ 29 $.4375$ 11.106 $$ 61 $.953125$ 30 $.46875$ 11.906 $$ 62 $.96875$ 31 $.46875$ 11.906 $$ 64 1.000 32 .500 12.700 1 $$ 64 1.000		:	21	.328125	8.334	:	53	.828125	21.034
23 .359375 9.128 55 .89375 24 .375 9.525 γ_6 56 .875 25 .390625 9.922 57 .890625 26 .390625 9.922 57 .890625 26 .30625 9.922 57 .890625 26 .4055 10.716 59 .921875 27 .421875 11.113 $1\gamma_{46}$ 60 .9375 28 .4375 11.106 61 .953125 30 .46875 11.906 $3\gamma_{52}$ 62 .96875 31 .484375 12.303 63 .96875 32 .500 12.700 1 64 1.000		56/1	22	.34375	8.731	27/32	25	.84375	21.431
-3/3 $-3/2$			2	.359375	9.128	:,	18 1	.859375	21.828
25 .390625 9.922 57 .890625 26 .40625 10.319 7%2 58 .90625 27 .421875 10.716 59 .901875 28 .4375 11.113 1%6 60 .9375 29 .4375 11.113 1%6 60 .9375 29 .463125 11.509 61 .953125 30 .464375 12.303 61 .953125 31 .484375 12.303 63 .96875 32 .500 12.700 1 64 1.000		R	5	c/c.	C7C.6	R	8	C/8.	27.72
26 40625 10.319 7%z 58 .90625 27 421875 10.716 59 .921875 28 .4375 11.113 1%e 60 .9375 29 .453125 11.509 61 .953125 30 .46875 11.906 3%z 62 .96875 31 .484375 12.700 1 63 .96875 32 .500 12.700 1 64 1.000		:	ĸ	. 390625	9.922	:	22	.890625	22.622
27		26%1	× 1	. 40625	10.319	24/32	8	.90625	23.019
28 .43/5 11.113 1% 60 .9375 29 .453125 11.509 61 .953125 30 .46875 11.906 3%2 62 .96875 31 .484375 12.303 63 .96875 32 .500 12.700 1 64 1.000		:;	12	.421875	10.716	:	66	.921875	23.416
29 .453125 11.509 61 .953125 30 .46875 11.906 31 / ₃₂ 62 .96875 31 .488375 12.303 63 .984375 32 .500 12.700 1 64 1.000		%	RZ	.4375	11.113	5×	8	. 9375	23.813
30 .46875 11.906 $3V_{32}$ 62 .96875 31 .484375 12.303 63 .984375 32 .500 12.700 1 64 1.000		:	29	.453125	11.509	:	61	.953125	24.209
. 31 .484375 12.303 63 .984375 32 .500 12.700 1 64 1.000		25%1	ଛ	.46875	11.906	26/16	62	.96875	24.606
		: 1		.484375	12.303		69 5	.984375	25.003
		r	*	<u>.</u>	m/.71	-4	5	n	M4.C2

.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DECIMALS OF A FOOT For each 32nd of an inch

DECIMALS OF A FOOT For each 32nd of an inch

	nch	0	1	2					Inch	6	7	8	9	10	11
(0	.0833	. 1667	.2500	. 3333	.4167		0	.5000	.5833	.6667	.7500	.8333	. 91
	1/302	.0026	.0859	. 1693	.2526	. 3359	.4193		¥32	.5026	.5859	.6693	.7526	.8359	.91
t	Xe ·	.0052	.0885	.1719	.2552	. 3385	.4219	1	76	.5052	.5885	.6719	.7552	.8385	.92
	1/22	.0078	.0911	.1745	.2578	.3411	.4245	4	¥32	.5078	.5911	.6745	.7578	.8411	.92
1	%	.0104	.0938	.1771	.2604	. 3438	.4271		%	.5104	.5938	.6771	.7604	.8438	.92
1	732	.0130	.0964	.1797	.2630	. 3464	.4297		¥32	.5130	.5964	.6797	.7630	.8464	. 92
	Yie	.0156	.0990	. 1823	.2656	.3490	.4323		¥16	.5156	.5990	.6823	. 7656	.8490	.93
	1/32	.0182	. 1016	.1849	.2682	.3516	.4349		V32	.5182	.6016	.6849	.7682	.8516	.93
	*	.0208	.1042	.1875	.2708	.3542	.4375	۲.	14	.5208	.6042	.6875	.7708	.8542	.9
	‱	.0234	.1068	.1901	.2734	. 3568	.4401		¥32	.5234	.6068	.6901	.7734	.8568	.94
	716	.0260	.1094	.1927	.2760	.3594	.4427		ħs	.5260	.6094	.6927	.7760	.8594	`.9
	1732	.0286	.1120	. 1953	.2786	.3620	.4453		1/32	.5286	.6120	.6953	.7786	.8620	.9
	*	.0313	.1146	.1979	.2812	. 3646	.4479		*	.5313	.6146	.6979	.7813	.8646	.9
	17/12	.0339	.1172	.2005	.2839	.3672	.4505	I I	1732	.5339	.6172	.7005	.7839	.8672	.9
	%e	.0365	.1198	.2031	.2865	. 3698	.4531		ጞዸ	.5365	.6198	.7031	.7865	.8698	.9
	19/22	.0391	.1224	.2057	.2891	. 3724	.4557	,	19/32	.5391	.6224	.7057	. 7891	.8724	9
	%	.0417	.1250	.2083	.2917	. 3750	.4583		1/2	.5417	.6250	.7083	.7917	.8750	.9
	17/32	.0443	.1276	.2109	.2943	. 3776	.4609		17/32	.5443	.6276	.7109	.7943	.8776	.9
	% 6	.0469	.1302	.2135	.2969	.3802	.4635		%s	.5469	.6302	.7135	.7969	.8802	.9
	19/32	.0495	.1328	.2161	.2995	. 3828	.4661		19/32	.5495	.6328	.7161	.7995	.8828	.9
	%	.0521	.1354	.2188	.3021	. 3854	.4688		%	.5521	.6354	.7188	.8021	.8854	.9
1	21/32	.0547	.1380	.2214	.3047	. 3880	.4714		21/32	.5547	.6380	.7214	.8047	.8880	.9
	11/16 27/32	.0573 .0599	.1406	.2240 .2266	.3073 .3099	. 3906 . 3932	.4740 .4766		¹ /16 ²⁷ /32	.5573 .5599	.6406 .6432	.7240 .7266	.8073 .8099	.8906 .8932	.9 .9
	*	.0625	.1458	.2292	.3125	. 3958	.4792		*	.5625	.6458	.7292	.8125	. 8958	.9
	74 27/32	.0651	.1484	.2318	.3151	.3984	.4818		23/32	.5651	.6484	.7318	.8151	.8984	.9
	1715	.0677	.1510	.2344	.3177	.4010	.4844		13/16	.5677	.6510	.7344	.8177	.9010	.9
	20/32	.0703	.1536	.2370	. 3203	. 4036	.4870		21/32	.5703	.6536	.7370	.8203	. 9036	.9
	%	.0729	. 1563	.2396	.3229	.4063	.4896		%	.5729	.6563	.7396	.8229	.9063	.9
1	27/32	.0755	.1589	.2422	. 3255	.4089	.4922	1	2%32	.5755	.6589	.7422	.8255	.9089	.9
	19/16	.0781	. 1615	.2448	.3281	.4115	. 4948		15/16	.5781	.6615	.7448	.8281	.9115	.9
ł	31/32	.0807	. 1641	.2474	.3307	.4141	.4974		31/32	.5807	.6641	.7474	.8307	.9141	.9
								÷							
								J							

.

Ŀ

BASIC NAVAL ARCHITECTURE

Excerpts From

Rules for Building and Classing

Steel Vessels, 1987

Rules for Building and Classing Steel Vessels

is revised yearly and published by: American Bureau of Shipping 45 Eisenhower Drive P. O. Box 910 Paramus, New Jersey 07653-0910

copies may be ordered directly from the publisher.

SECTION 11

Pillars and Deck Girders

11.1 General

All tiers of beams are supported by pillars or by means which are not less effective. Tween-deck pillars are to be arranged directly above those in the holds, or effective means are to be provided for transmitting their loads to the supports below. Wide-spaced pillars are to be fitted in line with a keelson or intercostal double-bottom girder, or as close thereto as practicable; the seating under them is to be of ample strength and is to provide effective distribution of the load; lightening holes are to be omitted in floors and girders directly under wide-spaced hold pillars of large size. Special support is to be arranged at the ends and corners of deckhouses, in machinery spaces, at ends of partial superstructures and under heavy concentrated weights. For forecastle decks see also 17.9.

11.3 Stanchions and Pillars

11.3.1 Permissible Load

The permissible load W_a of a pillar or strut is to be obtained from the following equation which will, in all cases, be equal to or greater than the calculated load W as determined elsewhere in the Rules.

Long Tons

Metric Tons

 $W_{a} = (1.232 - 0.00452l/r)A$ $W_{a} = (7.83 - 0.345l/r)A$

l = unsupported span of the strut or pillar in cm or ft

r = least radius of gyration in cm or in.

 $A = \text{area of strut or pillar in cm}^2 \text{ or in.}^2$

11.3.2 Length

The length l for use in the equation is to be measured from the top of the inner bottom, deck or other structure on which the pillars are based to the under side of the beam or girder supported.

11.3.3 Calculated Load

The calculated load W for a specific pillar is to be obtained from the following equation.

Metric Tons	Long Tons
W = 0.715 bhs	W = 0.02bhs

b = mean breadth of the area supported, in m or ft

- h = height above the area supported as defined below, in m or ft
- s = mean length of the area supported, in m or ft

For pillars spaced not more than two frame spaces the height h is to be taken as the distance from the deck supported to a point 3.80 m (12.5 ft) above the freeboard deck.

For wide-spaced pillars, the height h is to be taken as the distance from the deck supported to a point 2.44 m (8 ft) above the freeboard deck, except in the case of such pillars immediately below the freeboard deck in which case the value of h is not to be less than given in Table 10.1, Column a; in measuring the distance from the deck supported to the specified height above the freeboard deck, the height for any 'tween decks devoted to passenger or crew accommodation may be taken as the height given in 10.3 for bridge-deck beams.

The height h for any pillar under the first superstructure above the freeboard deck is not to be less than 2.44 m (8 ft). The height h for any pillar is not to be less than the height given in 10.3 for the beams at the top of the pillar plus the sum of the heights given in the same paragraph for the beams of all complete decks and one-half the heights given for all partial superstructures above.

The height h for pillars under bulkhead recesses or the tops of tunnels is not to be less than the distance from the recess or tunnel top to the bulkhead deck at the centerline.

11.3.4 Special Pillars

Special pillars which are not directly in line with those above, or which are not on the lines of the girders, but which support the loads from above or the deck girders through a system of supplementary fore and aft or transverse girders, such as at hatch ends where the pillars are fitted only on the centerline, are to have the load W for use with the equation proportionate to the actual loads transmitted to the pillars through the system of girders with modifications to the design value of h as described in 1.3.3.

11.3.5 Pillars under the Tops of Deep Tanks

Pillars under the tops of deep tanks are not to be less than required by the foregoing. They are to be of solid sections and to have not less area than $1.015W \text{ cm}^2$ or $0.16W \text{ in}^2$, where W is obtained from the following equation.

W = 107bhs metric tons W = 0.03bhs long tons

- b = breadth of the area of the top of the tank supported by the pillar, in m or ft
- s = length of the area of the top of the tank supported by the pillar, in m or ft
- h = height as required by Section 10 for the beams of the top of the tank, in m or ft

11.3.6 Bulkhead Stiffening

Bulkheads which support girders, or pillars and longitudinal bulkheads which are fitted in lieu of girders, are to be specially stiffened in such manner as to provide supports not less effective than required for stanchions or pillars.

11.3.7 Attachments

Wide-spaced tubular or solid pillars are to bear solidly at head and heel and are to be attached by welding, properly proportioned on the aize of the pillar. The attachments of stanchices or pillars under bulkhead recesses, tunnel tops or deep-tank tops which may be subjected to tension loads are to be specially developed to provide sufficient welding to withstand the tension load.

11.5 Deck Cirders

Girders of the sizes required by 11.7, 11.9, and 11.11 are to be fitted elsewhere as required to support the beams; in way of bulkhead recesses and the tops of tanks they are to be arranged so that the unsupported spans of the beams do not exceed 4.57 m (15 ft). Additional girders are to be fitted as required under masts, king posts, deck machinery or other heavy concentrated loads. In way of deck girders or special deep beams the deck plating is to be of sufficient thickness and suitably stiffened to provide an effective part of the girder.

11.7 Deck Girders and Transverses Clear of Tanks

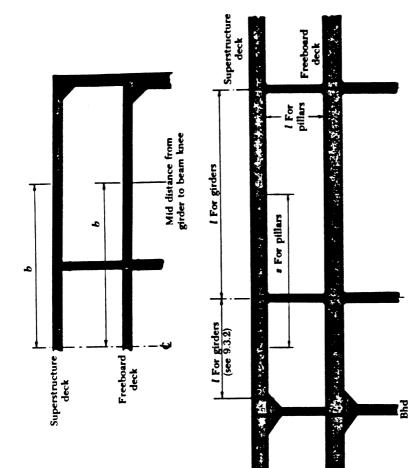
11.7.1 Deck Girders Clear of Tanks

Each deck girder clear of tanks, similar to that shown in Figure 11.1, is to have a section modulus SM as obtained from the following equation.

$$SM = 4.74 cbhl^2 cm^3$$
 $SM = 0.0025 cbhl^2 in.^3$

c = 1.0

- = mean breadth of the area of deck supported in m or ft
- h = height as required by Section 10 for the beams supported, in m or ft
 - l = span between centers of supporting pillars, or between pillar and bulkhead, in m or R. Where an effective bracket in accordance with 9.3.3 is fitted at the bulkhead, the length l may be modified.


11.7.2 Deck Transverses Clear of Tanks

Each deck transverse supporting a longitudinal deck beam is to have a section modulus SM as obtained from the equations in 11.7.1 where

c = 1.0

b = spacing of deck transverses in m or fl

FIGURE 11.1 Deck Girders and Pillars

- h = height as required by Section 10 for the beams supported, in m or ft
- l = span between supporting girders or bulkheads, or between girder and side frame, in m or ft. Where an effective bracket is fitted at the side frame, the length l may be modified. See 9.3.3.

11.7.3 Proportions

Girders are to have a depth of not less than 0.0583l (0.7 in. per ft of span l), the thickness is not to be less than 1 mm per 100 mm (.01 in. per in.) of depth plus 4 mm (0.16 in.), but is not to be less than 8.5 mm (0.34 in.) where the face area is 38 cm^2 (6 in.²), 10 mm with 63 cm² (0.40 in. with 10 in.²), 12.5 mm with 127 cm² (0.50 in. with 20 in.²) and 15 mm with 190 cm² (0.60 in. with 30 in.²).

11.7.4 Tripping Brackets

Tripping brackets arranged to support the flanges are to be fitted at every third frame where the breadth of the flanges on either side of the web exceeds 200 mm (8 in.), at every second frame where it exceeds 400 mm (16 in.) and at every frame where it exceeds 600 mm (24 in.).

11.7.5 End Attachments

End attachments of deck girders are to be effectively attached by welding.

11.9 Deck Girders and Transverses in Tanks

Deck girders and transverses in tanks are to be obtained in the same manner as given in 11.7.1 above, except the value of c is to be equal to 1.50 and the minimum depth of the girder is to be 0.0833l (1 in. per ft of span l). The minimum thickness and the sizes and arrangements of the stiffeners, tripping brackets and end connections are to be the same as given in 11.7.3, 11.7.4, and 11.7.5.

11.11 Hatch Side Girders

Scantlings for hatch side girders supporting athwartship shifting beams or supporting hatch covers are to be obtained in the same manner as deck girders (11.7 and 11.9). Such girders along lower deck hatches under trunks in which covers are omitted are to be increased in proportion to the extra load which may be required to be carried due to the loading up into the trunks. The structure on which the hatch covers are seated is to be effectively supported. Where deep coamings are fitted above decks, such as at weather decks, the girder below deck may be modified so as to obtain a section modulus in cm³ or in.³, when taken in conjunction with the coaming up to and including the horizontal coaming stiffener, of not less than 35% more than the required girder value as derived from 11.7.1. Where hatch side girders are not continuous under deck beyond the hatchways to the bulkheads, brackets extending for at least two frame spaces beyond the ends of the hatchways are to be fitted. Where hatch side girders are continuous beyond the hatchways, care is to be taken in proportioning their scantlings beyond the hatchway. Gusset plates are to be fitted at hatchway corners arranged so as to tie effectively the flanges of the side coamings and extension pieces or continuous girders and the hatch-end beam flanges both beyond and in the hatchway.

11.13 Hatch-end Beams

11.13.1 Hatch-end Beam Supports

Each hatch-end beam, similar to that shown in Figure 11.2, which is supported by a centerline pillar without a pillar at the corner of the hatchway, is to have a section modulus SM not less than obtained from the following equations.

a Where Deck Hatch-side Girders are Fitted Fore and Aft Beyond the Hatchways

 $SM = K(AB + CD)hl \text{ cm}^2$ $SM = 0.000527K(AB + CD)hl \text{ cm}^3$

b Where Girders are not Fitted on the Line of the Hatch Side Beyond the Hatchway

 $SM = KABhl \text{ cm}^3$ $SM = 0.000527KABhl \text{ in.}^3$

- A = length of the hatchway, in m or ft
- B = distance from the centerline to the midpoint between the hatch side and the line of the toes of the beam knees, in m or ft
- C = distance from a point midway between the centerline and the line of the hatch side to the midpoint between the hatch side and the line of the toes of the beam knees, in m or ft; where no girder is fitted on the centerline beyond the hatchway C is equal to B
- D = distance from the hatch-end beam to the adjacent hold bulkhead, in m or ft
- h = height for the beams of the deck under consideration as given in Section 10, in m or ft
- l = distance from the toe of the beam knee to the centerline plus 0.305 m (1 ft), in m or ft

$$K = 2.20 + 1.29(F/N)$$
 when $F/N \le 0.6$

- = 4.28 2.17(F/N) when F/N > 0.6
- N = one-half the breadth of the vessel in way of the hatch-end beam
- F = distance from the side of the vessel to the hatch side girder

11.13.2 Weather-deck Hatch-end Beams Weather-deck hatch-end beams which have deep coamings above deck for the width of the hatch may have the flange area reduced from a point well within the line of the hatch side girder to approx- imately 50% of the required area at the centerline; in such cases it is recommended that athwartship brackets be fitted above deck at the ends of the hatch-end coaming.	11.13.3 Depth and Thickness The depth and thickness of hatch-end beams are to be similar to those required for deck girders by 11.7.3.	11.13.4 Tripping Brackets Tripping brackets arranged to support the flanges are to be located at intervals of about 3 m (10 ft).	11.13.5 Brackets Brackets at the ends of hatch-end beams are to be generally as de- scribed in 9.3.3. Where brackets are not fitted, the length <i>l</i> is to be measured to the side of the vessel and the face plates or flanges on the beams are to be attached to the shell by heavy horizontal brackets extending to the adjacent frame.	11.14 Container Loading	Where it is intended to carry containers, the structure is to comply with 10.10.	11.15 Higher-strength Materials	11.15.1 General In general, applications of higher-strength materials for deck girders and deck transverses are to meet the requirements of this section, but may be modified as permitted by the following paragraphs. Cal- culations are to be submitted to show adequate provision to resist buckling. Longitudinal members are to be of essentially the same material as the plating they support.	11.15.2 Girders and Deck Transverses Each girder and deck transverse of higher-strength material, in association with the higher-strength plating to which they are attached, are generally to comply with the requirements of the appropriate preceding paragraphs of this section and is to have a section modulus SM_{ha} not less than obtained from the following equation.	$SM^{ha} = SM(Q)$	SM = required section modulus in ordinary-strength material as determined elsewhere in this section Q = as defined in 6.13.3
FIGURE 11.2 Hatch-end Beams €	305 mm (1 ft)	305 mm (1 ft)				A more than the second strategy with the second strategy of the second strategy of the second strategy and second strategy second strateg	Mid-distance between			

A-28

.

•

•

•

,

ĸ

•

÷

,

.

·

.

BASIC NAVAL ARCHITECTURE

Unit Number:1Title:IntroductionTape Running Time: $44^M \ 45^S$ Reading Assignment:NoneAdditional References:None

Scope:

In this unit the course is introduced to the students with a presentation of the specific objectives of the course <u>as applied to this particular class</u>. The text is introduced. Required student background is discussed. Reactions to the video diagnostic test are solicited. Required materials are described.

Key Points to Emphasize:

- 1. Identify instructor's name and times and place where he will be available for consultation.
- 2. Introduce title of course, the time and place for classes, and specific objectives of the course as applied to this particular class.
- 3. Play the Unit 1 video tape.
- 4. Announce how and where the course text, <u>Modern Ship Design</u>, may be obtained. If the student is to purchase his own text note that the price has increased over that announced in the video.
- 5. Discuss the diagnostic test given in the video.
- 6. Distribute the handout "Engineering Calculations". (A good time to go into a discussion of engineering calculation procedures and formats will be at the end of Unit 6 or Unit 7 before assigning home problems.)

Suggested Problem Assignment: None

EXAMPLE NO. 1

DECK. THE SHIP'S A CONTAINER SHIP IS RESPOTTING CONTAINERS ON CONTAINERS WEIGHING 20 TONS EACH ARE SHIFTED TEN LOADED DISPLACEMENT IS 28,000 LONG TONS AND ITS TRANSVERSELY A DISTANCE OF 50.0 FEET. METACENTRIC HEIGHT, GM = 3.40 FEET. THE SHIP IS INITIALLY UPRIGHT.

FIND THE RESULTING ANGLE OF LIST.

EXAMPLE NO. 1 (CON'T)

THE FORMULA IS:

$$GM \cdot tan \theta = \frac{wt}{\Delta}$$

WE HAVE BEEN GIVEN:

t = 50.0 FT

Δ = 28,000 LT

GM = 3.40 FT

WE WISH TO FIND 0.

1:3

EXAMPLE NO. 1 (CON'T)

SOLUTION:

.

4

$$\begin{aligned} \tan \theta &= \frac{wt}{GM\Delta} \\ \tan \theta &= \frac{(200 \, \text{JT})(50.0 \, \text{JT})}{(3.40 \, \text{JT})(28,000 \, \text{JT})} \\ \tan \theta &= .1050 \\ \theta &= \tan^{-1}(.1050) \\ \theta &= 6.0^{\circ} \end{aligned}$$

THE INCLINATION WILL BE 6.0°

EXAMPLE NO. 2

FIND THE FRICTIONAL RESISTANCE OF A 600-FT (LWL) SHIP TRAVELING AT 10 KNOTS IN SALT WATER (TEMPERATURE = 59°F). THE SHIP HAS A WETTED SURFACE OF 2.0 X 10^6 FT².

THE APPLICABLE FORMULAE ARE:

EXAMPLE NO. 2 (CON'T)

v = VELOCITY IN FT/SEC

L = 600 FT (GIVEN)

 $\mathcal{V} = \text{KINEMATIC VISCOSITY OF SEA WATER AT 59°F}$ $\mathcal{V} = 1.2791 \times 10^{-5} \frac{\text{FT}^2}{\text{SeC}} \text{ (FROM TABLES)}$ $\mathcal{S} = \text{DENSITY OF SEA WATER AT 59°F}$ $\mathcal{S} = 1.9905 \frac{\text{Les Sec}^2}{\text{FT}^4} \text{ (FROM TABLES)}$ $\mathcal{S} = \text{WETTED SURFACE IN FT}^2$ $\mathcal{S} = 2.0 \times 10^6 \text{ FT}^2 \text{ (GIVEN)}$

4

EXAMPLE NO. 2 (CON'T)

SOLUTION:

1.1

1. **REYNOLDS NUMBER,** $Re = \frac{VL}{V} = \frac{(16.88 \text{ m/set})(600 \text{ m})}{(1.2791 \times 10^{-5} \text{ m}^2/\text{sec})}$ $Re = 7918.1 \times 10^5$ $Re = 7.9181 \times 10^8$ FRICTION COEFFICIENT, 2. $C_{\rm f} = \frac{.075}{(\log {\rm Re} - 2)^2}$ $\frac{.075}{(\log(7.918 \times 10^8) - 2)^2}$ = $= \frac{.075}{(8.8986 - 2)^2}$ $= \frac{.075}{(6.8986)^2}$ = .001576 $C_{f} = 1.576 \times 10^{-3}$

EXAMPLE NO. 2 (CON'T)

3. FRICTIONAL RESISTANCE:

$$R_{f} = C_{f} \frac{S}{2} \leq v^{2}$$

$$= (1,2791 \times 10^{-5})(\frac{1.9905}{2} + \frac{10}{2} + \frac{10}{2})(2.0 \times 10^{4} + \frac{1}{2})^{1}$$

$$= 725.5 \times 10 \text{ LB}$$

Rg = 7255 LB

Rf = 7255 LB FRICTIONAL RESISTANCE:

. 4.8

ENGINEERING CALCULATIONS

Engineering calculations are the heart of any engineering design job. Calculations represent the application of basic engineering principles and engineering codes to a particular project. The calculations should be clear, concise and easily checked by a supervisor or checker. The calculations also have legal force and may be used in the event of a dispute in future years to demonstrate that good engineering practice was followed in performing the engineering work on the projects.

In this course, the student should practice good engineering calculation procedure in working the problems. The outline that follows is pointed toward engineering in practice, but can be applied equally well to solving the practice problems in this course.

OUTLINE OF ENGINEERING CALCULATION PROCEDURES

- Use of a quadrille or cross-section paper is recommended. This facilitates preparation of sketches, tabular calculation formats, and neat calculations. Many companies have preprinted calculation sheets, often with a non-reproducible grid background.
- 2. The company name, project number, title of the project and subject of the calculations and your name or initials should appear on every page. The date the work is done should also appear on every page. Each page should be numbered, for example, "Page 12 of 18", and a Table of Contents should be included for long calculations.
- 3. All calculations should be printed legibly.
- 4. The formulas used in the calculation should be shown clearly and the source of these formulas should be cited as a reference.
- 5. The approach to the problem should be explained clearly. Any steps taken in the solution that are not completely obvious should be explained. Assume that another person, unfamiliar with the job, will be reviewing your calculations years from now. Write your calculations up so that this imaginary reviewer will be able to understand clearly what you did.
- 6. Key results should be underlined or enclosed in a box so that they stand out clearly.
- 7. Whenever possible calculations should be performed in a tabular format. Experience has shown that tabular formats are more compact, can be checked more easily, and that errors tend to be more conspicuous.

It is preferable to arrange summations in vertical columns rather than horizontal lines. For example,

16,148.0	ft ² ft ² ft ² ft ²
247.6	ft ²
5,912.2	ft
22,307.8	ft ²

is preferable to

 $16,148.0 \text{ ft}^2 + 247.6 \text{ ft}^2 + 5,912.2 \text{ ft}^2 = 22,307.8 \text{ ft}^2.$

- 8. Be sure to include units. Note that there is often confusion between long tons (LT), short tons (ST) and metric tons (MT or TONNES).
- 9. Be consistent with the number of decimal places and the number of significant places carried in the calculation. For example, the area of a circle $35 \frac{1}{2}$ " in diameter is:

Area = 35.50 x 3.141592654 = 111.5265392.

In this case, everything past the second decimal place has no significance. Also, the number of decimal places carried should be consistent. There is a difference in meaning between:

35 ¹/₂ " 35 .5" 35 .50" 35 .500"

In this example, $35\frac{1}{2}$ " means $35\frac{1}{2}$ inches exactly, or to the tolerance specified on the drawing. 35.5" means between 35.45 inches and 35.54 inches. 35.50" means between 35.495 inches and 35.504 inches, etc. The number of places carried should be consistent with the measurement accuracy and the tolerances desired.

BASIC NAVAL ARCHITECTURE

Unit Number:	2						
<u>Title</u> :	Ship types and ship systems - 1						
Tape Running Time:	34 ^M 0 ^S						
Reading Assignment:	ng Assignment: Modern Ship Design (MSD), pp 3-10						
Additional References:	Ship Design and Construction (SDC), pp 1-13						
	Recent articles on ship types taken from trade magazines						

Scope:

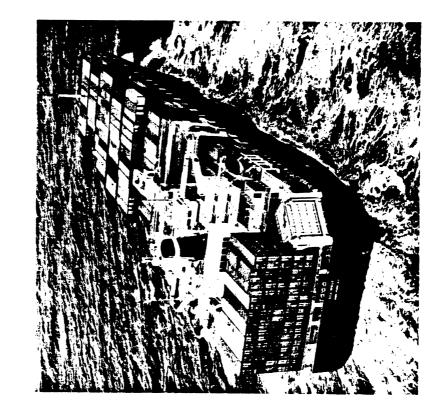
The objectives of Units 2 and 3 are to introduce the student to various types of ships and craft in commercial and military services and the trends in ship design and propulsion which have developed in recent years.

Key Points to Emphasize:

The instructor should use class time to supplement pictures shown in the video with additional slides or transparencies. Acceptable transparencies can be made from photos in trade magazines. Transparencies should be selected to emphasize trends or ship features.

Suggested Problem Assignment: None

(The instructor may wish to require students to read assigned articles in trade magazines.)



2.3

2.4

-

Odense built – trio for U S Lines charter

An innovative design of RoRo/LoLo containership inspired by the trading requirements of US-based Delta Line, has been delivered by Odense's Lindo yard in Denmark. 'Sea Wolf' is the first of three 24,180dwt vessels for which, due to a subsequent chartering deal by Delta's San Francisco-based parent, **Crowley Maritime** Corporation, the versatility of the series operating in other services may well be tested.

Conceived for serving ports on Latin American routes having as yet, limited handling facilities, and totally equipped for their cargo access by MacGregor-Navire (MGN), the design specified two rail-mounted 40 tonne gantry cranes of a new 'CCB' type from Liebherr. These units can traverse the holds over three layers of containers; a fourth layer can also be stacked.

The 10 cellular holds, all forward of the superstructure, and the garage deck aft respectively, offer capacity for 1,936TEU and 27 x 40ft trailers. Provision for both containers and trailers reflects the operator's RoRo experience in US West Coast/Alaskan as well as Caribbean services.

The MGN supply for the trio was detailed in MacGregor-Navire News 102, so we shall only briefly recap here. RoRo access to the garage area, which runs full beam from aft under the accommodation into No. 10 hold, is via an MGN stern ramp/door angled at 45 degrees on the starboard side. In three sections, it provides an 18.0m long x 6.25 m wide driveway and, as a watertight door, closes a clear opening 6.25m wide x 5.55m high in the transom stern. Its total weight is 52 tonnes and a maximum load of 100 tonnes can be sustained: this allows for certain types of tractor and US standard road trailers.

The normal maximum operating slope is \pm 1:7 (or 8.1 degrees of arc) but the ramp can also be lowered to water level at a slope of -19 degrees.

Holds Nos 1 to 9 are each accessed by three hatches, with two only on No. 10 because its central space is taken up by a CO^2 room.

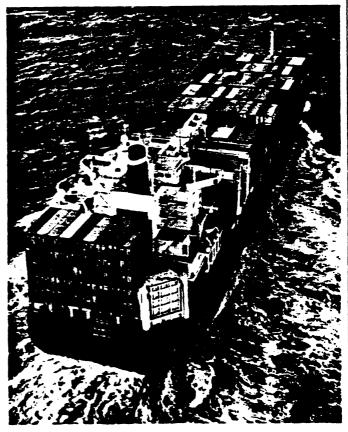
MGN's supply is therefore 29 hatch covers per ship, all being onepiece weathertight pontoon (lift away) type panels with a combined area of 3,374 m².

Clear opening sizes are:

Hatches 1 to 9, centre - 12.445mlong x 10.492m wide; hatches 2 to 10 p & sb - 12.445m long x 7.959m wide; hatch No. 1 p & sb - 12.445m long x 5.290m wide.

The maximum weight of one centre panel is 28 tonnes; the combined weight of all the covers is about 618 tonnes.

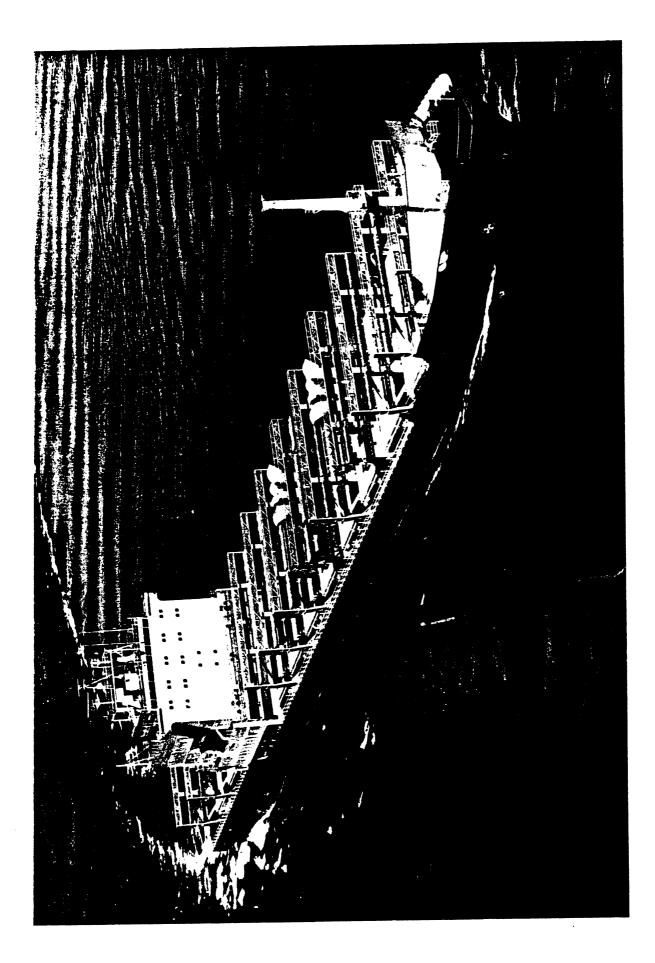
Each cover is designed for a UDL of 1.75 tonnes/m², equivalent to containers stacked three-tiers high weighing 60 tonnes/20ft or 90 tonnes/40ft.

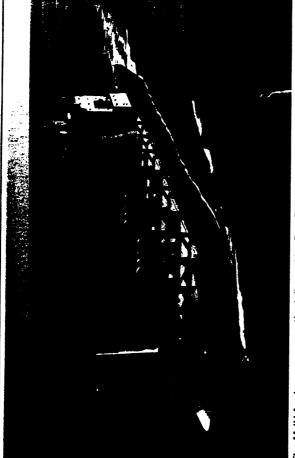

Sea Wolf was delivered last December only 14 months after the contract signing; her sisters are scheduled to follow this year. Not long before the handing over, however, Crowley Maritime agreed to bareboat charter the new trio to United States Lines which also acquire outright 11 other Delta vessels. The agreement, subject to MARAD approval, could see the ships serving the round-the-world feeder network of their new operator.


For Odense, this new class is yet another design reference for an experienced Danish yard whose abilities were recently recognised by the award of Lloyd's Register of Shipping's prized 'Quality Assurance Certificate': the first for a European yard and only the seventh for a shipbuilder anywhere.

PRINCIPAL PARTICULARS 'Sea Wolf'

Length (o.a.) 198.80	
Length (b.p.) 186.40)m
Breadth 32.20	
Depth 20.45	
Draught 9.15	
Deadweight 24,180 tonn	es
Containers 1,936TE	EU
Trailers 27 x 4	Oft
Propulsion Sulzer 7RTA	76
Output 23,030 b	hp
Speed 17.80 knd	
-	


A container-laden Sea Wolf caught by the aerial camera as she transited the English Channel



2·7

R SO CREATENES HANDS Moto "NEW SFN, POPTA I NTY "OPANIES REC, " 48-6 F - 1 MARS SEDERE BORNIE JUNIS 1 SCAND Over the conversion PEND BULANX "NHC? 135 OF REDT FUL FICILO ME/L 2.8

ON THE COVER

The M/V Anchorage, recently delivered by Bay Shipbuilding Corp. of Sturgeon Bay, Wis., is powered by a B&W/Mitsui 7 L70MC diesel engine.

Bay Shipbuilding Delivers First Of Three Containerships To Sea-Land

`Anchorage' To Serve Pacific Northwest

Bay Shipbuilding Corp. of Sturgeon Bay, Wis. recently delivered the M/V Sea-Land Anchorage, which is the first in a series of three containerships being built for Sealand Service, Inc. The other two ships, Bay Shipbuilding Hulls 736 and 737, are also scheduled for deliverv this vear.

The keel for the Sea-Land Anchorage, Bay Shipbuilding's Hull

2.1

No. 735, took place in Bay's 1,158foot-long graving dock on August 14, 1985. On May 31, 1986, Hull 735 was floated out of the graving dock and berthed at one of the company's outfitting piers for completion.

The ship has an overall length of 710 feet, a beam of 78 feet and a design draft of 30 feet. A controllable pitch propeller is driven by a single slow speed 7 L70MC B&W

diesel engine supplied by Mitsui Engineering and Shipbuilding Company, Ltd. The fuel efficient sevencyclinder diesel engine is capable of developing over 22,000 bhp.

The ship's propulsion plant is designed to operate unattended ACCU, and all plant functions are monitored by Siemens computer automation equipment. Electrical power to the ship is provided through two Wartsila main AC diesel generators, each rated at 2,000 kw and two Wartsila auxillary diesel generators rated at 1,000 kw each. An emergency diesel generator is also provided by Caterpillar.

The Sea-Land Anchorage will be capable of carrying over 700 FEU containers of cargo. The ship, which has seven cargo holds, also has the capacity to carry a variety of refrigerated containers in specially equipped cargo holds and at designated areas above deck. The ship is capable of carrying 20., 35-or 40foot containers. To facilitate the storage and securing of containers above deck, the ship is equipped with stacking towers and hydraulically operated hinged frames which rotate from a vertical to horizontal position, securely locking in each above disciply of containers and with starting towers and hydraulically operated hinged frames which rotate from a vertical to horizontal position, securely locking in each

The ship is specially strengthened to serve in Alaska's severe weather. The forecastle has a substantial breakwater built to protect the forward containers. Deck machinery is enclosed from the weather at the bow and at stern, providing a weathertight closure for the mooring of the ship. The ship is also equipped with Omnithruster bow and stern thrusters which greatly enhance its maneuverability.

Sea-Land Service, Inc., a subsidiary of Sea-Land Corporation, will use the three diesel-powered 700 FEU D-7 containerships to replace

Main & anxilliary generators . . . Wartsila Emergency generator Caterpillar Siemens . B&W/Mitsui . . . Kawasaki . . Kobe Steel . . AEG / Mitsui Navigation equipment ... ITT/Mackay · · · · · · Alfa Lava . . Gadelius Shinkoh Kinzoku . . Buffalo Forge Hatch cover & towers . . Manitowoc Ship Masse . . Engelhard Survival craft Watercraft America Pilothouse windows Singer-Kearfott · · · · · · · · · · Sperry · · · · · Taiko Kika · · · · · Metritape **H** · · · · · · · · Deckhouse windows . . . Winel of America Foam system Schat Davit Hiller Kiefer . . Sasakura Kikai . . Genstar Stone · · · Basset Automation Stern tube bearings & seal Marine growth prevention • Sewage treatment unit · · · · Deck covering HVAC & refrigeration Fire detection system Propeller & shaft Stores crane & davit Winches & windlass Main engine Seawater pumps · · · F/O pumps . . Galley & pantry Purifiers F/O heaters . Gyrocompass Steering gear Ballast crete Fank gauging svstem Fans

four smaller, steam-powered vessels currently operating between the Pacific Northwest and Alaska. Sea-Land Corporation is a world leader in ocean and overland containerized intermodal freight transportation and trade services. Its subsidiary, Sea-Land Service, Inc., is one of the largest U.S.-flag carriers of containerized ocean cargo.

As part of the building program, Bay Shipbuilding Corp. established an affiliation with three other prominent companies to assist in the design and expedite the supply of equipment for the containership. These companies are R.A. Stearn, Inc., of Sturgeon Bay, Wis., which supported Bay Shipbuilding's Engineering Department in the design and engineering of the forebody and deckhouse: Burmeister and Waim

containerships being built for Sea-land Service, Inc. The other two ships, Bay Shipbuilding Hulls 736 geon Bay, Wis. recently delivered the M/V Sea-Land Anchorage, which is the first in a series of three Bay Shipbuilding Corp. of Sturand 737, are also scheduled for deiverv this year. the M/V

The keel for the Sea-Land Anchorage, Bay Shipbuilding's Hull

and berthed at one of the company's foot-long graving dock on August 14, 1985. On May 31, 1986, Hull 735 was floated out of the graving dock No. 735, took place in Bay's 1,158outfitting piers for completion.

'Anchorage' To Serve Pacific Northwest

lable pitch propeller is driven by a single slow speed 7 L70MC B&W The ship has an overall length of 710 feet, a beam of 78 feet and a design draft of 30 feet. A control-

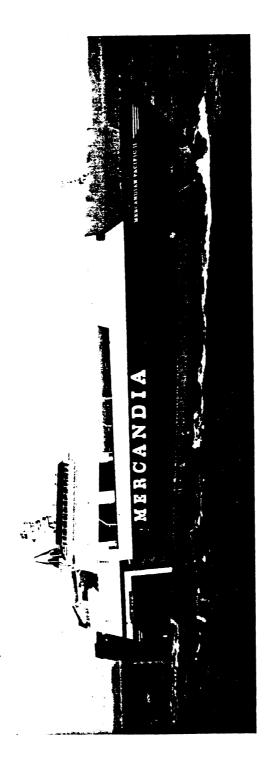
ertight closure for the mooring of the ship. The ship is also equipped thrusters which greatly enhance its enclosed from the weather at the bow and at stern, providing a weathwith Omnithruster bow and stern ward containers. Deck machinery is) serve in Alaska's severe weather. The forecastle has a substantial breakwater built to protect the forsun: 2 A TT maneuverability.

700 FEU D-7 containerships to replace Sea-Land Service, Inc., a subsid-iary of Sea-Land Corporation, will use the three diesel-powered

Sea-Land Service, Inc., is one of the intermodal freight transportation and trade services. Its subsidiary. largest U.S.-flag carriers of contain-Lang Corporation is a wold eader in ocean and overland containerized NIIR erized ocean cargo. 14 LAAV

chinery and equipment for the ship. Bay Shipbuilding Corp. also ex-panded its Foreign Trade Sub-Zone operations via the U.S. Commerce Ltd. of Japan, who provided the eign Sub-Zone status during this design and expedite the supply of Inc., of Sturgeon Bay, Wis., which supported Bay Shipbuilding's Engiand engineering of the forebody and deckhouse; Burmeister and Wain Shipdesign of Copenhagen, Denstern section and the transfer of nology for pre-outfitting and mod-ular construction methods; and Mitsui Engineering & Shipbuilding Co. main engine and other related ma-Department to better utilize its Foraggressive shipbuilding program. Bay Shipbuilding Corp., a subsidinent companies to assist in the engineering and production tech-Bay Shipbuilding Corp. ĕstablished an affiliation with three other promneering Department in the design mark, was responsible for the detailed design of the engine room and equipment for the containership These companies are R.A. Stearn As part of the building program

shipyard on America's "North to design, build, repair, convert, repower, retrofit, and jumboize any modern shipyards and is the largest building is a full service shipyard with complete in-house capabilities Inc., is one of this nation's most Coast," the Great Lakes. Bay Shipiary of The Manitowoc Company type of vessel.


For free color literature on the shipbuilding and ship-repairing facilities and services available from Bay Shipbuilding,

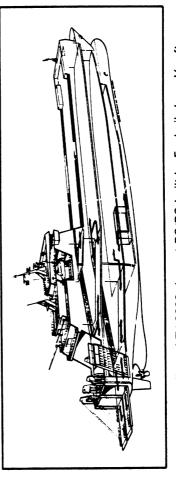
Circle 31 on Reader Service Card

Maritime Reporter/Engineering News

26

Circle 183 on Reader Service Card

NEWBUILDING


Caracas: Largest RO/RO from Danyard

Frederikshavn delivers the first of four of a new series of 14,000 dwt ships to the Mercandia Shipping Group

UILT in two parts that were then gioined after launching, the *Caracas* is the largest ship yet built by the Frederikshavn Vaerft facility of Denmark's Danyard A/S and the largest vessel in the Mercandia Group fleet. She is currently chartered to Vencaribe of Caracas, Venezuela, and received her present name just before delivery, having been originally christened *Mer*-

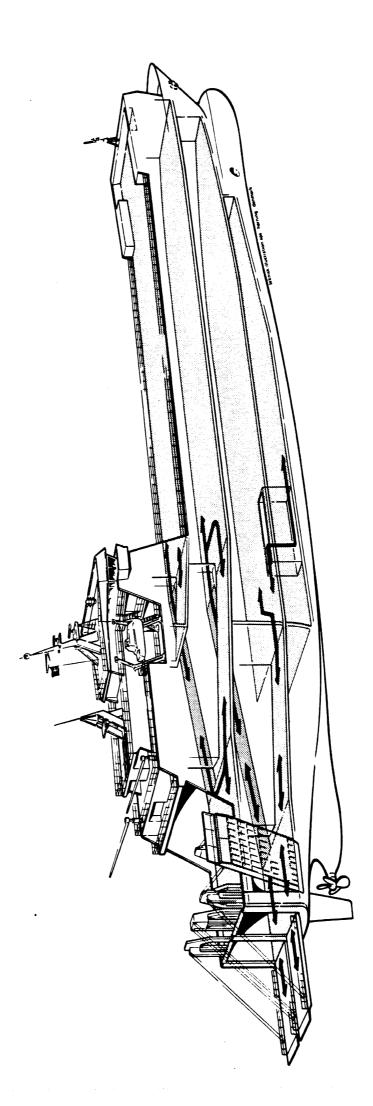
candian Pacific II.

Caracas is the first in a scries of four ships that the Frederikshavn yard is building for Mercandia and her design—the FV2800—is the result of a long standing cooperation between yard and owner. The aim has been to achieve maximum operational flexibility and economy. Built to Det norske Veritas class + 1A1, the ship carries the nota-

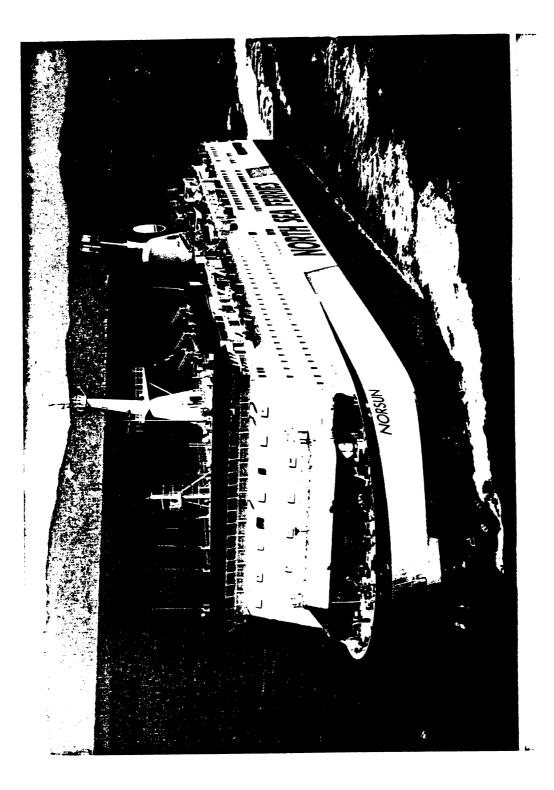
Cargo handling flow of FV 2800, largest R0/R0 built by Frederikshavn Vaertt

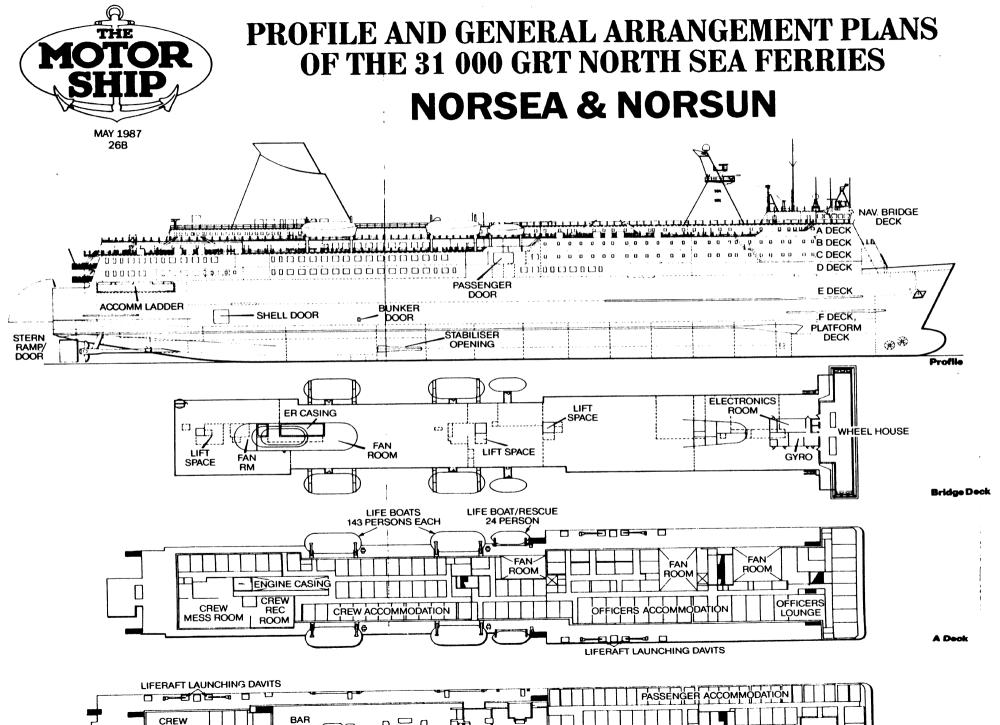
AUGUST 1987 ME/LOG

tions "General Cargo/Container/Car Carrier, RO/RO, EO." Main dimensions are as follows:

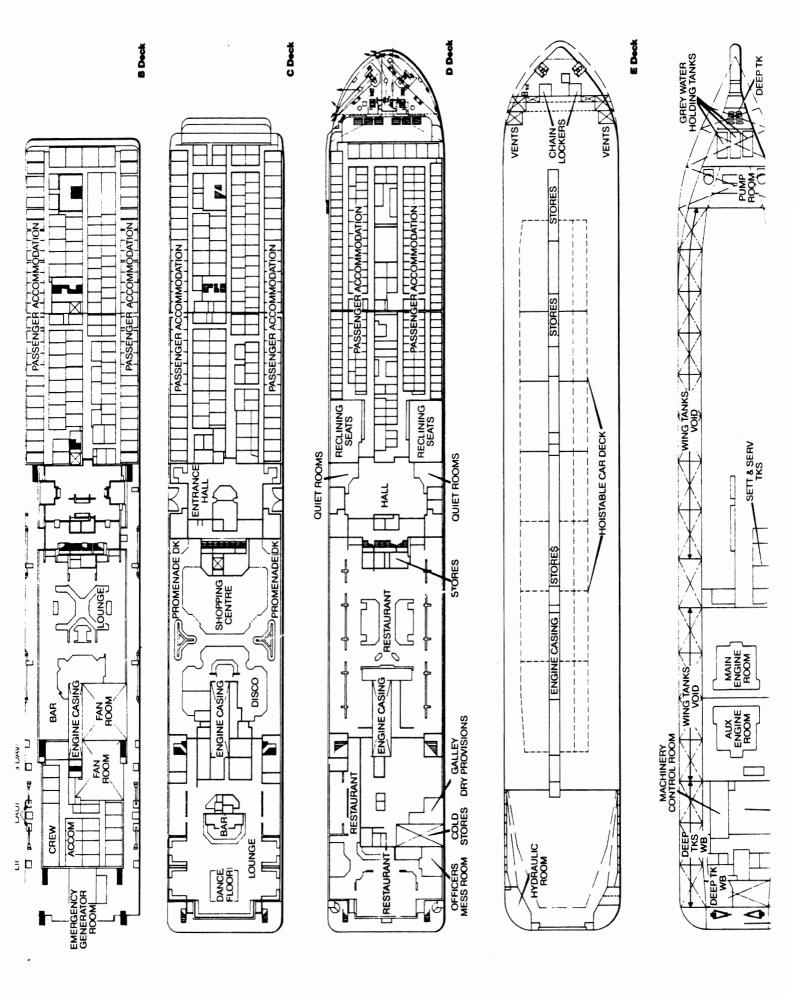

y enclosed. There is additional cargo 148.60 m 23.5 m Depth, molded to upper deck 20.75 m The ship offers a total trailer lane pacity of 725 TEU. There are 72 reefer 7.3 m wide-give access to three 7 m wide fixed internal ramps leading to the cargo decks. One of these, the weather deck, is partially enclosed by the bridge space in the lower hold, served by an elevator from the second deck. If re-163.80 m 8.80 m ength of 2,800 m and a container caox plugs. Three external ramps—twin stern ramps and a quarter ramp, each superstructure. The two others are total-**Breadth**, molded Scantling draft Length, BP Length, OA

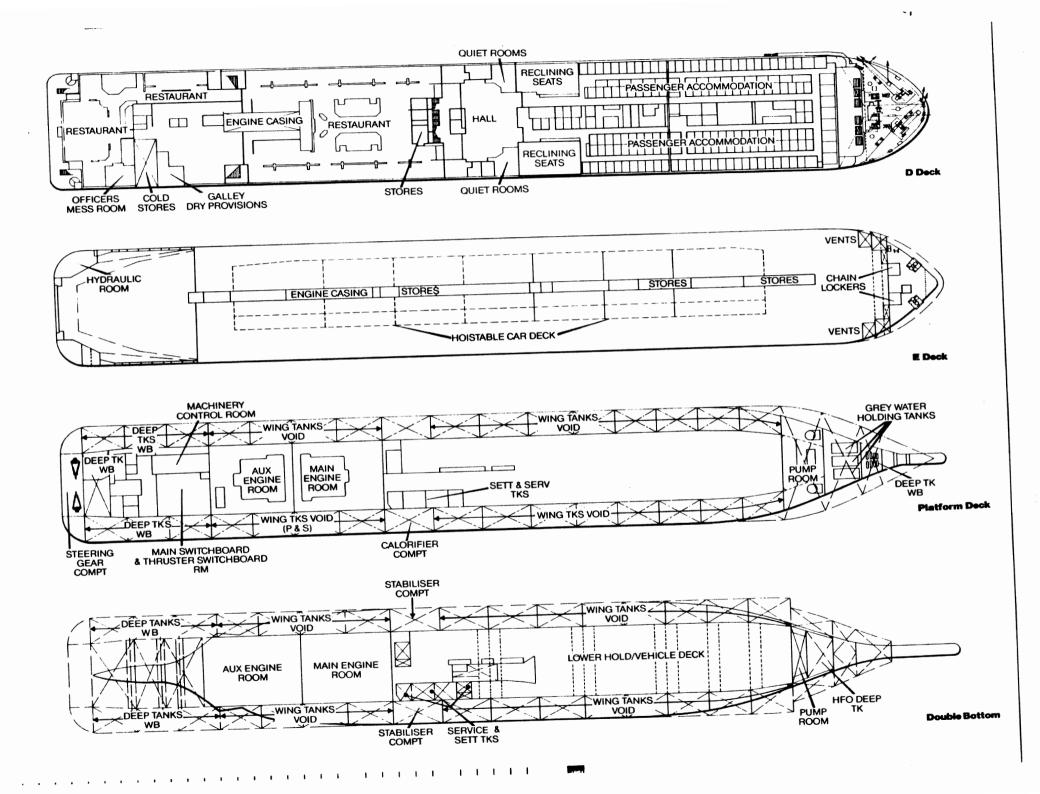
HEAVY FUEL OPERATION


to 6,500 m.

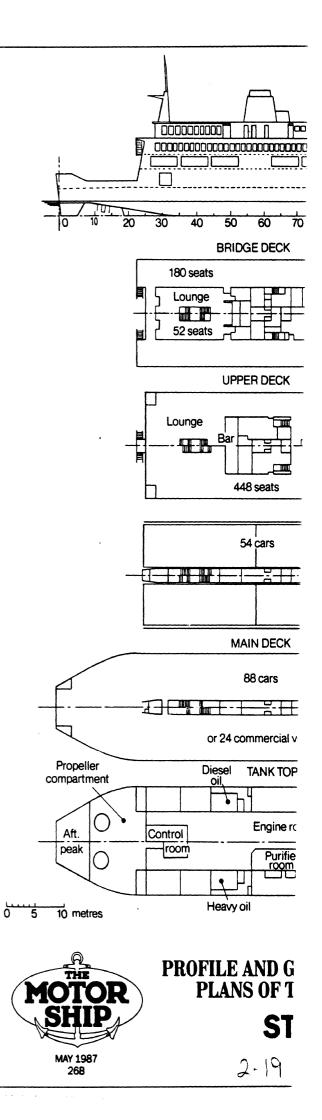

quired, two intermediate car decks can be installed, bringing total lane length The machinery is approved for unattended operation. Main propulsion power is provided by an MaK 6M 601 diesel developing 9,000 bhp at 428 rpm and driving a Lips C.P. propeller via a 3.4583:1 Reintjes reduction gear. The engine is arranged for operation on heavy fuel and also drives a shaft generator that meets all the ship's at-sea power requirements. The auxiliary machinery consists of two MaK/Reliance alternator sets.

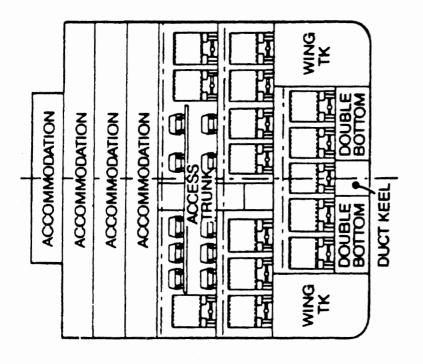
The ship is fitted with Lips thrusters at bow and stern, giving good shiphandling characteristics without the need for tug assistance.

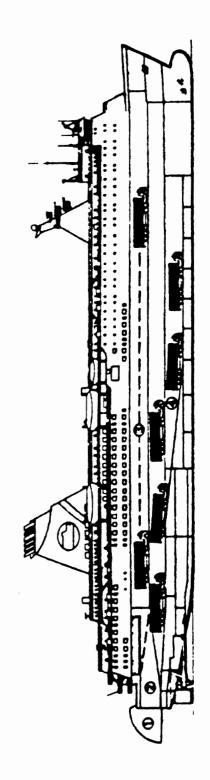

2-14



2

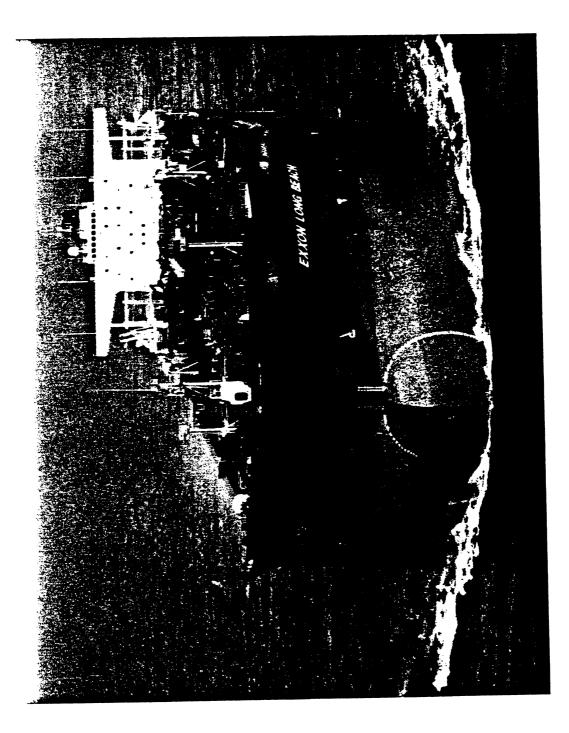

ACCONA.





NOR	SEA &	NORSUN			
Length, oa		178.9m			
Length, bp		169.8m			
Breadth, extren	ne	25.4m			
Depth, mid (to l	⁼ dk)	7.85m			
Draught, max	c1: 6.13m c2: 6.08m				
Draught, scant	6.23m				
Deadweight		6 340 tonne			
Gross register (approx)	31 600 ton			
Service speeds		16.5 & 18.5 knots			
Engines		ärtsilä-Sulzer 92AL40 ärtsilä-Sulzer 62AL40			
Total MCR	19 20	00kW (26 100 bhp)			
Passengers		1 250			
Cabins		446/452			
Crew		107			
Cargo space		2 250 lane m			
Cargo capacity) trailers, 850 cars, or a mixture of both			
No of decks		8			
Classification	Ferry	loyds + 100A1 + LMC & UMS SOLAS			

	PRINCIPAL EQU	JIPMENT				
	NORSEA		NORSUN			
mengines	Wärtsilä-Sulzer		Wärtsilä-Sulzer			
arboxes	FTacke		FTacke	22		
rs	Woodward	•	Woodward	2:2		
rators	Wärtsilä-Vasa		Wärtsilä-Vasa	22		
pellers & bowthrusters	KaMeWa		KaMeWa	22		
tors	Siemens	225	Taiyo	22		
gency generator	Finning	227	Caterpillar Mitsubishi	2:		
rifiers	Westfalia		Westfalia	2:		
o access equipment	Kvaerner	230	MacGregor Far East	2:		
machinery	Sunderland Forge	232	Fukushima	2:		
ritchboard & control consoles	Siemens	234	Terašaki	2:		
rtight doors	Winel	236	MacGregor Far East	2		
Inditioning	Flakt	238	Novenco	2:		
dders	Becker		Becker	2		
lisers	Ross Industrie		Ross Industrie	?]		
ring gear	Hastie	242	MHI	2		
ermal oil system	Saarloos		Saarloss	2		
e systems	Wormald	245	Van Rijn	2		
ring equipment	Electrolux Marine		Electrolux Marine	2		
_ Joat davits	Schat	248	Davit Co	2		
erafts	RFD	250	Beaufort	2		
IOTS	Byers	252	HCG	2		
poats	Welin Lambie	254	Mulder & Rijke	21		
eling pump system	Frank Mohn		Frank Mohn	2		
ts	Otis Elevator	257	de Reus	2		
age system	Evac		Evac	2		
overing	Signal Marine	260	Taihei Kogyo	2		
ilings	Dampa		Dampa	20		
munications	Ericsson		Ericsson	20		
o, autopilot	Anschütz		Anschütz	20		
rpets	Hugh Mackay	265	Weston	20		
			KVT	20		
e oil filters	Boll & Kirch		Boll & Kirch	20		



INFORMATIONAL CUTLINES

which operates the only such ships in the world. Built at a cost container carrier with a 2,000-ton submersible hydraulic elevator ships in the 41-vessel fleet of Lykes Bros. Steamship Co., Inc., at its stern used to load and discharge two fully-loaded barges This is the SEABEE Class Tillie Lykes,/the most unique and She is one of three such of \$33 million, the Tillie Lykes is a combination barge and one of simultaneously. The ship is 875 feet long. versatile cargo ships afloat today.

-30-

2.22

,

Front cover photo features VLCC Exxon Long Beach. Recently delivered by NASSCO, she'll serve in Alaskan trades. More tumultuous international tanker market is discussed on p.18.

·- ,

Bulk carriers

Well down in the water, the ore through the English Channel laden British Steel ploughs

> diesel propulsion plants than huel costs, and smaller crews The newbuilding market for **partier** generations of VLBC aconomy demanded by the builders, in particular, have have substantially reduced speeds and more efficient developed designs which VLBCs) is dominated by are required to man the climate. Slower service Asian yards. Japanese very large bulk carriers contemporary trading offer the operational latest deliveries.

builder Harland and Wolff. which last September delivered British in Europe - and soon after secured European flag Ilying in this sector is Belfast ship Steel - the largest bulk carrier built a contract for a sistership. Keeping the

mainly for carrying iron ore but can be arranged for coal and grain brought 153,000 tonnes of Brazilian ordened by Lombard North Central for charter to the British Steel Her maiden voyage iron ore to BSC's deepwater terminal at Redcar, she will also be able to discharge at other UK terminals - Hunterston, Immingham Corporation (BSC), is designed The 173.000dwt British Steel and Port Talbot cargoes.

The efficiency of the main is such that fuel consumption is propulsion plant and aft hull design reportedly around 45 tonnes/day -

a figure that would flatter much smaller Panamax bulkers of a decade ago. But a concern for cargo handling performance is also MacGregor-Navire (MGN) hatch The shipset, detailed in MacGregor panel. rack and pinion-driven, side in the selection of covers for the vessel's nine holds. News 100, is based on the tworolling cover design. apparent

Clear opening sizes of the covers are 14.4m long x 23.3m wide for No.1 hatch, and 14.85m long x 23.3m wide for No.2 hatch. The offer 14.25m x 23.3 openings. The designed to accept a uniformly and to operate at lists up to 5 degrees and trims up to 2 degrees. Four 0.6m diameter ventilators are remaining hatches. Nos 3-9, each covers are of open construction. distributed load of 1.75 tonnes/m fitted to each cover.

Each of the pair of panels forming the cover may be opened or by a separate hydraulic motor. A closed independently of the other cost effective hydraulic cleating system features only 14 cylinderachieving the same cleating effect as about 60 of the manual, quick acting type. Self-engaging locking pins secure automatic cleating at operated locking bolts per cover, the cross joints.

rolling position by hydraulic lifting engaged with a centrally located The panels are lifted to the Stowage for all covers is one panel acks, and driven by the pinion panel's underside. rack on the

5, 7 and 9 can be stowed both panels on one side, thus leaving port, the other starboard, but by linking the panels, hatch Nos 1, 3 only half the hatch exposed.

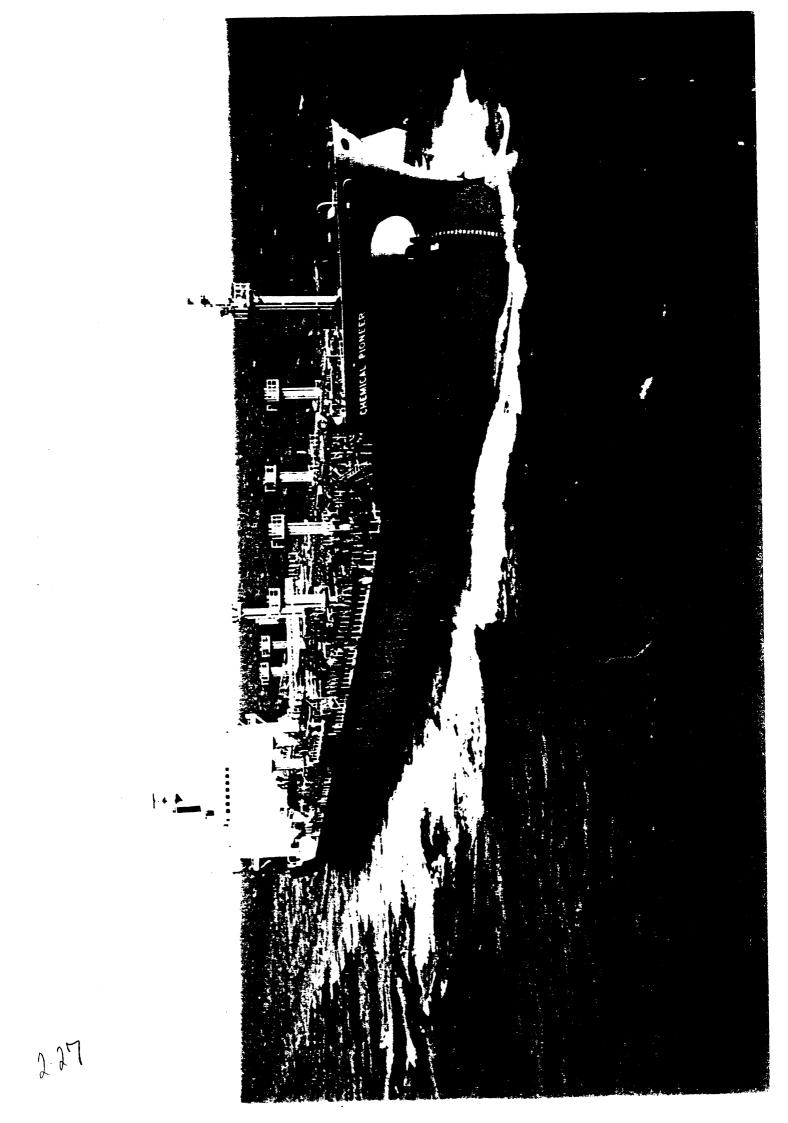
new generation

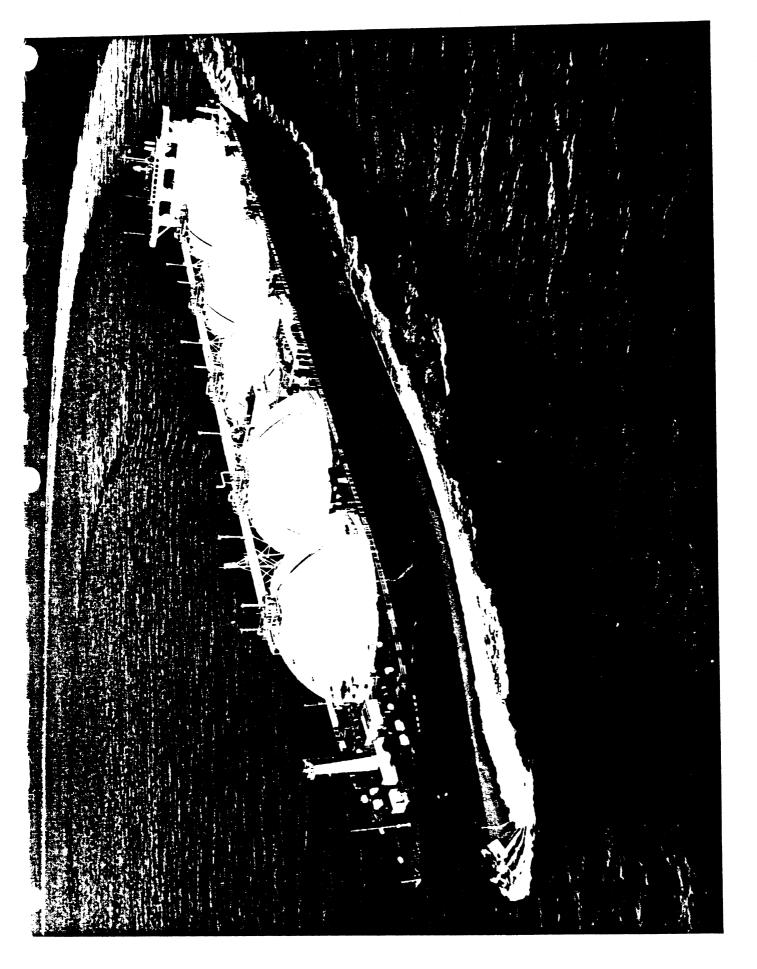
One of a

design to yield an expected 10 per last BSC to five large bulkers aggregating aft end hull form and propeller December of a follow up order to between Harland and Wolff and 1986, will be financed by Lloyd's Equipment Leasing Ltd for bareboat charter to the steel corporation. She will exploit improvements in the main engine specification, a revised cent fuel saving over her economical British Steel extended the links 700,000dwt in the past seven years. The 30 million pound sterling sistership, due for delivery at end announcement predecessor. The

Yard chairman, John Parker, is service, and that Harland and WolfT's experience will make it a economy VLBCs will accelerate competitive challenger for such confident that the new generation of the replacement demand for older, less efficient large bulkers in business.

PRINCIPAL PARTICULARS


British Steel	Length (o.a.)	Length (b.p.) 275.00m	Breadth (mid) 47.00m	Depth (to upper deck) 24.00m	Draught (mld) 17.80m	Deadweight 173,000 tonnes	Hold volume 194,254m ³	H&W		Speed (service) 13.6 knots
---------------	---------------	-----------------------	----------------------	------------------------------	----------------------	---------------------------	-----------------------------------	-----	--	----------------------------


1 見近した

Repeat equipment order for MGN

for the second ship, though of the same type and dimensionally on installation time. This latter contributed to the 'common pot of savings that Harland and Wolff were able to include in their tender - a fact which helped in the winning of the order by the identical to those supplied for the lead vessel, do incorporate new installation regimen that will ensure savings being made he hatch cover order for British Steel's sistership. The covers We learn, as we go to press, that MacGregor-Navire has won technical improvements recently introduced by MGN plus a N. Irish yard. Delivery is scheduled for end 1986.

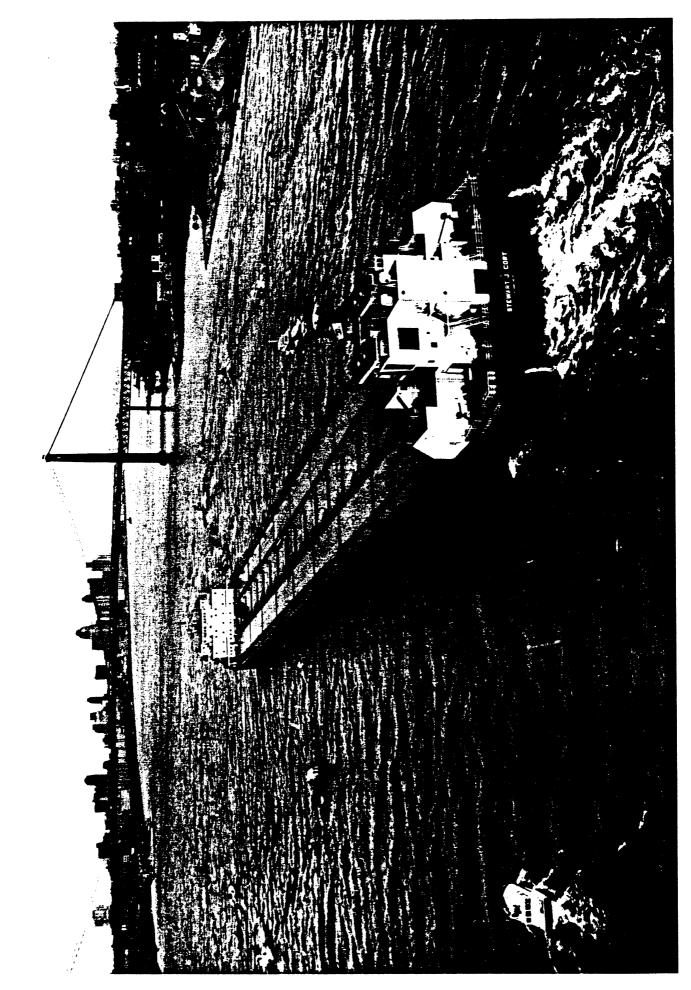
2

2.28

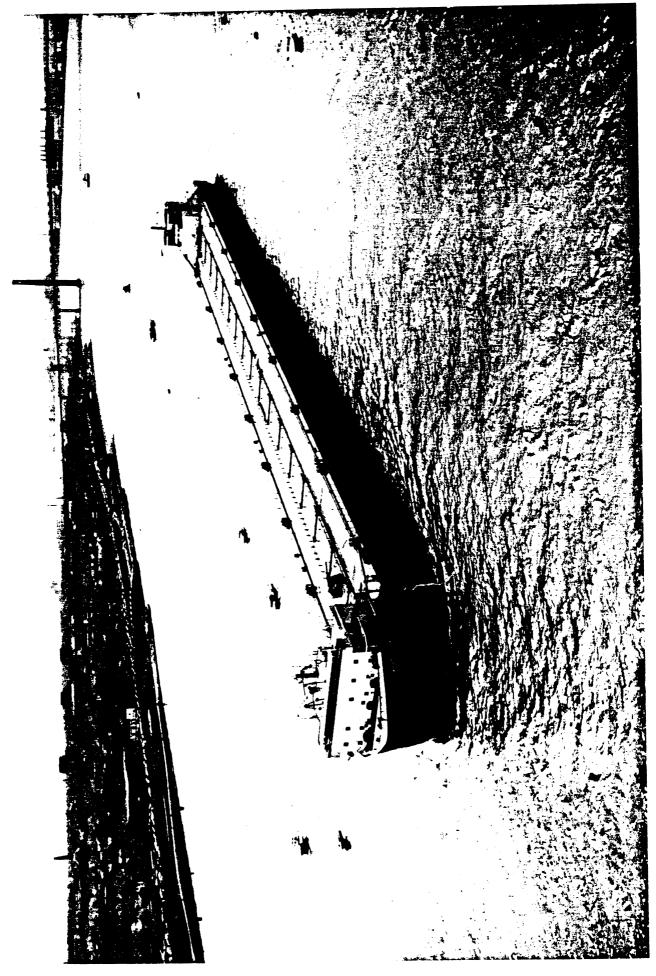
The Martin Martine Martine

NEW LNG CARRIER -- LNG LEO, newest liquefied natural. gas tanker to be built at General Dvnamics' Quincy Shipbuilding Division, returns following completion of successful sea trials in the Atlantic. Naming ceremonies for the 936-foot, 125,000-cubic-meter tanker were held today (Dec. 2) and she will join her sister ships early next year in transporting LNG between Indonesia and Japan.

12/2/78


Ý.

1


2.29

GENERAL DYNAMICS

For further information GENERAL DYNAMICS CORPORATION QUINCY SHIPBUILDING DIVISION, 97 EAST HOWARD STREET, QUINCY, MASSACHUSETTS 02169 617 471-4200

2.30

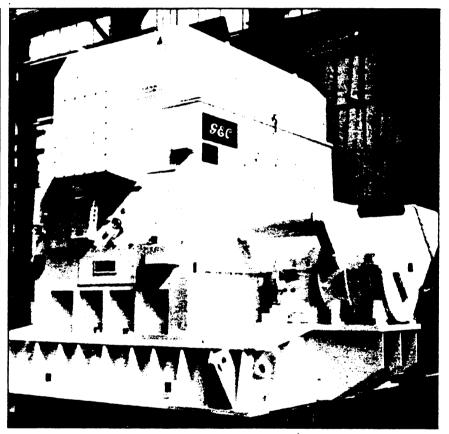
Powerful currents drive the Queen

The new electrical system for Queen Elizabeth 2 has an installed capacity of over 90MW, enough to drive the vessel at a service speed of 28.5 knots and supply all the passenger services with capacity to spare.

The nine diesel engine driven AC generators for the refit were designed and manufactured by the Generator Division of GEC Turbine Generators Ltd, Stafford, UK.

Each machine is rated 10.5MW at 400 rev/min and generates 10kV at a frequency of 60Hz. The generators provide power for the two 44MW electric propulsion motors and for the hotel load.

The electrical propulsion system was designed and supplied by GEC Electrical Projects Ltd, Marine & Offshore Division, as subcontractors to MAN B&W. It is the world's first in many respects, the most important aspect being the use of synchro-convertors.


In some AC propulsion systems the propulsion motor runs at a fixed speed corresponding to 50/60Hz, a constant frequency being necessary if the propulsion bus is used to supply the ship's auxiliary load. Alternatively, the propulsion motor can run at variable speeds with a variable frequency supply, but under these circumstances the propulsion busbar could not be used to supply the ship's auxiliaries.

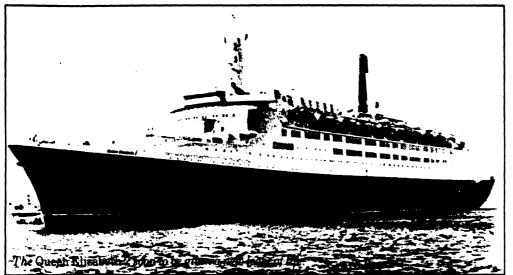
However, the use of synchroconvertors provides a variable frequency supply for speed control of the AC propulsion motors. In addition they can be used to give a soft start facility to enable the propulsion motor to be synchronised with the propulsion busbar.

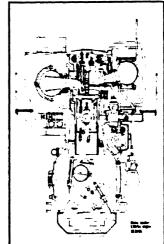
Thus, the propulsion motors can be speed controlled as they would be with a conventional thyristor fed DC motor. Alternatively, they can be run synchronised onto the propulsion busbar system. The use of one system or the other is directed by the sailing mode.

The 18-pole generators are of the salient pole type and are directly driven by the diesel engines. A brushless excitation system is used to avoid problems associated with carbon brush dust and current collection that can occur with conventional DC exciters or static excitation. The brushless design incorporates a permanent magnet pilot ex-

RE-ENGINING QE2, THE MOTOR SHIP, JUNE 1987

The 18-pole generators are rated at 10.5MW at 400 rev/mn; the field is provided by a brushless excitation system, using z permanent magnet exciter, seen on the right of the photograph.


citer to supply the field of the main exciter via the automatic voltage regulator. With this design the excitation scheme is independent of any external sources of supply.


A conventional two-bearing arrangement was selected for the generators with the stator frame and bearing pedestals mounted on a fabricated bedplate; on board the bedplate is securely bolted to the floor of the engineroom.

The generator bearings are selflubricated by an assembly of oil discs and scrapers. Both bearings are p.ovided with cooling tubes immersed in the oil bath contained in the pedestal sump, and a continuous supply of water to these cooling tubes removes the heat generated at the bearing surfaces. The generators are coupled to the diesel engines by Vulcan flexible couplings; hence there is the possibility of some axial movement of the generator rotor arising from the pitch and roll of the ship in rough seas. To overcome this problem thrust pads are incorporated in the front end bearing to accommodate the resulting axial loads.

The machines are ventilated by a closed air-circuit water-cooled system where air is recirculated through heat exchangers mounted on top of the stator frame. Air is drawn by fans mounted at each end of the rotor, and flows through the stator windings and then in parallel paths through the air

2.33 xtx

Cross section of the 58/64 engine showing the monobloc frame and the underslung crankshaft.

Diesel-electric power chosen for *Queen Elizabeth 2*

Cunard, the UK shipping line, has opted for a diesel-electric configuration to replace the existing turbines on boards its liner *Queen Elizabeth 2*. Nine 9-cylinder MAN-B&W 58/64 series engines producing a total of 94 500kW (130 000 bhp) will be installed in the vessel. MAN-B&W are also responsible for the technical layout and delivery of the complete production package which also involves GEC and Harland and Wolff.

The cost of re-engining the QE2 will be DM90 million (US\$34 million).

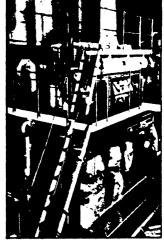
The new plant is expected to make a daily saving of 250 tonne of fuel oil at a service speed of 28.5 knots although a top speed of 32.2 knots will be attainable.

The West German shipyard Lloyd Werft, Bremerhaven will begin work on the DM300 million (US\$114 million) refit in October 1986 with the vessel spending 179 days at the berth, to be returned to Cunard in April 1987. Cunard has already planned its cruise programme for 1987 and heavy penalty clauses are included in the contract.

MAN-B&W's L58/64 engine series (*The Motor Ship special* supplement, March 1985) has been developed for a power range between 5 884 and 11 033kW (8 000 and 15 000 bhp), to provide an overall cost effectiveness for a large bore, four-stroke engine. The characteristics of this engines fuel consumption, lube oil consumption, exhaust energy recovery, heavy fuel operation and maintenance are summarised thus:

Fuel consumption. A consumption of 123 g/hph at 85 per cent ECR was achieved on the testbed with a 31.58/64 experimental engine and figures of 120 to 121 g/hph are foreseen.

Lube oil consumption. Rates of less than 1 g/hph have been achieved.


Exhaust gas recovery. Between 350 and 700kW of electrical energy can be gained from the exhaust gas, thus providing 50 per cent more exhaust energy than current two stroke engines.

Heavy fuel operation. The 58/64 engine series has been run on significantly lower grade heavy fuel than is currently available on the market, says the company, and has been operated on fuel of 1 720 cST (7 000 sec Redwood 1) from the outset. A simple means of adjusting ignition timing is incorporated with which the combustion process can be adapted to operating and ambient conditions, such as the varying quality of the fuel

Maintenance. A high power output developed on a small number of cylinders means low maintenance costs, say MAN-B&W. With just four variants from six to nine cylinders the 58/64 series covers a 7 000kW power range. Short removal and installation times are claimed for the engine together with a long service life of the major components.

In addition to the machinery which will require some structural modifications to the ship, extensive alterations in the accommodation are also planned to provide more luxury for passengers. Extra deluxe and 1st class cabins will be added together with new communial areas with integrated shopping arcades, bars and a conference centre. A squash court and entertainment centre will also be added.

Over the bridge an allweather observation lounge will be built for passengers. Other attractions will include a swimming pool with adjustable floor, making it possible to raise it to a safe height for children or change it to a dance floor. Galley spaces are to be rebuilt in one central location and a new hospital and doctors surgery are to be built. Crews mess and recreation areas will also be improved. A new automatic telephone exchange will be installed to make it possible for all cabins to be linked via Satcom to make international calls.

The three-cylinder prototype 58/64 on which development tests were carried out.

Cp propeller and Grim wheel of the type to be fitted to the QE2. The operation of the Grim Wheel was discussed in The Motor Ship, February 1984.

gap where it exhausts outwards through ducts in the stator core. The hot air is directed upwards through openings in the top of the frame to the heat exchanger. The recooled air is then drawn back to the rotor fans to complete the circuit. The brushless exciter is ventilated by air from the generator air circuit via overhead ducts from the stator endshields.

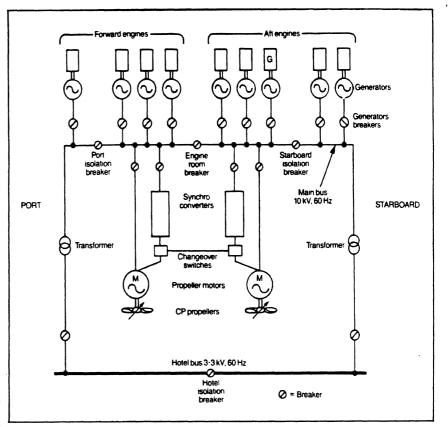
The heat exchanger is contained in a steel housing mounted on top of the stator frame. It utilises a double tube, double tubeplate design. With this arrangement any water leakage in the event of a tube failure is contained within the outer tube and is channelled into the space between the double tubeplates. This space is drained into a cooler leakage tank fitted to the side of the stator frame. A liquid level detector provides a warning of any leakage from a cooler.

The overall length of the machines had to be limited because of space constraints, and modifications were introduced into the exciter design to shorten its length. One such change involved the rotating diode carrier which was redesigned and mounted underneath the armature winding overhang of the main exciter.

In the event of a major failure of one of the generators, the machines are designed such that all of the poles and the top two-thirds of the stator winding can be removed without having to withdraw the rotor or remove the exciter and bearing pedestals.

To reduce the erection time at the shipyard, the machines were delivered fully erected on their bedplates. To facilitate transport with the rotor secured in the core of the stator, a new design of endshield was developed.

The stator frames are waterproofed up to the underside of the shaft to meet Lloyd's requirements.


The order for the generators was received at the end of December 1985, and manufacture of all nine machines was completed by the end of September 1986.

Motors

The motors were designed and manufactured by GEC Large Machines Ltd in Rugby. The order was received in December 1985 and the motors were completed, tested and despatched to Bremerhaven in August/September 1986.

These are believed to be the largest single unit propulsion motors in commercial service.

The machines are 9m long and 8½m in diameter. The 900mm diameter shaft is 5.7m long and carries a rotor of 6m diameter, the complete shaft and rotor

Electrical power for propulsion and for the hotel requirements of the ship are supplied from any combination of the nine generators. The synchroconverters are used for shaft revolutions up to 72 rev/min; above that speed the shafts are driven at 144 rev/min, corresponding to the ship's frequency of 60Hz.

weighting 105 tonne. The complete motor weighs approx 300 tonne. The shaft carries a rated torque of 2.92×10^6 Nm, nearly 12 times that of each generator.

The machines had to be designed both mechanically and electrically to meet the stringent conflicting demands of very limited space and performance within established criteria. Because of the large physical size, the production constraints, transport and assembly at the dockside, and practicability of onboard maintenance strongly influenced the design.

The stator frame was split into two sections of about 75 tonne each to facilitate transport. When reassembled with their endplates they form an extremely rigid box structure, which is designed to be watertight up to the underside of the shaft. This was tested in the factory, prior to core and winding assembly, by filling the lower half with 50 000 litres of water.

Similarly the rotor was split into two half rim/disc units of 35 tonne, and a shaft (28 tonne). The design was arranged to minimise production time on final assembly. Factory tests included an electrically coupled run with one machine as a generator. After tests the component parts were shipped to Bremerhaven where they were reassembled under GEC supervision before being lifted complete into the ship. The motor enclosure is arranged for closed air-circuit water cooling. Air is circulated through four frame-mounted heat exchangers by eight motor-driven fans, the re-cooled air being returned to each end of the motor. A double tube, double tubeplate design is used to provide the same high integrity cooler as on the generators. The particular air circuit arrangement was necessary because of the severe space restrictions and the need to achieve uniform ventilation.

The motor shaft is supported in two pedestal-mounted sleeve bearings. These were specially designed for the duty and are self lubricated and watercooled in a similar manner to the generator bearings. In addition they incorporate high pressure jacking oil. This is used to ensure proper lubrication and minimise wear at start and under low speed conditions. It is also an essential factor to assist maintenance and barring operations. The motor is solid coupled to the 70m-long propellor shaft, which is inclined 1.5 deg to the horizontal. The thrust block immediately adjacent to the motor, provides axial location.

Both stator and roto, windings have full Class F insulation but operate at Class B temperature rises (82°C rise in the stator, 90°C rise in the rotor, both based on cooling water at 38°C).

(Continued on page xxii) RE-ENGINING QE2, THE MOTOR SHIP, JUNE 1987 The stator coils were designed to facilitate removal and replacement for shipping and reassembly at the stator joints. This feature also allows in-situ removal and replacement, should this ever be required. Similarly the rotor pole and field coil are designed as an integral assembly to facilitate in situ removal. The poles can be removed through access covers in the end plates.

The motors have inboard sliprings designed for static excitation from remote mounted equipment, arrangements are made to prevent carbon dust entering the motor.

The variable frequency starting scheme avoids the high power which would be required to start the motors direct from the generators. This accelerates the motors to synchronous speed, or runs the motors at subsynchronous speed for manoeuvering purposes. The power restriction in this mode is 11MW at 144 rev/min on each motor. Thereafter the motors are synchronised on to the main generator supply where full power of 44MW can be achieved by adjustment of the variable pitch propellers.

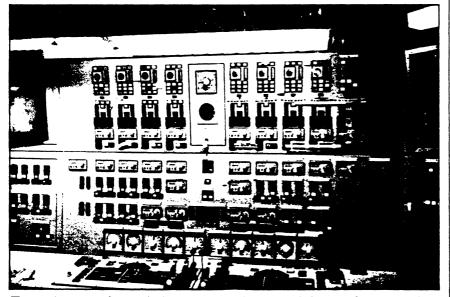
Frequency controls

Two identical frequency convertors are provided to enable the motors to be accelerated up to speed for synchronising and to enable them to be controlled at variable speed as required.

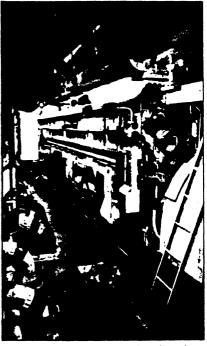
These so-called Syncdrive convertors were manufactured and supplied by GEC Industrial Controls and they are each rated to provide the following:

> 5.5MW at 72 rev/min 11.0MW at 144 rev/min

with a constant torque characteristic between these speeds.


The Syncdrive is a DC link type convertor system where the power from the AC propulsion busbar is first converted into DC using a naturally commutated thyristor convertor, known as the supply convertor. An identical machine convertor changes the DC power into AC of the appropriate frequency for the motor. This convertor always works in synchronism with the rotation of the motor and it relies on the presence of sinusoidal generated voltages from the motor for its operation. The convertor directs the circuit current into the appropriate motor windings so that the optimum torque is generated at all times; it is impossible for the motor to fall out of step with the convertor.

With the normal working range the convertors are naturally commutated using the supply and motor-generated voltages to assist in the switching of the thyristors. At low speeds, however, the motor generated voltage is insufficient for this purpose and hence the supply convertor is used to assist the switching of the machine convertor from standstill up to approximately 7 rev/min.


The two identical Syncdrives each consist of a suite of cubicles housing the thyristors and all the necessary control and protection apparatus. The thyristors are air-cooled and they are mounted on separate thyristor modules which can be removed and replaced quickly if necessary.

All the electronics for the drive is housed in a separate section of the suite along with the necessary sequencing relays and alarm annunciation.

The AC line reactors and the DC link reactor are installed in a room immedi-

The engine control console has a mimic diagram of the complete generation, distribution and electric propulsion system. Note how the division of the five and four engines is replicated on the board. An uninterruptible power supply provided by Aval-Lindberg ensures that the monitoring system will continue to function irrespective of mains power failures.

One of the five MAN B&W diesel engines in the aft engineroom; the other four are in the forward engineroom.

ately below the convertors. They are air-cored and air-cooled. The AC line reactors limit the level of fault current which can flow in the circuit and also provide a measure of decoupling between the port and starboard convertors. The DC reactor provides for smoothing of the DC link current and serves to prevent interaction between the operation of the supply and machine convertors. They also limit the rate of rise of fault current and allow the convertors to be fully protected against all fault conditions by static means.

Switchboard

The main 10kV switchboard, designed and built by Field & Grant Birmingham, is divided into two sections which are mounted in port and starboard switchboard rooms.

Four of the diesel generator sets are connected to the port switchboard together with the port propulsion motor and synchro-convertor and port ship service transformer. The other five units are connected to the starboard section along with the starboard propulsion motor and starboard ship service transformer.

During normal operation the number of generators on line, are selected to suit the operating conditions. The two sections of the board are synchronised and connected together through the bus tie circuit-breakers and the busbar bridge.

The two outer bus section circuitbreakers allow the propulsion and ship service supplies to be separated and (Continued on page xxy), operated as two independent systems. This arrangement allows for two possible operating conditions that could cause difficulties in the ship's distribution system. The first condition is frequency disturbances caused by cyclically varying propulsion load in a heavy sea, whilst the second is voltage distortion caused by the synchro-convertors.

The motor synchronising equipment is provided with a synchro-phasing feature in addition to its normal synchronising capability whereby the two propeller shafts are synchronised to the supply with a particular phase relationship. The purpose of synchrophasing is to permit the optimum blade angle for the propellers to be used minimise vibration.

There is a cross-connecting option for the convertors so that either convertor can feed either motor and using this arrangement it is possible to start the two shafts in sequence should there be a fault in one of the convertors.

Control of propulsion system

The propulsion system can be operated either automatically or manually with manual control being exercised either at the engineroom console or at the 10kV switchboard. Manual control is at two levels.

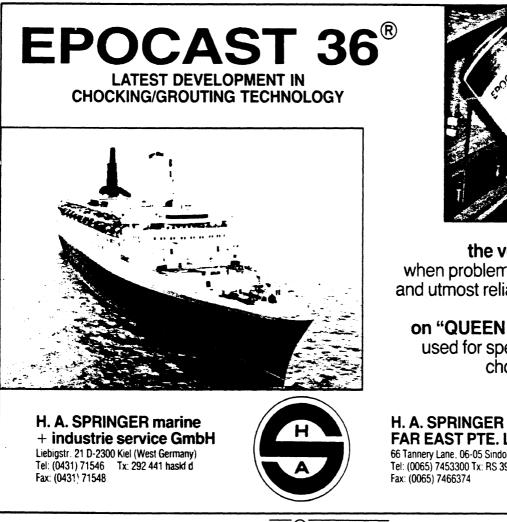
In automatic control a propulsion motor is started and runs in response to signals produced by the mode switch on the Lips control panel and changes from one mode to another are made automatically.

In manual control the operator has to start and stop the equipment auxiliaries and close or open the circuit-breakers using the controls provided on the engine-room console or at the switchboard.

However, whatever the method of control, all essential sequencing is carried out by relays in the engineroom console or in the synchronising panels of the two switchboard sections, with some interlocking for a shaft startup being carried out at the reserve excitation panel. In principle the sequencing is simple, but it is complicated in practice the convertor changeover.

In the engineroom the controls are arranged on the basis that it is possible for the starboard convertor to be used with the port motor and vice versa.

The lowest level of control is at the main 10kV switchboard; in this (manual) mode all the generators, motors, convertors, transformers can be switched and controlled from the switchboard using controls mounted on the front panel of the various sections. Effectively it is necessary for the operator to actuate the elements in the correct sequence, although there are interlocks and inhibits to ensure that all necessary operations are completed at each stage of the sequence.


The second form of manual control is at the console in the engine control room. This provides essentially the same functions as those at the switchhoard

Automatic control

The fully automatic system is based on input signals from the Lips propeller control equipment. There are four operating modes:

- harbour mode;
- ready-to-sail mode;
- combinator mode; and
- free sailing.

In harbour mode the propulsion system is effectively shut down and the only generators in use are those necessary to supply the demands of the ship services distribution system. In practice this means that one diesel generator set

the very best when problems must be solved and utmost reliability is requested

on "QUEEN ELIZABETH 2" used for special stern tube chocking

FAR EAST PTE. LTD. 66 Tannery Lane, 06-05 Sindo Building, Singapore 1334 Tel: (0065) 7453300 Tx: RS 39015 semss

Circle (10) on express enquiry card

will be running while a second will be on standby.

In ready-to-sail mode all the essential propulsion system auxiliaries are energised and in a healthy state. For the propulsion motors this means:

• ventilating fans running;

• bearing jacking oil pumps running; and

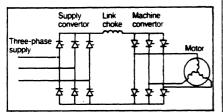
 \bullet excitation equipment selected and healthy.

For the convertors it is necessary that:

• the appropriate convertor is selected for the propulsion motor;

• the convertor auxiliary supplies are on and convertor control circuits are healthy and selected to remote control; and

• the convertor fans are running.


For the shaft system it is necessary for:

the propeller to be in zero pitch; and
the shaft brake and barring gear to be disengaged.

The generators running and connected to the busbar system must obviously be adequate to meet the power demands of the ship service load and

One of the main propulsion motors. Each is rated at 44MW at 144 rev/min and weighs 290 tonne. Up to 72 rev/min they operate under control of the synchroconverters; see below.

Circuit diagram for a synchroconverter and propulsion motor. Two such systems with a total rating of 22.8MW are installed.

the propulsion load.

In combinator mode the propulsion motors are supplied, at variable frequency, by the synchro-convertors and are running at a speed set by either the Lips propeller system or by speed setting switches on the engineroom console or the switchboard.

When running under the control of the Lips system the propeller pitch is automatically controlled to ensure that there are no overloads on the convertor system.

The convertor/motor combination is effectively a constant torque drive since the maximum torque it can develop is essentially independent of speed and is determined by the product of convertor current (which is motor stator current) and motor field current. The system behaves as a DC motor and obeys the same fundamental torque law, that is:

Motor torque = $KI_{a}I_{f}$ K = motor torque constant I_{a} = armature current I_{f} = field current

The motor is started with the propeller set to zero pitch and it remains at this setting until the speed has reached 72 rev/min.

With the motor running at 72 rev/min the propeller pitch can be increased up to the full setting and in this condition the motor will be developing 5.5MW. To increase the power it is necessary to raise the speed of the propeller but the pitch must then be reduced, otherwise there will be an overload on the motorconvertor equipment.

However should the shaft speed be increased with too high a value of pitch on the propeller then the torque imposed on the motor, by the propeller, will increase until it reaches the rated torque condition for synchro-convertor supply, that is, 730 kNm. This is the maximum torque which the motor can develop in this mode and when it is reached there will be no further increase in motor speed but the motor will continue to operate safely. An increase in speed will be possible only if the propeller pitch is reduced.

Safety features

In normal automatic operation the Lips propeller control system will reduce the propeller pitch at the same time as it calls for an increase in shaft speed and there should be no danger of torque limit operation.

The motor field current can be controlled while in the combinator mode, either to maximise the torque produced for a given value of converter current or to provide constant volts/cycle operation of the motor.

In constant volts/cycle mode the field

current is controlled so that the voltage measured at the motor terminals varies linearly with speed and has a value of 10kV at 144 rev/min or 5.5kV at 72 rev/min.

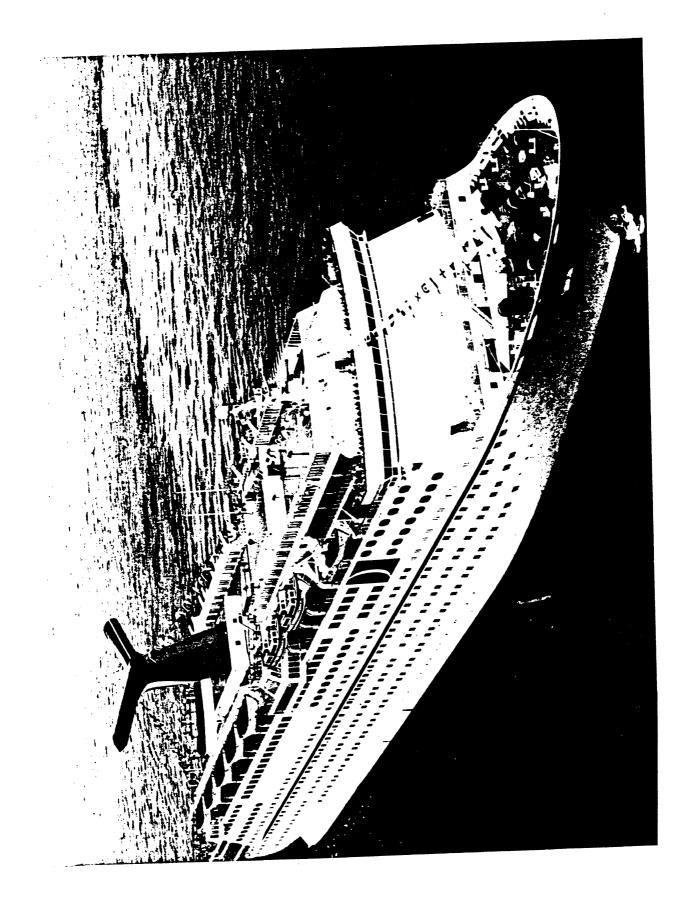
In this installation the motor is operated with the maximum possible field current at 72 rev/min and at speeds up to approximately 120 rev/min when a constant volts/cycle control is introduced.

Safety

When the drive is operating in the combinator mode it is possible to take advantage of the rapid control possible with convertors to provide some safety features. For example, by monitoring the frequency of the AC supply to the convertor it is possible to detect a diesel engine overload condition since this will result in a loss of speed and hence system frequency. By arranging for the convertor load to be reduced if the frequency falls below a preset level it is possible to avoid blackout conditions, provided that the connected diesel generators can supply the other loads remaining after the convertor load has been shed.

Another overload protection feature a reduction in the overall current should any generator be subjected to an excessive current, caused possibly by an excess lagging load. This feature will avoid tripping a generator on overcurrent.

When the motor is operating at maximum power in combinator mode it has to be synchronised to the supply to obtain any higher powers.


In free sailing mode the motor is synchronised to the busbars and operates at powers up to 44MW per shaft, the actual level being dependent on the generators connected to the busbars.

Since in free sailing mode the motors operate at a constant speed which is dictated by the supply frequency, and at 60Hz the motor speed is 144 rev/min, the power developed by the motor is determined by the propeller pitch. The pitch has therefore to be controlled so that there are no overloads on the propulsion machines, that is neither on the motors nor on any of the supply generators.

The only control function that is available at the motor during synchronous running is motor field current and this is arranged so that the motor is operated at unity power factor. This reduces the machine losses, at powers below full load, compared with the alternative strategy of operating with the field current set to the level required for unity power factor at full load.

RE-ENGINING QE2, THE MOTOR SHIP, JUNE 1987

2-41

PRINCIFAL PARTICULARS HOLIDAY PRINCIFAL PARTICULARS HOLIDAY Length, bp Length, bp Length, bp Length, bp Depth, mid to deck No 3 (bulkhead deck) Depth, mid to uper deck Dutut Dutut Dutut Dutut Dutut Dutut

33

ме. ₁₁ , . , , . •

BASIC NAVAL ARCHITECTURE

Unit Number:

Title: Ship types and ship systems - 2

3

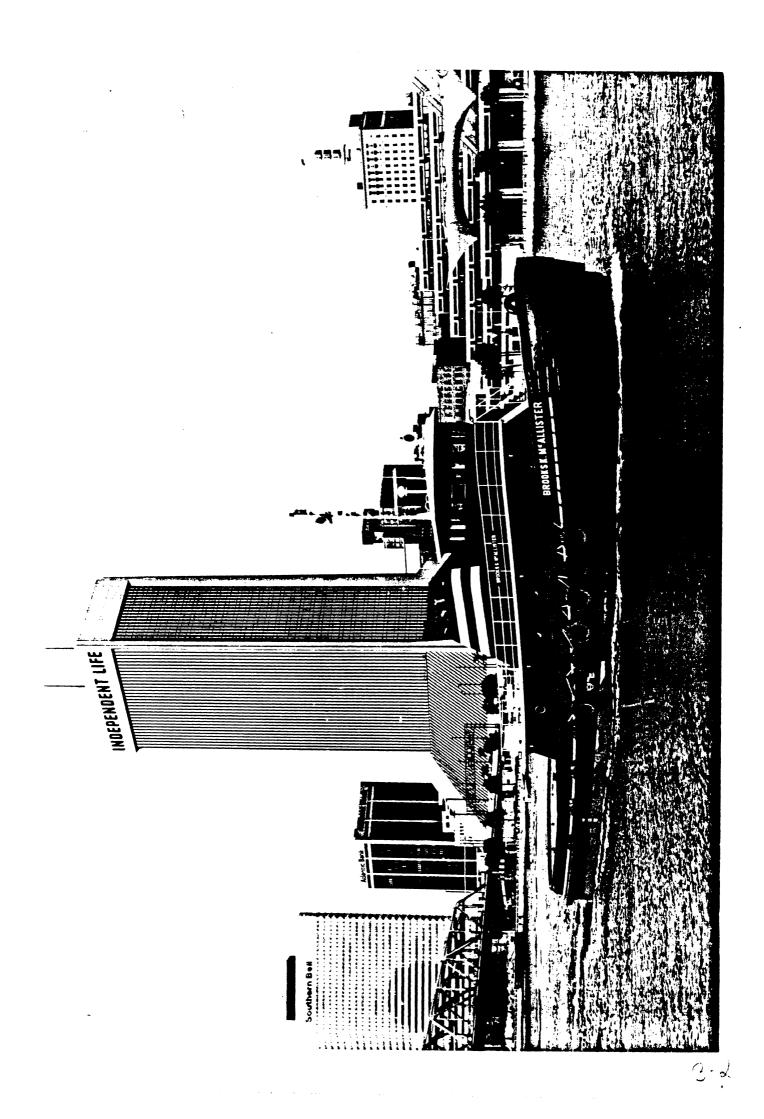
Tape Running Time: 33^M 50^S

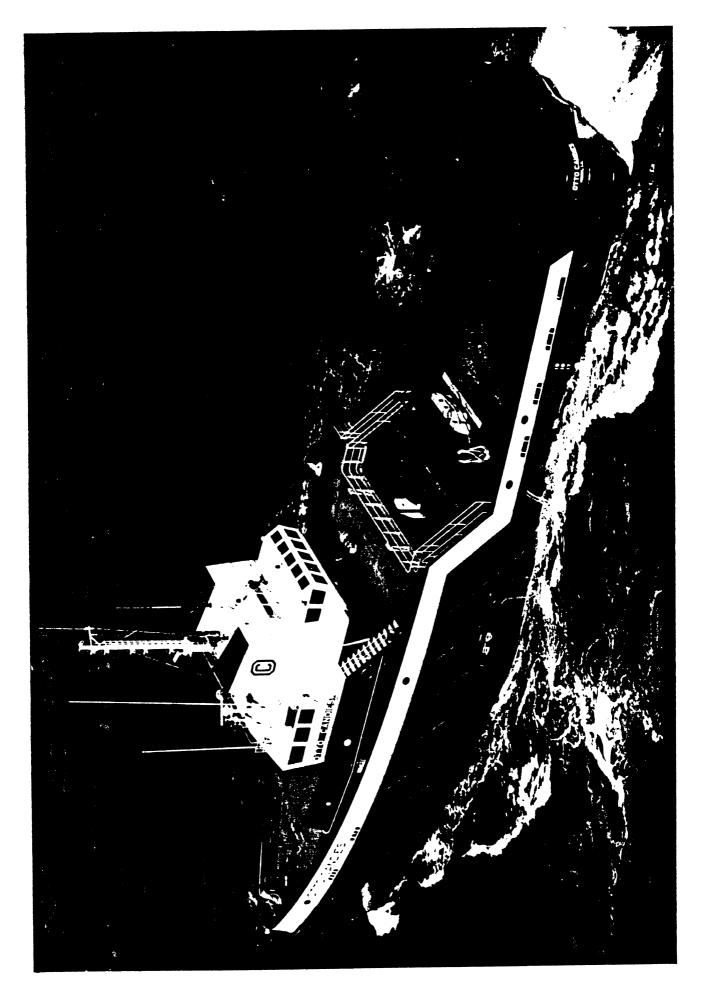
Reading Assignment: MSD pp 11-12

Additional References: Recent articles on ship types taken from trade magazines

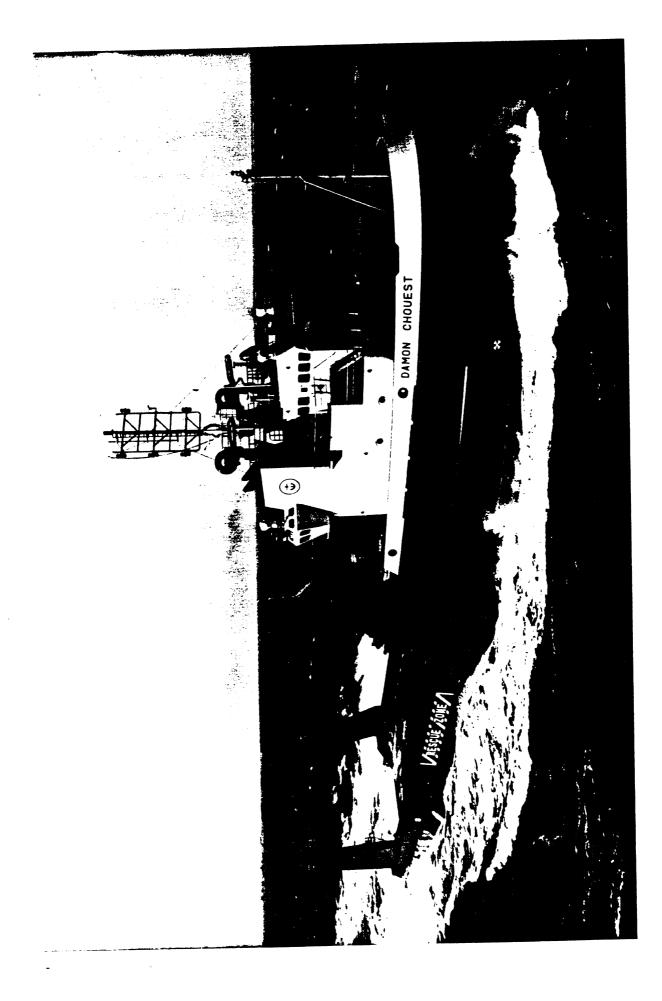
Scope:

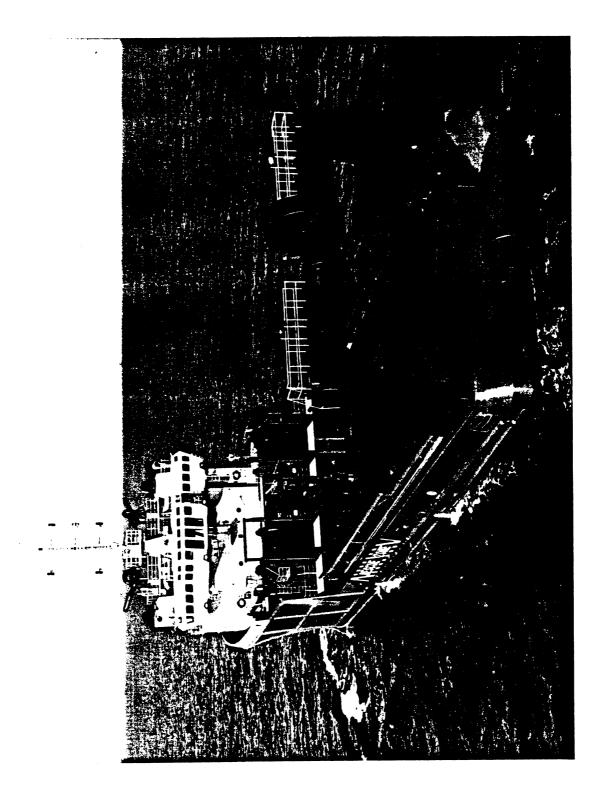
(same as Unit 2)


Key Points to Emphasize:

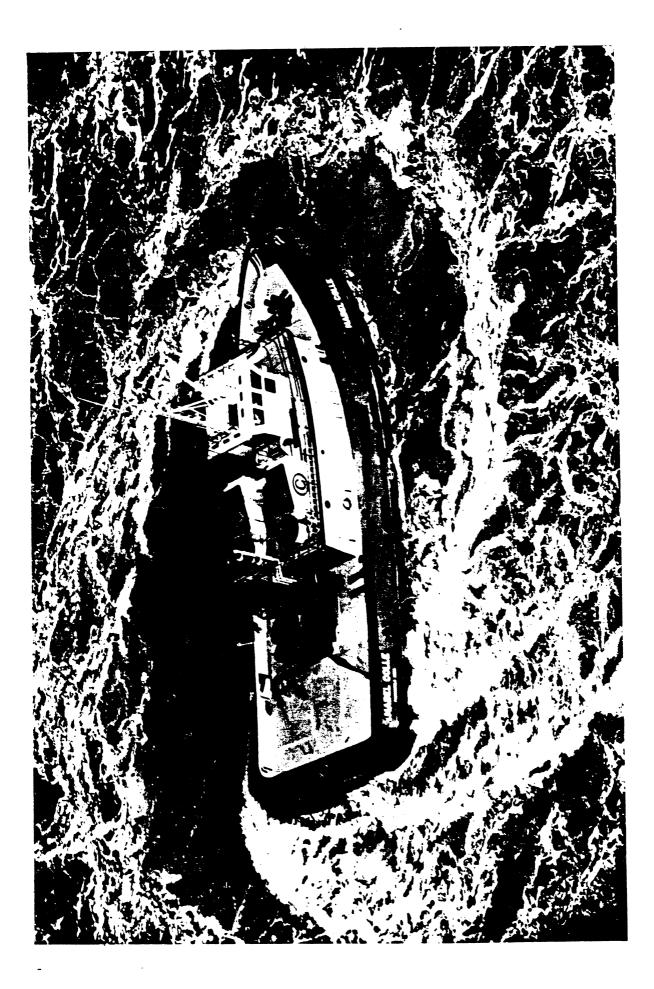

(same as Unit 2)

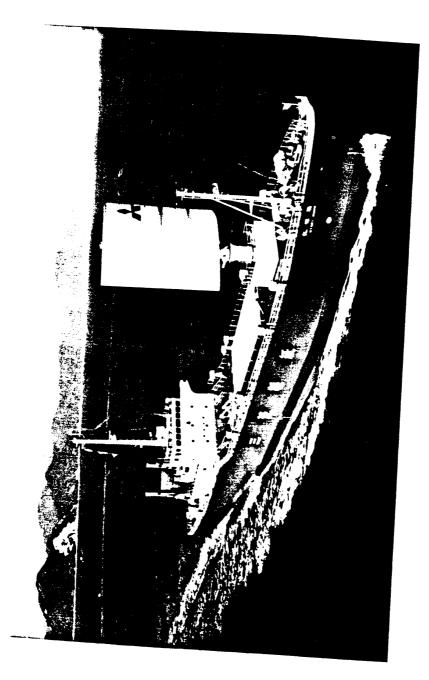
Suggested Problem Assignment: None


(The instructor may wish to require students to read assigned articles in trade magazines.)

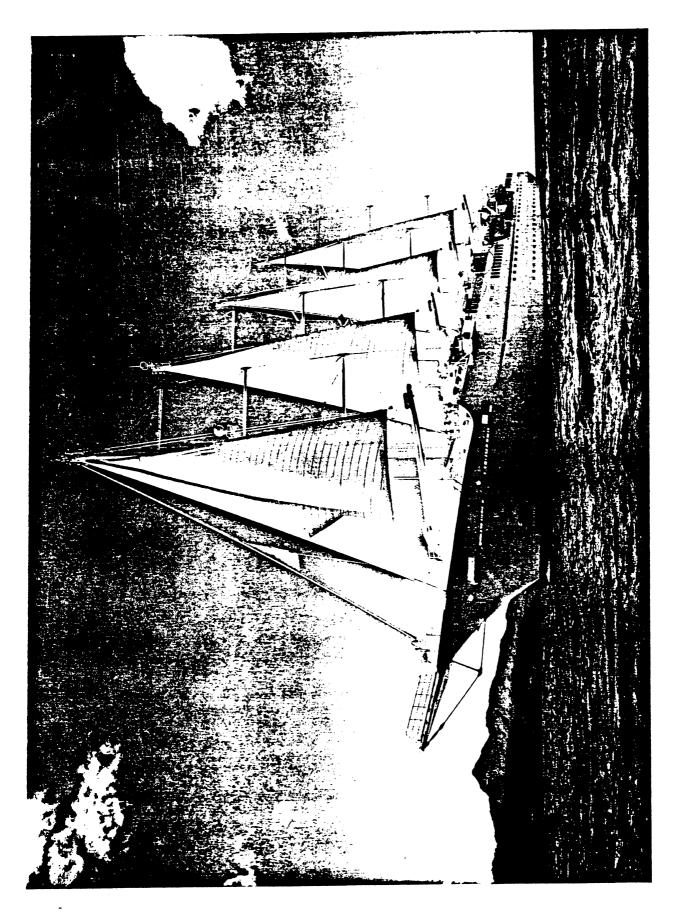

3-1

1.2

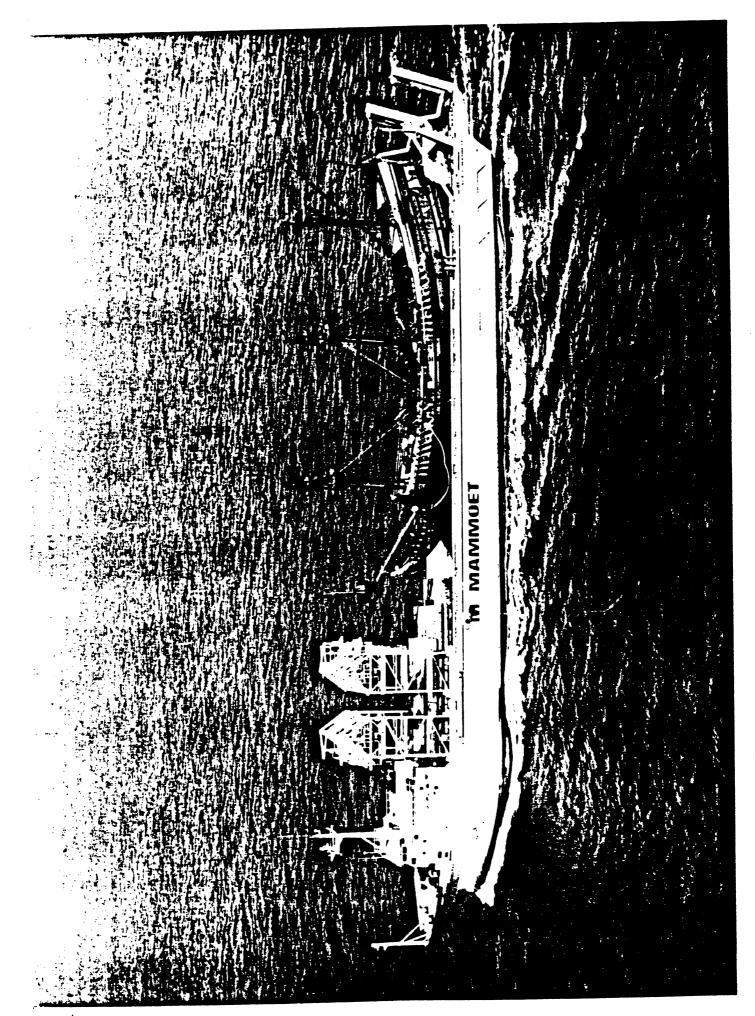


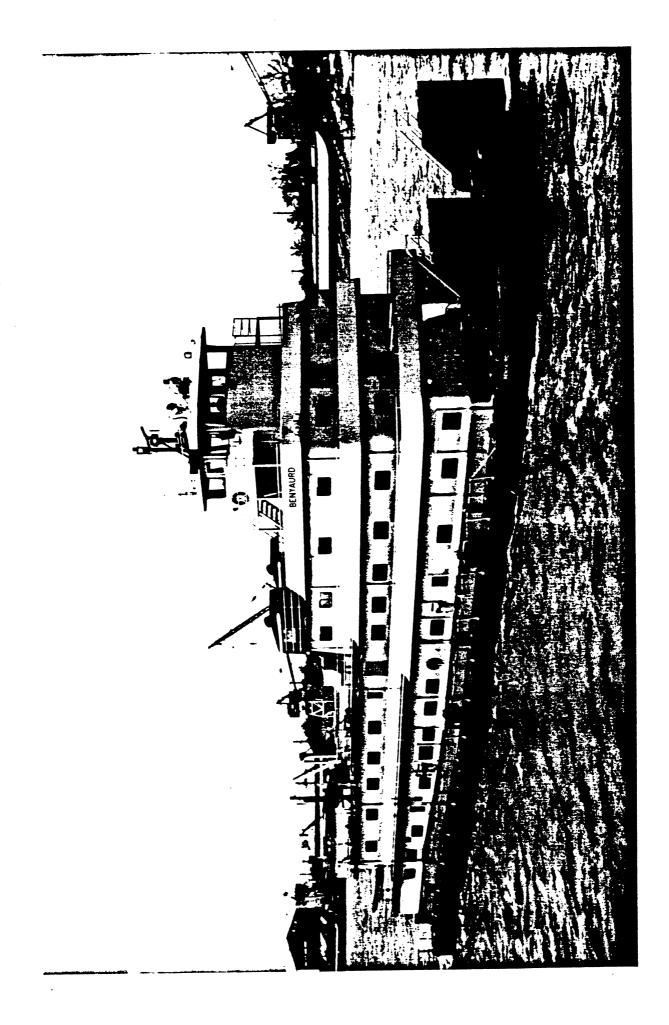


3-5-

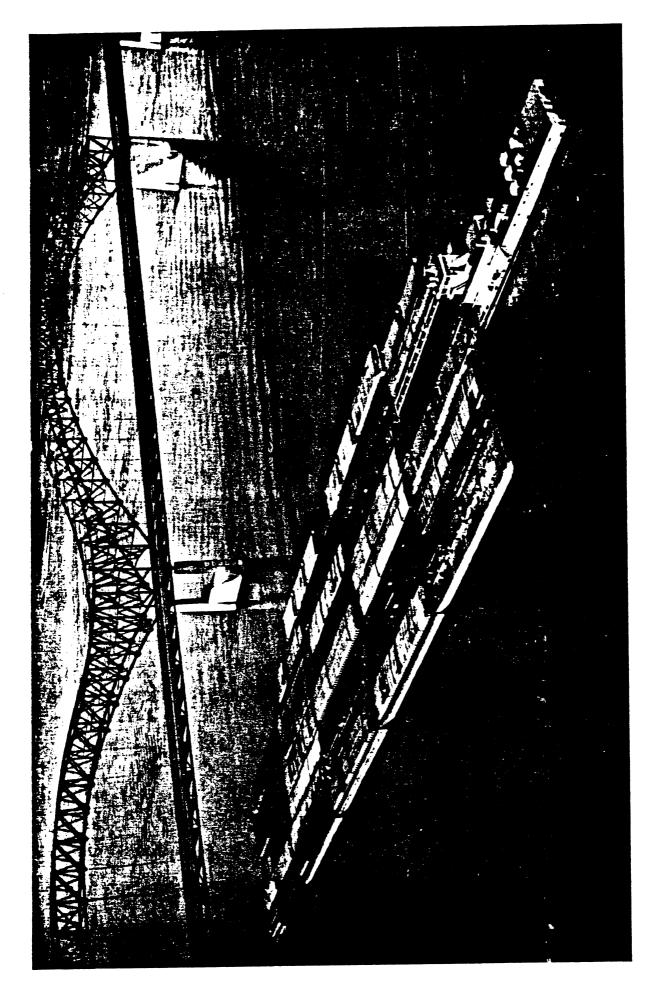


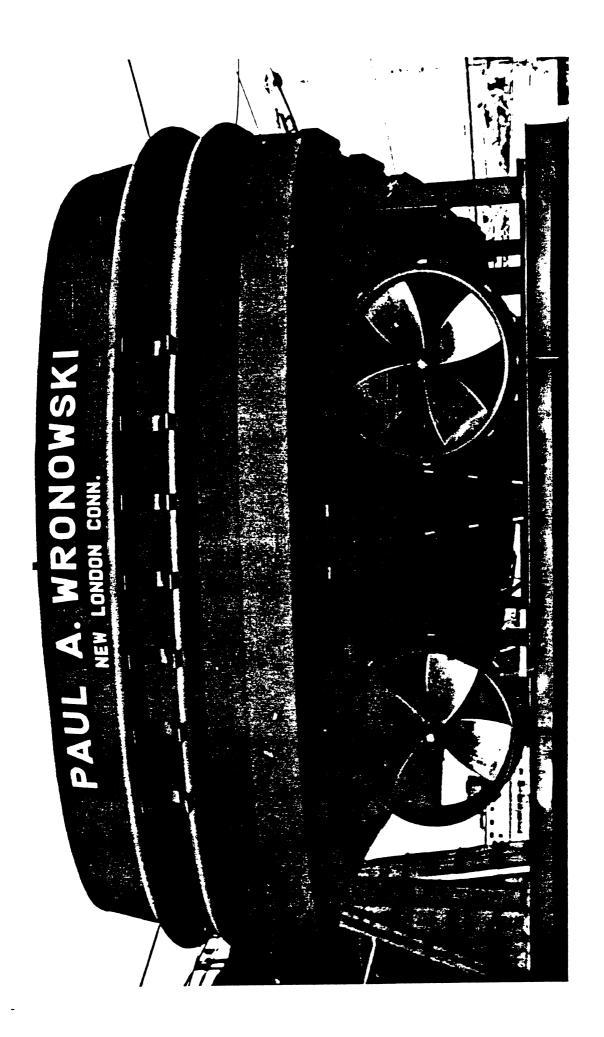
3-6

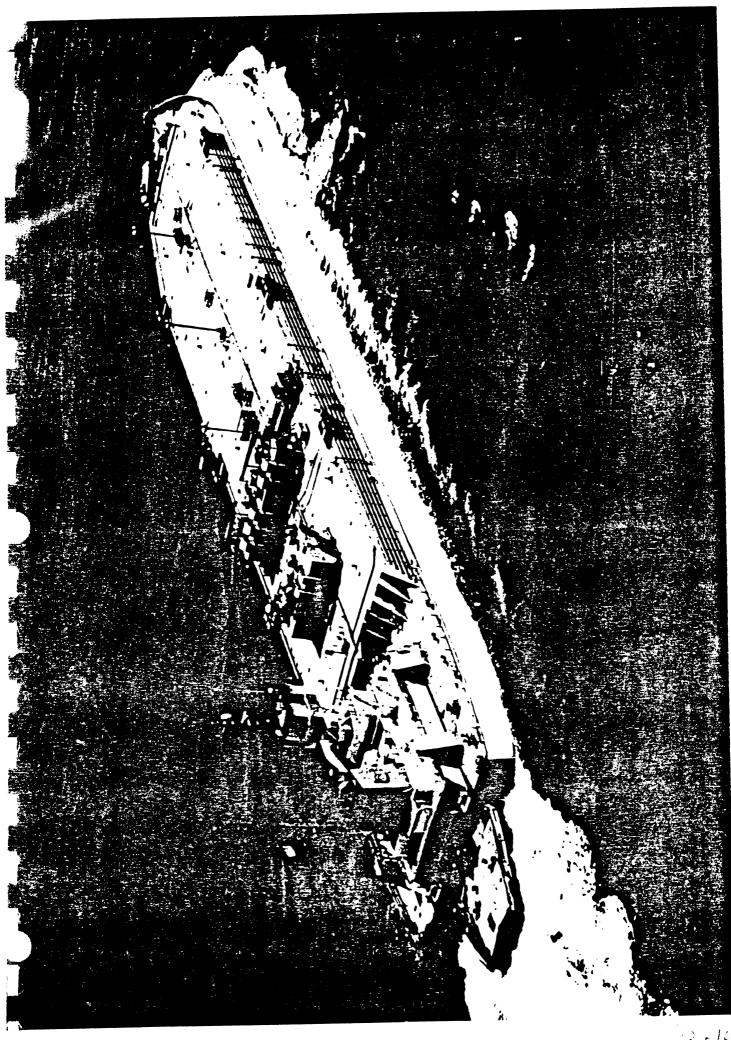




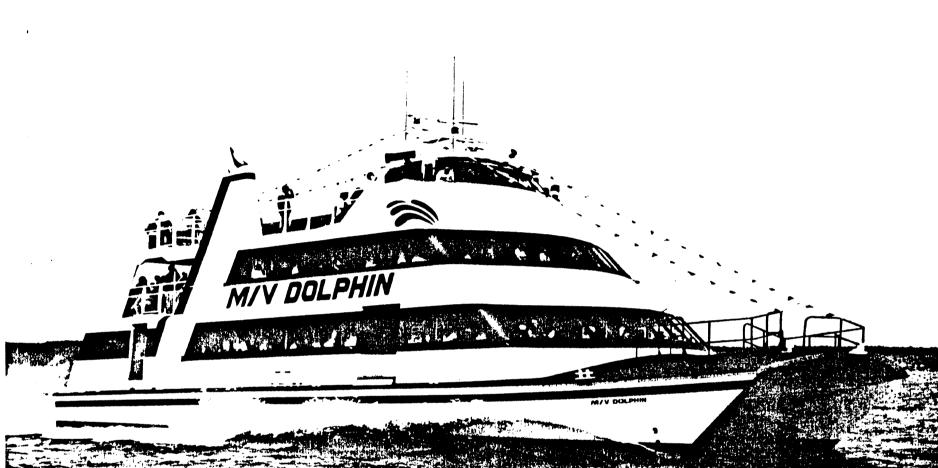
3.8.



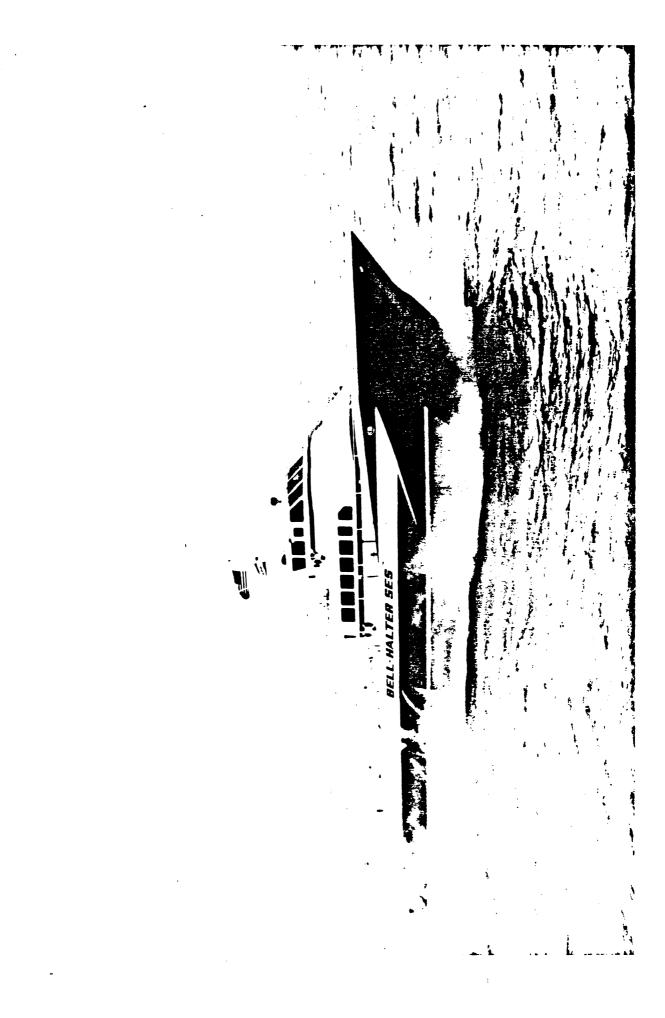

3. Ú

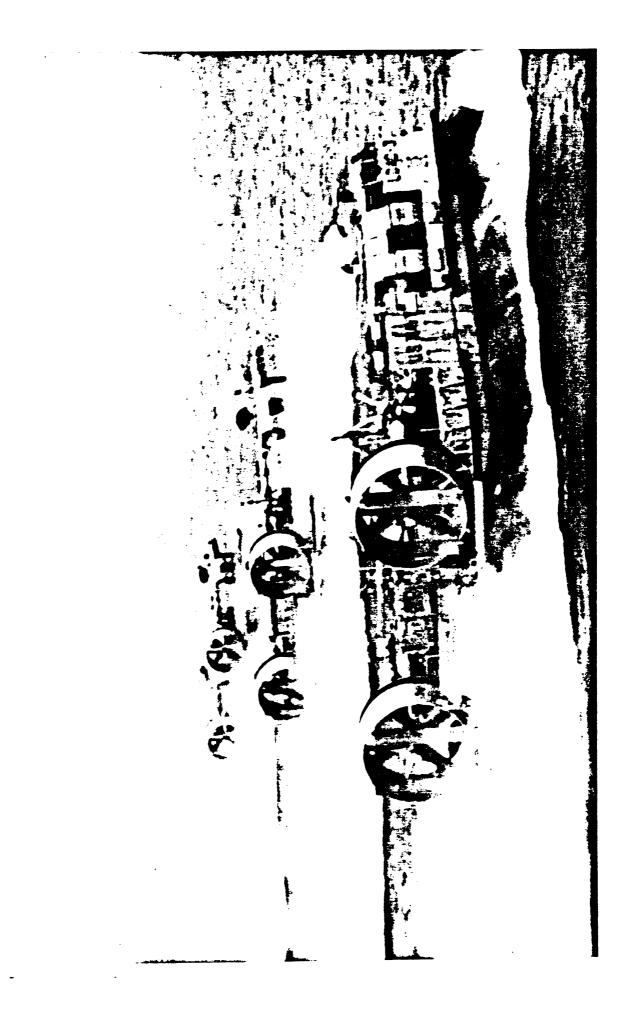


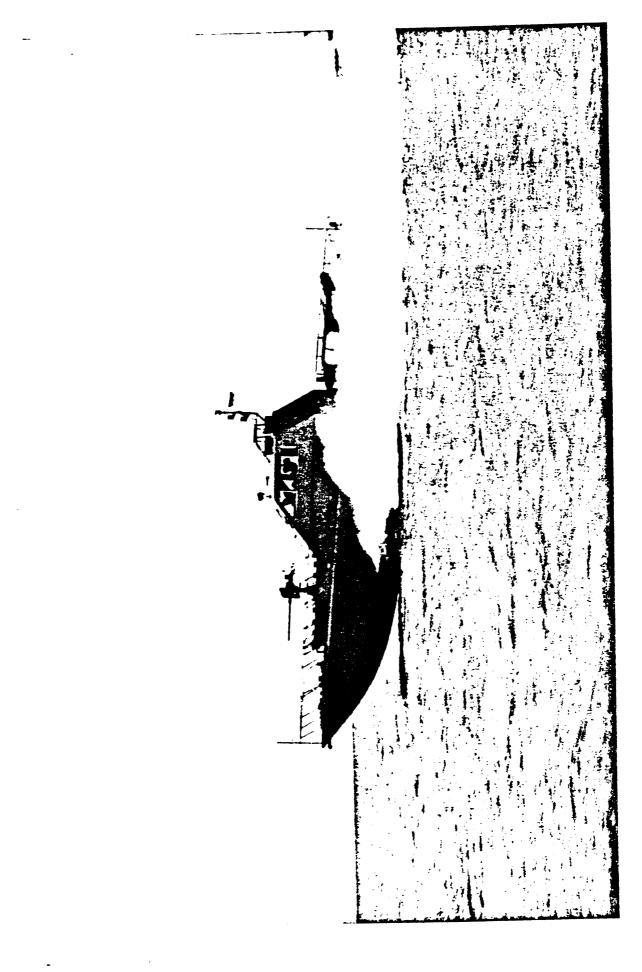
3-.11



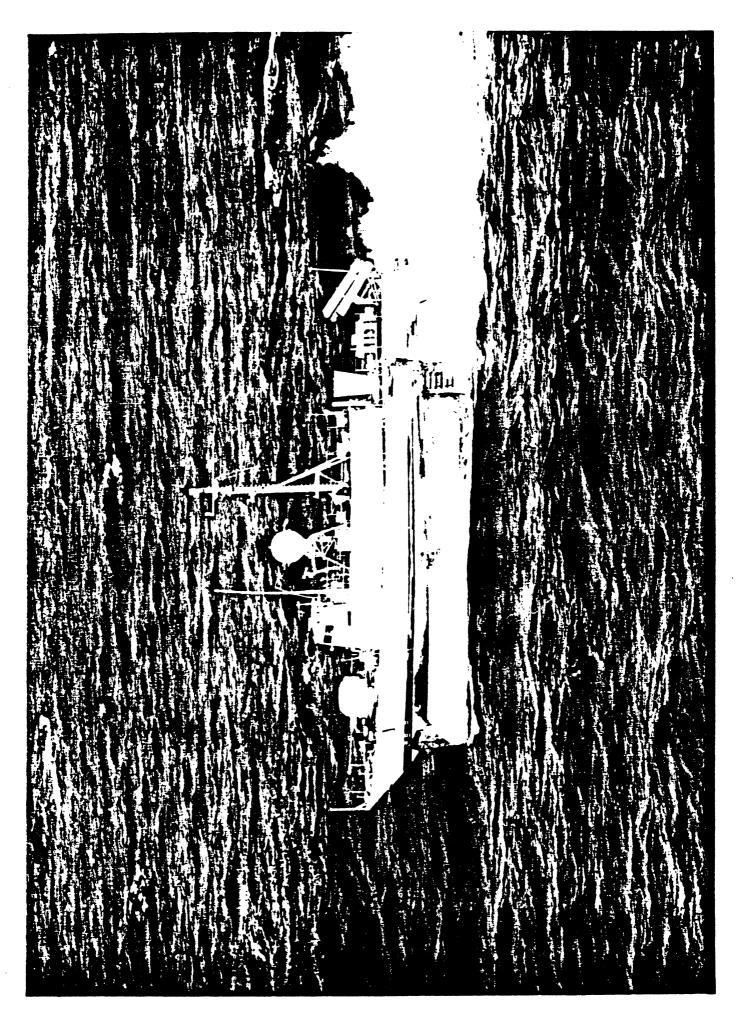
3: /3

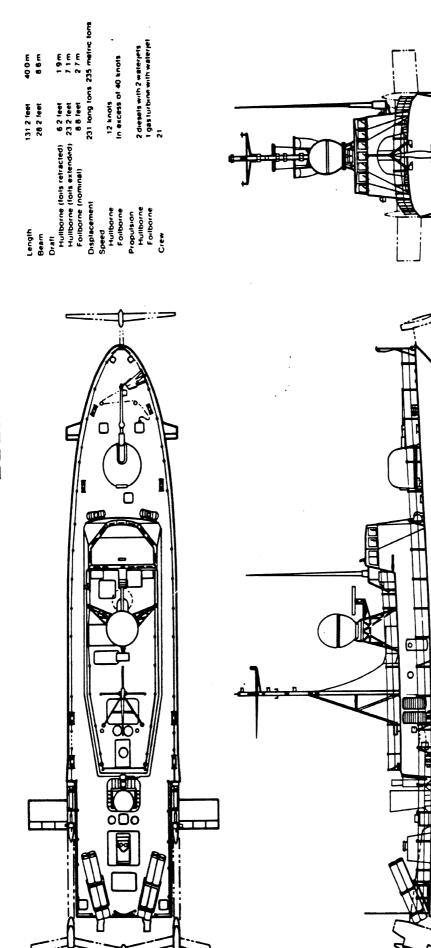



il districts

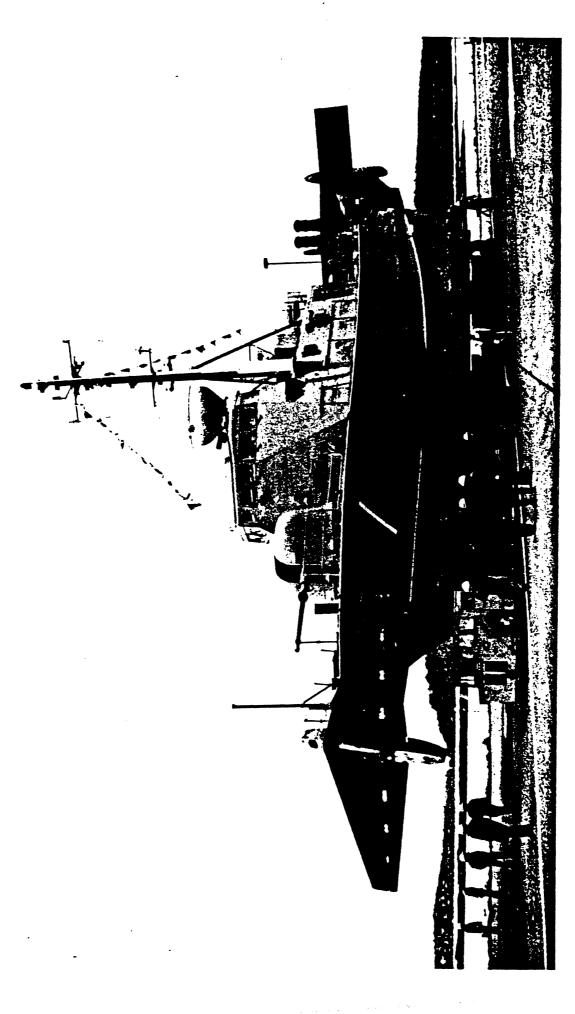

i M

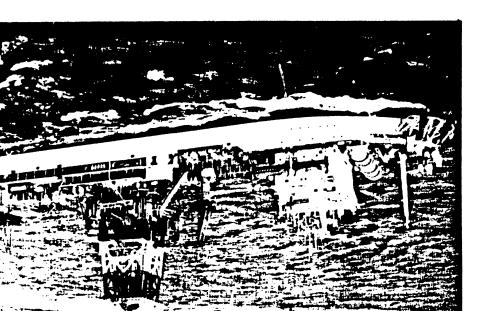
3.1.6





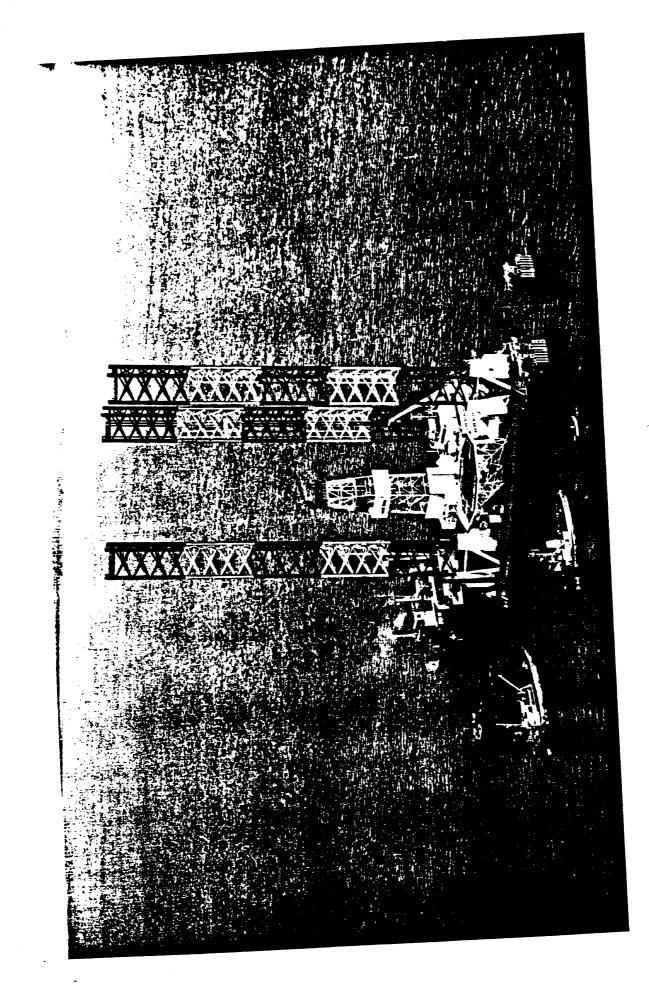
3-19



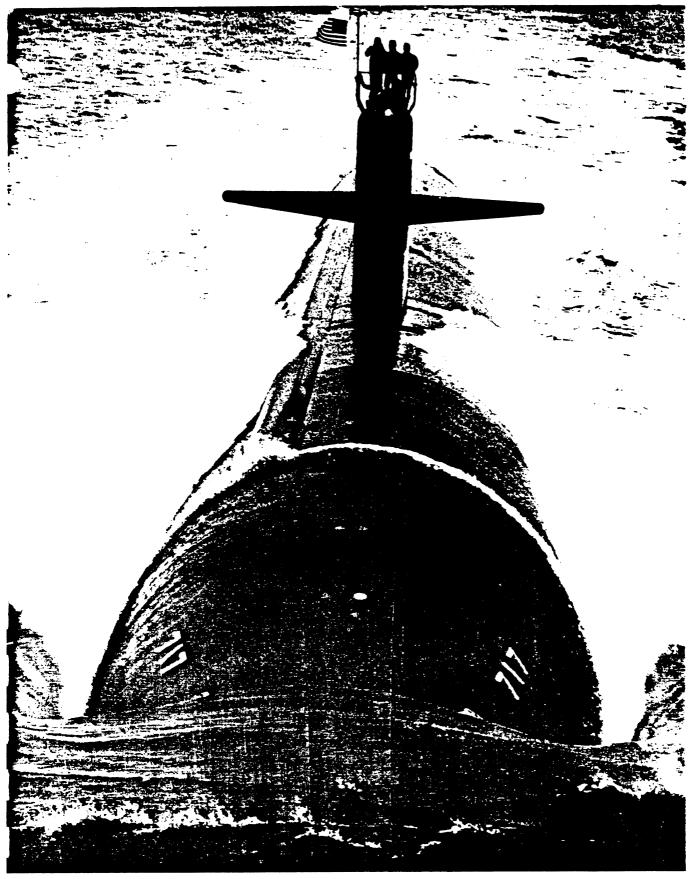

•

BOFING NATO Patrol Missile Hydrofoil (PHM)

Å



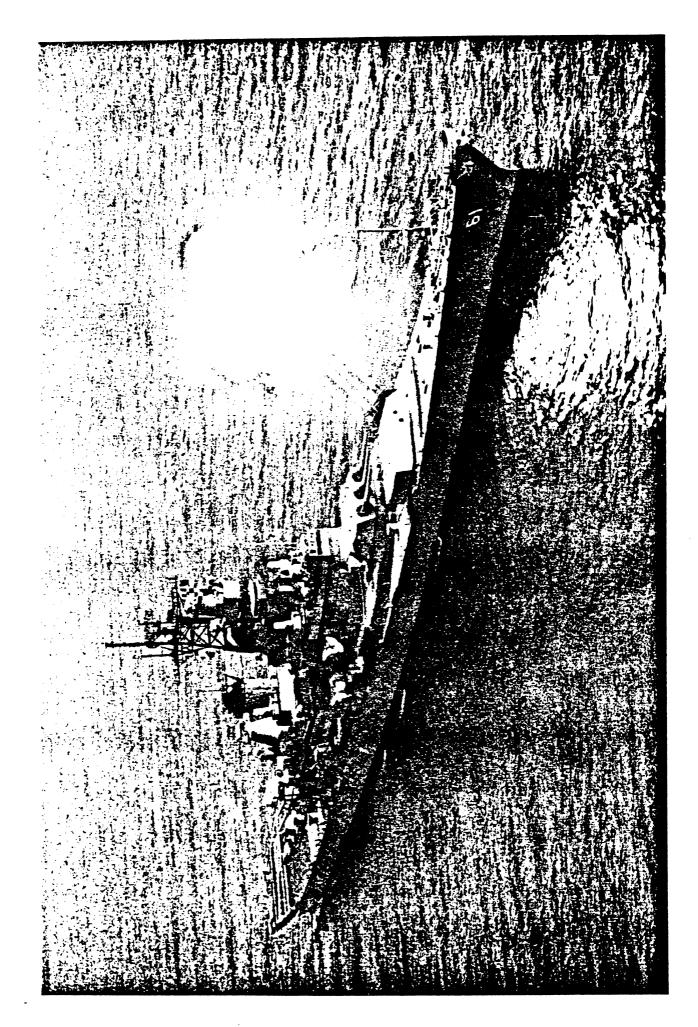
3-23



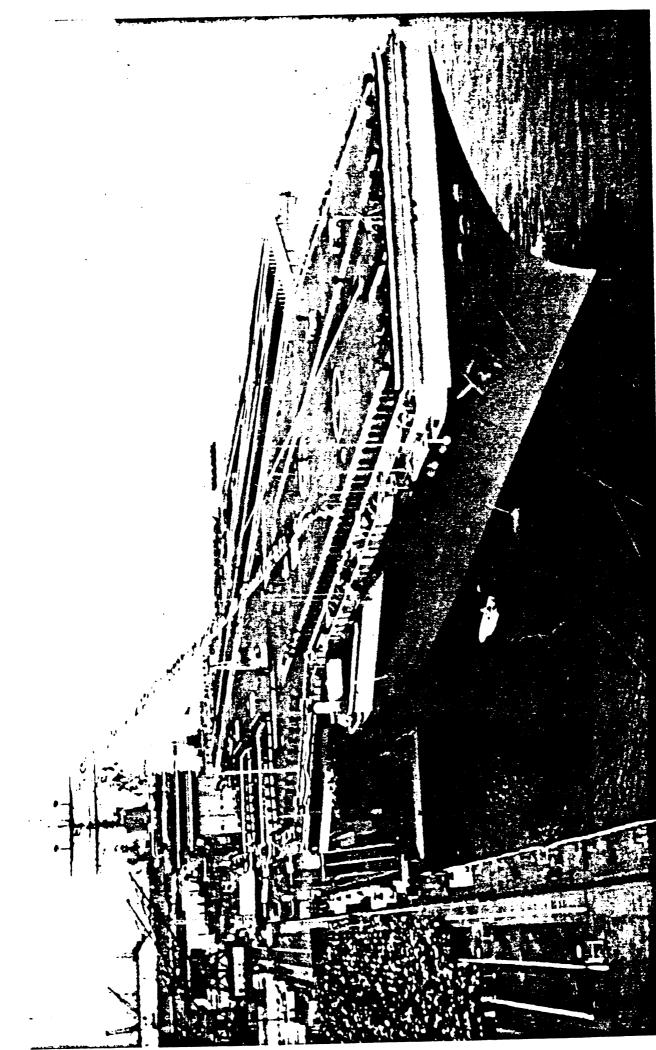
3-24

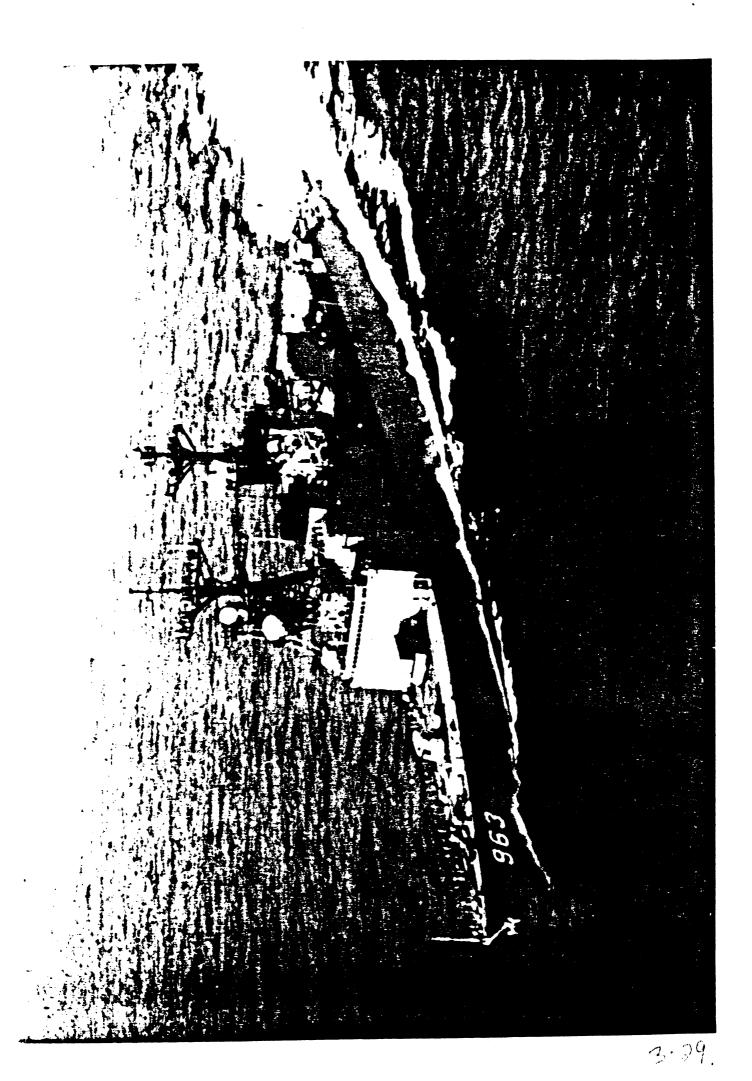
KIE

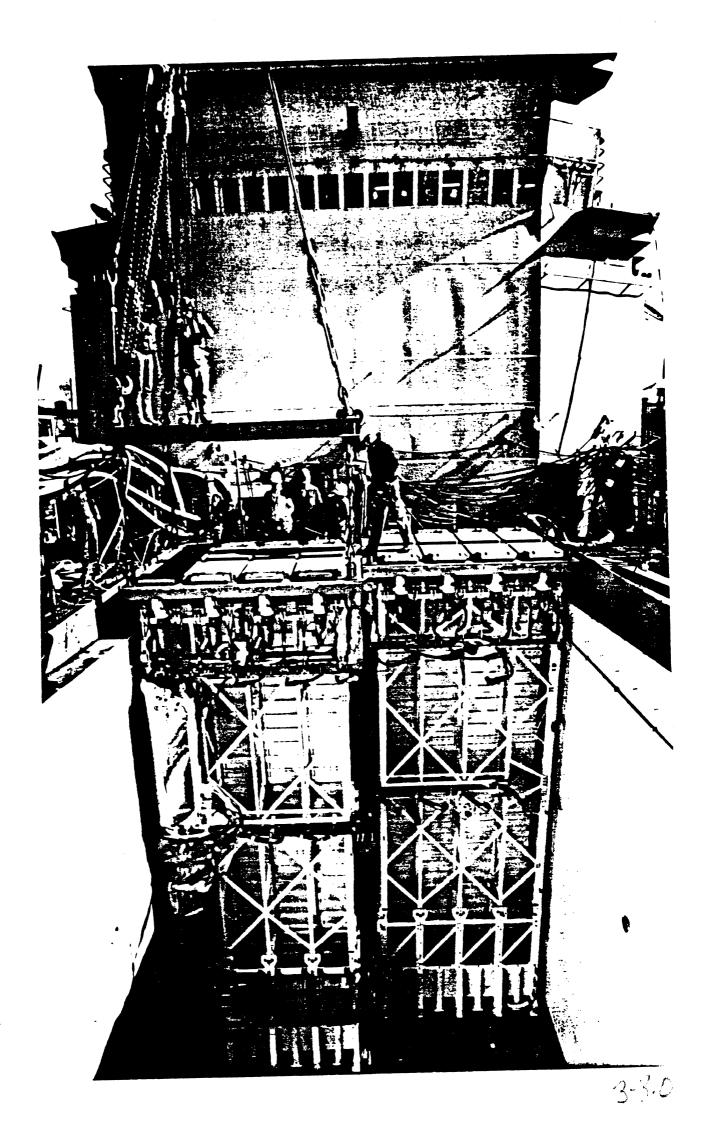
3.25

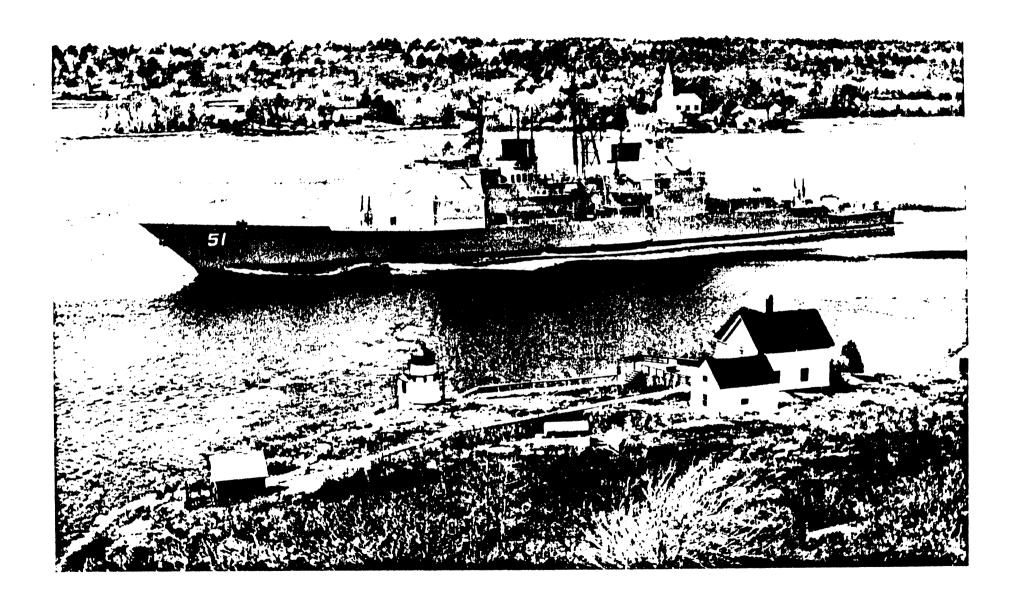

Teagle & Little Printing, Norfolk, Va

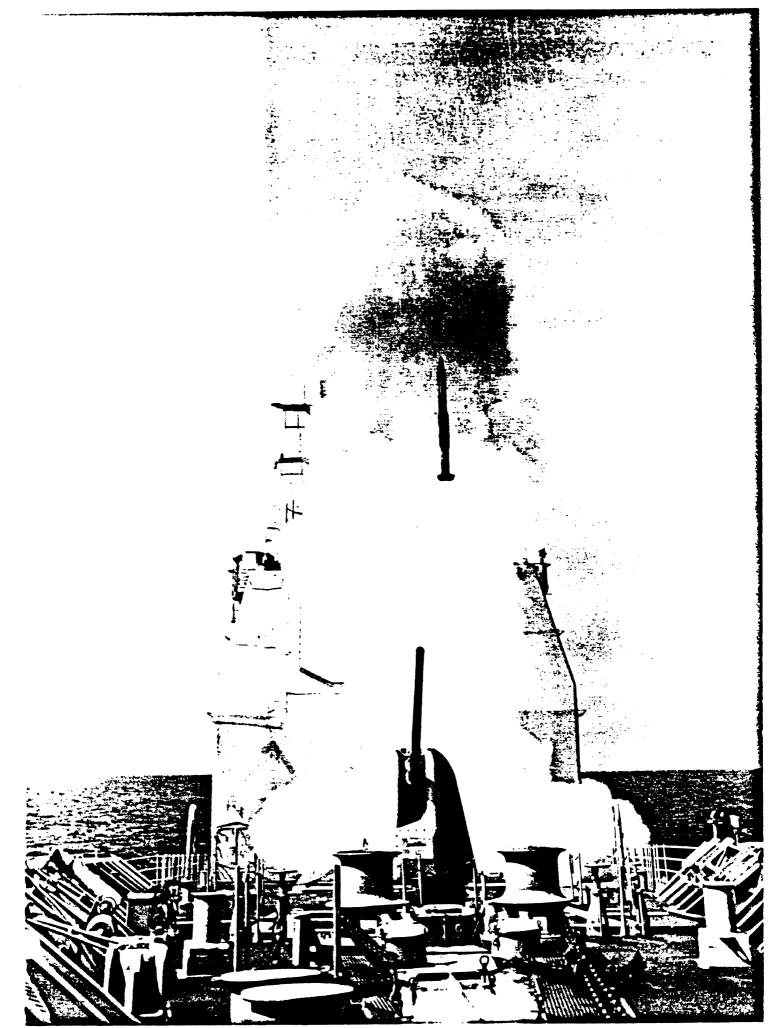
U.S.S. OLYMPIA (SSN 717)

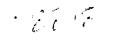

Los Angeles-Class Attack Submarine

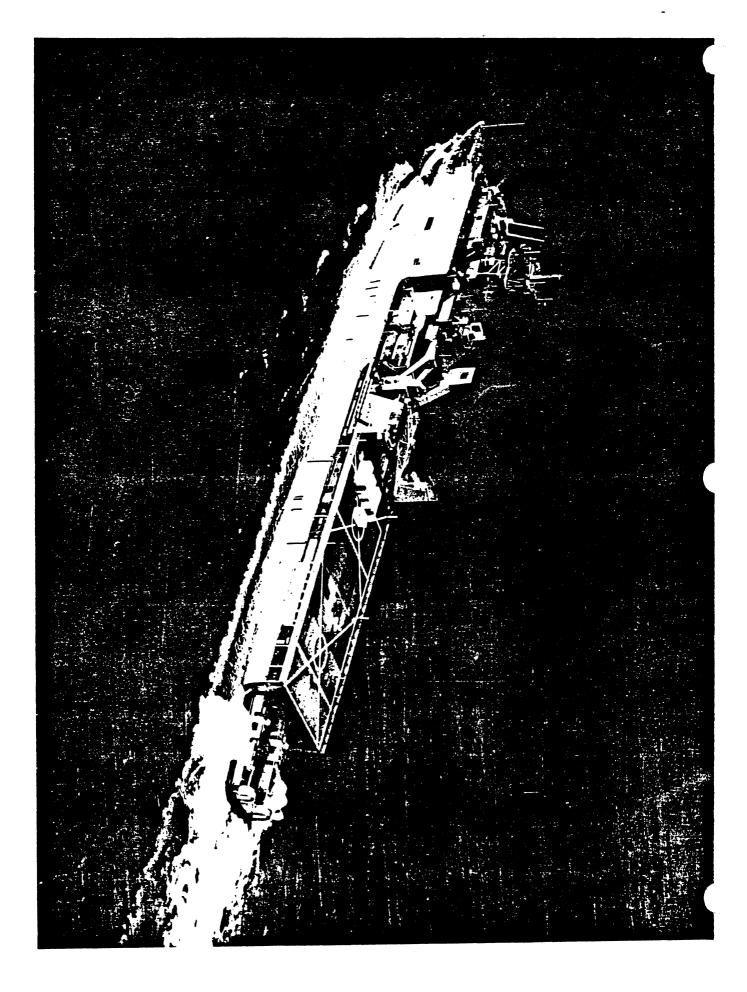

Newport News Shipbuilding

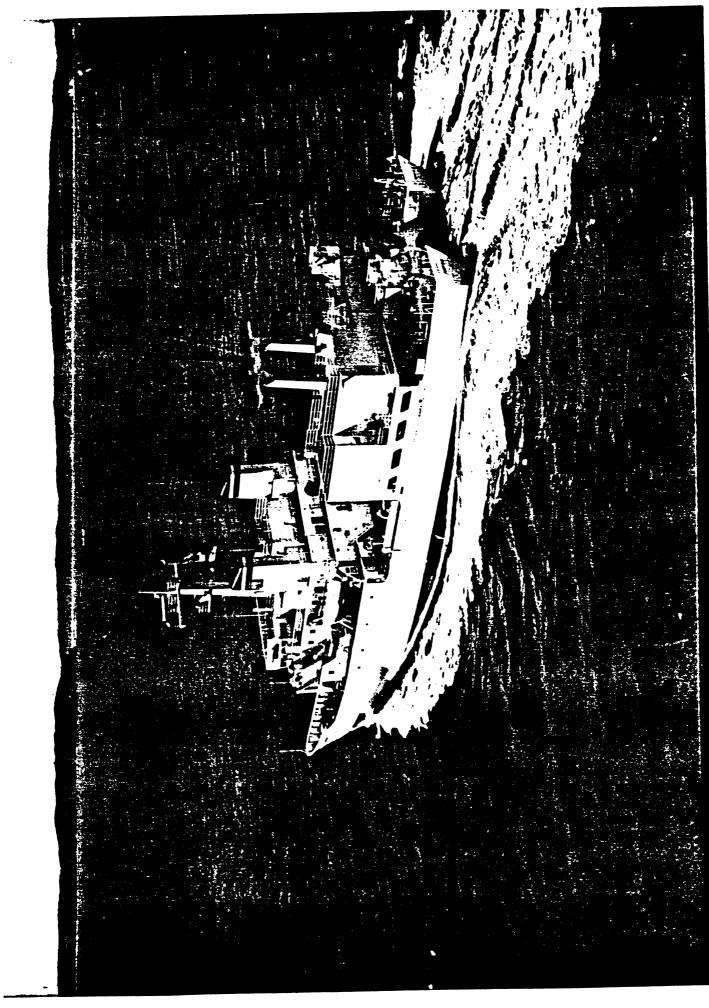

Photograph by Judi Baldwin, Newport News Shiphuilding

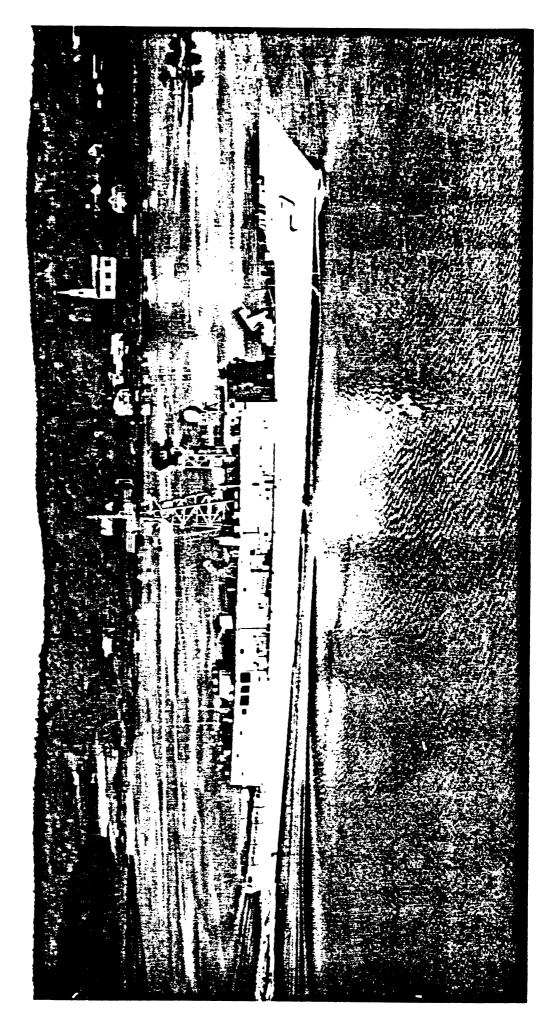


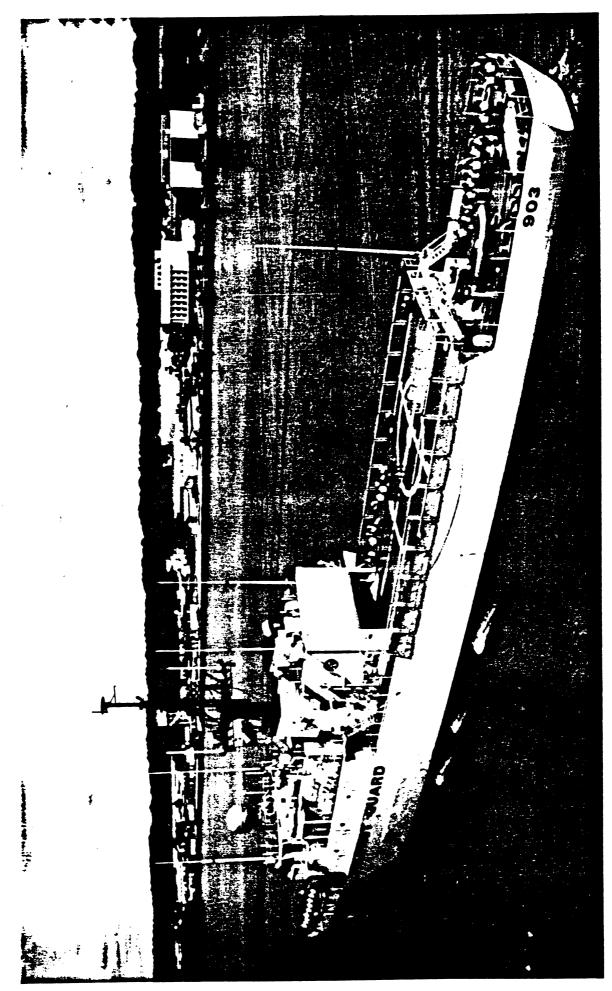

3.27

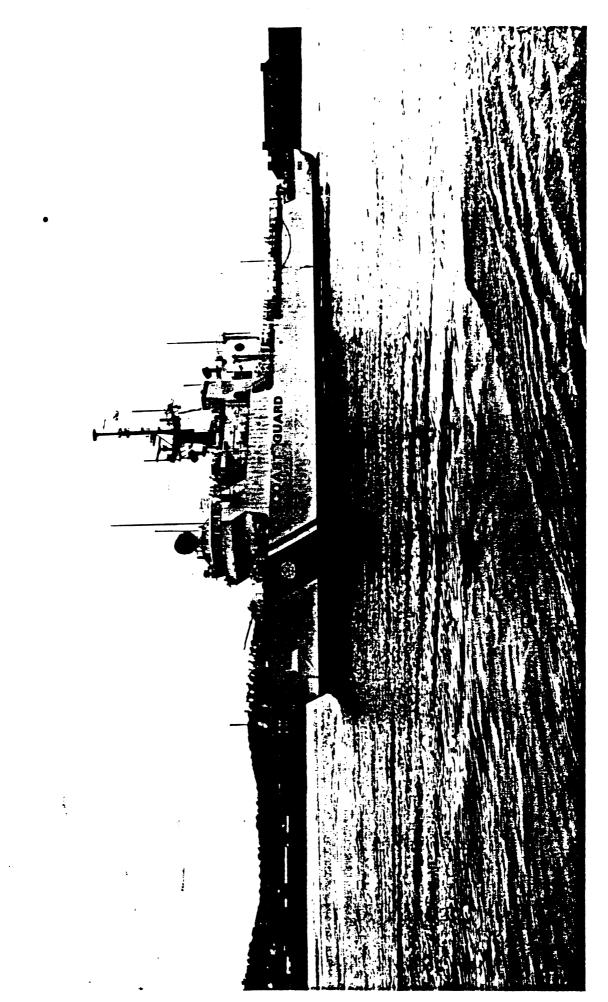




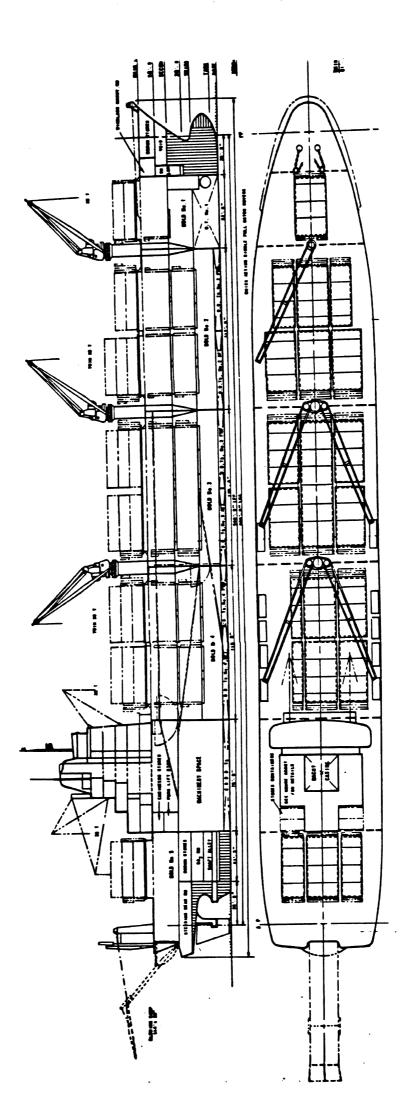





~



3.24



9-38

3-39

3-40.

• . • , • • , , . •

BASIC NAVAL ARCHITECTURE

Unit Number:	4
<u>Title</u> :	Ship types and ship systems - 3 Nomenclature - 1
Tape Running Time:	36 ^M 39 ^S
Reading Assignment:	MSD, pp 13-15
Additional References:	None

Scope:

The treatment of ship types and ship systems is concluded by a classification of types of commercial and naval ships by the cargoes they carry, the missions they perform, and the type of support they receive (hydrostatic, hydrodynamic, aerostatic). The first of three units on nautical nomenclature begins in the last half of this unit with a discussion of units used in the course, directions on board ship, dimensions and markings.

Key Points to Emphasize:

- 1. Review the units used in the course.
- Review ship dimensions L_{pp}, L_{WL}, L_{OA}, midships symbol, beam, depth, draft, displacement.
- 3. Discuss weight, displacement and tonnage.
- . 4. Review load line marks and draft marks.
 - 5. Review bale capacity and grain capacity.

Suggested Problem Assignment:

(A "NOMENCLATURE CHECK-OFF LIST" is included just ahead of this page. The instructor may wish to use this for his own guidance in covering nomenclature items, or may even wish to distribute to students for their use.)

BASIC NAVAL ARCHITECTURE

NOMENCLATURE CHECK-OFF LIST

UNIT 4

long ton tonne nautical mile knot ---ship, vessel, boat ---port, starboard forward, aft outboard, inboard athwartships abaft ---midships symbol ---fore perpendicular aft perpendicular (merchant and navy) Lpp LWL L_{oa} . . . beam depth draft ---anchor's aweigh displacement deadweight tonnage ----Plimsall Mark American Bureau of Shipping winter load line _____ draft marks _ _ _ _ _ _ bale capacity grain capacity

UNIT 5

forecastle jackstaff union jack

stem main deck scuppers freeing port bulwark superstructure deck house truk - (check) gaff ensign flagstaff bilge keel poop deck weather deck ---main deck second deck partial deck platform forecastle superstructure deck fantail ---bulkheads WT bulkheads NT bulkheads OT bulkheads forepeak bulkhead collision bulkhead afterpeak bulkhead strength bulkhead non-structural bulkhead _____ forepeak tank inner bottom tank top flat afterpeak tank Navy deck numbering system 01 deck 02 deck, etc. ----WT door weathertight door NT door joiner doors access hatches cargo hatches

scuttle manhole ---doa quick acting door quick acting scuttle coaming ---compartment hold passageway overhead ceiling ---galley gangway quarterdeck ladder stairwell companionway ---booby hatch boot top sea chest 'tween deck head ---port deadlight deadwood skeg ---ground tackle anchoring mooring quay hawsepipe chain pipe chain locker bitter end ---old fashioned anchor palm fluke bill pea stock throat stockless anchor mushroom anchor Danforth anchor ---shot of chain fathom

bending shackle pelican hook chain stopper ---windlass capstan wildcat ---bitt chock bullnose devil's claw ---cleat open chock closed chock roller chock bollard padeye ----UNIT 6 radial davit falls monkey lines ---crescent davit Welin gravity davit ---accommodation ladder Jacob's ladder ---kingpost ---burtoning system yard-and-stay rig ---hatch boom yard boom topping lift yard whip hatch whip outboard guy midship guy lazy guy vang gooseneck gypsy cathead ---gantry spreader ----

stuckenmast system ---dunnage sparring IWQ battens ceiling scantlings garboard strake sheer strake "B" strake flat plate keel center vertical keel riderplate ---girder hatch-side girder CVK FPK beam ---longitudinal stringer stringer plate margin plate ---floor solid floor open floor \$ lightening hole flat bar stiffener side girder strut reverse frame ---transverse framing system longitudinal framing system deep web frame hold bracket frame bracket keelson stanchion, pillar intercostal member limber hole ---stem rolled plate stem rabbet breasthook ---stern frame shoe sternpost

pintles gudgeons

MERCHANT SHIP TYPES BY TRADE

1. DRY BULK TRADES

- IRON ORE CARRIERS
- COAL CARRIERS
- GRAIN CARRIERS
- BAUXITE AND PHOSPHATES CARRIERS
- FOREST PRODUCTS CARRIERS
- STEEL PRODUCTS CARRIERS
- OTHER TYPES: MANGANESE, IRON PYRITES, SALT, SULPHUR, GYPSUN, ETC.
- 2. LIQUID BULK TRADES
 - CRUDE OIL TANKERS
 - LIQUID PETROLEUM PRODUCT CARRIERS
 - LIQUIFIED NATURAL GAS AND PROPANE GAS CARRIERS
 - LIQUIFIED CHEMICAL PRODUCT CARRIERS
- 3. CONBINATION TYPES
 - ORE/BULK/OIL (OBO) SHIPS

MERCHANT SHIP TYPES BY TRADE (CON'T)

4. BREAK-BULK GENERAL CARGO SHIPS

MANY MANUFACTURED GOODS AND SEMI-FINISHED GOODS ARE STILL TRANSPORTED IN "BREAK-BULK" FORM; THAT IS EACH ITEM IS INDIVIDUALLY PACKAGED IN A CARTON, CRATE OR BALE AND MUST BE HANDLED SEPARATELY AS IT IS LOADED INTO THE SHIP, STOWED IN ITS HOLD, THEN OFF-LOADED AND DISCHARGED AT ITS DESTINATION.

BREAK-BULK CARGOES TEND TO BE HIGH-VALUE CARGOES AND COMMAND HIGHER FREIGHT RATES. ALTHOUGH THE SLOW CARGO HANDLING RATE MAKES THIS TYPE OF SHIP INEFFICIENT COMPARED TO A CONTAINER SHIP, GENERAL CARGO SHIPS STILL PERFORM A USEFUL SERVICE IN TRANSPORTING DIVERSE TYPES OF CARGO TO PORTS NOT SERVED BY THE LARGER CONTAINER SHIPS.

÷

MERCHANT SHIP TYPES BY TRADE (CON'T)

5. <u>UNITIZED CARGO CARRIERS</u> INCLUDE CONTAINER SHIPS, RO/RO VESSELS AND BARGE CARRIERS. UNITIZED CARGO CARRIERS REDUCE MUCH OF THE CARGO HANDLING TIME AND PROBLEMS ASSOCIATED WITH BREAK-BULK GENERAL CARGO SHIPS AND HAVE REPLACED BREAK-BULK CARRIERS IN LINER SERVICE TO MAJOR PORTS.

CONTAINER SHIPS HAVE BECOME COMMON SINCE THE ADVENT OF STANDARD SIZED CONTAINERS WHICH CAN BE UTILIZED INTERNATIONALLY. THE LARGER FASTER CONTAINER SHIPS TEND TO SERVICE LARGER PORTS WITH ELABORATE PIERSIDE CONTAINER CRANES WHICH CAN LOAD AND OFF-LOAD CONTAINERS RELATIVELY QUICKLY. CONTAINERS ARE STOWED IN THE HOLDS IN COLUMNS OR "CELLS" SUPPORTED BY VERTICAL STEEL CELL GUIDES. ADDITIONAL CONTAINERS CAN BE STOWED ON DECK ON TOP OF THE HATCHES.

LINER AND TRAMP TRADES

AND QUANTITY OF CARGOES IS FAIRLY AND THE DESIGN PARAMETERS CAN BE PORTS AND ON REGULAR SCHEDULES. GENERAL CARGO SHIPS TRADING SPECIFIC **WELL ESTABLISHED** THE MIX OF TYPES CARGO LINERS ARE WELL DEFINED. BETVEEN

CARGO SHIP) IS A GENERAL BREAKBULK CARGO SHIP THAT SCHEDULE A TRAMP (MORE POLITELY CALLED A GENERAL PURPOSE HAS NO SET TRADE ROUTE, PORTS-OF-CALL OR

SEEKS CARGOS OF OPPORTUNITY TO SERVICE NORMALLY SERVICED BY CARGO LINERS. THE TRAMP PORTS NOT

4-8

NAVAL SHIP SYSTEMS

THE TOTAL SYSTEM INCLUDES NOT ONLY THE COMBAT CAPABILITIES OF SHIPS, SUBMARINES OPERATING TOGETHER, BUT ALSO THE AT-SEA TOTAL SYSTEM AIRCRAFT, AMPAIBIOUS VEBICLES AND POSSIBLY SYSTEMS DEVELOPING MODERN NAVAL WARFARE CONSIDERATION MUST BE GIVEN TO THE NOT JUST AN INDIVIDUAL SHIP TYPE. SHORE-BASED SUPPORT SERVICES. AND

THE MISSIONS WHICH EACH SHIP TYPE WILL BE REQUIRED TO PERFORM ARE CAREFULLY DEFINED IN A DOCUMENT TOP LEVEL REQUIREMENTS. THE CALLED

NAVAL SHIP SYSTEMS (CON'T)

INDIVIDUAL SHIPS, FOR EXAMPLE, DESTROYERS AND FRIGATES, MAY BE REQUIRED TO OPERATE ON SINGLE-SHIP MISSIONS IN WHICH CASE THEY MUST BE SELF-SUSTAINING FOR PERIODS UP TO 30 DAYS OR THEY MAY BE REQUIRED TO PROVIDE ANTI-SUBMARINE, ANTI-AIRCRAFT AND MISSILE DEFENSE SERVICES TO A <u>BATTLE GROUP</u> INCLUDING A MIX OF CRUISERS, AIRCRAFT CARRIERS AND BATTLESHIPS.

AIRCRAFT CARRIERS AND BATTLESHIPS CAN OPERATE FOR EXTENDED PERIODS WITHOUT RE-SUPPLY AND CAN PROVIDE LIMITED RE-SUPPLY SUPPORT TO SMALLER SHIPS IN THEIR COMPANY. AIRCRAFT CARRIERS AND BATTLESHIPS ALMOST NEVER TRAVEL ALONE BUT ARE ACCOMPANIED BY DESTROYER AND/OR FRIGATE ESCORT SHIPS.

NAVAL SHIP SYSTEMS (CON'T)

NUMBER AND TYPES OF SPARE PARTS AND THE MAINTENANCE FOR A "CRADLE-TO-PROCUREMENT ARE RELIABILITY, MAINTAINABILITY AND INTERVALS FOR ALL THE VARIOUS TYPES OF EQUIPMENT AVAILABILITY (RMA) STUDIES WHICH IDENTIFIES THE OUTLINES THE PROVISIONING AND MAINTENANCE PLAN GRAVE" INTEGRATED LOGISTIC SUPPORT (ILS) PLAN IMPORTANT PART OF NAVAL SHIP DESIGN AND AND WEAPONS INSTALLED ON THE SHIP. THE LIFE CYCLE OF EACH SHIP. AN

4-11

NAVAL SHIP SYSTEMS (CON'T)

SHIPS REQUIREMENTS ARE MET BY ADVANCED BASES AND SUPPLY DEPOTS, HOME-PORT SUPPORT FACILITIES, SUPPLY AND AT-SEA SUPPORT REQUIREMENTS FOR NAVAL COMBATANTS MET BY AUXILIARY SHIPS -- OILERS, SUPPLY AMMUNITION DEPOTS, AND BY NAVAL AND CIVILIAN AND AMMUNITION SHIPS. SHORE-BASED SUPPORT SHIPYARDS. ARE

REPLENISHMENT-AT-SEA (UNREP) WHICH IS A ROUTINE RE-AND ALL NAVAL COMBATANTS MUST HAVE THE EQUIPMENT OPERATIONAL CAPABILITY FOR UNDERWAY SUPPLY EVOLUTION. THE

4-12

SHIP TYPES CLASSIFIED BY TYPE OF SUPPORT

HYDROSTATIC SUPPORT

FL WATER EXPERIENCES IS EQUAL TO THE WEIGHT OF THE THE BUOYANT SUPPORT THAT A FLOATING BODY DISPLACES (ARCHIMEDES PRINCIPLE).

FALL SUPPORT. THE VAST MAJORITY OF SURFACE SHIPS THIS TYPE OF SUPPORT IS KNOWN AS HYDROSTATIC IN THIS CATEGORY.

SHIP TYPES CLASSIFIED BY TYPE OF SUPPORT

HYDRODYNAMIC SUPPORT

AN AIRPLANE VING (AIRFOIL) TRAVELING THROUGH THE AIR GENERATES AERODYNAMIC LIFT ON BOTH THE UPPER AND LOWER SURFACES OF THE WING.

HYDROFOIL BYDROSTATIC SUPPORT. AS THE CRAFT SPEED INCREASES 4 EXACTLY THE SAME PRINCIPLES APPLY IN THE CASE OF **BYDROFOIL TRAVELING THROUGH WATER. THIS TYPE OF** OFF THE SURFACE AND IS SUPPORTED ENTIRELY BY THE HYDRODYNAMIC LIFT INCREASES, THE CRAFT LIFTS **CRAFT TRAVELING AT LOW SPEEDS ARE SUPPORTED BY** SUPPORT IS CALLED BYDRODYNAMIC SUPPORT. HYDRODYNAMIC LIFT ON THE HYDROFOILS. THE

AND WILL ATTAIN 35 TO 45 TYPICALLY, THE HYDROFOIL CRAFT WILL LIFT OFF AT SPEEDS OF 10 TO 15 KNOTS KNOTS.

SUPPORT TYPES CLASSIFIED BY TYPE OF SHIP

HYDRODYNAMIC SUPPORT (CON'T)

THE BOTTON OF PLANING BOATS OPERATE ON A SIMILAR PRINCIPLE, EXCEPT THAT ONLY THE LOWER SURFACE ---THE PLANING BOAT -- GENERATES LIFT.

POINT MOST OF THE BOAT'S WEIGHT BECOMES SUPPORTED BYDRODYNAMIC LIFT, BUT A DECREASING AMOUNT OF PLANING BOATS PASS THROUGH A HUMP SPEED AT WHICH HYDROSTATIC SUPPORT REMAINS AS SPEED INCREASES BY

BUT PLANING BOAYS OPERATE OVER A WIDE SPEED RANGE SELDOM EXCEED 45 KNOTS.

4-15.

SHIP TYPES CLASSIFIED BY TYPE OF SUPPORT

AEROSTATIC SUPPORT

AIR AIR CUSHION VEHICLES (ACV'S) AND SURFACE EFFECT SHIPS (SES's) ARE SUPPORTED BY A CUSHION OF MAINTAINED UNDER PRESSURE UNDER THE CRAFT.

AIR ACV'S HAVE INFLATABLE "SKIRTS" WHICH TRAP THE ACV'S HAVE A LIMITED AMPHIBIOUS CAPABILITY. BENEATH THE VEHICLE.

SIDE RIGID SIDE WALLS. THE AIR CUSHION IS BETWEEN THE STERN SEALS BY BOW AND SES'S HAVE MAINTAINED WALLS.

4-16.

SUPPORT SHIP TYPES CLASSIFIED BY TYPE OF A VARIETY OF "HYBRID" CONCEPTS HAVE BEEN PROPOSED AND SOME HAVE BEEN INVESTIGATED. THESE CONCEPTS REPRESENT COMBINATIONS OF THE THREE TYPES OF BYDROSTATIC, BYDRODYNAMIC, AND SUPPORT --AEROSTATIC.

HIGH AS DESIGNS INTRODUCE HYDRODYNAMIC OR AND AT HIGHER INITIAL AND OPERATING AEROSTATIC SUPPORT THEY MAY BE ABLE TO ACHIEVE HYDROSTATIC SUPPORT -- BUOYANCY -- IS THE LEAST PERFORMANCE, BUT OVER A MUCH NARROWER RANGE OF APPLICATION, EXPENSIVE. COSTS.

UNITS

UNITS HERE WILL USE IN THIS COURSE: THE UNITED STATES USES THE ENGLISH SYSTEM OF (BUT ENGLAND HAS GONE TO THE METRIC SYSTEM). ARE SOME OF THE UNITS WE WILL USE IN THIS COU

POUNDS	HOURS	6080 FEET 1.152 STATUTE MILES	AL MILE/HR /sec.
POUNDS, LONG TONS 1 LONG TON = 2240	SECONDS, MINUTES,	FEET 1 NAUTICAL MILE = 1 NAUTICAL MILE =	FEET/SEC OR KNOTS 1 KNOT = 1 NAUTICAL M 1 KNOT = 1.688 FT/SEC
FORCE, VEIGHT:	TIME:	DISTANCE:	VELOCITY:

SHIPS, VESSELS AND BOATS

IT IS COMMON USAGE TO REFER TO SHIPS AS "VESSELS",

BUT,

THE U.S. NAVY HAS TAKEN EXCEPTION TO THIS PRACTICE AND DISCOURAGES THE USE OF THE PHRASE "NAVAL VESSELS", THUS THERE ARE <u>NAVAL SHIPS</u> AND <u>MERCHANT</u> VESSELS.


THERE IS NOT A CLEAR DISTINCTION BETWEEN "BOATS" AND "SHIPS", EXCEPT THAT, IN GENERAL, A BOAT MAY BE CARRIED ON A SHIP. THERE ARE A NUMBER OF EXCEPTIONS, E.G. SUBMARINES.

DIRECTIONS ON BOARD SHIP

PORT -	LEFT HAND SIDE OF SHIP WHEN FACING FORWARD
STARBOARD -	RIGHT HAND SIDE OF SHIP WHEN FACING FORWARD
FORVARD -	IN THE DIRECTION OF THE BOW
<u>AFT</u> -	IN THE DIRECTION OF THE STERN
OUTBOARD -	IN THE DIRECTION FROM THE CENTERLINE TOWARD EITHER SIDE
INBOARD -	IN THE DIRECTION FROM EITHER SIDE TOWARD THE CENTERLINE
ATHVARTSHIPS -	IN THE TRANSVERSE DIRECTION 90° TO THE CENTERLINE
ABAFT -	AS IN "ABAFT THE BEAM". REFERS TO OBJECTS OUTSIDE THE SHIP

MIDSHIPS SYMBOL

THE MIDSHIPS SYMBOL APPEARS ON SHIP DRAWINGS TO MARK <u>AMIDSHIPS</u>, HALFWAY BETWEEN THE FORE PERPENDICULAR AND AFT PERPENDICULAR.

エーシ

SHIP DIMENSIONS - LENGTH

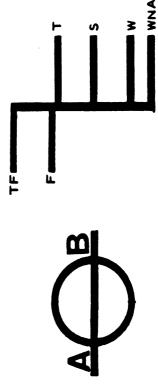
SHIP DIMENSIONS - BEAN, DEPTH, DRAFT

- BEAN THE MAXIMUM BREADTH OF THE SHIP.
- <u>DEPTH</u> THE DISTANCE FROM THE BASELINE OF THE SHIP TO THE FREEBOARD DECK AT THE SIDE.
- <u>DRAFT</u> THE DEPTH OF THE SHIP BELOW THE WATERLINE TO THE BASELINE, OR TO PARTS OF THE SHIP EXTENDING BELOW THE BASELINE.
- NOTE: MORE PRECISE DEFINITIONS WILL BE GIVEN IN UNIT 7.

WEIGHT, DISPLACEMENT AND TONNAGE

ANCHOR'S AVEIGH MEANS THE ANCHOR CHAIN IS VERTICAL AND THE ANCHOR HAS JUST CLEARED THE BOTTOM.

THE WHEN A SHIP IS GETTING UNDERWAY IT WEIGHS ITS ANCHOR BUT IT DISPLACES A WEIGHT OF WATER JUST EQUAL TO NOT THE WEIGHT, OF THE SHIP. WEIGHT OF THE SHIP. THIS IS KNOWN AS THE DISPLACEMENT, DEADWEIGHT IS THE CARGO CARRYING CAPACITY OF THE SHIP INCLUDING CARGO, FUEL, WATER, STORES, CREW AND THEIR EFFECTS.

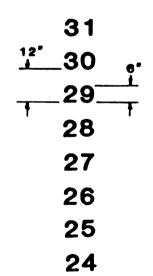

SHOULD NEVER BE REFERRED TO AS TONNAGE IS A MEASURE OF THE INTERNAL VOLUME OF SHIP. DISPLACEMENT "TONNAGE"

4-24

LOAD LINE MARKS

THE YEAR IS PRESCRIBED NOT BE EXCEEDED FOR BY LAW AND CALCULATED BY THE AMERICAN BUREAU OF SHIPPING ON BEHALF OF THE U.S. COAST GUARD. **WHICH CAN** GIVEN LOCATION AND SEASON OF THE LIMITING DRAFT

ENGLISH LEGISLATOR WHO WAS VERY ACTIVE IN INTRODUCING THE MARK IS KNOWN AS THE "PLINSOLL MARK" AFTER AN LOAD LINE RESTRICTIONS.



KEY WORDS: PLINSOLL MARK

DRAFT MARKS

DRAFT MARKS ARE FOUND AT THE BOW AND STERN OF MERCHANT VESSELS, AS NEAR AS PRACTICAL TO THE FORE PERPENDICULAR AND THE AFT PERPENDICULAR. THE BOTTOM OF THE MARK INDICATES THE DRAFT IN FEET TO THE <u>BOTTOM</u> OF THE KEEL (KEEL DRAFT).

NAVY SHIPS HAVE DRAFT MARKS FORWARD, AFT, AND AMIDSHIPS.

BALE CAPACITY AND GRAIN CAPACITY

OR BALE CAPACITY IS THE CAPACITY OF A CARGO HOLD IN FRAMES CUBIC FEET MEASURED TO THE INSIDE OF THE BATTENS. CARGO

THAN GRAIN CAPACITY IS THE CAPACITY OF A CARGO HOLD IN CUBIC FEET MEASURED TO THE SHELL PLATING RATHER TO THE INSIDE OF THE FRAMES OR CARGO BATTENS AS BALE CAPACITY

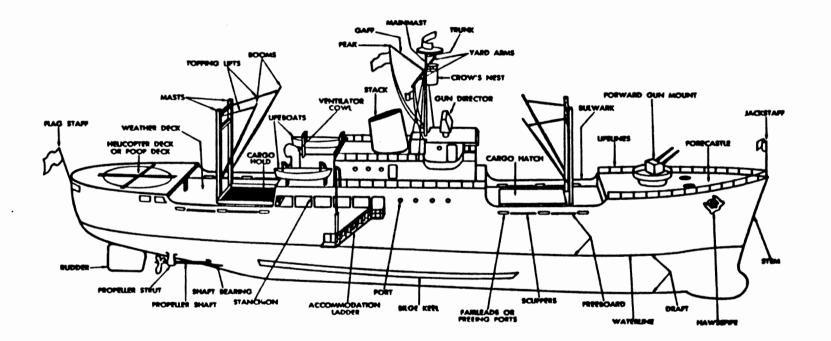
4-27

. , • • ٠ • . . , • . , • × ,

BASIC NAVAL ARCHITECTURE

Unit Number:	5
<u>Title</u> :	Nomenclature - 2
lape Running Time:	38 ^M 38 ^S
Reading Assignment:	None
Additional References:	The Bluejackets' Manual (BJM), B. Beardon and B. Wedertz, Ed., U.S. Naval Institute, 1978, pp 199-219
	Seamanship, Fundamentals for the Deck Officer (SFDO), R.O. Dodge and S.E. Kyriss, Naval Institute Press, 1981, pp 125-132, 140-150, 170-177, 182-191, 258-263, 266-271, 360-362, 425-439
	<u>SDC</u> , pp 373-418, 717-728

Scope:

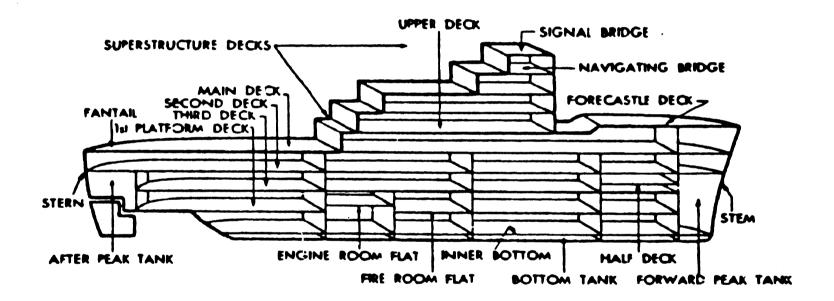

Key Points to Emphasize:

- 1. Review graphics on video tape as necessary to provide clarity.
- 2. Glossaries in SFDO and SDC are helpful.
- 3. Add additional items as desired.

Suggested Problem Assignment: None

PARTS OF A SHIP

م بک



<u>KEY WORDS</u>: FORECASTLE, POOP, BULWARK, WEATHER DECK, FREEING PORTS, SCUPPERS, JACKSTAFF, FLAGSTAFF, GAFF

DECK NUMBERING SYSTEM - NAVY SYSTEM

SHIPS BUILT AF TER MAR, 49	•0	03	0	 _ @ 	 	 	ו ייני ו ו			
SHIPS BUILT BEFORE MAR, 49								HOLD 600	DOUBLE BOTTOMS	
						BOILER AND	MACHINERY SPACES			
			MAIN DECK	SECOND DECK	THIRD DECK	PLATFORM	PLATFORM	HOLD	RUDDEN	

DECKS AND BULKHEADS

<u>KEY WORDS</u>: MAIN DECK, FORECASTLE DECK, POOP DECK, PLATFORM DECKS, FLATS, COLLISION BULKHEAD, FOREPEAK TANK, AFTER PEAK TANK

BULKBEADS

BULKBEADS ARE THE VERTICAL PARTITION WALLS THAT DIVIDE THE SHIP INTO ROOMS OR COMPARTMENTS. AND BULKHEADS ARE DISTINGUISHED BY THEIR LOCATION EXAMPLES USE.

- TRANSVERSE BULKHEADS
- · LONGITUDINAL BULKBEADS
- (OT), GASTIGHT BULKHEADS WATERTIGHT (WT), OILTIGHT NON-TIGHT (NT) BULKHEAD.
- FOREPEAK BULKHEAD
- COLLISION BULKBEAD
- AFTER PEAK BULKHEAD
- STRENGTH BULKHEADS
- NON-STRUCTURAL BULKHEADS

DECKS

OF THE THE SHIP IS THE MAIN DECK UPPERMOST COMPLETE DECK RUNNING THE FULL LENGTH

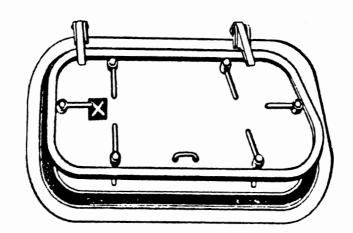
THE SECOND DECK, AND SO FORTH. NEXT COMPLETE DECK BELOW THE MAIN DECK ЧS THE

FIRST PLATFORM, ETC. PARTIAL DECKS ABOVE THE MAIN ARE CALLED PLATFORMS. HS OR SUPERSTRUCTURE DECKS PRONOUNCED "FOK-SLE"), THE DECK INCLUDE THE FORECASTLE DECK (FORECASTLE IS DECK WHICH DOES NOT RUN THE FULL LENGTH OF THE PARTIAL DECK. PARTIAL DECKS BELOW THE MAIN THE UPPERMOST PLATFORM IS POOP DECK AND UPPER DECKS THE DECK SHIP

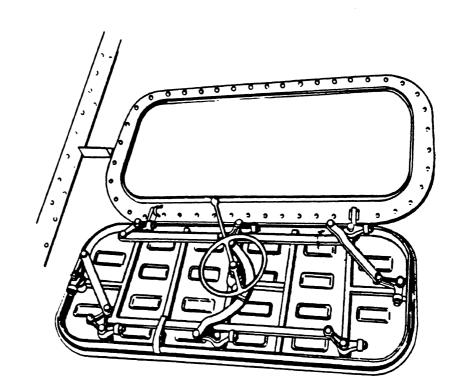
THE FANTAIL BROAD, OPEN DECK AREA AT THE STERN OF THE SHIP IS

1

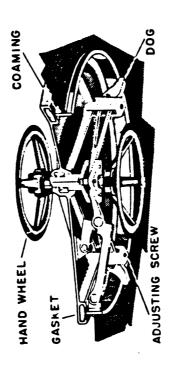
DOORS, HATCHES, SCUTTLES AND MANHOLES


- DOORS ARE CLOSURES IN BULKHEADS
 - WATERTIGHT (WT) DOORS
 - WEATHERTIGHT DOORS
 - NONTIGHT DOORS
 - JOINER DOORS
- HATCHES ARE CLOSURES IN DECKS
 - ACCESS HATCHES
 - CARGO HATCHES

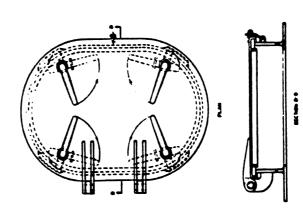
5,7


DOORS, BATCHES, SCUTTLES AND MANHOLES

- SCUTTLES ARE SMALL CLOSURES IN HATCHES, DECKS OR BULKHEADS •
- ESCAPE SCUTTLES ARE FITTED WITH QUICK-ACTING OPENING AND CLOSING MECHANISM 1
- PASSING SCUTTLES ARE USED ON NAVAL COMBATANTS FOR PASSING AMMUNITION I
- KANBOLES ARE SMALL CLOSURES, BOLTED OR DOGGED, AND INFREQUENT ACCESS TO TANKS AND VOIDS MAINTENANCE OR REPAIR USED FOR ARE FOR


STANDARD WT DOOR

QUICK ACTING WT DOOR



QUICK ACTING SCUTTLE

5-11

NANHOLES

SPACES ON BOARD SHIP

- COMPARTMENT AND A SPACE ABOARD SHIP THAT IS BOUNDED BY DECKS THE ΞI THE BULKHEADS AND DECKS ARE WATERTIGHT BULKHEADS IS CALLED A COMPARTMENT. IS A WATERTIGHT COMPARTMENT.
- LARGE SPACES BELOW DECK FOR THE STOWAGE OF CARGO ARE HOLDS.
- PASSAGEWAY IS THE NAUTICAL TERM FOR CORRIDORS ON BOARD SHIP.
- CORRESPONDS TO THE CEILING OF A ROOM ASHORE. THE OVERHEAD OF A COMPARTMENT ON BOARD SHIP
- WOOD COVERING PLACED ON THE TANK TOP IN A HOLD FOR CALLED A CEILING, CEILING IS USUALLY USED TO MEAN ALTHOUGH THE OVERHEAD IN A STATEROOM IS SOMETIMES PROTECTION FROM DAMAGE IN HANDLING CARGO.

SPACES ON BOARD SHIP (CON'T)

- THE TRADITIONAL NAME GIVEN TO THE SPACE IN WHICH PREPARED IS THE GALLEY. FOOD IS
- A GANGWAY IS THE STAIRWAY OR RAMP PROVIDED BY THE DOCK FACILITY USED FOR BOARDING OR DISEMBARKING THE SHIP. FROM
- RECEIVED AND THE IN-PORT WATCH ON NAVAL SHIPS THE AREA ADJACENT TO THE GANGWAY THE QUARTERDECK. STOOD IS CALLED WHERE VISITORS ARE SI
- HOLDS CONVENTIONAL STAIRWAYS, INSTALLED IN A STAIRWELL, NOT VERTICAL LADDERS ARE INSTALLED FOR ACCESS TO TANKS, AND SPACES WHERE HORIZONTAL ACCESS IS INCLINED LADDERS ARE PROVIDED FOR LADDERS ARE USED FOR ACCESS BETWEEN DECKS. PERSONNEL ACCESS IN FREQUENTLY USED AREAS ARE USED FOR PASSENGERS, WHEN CARRIED. POSSIBLE. •
- 4 HTTW A COMPANIONWAY IS AN ACCESS BATCH IN A DECK LADDER LEADING BELOW •

MORE PARTS OF A SHIP

AN ACCESS HATCH IN A WEATHER DECK PROTECTED BY A HOOD FROM SEA AND WEATHER. **BOOBY HATCH:**

SPECIAL HULL THE BOOT TOPPING, BOOTTOP: THE SURFACE OF THE PRESERVATIVE COATINGS ARE USED IN PAINTING BETWEEN THE LIGHT AND THE LOAD WATERLINES. BOOTTOP. AN ENCLOSURE FITTED TO THE INSIDE OF THE UNDERVATER HULL AND OPEN TO THE SEA. SALT WATER TO BE USED FOR COOLING, FIRE AND FLUSHING SYSTEMS IS DRAWN FROM THE SEA CHEST. SEA CHEST:

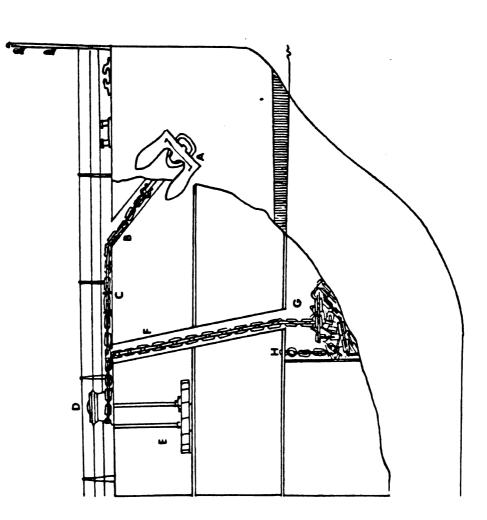
TWO ADJACENT ANY THE SPACE BETWEEN TWEEN DECKS: DECKS.

MORE PARTS OF A SHIP (CON'T)

.

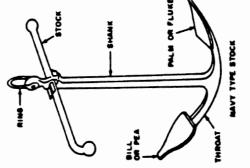
<u>PORT, PORTHOLE, PORTLIGHT, AIR PORT</u>: A HINGED GLASS WINDOW, GENERALLY CIRCULAR, IN THE SHIP'S SIDE OR DECK HOUSE FOR LIGHT AND VENTILATION.

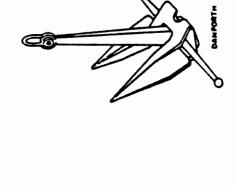
DEADLIGHT, FIXED LIGHT: A PORT WHICH DOES NOT OPEN.

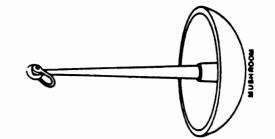

<u>DEADWOOD</u>: ORIGINALLY, THE SOLID WOOD STRUCTURE AT THE STERN OF THE SHIP JUST ABOVE THE KEEL USED TO SUPPORT THE RUDDER POST. TODAY, THE SLENDER PORTION OF SINGLE SCREW SHIP JUST FORWARD OF THE STERN FRAME AND ABOVE THE KEEL.

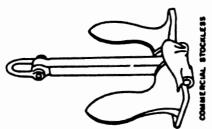
SKEG: A DEEP VERTICAL FINLIKE PROJECTION ON THE BOTTOM OF A SHIP NEAR THE STERN. A SKEG IS TREATED AS AN APPENDAGE TO THE SHIP, WHEREAS THE DEADWOOD IS FAIRED INTO THE HULL.

ANCHORING AND MOORING

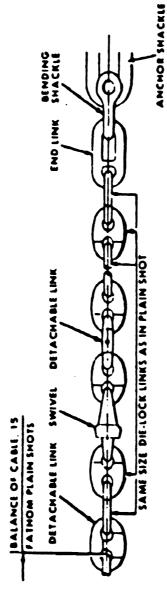

- TACKLE IS PRONOUNCED "TAY-KLE"
- **GROUND TACKLE REFERS TO THE ANCHORS, ANCHOR CHAINS** GEAR BOTTOM CABLES, WIRE ROPES, CHAIN STOPPERS AND OTHER ASSOCIATED WITH ANCHORING A SHIP TO THE
- PIER MOORING REFERS TO MOORING A SHIP ALONGSIDE A OR A QUAY (PRONOUNCED "KEY") OR MOORING TO PERMANENT MOORING BUOY. •
- MOORING FITTINGS INCLUDE CLEATS, BITTS, CHOCKS **ROLLER CHOCKS**, BULLNOSE.

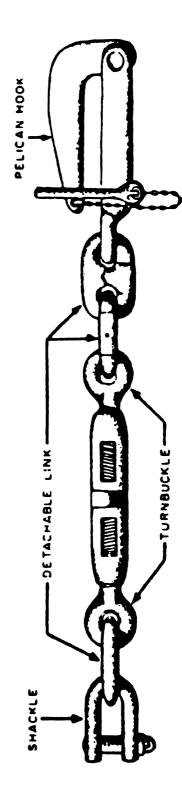

GROUND TACKLE




HAWSEPIPE, CHAIN LOCKER, BITTER END **KEY WORDS:**

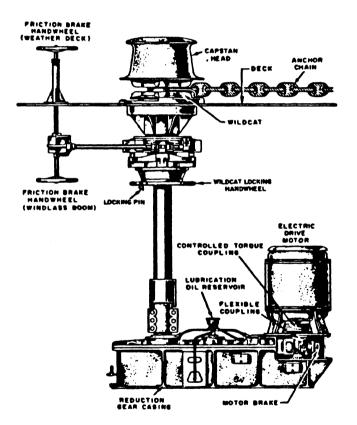
ANCHORS



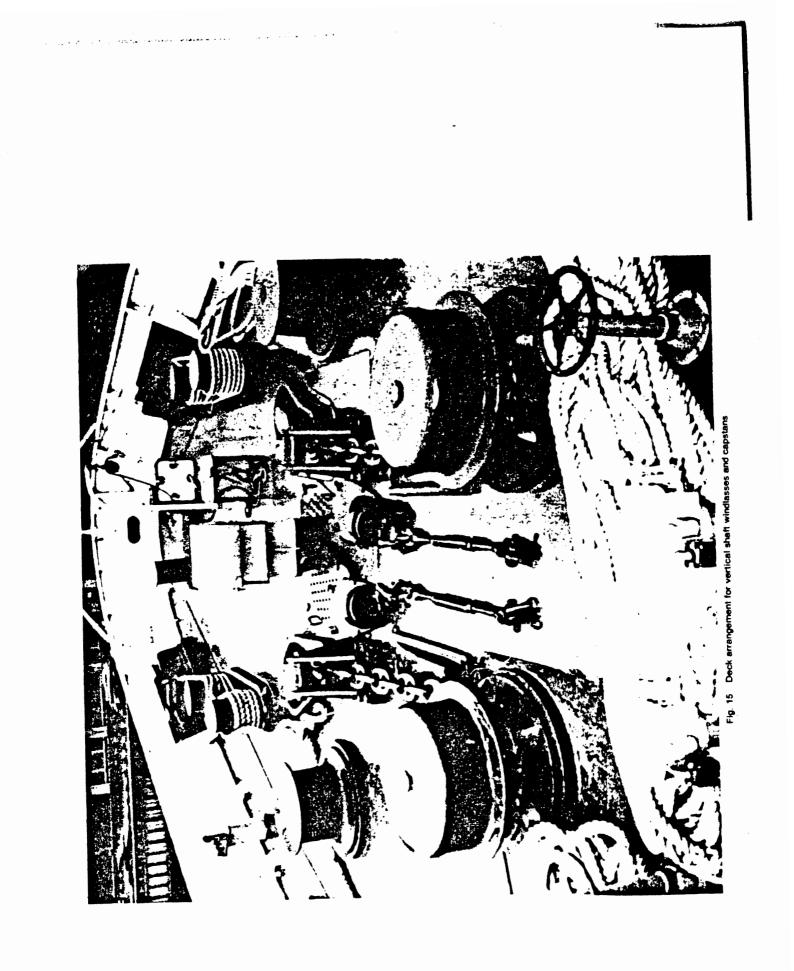


ANCHOR CHAIN AND CHAIN STOPPERS

A STANDARD SHOT OF ANCHOR CHAIN IS 15 FATHOMS IN FATHOM IS 6 FEET. R LENGTH.



STANDARD OUTBOARD SWIVEL SHOT A METHOD OF ASSEMBLING


SHOT OF CHAIN, PELICAN HOOK, FATHOM CHAIN STOPPER **KEY WORDS:**

VERTICAL SHAFT WINDLASS

<u>KEY WORDS:</u> WINDLASS, WILDCAT, CAPSTAN

12-5

OREDECK ARRANGEMENT WITH VERTICAL SHAFT WINDLASSES

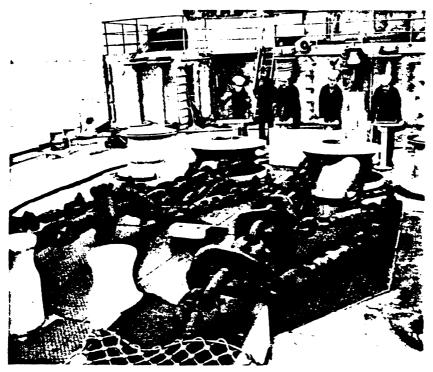
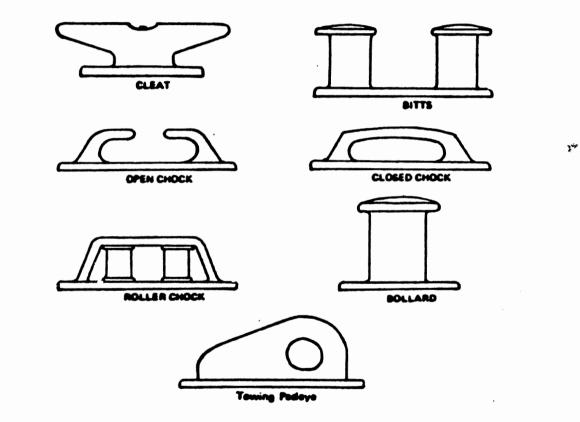



Figure 6-12. Riding and housing chain stoppers are made up of a turnbuckle inserted in a short section of chain, with a slip or pelican hook attached to one end of the chain and a shackle at the other end.

MOORING FITTINGS

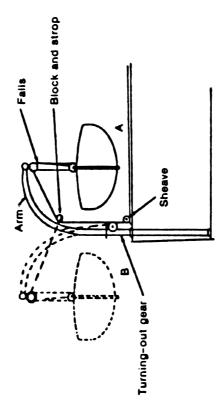
5-24

KEY WORDS: BOLLARD, CHOCK, BITTS, CLEAT, PADEYE

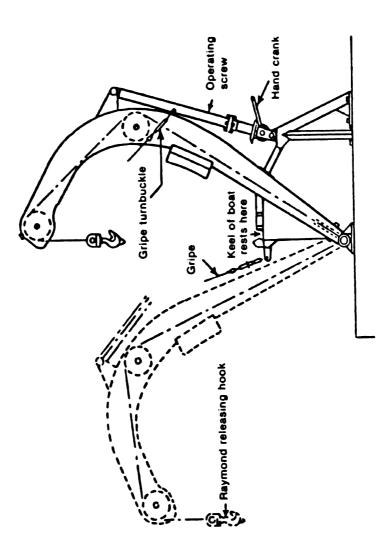
BASIC NAVAL ARCHITECTURE

Unit Number:6Title:Nomenclature - 3Tape Running Time: $36^M \ 30^S$ Reading Assignment:NoneAdditional References:(same as Unit 5)

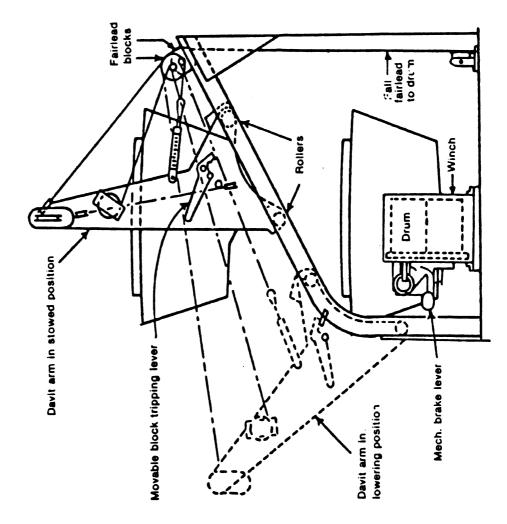
Scope:

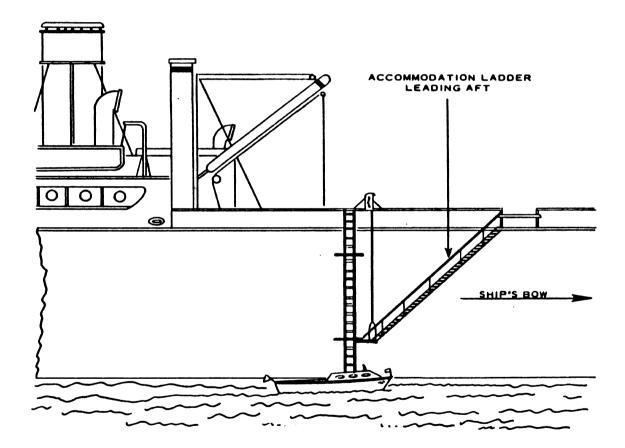

(same as Unit 5)

Key Points to Emphasize:

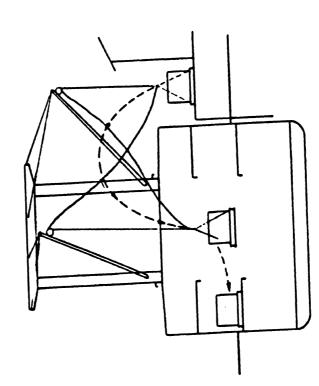

- Modern trend is to use more expensive cargo gear to move cargo faster and reduce port time. More true for expensive ships carrying more expensive cargoes. *‡Less true for older ships carrying cargoes of opportunity to smaller ports (tramps))*. Constantly emphasize the role of economics in making design and equipment decisions.
- 2. Structural nomenclature items will appear again in Unit 37.
- 3. Emphasize nomenclature items or usage that is particularly relevant to sponsoring organization.
- 4. Correction to tape narration: stern casting will be cast <u>steel</u>, not cast iron.

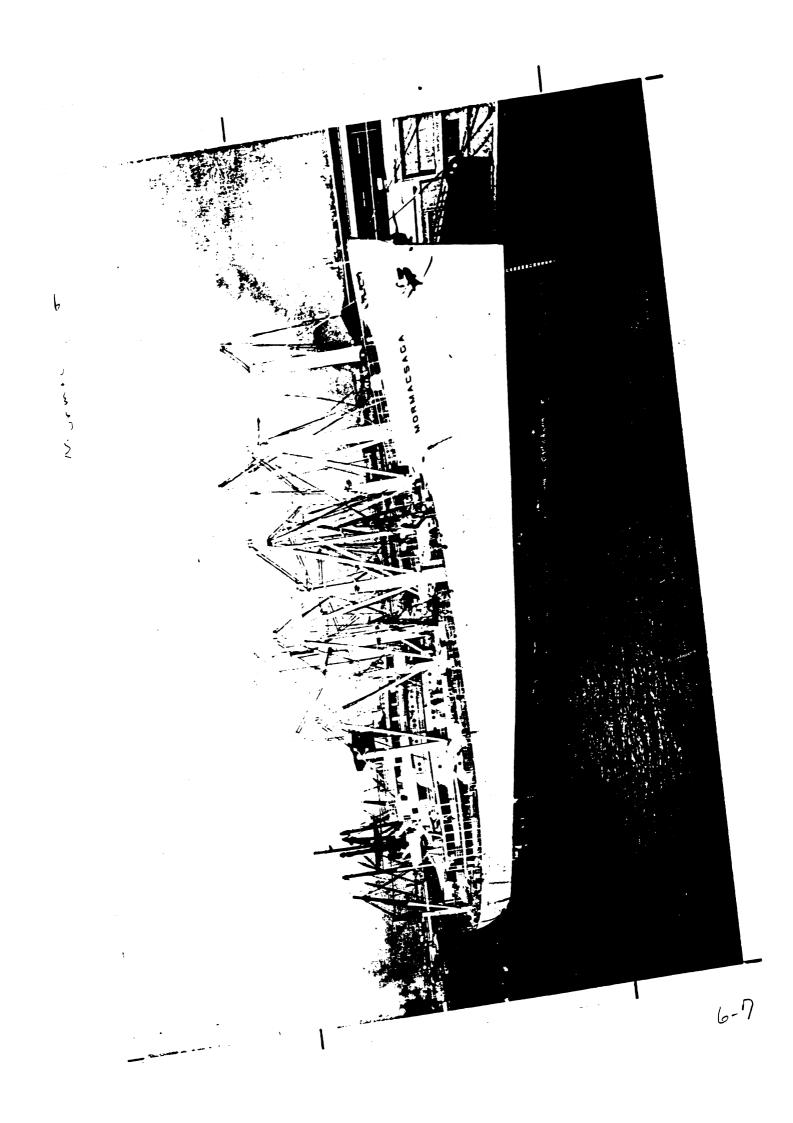
Suggested Problem Assignment: None


RADIAL DAVITS


CRESENT DAVIT

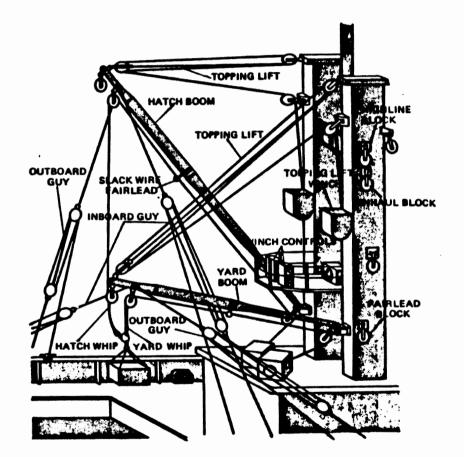
WELIN TRACKWAY GRAVITY DAVIT

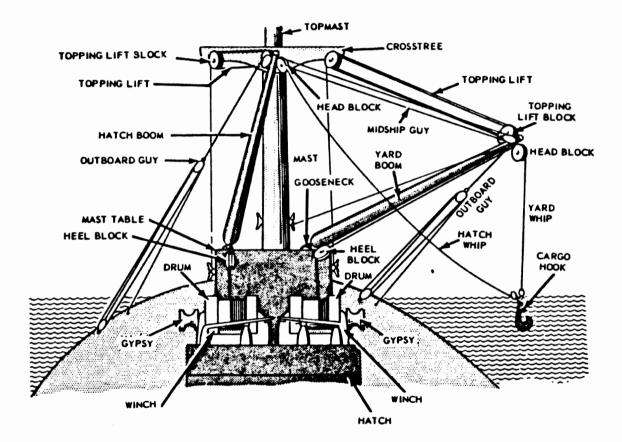

ACCOMODATION LADDER AND JACOB'S LADDER



5.9

CARGO HANDLING - THE BURTONING SYSTEM

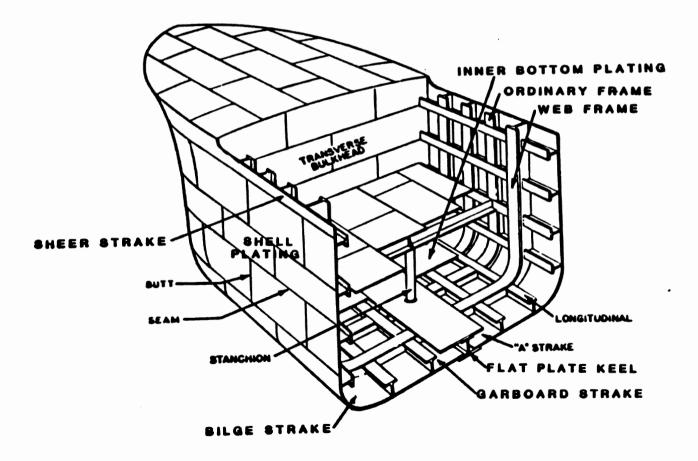

÷


CARGO HANDLING GEAR

8-9

<u>KEY WORDS:</u> KINGPOST, HATCH BOOM, YARD BOOM, WHIP, GUY, FAIRLEAD, TOPPING LIFT

CARGO HANDLING GEAR



<u>KEY WORDS:</u> TOPPING LIFT, HATCH WHIP, YARD WHIP, CROSSTREE, GYPSY, GOOSENECK

STRUCTURAL TERMINOLOGY

SHELL PLATING:

STRAKES OF SHELL PLATING ARE DESIGNATED WITH LETTERS, STARTING WITH "A" AS THE FIRST STRAKE OUTBOARD OF THE <u>FLAT PLATE KEEL</u>. CERTAIN STRAKES HAVE SPECIAL NAMES -- GARBOARD STRAKE, BILGE STRAKE, AND SHEER STRAKE.

6-10

١

STRUCTURAL TERMINOLOGY

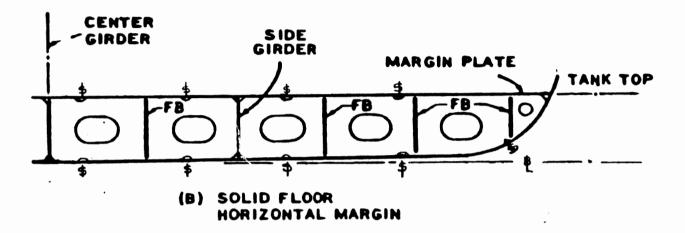
LONGITUDINALS ARE THE LONGITUDINAL STIFFNERS USED IN THE LONGITUDINAL FRAMING SYSTEM TO SUPPORT DECKS, FLATS, INNER BOTTOM, BOTTOM AND SIDE SHELL.

STRINGERS ARE LONGITUDINAL MEMBERS USED TO SUPPORT THE SIDE SHELL FRAMES AND PLATING. THE TERM IS USUALLY USED IN CONNECTION WITH TRANSVERSE SIDE FRAMING.

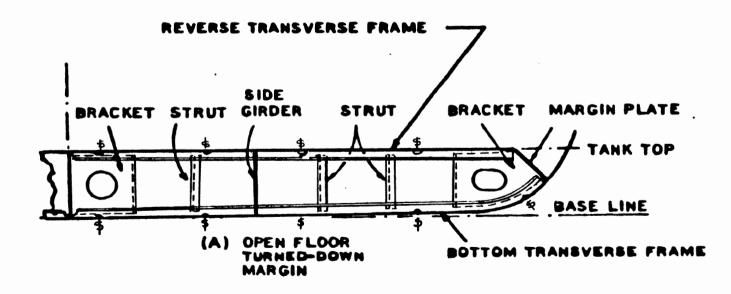
THE <u>STRINGER PLATE</u> IS THE OUTBOARD STRAKE OF PLATING ON ANY DECK.

THE MARGIN PLATE IS THE OUTBOARD STRAKE OF PLATING IN THE INNER BOTTOM.

STRUCTURAL TERMINOLOGY

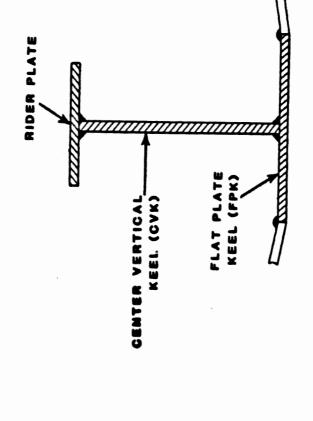

<u>GIRDERS</u> ARE MAIN LONGITUDINAL MEMBERS WHICH SUPPORT DECK BEAMS, DECK STRUCTURE AND BOTTOM.

<u>HATCH-SIDE GIRDERS</u> FORM THE LONGITUDINAL BOUNDARIES OF HATCHES.


SIDE GIRDERS RUN LONGITUDINALLY IN THE INNER BOTTOM.

THE <u>CENTER VERTICAL KEEL</u> (CVK) IS ALSO KNOWN AS THE <u>CENTER GIRDER</u>, THE BOTTOM FLANGE OF THE CVK IS OFTEN HEAVIER THAN ADJACENT BOTTOM PLATING AND IS CALLED THE FLAT PLAT KEEL (FPK)

BEAMS ARE TRANSVERSE STRUCTURAL MEMBERS WHICH SUPPORT AND STIFFEN DECK PLATING SOLID FLOORS ARE MADE UP OF VERTICAL PLATES (WHICH ARE ONLY "SOLID" IF THE FLOOR IS A WT OR AN OT BOUNDARY).



OPEN FLOORS UTILIZE STRUTS FOR VERTICAL MEMBERS

STRUCTURAL TERMINOLOGY

KEEL CONSTRUCTION:

:

KEY WORDS: FPK, CVK, RIDER PLATE

FRAMING SYSTEMS

TRANSVERSE FRAMING SYSTEM

TRANSVERSE MEMBERS INCLUDING

FLOORS

SIDE FRAMES

BEAMS

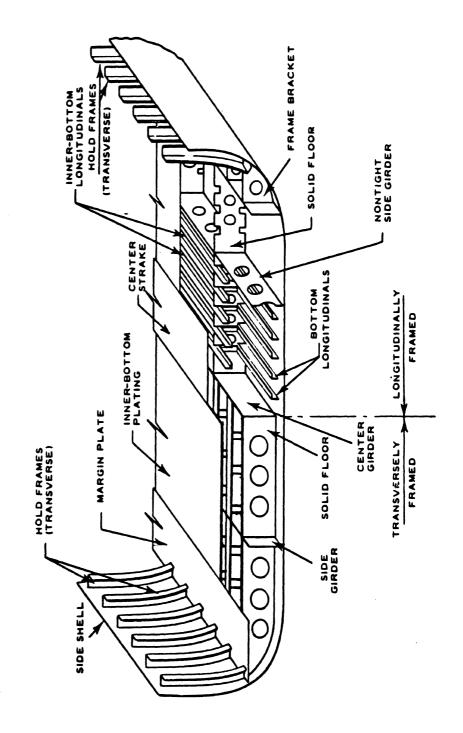
ARE CLOSELY SPACED (24" TO 36")

 LONGITUDINAL MEMBERS INCLUDING SIDE STRINGERS AND LONGITUDINAL GIRDERS IN BOTTOM AND DECKS ARE WIDELY SPACED

FRAMING SYSTEMS

LONGITUDINAL FRAMING SYSTEM

J

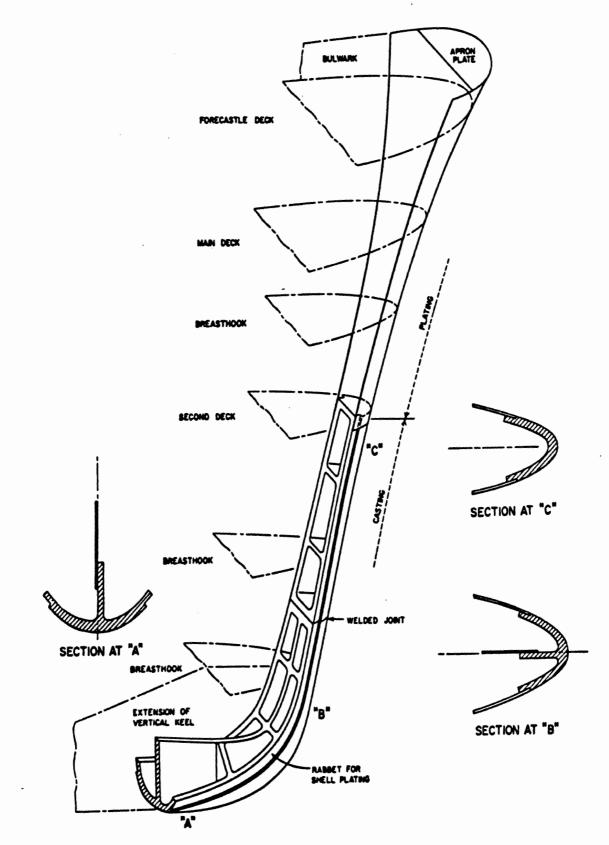

- LONGITUDINAL MEMBERS INCLUDING
- BOTTOM LONGITUDINALS SIDE LONGITUDINALS DECK LONGITUDINALS ARE CLOSELY SPACED (24" TO 36")
- ARE TRANSVERSE MEMBERS, PRINCIPALLY DEEP WEB FRAMES WIDELY SPACED (8' TO 12')

LONGITUDINAL VESUS TRANSVERSE FRAMING

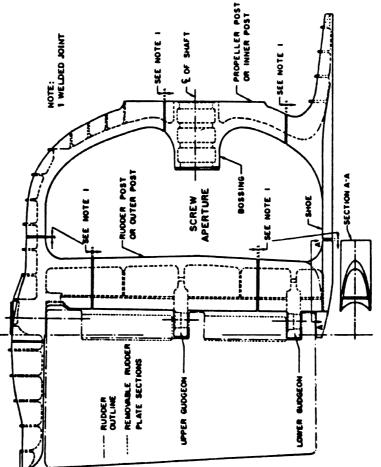
- O LONGITUDINAL FRAMING IS <u>MORE EFFICIENT</u> <u>STRUCTURALLY</u>, BUT-
- O FOR SHIPS WHICH CARRY BREAK-BULK, RO/RO, OR CONTAINER CARGOES THE DEEP WEBS WHICH ARE USED WITH THE LONGITUDINAL FRAMING SYSTEMS <u>INTERFERE</u> WITH CARGO STOWAGE.
- O DEEP WEBS ARE NO PROBLEM FOR LIQUID CARGOES AND BULK CARGOES. FOR THIS REASON <u>TANKERS AND BULK</u> CARRIERS ARE LONGITINALLY FRAMED.
- O <u>COMBINATION FRAMING</u> IS OFTEN USED, LONGITUDINAL FRAMING IN INNER BOTTOM AND DECKS - TRANSVERSE FRAMING IN SIDE SHELL.

DOUBLE BOTTOM CONSTRUCTION

1



SINGLE BOTTOM CONSTRUCTION (SMALLER SHIPS)



BOW STRUCTURE

.

STERN CONSTRUCTION

(A) STERN FRAME WITH PROPELLER AFERTURE AND UNBALANCED RUDDER

STRUCTURAL TERMINOLOGY

しょん

A <u>KEELSON</u> IS A LONGITUDINAL GIRDER IN SINGLE BOTTOM CONSTRUCTION. THE <u>CENTER KEELSON</u> CORRESPONDS TO THE CVK.

SIDE KEELSONS CORRESPOND TO SIDE GIRDERS.

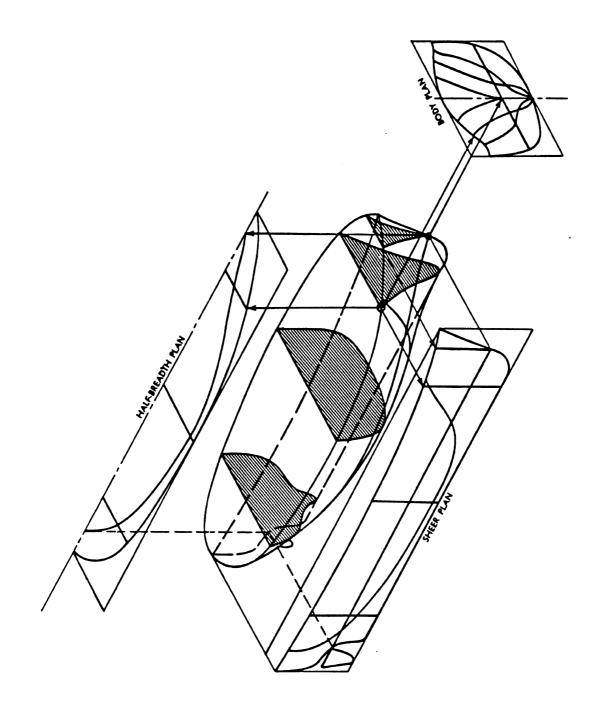
A <u>RIDER PLATE</u> IS A CONTINUOUS FLAT PLATE ATTACHED TO THE TOP (OR BOTTOM) OF A KEELSON OR A GIRDER

THE <u>BILGE STRAKE</u> IS THE STRAKE OF SHELL PLATING AT THE TURN OF THE BILGE.

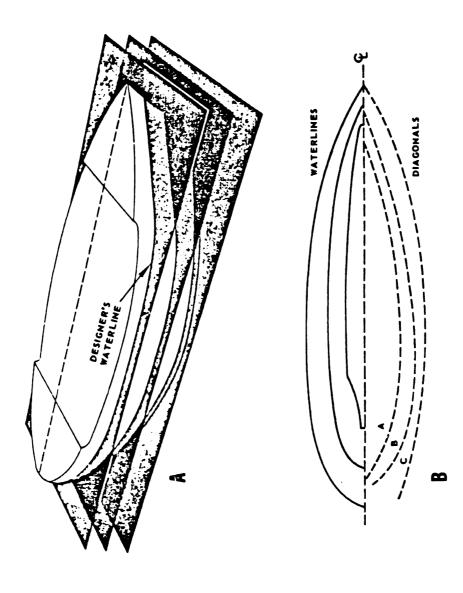
THE <u>SHEER STRAKE</u> IS THE STRAKE OF SHELL PLATING WHOSE UPPER EDGE RUNS AT THE STRENGTH DECK LEVEL

BASIC NAVAL ARCHITECTURE

Unit Number:7Title:Dimension, form and flotation - 1Tape Running Time: 27^M 48^SReading Assignment:MSD, pp 21-27Additional References:PNA, pp 1-11, 42-44SDC, pp 278-280

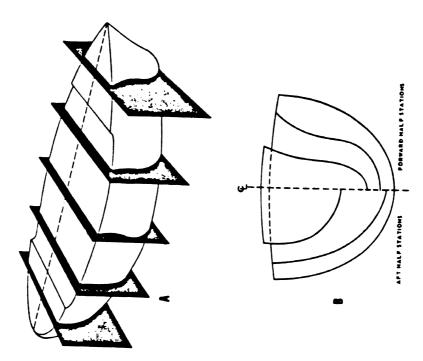

Scope:

The method of delineating a ship's hull form is introduced together with definitions of the dimensions used to define the hull form. Form coefficients are introduced.

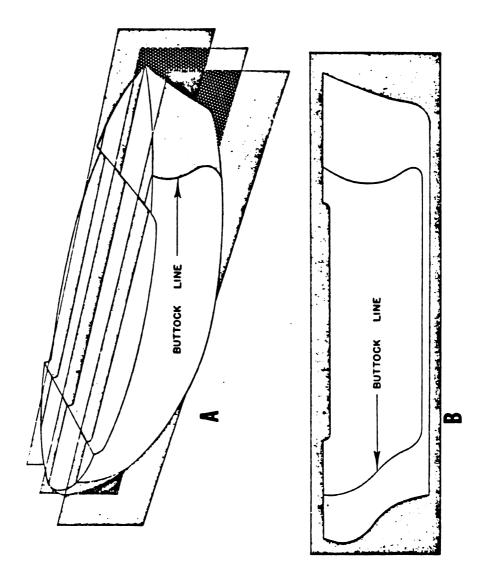

Key Points to Emphasize:

- 1. Make transparency from MSD, Fig 2-1, pp 22, and use to review video and define relationships between the three orthographic views of the ship's lines.
- Emphasize relation of molded lines to structure and the relation of "displacement" to "molded displacement". Good illustration in SDC, Fig 3, pp 279.
- 3. Emphasize definitions of light ship weight, deadweight, displacement and tonnage.
- 4. Define form coefficients in preparation for example in Unit 8.

Suggested Problem Assignment: None

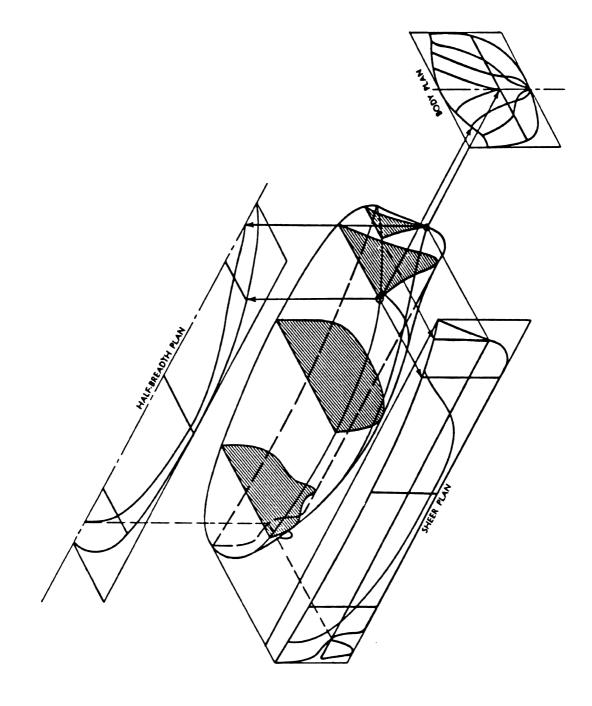


1

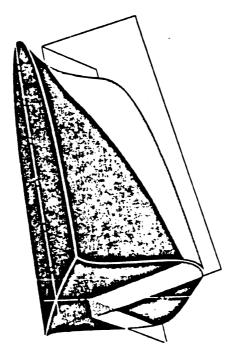


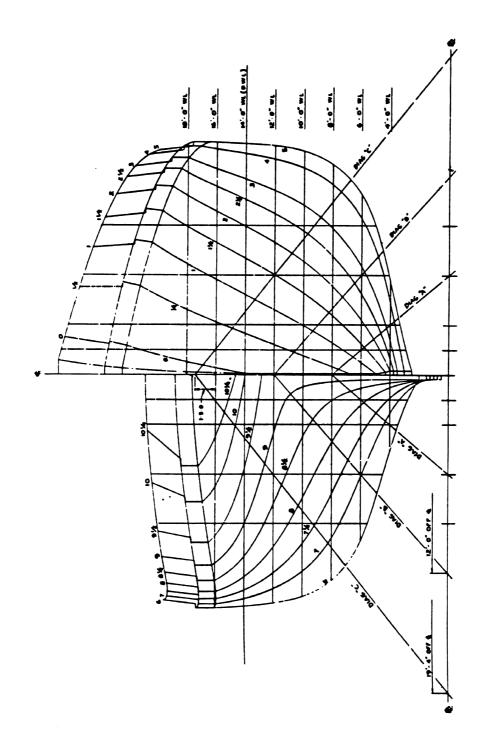
١

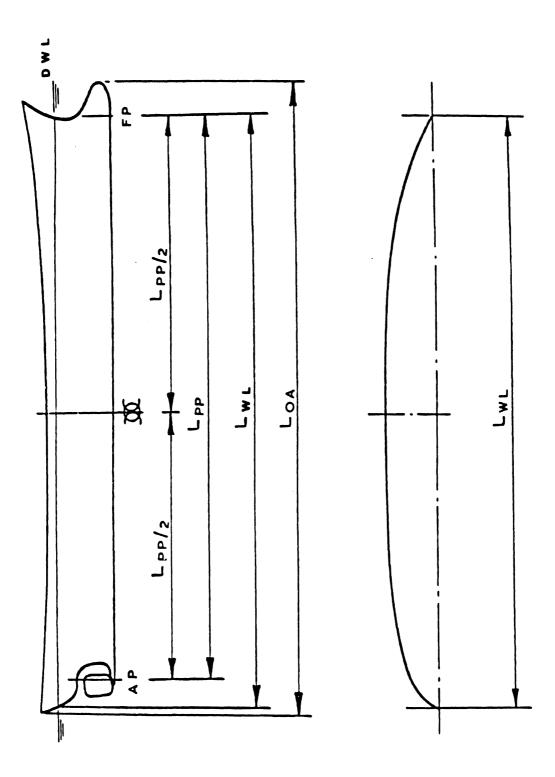
.

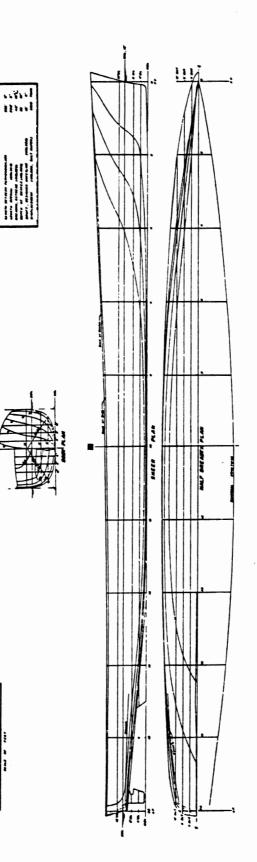


.

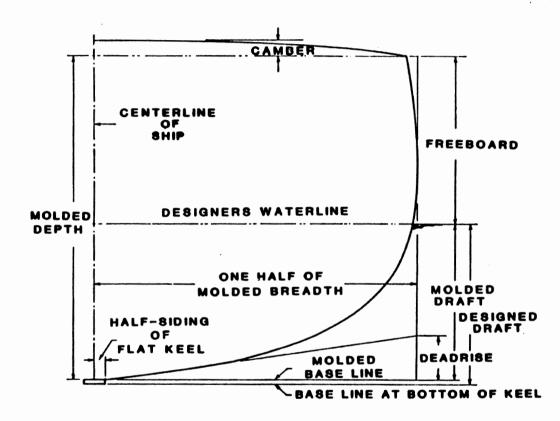



7-5


.



.



.

MCAL NU

•

LIGHT SHIP, DEADWEIGHT AND DISPLACEMENT

LIGHT SHIP WEIGHT

+ DEADWEIGHT

= FULL LOAD DISPLACEMENT

UNITS OF WEIGHT AND DISPLACEMENT

U.S. MARINE PRACTICE:

1 LONG TON = 2240 LBS

OTHER UNITS:

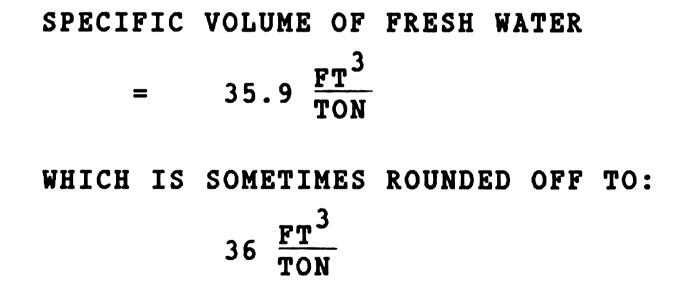
- 1 SHORT TON = 2000 LBS
- 1 METRIC TON = 1 TONNE
 - = 1000 KILOGRAMS
 - = 2205 LBS

TONNAGE

THE INTERNAL OF A MEASURE A SHIP SI VOLUME OF TONNAGE

1 TON = 100 CUBIC FEET

DO NOT CONFUSE TONNAGE WITH DISPLACEMENT AND WEIGHT UNITS CONSTANTS YOU SHOULD KNOW


SPECIFIC VOLUME OF SEA WATER (DENSITY FACTOR) LONG TON OF CUBIC FEET PER WATER FT³ TON SEA 35 11

35 35

11

7-15

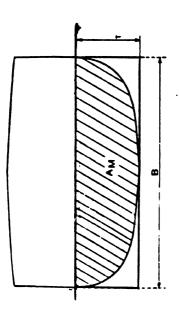
CONSTANTS YOU SHOULD KNOW

STANDARD SYMBOLS

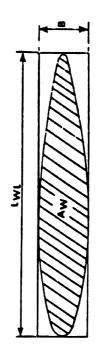
EH VOLUME OF DISPLACEMENT (CUBIC AREA OF MIDSECTION AT DRAFT T LENGTH BETWEEN PERPENDICULARS DRAFT WATER PLANE AT BEAM (OR BREADTH) DISPLACEMENT AREA OF FEET) DRAFT OR A_{wp} L pp A W A B E 4 Д

MIDSHIP SECTION COEFFICIENT

•


~

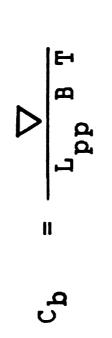
WATERLINE COEFFICIENT (WATERPLANE COEFFICIENT)



7-19.

•

.



,

•

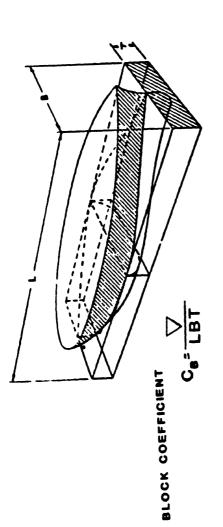
•

SINCE ∇

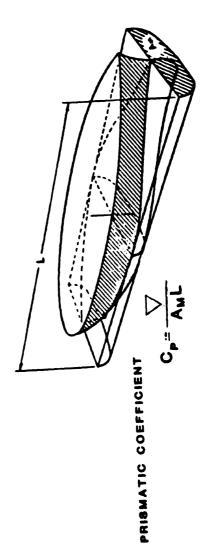
••

11

 $35 extsf{ deg}$ (sea water)


В 35 △ dd 11 р С

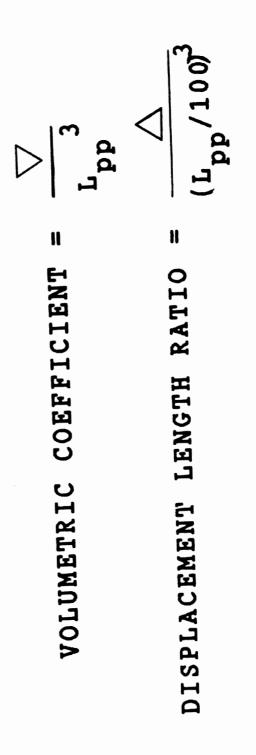
PRISMATIC COEFFICIENT


SUBSTITUTING, A_m =

C_BT GIVES

ర్ ల ి ຸດ ວ_ ____ OR

.


•

RATIOS

Lpp B	dd F	┍┑┃╒╍
II	11	II
LENGTH-BEAM RATIO	LENGTH-DRAFT RATIO	BEAM-DRAFT RATIO

.

1-24

TWO MORE COEFFICIENTS

.

Unit Number:8Title:Dimension, form and flotation - 2Tape Running Time:34^M 15^SReading Assignment:MSD, pp 27-37Additional References:PNA, pp 54-59, 70-73

Scope:

The purpose and use of form coefficients is explained by example. Centers of buoyancy and gravity, metacenter, GM, center of flotation are defined. The concept of moments is introduced and an example is given.

Key Points to Emphasize:

- 1. There is a great deal of fundamental material in this unit which should be reviewed and emphasized.
- 2. Review definitions of form coefficients and go over example given in video.
- 3. Explain the physical concepts of center of gravity and center of buoyancy. Stress alignment of forces in at-rest condition.
- 4. Explain the concept of a centroid, perhaps with a cardboard cut-out of a waterplane. Emphasize definition of LCF and the fact that this is the center about which the ship trims.
- 5. Review the definition of the metacenter and GM. Emphasize small angle limitations.
- 6. Explain the concept of moments. Go over the example. Emphasize tabular format.

Suggested Problem Assignment: 1, 2 or 3, 4 or 5

EXAMPLE

ОF О DESIGN OF A PETROLEUM PRODUCTS CARRIER. THE OWNER HAS SPECIFIED A DEADWEIGHT A NAVAL ARCHITECT IS STARTING ON THE ABOUT 40,000 LT.

FROM A STUDY OF OTHER SUCCESSFUL PRODUCTS CARRIERS THE NAVAL ARCHITECT DETERMINES THE FOLLOWING RATIOS AND COEFFICIENTS ARE APPROPRIATE-

 ∞

 \mathcal{W}

DEADWEIGHT-TO-DISPLACEMENT RATI	RATIO=0.86
DISPLACEMENT-LENGTH RATIO	=165
LENGTH-BEAM RATIO	=7.5
BEAM-DRAFT RATIO	=2.5
MIDSHIP SECTION COEFFICIENT	=0.980
FIND: SHIP CHARACTERISTICS AND	

COEFFICIENTS

SOLUTION

46,512 LT = 281.9 40,000 LT 30,00 165 46, 512 LT H 4 6.56 [63 [02 1 1 1 1 9 00 0 = (001/J) $(\frac{1}{100})^3 =$ 11 IĮ 11 (L/100)³ DWT □ \triangleleft \triangleleft

。

656 FT

4

٦

SOLUTION

З.

4.

$B = \frac{L}{7.50} = \frac{656 \text{ FT}}{7.50}$ $\frac{B}{T} = \frac{87.5 \text{ FT}}{7.50}$ $\frac{B}{T} = 2.50$ $T = \frac{B}{2.50} = \frac{87.5 \text{ FT}}{2.50}$ $\frac{T}{T} = 35.0 \text{ FT}$	B	=	7.50	
$\frac{B}{T} = 2.50$ $T = \frac{B}{2.50} = \frac{87.5 \text{ FT}}{2.50}$	в	2	$\frac{L}{7.50} = \frac{656}{7.50}$ FT	
$T = \frac{B}{2.50} = \frac{87.5 \text{ FT}}{2.50}$	B	3	87.5 FT	
$T = \frac{B}{2.50} = \frac{87.5 \text{ FT}}{2.50}$				
	B	¥	2.50	
T = 35.0 FT	Т	=	$\frac{B}{2.50} = \frac{87.5 \text{ FT}}{2.50}$	
	T	_	35 0 57	

é

SOLUTION (CON'T)

 $C_{b} = \frac{\nabla}{|c_{PPBT}|} = \frac{35\Delta}{|c_{PPBT}|}$ $C_{b} = \frac{(35 \frac{FT^{3}}{100})(46,512 \text{ LT})}{(656 \text{ FT}(87.5 \text{ FT})(35.0 \text{ FT})}$ $C_{b} = .810$ $C_{b} = .810$ $C_{p} = .610$ $C_{p} = .827$

Ū.

Ц Г

EXAMPLE (CONCLUDED)

THE PRELIMINARY CHARACTERISTICS **RECAP:**

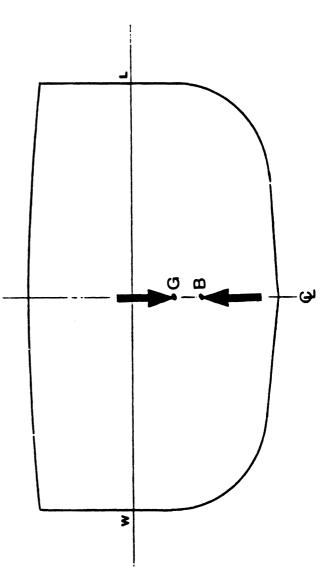
OF THE SHIP ARE:

- Lpp = 656 FT
- B = 87.5 FT
- T = 35.0 FT
- 🛆 = 46,512 LT
- DWT = 40,000 4
- Cp = .827
- C_m = .980

CENTER OF BUOYANCY

OF THE AT BUOYANCY IS LOCATED THE GEOMETRIC CENTER (CENTROID) UNDERWATER VOLUME. 0F CENTER THE

BUOYANT FORCES ON VERTICAL UPWARD CENTER OF THROUGH THE RESULTANT OF ALL SINGLE HULL IS A FORCE ACTING BUOYANCY. THE THE

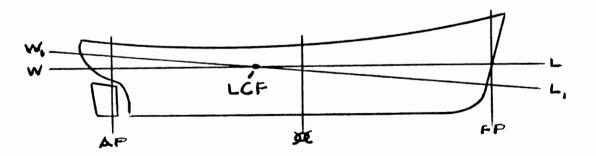

7.9

CENTER OF GRAVITY

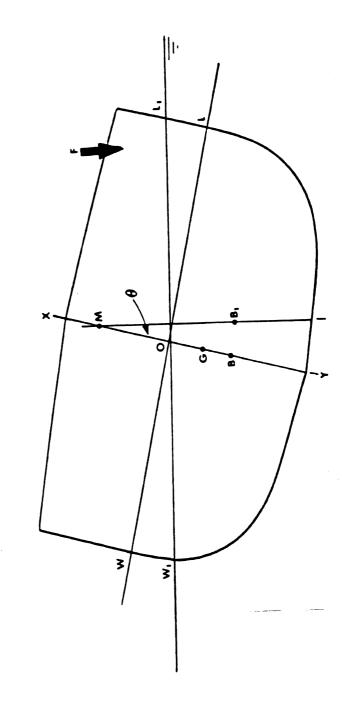
ACT FORCES CENTER IN A VERTICALLY DOWNWARD DIRECTION. WEIGHT GRAVITY IS THE THROUGH WHICH ALL THE THE CENTER OF

IMPORTANT FACT

IN THE SAME UPWARD BUOYANT FORCE AND THE DOWNWARD THE FLOATING AT REST, WEIGHT FORCE WILL ALWAYS BE SI JIHS VERTICAL LINE. A WHEN

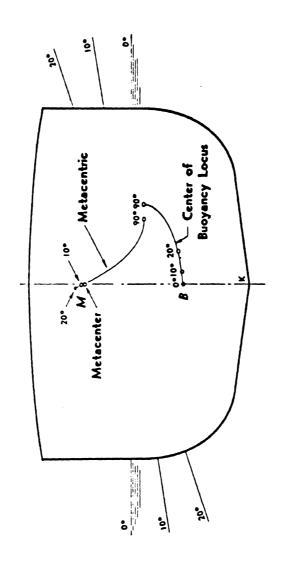

CENTER OF FLOTATION

GEOMETRIC CENTER (CENTROID) OF THE THE CENTER OF FLOTATION IS AT THE WATERPLANE AT WHICH THE SHIP IS FLOATING.


8-12

IMPORTANT FACT

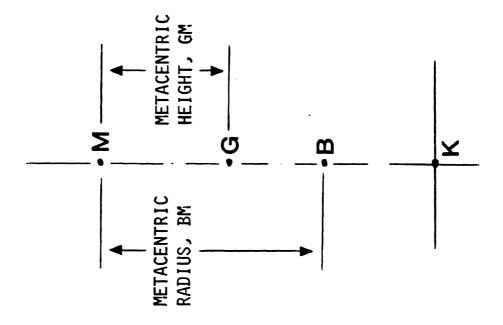
A SHIP TRIMS ABOUT A TRANSVERSE AXIS THROUGH THE CENTER OF FLOTATION.



8-14

METACENTER

CENTER OF THE PATH OF THE CENTER OF THE METACENTER IS THE INSTANTANEOUS BUOYANCY AS THE SHIP INCLINES.


8-15.

8-16

IMPORTANT FACT

CENTERLINE ONLY FOR 0 **8** THE METACENTER REMAINS IN A FIXED OF INCLINATION, SAY THE SMALL ANGLES POSITION ON TO 12°

8.18

METACENTRIC HEIGHT, GM

THE METACENTER IS USEFUL ONLY FOR HEIGHT, GM IS CALLED INITIAL STABILITY STUDY STABILITY USING THE METACENTRIC SMALL ANGLES OF INCLINATION THE SINCE ОF

LONGITUDINAL METACENTER

METACENTER OR THE PORT AT 0 H HAVE LOOKED INCLINES SHIP WE FAR THE SO AS

STARBOARD.

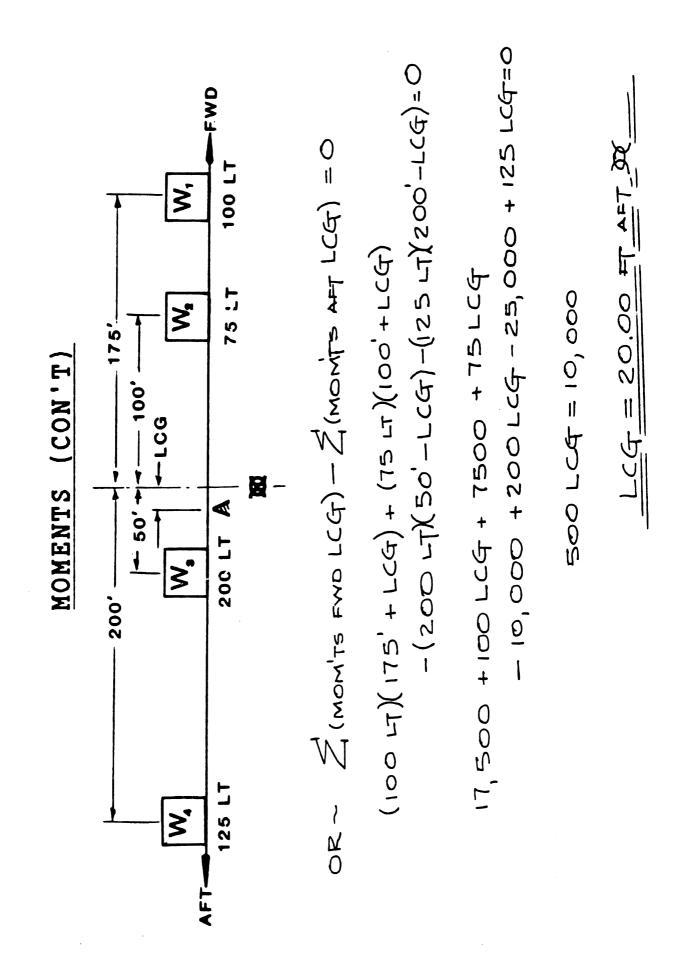
METACENTER TRANSVERSE IS THE THIS

LONGITUDINAL SHIP THE AS WAY A DEFINED UP OR DOWN. SAME ВE MAY THE EXACTLY METACENTER TRIMS BOW NI

NOTATION

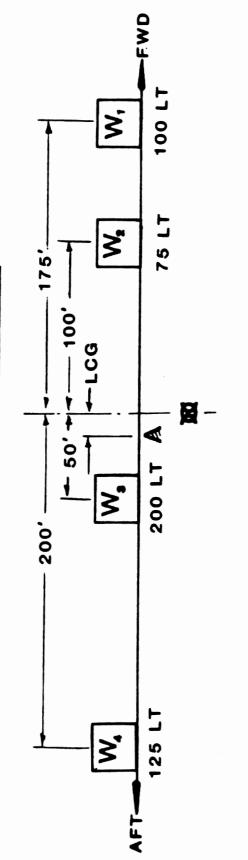
TRANSVERSE UNLESS METACENTRIC HEIGHT, GM, MEANS METACENTRIC HEIGHT NOTED, OTHERWISE

DESIGNATED GM IF LONGITUDINAL METACENTRIC HEIGHT,


BE SHOULD ALWAYS E H WAY MEANT THAT SI

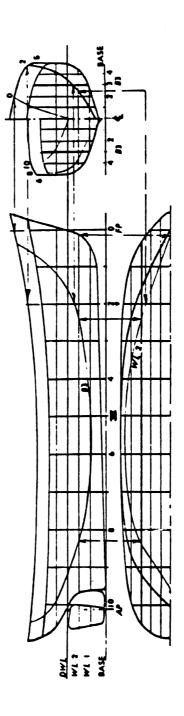
MOMENTS	200' 175' 175' W. W. W. W. Y5 LT 100 LT FWD	WEIGHTS W, W, W, WEIGHTS AND DISTANCES AS SHOWN. DISTANCE OF LCGFROM DD	RAIC SOLUTION: ING MOMENTS ABOUT THE LCG~ AENTS FWD. LCG)= &(MOMENTS AFT LCG)
	AFT V.	FIND: WEIG	ALGEBRAIC TAKING RINGMENT

.


-

8.22

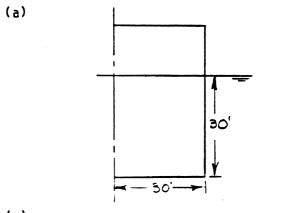
8.23

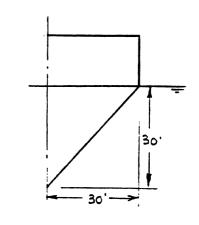

MOMENTS (CON'T)

TABULAR SOLUTION:

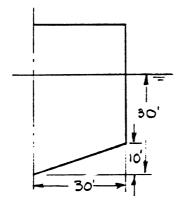
MOMENT FT-TONS	17, 500 F	1'500 F	10,000 A	200 A 25,000 A	20.04 10,000 A
LCG FT FM IN	175 F	1001	50 A	200 A	20.0A
WEIGHT LT	001	75	200	125	200
ITEM	∕~	\mathbb{V}_{2}	$\mathbb{M}_{\mathbf{s}}$	W4	W

LINES DRAWING


8-25

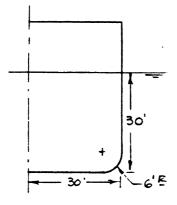

.

Problem 1


Problem Level: Basic

Calculate the Midship Section Coefficient of the sections shown below:

(c)



(d)

(b)

(e)

8-26

Problem 2

Problem Level: Basic

A naval architect developing the concept design of a mobilization ship decides on the following dimensions, proportions and coefficients for his initial design:

Lpp	E	560 '-0"
L/B	=	5.77
B/T	E	3.23
с _р	5	.630
C _m	5	.980

Calculate:	Ca	10	ะบไ	۱a	te	:	
------------	----	----	-----	----	----	---	--

- a)
- b) Draft, T

Beam, B

- Block Coefficient, C_b c)
- Displacement volume, ∇ d)
- Displacement, salt water, Δ e)
- f) Area of Midsection, ${\rm A_m}$
- g) Displacement-length ratio

Problem 3

Problem Level: Basic

A proposed ship design has the following geometrical characteristics:

L _{oa}	E	640'-0"
L _{Wl}	E	620'-0"
L _{pp}	E	600'-0"
В	F	60'-0"
Т	8	20'-0"
∇	E	540,000 ft ³
A _m	E	1080 ft ²
A _w	E	27,900 ft ²

a)

Са	lcu	la	te	•
	100		LC	

- Displacement in salt water, Δ
- b) Displacement in fresh water, $\Delta_{\rm fw}$
- c) Block coefficient, C_b
- d) Midship Section Coefficient, C_m
- e) Prismatic Coefficient, C_p
- f) Waterplane Coefficient, C
- g) Length-beam ratio, L_{pp}/B
- h) Length-draft ratio, L_{pp}/T
- i) Beam-draft ratio, B/T
- j) Volumetric coefficient, ∇/L_{DD}^{3}
- k) Displacement-length ratio, $\Delta / (L_{pp} / 100)^3$

Problem 4

.

Problem Level: Basic

The coefficients and ratios of a typical harbor tug are shown in <u>Gillmer</u>, Table 2-1 (pp 33) and are repeated below:

cb	=	.585
C _m	=	.892
с _р	=	.655
C _w	=	.800
L/B	=	4.18
L/T	=	9.33
B/T	=	2.23

(Note that these values represent an average. In practice there may be considerable variation.)

Using these ratios for a proposed tug design which has L_{pp} = 85.0 ft., find:

Volumetric Ratio

Displacement-Length Ratio

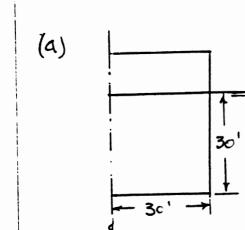
.

Problem 5

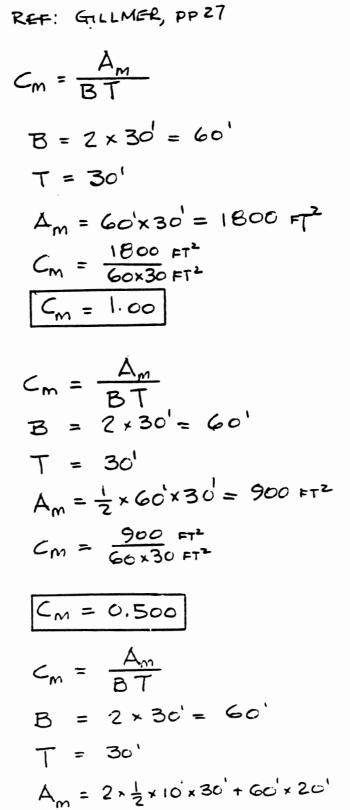
Find:

Problem Level: Intermediate

In developing the Concept Design of a cargo ship a naval architect starts with the following parameters for the full load condition:


\bigtriangleup	=	15,000 L.T.
В	E	581-0"
Т	=	28'-0"
C _b	= "	.770
C _p	=	.780

Find the required L_{pp} of the ship (to the nearest foot), the Midship Section Area (to the nearest square foot), $C_{\rm M}$, and the Displacement-Length Ratio. To check whether these dimensions and coefficients will provide adequate intact stability at full load the naval architect makes further estimates of the following parameters:

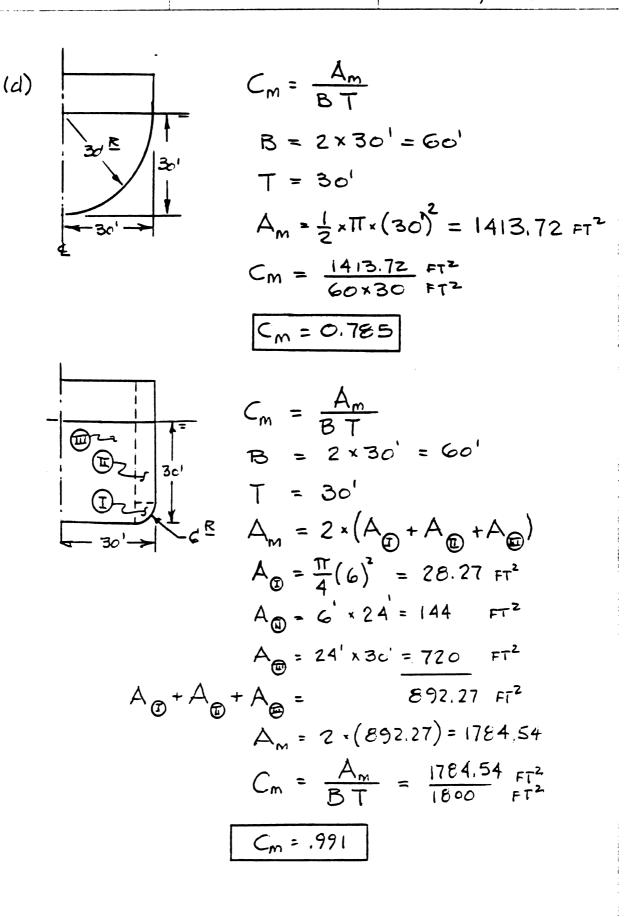

D/T	=	1.50
KB/T	E	.520
$\overline{\rm BM}$ x T/B ²	E	.080
KG/D	5	.500
D		
KB		
BM		
KG		
GM		

All dimensions above are molded dimensions.

(ь)

Am = 1500 FT2

 $C_{m} = 0.833$


 $C_{\rm m} = \frac{1500}{60 \times 30} FT^2$

301

PRCBLEM 1 (CON'I)

PRVMJr

FEB 18, 1987 2002

1				
	PROBLEM 2	T.D.K.	FEB 1,1987	10=2
	FROME LPP = $560'-0''$ Lpp/B = 5.77 B/T = 3.23 Cp = $.630$ Cm = .980			
	(a) <u>Lpp</u> = 5.77 B = 5.77	$= B = \frac{L_{PP}}{5.77} = \frac{560 F}{5.77}$	I :. B= 97'-0	~
	(b) $\frac{B}{T} = 3.23$	=7 - B = 97 FT = 3.23 = 3.23	. T= 30'-	0″
	(c) REF GILLMER P.27 $C_p = \frac{C_b}{C_m} = C_b = C_p \cdot C_m = (.630)(.980) : C_b = .617$			
	(d) REF GILMER $C_b = \frac{\nabla}{L_{PP}B}$	Ref GILMER 7.27 $C_{b} = \frac{\nabla}{L_{PP} BT} \implies \nabla = C_{b} L_{PP} BT = (.617)(560FT)(97FT)(30FT)$ $\therefore \nabla = 1,005,463 FT^{3}$		
	(e) REF GILLMER P.37 $\Delta = \frac{\nabla}{35 \text{FT}^3/\text{TON}} = \frac{1,005,463 \text{F7}^3}{35 \text{F7}^3/\text{TON}} \therefore \Delta = 28,728 \text{T}$			
	(f) REF GILLMER $C_m = \frac{A_m}{BT}$	$ = A_m = C_m BT = ($,980)(97FT)(30F A _{rri} = <i>2,852</i> F7 ²	τ)]

1				
	PROBLEM 2	TDK	FEB 1, 1987	2 of 2
	(g) REF GILLMER F	$RATIO = \frac{\Delta}{(L_{PP}/100)}$	$r = \frac{28,728 \text{ Torks}}{(560 \text{ FT}/100)^3}$	
		·	.pl-Length Ratio=16	3.58
		·		
				8-34

-

.

8 35

PROLET 3
TDC FEB 1, 1987 2002
(a)
LENGTH BEAM RATIO =
$$\frac{LP}{B} = \frac{LOOPT}{COPT} = 1000$$

(b)
LENGTH DEAFT RATIO = $\frac{LP}{T} = \frac{LOOPT}{20PT} = 3000$
(c)
BEAM DEAFT RATIO = $\frac{R}{T} = \frac{LOOPT}{20PT} = 300$
(c)
VOL COFF. = $\frac{V}{L_{PT}} = \frac{540000 \text{ pr}^{4}}{(LOOPT)^{3}} = .003$
(c)
DISPL - LENGTH RATIO = $\frac{A}{(L_{PP}/100)^{3}} = \frac{15.429 \text{ Tons}}{(LOOPT/100)^{3}} = \overline{71.473 \frac{1000}{TT3}}$
So $\frac{71.473 \frac{1000}{TT3}}{100}$

 I			
PROBLEM 4	TDK	FER 1, 1987	10F2
GIVEN: Cb = .585 Cm = .892 Cp = .655 Cwp = .800 Lpp / B = 2 Lpp / T = 2 B/T = 2 Lpp = 85.0	1.33 2.23		
(a) <u>Lpp</u> = 4.18 B	$B = \frac{Lpp}{21.18}$	% B= 20.3 FT	
(b) $\frac{Lpp}{T} = 9.33$	$T = \frac{L_{PP}}{9.33}$:. 7= 9.1 FT	
(c) REF GILLMER \overline{r}		3T = (.585)(85.0FT)(20.3)	FT)(9.1 FT)
	V= 9,186	FT ³ $\Delta = 262$ Ton	
(d) REF GILMER P. $\Delta_{FH} = \frac{1}{3}$		$\Delta_{\rm FW} = 255$ Tons	
(e) Ref Gillmer P. $C_m = \frac{A_m}{BT}$	$A_m = C_m BT$	= (.892)(20.3 F7)(9.1 F7 Am = 165 FT ²	,)
(f) REF GILLMER F Cup = <u>Aw</u> BLpp	= Aw = CwpB	$L_{PP} = (.800)(20.3FT)(85.4)$ $A_{w} = 1,380 FT^{2}$	oft) 8-37

FEB 1. 1987 2 OF 2 TDK PROBLEM 4 (g) REF GILMER P.27 Vol. COEFF. = $\frac{\nabla}{L_{PP}^3} = \frac{9,186 \text{ FT}^3}{(85.0 \text{ FT})^3} = 0.015$ (h) REF GILMER P.27 DISPL-LENGTH RATIO = $\frac{\Delta}{(L_{PP}/100)^3} = \frac{262 \text{ Tons}}{(86.0 \text{ FV}/100)^3} = \frac{427 \text{ Tons}}{\text{FT}^3}$ SUMMARY OF A TYPICAL HARBOR TUG CHARACTERISTICS ARE USTED BELOW !: Lpp = 85'-0" B = 20' - 4''T = 9' - 1'' $\Delta = 262$ LT $\Delta_{FW} = 255 LT$ C_b = .585 $C_{p} = .655$ Cn = .892 $\nabla/L_{PP}^2 = .015$

 $\Delta/(L/100)^3 = 427 LT/FT^3$

PROBLEM 5

 $\Delta = 15,000 \text{ L.T.}$ GIVEN : B = 58'-0" T = 28' - 0'' $C_b = .770$ $C_p = .780$

FIND Lpp - REF GILMER P.27,37

$$C_{b} = \frac{\nabla}{L_{PP}BT} \Rightarrow L_{PP} = \frac{\nabla}{C_{b}BT} = \frac{(35 FT^{2}/T_{ON})\Delta}{C_{b}BT}$$

$$L_{PP} = \frac{(35 FT^{2}/T_{ON})(15,000 T_{OM}s)}{(.770)(58.0FT)(28.0FT)}$$

$$L_{PP} = 420 FT$$

TDK

FEB. 2, 1987

1 OF 2

FIND Am - REF GILMER P.27,37

$$C_{p} = \frac{\nabla}{A_{m} L_{pp}} \Rightarrow A_{m} = \frac{\nabla}{C_{p} L_{pp}} = \frac{(35 F1^{2}/T_{on}) \Delta}{C_{p} L_{pp}}$$

$$A_{m} = \frac{(35 F1^{2}/T_{on})(15,000 T_{on})}{(.780)(420 FT)}$$

$$\therefore A_{m} = 1,603 FT^{2}$$

FIND
$$C_m - REF$$
 GILMER P.27
 $C_p = \frac{C_b}{C_m} = 0$ $C_m = \frac{C_b}{C_p} = \frac{.770}{.780}$ $C_m = .987$
FIND DISPL. - LENGTH RATIO - REF GILMER P.27
DISPL. - LENGTH RATIO = $\frac{\Delta}{C_p} = \frac{.15,000 \text{ Tens}}{.780} = .202.46 \text{ Ton}$

DISPL-LENGTH RATIO =
$$\frac{\Delta}{(Lpp/100)^3} = \frac{15,000 \text{ Tens}}{(420 \text{ FT}/100)^3} = 202.46 \text{ Tons}$$

FT3

	 1		ł
PROBLEM 5	TDIK	FEC 2, 1987	2 == 2
GIVEN: D/T = 1.50 KB/T = .5. BM ·T/BZ KG/D = .5	20 = .080		
Find D - $\frac{D}{T} = 1.50$	D = (1.50) T = (1.50)	.50)(28.0 FT) :. D	= 42.00 FT
FIND KR - <u>KR</u> = ,520 T	★ KB = (.520) T =	= (.520)(28.0FT) :. K	3= 14.56FT
FIND BM - BM.T = .080 B ² = .080	→ BM = (<u>.080) B</u> ² T	= (.080)(58.0FT) ² : 3 280 FT	M= 9.61 FT
FIND \overline{KG} = ,500 =	► KG = (.500)D = (.5	500)(420FT) :. KO	= 21.00 FT
FIND GM - REF GI GM = KB -	+ BM - KG = 14.50	6FT + 9.61FT - 21.00F	T
-			8.4D

Hauss Fritting and the first second

,

BASIC NAVAL ARCHITECTURE

Unit Number:9Title:Dimension, form and flotation - 3Tape Running Time: $27^M 35^S$ Reading Assignment:MSD, pp 37-41Additional References:PNA, pp 10-11, 20-39 (definitions only)

Scope:

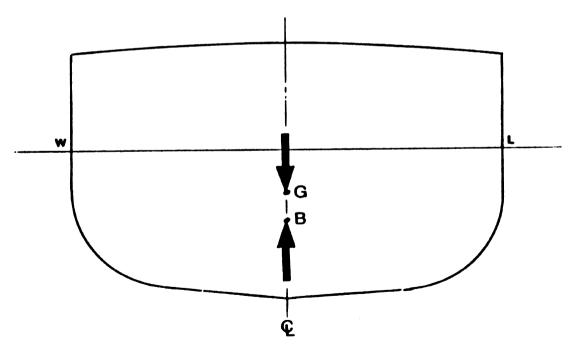
Archimedes' Principle is introduced and explained. Hydrostatic parameters are defined. Curves of Form are introduced.

Key Points to Emphasize:

- 1. Explain Archimedes' Principle with physical significance. See PNA, pp 10.
- 2. List the various hydrostatic parameters, items 1-16 on DD 692. Displacement and other curves, and explain their purpose.
- 3. Display the Curves of Form furnished with course. Show FFG-7 Bonjean's Curves.
- 4. Go over change of draft example in MSD, pp 38-39.

Suggested Problem Assignment: 6 or 7, one of 10, 11 or 12

ARCHIMEDES PRINCIPLE


MODERN SHIP DESIGN, pp 37) (P E R :

MUST THE TOTAL WEIGHT OF THE FLOATING БH ATTACHED, EQUAL THE WEIGHT OF THE WATER INCLUDING ALL THAT IT IS CONTAINS OR THAT DISPLACES. **VESSEL**,

9-2

IMPORTANT FACT

WHEN A SHIP IS FLOATING AT REST, THE UPWARD BUOYANT FORCE AND THE DOWNWARD WEIGHT FORCE WILL ALWAYS BE IN THE SAME VERTICAL LINE.

92

CURVES OF FORM

ALSO KNOWN AS

HYDROSTATIC CURVES

MODERN SHIP DESIGN: FURNISHED WITH DESTROYER (1 SHEET CLASS 692 00 NAVAL ARCHITECTURE BASIC HTIW PROBLEM BOOK: FURNISHED

FFG-7 CLASS FRIGATE (2 SHEETS

- CLASS") CUTTER USCG WMEC ("BEAR SHEET) (1
- SHIP MARAD PD-214 MOBILIZATION

SHIP VARIANT) (1 SHEET (CONTAINER

NOTE THAT FOR THE FOUR EXAMPLE SHIPS CURVES OF FORM ARE FURNISHED, A SCALES ORGANIZED IN WAY. DIFFERENT EACH HAS THE SLIGHTLY WHOSE

TYPICAL OF THOSE THE VARIATIONS ARE FOUND IN PRACTICE.

CAUTION:

CURVES OF FORM ARE REFERENCED TO MOLDED CAREFUL TO NOTE WHETHER BASELINE OR BOTTOM OF KEEL ВE ALWAYS

DISPLACEMENT CURVE

5

>

- ALWAYS PRESENTED FOR SALT WATER
 (35 FT³/TON)
- SOMETIMES PRESENTED FOR FRESH WATER
 (35.9 OR 36 FT³/TON)
- IF NOT OTHERWISE DESIGNATED INCLUDES SHELL PLATING AND APPENDAGES
- MOLDED DISPLACEMENT IS SOMETIMES PRESENTED

DISPLACEMENT CURVE:

9.0

 IF ONLY DISPLACEMENT IN <u>SALT WATER</u> IS GIVEN, TO FIND DISPLACEMENT IN <u>FRESH WATER AT THE SAME DRAFT</u>, MULTIPLY BY 35/35.9

$$\triangle_{\rm FW} = \triangle \frac{35}{35.9}$$

 DISPLACEMENT IS <u>ALWAYS</u> GIVEN IN <u>LONG</u> <u>TONS</u> (2240 LBS) (FOREIGN SHIPS WILL BE IN <u>METRIC</u> TONS (2205 LBS))

TO USE DISPLACEMENT CURVE:

- ENTER WITH <u>MEAN DRAFT</u> (AVERAGE OF DRAFT FWD AND DRAFT AFT)
- READ <u>DISPLACEMENT</u> ON DISPLACEMENT SCALE

TONS PER INCH IMMERSION (TPI)

- TPI IS THE WEIGHT WHICH WHEN ADDED (OR REMOVED) WILL CAUSE <u>ONE INCH</u> INCREASE (OR DECREASE) IN <u>MEAN DRAFT</u>
- MUST BE ADDED (OR REMOVED) AT THE <u>CENTER OF FLOTATION</u> FOR <u>PARALLEL</u> <u>SINKAGE</u>. AT OTHER LOCATIONS THE CHANGE IN DRAFT WILL NOT BE THE SAME.

$$TPI = \frac{A_{WD}}{420}$$

TO FIND A WP FROM CURVES OF FORM: NOTE:

 $A_{wD} = (TPI) (420)$

CHANGE IN DRAFTS WHEN PASSING FROM <u>SALT</u> <u>WATER TO FRESH WATER</u>: (SEE <u>MODERN SHIP</u> <u>DESIGN</u>, pp 38-39 FOR DERIVATION)

FROM <u>SALT WATER TO FRESH WATER</u> SHIP SINKS DEEPER, DRAFTS INCREASE.

DRAFT INCREASE =
$$d = \frac{\triangle}{35 \text{ TPI}}$$

FRESH WATER TO SALT WATER SHIP DECREASE DRAFTS **RISES**, FROM

35 TPI I || Ъ DRAFT DECREASE

9-14

VERTICAL CENTER OF BUOYANCY (KB, VCB)

- HEIGHT OF CENTER OF BUOYANCY ABOVE BOTTOM OF KEEL (KB) OR ABOVE MOLDED BASELINE (VCB)
- FOUND FROM ORIGINAL INTEGRATION OF OFFSETS.

BUOYANCY (LCB) LONGITUDINAL CENTER OF

- THE CENTER OF BUOYANCY OR AMIDSHIPS, FORWARD OR AFT ОF DISTANCE
- Ч О Е FOUND FROM ORIGINAL INTEGRATION OFFSETS.

9-16

LONGITUDINAL CENTER OF FLOTATION (LCF)

- FORWARD FLOTATION WATERPLANE) THE CENTER OF AMIDSHIPS. THE Ч О ОF О (CENTROID AFT OF DISTANCE 0R
- **ЧО** CENTER FLOTATION IS CALLED THE CENTER (POOR CURVES OF FORM THE WATERPLANE THE 0F 692 GRAVITY 00 USAGE 0F NO
- TRANSVERSE AXIS THROUGH THE CENTER 4 ABOUT TRIMS SHIP NOTE THAT THE FLOTATION Ч О Е

TRANSVERSE METACENTER (KM)

- HEIGHT OF THE TRANSVERSE METACENTER **KEEL** BOTTOM OF THE THE ABOVE
- NO SUBSCRIPT, KM MEANS TRANSVERSE SH BOTTOM KM TO THE MOLDED PD-214. CAREFUL. THE FOR EXAMPLE, AT ВE Ч С REFERRED DEFINITION, BUT, **KEEL**, **BASELINE.** SOMETIMES THE ВΥ Ч 0F K,
 - KM_{T} . METACENTER,

9-18

LONGITUDINAL METACENTER:

- USUALLY GIVEN AS KM_L, THE HEIGHT OF METACENTER ABOVE THE KEEL. LONGITUDINAL BOTTOM OF THE THE
 - SOMETIMES GIVEN AS LONGITUDINAL THEN METACENTRIC RADIUS, BM, . KB SUBSCRIPT L, + вм_L 11 HAVE KM_L MUST
- METACENTER 0 F BM_L BM . DESIGNATE LONGITUDINAL AS IN TEXT, SOMETIMES,

9-19

MOMENT TO TRIM ONE INCH (MTI)

- THE MOMENT IN FOOT-TONS WHICH WILL CAUSE A CHANGE OF TRIM OF ONE INCH.
- TRIM IS THE DIFFERENCE IN DRAFTS, FORWARD AND AFT, FOR EXAMPLE:

$$T_{f} = 19' - 0"$$

$$T_{a} = 18' - 6"$$

$$T_{a} = t = 6" \text{ DOWN BY THE BOW}$$

 IF A BOW-DOWN MOMENT WERE APPLIED TO CHANGE TRIM ONE INCH THE TRIM WOULD INCREASE FROM 6" TO 7".

d'e

MOMENT TO TR-IM ONE INCH (MTI)

- $MTI = \frac{GM_{L}}{12 L}$
- IS USUALLY A LARGE NUMBER, BUT NOT BE KNOWN IN EARLY STAGE DESIGN WHEN MTI IS CALCULATED I MTI MAY BE APPROXIMATED BY GML MAY

 $MTI = \frac{BM_{L}}{12 L}$

THAT SAY DON'T EVER TRY TO BUT

 $BM_{t} = GM_{t} :::$

CORRECTION TO DISPLACEMENT

FOR ONE FOOT TRIM

SOMETIMES KNOWN AS

CHANGE OF DISPLACEMENT FOR ONE FOOT TRIM AFT

DISPLACEMENT (CON'T CORRECTION TO

- HTIW WHICH IS ALSO ENTERED THE AVERAGE OF ARE DRAFTS FORE AND AFT, THE DRAFT AMIDSHIPS FORM THE 0F MEAN DRAFT, CURVES THE
- DOES WHICH LCF THE ABOUT THE LCF THE DRAFT AT SHIP TRIMS THAT CHANGE MEANS TON A
 - DISPLACEMENT THE LCF IS NOT AMIDSHIPS THIS ERROR IN THE CURVES THE CAUSES AN **READ FROM** Ъ Н

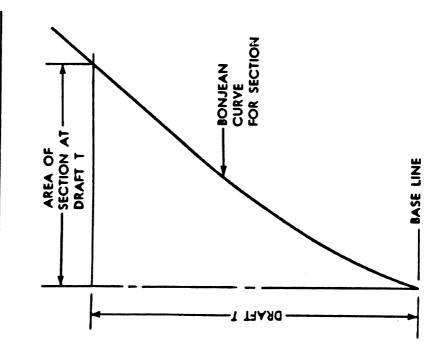
9-23

CORRECTION TO DISPLACEMENT (CON'T)

• CORRECTION =
$$CDITA = 12$$
 TPI X LCF

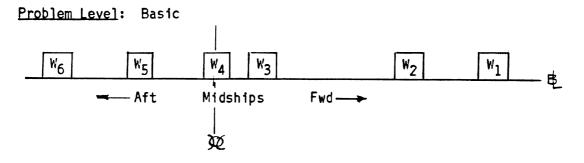
• SIGN OF CORRECTION

١


LCF	TRIM	CORR
AFT	AFT	+
FWD	FWD	+
AFT	FWD	-
FWD	AFT	-

BONJEAN'S CURVES

ONE A BONJEAN'S CURVES SHOW THE AREA OF SECTION AS A FUNCTION OF DRAFT -CURVE FOR EACH STATION.


9-26

BONJEAN'S CURVES

BASIC NAVAL ARCHITECTURE

Problem 6

Find the LCG of the system of weights shown above and tabulated below. Use a tabular format for your calculation.

	<u>Weight, lt</u>	Location, ft, F or A
Wl	100	250.00 F
^w 2	50	175.00 F
₩ ₃	75	50.00 F
^w 4	200	0.00
w 5	175	100.00 A
۳ ₆	200	125.00 A

BASIC NAVAL ARCHITECTURE

Problem 7

Problem Level: Basic

Find the LCG and the VCG of the system of weights tabulated below. Use a tabular format for your calculation.

Weight, lt	Long'l Location, ft	Vertical Location, ft a B
10.00	220.00 F	5.50
120.00	200.00 F	20.00
85.00	150.00 F	55.00
265.00	22.00 F	35.00
32.50	46.00 A	2.00
210.00	61.00 A	68.50
160.00	183.50 A	26.50
112.00	206.00 A	40.50

BASIC NAVAL ARCHITECTURE

Problem 10

Problem Level: Basic

A PD-214-type container ship displaces 29,800 tons in salt water at 35 ft^3 /ton at a mean draft of 30'-0". Find the mean draft in fresh water of 36 ft^3 /ton if there is no change in weights on board. Tons per Inch Immersion at the 30'-0" draft is 95.8 tons/in.

Problem 11

Problem Level: Basic

An amphibious supply ship is moored in fresh water $(35.9 \text{ ft}^3/\text{ton})$ at a mean draft of 24'-0". At this draft the displacement is found to be 15,500 long tons and the area of the waterplane is 27,700 ft². The ship gets underway and proceeds to a shipyard in salt water $(35.0 \text{ ft}^3/\text{ton})$. While underway she burns 200 tons of fuel oil. Find the mean draft upon arrival at the shipyard.

BASIC NAVAL ARCHITECTURE

Problem 12

Problem Level: Intermediate

A ship floats at draft, T_o , in river water of density 63 lb/ft³. When floating in seawater (35 ft³/ton), a weight of 175 tons must be added to have the ship float at T_o . What is the ship's displacement after the weight addition?

	PROBLEM 6	T	<u>DK</u> F	EB. 2, 1987	10=1
	FND LCG .	REF GILMER	P. 330		
	WEIGHT (LT)	LOCATION *	MOMENT (FT-TONS)		
	100	- 250 .00	-25,000		
JA. JARUQ JARUQ	50	- 175.00	- 8,750		
	75	- 50.00	025,8 -		
	200	0.00	0		
<u>.</u>	175	100.00	17,500		
ſ	200	125.00	25,000		
	800		5,000		
		$LCG = \frac{MOMENT}{WEIGHT} =$	<u>S,000 FT-TONS</u> BOO TONS	- <i>:</i> . [LCG:	= 6.25 FT (A)
					9-33

PCORLEM 7		TDK	FER 2, 195	7 1 OF 1		
FIND LCC	r and VCG	- REF GIUM	ER P.330			
VEIGHT	LOCATION	MOMENT (FT-TONS)	LOCATION (FT)	MOMENT (FT. TONS)		
<u>(L.T.)</u> 10.00	(FT) -220.00	-2,200,00	5.50	55.00		
120.00	- 200.00	-24,000.00	£0.00	2,400.00		
85.00	- 150.00	-12,750.00	55.00	425.00		
265.00	- 22.00	-5,830.00	35.00	9,275.00		
32.50	4600	1,495.00	2.00	65.00		
210.00	61.00	12,810.00	68.50	14,385.00		
160.00	183.50	29,360.00	26.50	4,240.00		
112.00	206.00	23,072.00	40,50	4,536.00		
994.50 21,957.00 35,381.00						
$LCG = \frac{LONG}{VECHT} = \frac{21,957}{994.50} \frac{FT \cdot Tors}{100} \frac{100}{100} 100$						
$VCG = \frac{VERT. MOM}{VEIGHT} = \frac{35,381 FT. TOUS}{994.50 TOUS}$. $VCG = 35.58 FT APV B.L.$						
	-, A 15 H B.L. 15 H .	+.				

.

9-34

	PROBLEM	10	TDK	FEB 2, 1987	1 of 1	
		PD-214 0 = 29,800 T	TONS IN S.V. OF 35 F " TONS/IN AT T=30'-0			
	FIND		OF 36 FT 3/TON REF			
	Note :	MASS DENSITY SPECIFIC GR DENSITY OF THE SPECIFIC AND THE ST CORRESPONDING (1.9903 AND THE	of S.V. = 1.9903 LBS (of F.V. = 1.9383 LBS AVITY OF A FLUID IS THE FLUID TO THAT O CRAVITY OF S.W., C $\delta = \frac{1.9903}{1.9383} = 1$ 1.9383 PECIFIC GRAVITY OF F.V., $\delta_1 = \frac{1.9383}{1.9383} = 1$ 1.9383 AGLY, THE DENSITY FACTOR 2.240 LBS/TON S LBS SEC ² /FT ^{N3})(32.17 PE DENSITY FACTOR OF F 2.240 LBS/TON 3 LBS SEC ² /FT ^{N3})(32.17 E SITY FACTORS, SPECIFIC TED AS $\delta = \frac{36 FT^3/TON}{36 FT^3/TON}	DEFINED AS THE F THE FRESH W), IS 1.027 δ_1 , IS δ_1 , IS δ_2 , IS δ_1 , IS δ_1 , IS δ_2 , IS δ_2 , IS δ_1 , IS δ_2 , IS δ_2 , IS δ_2 , IS δ_1 , IS δ_2 , IS δ_2 , IS δ_1 , IS δ_2 , IS δ_1 , IS δ_2 , IS δ_2 , IS δ_2 , IS δ_1 , IS δ_2 , IS δ_2 , IS δ_2 , IS δ_2 , IS δ_2 , IS δ_3 , IS δ_1 , IS δ_2 , IS δ_3 , IS δ_1 , IS δ_2 , IS δ_2 , IS δ_3 , IS δ_1 , IS δ_2 , IS δ_3 , IS δ_3 , IS δ_3 , IS δ_3 , IS δ_3 , IS δ_3 , IS	RATIO OF ATER. THUS, II DN ET3 TON. FLUID CAN	
			14			
	For A	V:w. = (.	$A_{\text{FAT}} = M \leq M = D \leq D$	$\frac{(36)\Delta}{36/35} = \frac{(36)\Delta}{5}$	<u>1</u>	
×	c		$\left[-\frac{1}{6}\right] = \frac{36(29,800)}{35(95.8)} \frac{1}{100}$	_		
		; - 5 4/ , Tm	$= T_m^{sw} + \frac{d}{12 \text{ inv}/\text{FT}} = 30.00 \text{ FT}$	$1 + \frac{8.89 \text{ int}}{12 \text{ int}/\text{FT}} = 12 \text{ int}/\text{FT}$	30.74 FT 9	- 35

-HEOBLEM 11 APPROACH; THE AQUAL WEIGHT OF THE SHIP INITIALY IN FRESH WATER WAS 15,500 Y. THE WEIGHT OF THE SHIP UPCH AREIVAL AT THE SHIPYARD IN SALT WATER WILL BE THE SAME, LESS THE ZOO IT OF FUEL OIL BURNED IN TRANSIT, BUT THE VOLUME OF DISPLACE-MENT WILL BE DIFFERENT IN EACH CASE, THE DIFFERENCE IN THE YOLUMES DIVIDED BY THE AREA OF THE WATERPLANE WILL YIELD THE CHANGE IN MEAN DEAFT. (NOT ENOUGH INFORMATION IS PROVIDED TO CALCULATE THE CHANGES IN DRAFT $\frac{1}{1}$ FORE AND AFT) SOLUTION: WEIGHT OF SHIP BADE = WEIGHT OF SHIT AFTER - 200 LT WEIGHT BEFORE = 15,500 G VOLUME BEFORE = 15,500 x 35,9 H3 = 556,450 FT LESS F.O BURNED = -200 WEIGHT AFTER = 15,300 LT VOLUME AFTER = 15,300 x 35.0 H3 = 535,500 H3 = - 20,950 FT CHANGE IN VOLUME, EV= CHANGE IN DRAFT, 8T = $\frac{\delta \nabla}{A_{WP}} = \frac{-20,950}{21,700} = 1^{2}$ 8T = .756 FT = 9.06" $T_{m} = 24' - 0''$ $\delta T = -9''$ MEAN DRAFT UPON ARRIVAL = 23'-3" Tm, = 23'-3"

PEVMJE

2 MAZ 87 1 OF 1

9-36

WAUDS ! STITUE OF THE FL

	1	~ · · · · · · · ·		
	PROBLEM 12	PRVMJR	20 FEB 87	e =
ATTACK & STATUS OF THE CALL OF	AFTER ARE AND AFTER FOR THE ROW V	CLUME-BEFORE: BEFORE = Δ_1 BEFORE = Δ_1 HEFER = Δ_1	VOLUMES BET	FCR5 R x 35.56 FT Ten
		$a_{1} = 35$ $a_{1} = 35$ $a_{2} = 35$ $a_{3} = 35$ $a_{5} = 35$	5.0 × 175 0 125	

.

9-37

.

BASIC NAVAL ARCHITECTURE

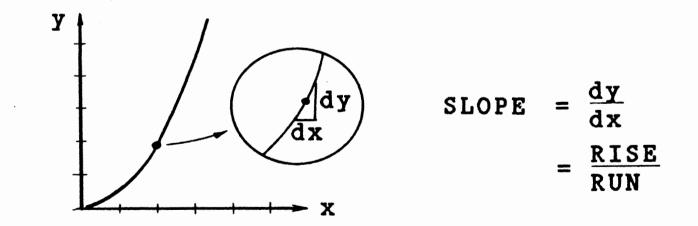
Unit Number:10Title:Dimension, form and flotation - 4Tape Running Time: $42^M 30^S$ Reading Assignment:MSD, pp 322-328Additional References:PNA, pp 11-13

Scope:

The graphical significance of the mathematical processes of differentiation and integration are explained. Numerical integration using the Trapezoidal Rule and Simpson's Rule is introduced. Examples of the calculation of displacement from the area under a Sectional Area Curve are given.

Key Points to Emphasize:

- 1. This is a long unit covering a great deal of material. Depending on the emphasis the instructor wishes to give to the subject he may wish to either extend the length of the class period, or devote an extra period to the subject, if necessary, at the expense of a future unit.
- Emphasize only the graphical interpretation of differentiation and integration-slopes and areas. Student should be able to recognize a derivative and an integral sign when he sees these syumbols in the text, but it is not necessary that he understand the processes in an analytical sense.
- 3. Go over the Trapezoidal Rule, selection of intervals and multipliers and formatting of a calculation in tabular form.
- 4. Same for Simpson's Rule.
- 5. Emphasize meaning of area under the Sectional Area Curve.
- 6. Review examples.


Suggested Problem Assignment: One or two of 13, 14, 15

DIFFERENTIATION

DIFFERENTIATION IS A PROCESS OF DIFFERENTIAL CALCULUS

CONSIDER A MATHEMATICAL FUNCTION

$$y = \frac{1}{2} x^2$$

10.2

DIFFERENTIATION (CON'T)

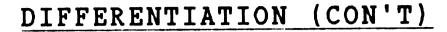
FINDING THE <u>DERIVATIVE</u>, $\frac{dy}{dx}$, OF A MATHEMATICAL FUNCTION CORRESPONDS TO FINDING THE <u>SLOPE</u> OF THE CURVE

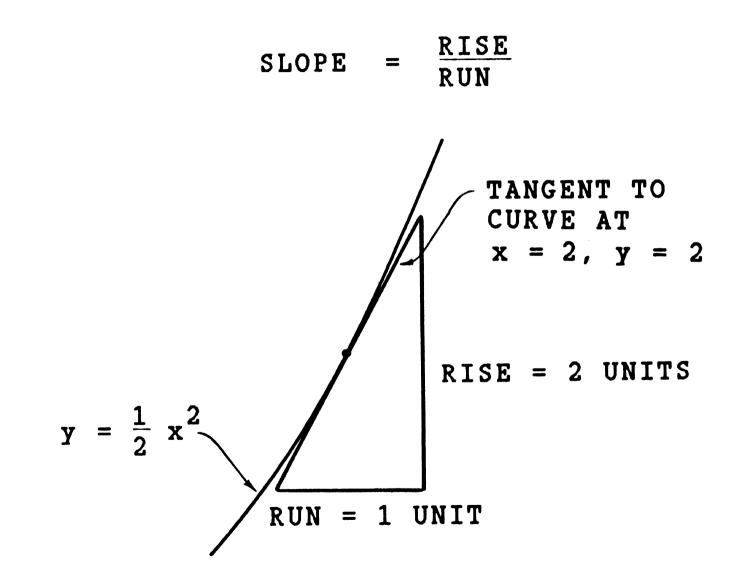
THERE IS A DEFINITE SET OF RULES FOR FINDING THE DERIVATIVES OF MATHEMATICAL FUNCTIONS.

FOR EXAMPLE:

DIFFERENTIATION (CON'T)

EXAMPLE:


FOR THE FUNCTION, $y = \frac{1}{2} x^2$ FOLLOWING THE RULES GIVES:


$$\frac{dy}{dx} = \frac{1}{2}(2)(x) = x$$

AT THE POINT X = 2,
$$\frac{dy}{dx}$$
 = 2

WHICH MEANS THAT AT THIS POINT THE SLOPE OF THE CURVE IS:

SLOPE = $\frac{dy}{dx} = \frac{RISE}{RUN} = \frac{2}{1}$

INTEGRATION

INTEGRATION IS A PROCESS OF INTEGRAL CALCULUS FINDING THE OL INTEGRATION CORRESPONDS CURVE AREA UNDER A

RULES ОF SET INTEGRAL OF THERE IS ALSO A DEFINITE MATHEMATICAL FUNCTIONS. FOR FINDING THE

FOR EXAMPLE THE INTEGRAL OF THE FUNCTION, Y=X

 $x dx = \frac{1}{2} x^2 + A CONSTANT$

ОF О PROCESS INVERSE IS THE DIFFERENTIATION INTEGRATION

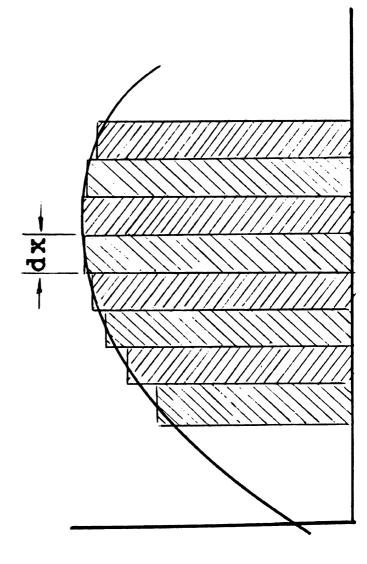
X=2 EVALUATE THE INTEGRAL AT BETWEEN TO FIND THE AREA UNDER Y=X POINTS WE AND x = 4THESE

16.7


•

$$\int_{x=2}^{x=4} x = \left[\frac{1}{2} x^2 \right]_{x=2}^{x=4} = \left[\frac{1}{2} (4)^2 \right]_{x=2}^{-1} \left[\frac{1}{2} (2)^2 \right]_{x=2}^{-1} = \left[\frac{1}{2} (4)^2 $

10-8


•

GRAPH OF THE FUNCTION y = x:

10-9

MAY THINK OF AN INTEGRAL AS BEING SUM OF A NUMBER OF SMALL AREAS, EACH dx WIDE THE WE

16.10

S T THE FORMULAS INTEGRAL CALCULUS DERIVING MANY OF NAVAL ARCHITECTURE, DIFFERENTIAL AND NI USED NI

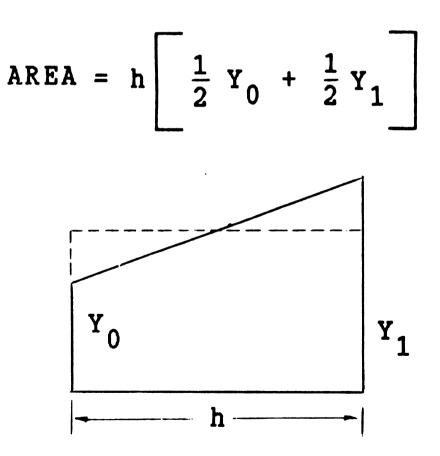
HOWEVER,

DONE ALWAYS PRACTICAL INTEGRATION IS USING NUMERICAL METHODS

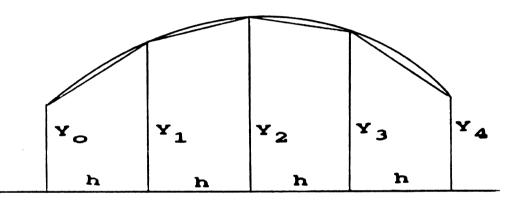
WE WILL DISCUSS TWO NUMERICAL INTEGRATION METHODS --

TRAPEZOIDAL RULE

SIMPSON'S RULE


10-11

TRAPEZOIDAL RULE


REF: APPENDIX B, MODERN SHIP DESIGN

THE AREA OF A TRAPEZOID IS:

10-12

CONSIDER SEVERAL TRAPEZOIDS

FOR CONSTANT STATION SPACING, h:

$$AREA = h \left[\left(\frac{1}{2} Y_{0} + \frac{1}{2} Y_{1} \right) + \left(\frac{1}{2} Y_{1} + \frac{1}{2} Y_{2} \right) + \left(\frac{1}{2} Y_{2} + \frac{1}{2} Y_{3} \right) + \left(\frac{1}{2} Y_{3} + \frac{1}{2} Y_{4} \right) \right]$$

$$AREA = h \left[\frac{1}{2} Y_{0} + Y_{1} + Y_{2} + Y_{3} + \frac{1}{2} Y_{4} \right]$$

10-12

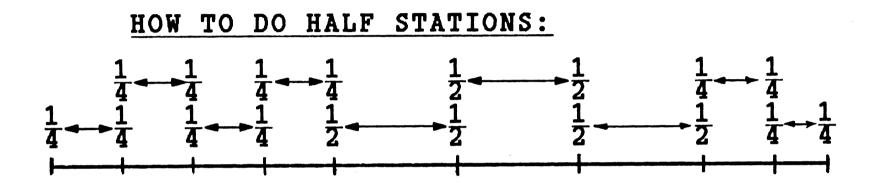
SPACING, h AND STATION CONSTANT FOR

ORDINATES FROM n=0 TO n=n, q

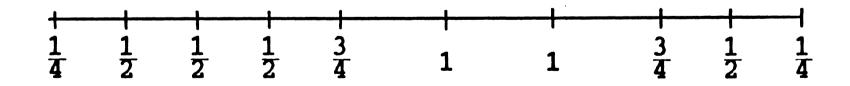
L

$$AREA = h \begin{bmatrix} \frac{1}{2} Y_{0} + Y_{1} + \cdots + Y_{n-1} + \frac{1}{2} Y_{n} \\ \\ MULTIPLIERS: \\ \frac{1}{2}, 1, 1, \dots + 1, 1, \frac{1}{2} \end{bmatrix}$$

-

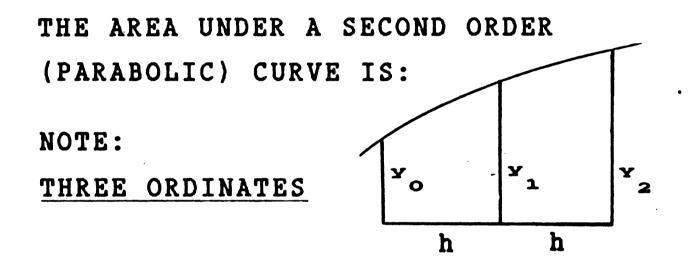

TRAPEZOIDAL RULE RECAP:

- В В Е SPACING MUST STATION CONSTANT THE
- 0F **BE ANY NUMBER** EVEN OR ODD STATIONS, THERE CAN
- ALL OTHER THE MULTIPLIERS FOR THE FOR **ORDINATES ARE 1/2** THE MULTIPLIERS


END

ARE ONE. ORDINATES

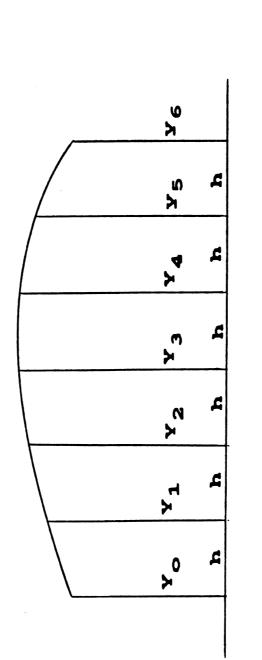
10.15


MULTIPLIERS NOW CHANGE TO:

1.1

SIMPSON'S (FIRST) RULE

REFERENCE: APPENDIX B OF MODERN SHIP DESIGN



$$AREA = \frac{h}{3} \begin{bmatrix} y_0 + 4 & y_1 + y_2 \end{bmatrix}$$

$$MULTIPLIERS: \frac{h}{3} \begin{bmatrix} 1, 4, 1 \end{bmatrix}$$

SIMPSON'S RULE

CONSIDER SEVERAL SIMPSON'S INTERVALS

+ (Y4+4Y5+Y6) (Y2+4Y3+Y4) ŧ (Y0+4Y1+Y2) ۲IM **۲**۳ || AREA

MULTIPLIERS:

Ч

3

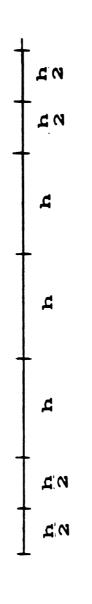
4

N ,

4

Ч

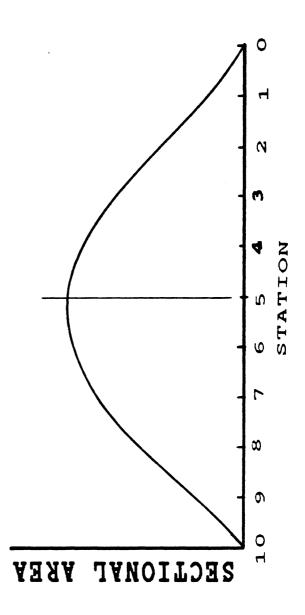
SIMPSON'S RULE


RECAP

- ЧO BE UNIFORM STATION SPACING THAT NUMBER AN THE LAST STATION MUST BE MEANS FIRST STATION AN ODD THIS THE ΒE БЦ STATION IS 0 MULTIPLY THE NUMBER THERE MUST MUST STATIONS. SPACING THERE EVEN
 - BY 1/3 THE SEQUENCE OF MULTIPLIERS IS,
- l, 4, 2, 4, 2, 4....2, 4, 1

10-19

SIMPSON'S RULE


THE MULTIPLIERS ARE NOW,

1/23/2, 2, 4 3 1/2, 2, 3/2, 4,

(PROOF LEFT TO STUDENT)

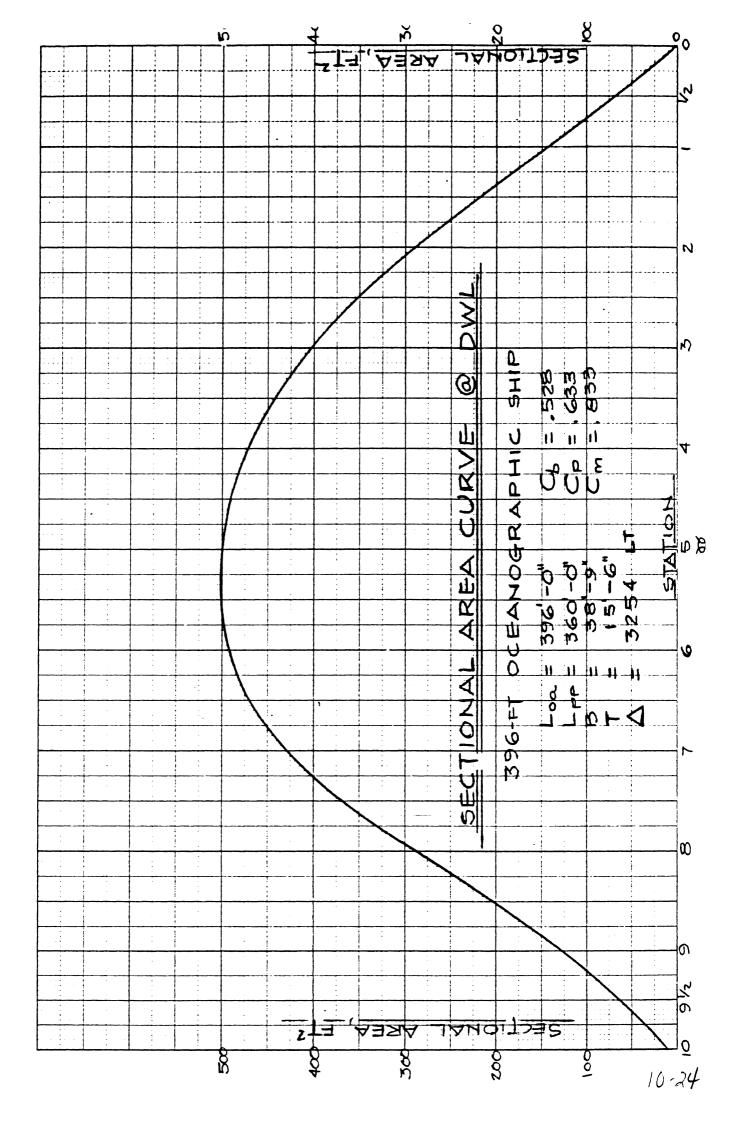
SECTIONAL AREA CURVE

DESIGN IS A PLOT OF SPECIFIED WATERLINE, USUALLY THE AREA OF EACH STATION UP TO A SECTIONAL AREA CURVE WATERLINE THE THE

SECTIONAL AREA CURVE

PROPERTIES:

- LONGITUDINAL CENTROID OF SECTIONAL DISPLACEMENT OF THE SHIP THE VOLUME OF THE AREA UNDER THE CURVE IS THE
 - SECTIONAL THE LCB. AREA UNDER THE AREA CURVE IS THE


10-22

SECTIONAL AREA CURVE (CON'T)

15'-6" WL

9					
STA	AREA FT ²	ΣS	f(v)	LVR	f(LM)
0	0	12/2	0	ณ	0
1/2	65	2	130	4 1/2	585
~	135	1/2	202.5	4	810
2	290	4	1160	ຄ	3480
ĥ	405	2	810	0	1620
4	475	4	0061	-	1900
ъ	500	6	0001	0	8395 F
٩	492	4	1968	-,	8961
7	430	2	860	0	1720
ଷ	283	4	1132	ŋ	3396
6	133	1 1/2	199.5	4	798
5/6	70	8	140	412	630
0	0	1/2	5	S	25
		= (A) + Z	- 9507		8537 A
5 1 3 6 .0 7 .1 3 6 .0 7 .1 3 6 .0				_	8395 F
	<u>= 36.0</u> (9507) = 114, 084 гг ²	-114,084	+ rT ²	≤{(rm)=	= 142 A
∆ = 3260 LT	60 LT				
LCB = 36.01	6.01 <u>9507</u>	4	= 0.54 FT A		

10:23

COMPARISON OF INTEGRATION METHODS

STATIONS AND 4 HALF STATIONS IS MOST 20 SIMPSON'S RULE WITH ACCURATE **ASSUME:**

				4	DIFF	LCB	DIFF
SIMPSON'S	(20	AND	4)	3254	8	A'20.0	I
SIMPSON'S	(10	AND	2)	3260	.18%	0.54'A	.11%
TRAPEZOIDAL	(20	AND	4)	3249	.15%	0.89'A	.02%
TRAPEZOIDAI	(10	AND	2)	3236	.55%	0.73'A	.06%

Problem 13

Problem Level: Basic

The half-breadths of a transom-stern ship are tabulated below. There are eleven stations spaced 25.50 ft apart. The waterline starts at Station 0 and terminates at Station 10.

- (a) The offsets are given in feet-inches-eighths. Convert the offsets to feet in decimal form.
- (b) Use the attached tabular form to computer A_w and LCF. The Simpson's Rule multipliers are shown on the form. Note that since the offsets are given in half-breadths, it is necessary to multiply the area and the moment by 2 as shown in the computation at the bottom of the form.

Station	
0	
1 2 3	
4	
5 6	
7 8	
9 10	

Half-breadth

0	-	0	-	0
6	•	2	-	4
12	-	2	-	0
16	-	4	-	3
18	-	3	-	0
18	-	9	-	0
19	-	0	-	5
18	-	7	-	5
17	-	5	-	6
15	-	2	-	6
4	-	6	-	3

		ongitudinal Ce		T T	
Station	Half- Breadth	Simpson's Mult.	Functions of Half- Breadths	Lever Arm (Stations)	Functions of Long'l Moment
FP 0		1		5	F
1		4		4	F
2		2		3	F
3		4		2	F
4		2		1	F
					Sum F
5	·	4		0	
6		2		1	A
7		4		2	A
8		2		3	A
9		4		4	A
AP 10		1		5	A
		F(A) =			Sum. A
					Sum]
				f(M) =	For
Station :	Spacing = s =	·	-		
Total Ar	og (hoth cid	es) = 2 x f(A)	\$ 		
		JJ7 - 2 A INA/	3		
foment o	f Waterplane	about = 2	$x f(M) \times \frac{s^2}{3}$	=	
	of Waterpla		f(M)		F or

10-27

BASIC NAVAL ARCHITECTURE

Problem 14

Problem Level: Basic

From Bonjean's Qurves for the FFG7-Class frigate, tabulate the Sectional Areas for all 20 stations below the 14'-0" WL.

On 8-1/2" x 11" graph paper plot the Sectional Area Curve (Curve of Areas). Use a horizontal scale of 1 station = 1/2 inch and a vertical scale of 1" = 100 ft^2 .

Prepare a tabular calculation sheet and using Simpson's Rule calculate the Displacement (s.w.) and LCB (without appendages) at this waterline.

Compare the values you have obtained with the values of displacement and LCB obtained from the Curves of Form. How do you account for the difference?

BASIC NAVAL ARCHITECTURE

Problem 15

Problem Level: Basic

A clean ballast tank on a PD-214-Type container ship encloses the waterplane areas tabulated below:

	Height above 段 	Tank W.P. Area
Bottom of Tank	1.00	0.0
	2.00	52.5
	3.00	92.1
	4.00	101.7
	5.00	101.7
	6.00	101.7
Top of Tank	7.00	101.7

Use the Trapezoidal Rule to calculate the molded capacity of the tank:

- (a) $in ft^3$
- (b) in long tons
- (c) in gallons

16 FEB 87 10=2 PRVMR PROBLEM 13 NOTES THE TABLE DECIMALS OF A FORT IN THE /. APPENDIX IS A CONVENIENT WAY TO CONVERT FEET-INCHES-EIGHTHS HALF-BREADTHS (a) <u>ATE</u> FT-IN-FIGTHS DELIMAL 0 0-0-0 0.000 ۱ 6 - 2 - 46,203 12-2-0 2 12.167 16 - 4 - 3 3 16.345 18-3-0 4 18,250 5 18-9-0 18.750 19-0-5 6 19,052 18,552 18-7-5 7 8 17-5-6 17.479 15-2-6 15,229 9 4-6-3 4,531 10 (b)FREM PP Z

 $A_{w} = 7,459.99 \text{ FT}^{2}$ LCF = 12.67 MAFT 4

10-30

PROBLEM 13 PRUMUR 16 FEB 87 2012

.

-

	٩		rea of Waterplane Centroid of Wate	rplane (LCF	2
Station	Half- Breadth	Simpson's Mult.	Functions of Half- Breadths	Lever Arm (Stations)	Functions of Long'l Moment
FP 0	0.000	1	0.000	5	0,00 F
1	6,203	4	24. E12	4	99.25 F
2	12.167	2	24.334	3	73.00 F
3	16.365	4	65,460	2	130.92 F
4	18.250	2	36.500	1	36.50 F
					339. 67 Sum F
5	18.750	4	75.000	0	0.00
6	19.052	2	36,104	1	36,10 A
7	18, 552	4	74,208	2	148.42 A
8	17.479	2	34.958	3	104.87 A
. 9	15. 229	4	60.916	4	243.66 A
AP 10	4, 531	1	4.531	5	22,66 A
f(A) = 438, 823			438,823	j	557.71 _{Sum A}
				<i>.</i>	339, 67 _{Sum} F
Station	Spacing = s =	25.5	<u>د</u>	f(M) =	218.04 F or 1
	ea (both side:		S		7,459.99 FT
Moment o	f Katerplane a	about =	$= 2 \times f(M) \times \frac{s^2}{3}$		94,520.34 FT ³
Centroid	of Waterplane	e about	$= \frac{f(\texttt{M})}{f(\texttt{A})} \times \texttt{S} =$		12,67 1 or (

10.31

PECIBLEM 14

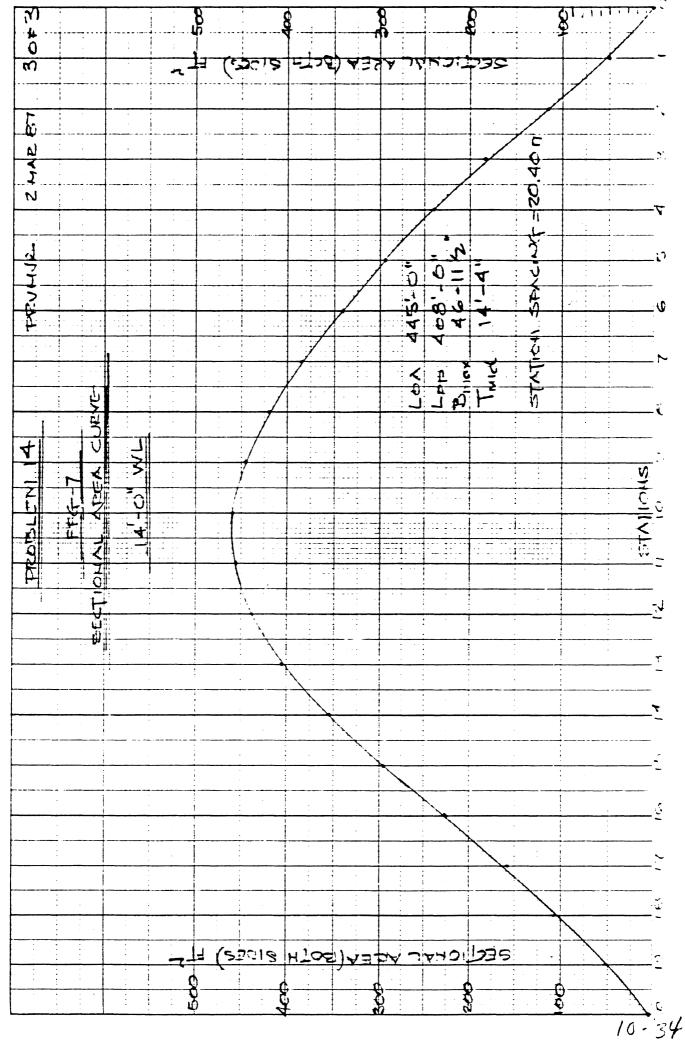
PRVMJR

2 MAIL 87

1 or 3

	STA	. AREA (BOTH SIDE) FT2	БM	FUNCTIONS OF VOLUME f(V)	LVR (STA)	FUNCTIONS OF LONGLY MMT f(LM)
	0	0	1	0	10	0
1	1	50	4	200	9	1800
	2	115	2	230	E	1840
	3	182	4	728	7	5096
	4	240	2	480	6	2880
	5	293	4	1172	5	5860
	G	340	2	680	¢	2720
	7	385	4	1540	3	4620
	E	420	2	840	2	1680
	9	445	4	1780	1	1780
	10	460	2	920	0	ŹF=28,276
	//	455	4	1820	1	1820
	12	436	2	876	2	1752
	13	405	4	1620	3	4860
	14	353	2	706	4	2824
	15	295	4	1180	1	5900
	16	225	2	450	6	2700
	17	ISE	4	632	7	4424
	18:	107	2	214	B	1712
	19	52	4	208	9	1872
	zo	<u>ک</u>	1	5	10	50

- CONTINUED-


Zf(V)=16,261 ZA=27,914

10.32

PROBLEM 14

(CONTINUED) $Z_{A} = 27,914$ EF = 28, 276 Zf(V)= 16,281 Zf(LM) = 362 FWD. STATION SPACING $s = \frac{400}{20} = 20.40$ FT. YOLUME-(BOTH SIDES) = f(V) x = 16,281 x = 20.40 $\nabla = 110,711$ FT³ DISPLACEMENT (S.W.) = $\frac{\nabla}{35}$ = $\frac{110,711}{35}$ FT³/TON) ∆= 3163 UT. LONG'L CTR, OF BUDY. = LCB = $\frac{f(LM)}{f(V)} \times S$ $=\frac{362 \text{ F}}{16.281} \times 20.40$ LCB = 0.46 FT FWD & THE AREAS TAKEN FROM BONJEN'S NCTE : CURVES INCLUDE THE SHELL PLATING, BUT DO NOT INCLUDE RUDDERS, PROP-FLIERS, SHAFTS, STRUTS, ROLLING FINS AND OTHER APPENDAGES FEOM THE GUEVES OF FORM A = 3263 LT LCB= 0.0 FTFH X

10 33

46 1 × J

2. TOT

K

BASIC NAVAL ARCHITECTURE

Unit Number:	11
<u>Title</u> :	The ship at rest - static stability - 1
Tape Running Time:	32 ^M 40 ^S
Reading Assignment:	MSD, pp 51-58
Additional References:	PNA, pp 54-59, 70-73 (repeated)

Scope:

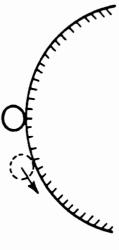
The concepts of stable, neutral, and unstable equilibrium are introduced and related to the positions of C_T and M. Small inclinations due to transverse shift of weight on board are discussed. Initial stability is defined. Stability at large angle, the righting arm G2 and the Static Stability Curve is introduced. Formula for BM is introduced. Moment of Inertia is discussed.

Key Points to Emphasize:

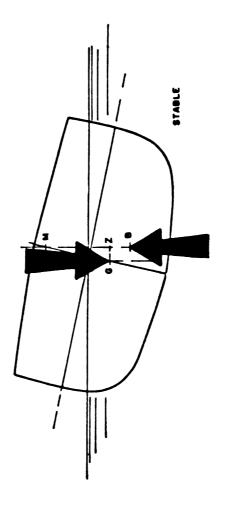
- 1. Emphasize that when the vertical gravitational and buoyant forces are not in a vertical line the ship is not in equilibrium and will tend to right or upset. G2 is a measure of the separation.
- 2. Distinguish between the cases of the ship inclined due to external forces and the ship inclined due to the shift of transverse weight on board.
- 3. Emphasize the effect of a shift of weight on board on ship's center of gravity.
- 4. Emphasize formula: $G_1 G_2 = \frac{wl}{\Delta} = GM$ tan θ
- 5. Explain moment of inertia and formulas for rectangular area.
- 6. Explain BM = I/∇ and go over example.

Suggested Problem Assignment: 8 or 9, one of 16, 17 or 18, one of 23, 24, 25

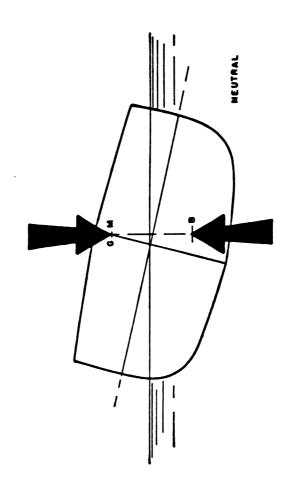
STATIC STABILITY


STATES OF EQUILIBRIUM

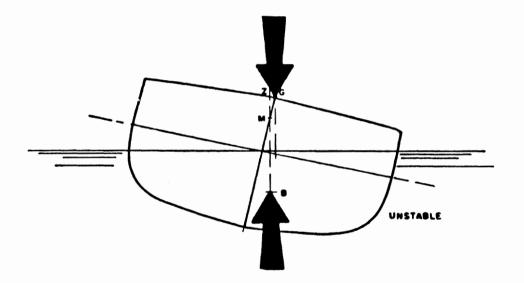
STABLE


NEUTRAL

111111


UNSTABLE

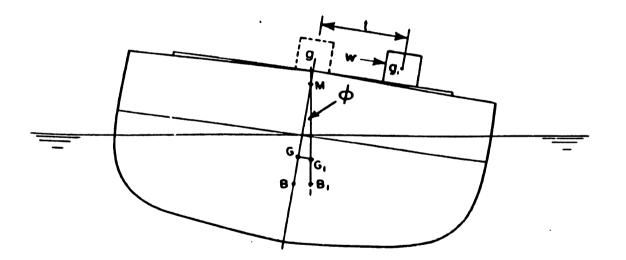
STABLE EQUILIBRIUM


05 **JIHS** RIGHTING MOMENT ACTS TO RESTORE SIUPRIGHT POSITION. GM IS POSITIVE

NEUTRAL EQUILIBRIUM

SIHT FORCES ARE IN A SHIP REMAINS IN WEIGHT AND BUOYANCY VERTICAL LINE. THE POSITION. GM = 0

UNSTABLE EQUILIBRIUM



UPSETTING MOMENT ACTS TO INCREASE THE ANGLE OF HEEL. GM IS NEGATIVE

INCLINED EQUILIBRIUM

1- 10

SHIFT OF WEIGHT, w, THRU DISTANCE, t, CAUSES SHIFT IN CG FROM G TO G₁

GM IS STILL MEASURED ON THE CENTERLINE

METACENTRIC HEIGHT, GM

MEASURE A SI ЯIJ METACENTRIC HEIGHT, INITIAL STABILITY THE ОF

Σ - 12° CENTERLINE SAY 7° FALLS ON THE ANGLES LARGER THAN, LONGER AT NO

ANY LONGER HAS NO GM AT THESE ANGLES SIGNIFICANCE.

11.7

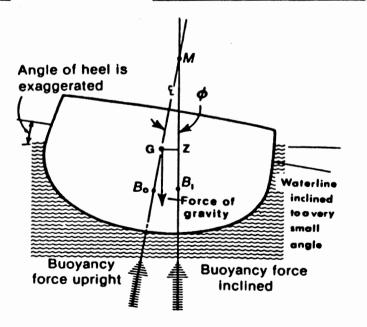
LONGITUDINAL STABILITY

SIMILAR IN PRINCIPLE TO TRANSVERSE BUT-STABILITY,

MUCH LARGER GM_L, BM_L AND KM_L ARE NUMBERS

NOTATION:

LCNGITUDINAL METACENTER IS DESIGNATED, EITHER


ML OR M'

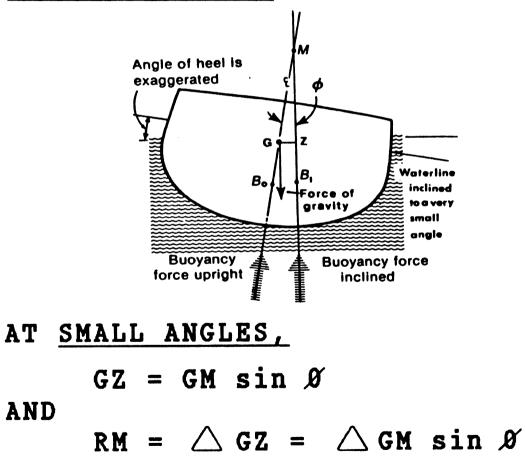
11- 6

RIGHTING ARM, GZ

.1)

THE HORIZONTAL SEPARATION BETWEEN THE WEIGHT FORCE AND THE BUOYANT FORCE IS THE RIGHTING ARM, GZ

RIGHTING MOMENT

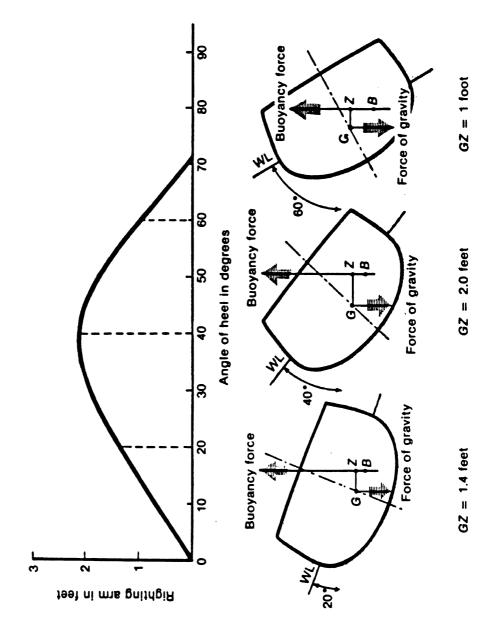

/1-10

THE RIGHTING MOMENT IS

 $\mathbf{RM} = \triangle \mathbf{GZ}$

GZ IS DEFINED OVER THE FULL RANGE OF ANGLES OF INCLINATION, \emptyset

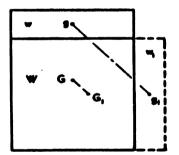
RIGHTING MOMENT



|/-||

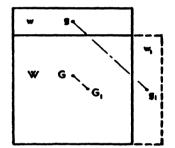
STATIC STABILITY CURVE

CURVE THE PLOT OF GZ VERSUS ANGLE OF HEEL IS CALLED THE STATIC STABILITY CURV



11.13

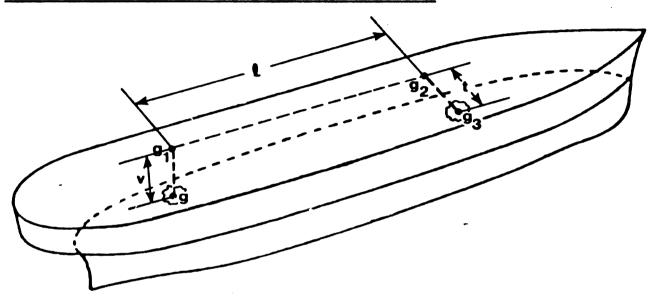
SHIFT OF WEIGHT ON BOARD


A SHIFT OF A SMALL WEIGHT, w, FROM g TO g_1 , CAUSES A SHIFT IN THE CENTER OF GRAVITY OF THE SYSTEM FROM G TO G_1

IMPORTANT:

GG₁ IS ALWAYS PARALLEL TO gg₁

SHIFT OF WEIGHT ON BOARD



FROM PRINCIPLE OF MOMENTS-

11.15

$$\triangle GG_1 = w gg_1$$
$$GG_1 = \frac{w gg_1}{\triangle}$$

SHIFT OF WEIGHT ON BOARD

VERTICAL SHIFT: $GG_1 = \frac{WV}{\bigtriangleup}$ LONGITUDINAL SHIFT: $G_1G_2 = \frac{W1}{\bigtriangleup}$ TRANSVERSE SHIFT: $G_2G_3 = \frac{Wt}{\bigtriangleup}$

11-16

SHIFT OF WEIGHT ON BOARD

FOR TRANSVERSE WEIGHT SHIFTS AT SMALL ANGLES-

$$G_2G_3 = \frac{wt}{\triangle} = GM \tan \emptyset$$

FOR LONGITUDINAL WEIGHT SHIFTS (ANGLES WILL USUALLY BE SMALL)-

$$G_1G_2 = \frac{wl}{\bigtriangleup} = GM_L \tan \theta$$

WHERE $\theta = TRIM$ ANGLE

11-17

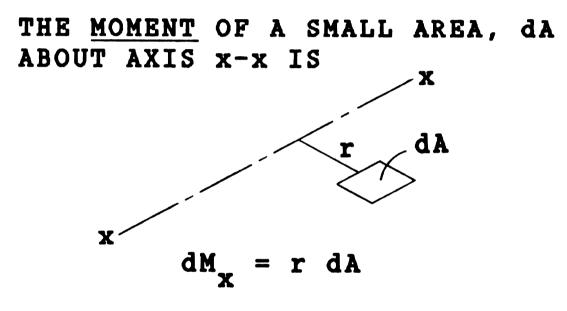
METACENTRIC RADIUS, BM

NO STUDENT SHOULD STUDY DERIVATION PP 57, MODERN SHIP DESIGN

THE IMPORTANT RESULTS ARE

(TRANSVERSE $\mathbf{B}\mathbf{M} = \frac{\mathbf{I}}{\mathbf{I}}$ AND

(LONGITUDINAL)


METACENTRIC RADIUS, BM

11.19

I = TRANSVERSE <u>MOMENT OF INERTIA</u> OF WATERPLANE

MORE ABOUT MOMENT OF INERTIA COMING!

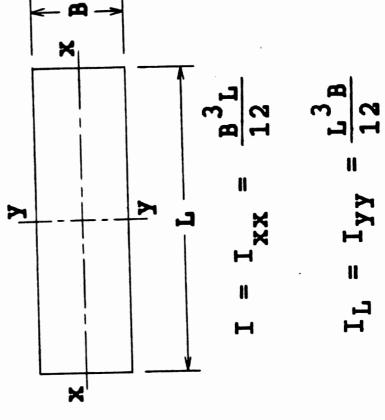
MOMENT OF INERTIA

THE <u>MOMENT OF INERTIA</u> OF dA About x-x is

$$dI_x = r^2 dA$$

MOMENT OF INERTIA

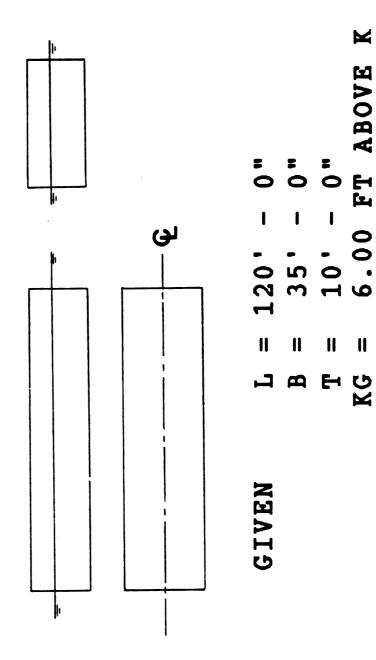
1.


WHEN THESE SMALL AREAS ARE <u>integrated</u> over the whole waterplane the result is-

$$I = 2 \int_{0}^{L} \frac{r^{3}}{3} dx$$

THE 2 IS TO ACCOUNT FOR BOTH SIDES OF THE SHIP THIS INTEGRATION IS DONE NUMERICALLY SEE TABLE 3-1 IN MODERN SHIP DESIGN

MOMENT OF INERTIA


MOMENT OF INERTIA OF A RECTANGULAR WATERPLANE

11-22

EXAMPLE

GM OF RECTANGULAR BARGE IN WATER FIND SALT

11.23

EXAMPLE

= 428, 750 Fl⁴ $\nabla = 120.0 \text{ FT} \times 35.0 \text{ FT} \times 10.0 \text{ FT} = 42,000 \text{ FT}^3$ ∆ = 120.0 FT × -35.0 FT × 10.0 FT = 1, 2 00 LT -35 FT3/TOH = 10.21 FT $BM = \frac{T}{Q} = \frac{42B, 750 \text{ ft}^4}{42,000 \text{ ft}^3}$ <u>Т = (35.0 гг)³(120.0 гг)</u> 42,000 FT³ FIND \triangle AND ∇ : <u>N</u> FIND BM: FIND I: . . 3

11 24

EXAMPLE

4. FIND KB. FOR A RECTANGULAR BARGE KB WILL BE JUST 1/2 THE DRAFT

$$KB = \frac{10.0 \text{ FT}}{2} = 5.00 \text{ FT}$$

5. FIND GM

11-25

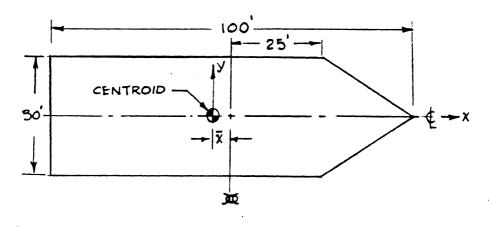
$$BM = 10.21 \text{ FT}$$

$$\frac{KB}{KM} = 5.00 \text{ FT} \text{ A. B}$$

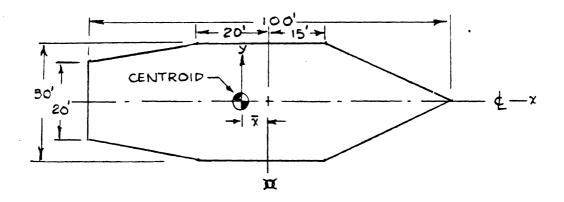
$$KM = 15.21 \text{ FT} \text{ A. B}$$

$$- \frac{KG}{GM} = 6.00 \text{ FT} \text{ A. B}$$

$$GM = 9.21 \text{ FT}$$


BASIC NAVAL ARCHITECTURE

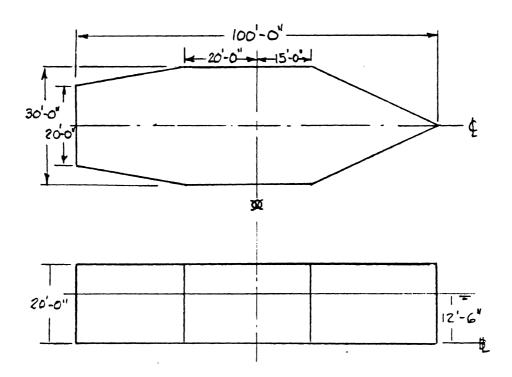
Problem 8


Problem Level: Basic

Formulas for area, coordinates of centroidal axes, and moment of inertia of plane geometrical forms are given in the Appendix to the Problem Book. Using these formulas compute the area, centroidal axis, and moment of inertia for the figures shown below:

(a)

(b)



Problem 9

Problem Level: Basic

A barge with vertical sides has the form shown below. Determine the following characteristics of the barge:

- a) Displacement in salt water
- Displacement in fresh water (@ 36 ft³/ton) b)
- Waterplane area c)
- d)
- Centroid of the waterplane (Longitudinal Center of Flotation) Vertical and Longitudinal location of the centroid of the underwater e) volume (KB, LCB)

Problem 16

Problem Level: Basic

Refer to the Curves of Form for the BEAR Class cutters. Identify the following curves and use the appropriate scaling factors to determine the values for the hydrostatic parameters at a mean draft of 13'-0".

Δ		TPI	КМ _t
∆fw		MTI	Cb
KB		CD1"TA	с _р
LCB	Wetted	Surface, S	с _м
LCF		км _L	C _{WP}

Problem 17

Problem Level: Basic

Using the information obtained from the Curves of Form for the BEAR Class cutter at the 13'-0" draft, find:

Moment of Inertia of waterplane about the $(\underline{f}$ and about a transverse axis through the CF.

Area of the 13'-0" waterplane

Area of the Midship Section

Problem 18

Problem Level: Basic

A BEAR Class cutter is floating in salt water at the following drafts and KG:

т _f	=	12'-0"
т _а	=	13'-6"
KG	=	19.50' above B _L

Find the following:

·

11-30

Problem 23

Problem Level: Basic

A rectangular barge has the following dimensions, drafts, and KG:

L _{pp}	=	175'-0"			
В	=	35'-0"			
т _f	=	10'-0"			
Ta	=	10'-0"			
KG	=	8.00 ft above 🕏			

Find:

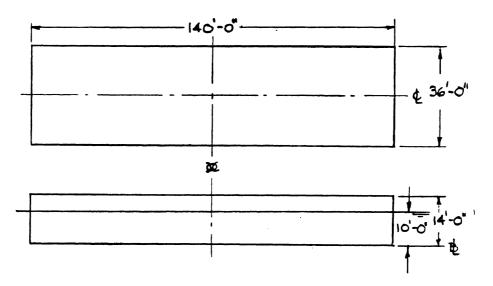
- (a) Volume of Displacement(b) Displacement in salt water
- (c) Transverse Noment of Inertia of the waterplane (i.e. Moment of Inertia about the ()

11-31

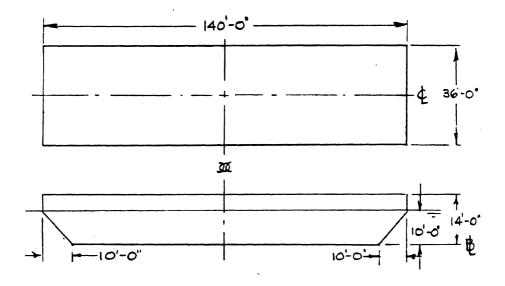
- (d) Transverse Metacentric Radius, BM_t
- (e) KБ
- ĸ۲ (f)
- (g) GM+

Problem 24

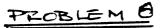
-


Problem Level: Basic

Refer to Problem 13. For the waterplane offsets of the transom-stern ship given in the problem compute the transverse Moment of Inertia of the waterplane using the Trapezoidal Rule as in Table 3-1, pp 57, <u>Gillmer</u>. Use a tabular form for the calculation.


Problem 25

Problem Level: Basic


a) A rectangular barge has the dimensions shown below. Find \triangle , $\Delta_{\rm fw}$, KB, $\rm BM_t,\ \rm KM_t,\ \rm TPI.$

b) The barge shown below has similar dimensions to that shown above, except that bow and stern rake have been added. Find the new $\sum_{i} KB$, KM_T .

c) If KG = 8.00' above the B_{T} find G_{T}^{M} of the barge in (b) above.

PRVMJr.

(a) DECOMPOSE THE FIGURE INTO A RECTANGLE

FEB 18,1987 1 CF 4

AND A TRIANGLE! RECTANGLE: AREA, A, = BL = 30.0 x75.0 - 25.0'-A, = 2250.0 FT2 CENTROID, X = L. - 25.0' A, 30.0 x = 12.5' AFT 3 MOMENTS OF INFERIA; $l_{0,xx_{1}} = \frac{B^{3}L_{1}}{12} = \frac{30.0^{3} \times 75.0}{17}$ X 6xx = 168,750 FT4 $k_{321} = \frac{B l_1^3}{12} = \frac{30.0 \times 75.0^3}{12}$ CENTROID OF D= = = x25.0= 8.3 Logy = 1,054,687.5 FT+ -250-8.3 JEIANGLE ! AREA, Az= 2BLz $= \frac{1}{2} D L_2$ $= \frac{1}{2} \cdot 30.0 \times 25.0$ \overline{x}_2 $= \frac{1}{2} \cdot 30.0 \times 25.0$ \overline{x}_2 30.0 Az = 375 10 FT $C = \sqrt{120}, \overline{\chi}_2 = 25, C + 8.3'$ - 250-N2 = 33.3 FWD X MON'TS OF INERTIA NOTE ON AXES $l_{c_{xx}} = 2^{\left(\frac{8}{2}\right)^{2}} = \frac{2 \cdot 15 c^{3} \times 25.0}{12}$ FOR LOSE 2 TEIANGLES use formula for 2-3/2 Lexx = 14,062.5 FT 4 THEN $L_{c} = 2 \cdot \frac{[B/2]^3 L_2}{12}$ $l_{c_{yy_2}} = \frac{Bl_1}{36} = \frac{30.0 \times 25.0^3}{3L}$ FOR Ly, THE AXIS IS THRU THE CENTROD, THEN Loyy = 13,020.8 FT4 $B = b_{cyy} = \frac{B h_z^2}{36}$ RETER TO "PROPERTIES OF GEOMETRIC SECTION" NOTE: IN APPENDIX FOR FORMULAS FOR AREAS, CENTROIDS, AND HOMENT OF INFETTA. 11- 134

200 SHEFTS

PREBLEM & (con'T) FEB 16, 1967 2 014 PRVMJ2. (a) (con'T) FIND CENTROID OF COMBINED AREAS, USE TABUNG FORMAT ITEM AREA LVR MON'I 2250 +12.5 +28125.0 A, A_{z} 375 - 33.3 - 12 4E7.5 A1+A2 2625 + 5.95 + 15 637.5 CENTROID = +15637.5 = (+ 5.95 SIGNS: + = AFT X - = FWD XTHE MOMENTS OF INFETIA OF EACH AREA, LO AND LA ABOUT ITS OWN CENTROID HAS BEEN COMPUTED ON PD 1. THESE MUST NOW BE TEANSFERED TO THE CENTEDID OF THE CONBINED FIGURE USING THE TRANSFER OF AXES FORMULA! $I = l_c + Ad^2$ WHERE & IS THE SHIFT DISTANCE. WITH THE COMPONENT AREA MOMENTS OF INFETIA ON THE SAME AXIS THE MOMENTS OF INERTIA CAN SIMPLY BE SIMMED FOR THE TRANSVERSE MOMENT OF INERTIA (ABOUT THE X-ANS) SINCE THE CENTROIDS CABOTH AREAS ARE ALREADY ON THE SALVE AXIS, THE X-AXIS THEN Ixx = 168,750 FT+ 14,062.5 FT+ iez, 812.5 FT+ FOR IN, MOMENTS OF INFRIA FOR BOTH THE RECTANGLE AND THE TRANGLE MUST BE TRANSFERRED TO THE CENTEOID OF THE COMBINED AREA 5.95' AFT &

|1-35

PRODLEM & KON'D

(a)
$$(con^{3}T)$$

THEN -
 $d_{1} = 12.5c^{3} - 5.95^{3} = 6.55^{1}$
 $A_{1}d_{1}^{2} = 225c \times 6.55^{2} = 96,530.6 \text{ FT}^{4}$
 $i_{0yy_{1}} = (FLCM PP 1) = \frac{1}{1},054,687.5 \text{ FT}^{4}$
 $I_{yy_{1}} = i_{0yy_{1}} + A_{1}d_{1}^{2} = 1,151,216.1 \text{ FT}^{4}$
 $d_{2} = 33.3^{3} + 5.95^{3} = 39.25^{1}$
 $A_{2}d_{2}^{2} = 375 \times 39.25^{2} = 577,710.9 \text{ FT}^{4}$
 $i_{0yy_{2}} = (FECOM PP 1) = \frac{13,020.8}{59c,731.7} \text{ FT}^{4}$
 $I_{yy_{2}} = i_{0yy_{2}} + A_{2}d_{2}^{2} = 59c,731.7 \text{ FT}^{4}$
FINALLY
 $I_{yy} = I_{yy_{1}} + I_{yy_{2}} = 1,151,216.1 + 590,731.7$
 $I_{yy} = I_{1},741,949.8 \text{ FT}^{4}$
(a) RECAP:
 $A = 2625 \text{ FT}^{2}$
 $CENTROUD, \overline{X} = 5.95 \text{ FT} AFT X$
 $I_{xx} = 162,812.5 \text{ FT}^{4}$

11-36

	PECBLEME (LC.	<u></u>	PRVI	NZ.	Fe	F& 16, 1		4 cr 4	
· _	LILLE LATINE LATINE LL THE THE THE THE TWO DECIMAL	Ad2-	+ 154,758	1262/751	- 86,343	- 86,343	644, 62		
	AZ HE THE CON THE A NEW ASSIGNED A ON A	HUN'T OF G	11.43	32,74	33.93	33.93		5 +74	
		Longrie Frigy	4 686, 563	+ 35,729	- 3,150	- 3,750	2 714,792	1,359,615	
		INERTIA Ad ² F11	ţ	ł	- 13,327	-13,327	Z (- 26, 673 - Z	T _{y, =}	
		MCM'T OF d FT	C	O	233	13.33	¥	+1-1	
	H WILL DE VUL	LCXX FT	4146,250	+ 13,687	- 104	- 104	2165,729	70'621 = xx	
		thom T3		-14,002	- 31 aco	13, 500	(2325) + 6.07 & 14,123) & 165,729		
	THE SCLUTIEN TO THE TELENUTURE LEANS SIGN IN THE "ARGN" "HUNHENT" COLUMN SIGNIA SVLITSUL (M) I SIGNIA SVLITSUL (M) I SIGNAR SVLITSUL	LVE	+ 11.50	-26.67	+ 40.00	+ 40.00	7 20.9 +	2 X = 6. c7	
	THE SCLUTIEN TO TELEDUCTURE AREN SIGN IN THE "AREN "HUNDENT" COLUMN "FLORES, ARENS TO TOALES, ARENS TO TELEDUCTO TO THE	AREN	0.0261	525.0	-12.0	- 75.0	Z4 (2325)	$\Lambda = 23265 \text{ tr}_{1}^{2}$	
	(b) THE ATTE SIGN SIGN TO ATTE	ITEM		A2		ty A			39

PRVMJR.

NOTE: THIS PEOBLEM IS A CONTINUATION OF
TROBLEM B, PART (b). THE WATERFAME
CHARACTERISTICS ARE THE SAME AND
THAT CALCULATION PEED NOT BE REPEATED
(a) SINCE THE BARGE IS WALL SIDED THE
VOLUME OF DISPLACEMENT WILL SIMPLY BE
THE AREA OF THE WATERPANE MULTIPLIED
BY THE DRAT

$$\nabla = A_{WP} \cdot T$$

FROM 8(b) $A_{WP} = 2325 \text{ FT}^2$
THEN, $\nabla = 2325 \cdot 12.50 \text{ FT}^3$
 $\Delta = 29063 \text{ FT}^3$
 $\Delta = 29063 \text{ FT}^3$
 $\Delta = \frac{29063 \text{ FT}^3}{35 \text{ FT}^3/\text{TON}}$
(a) $\Delta = 830 \text{ LT}$
(b) $\Delta_{fw} = 807 \text{ LT}$
(c) FROM 8(b) $\overline{A_{WP}} = 2325 \text{ FT}^3$
(d) FROM 8(b) $\overline{A_{WP}} = 2325 \text{ FT}^3$
(e) SINCE THE BARGE IS WALL SIDED THE CENTROP

e) SINCE THE BARGE IS WALL SIDED THE CENTROID OF THE UNDERWATER VOLUME WILL BE AT THE SAME LONGITUDINAL LOCATION AS THE LCF. THE VERTICAL LOCATION WILL BE AT HALF THE DRAFT NOTE THAT THIS IS ONLY TEJE FOR WALL SIDED PROBLEMS.

|1- 38

PROBLEM 16 FRVMJR.

1 of 1

NOTE: CURVES OF FORM AZE NORMALLY PLOTTED FROM THE DUTTOM OF THE KEEL RATHER THAN FEOM THE BASE LINE, & FREQUENT SOURCE OF ERRORS IN CALCULATIONS USING MOLDED DIMEN-SIONS. IN THE CASE OF THE BEAR' CLASS CUTTERS THE BAGE LINE & 34" ABOVE THE BOTTOM OF THE KEEL. READING SCALE ITEM VALUE IN INCHES FACTOR 1633 LT (SW) 16.33 Δ 100 100×35.0 $\Delta_{\mathsf{f}\omega}$ 1592 LT (FW) 16.33 KB 8.13 8.13 ABOVE K 1.0 LCB 1.73 FT AFT D 1.73 1.0 LCF 13,20 13. 80 FT AFT X 1.0 TPI 17,60 1.0 17.60 LT PER IN. IMMER, MTI 257.3 FT-TOWS PER IN, TRINH 25.73 10.0 CD1'TA 0.93 1.0 +0.93 LT PER INCH TRIMAT S 20.92 10460 FT2 500 KM, SCZ FT ABOVE K. 5.02 100 20,08 FT ABOVE K KM+ 20.08 1.0 $<_{\mathsf{P}}$.45z Cp , 595 ,760 Cm Cup ,765

		and the second	· · · · · · · · ·	
	PEOBLEM 17	Prvmr.	14 FEB 87 10=1	
		$\frac{I_{T}}{\nabla}$; 30		
	 Z BM_T = Z TPI = 	KMT - KB; B	M_= KM_ KB	
		420 TPI		
	4. $C_{\rm m} = \frac{\Delta}{B}$			
	$A_{m} = C$	-M×B×T		
	<u>Scrution</u> : KM =	20.08 FT A.K.	KM = SOZ FTAK.	
			KB = BIBFTA.K.	
	BM7=	11.95 FT	BML = 493.€7 FT	
		: 1633 LT - 1633×35 FT3	= 57,155 FT3	
			I_ = 493. E7×57,155 PT	4
	L	$420 \cdot TPT = 4$		
-		7392 FT ²	760×38,00×13,00	
		$C_{m} \times B \times T = .7$ 375 FT^{2}	11. 4	0
	1			

TREBLEM 16

4 MAZ 87

BEAR CLASS CUTTER Te = 12'-0" $\frac{T_{a}}{T_{m}} = \frac{13'-6''}{12'-9''} = 12.75'$ TEIM = 1'-6" = 18" BY STERN $CT_m = 12.75$, $\Delta_o = 15EZ LT(Sw)$ CD1"TA = 0.90 LT/ INCH TRIM. CORRECTION =+, 90×18'= +16.2 LT $\Delta_1 = 1598.2$ 4 AT LEVEL TRIM THE LCG WILL BE AT THE SAME LONGITUDINAL LOCATION AS THE LCB, FROM THE CURVES OF FORM ~ AT LEVEL TRIM, LCG = LCB = 1.35 FT AFT) THE TRIM MUST BE CAUSED BY A TRIMMING. MONIENT_~ TRINKING HOM'T = MTI + TRIM IN INCHES MTI = 25,30 × 20 = 506 FT-TONS/10) TRIMMING MON'T = SOG XIE' = 9108 FT-TONS THE SHIFT IN THE CENTER OF GRAVITY WILL BE $G_0 G_1 = \frac{\omega x d}{\Lambda} = \frac{T_{E,M}. MOH'T}{\Lambda}$ $G_0 G_1 = \frac{9108}{1598} = 5.70 \text{ FT} \text{ AFT}$ = 1.35 FT AFT & SINCE LCG = THEN LCG = = 7.05 FT AFT &

Hard Hard and Hard Hard

1 - 2

11.41

PROBLEM 10

PRVMUL

4 MAR 87 2012

FROM THE CURVES OF FORM~

LCF = 13, 80 FT AFT &

NOTE: A CENTERL ASSUMPTION IN MOST HYDROSTATIC FORMULAS IS THAT THE SHIP IS "WALL-SIDED". WITH THIS ASSUMPTICAL A CHANGE OF TRIM CAUSED BY A SHIFT IN THE CENTER OF GRAVITY WILL CAUSE A CHANGE IN THE UNDERWATER HULL PORM SUCH THAT THE CENTER OF BUCK MUCY WILL ALIGN ITSELF VERTICALLY WITH THE CONTER OF GRAVITY, BUT THE 2HAPE OF THE WATERPLAN REMAINS THE SAME THUS THE LEF DOES NOT CHANGE WITH SMALL CHANGES OF TRIM. THE FACT THAT THIS ASSUMPTION IS GOOD ONLY FOR SMALL TRIM CHANGES IS CONFIRMED BY EXAMINING THE SHAPE OF THE LCF CURVE FOR THIS SHIP,

EROM THE CURVES OF FORMA KM = 20.14 MT A.K. GIVEN KG = 19.50 FT A.K.

 $\underline{CTM_{T}} = C \cdot \underline{C4} = T$

PROBLEM 24 TOK/PRVMJR

16 FEB 87 1 or 1

REF: (TILLMER, PP 57

A	HALF- BREADTH, FT	CUBES OF HALF-BREADTHS FT ³	ТМ	FUNCTIONS OF CUBES, f(I)
0	0.000	0.00	Yz.	0,00
1	E. 203	2 38, 67	1	238,67
2	12,167	1801.15	١	1801.15
3	16.365	43 82.76	I	4382.76
4	18, 250	6978.39	I	6078.39
5	18.750	6591.80	l	6591.80
6	19, 052	6915.47	t	6915.47
7	18.552	6385,17	i	6385.17
8	17. 479	5340,i ⁰	i	5340, 10
9	15.229	3531.95	1	3531.95
10	4, 531	93.02	Kz.	46.51

Zf(I)= 41,311.97

STATION SPACING 5 = 25.50 FT. $T_{t} = \frac{2}{3} \times 5 \times \frac{2}{3} f(I) = \frac{2}{3} \times 25.50 \times 41,311.97 \text{ FT}^{\dagger}$

 $I_t = 702,303 \text{ FT}^4$

11- 44

PROBLEM 25

TOK/PEVMJR

14 JAN BT 1 OF 1

 $\frac{\text{REF: GILLMER, PP 53-58}}{(a) \quad \nabla = (140.0 \text{ ET})(36.0 \text{ ET})(10.0 \text{ ET}) = 50, 400 \text{ ET}^{3}}{(35.0)(10.$

(b) CALCULATE KB, USE TABULAR FORMAT.

ITEN			+	t
ITEM	CALC'N	VOL	VCB	MOM'T.
RELT BARGE	140 × 36 × 10	50,400	5.00	252,000
EOTH END RAKES	2×1×10/10×36	- 3,600	3.33	-11,988
		46,800	5,13	240,012

$$\Delta = \frac{46.200 \text{ FT}^{3}}{35 \text{ FT}^{3}/\text{TCH}} \qquad \Delta = 1.337 \text{ LT}$$

$$KB = 5.13 \text{ FT} \qquad KB = 5.13 \text{ FT}$$

$$BM_{t} = \frac{I_{t}}{\nabla} = \frac{(36)^{3}(140)}{(12)(46,500)} = \frac{11.63 \text{ FT}}{16.73 \text{ FT}}$$

$$KM_{t} = 16.73 \text{ FT}$$

$$KM_{t} = 16.73 \text{ FT}$$

$$KM_{t} = \frac{8.00 \text{ FT}}{(TM_{T} = 8.76 \text{ FT})}$$

11 - 45