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Quantifying and Correcting for the Winner’s Curse
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Quantitative traits (QT) are an important focus of human genetic studies both because of interest in the traits themselves
and because of their role as risk factors for many human diseases. For large-scale QT association studies including genome-
wide association studies, investigators usually focus on genetic loci showing significant evidence for SNP-QT association,
and genetic effect size tends to be overestimated as a consequence of the winner’s curse. In this paper, we study the impact
of the winner’s curse on QT association studies in which the genetic effect size is parameterized as the slope in a linear
regression model. We demonstrate by analytical calculation that the overestimation in the regression slope estimate
decreases as power increases. To reduce the ascertainment bias, we propose a three-parameter maximum likelihood method
and then simplify this to a one-parameter method by excluding nuisance parameters. We show that both methods reduce
the bias when power to detect association is low or moderate, and that the one-parameter model generally results in smaller
variance in the estimate. Genet. Epidemiol. 35:133–138, 2011. r 2011 Wiley-Liss, Inc.
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INTRODUCTION

For complex disease genetics research in humans,
remarkable progress has been made recently with a
number of genome-wide case-control association studies
published. In parallel, there have been increasing efforts to
investigate the association between genotype and disease-
related quantitative trait (QT) at population level
(www.genome.gov/gwastudies). One rationale behind
QT studies is that, because the traits examined are in
many cases risk factors for disease, identified quantitative
trait loci (QTL) may also be disease predisposing loci.

A commonly used method to detect the SNP-QT
association is to regress the observed trait values on a
score based on the individual’s SNP genotype. The slope
of the linear regression is a measure of the strength of the
genetic effect. As in disease case-control association
studies, for QT association studies, investigators usually
focus on genetic loci showing significant evidence for
SNP-QT association. As a consequence of the winner’s
curse [Lohmueller et al., 2003], the effect size estimator
tends to overestimate the true genetic effect size. Several
investigators have studied the winner’s curse effect in the
context of QT linkage analysis [Göring et al., 2001;
Siegmund, 2002; Allison et al., 2002; Sun and Bull, 2005;
Wu et al., 2006] or disease association analysis [Zöllner and
Pritchard, 2007; Garner, 2007; Yu et al., 2007; Zhong and
Prentice, 2008; Ghosh et al., 2008; Xiao and Boehnke, 2009].

In this paper, we study the winner’s curse effect in the
context of QT association studies. We quantify analytically
the impact of the winner’s curse on the estimate of the
genetic effect size parameterized as the linear regression
slope as a function of sample size, allele frequency,
and statistical significance level. We then describe an
ascertainment-corrected maximum likelihood method
similar to that we and others derived for case-control
disease association studies [Zöllner and Pritchard, 2007;
Xiao and Boehnke, 2009] to correct for this bias. We
describe both a fully parameterized model in which
we estimate the intercept, slope, and error of the linear
regression model, and a simplified model that focuses
only on the regression equation slope parameter resulting
in a one-parameter model. We also consider a mean
square error (MSE) weighted estimator [Zhong and
Prentice, 2008] calculated as the weighted average of the
uncorrected and corrected estimators using MSE as the
weight. We compare the performance (bias, standard error,
and MSE) of these ascertainment-corrected maximum
likelihood estimators (MLEs) and that of the naı̈ve,
uncorrected estimators.

As for case-control studies [Zöllner and Pritchard, 2007;
Xiao and Boehnke, 2009], we find that (1) the factors that
result in overestimation of the regression slope can be
summarized by study power alone, independent
of sample size and allele frequency, and that overestima-
tion decreases as power increases; (2) compared to the
uncorrected estimator of the regression slope, the
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ascertainment-corrected estimators based on the one- and
three-parameter models result in reduced absolute bias
when study power is low or moderate, and have
comparable absolute bias when power is high; (3) the
MSE of the ascertainment-corrected MLE of the regression
slope based on the one-parameter model is generally
smaller than that for the three-parameter model; and is
also smaller than the uncorrected estimator when power is
low or moderate; and (4) the MSE-weighted estimator
generally improves the ascertainment correction compared
to the three- and one-parameter model-based ascertain-
ment-corrected MLEs. We recommend the use of the
MSE-weighted version of the one-parameter-based
ascertainment-corrected maximum likelihood method for
estimation of genetic effect size in large-scale quantitative
trait association studies.

METHODS

MODELS AND ASSUMPTIONS

We assume N independent samples genotyped at an
autosomal QTL with alleles A and a. Let p be the fre-
quency for the minor allele a. For individual i, let yi be
the trait value and Xi be the genotype score, depending
on the genetic model we assume. For example, Xi 5 0
for AA, 1 for Aa, and 2 for aa, if we assume an additive
model or Xi 5 0 for AA or Aa, and 1 for aa for a recessive
allele a.

To test for SNP-QT association, we assume the linear
regression model: yi 5 b01b1Xi1ei, where feig are inde-
pendently and identically distributed as normal with
mean 0 and variance s2. For simplicity in what follows,
we assume an additive genetic model and no other
covariates in the linear regression model, although these
assumptions are easily relaxed.

In a QT association study, we focus on the slope b1 in the
linear regression model as a measure of the genetic effect
size, and calculate the regression-based t-test statistic T ¼
jb̂1j=SEðb̂1Þ for the null hypothesis of no association H0:
b1 5 0. Here, b̂1 and SEðb̂1Þ are the estimated regression
slope and its standard error (SE) obtained from the linear
regression. We claim the association significant at sig-
nificance level a when T 4 ta=2; N�2, based on the t
distribution with N�2 degrees of freedom.

UNCORRECTED (NAÏVE) ESTIMATORS

In practice, investigators often estimate the effect size of
the QTL, parameterized as the linear regression slope b1,
using the same data used for the initial association test. We
call this uncorrected estimator of b1 ‘‘naı̈ve’’ because it
ignores the possible bias associated with focusing only on
genetic markers with statistically significant association
results.

To assess the impact of the winner’s curse, we cal-
culate the expected value of this uncorrected estimator
b̂1;un conditional on obtaining significant evidence for
association:

Eðb̂1;unjT4ta=2;N�2Þ ¼ E b̂1;unj
jb̂1;unj

SEðb̂1;unÞ
4ta=2;N�2

 !
: ð1Þ

To simplify this calculation, we approximate (1) by
assuming SEðb̂1;unÞ � s=
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where f(z; b1, s2) is the density function of normal
distribution with mean b1 and variance s2, a ¼ ta=2;N�2

s=
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p
, and Sxx ¼

PN
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nator of (2) is the power of the study, which equals 1 minus
the cumulative distribution function of the non-central
t distribution with N�2 degrees of freedom and non-
centrality parameter b1

ffiffiffiffiffiffiffi
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p
=s. From (2), we calculate

the bias of the estimator as Eðb̂1;unjT4ta=2;N�2Þ � b1, and
the proportional bias as Eðb̂1;unjT4ta=2;N�2Þ � b1=b1.

We also quantify the winner’s curse effect in the
estimator of the coefficient of determination R2 ¼ SSreg=
ðSSreg1SSresÞ, where SSreg and SSres are the regression and
residual sums of squares, respectively. By dividing both
the numerator and denominator by SSres, R2 5 F/(F1
N�2), where F 5 (SSreg/1)/(SSres/(N�2)) is the F test
statistic for H0: b1 5 0. When there are no other covariates
in the model, F 5 T2. We calculate the expected difference
in estimates of R2 when taking into account or ignoring
this ascertainment as:
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Here, g(x) is the density of the F distribution with 1 and
N�2 degrees of freedom, and Fa;1;N�2 is the corresponding
quantile at significance level a. Notice that, were R2 a
constant, the expected difference in (3) would be its bias in
estimation owing to the winner’s curse. Consequently,
we define the estimated ‘‘proportional bias’’ of R2 as
ðEðR2jT4ta=2;N�2Þ � EðR2ÞÞ=EðR2Þ.

ASCERTAINMENT-CORRECTED MLES

Three-parameter model. The naı̈ve estimator
ignores the fact that we typically are interested in estimates
of the regression slope b1 only if we have strong evidence
for SNP-QT association. To address this, we propose an
ascertainment-corrected maximum likelihood method that
conditions on obtaining evidence for association. To this
end, we calculate the conditional likelihood function

Lðb0; b1;sjy;X; T4ta=2;N�2Þ

¼
Y

i

fðyi; b01b1xi;s2jT4ta=2;N�2Þ
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where the indicator function 1fT4ta=2;N�2g equals 1 if
T4ta=2;N�2 and 0 otherwise, and f(yi; m, s2) is the normal
density function with mean m and variance s2.

We maximize the likelihood (4) as a function of b0, b1,
and s to obtain the ascertainment-corrected MLEs
b̂0;as; b̂1;as; and ŝas and by using the Nelder and Mead
[1965] simplex method. We calculate the empirical
standard errors of these estimates based on 1,000 simula-
tion replicates.

One-parameter model. Since our primary interest
is to estimate the slope b1, the intercept b0 and variance s2

are nuisance parameters. We propose a one-parameter
model to obtain a corrected estimator for b1 only. Here,
we assume the uncorrected estimator b̂1;un is consistent
and asymptotically normal, since dvarðb̂1;unÞ=varðb̂1;unÞ � 1
holds for a typical genome-wide association studies
(GWAS) sample size. We confirmed this assumption by
simulation (results not shown). In this case, we calculate
the conditional likelihood for b1 as:

Lðb1=b̂1;un; T4ta=2;N�2Þ

¼ fðb̂1;un; b1;dvarðb̂1;unÞjT4ta=2;N�2Þ

�
1fT4ta=2;N�2g fðb̂1;un; b1;dvarðb̂1;unÞÞ

PðT4ta=2;N�2jb1Þ
: ð5Þ

We maximize the likelihood (5) as a function of b1 to
obtain the ascertainment-corrected MLE b̂1;as by using the
Nelder–Mead simplex method and to calculate the
empirical standard error of this estimator based on 1,000
simulation replicates.

MSE-WEIGHTED MLES

Following Zhong and Prentice [2008], we also consider a

weighted estimator b̂1;w, calculated as the weighted
average of the uncorrected and corrected estimators as

b̂1;w¼K̂b̂1;un1ð1�K̂Þb̂1;corr. The weight K̂¼ŝ2
un=ðŝ

2
un1ðb̂1;un�

b̂1;corrÞ
2
Þ, where the denominator is the estimated MSE, and

the corrected estimator b̂1;corr is the MLE based on either
the three- or one-parameter-model. Zhong and Prentice
[2008] showed that in the case-control setting,
this weighted estimator generally results in a smaller
bias compared to the naı̈ve and ascertainment-corrected
estimators.

SIMULATIONS

We simulated the trait value yi (i 5 1,y,N) from the
normal distribution with mean b01b1Xi and variance s2,
given the true parameter values (b0, b1, and s) and the
genotype score Xi simulated based on the QTL genotype
frequencies assuming HWE. We calculated the test statistic
T ¼ jb̂1j=SEðb̂1Þ based on the simulated data, where b̂1 and
SEðb̂1Þ were the estimated regression slope and its SE
obtained from the linear regression without correction. We
kept the simulated trait values only if T4ta=2;N�2.

RESULTS

UNCORRECTED ESTIMATORS

For a SNP showing significant evidence for QT associa-
tion, there is a clear upward bias in the uncorrected

estimator b̂1;un of the genetic effect size b1 (Fig. 1). This bias
is particularly severe when power is low owing to small
sample size N and/or small genetic effect size b1 (Fig. 2).
As power increases, bias decreases. Under the null
hypothesis (b1 5 0), b1 is equally likely to be over- or
under-estimated so that the bias is zero while the absolute
bias and the MSE are large owing to large variance. Due to
symmetry, here and for the rest of the figures, we provide
results only for b1Z0. For example, given a SNP-QT
association study with N 5 2,000 samples, minor allele
frequency p 5 0.3, and testing at significance level of
a5 10�6 under an additive genetic model, if the true value
for b1 is 0.1 (power 5 5%), the expected value of the
uncorrected estimator of b1 is 0.178, resulting in an
absolute bias of 0.078 and a proportional bias of 78%. In
this case, a follow-up study designed to have 80% power
at significance level a5 0.05 would include 595 samples,
but have actual power of only 35%.

As for case-control studies [Zöllner and Pritchard, 2007;
Xiao and Boehnke, 2009], we found that for a fixed
significance level a, the proportional bias in the uncor-
rected estimator of b1 is solely a function of power,
whatever the sample size, allele frequency, and genetic
model (Fig. 2). Given fixed power, different significance
levels result in different proportional bias in the naı̈ve
estimator of b1. As expected, proportional bias decreases
as power increases, since the conditioning event becomes
increasingly likely as power increases. At a significance
level of a5 10�6, the uncorrected estimator of b1 gives a
proportional bias of 50% when power is 10% but is nearly
unbiased when power is 95% (Fig. 2A).

Interestingly, we found that, at a fixed significance level,
the estimated ‘‘proportional bias’’ in the uncorrected
estimator of the coefficient of determination R2 is solely
a function of the power as well (Fig. 3), independent of
sample size and allele frequency.

CORRECTED ML AND MSE-WEIGHTED
ESTIMATORS

We found that both three- and one-parameter model-
based ascertainment-corrected MLEs for the genetic effect
size b1 are less biased than the uncorrected estimator when
power is low or moderate (o60%) (Fig. 2). For example,
given N 5 2,000 samples, allele frequency p 5 0.3, and
testing at a significance level of a5 10�6 under an additive
model, if the true value for b1 is 0.1 (power 5 5%), the
proportional bias of the corrected MLE of d from the three-
and one-parameter models are both about –20% compared
to 178% before correction. However, both corrected
estimators tend to underestimate the true effect size. As
expected, the bias and absolute bias of the MSE-weighted
estimator are intermediate between those of the uncor-
rected and corrected estimators (Fig. 1). In this case, a
follow-up study designed to have 80% power based on the
ascertainment-corrected estimator at significance level
a5 0.05 would include 2,480 samples and have actual
power 89%, whereas 1,880 samples actually would be
sufficient to achieve 80% power.

The three-parameter and one-parameter estimators have
very similar performance in bias reduction (Figs. 1 and 2).
However, the standard error of the MLE from one-
parameter model is smaller compared to that of three-
parameter model, and also the uncorrected estimator
(Fig. 1). As with bias and absolute bias, the variance of
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the MSE-weighted estimator is intermediate between that
of the uncorrected and corrected estimators (Fig. 1).

In the typical range of power for GWAS, we found that
the MSE-weighted estimator generally results in smaller
bias compared to the uncorrected estimator or to the

corrected estimators based on either the one- or three-
parameter model (Fig. 2). The improvement of the
ascertainment correction is substantial when power is
high. For example, at significance level a5 10�6, when
study power is 80%, the proportional bias is 10% for the

Fig. 1. Bias, absolute bias, and MSE of the uncorrected, corrected, and MSE-weighted estimators for b1 from three- and one-parameter

models with sample size N 5 2,000 and allele frequency p 5 0.3 under an additive genetic model. Significance level a 5 10�6. MSE, mean
square error.
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uncorrected estimator of b1, and –18% for the ascertain-
ment-corrected estimators from both one- and three-
parameter models, but only �5% for the weighted
estimator.

DISCUSSION

Similar to disease-marker case-control association stu-
dies, in QT association studies, the genetic effect size for
associated markers tends to be overestimated as a
consequence of the winner’s curse. This is true because
the association test statistic is correlated with the estimator
of the genetic effect, and since investigators focus
primarily on markers that show statistically significant
evidence of association. In this paper, we parameterized
the genetic effect size as the slope in a QT-genotype score
linear regression, as is typical for QT association studies.
We quantified the bias of the naı̈ve estimator that ignore
this ascertainment, and showed that the proportional bias
in the estimators decreases as power increases. Interest-
ingly, at fixed significance level, the proportional biases of
the regression slope and the coefficient of determination

are functions solely of power, independent of allele
frequency or sample size.

To correct for this ascertainment bias, we proposed a
three-parameter maximum likelihood model, and then
simplified this to a one-parameter model rid of nuisance
parameters. The ascertainment-corrected MLEs for the
regression slope obtained from both models are generally
less biased than the uncorrected estimators unless study
power is moderate to high (460%). However, both models
tend to overcorrect. Since the uncorrected estimator
is generally biased upward and the corrected esti
mators downward, following Zhong and Prentice [2008],
we also considered the estimator b̂1;w which takes a
weighted average of the uncorrected and corrected estima-
tors using the estimated MSE as the weight. Our simulations
suggest that this MSE weighted estimator generally results
in smaller bias compared to the uncorrected or ascertain-
ment-corrected estimators based on either the one- or three-
parameter model. This weighted estimator has little impact
when power is low, but improves the ascertainment
correction substantially when power is high.

Although the three- and one-parameter model-based
estimators of the effect size b1 have very similar

Fig. 2. Proportional bias of the uncorrected (black), corrected (dark blue), and MSE-weighted (orange) estimators for b1 from three- and

one-parameter models. Significance levels (A) a 5 10�6 and (B) a 5 10�8. Results are presented for b1Z0 under an additive genetic

model. MSE, mean square error. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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performance in bias reduction, the standard error of the
MLE from one-parameter model is smaller than that of
three-parameter model. This is likely primarily owing to
optimizing the likelihood function over a one- vs. three-
parameter space. In addition, our one-parameter model
makes an explicit normality assumption on the slope
estimator.

Perhaps, an even more important advantage of the one-
parameter model is that it works only on the regression
slope estimate obtained from linear regression without
ascertainment correction, and so does not require indivi-
dual-level QT and SNP genotype data. Thus, the one-
parameter model can be used for large-scale meta-analysis
in which only summary data are available.

We assumed normally distributed QT data in our
likelihood-based ascertainment correction methods. To
assess the robustness of our conclusions to failure of this
assumption, we carried out additional simulations in which
the QT was distributed as Cauchy (t distribution with one
degree of freedom). There was no meaningful change in our
results. Further, in practice, most QT GWAS use a
transformation (for example, the inverse normal transforma-
tion) on the raw trait data to meet (approximately) the
normality assumption, making this less of a concern.

In this study, we provide a less biased estimator of the
effect size in QT association study, which allows for a more
appropriate design for follow-up studies in sample size
calculation based on this less biased estimator compared to
the naı̈ve estimator. We focused on one-stage designed QT
association study, but it is easy to extend this approach to
multi-stage designs. Similarly, we only presented results
under an additive model with no covariates, but it is
straightforward to generalize the approach to other genetic
models by simply reparameterizing the genotype score or
including covariates in the model.

In summary, we have presented analytic calculations to
quantify the impact of the winner’s curse in QT association

studies and to demonstrate substantial overestimation of
the genetic effect parameterized as the regression slope
when study power is not high (o60%). To correct for this
ascertainment bias, we propose a fully parameterized
maximum likelihood model and also a simplified like-
lihood model with nuisance parameters excluded. We
demonstrate that the ascertainment-corrected estimators
from both these models result in reduced absolute bias
compared to the uncorrected estimator when study power
is not high, and similar absolute bias when power is high.
We show that the variance of the one-parameter model-
based estimator is generally smaller than that of the three-
parameter model. We also consider a MSE-weighted
estimator and show that it generally results in smaller
bias compared to the unweighted estimators based on
either the one- or the three-parameter model. We recom-
mend the use of the MSE-weighted version of the one-
parameter maximum likelihood method for estimation of
genetic effect size in QT association studies.
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