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The term statistical methods here refers to a methodology that has been dominant
in computational linguistics since about 1990. It is characterized by the use
of stochastic models, substantial data sets, machine learning, and rigorous
experimental evaluation. The shift to statistical methods in computational
linguistics parallels a movement in artificial intelligence more broadly. Statistical
methods have so thoroughly permeated computational linguistics that almost all
work in the field draws on them in some way. There has, however, been little
penetration of the methods into general linguistics. The methods themselves
are largely borrowed from machine learning and information theory. We limit
attention to that which has direct applicability to language processing, though the
methods are quite general and have many nonlinguistic applications.

Not every use of statistics in language processing falls under statistical
methods as we use the term. Standard hypothesis testing and experimental design,
for example, are not covered in this article.  2010 John Wiley & Sons, Ltd. WIREs Cogn Sci
2011 2 315–322 DOI: 10.1002/wcs.111

INTRODUCTION

History

Statistical methods entered computational lin-
guistics from speech recognition, and machine

learning became a second major tributary soon there-
after. Major topics adopted from speech recognition
include information theory, Hidden Markov Models
(HMMs), and maximum entropy modeling. Machine
learning provided a wealth of learning methods, with
a particular focus on classification. (In the other direc-
tion, computational linguistics has subsequently made
contributions to machine learning as well, particularly
in the area of semisupervised learning.) From both
tributaries came a methodology of experimentation
and rigorous evaluation.

Once introduced, statistical methods quickly
became dominant in computational linguistics. At
the time, natural language processing systems were
typically driven by large sets of grammar rules sup-
plemented with preference rules for resolving ambi-
guities and error-correction rules for handling unex-
pected inputs, whether erroneous or out of domain.
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All three sorts of rules were manually constructed,
and developers became overwhelmed by interactions
among them once systems reached a certain size.
Adapting a system to a new domain was nearly as
hard as starting over again.

The critical problems, then, were the need for
mathematically well-founded ambiguity resolution;
the need for learning methods, in particular to adapt
systems automatically to new domains; and the need
for robustness in the face of noise and incomplete
knowledge. Statistical methods addressed all three
needs, leading to their rapid adoption.

For convenience, we can organize statistical
methods into four areas: (1) the noisy channel model,
which we use as a rubric for methods deriving from
information theory and coding theory via speech
recognition; (2) general machine learning methods;
(3) distributional learning methods; and (4) stochastic
grammars. We discuss each in turn, but first we touch
on some issues common to all.

Corpora and Evaluation
Perhaps the simplest and yet most profound element of
the methodology is the use of shared data sets, often
consisting of or derived from corpora of naturally
occurring language. Corpora provide raw material for
learning, they allow one to quantify the effectiveness
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and generality of processing algorithms, and perhaps
most importantly, they enable one to replicate and
build on previous results.

The approach is fundamentally experimental.
One typically formulates an experiment by defining
the objects of interest, or instances, and the property
that they have that one would like to predict, which
constitutes the label for the instance. Each instance is
represented as a set of features. For example, in part
of speech tagging, the instances are word occurrences,
the label is the correct part of speech in context, and
the features may include the word (as a character
string), its suffixes, and the preceding and following
words.

Labeled data consist of instances that have been
manually annotated with the correct label. One typ-
ically uses one set of labeled data (the training set)
to formulate or estimate a model, and a second set
(the test set) to evaluate the model. In evaluation,
one wishes to determine the predictive accuracy of the
model on the population as a whole, and the test set
is used to obtain an estimate. It is important that the
test set be representative of the population, and that
it be independent of the training set and any other
information used to formulate the model. Test error
is an unbiased estimator of true error, but training
error generally underestimates true error, because a
model generally performs better on the training set
used to construct it than it does on the population as
a whole.

In formulating a model, one seeks a bal-
ance between fit to the data (measured by training
error) and the simplicity of the model. Putting too
much emphasis on reducing training error can actu-
ally increase test error, because the model becomes
adapted to quirks of the training set rather than pop-
ulation patterns; this is known as overfitting. The
complementary error, putting too much emphasis on
simplicity, is underfitting.

The basic measure of predictive accuracy is error,
which is the proportion of instances where the model
prediction differs from the human annotation. In some
tasks, instances are assigned lists of labels rather than
single labels. For example, a task of interest in bioin-
formatics is the identification of all names of genes
occurring in a given sentence. In that case, there are
two kinds of error: those of omission and those of
commission. Define the true labels to be the labels
given in the human annotation. The proportion of
true labels that are correctly predicted is sensitivity
(also called recall), and the proportion of false can-
didates that are correctly rejected is specificity. An
alternative to specificity is precision, the proportion
of predictions that are correct.

THE NOISY CHANNEL MODEL

Definition of the Noisy Channel
The noisy channel model provides the framework
for the dominant approach to speech recognition,
and it has found application to many other
linguistic problems, including part of speech tagging
and machine translation. The model comes from
Shannon’s original paper on information theory.1

A message is encoded for transport through a
communication channel and decoded at the receiving
end. Transmission introduces noise: bits are flipped
randomly with a certain probability. The error rate in
the decoded message can be reduced by introducing
redundancy into the encoding, but as redundancy is
introduced, the effective transmission rate drops. It
was once thought that zero error rate was achievable
only by reducing the effective transmission rate to
zero, but Shannon showed that error-free transmission
was in fact possible at a positive transmission
rate known as the channel capacity, which is the
number of bits remaining after subtracting the entropy
introduced by the noise.

The problem of speech recognition is to infer
the sequence of words that the speaker had in
mind when producing an utterance that arrives at
the hearer’s ears (or a microphone) as an audio
signal. A language model defines the probability p(w)
of the speaker choosing word sequence w, and an
acoustic model—representing the properties of the
noisy channel—defines the probability p(s|w) that w
will reach the hearer in the form of the signal s. Bayes’
Rule provides the inverse probability that an observed
signal s came from word sequence w:

p(w|s) = p(w)p(s|w)
∑

w′ p(w′)p(s|w′) . (1)

The goal is to identify the value for w that maximizes
(1). Since the denominator is the same for all values
of w, it may be ignored, and one seeks simply
to maximize the product of the language model
probability p(w) and the acoustic model probability
p(s|w).

Information-Theoretic Quantities
The negative logarithms of the probabilities p(w)
and p(s|w) constitute a measure of information
called entropy, which corresponds to message length
under an optimal encoding. Before the fact, entropy
measures the uncertainty regarding the outcome,
and after the fact, it measures the amount of
information one acquired by learning the outcome.
The entropy of the channel noise, for example, is
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the amount of information needed to encode it or
counteract it. Likewise, there is an intrinsic amount
of information in word sequences of English (or any
human language). The entropy of English has been
estimated at no more than 1.75 bits per character
of text.2 This can be interpreted as the difficulty of
guessing the next character in a text, knowing all the
previous text up to that point. It is equivalent to a
choice among 21.75 = 3.36 equally likely alternatives.

A language model can be viewed as predicting
the text a character or word at a time. The difficulty
a language model has in guessing the text is called the
cross-entropy of the language model with the text. It
can be shown that cross-entropy is an upper bound for
the true entropy of the text. The difference between
them is the divergence between the language model
and the true distribution over word sequences. This
provides a measure of quality of a language model:
the lower the divergence, the better the model.

Another useful information-theoretic quantity is
the mutual information between two message sources
X and Y. It is the reduction in uncertainty of X,
knowing Y. Equivalently, it is the divergence between
the distributions p(x) and p(x|y), averaged over values
of y.

Markov Models
A simple form of language model is a Markov chain,
which is a stochastic finite-state machine that gener-
ates text as follows. It chooses a state x0 at random
according to an initial-state distribution. Then at each
time t ≥ 0, it outputs a word and chooses a next
state xt+1 at random according to the transition
probability p(xt+1|xt). The output word is uniquely
determined by the state. In a bigram model, the
word and state are identical. In a trigram model,
a state corresponds to a pair of words (previous
and current), with the effect that the choice of out-
put word is conditioned on the previous two words
of text.

An HMM is a generalization of a Markov chain
in which the output is not uniquely determined by the
state, but rather by an emission probability p(yt|xt)
defining an output distribution for each state. Over-
simplifying greatly, a typical speech recognizer incor-
porates an HMM whose states correspond to letters
(or phones) in the text, and whose outputs are ‘code-
words’ representing spectral features of the signal.

In recognition, one is given a sequence y =
(y1, . . . , yn) of spectral codewords, and the task
is to find the state sequence (letter sequence)
x = (x1, . . . , xn) that maximizes p(x, y). The Viterbi
algorithm is an efficient method for recognition with
an HMM. It is a special case of dynamic programming.

In training, the task is to estimate the model
parameters (transition and emission probabilities)
from known examples. In supervised training, one
is given samples of recorded speech y paired with their
transcripts x, and in unsupervised training one is given
only the speech. The forward–backward algorithm
is an efficient method for unsupervised training of
an HMM. It is a special case of the Expectation-
Maximization (EM) algorithm.3 The sparse data
problem is an important issue in language model
estimation, and a large variety of smoothing methods
have been developed to address it.4

Statistical Machine Translation
One of the earliest proposed methods for automatic
machine translation was Weaver’s idea of treating
foreign text as English text that has been encrypted,5

or that has (in our terms) passed through a noisy
channel. That is quite literally the approach taken
in statistical machine translation. A stochastic model
is assumed for generating a ‘source’ sentence and
‘encoding’ it as a sentence in the foreign language, and
the translation problem is to reverse the model: given
the foreign sentence, determine which sentence was
most likely the source.

The general structure is much as in speech
recognition. A language model defines p(e), the
probability of choosing sentence e as the source;
the language model is typically a Markov chain. A
translation model defines p(f |e), the probability of
encoding e as the foreign sentence f . The translation
model is analogous to the acoustic model in speech
recognition.

One widely used translation model is known as
‘IBM Model 3’.6 After choosing a source sentence
e, the generative process chooses a fertility for each
source word ei, indicating how many foreign words
will be generated from ei. The fertility is 1, for
example, when English dog generates French chien,
but 2 when breakfast generates petit déjeuner. A
fertility is also chosen for a special null word—this
makes allowance for inserting foreign words that are
not aligned with any source word. Next, the actual
foreign words are chosen. In a case like petit déjeuner,
the model makes two independent choices: petit is
chosen as one of the words translating breakfast, and
déjeuner is chosen as a second one. Finally, the chosen
foreign words are ordered by choosing a position
for each, conditioned on the position of the source
word.

Each of the abovementioned choices is a
stochastic choice. The translation model comprises
parameters defining a probability distribution for each
choice.
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As in speech recognition, the model is used ‘in
reverse’ to translate. The machine translation system
is given a foreign sentence, and must reconstruct the
most likely source sentence. Unfortunately, no efficient
exact algorithm is known—instead, heuristic search is
used to find and evaluate candidate source sentences.

MACHINE LEARNING

Parameter estimation for the generative models used in
speech recognition and machine translation represents
a special case of machine learning. In this section, we
turn to the more general theory of learning and its
linguistic applications.

Machine learning and natural language process-
ing are two branches of artificial intelligence, and
they have become deeply intertwined in recent years.
Machine learning techniques are traditionally divided
into three categories: supervised learning (classifica-
tion and regression), unsupervised learning (cluster-
ing), and reinforcement learning. A newer fourth
category is semisupervised learning. We treat classi-
fication and semisupervised learning here, and gram-
matical inference, a variety of unsupervised learning,
arises in the following sections.

Classification
Classifiers are applied to a broad range of tasks in
computational linguistics, including sentence segmen-
tation, word-sense disambiguation, text classification,
and even parsing. To apply a classifier, a task is rep-
resented as assigning labels to instances, where an
instance is represented by its relevant features. Fea-
tures can be reduced to numeric attributes (in the
worst case, 0 for absent and 1 for present), so that
an instance becomes a feature vector, representing a
point in feature space, and the learner’s task is to
divide the space into regions associated with labels.

The nearest neighbor algorithm is a particularly
simple learner: for any given point, it chooses the
label of the nearest labeled instance. The regions
are neighborhoods surrounding labeled instances.
Although algorithmically simple, the nearest neighbor
algorithm produces a complex classifier, in the sense
that it has a complicated decision boundary or dividing
line between labeled regions.

Another simple learner is the Naive Bayes
algorithm. Whereas the nearest neighbor algorithm
is discriminative, meaning that it tackles the
classification task directly, the Naive Bayes algorithm
is generative. It postulates that labeled instances are
generated by stochastically choosing a label, then
stochastically choosing a value for each feature given

the label. Classification is accomplished derivatively
by determining which label was most likely used to
generate a given instance whose label is unknown. The
Naive Bayes algorithm also contrasts with the nearest
neighbor algorithm in that its decision boundary is
linear (the higher dimensional generalization of a
straight line).

The ‘naiveté’ of the Naive Bayes algorithm lies
in the assumption that features are generated inde-
pendently, conditioned only on the label. Care is
required when using models that make independence
assumptions—data that violate the assumptions may
cause erratic performance. For that reason, generative
methods that do not make independence assumptions,
but explicitly model dependencies, are attractive. Such
methods include random fields and maximum entropy
models. The maximum entropy criterion is equivalent
to maximum likelihood in the cases of interest; what
is distinctive about ‘maxent’ models is the iterative
scaling algorithms that they use for estimation.7 The
general idea is that the expected frequency of occur-
rence of a feature, according to the model, should
equal its actual frequency of occurrence in a training
sample. Iterative scaling methods begin with an ini-
tial model, compare its predicted frequencies to the
sample frequencies, and adjust the parameters of the
model to improve the fit in such a way as to assure
that the process ultimately terminates.

We mentioned that the Naive Bayes algorithm
produces a linear decision boundary. A number
of methods are designed with the explicit aim of
finding a good linear decision boundary, including the
perceptron algorithm,8 boosting,9 and support vector
machines (SVMs).10,11 A linear boundary implicitly
assumes a binary classification task, but this is not
a limitation in practice because methods are known
for effectively representing multi-class problems as
collections of binary tasks: for example, error-
correcting output codes.12 The limitation to linear
decision boundaries can also be relaxed. A learner
that finds a linear boundary can be used to construct
a nonlinear classifier by means of the kernel trick.13

The basic idea is that a nonlinear decision boundary,
such as a quadratic boundary, can be represented
as a linear boundary in a higher dimensional space.
Importantly, the higher dimensional representation
never needs to be computed explicitly. This idea has
been used in computational linguistics to enrich the
feature representation without loss of efficiency. In
particular, tree kernels allow one to use all subtrees of
a given tree as features, without needing to explicitly
compute (exponentially many) subtrees.14

Of the algorithms mentioned, the most widely
used in computational linguistics are probably Naive
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Bayes and the perceptron, for their algorithmic
simplicity, and maxent and SVMs, for their high
performance across a wide variety of problems.

Semisupervised Learning
An area of machine learning that has been particularly
spurred by problems in computational linguistics is
semisupervised learning. In the semisupervised setting,
the learner is given a small amount of labeled data
(i.e., supervision) and a large amount of unlabeled
data. One simple method is self-training, in which the
labeled data are used to train a classifier, the classifier
is applied to the unlabeled data, its high-confidence
predictions are added to the labeled data, and the
process repeats.15

A second method originally developed for
language data is co-training, which requires two
independent views of each instance: for example, the
contents of a web page and the contents of links
pointing to it. One classifier is trained on each view,
and each classifier is used to label new instances for
the other classifier. Then the classifiers are retrained
and the process repeats.16

The most advanced semisupervised algorithms
are spectral methods.17 If we view the labeled data
as providing a few ‘fixed points’ in the midst of an
expanse of unlabeled data, the semisupervised learning
task becomes one of interpolating between those fixed
points. Spectral methods construct smooth wave-like
interpolation functions.

DISTRIBUTIONAL STUDIES

We turn now to methods that are more specialized
to language. There is a body of descriptive and
unsupervised learning techniques that characterize
words by their distributional properties. They come
largely from traditions outside machine learning,
such as corpus linguistics, information retrieval, and
grammatical inference.

Word Distributions
Models of word distributions are related to language
models. Zipf’s law states that the frequency of a
word is inversely related to its rank frequency: that
is, f (wn) = Z/ns where wn is the nth most frequent
word and s and Z are fixed constants.18 This is
an example of a power law, a kind of heavy-tailed
distribution that has recently received attention in the
description of random networks, such as are used to
model the World Wide Web.19 Zipf’s law is often cited
in connection with the sparse data problem: it implies
that most things occur only once or twice, making it
difficult to estimate their frequency accurately.

Raw word frequency can be deceptive because
word distributions are often bursty. Models such as
mixtures of Poissons have been proposed to model
burstiness.20 Function words tend to be much less
bursty than content words, so burstiness itself can be
useful for inferring syntactic category.

Generally, much of the syntax and semantics
of a word can be inferred from its distribution. A
word can be represented as a vector of contextual
features, where the context may be as broad as
the document in which the word occurs or as
narrow as the words occurring immediately before
and after. Clustering context vectors based on their
similarity yields distributional word classes. Using
narrow contexts yields classes that approximate
syntactic categories, and using broader contexts tends
to produce semantic classes. A common similarity
measure is cosine similarity, which abstracts away
from the gross frequency of words. An alternative
information-theoretic measure is divergence of context
distributions. In addition to methods based on
statistics and information theory, the method of
latent semantic indexing infers word classes by direct
algebraic manipulation (specifically, singular value
decomposition) of the word-document matrix.21

Co-membership in a class is a paradigmatic
relation between words. Distributional methods are
also used to infer syntagmatic relations, also called
collocational or selectional relations, being the
degree to which two words tend to occur together.
Collocational measures compare the actual rate of co-
occurrence to what would be expected by chance.
There are many ways of doing the comparison.
Mutual information, for example, is a simple measure
provided by information theory; it is the logarithm of
the ratio between the actual rate of co-occurrence
p(x, y) and the expected rate p(x)p(y) assuming
independence, where x and y are two words of
interest.

Variations of the general measures of paradig-
matic and syntagmatic relatedness have been devel-
oped to infer a variety of lexical, syntactic, and
semantic information. Examples are technical termi-
nology, semantic ontologies, named entities, phrases
with distinctive syntaxes (such as dates, times,
money amounts, and the like), subcategorization
frames,22 selectional restrictions of all sorts,23 and
prepositional attachment preferences.24 Such infor-
mation has been used in virtually every natural lan-
guage processing task, including parsing, information
extraction, natural language generation, and machine
translation. In the most general case, the inference of
classes and co-occurrences can be applied to learning
complete phrase-structure grammars for a language.25
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STOCHASTIC GRAMMARS

Stochastic grammars are the most linguistically sophis-
ticated of the probabilistic language models. There
was a flurry of work on formal language theory in the
1960s, and it included some work on stochastic gram-
mars; that thread has been picked up and expanded
in computational linguistics since the 1990s. Proba-
bilistic regular grammars are represented by Markov
chains, discussed above. In probabilistic context-free
grammars, each rewrite rule has a probability, sum-
ming to one among rules with the same left-hand side.
Generation becomes a stochastic process, in which the
random choices are among the rules expanding a given
syntactic category. The generative process associates a
probability with each sentence in the language defined
by the grammar. Consistency becomes an issue: it is
possible for some probability mass to be lost to infi-
nite derivations. An effective method exists to test for
consistency, and grammars whose probabilities are
estimated by relative frequency are guaranteed to be
consistent.26

Standard parsing algorithms such as the Cocke–
Younger–Kasami (CYK) algorithm are easily adapted
to probabilistic grammars. Probabilistic CYK parsing
can be viewed as a generalization of the Viterbi algo-
rithm; or rather, both are special cases of dynamic
programming. For unsupervised grammar learning,
there is a generalization of the forward–backward
algorithm known as the inside–outside algorithm.27

As a practical matter, however, it yields disappoint-
ing results, and supervised learning is almost always
used for probabilistic parsers. Since labeled parsing
data take the form of a treebank—a corpus of sen-
tences annotated with syntax trees—the setting is

often called treebank parsing. A variety of models
have been employed, including decision trees,28 gen-
erative models,29 and maxent-inspired models.30 It
has become common to employ a model with limited
statistical dependencies to produce an initial n-best
list of parses, and use richer features (such as the tree
kernels mentioned earlier) to do parse reranking.31

Above context-free grammars in the Chomsky
hierarchy of grammar complexity are attribute-value
grammars. Stochastic attribute-value grammars are
based on random fields.32 Probabilistic versions of
other context-sensitive formalisms, such as Tree
Adjoining Grammar, have also been developed.33

Grammatical inference is the problem of learn-
ing a grammar from unlabeled data. Unlike the esti-
mation methods previously discussed (the forward–
backward and inside–outside algorithms), the target of
learning is the grammar rules themselves, not just the
weights on the rules. Inference of finite-state automata
has been well studied.34,35 Finite-state automata have
been used in constructing language models for speech
recognition, and similar techniques have been used in
the unsupervised learning of morphology.36 Methods
for inferring context-free grammars have also been
explored,37–40 though with mixed results; recent work
focuses on learning dependency grammars,41,42 which
are formally equivalent to context-free grammars
but appear more tractable for learning. A common
approach, both for finite-state automata and context-
free grammars, is to start with an initial grammar, and
iteratively modify it to optimize an objective function.
One attractive objective function, derived from infor-
mation theory, is description length, which is the total
number of bits required first to encode the grammar,
and then to encode the corpus using the grammar.43
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FURTHER READING
The standard computational linguistics textbooks are Jurafsky and Martin and Manning and Schütze. The former is a
general introduction to computational linguistics, with good coverage of statistical methods, and the latter covers statistical
methods exclusively. Their introductory chapters treat the history and organization of statistical methods. Charniak is also
a useful text, and Church and Mercer provide an overview of early work. The introductory chapter of Russell and Norvig
discusses the adoption of statistical methods in artificial intelligence more broadly.

Jelinek covers many of the topics that have entered computational linguistics from speech recognition, including the noisy
channel model, information theory, HMMs, the EM algorithm, maxent models, and smoothing. A specific introduction
to information theory is Cover and Thomas. For HMMs, Rabiner and Juang provide a concise introduction and Rabiner
provides a more detailed tutorial.

There are a number of excellent textbooks on machine learning, including Mitchell; Duda, Hart, and Stork; and Hastie,
Tibshirani, and Friedman. For semisupervised learning in computational linguistics, see Abney.

Finally, the ACL Anthology is an indispensable electronic resource for publications in computational linguistics.
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