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Robust and Reliable Multidiscipline Ship Design 

Shari E. Hannapel1 and Nickolas Vlahopoulos2 
University of Michigan, Ann Arbor, MI, 48105 

Mathematical formulations of reliability-based design and robust design have been 
developed for addressing the presence of uncertainty during optimization. Reliability 
addresses the effects of uncertainty on the constraints; constraints that are influenced by 
uncertainty are converted into new probabilistic constraints to ensure that the optimal 
solution will satisfy the constraints within a prescribed reliability level. Robustness is 
introduced by including the effects of the mean and variance of the response of the objective 
function in the optimization. This paper presents a formulation for applying reliability-
based design and robust design within a network of parallel optimizations to account for 
uncertainty in multidiscipline design optimization. The method for multidiscipline design 
optimization under uncertainty is applied to a conceptual ship design with a model of a bulk 
carrier from the literature. The optimization results demonstrate that reliable and robust 
optimization can be applied effectively to ship design, and that it is important to consider 
uncertainty during the multidiscipline ship design process. 

Nomenclature 
α = weighting parameter for robust objective function 
βi = target reliability index for constraint i  
d = vector of deterministic design variables 
σ = vector of standard deviations for design variables and parameters with uncertainty 
δ =  vector of variation in design variables due to uncertainty 
f = generic objective function 
Fi = generic helpful function evaluated in discipline i 
Gi = generic constraint 
gi    =  inequality constraints for the ith discipline 
gT = inequality constraints for the top level  
μf  = mean of objective function f under uncertainty 
μp = vector of mean values of parameters with uncertainty 
μx =  vector of mean values of design variables 
Nj  = number of disciplines that share the jth design variable 
Oi

optimal
 = optimal value for the objective function of the ith discipline  

Oi
start = starting value for the objective function of the ith discipline 

OT = original top level objective function  
P = probability distribution function 
p = vector of parameters with uncertainty 
σf

2 = variance of objective function f under uncertainty 
x = generic vector of design variables 
xi

current = vector of current values of design variables for the ith discipline 
xi

start = vector of starting values of design variables for the ith discipline 
xj,i

optimal = the optimal value of design variable xj in the ith discipline  
xj

target = target value for the jth design variable  
xi   =  vector of design variables for the ith discipline 
xT   =  vector of design variables for the top level 
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I. Introduction 
N design optimization, the optimal solution is a single point that minimizes (or maximizes) a function of interest 
while satisfying a prescribed set of constraints. Often, the effects of uncertainty are not considered during the ship 

design optimization process. However, in real life, design variables or environmental parameters contain 
uncertainty; for example, manufacturing tolerances or environmental conditions are beyond the control of the 
designer, but they do affect the performance of the design. Further, the simulation tools or the regression models 
which provide performance information for a ship during the decision-making process are additional sources of 
uncertainty because of their inherent variability in the predictions. Due to the variations in the uncertain design 
variables and parameters, or due to the uncertainty in the simulation models, the response of the optimal design will 
differ from the deterministic expectation. This can lead to violation of the active constraints and/or deterioration of 
the expected optimal performance. Capturing such effects within the early stages of the ship design process will 
eliminate expensive design modifications at later stages. 

Multidisciplinary design optimization (MDO) describes the process of dividing the design of a system into 
disciplines and seeking a solution which satisfies all discipline-level constraints, improves the discipline level 
objectives as much as possible, and improves the overall system level objective. MDO can be a valuable tool for the 
design of any complex system which features competing disciplines; MDO has previously been applied to the 
design of an aircraft wing, an undersea vehicle, and to preliminary ship design1-3, among many examples in the 
literature. 

In reliability-based design, the effects of uncertainties in design variables and parameters on the constraints are 
considered. When reliability is introduced in a design process, the constraints which are influenced by uncertainty 
are converted into probabilistic constraints. This ensures that the optimal solution will satisfy the constraints in the 
presence of uncertainty within a prescribed reliability level. Methods for accounting for uncertainty in the 
constraints have been shown in References 4 and 5. Many applications of reliability-based design can be found in 
the literature. References 6 and 7 apply reliability-based design to vehicle design for crashworthiness; Reference 8 
applies reliability-based design to an airplane wing structure; Reference 9 uses reliability-based design for structural 
design subject to earthquake loading; and Reference 10 applies reliability-based design to the design of an exhaust 
system. Additionally, reliability-based design optimization has been applied to multidisciplinary design optimization 
in References 11-13. 

In robust design optimization, the goal is to minimize not only the objective function but also the variation in the 
objective function about the optimum point. Then a new robust objective function is formulated as a function of the 
mean and variance of the response of the objective function at a selected design point. Reference 14 provides a 
thorough summary of methods for applying robust optimization. Many applications of robust design optimization 
can be found in the literature. In Reference 15, robust optimization is applied to the design of layered plate bonding; 
Reference16 uses a robust design strategy with a snap-fit device; Reference 17 applies robust optimization to an 
airplane component; and Reference 18 introduces robustness in optimizing the design of a transistor device. Robust 
optimization has also been applied to multidisciplinary design problems. Reference 19 uses robust optimization with 
a multi-objective design application to a V6 engine; Reference 20 applies a multi-objective evolutionary algorithm 
for robust design of a welded beam and a bulk carrier; and Reference 21 uses multidisciplinary robust design for 
chemical filtration optimization.  
 This paper introduces a formulation for multidisciplinary design optimization under uncertainty that includes 
principles of reliability-based design and robust design within a network of parallel optimizations. The theoretical 
background is presented first, including the multidisciplinary design optimization method for accounting for the 
effect of uncertain design variables and parameters on the constraints. Methods for introducing a robust objective 
function to the multidisciplinary design optimization are also discussed. 

The main new element introduced by this paper is the combination of multidisciplinary design optimization 
which takes into account both reliability and robustness in the solution. Additionally, this new approach is applied to 
the concept design of a bulk carrier to demonstrate how uncertainty can be accounted for in multidisciplinary ship 
design. 

II. Multidiscipline Design Optimization 
The mathematical background of the method which is employed in this work for driving the network of 

optimizations and coordinating the exchange of information is presented in this section. The optimization of several 
disciplines is coordinated through a top level optimization, which is typically selected as a discipline of a global 
nature (such as cost). Discipline level constraints are also enforced in the top level, ensuring that the final solution 
satisfies all of the constraints. Discipline optimizations explicitly influence the overall direction of the system 
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solution based on the improvement encountered at the discipline level. An additional feature of this algorithm is that 
different optimization methods can be used for the system and discipline level optimizations. 

At the beginning of each iteration of the top level optimization, individual discipline-level optimizations are 
performed using the values of the design variables from the previous step of the top level optimization as the starting 
values. After the discipline level optimizations are complete, a group of target values for the design variables are 
determined based on the improvement in the discipline level objectives: 
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In Eq. (1), xj
target is the target value for the jth design variable; xj,i

optimal indicates the optimal value of design variable 
xj in the ith discipline. The objective function of the ith discipline is Oi where the superscripts start and optimal 
indicate starting and optimal values the objective functions. Nj is the total number of disciplines that share the jth 
design variable.  

The overall top level objective function can be stated as 
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where OT is the original top level objective function and J is the total number of design variables in the top level. 
The effects of the discipline objective functions are included by requiring that the top level design variables match 
the target values, and at the same time the top level objective function is improved.  

All of the discipline-level constraints are included in the top level optimization along with the top level 
constraints; this ensures that the optimal point will also be a feasible point for all of the disciplines. The constraints 
are expressed mathematically as 
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where gT are the inequality constraints for the top level and gi are the inequality constraints for the ith discipline. The 
vector of design variables for the top level objective is xT and the vector of design variables for the ith discipline is xi. 

The MDO algorithm is illustrated in Fig. 1. The top level coordinates information about the top level objective, 
the top and discipline level design variables, and the top and discipline level constraints with the information from 
the discipline level optimizations. The algorithm also includes the capability to use compute (optional) additional 
useful functions Fi that may be used in the evaluation of the objective functions.  

III. Reliability-Based Design 
The multidisciplinary optimization framework used in this work is also capable including the effect of uncertainty 

in design variables and/or parameters on the constraints. The framework uses a single-loop reliability-based design 
optimization (RBDO) algorithm22,23.  

The single-loop RBDO algorithm converts the probabilistic optimization problem into an equivalent deterministic 
problem. Then the single-loop RBDO problem for one objective function f and the accompanying set of constraints 
can be stated as: 

  pxf
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μμd
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 (4) 

 subject to:   Gi(d,Xi,pi) ≤ 0      i = 1, ..., n (5) 
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where f is the objective function, x is the vector of deterministic design variables, μx is the vector of the mean values 
of the random design variables, and μp is the vector of the mean values of the parameters. The n constraints Gi are 
functions of d and the quantities: 

 Xi = μx – σβiαi (6) 

 pi = μp – σβiαi (7) 
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 dl ≤ d ≤ du (9) 

 μx
l ≤ μx ≤ μx

u (10) 

The target reliability index for the ith constraint is βi, which describes the desired confidence that a constraint will 
be satisfied. αi is the normalized gradient of the ith constraint, and σ is the vector of standard deviations for the 
design variables and parameters. Equations (9) and (10) describe the upper and lower bounds on the design variables 
and the mean values.  

The objective function is evaluated at the mean point (d, μx, μp), and the constraints are evaluated at the 
deterministic optimum. This introduces a safety margin in each constraint determined by the target reliability index 
and the rate of change of the constraint function. 

IV. Robust Optimization 
In this work, the robust objective function Rf for an objective function f is defined as in Refs. 14 and 19, using a 

weighted-sum approach: 

 Rf(x) = αf(x) + (1 – α)f
2(x) (11) 

where μf(x) and σf
2(x) are the mean and variance of the response of f at the design point x, where α is a weighting 

parameter, 0 ≤ α ≤ 1, that can be adjusted for the relative importance of the mean and variance for the particular 
application.  
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Figure 1. Flow chart of the multidisciplinary design optimization 
algorithm. 
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The following equations (from Ref. 14) can be used to calculate the mean and variance of the objective function 
f that are needed for Eq. (11):  

   pδpδpδxx ddPfμ f ),(),()(  (12) 

    222 )(),(),()( xpδpδpδxx ff μddPfσ    (13) 

In Eqs. (12) and (13), the design variables x are assumed to be deterministic, but with a random variation term δ; 
that is, the probabilistic design variables can be described by x + δ. p is the vector of random parameters, and P(δ,p) 
is the joint probability distribution function for δ and p. 

V. Bulk Carrier Model 
Reference 24 presents the preliminary design of a bulk carrier using simple empirical models. The optimization 

of this preliminary design has been studied in the literature, including using a multi-objective design optimization 
approach25; implementing a particle swarm optimizer1; and applying neural networks to reduce computational 
effort20.  

The ship is described by six design variables: length L, beam B, depth D, draft T, block coefficient CB, and speed 
Vk. The design variables are used to evaluate the three objective functions: lightship weight, annual cargo, and 
transportation cost. Details for the calculation of the objective functions are included in Table 1. Table 1 shows the 
objective functions, design, variables, constraints, and other formulas used in the calculations.  

The notation in Table 1 has been modified slightly from Ref. 24. It is worth noting that the empirical constraint 
for stability listed in Table 1 comes from the empirical formula and constraint in Ref. 24 for GM; the empirical 
expression for GM is given by 

  
D

CT

BC
TGM

B

B 52.00.1
002.0085.0

53.0
2
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


  (14) 

and the requirement on GM for stability is 

 GM ≥ 0.07B (15) 

VI. Application to the Bulk Carrier Example 
The new formulation that integrates algorithms for multidiscipline design, reliability-based design, and robust 

design is applied to the preliminary design for the bulk carrier. The transportation cost was the system level 
optimization, while the lightship weight and annual cargo comprise the discipline level optimizations. The goal is to 
minimize the transportation cost and the lightship weight while maximizing the annual cargo. (Note that the 
optimizer only seeks to minimize each objective function, so the negative of the annual cargo is minimized.) 

The initial point for the optimization analysis was (L, B, D, T, CB, Vk) = (195, 32.31, 20, 10.5, 0.7, 16), because 
this point satisfies all of the constraints and has been used in previous work with the bulk carrier model. The 
objective functions were scaled by their values at this initial point to prevent the very large values (order 105) of the 
annual cargo from dominating over the smaller (order 100) values of the transportation cost. The values of the 
objective functions at the initial point are: 10,303 t lightship weight; 547,860 t/yr annual cargo; and 9.926 £/t 
transportation cost. Multiple analyses were performed in order to compare deterministic and probabilistic results, 
and for investigating the effects of alternative robustness definitions on the results. 
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Objective Functions: Design Variables:  
Lightship Weight (t) LS = WS + WO + WM Length, L (m) 150 ≤ L ≤ 274.32 
Annual Cargo (t/yr) AC = DWCRTPA Beam, B (m) 20 ≤ B ≤ 32.31 
Transportation Cost (₤/yr) 

AC

C
TC A  Depth, D (m) 13 ≤ D ≤ 25 

 Draft, T (m) 10 ≤ T ≤ 11.71 
 Block Coefficient, CB 0.63 ≤ CB ≤ 0.75 
  Ship Speed, Vk (knots)  14 ≤ Vk ≤ 20 

Constraints: 
Length-to-beam ratio 6

B

L  

Length-to-depth ratio 
15

D

L  

Length-to-draft ratio 
19

T

L  

Froude number Fn ≤ 0.32 
Deadweight 25,000 ≤ DW ≤ 500,000 
Empirical constraint on T and DW T – 0.45DW0.31 ≤ 0 
Empirical constraint on T and D T – 0.7D – 0.7 ≤ 0 
Empirical constraint for stability 

052.01
)002.0085.0(

53.007.0
2




 D
TC

BC
TB

B

B  

Calculations for Model:  
Steel Weight WS  = 0.034L1.7B0.7D0.4CB

0.5

Outfit Weight WO = L0.8B0.6D0.3CB
0.1

Coefficient for P Calculation a = 4977.06CB
2 – 8105.61CB + 4456.51 

Coefficient for P Calculation b = -10847.2CB
2 + 12817CB – 6960.32 

Froude Number Fn = 
L

Vk

8065.9

5144.0  

Displacement Δ = 1.025LBTCB 
Power 

P = 
Fnba

Vk


 33/2

 

Machinery Weight WM = 0.17P0.9 
Deadweight DW = Δ – LS 
Daily Fuel Consumption PDC

1000

2419.0
2.0


  

Sea Days 

k
S V

D
24

5000
  

Fuel Carried FC = DC(DS + 5) 
Crew, Stores, and Water CSW = 2DW0.5 
Cargo Deadweight DWC = DW – FC – CSW 
Port Days 

1
8000

2  C
P

DW
D  

Round Trips per Year 
PS DD

RTPA



350

Ship Cost CS = 1.3(2000WS
0.85 + 3500WO + 2400P0.8) 

Capital C = 0.2CS 
Running Cost CR = 40000DW0.3 
Voyage Cost CV = 1.05DCDS100 + 6.3DW0.8 
Annual Cost CA = C + CR + CVRTPA 

Table 1. Bulk carrier model definition. 
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A. MDO without Uncertainty 
The multidisciplinary optimization was run for the bulk carrier example using the objective functions and 

constraints listed in Table 1, without including uncertainty in any of the design variables or parameters. This was 
done to give a baseline for comparison to later results where uncertainty is considered. The results are listed in Table 
2 in the column labeled Deterministic Optimum.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

B. MDO with Reliability-Based Design 
Uncertainty was introduced into the bulk carrier model in two ways: uncertainty in a design variable and 

uncertainty in a parameter. Uncertainty in a design variable was introduced for the ship speed. For a selected design 
ship speed Vdesign, the actual ship speed follows a normal distribution about Vdesign; that is,  

 Vactual = Vdesign + v (16) 

where Vactual is the actual ship speed and v is a normally distributed random variable with mean zero; the uncertainty 
in the ship speed was defined in this manner to agree with the form of Eqs. (12) and (13). Equation (15) describes 
the physical situation that the intended ship speed is Vdesign, but due to sea conditions the actual ship speed varies by 
the amount v. For this analysis, v follows a normal distribution with mean zero and standard deviation of 0.5 knots.  

Next, uncertainty in a parameter was introduced in the model. The model defined by Reference 24 as given in 
Table 1 uses the following regression equation to calculate the steel weight, WS, of the ship: 

 WS = 0.034L1.7B0.7D0.4CB
0.5 (17) 

To apply uncertainty in a parameter to this model, the exponent on the ship length L is considered to be a random 
parameter, ε: 

 WS = 0.034LB0.7D0.4CB
0.5 (18) 

This uncertain parameter can be used to describe uncertainty in the model itself and to illustrate the effects of any 
modeling inaccuracies. For this analysis, the parameter ε follows a normal distribution with mean 1.7 and standard 
deviation 0.05. 

There are five total constraints that are affected by these uncertainties. The simplest constraints are the upper and 
lower limits on the ship speed. The other constraints affected by the uncertainties (repeated from Table 1) are the 
constraints on Froude number Fn and deadweight DW: 

 Fn ≤ 0.32 (19) 

 25,000 ≤ DW ≤ 500,000 (20) 

 T – 0.45DW0.31 ≤ 0 (21) 

 Deterministic 
Optimum 

Reliable 
Optimum 

Reliable & 
Robust Optimum 

Transportation Cost 8.424 8.635 8.838 
Annual Cargo 506,320 550,140 566,690 
Lightship Weight 8,198 8,803 8,462 
L 188.90 193.86 182.61 
B 31.485 32.310 30.435 
D 15.729 15.364 15.729 
T 11.710 11.455 11.710 
CB 0.630 0.657 0.750 
Vk 14.000 15.027 15.027 

Table 2. Summary of results from multiple MDO analyses.
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The multidisciplinary optimization was run including the uncertainty in the constraints (where applicable) and 
the results are included in Table 2. A 98% reliability level was prescribed for the probabilistic constraints. It is 
immediately clear that the performance in all three objectives at this selected optimum is inferior to the performance 
at the deterministic optimum. This is expected because a safety margin has been introduced in order to satisfy the 
constraints in the presence of uncertainty. The constraints were evaluated at the optimum point and the values are 
shown in Table 3; note that the constraints that are affected by uncertainty are indicated with a check mark in the 
column labeled Uncertainty. Two constraints are active, but the three constraints which are affected by the 
uncertainty have an appropriate margin to account for the variability in the ship speed Vk and exponent ε. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. MDO with Uncertainty in Constraints and Objective Functions 
A slightly modified form of Eq. (11) (similar to that of Reference 19) is used to apply robustness to the bulk 

carrier example for each objective function f: 

      
00

,,,,,
)1(

,,,,,
,,,,,







 kBkB
kBf

VCTDBL

f

VCTDBL
VCTDBLR   (22) 

The mean μ and variance σ are evaluated at the design point (L, B, D, T, CB, Vk). The variance is scaled by σ0, the 
value of the variance at the initial point. The mean is scaled by  f0, the value of the objective function f at the initial 
point, instead of the mean value at the initial point in order to allow comparison between the robust optimization 
results and the other results.  

To calculate the necessary mean and standard deviation, Equations (12) and (13) are used with the two random 
variables v and ε. Then the equations become: 

        ddvvpvVCTDBLfVCTDBL kBkB    ,,,,,,,,,,,,  (23) 

          222 ,,,,,,,,,,,,,,,,, kBkBkB VCTDBLμεddvεvpεvVCTDBLfVCTDBLσ     (24) 

where f is any of the objective functions and p(v, ε) is the joint probability distribution function for v and ε. The ship 
speed variation and the exponent are assumed to be independent, so the equations become 

           dpdvpvpvVCTDBLfVCTDBL vkBkB    ,,,,,,,,,,,  (25) 

            222 ,,,,,,,,,,,,,,,, kBvkBkB VCTDBLddvpvpvVCTDBLfVCTDBL       (26) 

where pv(v) and p() are the probability distribution functions for v and , respectively. 

Constraint Constraint Value Uncertainty 

6
B

L  6.000 
 

15
D

L  12.6180 
 

19
T

L  16.9241 
 

Fn ≤ 0.32 0.1773  
25,000 ≤ DW ≤ 500,000 39,435  
T – 0.45DW0.31 ≤ 0 -0.5110  
T – 0.7D – 0.7 ≤ 0 -2.020610-14  

052.01
)002.0085.0(

53.007.0
2




 D
TC

BC
TB

B

B  -2.2892 
 

Table 3. Constraint evaluation using reliability-based design optimization. 
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The integrals are evaluated numerically during the optimization. Each PDF is integrated over ±4σ to cover 
approximately 99.99% of the area under the normal curve. The numerical integration is performed using 200 points 
in each random variable, or 40,000 points total over the integrand. The effect of increasing or decreasing the number 
of points was investigated and it was found that 200 points led to a satisfactory compromise of computing time and 
accuracy. Additionally, the results of the integration were compared to the results of a simple Monte Carlo 
simulation, which randomly placed 1000 points in the design space according to the distributions of v and ε. The 
mean and variance resulting from the Monte Carlo simulations confirmed the results of the numerical integration.  

The robust and reliable optimization was performed using the parameter value α = 0.5; the results are included in 
Table 2. The constraints at the robust optimum were evaluated and are included in Table 4. All of the constraints are 
satisfied, with two of the constraints active: the constraint on the length-to-beam ratio and the empirical constraint 
on the draft and depth. The safety margins introduced in the constraints are comparable to the margins in the 
probabilistic constraints of the MDO reliability analysis. However, the margins differ because in the current case the 
optimum has shifted due to the robust considerations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To study the effects of the robust optimization on the optimum design, the statistics at the three different optima 
were computed; Table 5 summarizes the statistics for the three optimization approaches. The deterministic optimum 
shows the best performance for the transportation cost (the top level objective) and the lightship weight. However, 
for the deterministic case, without the consideration of uncertainty in the constraints, it is unlikely that the 
constraints would be satisfied when considering the uncertainty of the ship speed Vk and exponent ε. For the robust 
and reliable case, the standard deviation has been reduced from the reliable case for all three of the objective 
functions.  

 
To illustrate the effect of selecting a reliable optimum, a Monte Carlo simulation was performed to generate 

random realizations of the ship design about the optimum design values. For the deterministic optimum design 
(188.90, 31.485, 15.729, 11.710, 0.630, 14.000), only 2424 out of 10,000 randomly generated points satisfied all of 

Constraint Constraint Value Uncertainty 

6
B

L  4.707110-6 
 

15
D

L  11.6102 
 

19
T

L  15.5946 
 

Fn ≤ 0.32 0.1827  
25,000 ≤ DW ≤ 500,000 41,569  
T – 0.45DW0.31 ≤ 0 -0.4528  
T – 0.7D – 0.7 ≤ 0 2.242710-14  

052.01
)002.0085.0(

53.007.0
2




 D
TC

BC
TB

B

B  -1.4099 
 

Table 4. Constraint evaluation using reliable and robust optimization. 

 Deterministic 
Optimum 

Reliable 
Optimum 

Robust & Reliable 
Optimum (α = 0.5) 

Transportation Cost 8.4240 8.6351 8.8380 
Transportation Cost Mean 8.5401 8.7523 8.9472 
Transportation Cost Standard Deviation 0.7174 0.7241 0.6792 
Annual Cargo 506,320 550,140 566,690 
Annual Cargo Mean 503,650 547,300 564,160 
Annual Cargo Standard Deviation 20,504 21,022 19,266 
Lightship Weight 8,198 8,803 8,462 
Lightship Weight Mean 8,434 9,137 8,698 
Lightship Weight Standard Deviation 1,858 2,012 1,857 

Table 5. Statistics for the optimization results. 
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the constraints in the presence of uncertainty. For the reliable optimum design (193.86, 32.310, 15.364, 11.455, 
0.657, 15.027), 9574 out of 10,000 randomly generated points satisfied all of the constraints in the presence of 
uncertainty; this is a very significant improvement over the deterministic case. For the reliable and robust optimum 
design (182.61, 30.435, 15.729, 11.710, 0.750, 15.027), 9595 out of 10,000 randomly generated points satisfied all 
of the constraints in the presence of uncertainty. The results for the robust and robust and reliable optima are 
reasonable for the 98% reliability used in the analysis.  

To visualize the results, the values of the objective functions at the optima can be plotted. A simple Monte Carlo 
technique was applied to approximate the Pareto front in the three-dimensional plot (this method was selected for 
convenience, since the purpose of this work was not to find the Pareto front). The optima are shown in two two-
dimensional plots in Fig. 2: the deterministic optimum is shown in blue, the reliable optimum is shown in red, and 
the robust and reliable optimum is shown in green.  

 
In Fig. 2, the objective functions are scaled so that all of the objective functions have a magnitude of one at the 

initial point. Fig. 2(a) shows the scaled lightship weight (LS) versus the scaled transportation cost (TC), and Fig. 
2(b) shows the negative of the scaled annual cargo (-AC) versus the scaled transportation cost. Note that for this 
problem which has three objective functions, the Pareto front would be represented by a surface; the two-
dimensional plots in Fig. 2 effectively show a projection of an approximation of the surface. 

Figure 2 shows not only that the new MDO algorithm is selecting points that perform relatively well, but also 
that the algorithm seeks to reduce the top level objective as much as possible (transportation cost) while the 
discipline level objectives are not as important.   

VII. Conclusion 
Methods of reliability-based design and robust optimization have been applied to a multidiscipline design 

optimization framework. The multidiscipline design optimization is applied to the conceptual design of a bulk 
carrier using a model from the literature. The results for the optimum ship design are compared for cases which do 
not consider uncertainty and for cases which consider reliable optimization and reliable and robust optimization.  
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