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Various approximations to unsteady aerodynamics are examined for the aeroelastic analysis of a thin double-

wedge airfoil in hypersonic flow. Flutter boundaries are obtained using classical hypersonic unsteady aerodynamic

theories: piston theory, Van Dyke’s second-order theory, Newtonian impact theory, and unsteady shock-expansion

theory. The theories are evaluated by comparing the flutter boundaries with those predicted using computational

fluid dynamics solutions to the unsteady Navier–Stokes equations. In addition, several alternative approaches to the

classical approximations are also evaluated: two different viscous approximations based on effective shapes and

combined approximate computational approaches that use steady-state computational-fluid-dynamics-based

surrogate models in conjunction with piston theory. The results indicate that, with the exception of first-order piston

theory and Newtonian impact theory, the approximate theories yield predictions between 3 and 17% of normalized

root-mean-square error and between 7 and 40% of normalized maximum error of the unsteady Navier–Stokes

predictions. Furthermore, the demonstrated accuracy of the combined steady-state computational fluid dynamics

and piston theory approaches suggest that important nonlinearities in hypersonic flow are primarily due to steady-

state effects. This implies that steady-state flow analysis may be an alternative to time-accurate Navier–Stokes

solutions for capturing complex flow effects.

Nomenclature

fApg = estimated aeroelastic system matrix
a = nondimensional offset between the elastic axis and

the midchord, positive for elastic-axis locations
behind midchord

ao, ai,
bi, �Ai

= coefficients used for damping and frequency
identification

a1 = speed of sound
b = semichord, �c=2�
C�x� = local deviations of kriging model
CL;SS,
CL;SURSS

= static component of lift coefficient computed using
a computational fluid dynamics and a
computational-fluid-dynamics-based surrogate

CM;SS,
CM;SURSS

= static component of moment coefficient about the
midchord computed using a computational fluid
dynamics and a computational-fluid-dynamics-
based surrogate

Cp = pressure coefficient
fCpg = estimated aeroelastic system matrix
�Cp = component of piston theory pressure due to

combined surface velocity and surface inclination

Cp;SS = component of piston theory pressure due strictly
to surface inclination

Cp;vel = component of piston theory pressure due strictly
to surface velocity

c = chord length, reference length
cl, cm = coefficients of lift and moment about the

elastic axis
FZ = flutter prediction parameter
F��j� = intermediate function used to compute the flutter

prediction parameter
h = plunge degree of freedom of the airfoil
hi = states in state-space representation of

autoregressive model
K = diagonal generalized stiffness matrix
Kh, K� = spring constants in pitch and plunge
k = discrete time
L = sectional lift force
L1 = normalized maximum error
M = diagonal generalized mass matrix
MEA = sectional aerodynamic moment about the

elastic axis
Mf = flutter Mach number
M1 = freestream Mach number
m = Mass
nm = number of modes
p, p1 = pressure and freestream pressure
Q = vector of generalized forces
q = vector of generalized degrees of freedom
qi = generalized displacements
q1, qf = dynamic pressure and dynamic pressure at flutter
R = gas constant for air
R�x� = global approximation of kriging model
r = real part of eigenvalue
r� = nondimensional radius of gyration of the airfoil
S = sample sites of the parameter space
S� = airfoil static imbalance
s = imaginary part of eigenvalue
Te = sample time
t = time
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V1 = freestream velocity
vn = normal velocity of airfoil surfaces
W = snapshot matrix, computational fluid dynamics

response data to s
wd = displacement of the surface of the structure
Xj, Yj = flutter parameter matrices
fXpg = state matrix
x, y, z = spatial coordinates
xrot = point about which airfoil angle of attack is

measured
x� = nondimensional offset between the elastic axis and

the cross-sectional center of gravity
y�x� = kriging approximation
Z�x; t� = position of structural surface
Zstr�x� = function describing surface geometry
� = pitch degree of freedom
�s = angle of attack
� = ratio of specific heats
�k�1 = input for autoregressive moving-average model of

aeroelastic system
� = damping ratio
� = estimated matrix eigenvalue
�m = airfoil mass ratio
� = air density
� = slope of the airfoil surface
�i = vector of displacements for mode i
! = frequency
!h = frequency corresponding to stiffness associated

with the plunge degree of freedom of the airfoil
!� = frequency corresponding to stiffness associated

with the pitch degree of freedom of the airfoil

I. Introduction

H ISTORICALLY, the development of airbreathing hypersonic
vehicles has encountered difficulties due in part to the inability

to survive the extreme temperatures associated with prolonged
hypersonic flight. This is reflected by the cancellation of several past
hypersonic vehicle programs, such as the National Aerospace Plane
[1,2] of the 1980s and the VentureStar reusable launch vehicle
program [2] of the 1990s. Despite previous setbacks, the need for
low-cost reusable launch vehicles and the desire of the US Air Force
for unmanned hypersonic vehicles, continues to sustain research in
hypersonic vehicle technologies [3–11].

Hypersonic vehicle configurations will consist of long, slender
lifting-body designs, where the body and aerodynamic control
surfaces are flexible due to minimum-weight restrictions. Further-
more, these vehicles operate [12–15] over aMach number range of 0
to 15 andmustflywithin the atmosphere for sustained periods of time
to meet the needs of an airbreathing propulsion system [16]. The
combined extreme aerodynamic heating and loading acting on the
airframe produces complex interactions between the flow, flight
dynamics, structural response, controllers, and propulsion system.
These interactions have received only limited attention in the past
[17–20]. Moreover, the impracticality to test aeroelastically and
aerothermoelastically scaledmodels inwind-tunnels [21], a common
practice in the subsonic and supersonic flow regime, implies that
aeroelastic simulations are critical for this flight regime.

A challenging aspect in computational aeroelastic analysis of
hypersonic vehicles is accurate and efficient modeling of the
unsteady aerodynamic forces. Historically, due to the limited capa-
bilities of computational facilities, past work has used a number of
approximate unsteady aerodynamic theories, each of which assume
inviscid flow and neglect real-gas effects [22–29]. Computational
efficiency and ease of implementation make these methods attractive
for preliminary design and sensitivity analysis of hypersonic
configurations [13,30–34]. However, systematic evaluation of these
approaches is needed to provide a general characterization of their
accuracy in hypersonic flow. At the other end of the spectrum,
advances in computing capabilities have enabled the use of compu-
tational fluid dynamics (CFD) modeling of unsteady aerodynamics

in hypersonic aeroelastic studies [34,35]. However, such approaches
remain impractical for detailed aerothermoelastic analysis over an
extended trajectory [34,36,37]. Thus, another important issue is
identification of new modeling approaches for unsteady hypersonic
aerodynamics that provide adequate fidelity in cases where classical
approximate approaches become unreliable.

The quasi-steady [38] nature of hypersonic flowfields (where
wake effects can be ignored, since disturbances cannot propagate
upstream) has motivated study on the incorporation of steady-state
CFD flow analysis into unsteady aerodynamic models [36,39,40].
The potential to use steady-state flow analysis is appealing because it
provides a means to capture complex flow phenomena neglected by
classical aerodynamic theories, is not limited by the geometry of the
surface, and is significantly more computationally efficient than
time-accurate CFD analysis. Such an approach was investigated by
Scott and Pototzky [36] using steady CFD to develop a quasi-steady
hypersonic aerodynamic model. Separate solutions for the static and
harmonic portions of the pressure were obtained using boundary
conditions reflecting the unsteadiness of the flow. The static compo-
nent of pressure was computed over each deflected mode shape. For
the harmonic component of pressure, two different approaches were
investigated. One approach used a transpiration boundary condition.
The other computed an effective deflected mode shape using the
expression for wash velocity to relate surface geometry to surface
velocity. The method was evaluated using a wing operating at Mach
numbers of 5, 10, and 15 and reduced frequencies of 0.05. Compar-
isons with unsteady CFD computations demonstrated improvement
in the aerodynamic loads using the CFD-based quasi-steady
aerodynamics relative to piston theory [36]. However, it is not clear if
first-, second-, or third-order piston theory was used for comparison
with the quasi-steady CFD aerodynamics.

In a recent hypersonic aeroelastic study [39], steady-state CFD
flow analysis was used to approximate the unsteady aerodynamic
loads by computing the generalized aerodynamic forces (GAFs) as
purely a function of the instantaneous surface inclination to the flow.
This approximation was based on the hypothesis that the GAFs in
hypersonic flow are a strong nonlinear function of the structural
displacement (i.e., instantaneous inclination to the flow) and a weak
function of the velocity of displacement (i.e., wash velocity). Note
that the effect of structural displacement leads to aerodynamic
stiffness terms, while wash velocity leads to aerodynamic damping
terms. The impact of neglecting aerodynamic damping terms on the
aeroelastic response was investigated by considering the flutter of a
simple two-degree-of-freedom double-wedge airfoil using third-
order piston theory and both steady and unsteady Navier–Stokes
aerodynamics. It was concluded that the neglect of the wash
velocities on the pressure increased the error of the steady-state CFD
approach beyond that of the simpler third-order piston theory
approximation. Thus, it is evident that aerodynamic damping
remains important for aeroelastic analysis in hypersonic flows.

The overall goal of this paper is to systematically evaluate several
approximate unsteady hypersonic aerodynamic models suitable for
aeroelastic analysis. The specific objective is to provide a comparison
of hypersonic aeroelastic flutter boundaries, computed for the
double-wedge typical section shown in Fig. 1, using both approxi-
mate models and CFD solutions to the unsteady Navier–Stokes (NS)
equations. The approximate models considered are 1) piston theory

Fig. 1 Two-degree-of-freedom typical section geometry.
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(PT), 2) Van Dyke’s second-order theory (VD), 3) an unsteady
shock-expansionmethod (SE), 4) unsteadyNewtonian impact theory
(NI), 5) the approximation of viscous effects with piston theory using
effective shape corrections, and 6) a static CFD approximation
corrected for unsteady effects. Note that the focus of this work is on
modeling of the unsteady GAFs. Thus, the effects of aerodynamic
heating are not considered.

II. Approximate Aerodynamic Models

The approximate models considered in this paper are briefly
described in this section.

A. Piston Theory

Piston theory was developed by Lighthill [22], who noted that at
highMach numbers the shockwaves and expansion fans on an airfoil
form at small angles to the undisturbed flow. This implies that
streamwise gradients are small compared to gradients perpendicular
to the flow. Furthermore, since velocity components parallel to shock
waves and expansion fans are unchanged, the component of
disturbances perpendicular to the flow are large compared to the
component of disturbances parallel to the flow. Consequently, any
plane slab of fluid that is initially perpendicular to the undisturbed
flow remains perpendicular as it moves both downstream and in its
own plane under the laws of one-dimensional unsteady motion
[22,41]. This realization of the flow is based on the Hayes equiv-
alence principle [41], which states that “a rotational hypersonic flow
on a slender body is equivalent to an unsteady flow in a space having
one dimension less.”

1. Classical Piston Theory

Using this approximation of the flow, the position of a portion of
solid wall bounding a slab of fluid moves normal to the flowwith the
velocity vn such that

vn �
@Z�x; t�
@t

� V1
�
@Z�x; t�
@x

�
(1)

where

Z�x; t� � wd�x; t� � Zstr�x� � �xrot � x��s (2)

and from Fig. 1,

wd�x; t� � �fh�t� � �x � ba���t�g (3)

Note that V1, the velocity of the freestream, is the approximate
velocity of the slab of fluid as it moves downstream. This charac-
terization of the flow implies that the change in pressure on the
surface of a vehicle is analogous to a piston moving in a one-
dimensional channel [22,23], as shown in Fig. 2.

Assuming the piston generates only simple waves and no changes
in entropy, the local pressure, denoted by p�x; t�, is therefore

p�x; t�
p1

�
�
1� � � 1

2

vn
a1

� 2�
���1�

(4)

Note that use of Eq. (4) assumes no shock is present. Lighthill [22]
demonstrates that a third-order binomial expansion of Eq. (4) in
terms of vn=a1 yields errors within 6% of both the simple wave and
shock-expansion predictions of pressure. Furthermore, this error is
less than the difference between the simplewave prediction of Eq. (4)
and the shock-expansion pressure [22]. Thus, the pressure coefficient
on an oscillating surface is given by the following simple point-
function relationship:

Cp�x; t� �
2

M2
1

�
vn
a1
� �� � 1�

4

�
vn
a1

�
2

� �� � 1�
12

�
vn
a1

�
3
�

(5)

Note that this derivation assumes that the freestreamMach number is
sufficiently large and themagnitude of the normal component offluid
velocity never exceeds the speed of sound in the undisturbed fluid
[22,23]: i.e.,

M2
1 � 1 and M1

�
� �

�
wdmax

c

��
!maxc

V1

��
< 1 (6)

Thus, the accuracy of the piston theory pressure diminishes with
increasing Mach number and surface inclination to the freestream
[22,23,28].

2. Local Piston Theory

For problems that exhibit significant three-dimensional flow and/
or high Mach numbers and surface inclinations, Eqs. (1) and (5) can
be modified by replacing freestream flow quantities with locally
computed flow quantities from a steady-state flow analysis. This
modified approach is known as local piston theory (LPT)
[27,40,42,43]. Note that for LPT, the thickness Zstr and static
angle-of-attack �s terms in Eq. (2) must be deleted, since the flow is
locally parallel to the surface after the steady-state flow analysis.
Thus, for local piston theory, Eqs. (1), (2), and (5) become,
respectively,

vn �
@Z�x; t�
@t

� Vlocal

�
@Z�x; t�
@x

�
(7)

Z�x; t� � wd�x; t� (8)

Cp�x; t� �
2

M2
local

�
vn
alocal

� �� � 1�
4

�
vn
alocal

�
2

� �� � 1�
12

�
vn
alocal

�
3
�
(9)

B. Van Dyke’s Second-Order Theory

Van Dyke’s supersonic second-order theory [24,27] is an approxi-
mate aerodynamic theory commonly used in supersonic and hyper-
sonic research. Assuming irrotational flow, the nonlinear velocity
potential equation is given by

�a2l � ~�
2
x� ~�xx � �a2l � ~�

2
y� ~�yy � �a2l � ~�

2
z� ~�zz � 2 ~�y

~�z
~�yz

� 2 ~�x
~�z

~�xz � 2 ~�x
~�y

~�xy � 0 (10)

where ~� is the nonlinear velocity potential; al is the local speed of
sound; and subscripts x, y, and zdenote differentiationwith respect to
x, y, and z, respectively. The local speed of sound is related to a1 by

a2l � a21 �
� � 1

2
� ~�2

x � ~�
2
y � ~�

2
z � V2

1� (11)

Equation (10) is solved by introducing a perturbation potential,Fig. 2 Model for loading on an equivalent piston.
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~�� V1�x��pot� (12)

so that

�pot;yy ��pot;zz � 	2�pot;xx �M2
1

�
� � 1

2
�2�pot;x ��2

pot;x

��2
pot;y ��2

pot;z���pot;xx ��pot;yy ��pot;zz� � 2�pot;x�pot;xx

��2
pot;x�pot;xx ��2

pot;y�pot;yy ��2
pot;z�pot;zz

� 2�pot;y�pot;z�pot;yz � 2�pot;x�1��pot;z��pot;zx

� 2�1��pot;x��pot;y�pot;xyg (13)

where 	�
����������������
M2 � 1
p

. Equation (13) is solved using an iterative
procedure. The first-order solution is obtained by neglecting
nonlinear terms of �pot derivatives in Eq. (13). This yields the wave
equation:

�
�1�
pot;yy ��

�1�
pot;zz � 	2�

�1�
pot;xx � 0 (14)

This linearized solution is then substituted into the right-hand side of
Eq. (13) in order to determine the second-order solution.

The first-order equation of two-dimensional supersonic flow is
given by

�
�1�
pot;zz � 	2�

�1�
pot;xx � 0 (15)

The general solution is given by

�
�1�
pot�x; z� � a�1��x � 	z� � b�1��x� 	z� (16)

where a�1� and b�1� are determined from the first-order boundary
conditions. Substituting Eq. (16) into Eq. (13) and neglecting third-
order-and-higher terms yields

�
�2�
pot;zz � 	2�

�2�
pot;xx � 2M2

1

��
�� � 1�M2

1
2	2

� 1

�
	2�

�1�
pot;x�

�1�
pot;xx

��
�1�
pot;z�

�1�
pot;xz

�
(17)

The solution to Eq. (17) for flow past a single boundary (i.e., one
surface of an airfoil) is then given by

�
�2�
pot�x; z� � a�2��x � 	z� � b�2��x� 	z�

� �� � 1�M4
1

4	2
z��1�pot;x�

�1�
pot;z (18)

where a�2� and b�2� are determined from the second-order boundary
conditions. For flow past a curved surface, shown in Fig. 3, the
surface is defined by a continuous function:

z� �
Z�x� (19)

where �
� 1 and Z�x� �O�1�. The solution to the first-order
problem is given by

�
�1�
pot �� �


Z�x � 	z�
	

(20)

and the second-order perturbation potential is given by

�
�2�
pot �� �


Z�x � 	z�
	

� �
2
�
Z�x � 	z� @Z�x � 	z�

@�x � 	z�

� �� � 1�M4
1

4	3
z

�
@Z�x � 	z�
@�x � 	z�

�
2

�
�
M2
1

2	2

��
�� � 1�M2

1
2	2

� 2

�Z
x�	z

0

�
@Z���
@�

�
2

d�

�
(21)

The velocity components of the flow are determined from the
potential field given in Eq. (21):

u=V1 ��pot;x v=V1 ��pot;y w=V1 ��pot;z (22)

Assuming isentropic flow, the pressure coefficient is then given by

Cp�
2

�M2
1

��
1� �� 1

2
M2
1

�
1��V1�u�

2� v2�w2

V2
1

�� �
��1
� 1
�

(23)

Using Eqs. (21–23) and neglecting terms of �
3 and higher, the
pressure coefficient is given by

Cp�x� �
2

	
�

@Z�x�
@x
� �� � 1�M4

1 � 4	2

2	4

�
�

@Z�x�
@x

�
2

(24)

If the local steady angle of attack, given by �
�@Z�x�=@x�, is replaced
by the quasi-steady angle of attack, which for thin bodies is given by
vn=V1, the pressure coefficient is [27,33]

Cp�x; t� �
2

M2
1

�
M1
	

vn
a1
�M

4
1�� � 1� � 4	2

4	4

�
vn
a1

�
2
�

(25)

Despite the fact that each expression was derived using a different
approach, a comparison between the Van Dyke second-order quasi-
steady pressure coefficient, Eq. (25), and Lighthill’s piston theory
expression, Eq. (5), reveals similar expressions.Considering only the
first- and second-order terms in Eq. (5), the main difference is the
introduction of 	 in the coefficients of Eq. (25). However, note that
for increasing Mach number, 	! M1, and the two expressions
become identical. Because of the similarity of the expressions for
pressure, Van Dyke’s theory is also sometimes referred to as piston
theory. However, it is important to distinguish between the two
theories, since they are developed using different approaches.

C. Unsteady Hypersonic Shock-Expansion Method

Shock-expansion theory is a simple method for determining
various fluid quantities as the flow passes through shocks and
expansion fans that occur on a given shape [44]. For the double-
wedge airfoil in steady hypersonic flow shown in Fig. 4, the oblique

z

x

z x /

z Z(x)

Fig. 3 Flow past a curved wall [24].

s

M , P

M , P1 M , P2 M , P

Fig. 4 Oblique shocks and expansion fans on a double-wedge airfoil

[44].
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shock waves are at the leading edge and trailing edge, while
expansion fans occur at the midchord.

The basic procedure of the shock-expansion method [1,26]
consists of the following:

1) Computing the Mach number and pressure behind the oblique
shock at the nose using the wedge angle at the leading edge of the
body: i.e., �N .

2) Assuming that the flow is in isentropic expansion along the
surface downstream of the leading edge, the turning angle of theflow,
denoted by ��, is calculated from

���x� � �l�x� � �N (26)

where �l�x� is the local angle of inclination of the body at a given x
position along the airfoil.

The shock angle 	s, required in order to calculate the Mach
number and pressure behind the oblique shock, is obtained using a
nonlinear relation:

tan �N � 2 cot	s

�
M2
1sin

2	s � 1

M2
1�� � cos 2	s� � 2

�
(27)

Only the normal component offluid velocity is affected by an oblique
shockwave; therefore, theMach numberMN and pressurepN behind
the shock are determined using normal shock relations:

pN
p1
�
�
1� 2�

� � 1
�M2
1sin

2	s � 1�
�

(28)

and

MN �
1

sin�	s � �N�

����������������������������������������
M2
1sin

2	s � � 2
��1�

� 2
��1�M2

1sin
2	s � 1

vuut (29)

Finally, the pressure at any point along the surface of a body is
determined from ���x�, MN , and pN , using the Prandtl–Meyer
expansion formula:

p�x� � pN
�
1� � � 1

2
MN���x�

� 2�
��1

(30)

In [26], the extension of these relations to unsteady flow is discussed.
This is accomplished using a similar approach to that of [27,33],
where the expression for the steady pressure was extended to an
unsteady pressure by replacing the steady inclination angle of the
airfoil surface in Eqs. (27–30) with the quasi-steady inclination: i.e.,

�N�t� � tan�1
vn�xN; t�
V1

�l�x; t� � tan�1
vn�x; t�
V1

(31)

Combining Eqs. (26–31), the pressure coefficient for unsteady
hypersonic shock-expansion theory is given by

Cp�x; t� �
2

�M2
1

��
pN
p1

��
1� � � 1

2
MN���x; t�

� 2�
��1
� 1

�
(32)

When using this approach, it is assumed that the body has a sharp
leading edge with an attached shock.

D. Unsteady Newtonian Impact Theory

The distance between the shock and surface of a vehicle
diminishes as the Mach number of the flow increases [1,30]. For a
fluid moving over relatively simple shapes at a sufficiently high
Mach number (i.e.,M1 � 1), it can be assumed that the speed and
direction of the gas particles in the freestream remain unchanged
until they strike thewindward surface of the vehicle [1,16,30]. Using
this assumption and ignoring intermolecular forces, the normal
component of momentum of the impinging fluid particle is lost,
while the tangential component of momentum is conserved
[1,16,30]. Consider a surface, shown in Fig. 5, which is exposed to
hypersonic flow.

Using this model, the change in momentum for a constant-area
stream tube normal to the surface is given by [30]

��1U1 	 n̂��U1 � Uw� � �pw � p1�n̂ (33)

where p1, �1, and U1 are the freestream pressure, density, and
velocity vector, respectively; Uw and pw are the velocity vector and
pressure on the surface; and n̂ denotes the unit vector along the
outward normal to the surface. Since the normal component of
momentum is zero at the body surface, this reduces to

pw � p1 � �1�U1 	 n̂�2 (34)

and therefore the pressure coefficient is given by

Cp � 2

�
U1 	 n̂
jU1j

�
2

(35)

In Fig. 5, note that jU1j � V1. Furthermore, for a surface at an
inclination �l to the flow,

U1 	 n̂��V1 sin �l (36)

Thus, the pressure coefficient using Newtonian impact theory is
given by

Cp � 2sin2�l (37)

Note that for

U1 	 n̂ 
 0 (38)

the flow is in the aerodynamic shadow. In this region, Cp is assumed
to be zero.

Note that Eq. (37) represents a flow condition over a generic
surfacewhereM1 !1 and � ! 1 [1,16,30]. This corresponds to a
shock wave outlining the body surface and an infinitesimal shock
layer between the body and the shock. To achieve better accuracy at
lower Mach numbers, Eq. (37) is typically replaced by

Cp � �Cp�maxsin
2�l (39)

where

�Cp�max�
2

�M2
1

��
��� 1�2M2

1
4�M2

1 � 2��� 1�

� �
���1�
�
1� �� 2�M2

1
�� 1

�
� 1

�
(40)

which corresponds to the pressure coefficient at the stagnation point
of the body. The expression in Eq. (39), known as modified
Newtonian impact theory [1,16], is the approach investigated here.

As before, the unsteady aerodynamic expression is obtained by
replacing the steady inclination angle with the quasi-steady angle
[28]:

Cp�x; t� � �Cp�maxsin
2

�
tan�1

�
vn
V1

��
(41)

As noted in [1], this theory is referred to as Newtonian impact theory,
since it resembles a flow model derived by Sir Isaac Newton. Note
that Newtonian impact aerodynamics is intended for high Mach

l
M 1

V ,n V ,

V

Fig. 5 Newtonian flow model [16].
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number flows and/or for portions of the flow that have a large
inclination to the surface of a body [27–29,41].

E. Approximate Model for Viscous Effects Using Effective Shapes

In hypersonic flow, inviscid–viscous interactions, where the
boundary layer displaces the outer inviscid flow causing a body to
appear thicker, become significant [1,16,30]. This apparent thickness
influences both the surface pressure distribution and the vehicle
aeroelastic stability [31,32,34]. Previous work [32] investigated a
simple approximation for these effects in aeroelastic computations
by adding a static boundary-layer displacement thickness to a lifting
surface. The addition of the effective thickness improved piston
theory correlations with experiments; however, in some cases it
resulted in overly conservative flutter boundary predictions.

To further examine such an approach, twomethods are considered
here for computing the static boundary-layer displacement. The first
uses semi-empirical, compressible flat-plate boundary-layer rela-
tions tomodify the shape of airfoil sections and is considered because
it was used previously in aeroelastic analysis [32]. The second
approach uses steady pressure data generated from the solution of
steady Navier–Stokes equations.

1. Semi-Empirical Boundary-Layer Displacement Thickness Equations

The semi-empirical relation used in [32] is given in Cox and
Crabtree [45] as

Zfp�x� �
� � 1

� � 1

�
0:664� 1:73

TW
T0

�
M2
1

��������
Cw
Rex

s
x (42)

Equation (42) is based on the assumption of laminar flow with weak
viscous interactions. This equation is modified by additional
manipulations. First, it is assumed thatPr� 1, and the adiabatic wall
condition, i.e., TW � TAW, is introduced:

TW
T0
� 1 (43)

Next, the Chapman–Rubesin coefficient Cw is computed from

Cw �
�w
�1

T1
TW

(44)

where TW is given by

TW � T1
�
1� � � 1

2
M2
1

�
(45)

and �w is given by Sutherland’s law: i.e.,

�w � 1:458 � 10�6
T1:5
W

TW � 110:4
(46)

Note that Eq. (46) assumes that TW is in units of Kelvin, resulting in
�w that has units of kg=�m 	 s�. Using Eqs. (42–46) in conjunction
with freestream properties of the fluid and the position x along the
airfoil yields the approximate effective shape of the airfoil due to a
viscous boundary layer: i.e.,

Zeff�x� � Zfp�x� � Zstr�x� (47)

2. Boundary-Layer Displacement Thickness Approximated from

Steady-State CFD Flow Analysis

The amount of viscous interaction between the outer inviscid flow
and flow within the boundary layer can vary between strong and
weak, depending on position along the surface of a body [1].
Furthermore, boundary layers in hypersonic flow are often charac-
terized by both laminar and turbulent regions, with a specific
transition point along the body [16]. Both of these issues degrade the
accuracy of the effective shape given by Eq. (42) for the aerodynamic
surface. The accuracy in calculating the displacement thickness can

be improved, however, by using a CFD solution based on the steady
Navier–Stokes equations. In such an approach, the effective shape
correction is obtained from the steady pressure distribution by
establishing a point-function relation between the pressure and the
surface of the body. Since piston theory provides such a relation, it is
a convenient choice for this approach.

The steady component of the piston theory pressure coefficient is
obtained from Eq. (5) by neglecting all time dependent terms. For
zero angle of attack, this is given by

CpPT�x� � 2
M1

�
dZeff
dx
� ���1�

4
M1

�
dZeff
dx

�
2

� ���1�
12
M2
1

�
dZeff
dx

�
3
�

(48)

Equating the steady CFDNavier–Stokes coefficient of pressure with
Eq. (48) yields a third-order polynomial for dZeff=dx,

CpPT�x� � CpNS�x� � 0 (49)

Solving this equation at each surface grid point results in two
complex roots and one real root that represents the slope of the effec-
tive airfoil shape at that grid point. The complete effective shape,
Zeff�x�, can then be obtained from this slope, dZeff=dx, by integrating
along the length of the airfoil and assuming zero displacement
thickness at the leading edge.

F. Static Flow Approximation with Piston Theory Correction

As previously discussed, despite the fact that hypersonic flows are
quasi-steady, previous work [39] has demonstrated that the use of
purely steady-state CFD flow analysis to model the unsteady aero-
dynamics compares less favorable to unsteady NS flow analysis than
simpler approaches such as third-order piston theory. This indicates
that unsteady effects cannot be ignored entirely when modeling the
GAFs. It is hypothesized here that despite the importance of unsteady
effects, the quasi-steady nature of the flow implies that they are of
reduced importance compared to the steady flow effects. Thus, they
may be reasonably approximated as a perturbation about a steady
flow condition using simple aerodynamic models such as piston
theory.

To construct a PT correction to the static CFD analysis, the
aerodynamic pressure terms dependent on wash velocity must be
identified. Substituting Eq. (1) into Eq. (5) yields the following
equations:

Cp�x; t� � Cp;vel�x; t� � Cp;SS�x; t� � �Cp�x; t� (50)

where

Cp;vel�x; t� �
2

M1V1

�
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2V2
1

�
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2
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6V3
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�
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�
3

(51)
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� � 1

V1

�
@Z

@t

��
@Z

@x

�
� �� � 1�M1

2V2
1

�
@Z

@t

�
2
�
@Z

@x

�

� �� � 1�M1
2V1

�
@Z

@t

��
@Z

@x

�
2

(53)

Equations (51) and (53) represents components of pressure due to
aerodynamic damping, while Eq. (52) is the steady-state pressure
contribution from piston theory, leading to aerodynamic stiffness
terms. Note that Eq. (53), which represents the second- and third-
order piston theory contributions to the wash-velocity terms, also
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depends on the surface inclination (@Z=@x). For this approach,
Eq. (52) is replaced with the steady-state pressure computed from a
CFD Navier–Stokes flow analysis. This approach is denoted here as
the NSSS-PT method. Note that in order to increase computational
efficiency and ease of implementation, the steady-state NS lift and
moment coefficients were computed by constructing a kriging
surrogate, as described in Appendix A.

III. Aeroelastic Problem and Its Solution

The quality of the approximate unsteady hypersonic aerodynamic
models described in the previous sections are evaluated using the
two-degree-of-freedom airfoil shown in Fig. 1. Two separate aero-
elastic solutions are generated and compared: the first for the
approximate aerodynamic models and the second implemented by
CFL3D for the full-order CFD-based aeroelastic analysis.

A. Aeroelastic Solution Using Approximate Unsteady Aerodynamics

Assuming a linear system and no structural damping, the
equations of motion for this simple system can be obtained using
Lagrange’s equations:

m �h� S� ��� Khh��L S� �h� I� ��� K���MEA (54)

where the sectional aerodynamic forcesL andMEA are calculated by
integrating the unsteady aerodynamic pressure coefficient:

L�
Z
b

�b
q1�Cp� _h; �; _�� dx (55)

MEA ��
Z
b

�b
q1�x � ba��Cp� _h; �; _�� dx (56)

The spatial integrations of pressure are carried out numerically using
Gaussian quadrature of order 2, while the time integration is carried
out numerically using the ODE45 solver in MATLAB®.

B. Aeroelastic Solution Using Navier–Stokes Flow Analysis

The NASA Langley CFL3D code [46,47], used previously by the
authors [34,42,48] to conduct studies on the hypersonic aeroelastic
behavior of generic reusable launch vehicles and lifting surfaces, is
also used in this study for CFD-based aeroelastic analysis. The code
contains a Navier–Stokes solver, deforming mesh algorithm, and
structural solver, enabling CFD-based aeroelastic analysis.

The aeroelastic approach underlying the CFL3D code is similar to
that described in [49,50]. The equations are derived by assuming that
the general motion wd�x; y; z; t� of the structure is described by a
finite modal series given by Eq. (57). The functions �i�x; y; z�
represent the free-vibration modes of a structure:

wd�x; y; z; t� �
Xnm
i�1

qi�t��i�x; y; z� (57)

The aeroelastic equations of motion are obtained from Lagrange’s
equations, which yield

M �q�Kq�Q�q; _q; �q�; qT � 
q1 q2 . . . qnm � (58)

where the elements of the generalized force vector are given by

Qi �
Z
S

q1�i�Cp�q; _q; �q� dS (59)

The aeroelastic equations are written in terms of a linear
state-space equation (using a state vector of the form

 . . . _qi�1 qi _qi qi�1 . . . �T), and a modified state-transition-
matrix integrator is used tomarch the coupledfluid–structural system
forward in time. This process yields a time history of the modal
displacements, modal velocities, and generalized forces.

C. Flutter Boundary Identification

The flutter conditions at a given altitude are determined from a set
of aeroelastic transients computed at several Mach numbers and
corresponding dynamic pressures. The frequency and damping
characteristics of each transient response, as a function of the
structural configuration and operating conditions used in Eq. (54),
are determined using autoregressive moving-average (ARMA)
system identification [48].

The approach is based on a single-input/single-output deter-
ministic ARMA model of the aeroelastic system, with 2nm
autoregressive (AR) and one moving-average (MA) coefficients
[51]. The model has the following form:

wkd �
X2nm
i�1

aiw
k�i
d � b1�k�1 (60)

where 2nm AR coefficients are used to determine the aeroelastic
system damping and frequencies, and one MA coefficient is
sufficient for identifying an aeroelastic static offset [51]. To identify
the damping and frequency, the transient aeroelastic response is
represented by the following AR model:

wkd �
X2nm
i�1

aiw
k�i
d � 0 (61)

This can be written in state-space form as

fXpgk�1 � fApgfXpgk wkd � fCpgfXpgk (62)

where

fApg �

�a1 1 0 	 	 	 0

�a2 0 1 	 	 	 0

..

. ..
. ..

. . .
. ..

.

�a2nm�1 0 0 	 	 	 1

�a2nm 0 0 	 	 	 0

2
666664

3
777775 (63)

and

fCpg � 
 1 0 0 	 	 	 0 � (64)

The state vector fXpgk is defined as

fXpgk �

8>>><
>>>:

wkd
h1�k�
..
.

h2nm�1�k�

9>>>=
>>>;

(65)

with

wkd ��a1wk�1d � h1�k � 1�
h1�k� � �a2wk�1d � h2�k � 1�

..

.

h2nm�2�k� � �a2nm�1wk�1d � h2nm�1�k � 1�
h2nm�1�k� � �a2nmwk�1d (66)

The state-space description of theARmodel in Eq. (62) is in observer
form and is completely observable. The aeroelastic system damping
and frequencies are determined from the eigenvalues of the estimated
matrix [51], fApg, given in Eq. (63). These can be written as

�j � rj � isj �j�nm � rj � isj (67)

where j� 1; 2; . . . ; nm. Note that the AR model is in the discrete-
time domain. The aeroelastic modal damping and frequencies in the
continuous-time domain are given by [51]
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�j �
1

2Te
loge�r2j � s2j� !j �

1

Te
tan�1

sj
rj

(68)

In this study, the AR coefficients are determined from the aeroelastic
responses using the subroutine AR from the system-identification
toolbox in MATLAB. The sampling times used to calculate the AR
coefficients from the response data are

Te �



2�!n�max

(69)

where �!n�max is the maximum system natural frequency in radians/
second.

Recently, a flutter parameter for discrete-time systems has been
derived using the AR coefficients of an ARMA model [52]. For
binary flutter problems, such as that considered here, the flutter
parameter is linear [48,52] with dynamic pressure for 0:4qf<
q1 < 1:0qf. The advantage of this parameter is that it limits the
number of subcritical responses required to locate the flutter
boundary to two.

The flutter parameter is given by [52]

FZ �
F��2nm � 1�
F��2nm � 3�2 (70)

where

F��j� � det�Xj � Yj� (71)

and

fXjg �
�A2nm

	 	 	 �A2nm�j�1

0 . .
. ..

.

0 0 �A2nm

2
64

3
75; fYjg �

�Aj�1 	 	 	 �A0

..
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0
�A0 0 0

2
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3
75

(72)

and 8>>><
>>>:

�A2nm
�A2nm�1

..

.

�A0

9>>>=
>>>;
�

8>>><
>>>:

1

a1
..
.

a2nm

9>>>=
>>>;

(73)

This approach is implemented by computing the flutter parameter at
the same altitude and configuration from aeroelastic transients for
two different Mach numbers. The flutter dynamic pressure, and
subsequently the flutter Mach number, is computed using a linear
extrapolation from these two points. If the predicted flutter dynamic
pressure is not within 40% of the dynamic pressures used to compute
the aeroelastic transients, the process is repeated at an increased
Mach number.

IV. Results

An assessment of the different aerodynamic theories over different
ranges of Mach numbers is important in order to identify ranges of
applicability for hypersonic aeroelasticity. Thus, aeroelastic results
generated using the various unsteady aerodynamic models are
compared to those computed using Navier–Stokes aerodynamics in
terms of flutter boundaries for 5:0<M1 < 35.

An important parameter for comparison in the hypersonic flow
regime is the hypersonic similarity parameter, which is the product of
the freestream Mach number and surface inclination of a body. This
parameter is useful because it describes similarity for different flow/
body combinations [1]. For the typical section, hypersonic similarity
is given byM�, where � is the thickness ratio of the airfoil.

Note that in order in order to generate flutter over the range
5:0<M1 < 35 for the double-wedge airfoil configuration discussed
below, relatively low altitudes (40,000 ft–60,000 ft) are required.
Clearly hypersonic vehicles cannot operate in such conditions.
However, this is a common issue in the computation of flutter

boundaries for representative hypersonic structural configurations
when aerodynamic heating is neglected [53]. These altitudes are
acceptable for the present study, since the scope is limited to
assessing prediction tools for the GAFs at typical hypersonic Mach
numbers. Studies that seek to compute realistic flutter boundaries of
hypersonic configurations must incorporate aerodynamic heating
effects [29,34,54].

A. Computational Model for the Double-Wedge Typical Section

The parameters describing the double-wedge typical section are
listed in Table 1. The mass ratios and Reynolds numbers for the
airfoil at the altitudes considered are listed in Table 2. These
parameters were selected based on the 75% span location of the
Lockheed F-104 wing. This configuration was chosen because it
resembles low-aspect-ratio control surfaces on proposed hypersonic
vehicles and also because data on its geometric and structural
properties are readily available [34]. The CFD domain, shown in
Fig. 6, is a 2 � 705 � 65C-gridwith 705 points around the airfoil and
its wake (577 points on the airfoil surface), one point extending
spanwise one unit length to close the control volume, and 65 points
extending radially outward from the surface. This grid configuration
and density was selected based on a mesh refinement study in [34]
that demonstrated convergence of lift and moment coefficients to
within 5%and average y� values for thefirst grid point off the surface
to less than 2.5. Computational inputs for the CFL3D flow analysis
are listed in Table 3.

B. Flutter Boundaries for the Double-Wedge Typical Section

The results presented in this section were obtained for the typical
section shown in Fig. 1. First, results generated using the classical
approximate aerodynamic theories (i.e., PT, VD, SE, and NI) are
compared to the NS results. Next, a similar comparison is made
between the flutter boundaries computed using effective shape
corrections and NS aerodynamics. Finally, flutter boundaries
computed using the LPTandNSSS-PT methods are compared to both

Table 1 Parameters describing

the double-wedge airfoil

Parameter, unit Value

c, m 2.35
� 0.0336
m, kg=m 94.2
r� 0.484
!h, Hz 13.4
!�, Hz 37.6
x� 0.2

Table 2 Mass ratio and Reynolds

number of the typical section at
various altitudes

Altitude, ft �m Re

40,000 69.87 2:3 � 108

60,000 179.86 1:8 � 108

Fig. 6 Computational domain of the double-wedge airfoil.
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results generated from classical approximations and NS aero-
dynamics.

1. Flutter Boundaries Obtained Using Classical Unsteady Hypersonic

Aerodynamic Theories

The flutter boundaries of the typical section computed using the
classical approximate unsteady aerodynamicmodels, as well as from
the full-order unsteadyNavier–Stokes equations, are shown in Fig. 7.
All results were generated from a zero-angle-of-attack aeroelastic
steady-state condition. Note that second-order piston theory was
excluded because it resulted in nearly equivalent flutter boundaries to
that predicted using Van Dyke’s second-order theory.

It is evident that, with the exceptions of the Newtonian impact and
first-order piston theory flutter boundaries, the agreement is good to
excellent for a wide range of Mach numbers (8:0<M1 < 30:0) and
hypersonic similarity values (0:25<M1� < 1:0). At an altitude of
40,000 ft, second- and third-order PT, VD, and SE all predict similar
flutter boundaries to the NS result, even for the high flutter Mach

numbers that result from placing the elastic axis ahead of midchord.
However, both NI and first-order PT overpredict the NS flutter
boundary for the entire range of cases considered. Increasing the
altitude to 60,000 ft produces higher flutter Mach numbers and
corresponding increases in differences between the flutter bound-
aries; however, agreement generally remains reasonable for all but
the NI and first-order PT predictions.

Several conclusions can be drawn from these results. First, the
divergence in flutter boundary prediction between first-order PTand
the remaining aerodynamic models indicates that airfoil thickness,
which is a second-order effect, is quite important in the hypersonic
regime. Also, for the typical section, reasonable accuracy in
predictions can be expected for second- and third-order PT, VD, and
SE as long asM1� < 1:0. However, NI theory, which is preferred for
blunt bodies at highMach numbers, is not appropriate for such values
of M1�. Finally, it is clear that for this simple configuration and
operating conditions, the effect of viscosity is negligible on theflutter
boundary.

2. Flutter Boundaries Using Effective Shape Corrections

The apparent minimal impact of viscosity on the flutter boundary,
and the use of effective shapes in previous hypersonic flutter analysis
[32] motivates further study here. One explanation may be that the
displacement thickness of the boundary layer is too small to impact
aeroelastic stability. An alternative explanation may be that the addi-
tional dissipation due to viscosity counteracts the drop in stability
associated with increased apparent thickness. Regardless, additional

Fig. 7 Variation in the flutter Mach number of a double-wedge typical

section as a function of elastic-axis offset parameter a.

Chord Position (m)

D
is

p
la

ce
m

en
tT

hi
ck

ne
ss

(m
)

-1 -0.5 0 0.5 1
-0.1

-0.05

0

0.05

0.1 Airfoil
CFD, M = 10.0
CFD, M = 15.0
CFD, M = 20.0

a) 40,000 feet
Chord Position (m)

D
is

p
la

ce
m

en
tT

hi
ck

ne
ss

(m
)

-1 -0.5 0 0.5 1
-0.1

-0.05

0

0.05

0.1 Airfoil
CFD, M = 15.0
CFD, M = 20.0
CFD, M = 25.0

b) 60,000 feet

Fig. 8 Effective shapes generated using steady CFD pressure data at 40,000 ft and 60,000 ft.
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Fig. 9 Effective shapes generated using steady CFD pressure data,

M1 � 15:0.

Table 3 CFL3D parameters for 2-D Navier–Stokes

aeroelastic calculations

Turbulence model Spalart–Allmaras
(no laminar regions)

No. subiterations 30
CFL� 5.0
�t, s 0:25e � 3
No. of time steps 250
No. of cells 0.46e5
No. processors 6
Computational time,a min 17

aComputational time is for 2.60 GHz Opteron processors.
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insight can be gained into the role of viscosity in hypersonic
aeroelastic analysis by examining boundary-layer displacement
thicknesses in hypersonic flow and by computing flutter boundaries
using inviscid aerodynamics augmented with effective shape
corrections.

Figures 8–10 depict effective shapes for the typical section, at
various operating conditions, generated using both steady CFD
Navier–Stokes pressure distributions and the laminar flat-plate (FP)
boundary-layer relation given in Eq. (42). Note that the CFD-based
effective shape was computed by assuming a turbulent boundary
during the CFD flow analysis. Several observations on the influence
of the boundary layer can bemade. First, it is evident from Fig. 8 that
increasing the Mach number increases the thickness of the effective
shape at each of the altitudes considered. However, it is apparent
from Fig. 9 that the thickness of the boundary layer, at a givenMach
number, does not monotonically changewith increasing altitude. It is
also clear from Fig. 10 that the laminar flat-plate relation, given in
Eq. (42), results in a significantly smaller effective shape over the aft
portion of the airfoil.

Flutter boundaries of the typical section were computed using
third-order PT with the flat-plate and CFD effective shape cor-
rections. These boundaries are compared with that predicted using
unsteady Navier–Stokes aerodynamics in Fig. 11. For the lower
flutterMach numbers at 40,000 ft, the addition of the effective shapes
does not significantly alter the flutter boundary of the typical section.
For the higher flutter Mach numbers, where presumably viscous
displacement effects are more pronounced, the flutter boundary
computed using the CFD-based effective shape is noticeably offset
from the NS result. Furthermore, comparison of Figs. 7 and 11
illustrates that the addition of the CFD-based effective shape to third-
order PT produces an overly conservative prediction where third-
order PToriginally matched theNS flutter boundary and provided no
improvement at the worst-case, 60,000 ft, a��0:4 flutter point. In
contrast, the laminar flat-plate effective shape improved the piston
theory correlation with the NS flutter boundary for all elastic-axis
locations and both altitudes, despite the invalid assumption of a
laminar boundary layer. These results suggest that the use of an effec-
tive shape correction may not be a reliable means for incorporating
viscous effects.

3. Flutter Boundaries Using Hybrid CFD/Piston Theory Approaches

For computation of the LPT flutter boundaries, only the first-order
terms from Eq. (9) are retained. This enables investigation into the
importance of flow nonlinearities due to static flow effects through
comparison of flutter results generated using first-order LPT,
classical first-order PT, and unsteady Navier–Stokes aerodynamics.
Also note that the local flow quantities are computed using a steady-
state Euler CFD flow analysis. In hypersonic flow, Navier–Stokes
aerodynamics are preferred due to the potential importance of vis-
cous effects on the surface pressure [1]. However, the identification

Fig. 10 Comparison of effective shapes generated using both a laminar FP approximation and steady CFD pressure data.

Fig. 11 Variation in the flutter Mach number, as a function of elastic-
axis offset parameter a, computed using third-order piston theory with

effective shape corrections and Navier–Stokes aerodynamics.

Fig. 12 Variation in the flutter Mach number, as a function of elastic-

axis offset parameter a, computed using first-order piston theory (first
PT), local piston theory (LPT), and unsteady Navier–Stokes

aerodynamics (NS).

Fig. 13 Variation in the flutter Mach number, as a function of elastic-
axis offset parameter a, computed using steady-state Navier–Stokes

aerodynamics (NSSS), piston-theory-corrected steady-state NS aerody-

namics (NSSS-PT), and unsteady Navier–Stokes aerodynamics (NS).
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of the local Mach number is difficult in a Navier–Stokes analysis,
since it must be computed at the edge of the boundary layer, which is
not known a priori.

The flutter boundaries computed using LPT are compared to the
first-order PT and the unsteady NS flutter boundaries in Fig. 12. It is
clear that while first-order PT quickly diverges, the LPT flutter
boundary nearly matches the NS prediction for all but the a��0:4
elastic-axis location at 60,000 ft. Thus, flow nonlinearities due to
shocks and expansion fans over the steady airfoil are incorporated
into the LPT approach. The agreement between the NS and LPT
predictions in conjunction with the divergence of the standard first-
order PT prediction demonstrates the potential to capture primary
flow nonlinearities using a static flow analysis.

The flutter boundaries computed using the NSSS-PT approach are
compared to those predicted using unsteady NS results in Fig. 13. In
addition, the flutter boundaries predicted using a purely steady-state
NS flow analysis (NSSS) are included, which are only a function of
instantaneous surface inclination. TheNSSS-PT flutter boundaries are
in excellent agreement with the unsteady NS prediction for all
elastic-axis offset locations and operating altitudes. In contrast, the
NSSS flutter boundaries are in excellent agreement with the unsteady
NS prediction for elastic-axis locations aft of midchord but are in
poor agreement as the elastic axis is moved ahead of midchord.
Furthermore, for elastic-axis locations ahead of midchord, the
differences in the flutter boundary increases with Mach number.
These results further support the hypothesis that the GAFs are
primarily dependent on steadyflow effects. However, unsteady terms
should clearly not be neglected entirely.

Note that only first- and second-order PT aerodynamic damping
terms from Eqs. (51) and (53) were used for the NSSS-PT method,
since these yielded the best correlation with the unsteady NS pre-
dictions. Specifically, the inclusion of second-order terms resulted in
a flattening of the flutter boundary for a <�0:2 at 60,000 ft, similar
to the NS flutter boundary, while the first order only or the addition of
the third-order terms resulted in overpredictions of the flutter Mach
number. Note that this discrepancy is also evident when comparing
VD, third-order piston theory, and LPT results in Figs. 7b and 12b.

4. Error Metrics for the Predicted Flutter Boundaries

The correlation of the approximate methods with the NS flutter
boundary predictions are quantified in Table 4 using the normalized
root-mean-square error (NRMSE) and normalized L1 error metrics
defined in Eqs. (74) and (75):

NRMSE �

����������������������������������������������������P
N
n�1

1
N
�ROMn � Fulln�2

q
Max�Full� �Min�Full� (74)

L1 �
Max�jROM � Fullj�

Max�Full� �Min�Full� (75)

Note that the errors of first-order PTand NI were not included, since
these approaches were clearly not accurate for the present case.
Furthermore, second-order PT is also not listed, since it produces
practically equivalent flutter boundary predictions.

As noted previously, each of the approaches are in close agreement
with the NS predictions at 40,000 ft, with larger errors at the higher
Mach numbers at 60,000 ft. It is interesting that the VD flutter
boundaries are in better agreement with the NS results than third-
order PT. This is primarily due to the second-order models prediction
of a flattening of the flutter Mach number, for a < �0:2 at 60,000 ft,
that follows the NS analysis. Note that in the derivation of piston
theory, Lighthill [22] acknowledges uncertainty in the inclusion of
the third-order binomial expansion term that yields third-order piston
theory. This is an interesting result that warrants further study on
more realistic configurations, so as to further examine the relative
merits of second-order versus third-order piston theory.

A second interesting result is the outperformance of the laminar
flat-plate effective shape correction compared to the CFD-based
correction. Comparing the errors of these twomethods with the error
for standalone third-order piston theory demonstrates that the
laminar flat-plate correction yields a noticeable reduction in error,
while the addition of a CFD-based correction results in an increase in
error. However, as noted above, the improvement of the laminar flat-
plate correction is dubious, since the NS predictions are based on an
assumption of fully turbulent flow. These error metrics further
emphasize that the effect of viscosity on the aeroelastic behavior
cannot be reliably captured using effective shape corrections.

Based on the errors listed in Table 4, the best approaches relative to
unsteady NS predictions are VD/second-order PT, SE, and NSSS-PT.
Each of these have an NRMSE error within 6% over all the cases
considered (8:0<M1 < 30:0, 0:25<M1� < 1:0), and an L1
norm within 12%. For further comparison, the 60,000 ft flutter
boundaries from these three approaches and unsteady NS aerody-
namics are plotted in Fig. 14. It is clear that while the average and
maximum errors of these three approaches are similar, the VD and
NSSS-PT most closely follow the unsteady NS flutter boundary trends
with elastic-axis position. Furthermore, for the majority of the
boundary, the VD prediction is unconservative compared to the
NSSS-PT and SE predictions. Thus, for this configuration, theNSSS-PT
approach is noticeably more accurate compared to all the modeling
approaches considered.

V. Conclusions

This paper examines the performance of various approximations
to the unsteady aerodynamics in hypersonic flow by computing the
aeroelastic stability boundaries for a typical section. Despite the
simplicity of the configuration studied, several noteworthy conclu-
sions can be drawn from the results. First, the use of first-order piston
theory aerodynamics in hypersonic flow results in highly unconser-
vative flutter boundary predictions. In contrast, for hypersonic
similarity values up to 1.0: Van Dyke’s second-order theory, second-
order piston theory, unsteady shock-expansion theory, and a hybrid

Table 4 Error metrics (in percent) for the flutter Mach number of a double-wedge typical section for

several different aerodynamic modeling approaches relative to a CFD Navier–Stokes prediction

Third PT VD SE LPT NSSS-PT NSSS EFF (FP) EFF (CFD)

NRMSE (40,000 ft) 5.0 2.1 2.9 3.5 2.3 8.6 3.1 7.4
NRMSE (60,000 ft) 14.0 7.8 6.3 9.3 4.0 45.3 9.8 23.7
NRMSE (all) 10.5 5.7 4.9 7.0 3.3 30.9 7.2 16.8
L1 30.6 11.2 12.0 19.3 7.4 89.6 16.0 38.5

Fig. 14 Variation in the flutter Mach number, as a function of elastic-

axis offset parameter a, computed using VD, SE, and NSSS-PT, and

unsteady NS aerodynamics; 60,000 ft.
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steady-state Navier–Stokes/piston theory method produce flutter
boundaries within an average difference of 6% and maximum
difference of 12%, relative to unsteady Navier–Stokes predictions.
The good correlation with the unsteady Navier–Stokes flutter
boundary and the inviscid approximate theories indicates that the
impact of viscosity on the flutter boundaries of a thin typical-section
is negligible. Finally, the high error of first-order piston theory
contrasted with the good-to-excellent correlation of the first-order
local piston theory indicates that dynamic aeroelastic stability is
strongly influenced by thickness effects and that for the typical
section, the effect of thickness on the generalized aerodynamic forces
can be effectively captured using steady-state flow analysis. The
merit of using steady-state flow analysis to generate flutter boundary
predictions is further supported by the excellent agreement of the
hybrid Navier–Stokes/piston theory method. This implies that
steady-state CFD flow analysis may be a means to incorporate
complex flow effects at significantly reduced computation times
compared to time-accurate analysis. However, more rigorous test
cases and thorough investigation are needed to fully assess such an
approach for general use.

Appendix A: Surrogate Modeling of Steady-State
Hypersonic Aerodynamics

To avoid the significant expense of repeated CFD computations,
Navier–Stokes based kriging surrogates [55–60] were used in
conjunction with the NSSS-PT method. Kriging is an interpolation
method useful for replacing expensive computer models with
computationally efficient approximations of nonlinear functions
[56,61,62]. Typical prediction times are on the order of a fraction of a
second. Kriging interpolation was used in this study because this
method is well suited to approximating nonlinear functions and does
not require a priori assumptions on the form of the full-order function
that is to be approximated.

A kriging surrogate is generated from training data, or snapshots,
of the full-order simulation of the computer model. A kriging
approximation of the function of interest is characterized by local
deviations C�x� from a global approximation R�x�, as defined in
Eq. (A1) [55]:

y �x� �R�x� �C�x� (A1)

Typically, R�x� is a polynomial regression function, which is
assumed to be either constant, linear, or quadratic, and the constants
of the polynomials are generally determined in a least-squares sense.
The quantity C�x� provides the local deviations by means of a
correlation function, defined by the user. For this study, the kriging
surrogate was constructed using the DACE [58] (Design and
Analysis of Computer Experiments) toolbox inMATLAB. This tool-
box allows one to efficiently evaluate constant, linear, and quadratic
regression functions in addition to several different correlation
functions (e.g., Gaussian and cubic spline). Both Gaussian
[55,56,58,59] and cubic spline [58] correlation functions were
investigated.

The NS-based surrogate was constructed to replace Cp;SS�x; t� in
Eq. (52). Three parameterswere used to generate the surrogate for the
double-wedge typical section: namely, 1) freestream Mach number,
2) pitch angle�, and 3) altitude. The ranges considered for these three
parameters are listed in Table A1. The surrogate was constructed
from 200 full-order Navier–Stokes CFD sample points, selected
using LHSDESIGN inMATLAB, with the criterion to maximize the
minimum distance between sample points over five-hundred
iterations.

In addition, note that theNSSS-PT requires Eqs. (A2) for computing
the sectional lift and moment forces, since the CFD surrogate is used
to compute the force coefficients directly. Thus, in Eqs. (A2) only the
piston theory pressure corrections are integrated:

L�
Z
b

�b
q1��Cp;vel �� �Cp� dx� 2bq1CL;SURSS

MEA ��
Z
b

�b
q1�x � ba���Cp;vel �� �Cp� dx

� �2b�2q1CM;SURSS
� 2baq1CL;SURSS

(A2)

Surrogates were constructed for the coefficients of lift, CL;SURSS
and

moment, CM;SURSS
for:

x � 
M1 � altitude � (A3)

where the coefficients of lift and moment (about the midchord) were
computed for each snapshot using Eqs. (A4) and (A5):

CLSS
� 1

2b

Z
b

�b
�Cp dx (A4)

CMSS
�� 1

�2b�2
Z
b

�b
x�Cp dx (A5)

The accuracy of the surrogate was evaluated relative to a set of 50
Navier–Stokes computations of the lift and moment coefficients.
These 50 test cases varied all three parameters simultaneously, at
sampling points different from those used to construct the surrogate.
A zero-order polynomial regression function and the Gaussian
correlation function minimized the normalized L1 and NRMSE for
the above test cases. Furthermore, the kriging model of the static
Navier–Stokes aerodynamic coefficients produced less than 4%
maximum error and less than 1% NRMSE, indicating a highly
accurate surrogate for the CFD flow analysis. The computational
time required to compute the static Navier–Stokes lift and moment
coefficients was O�1e�4 s�.
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