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Control-oriented models of hypersonic vehicle propulsion systems require a reduced-order model of the scramjet

inlet that is accurate to within 10%but requires less than a few seconds of computational time. To achieve this goal, a

reduced-order model is presented, which predicts the solution of a steady two-dimensional supersonic flow through

an inlet or around any other two-dimensional geometry. The model assumes that the flow is supersonic everywhere

except in boundary layers and the regions near blunted leading edges. Expansion fans are modeled as a sequence of

discretewaves instead of a continuous pressure change.Of critical importance to themodel is the ability to predict the

results of multiple wave interactions rapidly. The rounded detached shock near a blunt leading edge is discretized

and replaced with three linear shocks. Boundary layers are approximated by displacing the flow by an empirical

estimate of the displacement thickness. A scramjet inlet is considered as an example application. The predicted

results are compared to two-dimensional computational fluid dynamics solutions and experimental results.

Nomenclature

a = local sound speed, m=s
c = specific heat, J=kg � K
H = length normal to flow, m
h = specific enthalpy, J=kg
L = length tangent to flow, m
M = Mach number
n = number of a given quantity
Pr = Prandtl number
p = pressure, Pa
R = normalized gas constant, J=kg � K
R = 8314:47 J=kmol � K
r = radius, m
T = temperature, K
u = velocity magnitude, m=s
W = molecular weight, kg=kmol
x = forward body-frame coordinate, m
Y = mass fraction
z = vertical body-frame coordinate, m
� = shock angle
� = ratio of specific heats
� = thickness of layer, m
" = ratio
� = ln p0=p
� = dynamic viscosity, kg=m � s
� = flowpath angle
� = � � 	 � 
� �=2

 =

����������������
M2 � 1
p

	 = sin�11=M, Mach angle
� = Prandtl–Meyer function
� = density, kg=m3


 = wave angle
� = flux of subscripted quantity
 = reference angle

Subscripts

A, B, . . . = region label
a, b, . . . = point label
bs = curved portion of bow shock
cl = property of inlet cowl
e = value at edge of boundary layer
ex = expansion
i = species index
j = index of expansion discretization
k = region index
le = leading edge
p = constant pressure
s = constant entropy
sp = pertaining to species
w = wall value
0 = stagnation value
1 = index for inlet portion of flow
2 = index for inlet outflow
1 = freestream

Superscripts

� = value at Mach number of 1
� = reference value for boundary layer

I. Introduction

T HE ability to estimate quickly the properties of a supersonic
flow is critical for the design of a control-oriented model of a

hypersonic vehicle. For example, a control algorithm must rapidly
compute the thrust along a vehicle trajectory as the flight Mach
number and angle of attack continuously change. The algorithmmust
also calculate the thrust for any perturbations to the design trajectory.
Although simple tools such as Newtonian impact theory and piston
theory can be used to estimate lift and drag, estimating the
performance of a dual-mode scramjet requires accurate information
about the properties of the fluid flow as it leaves the inlet and enters
the isolator. The use of high-fidelity computational fluid dynamics
(CFD) can be employed to determine the flow through the inlet
accurately, but this solution requires too much computational time to
be viable for control-oriented modeling. On the other hand, very
simple models have been used by Bogar et al. [1], Bolender and
Doman [2], Brown et al. [3], Chavez and Schmidt [4], Smart [5], and
others to estimate the flow conditions in the inlet. These models
ignore the effects of wave interactions and assume that the flow is
uniform throughout the internal portion of the inlet. Although these
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assumptions may be valid for a particular design under certain flight
conditions, they become inaccurate when modeling flight at off-
design Mach numbers and angles of attack.

A satisfactory approach must require a relatively small amount of
computational time and still yield a relatively accurate solution for
the inlet flow. Instead of solving directly for the flow conditions at
each point in the flow (as is done in CFD), the method presented here
solves for the positions of the relevant waves, which separate regions
in which the flow properties are uniform. The proposed method
rapidly provides solutions for the locations of the shock waves and
expansions using established two-dimensional supersonic theory.
Tomake this possible in a digital computing environment, expansion
fans are approximated as a number of discrete isentropic waves, and
curved surfaces are modeled as a number of straight sections. After
determining the locations at which two or more waves intersect, the
program solves the interactions among the waves as a two-
dimensional Riemann problem. In many ways this is a generalized
and automated version of the method of characteristics.

To account for blunted leading edges, the oblique shock is
displaced a vertical distance from the leading edge to match the
empirical shape of the detached shock given by Billig [6]. The wall
boundary layer is approximated by displacing the flow by a distance
equal to the boundary-layer displacement thickness, which is given
by established empirical formulas.

An example scramjet inlet geometry, shown in Fig. 1, is used for
validation throughout the paper. The coordinates of the vertices of
this geometry are shown in Table 1. The fourth shock is designed to
turn the flow back to horizontal, and it exactly intersects the shoulder
in the upper surface of the inlet. Therefore, there are no additional
shocks downstream of this fourth shock. Under these flight con-
ditions, the compression ratio of the inlet is p2=p1 � 30:61, and the
pressure recovery factor is p0;2=p0;1 � 0:6841.

This geometry is selected to have exactly four shocks and no
spillage for aflightMach number ofM1 � 8:0 and an angle of attack
of �� 0 assuming a sharp-nosed vehicle in an inviscid, calorically
perfect (constant cp) flow. The ideal shock waves for this condition
are shown in light gray in Fig. 1. An example of the inviscid flow
for a nonideal flight condition is shown in Fig. 2. When this inlet is
operated at off-design Mach numbers, additional waves are formed,
as shown in Fig. 2a. The expansion at the convex corner at station 1d,
which is often called the shoulder, is modeled as two waves to
highlight the discrete nature of the shock/expansion interaction in
this model. The box in Fig. 2a illustrates the region shown in Fig. 2b,
and the box in Fig. 2b illustrates a region in which a wave interaction
problem occurs, which is solved as a Riemann problem. About 100
wave interactions occur in the inlet shown in Fig. 2, which took 0.8 s
to compute.

The most important utility of the proposed reduced-order model is
the estimation of the inlet performance over a wide range of flow
conditions. For this investigation, the freestream Mach numbers
range from 6 to 12 and angles of attack from�2 to�5 deg. Also of
interest are the effects such as blunt noses, boundary layers, and
varying specific heats. Although the proposed methods should yield
accurate solutions to the inviscid flow problem, the greatly simplified
viscous models are included in this report, mostly to show how they
can be integrated with the rest of the solution algorithm.

Although the analysis of scramjet inlets was the primary
motivation for developing this solution method, it can be applied
to any two-dimensional geometry for which there are no subsonic
regions except for boundary layers and small subsonic regions in the
near vicinity of blunted noses. An example that demonstrates the
flexibility of the program is shown in Fig. 3. In this solution, the four
expansion fans generated at vertices of the airfoils are modeled as 20
discrete waves.

II. High-Temperature Two-Dimensional Wave Model

At the high static temperatures that occur in hypersonic flows, the
assumption of a calorically perfect gas, which is defined as one for
which cp is constant, becomes inaccurate. The well-established
theory for two-dimensional shocks and expansions, therefore, is not
applicable, and new equations for oblique shocks and expansion fans
are required.

Although there is a well-established theory for two-dimensional
shocks and expansions in a calorically perfect gas, the appropriate
equations for a calorically imperfect gas are rarely presented in

Fig. 1 Sketch of the coordinate system used for the sample inlet

geometry, with the x and z axes shown on separate scales. The inlet height
is H1 � z1e � z1a, and the height of the duct is H2 � z1e � z1d.

Table 1 Scaled geometry of the vertices of the reference

inlet with the physical scales set by H1 � 2:573 m

�x1k � x1a�=H1 �z1k � z1a�=H1

a 0 0
b 2.5759 0.1592
c 4.0457 0.3512
d 6.6416 0.8948
e 5.8824 1

Fig. 2 Discretized inviscid flow through the inlet for a flight Mach

number ofM1 � 12:0 and anangle of attack of�� 0. Thedarker shades

represent regions of higher temperature; white represents freestream
temperature, and black represents T=T1 � 8. The expansion at the

shoulder is modeled as two discrete waves.

Fig. 3 Inviscid flow over two diamond airfoils at an angle of attack of
�� 0 and a freestream Mach number of M1 � 2, where the darker

shades represent regions of higher pressure andwhite corresponds to the

lowest pressure.
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textbooks. The Prandtl–Meyer expansion analysis presented here is
similar to that of Emanuel [7], Ismail [8], and Zebbiche [9], whereas
the oblique shock analysis is similar to that of Emanuel [7] andTatum
[10]. However, none of these authors considered wave interactions,
which are the focus of the present work.

Two gas models are used with this proposed architecture for
comparison. The first gas model is the calorically perfect gas model,
in which the well-established two-dimensional shock/expansion
theory is used. The second gas model assumes a calorically
imperfect, nonreacting gas, in which specific heats vary with
temperature, but the molecular composition of the gas is assumed
to be constant. The equation of state p� �RT remains valid. For
air, significant amounts of oxygen begin to dissociate at static
temperatures of 2500K. In the flows considered in this investigation,
the flight Mach numbers ranged from 6.0 to 12.0 with freestream
temperatures between 200 and 300K. In theseflows, gas dissociation
does not play amajor role, and the nonreacting gasmodel is accurate.
However, for higher-temperature flows, a gasmodel that accounts for
chemical reactions would be needed.

The following subsections describe the calorically imperfect gas
model thatwas used and how itwas applied tomodelwaves andwave
interactions. In addition, a method for splitting a continuous two-
dimensional expansion wave into discrete waves is discussed. The
discrete expansion waves must satisfy all of the conservation laws
that are satisfied by the continuous expansion.

A. Calorically Imperfect Gas Model

For a real gaswithnsp species, the specific enthalpy as a function of
temperature is

h�
Xnsp
i�1

hiYi (1)

where hi is the specific enthalpy of species i, which is itself a
nonconstant function of T. For a nonreacting (frozen) gas, the
specific heat at constant pressure is

cp �
Xnsp
i�1

cp;iYi (2)

where cp;i � @hi=@T is the specific heat of species i. The ratio of
specific heats is

� �
cp

cp � R
(3)

where

R�R
Xnsp
i�1

Yi
Wi

(4)

is the normalized gas constant for the mixture.
The square of the sound speed is equal to the derivative of the

pressure with respect to the density under conditions of constant
entropy; a2 � �@p=@��s. For a nonreacting ideal gas, the result is

a2 � ��p=�� � �RT (5)

For a gas with a static temperature T and local velocity u, the
stagnation enthalpy is

h0 � h�T� � 1
2
u2 (6)

and the stagnation temperature is then given by solving h0 � h�T0�.
The stagnation pressure, which is the pressure that would be
measured if the flow is isentropically brought to rest, is

p0

p
� exp

�Z
T0

T

�

� � 1

dT

T

�
(7)

Then, for states A and B with the same stagnation pressure, the
pressure ratio is

�pB=pA� � exp���TA� � ��TB�� (8)

where ��T0� � 0, and

d�

dT
� �

1 � �
1

T
��

cp
RT

(9)

Because h0 is constant, � can be calculated beforehand and used at
any point in the flow.

B. Prandtl–Meyer Expansions

Prandtl–Meyer theory is used to predict the flow properties of an
expanding supersonic flow. To account for the varying cp of a
calorically imperfect gas, it is necessary to rewrite the equations
for the Prandtl–Meyer function. In addition to determining the
conditions downstream, Prandtl–Meyer theory can be used to predict
the conditions along the characteristics within the expansion fan. The
geometry of this situation is illustrated in Fig. 4.

Assuming �B < �A, the conditions downstream of a two-
dimensional expansion can be found using the equation

�B � �A �
Z
MA

MB

����������������
M2 � 1
p du

u
(10)

This expression comes from a geometric argument [11] that is
independent of the relationship between h and T. This can also be
written as a characteristic equation as

�B � �B � �A � �A (11)

where � is the Prandtl–Meyer angle. Because u�Ma, one can write

du

u
� dM

M
� da

a
(12)

for any gas model. Define three new expressions of

��
Z
M

1

����������������
M02 � 1
p da

a
(13)


�
����������������
M2 � 1
p

(14)

	� sin�1�1=M� � tan�1�1=
� (15)

Then Eqs. (10–15) yield the expression

�� 	� 
� � � �=2 (16)

for the Prandtl–Meyer angle.
In general, the differential element da cannot bewritten as a simple

function ofM and �. Instead, the strategy is towrite botha andM as a
function of T. The derivative of the sound speed with respect to
temperature is

da

dT
� 1

2

�
1

�

d�

dT
� 1

T

�
(17)

Fig. 4 Illustration of Prandtl–Meyer expansion wave.
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and the local Mach number is

M2 � 2�h0 � h�=a2 (18)

Although Eq. (13) appears at first to be a daunting expression, the
situation is not so difficult if the flow is adiabatic.

Because h0 is constant, � can be calculated beforehand and used
for all the expansions in aflow. Taking the derivative of Eq. (13) gives
the differential equation

d�

dT
� 1

2

�
1

�

d�

dT
� 1

T

� ����������������
M2 � 1
p

(19)

with the initial condition ��T�� � 0. The critical temperature T� is
the temperature of the flow when isentropically decelerated to a
Mach number of 1. Once the downstream temperature has been
calculated, the corresponding flow velocity is

uB �
������������������������������
2�h0 � h�TB��

p
(20)

The downstreampressure is given byEq. (8). For a calorically perfect
gas, a useful result is

���
�
������������
� � 1

� � 1

s
tan�1

������������������
� � 1

� � 1

2

s
(21)

which gives the traditional value for the Prandtl–Meyer function.
The angle of the first characteristic is 
A � 	A, and the last

characteristic has an angle of 
B � 	B � �B. However, this does not
resolve the flow between the first and last characteristics. To find the
Mach number along a characteristic for which the angle with the
freestream velocity is  , the characteristic equation is

�A � �� � � �� � (22)

Because  is a wave angle, it is the sum of the local flowpath angle
and the characteristic angle. Combining this fact with Eq. (22) yields
the expression

 � �A � 	� � � �� � (23)

For a calorically perfect gas, this equation has an explicit solution:

M�

�������������������������������������������������������������������������������������
1� � � 1

� � 1
tan2

� ������������
� � 1

� � 1

s �
�A �  �

�

2

��vuut (24)

The resolution within the expansion wave, given in Eq. (23),
provides amethod to discretize thewave. By selecting a set of angles,
 1; . . . ;  nex , for evaluation and wave angles, the wave can be split
into a set of regionswithinwhich the properties such asMachnumber
are constant. The regions are separated bydiscretewaves,which have
angles of 
1; . . . ; 
nex . Then the approximation is

~M� � �M� j� (25)

where 
j �  � 
j�1.
The current program selects values of j according to the rules of

Gaussian quadrature, but any distribution of angles between 
B and

A is valid. Once the evaluation angles,  1; . . . ;  nex , have been
selected, the intermediate temperatures, T1; . . . ; Tnex , are calculated
using Eq. (23).

The wave angles are selected so that mass flux through the
expansion wave is conserved. This gives the result

sin 
j �
sin �j�1 � "j sin �j��������������������������������������������������������

1� "2j � 2"j cos��j � �j�1�
q (26)

where "j � �juj=�j�1uj�1 is the ratio of nominal mass fluxes before
and after the jth discrete wave.

C. Oblique Shocks

It is necessary to rewrite the oblique shock equations to account for
the varying cp of a calorically imperfect gas. The present model is
valid for any gas that obeys the equation of state p� �RT and has a
known relationship between h and T. The geometry for this problem
is shown in Fig. 5.

The postshockflowmust be tangent to the surface, so conservation
of mass implies

�AuAHA � �BuBHB (27)

The characteristic length scales HA and HB are determined by
considering any point b on the shock in Fig. 5. Then

HB � LA tan�� � �B� (28)

and

HA � LA�sin �B � tan�� � �B� cos �B� (29)

Conservation of momentum in the direction tangent to the shock
states that the component of the velocity tangent to the shock is the
same upstream and downstream of the shock. Then

uA cos�� uB cos�� � �B� (30)

Define a compression ratio "� �A=�B. Because the postshock
density will always be greater than the preshock density, " varies
between 0 and 1. Equation (27) then has the solution

tan�� � �B� �
1 � "
2 tan �B

�

����������������������������������
1 � "
2 tan �B

�
2

� "

s
(31)

Conservation of momentum in the direction normal to the shock
states that the sum of the static and dynamic pressures normal to the
shock is unaffected by the presence of the shock. Thus,

�pB=pA� � 1� �M2
A�1 � "�sin2� (32)

Finally, conservation of energy requires that the stagnation enthalpy
is unaffected by the shock. Therefore,

hB � hA � 1
2
u2A�1 � "2�sin2� (33)

Equations (31–33) represent three independent equations for the
three unknowns, hB, pB, and uB, downstream of the shock.

For a calorically perfect gas,TB � hB=cp, and the equations can be
reduced to functions of �, �B, andMA only. For another gas model,
hB � h�TB�must be solved iteratively.Aswith the calorically perfect
gas, the compression ratio is not a function of the preshock pressure.
However, the initial absolute temperature now plays a significant
role.

D. Two-Dimensional Riemann Problem

Consider the case of two interacting waves, which are shown on
the left side of Fig. 6. The important parameters are the gas properties
in regions A and D. The flow pattern on the right side of Fig. 6 is
called the Riemann problem. It describes the situation in steady two-
dimensional compressible flow in which two uniform regions are in

Fig. 5 Geometry for an attached oblique shock wave.
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contact with each other. At the point of interaction, there are two
inconsistent flow conditions. To rectify this situation, the gas in both
regions must pass through a wave, as shown in Fig. 6.

The physical solution must have the property that the regions that
are not separated by a shock or expansion must have equal pressures
and flow in the same direction. Thus,

pB � pC and �B � �C (34)

A simple, though inefficient, solution method is to combine the
results of Secs. II.B and II.C into a single pressure-deflection
function:

pB � p�A; �B � �A� (35)

which takes as input all information about state A and a deflection
angle �B–�A, and returns a postwave pressure as output. If �B < �A,
the expansion relations of Sec. II.B are used, whereas if �B > �A, the
shock relations of Sec. II.C are used. The same function can be used
to determine pC using the formula

pC � p�D; �D � �C� (36)

Opposite signs are used for the lower shock because the wave
separating regions C and D is of the opposite family as the wave
separating regions A and B. Combining this pressure-deflection
function with the constraints of Eq. (34) gives an equation

p�A; �B � �A� � p�D; �D � �B� (37)

which is satisfied only by the correct value of �B.
To reduce the number of waves present in a flow solution, it is

advantageous to ignore waves that cause a negligible change in
conditions. For example, if TB=TA is very close to unity, the wave
separating regions A and B plays a very minor role. In the proposed
method, therefore, any of the three waves resulting from a wave
interaction is ignored if the temperature jump across it is below a
certain tolerance.

III. Proposed Method of Supersonic
Flow Discretization

The proposed reduced-order model is primarily concerned with
the lines that separate regions of the flow that are considered to have
uniform properties. These lines can be shock waves, discretized
expansionwaves, or solid surfaces, and they are referred to as paths in
the following description. As a result, the output of the program is a
list of polygons and corresponding lists that give the pressure,
density, etc., in each polygon. This is very similar to the output of a
two-dimensional finite volume code, only the grid is very coarse in
most of the flow. However, because the polygons are assembled

during the flow computation, there is no need to assemble a grid
a priori.

In addition to thewave theory of Sec. II,models are constructed for
regions of the flow in which the local Mach number is less than one.
Because information can travel upstream in these regions, they are
somewhat incompatible with the rest of the solution. The simple
models presented here provide an architecture that allows them to be
integrated with the otherwise supersonic flow.

A. Description of the Proposed Algorithm

The input to the program consists of two parts. The first part
determines the geometry of the flow, and it requires a list of polygons
that specify the solid surfaces in the flow. For example the reference
inlet shown in Fig. 1 has two input polygons: a list of six vertices
for the inlet ramp section and a list of three vertices for the cowl.
The second part of the input is the initial conditions. These are the
conditions upstreamof the input polygons. For example, in Fig. 3, the
initial conditions specify the flow along the left edge of the image.

Once the flow geometry and initial conditions have been specified,
the program proceeds by marching downstream and searching for
wave interactions or vertices of the input geometry. To accomplish
this, the program begins its analysis at the farthest upstream x
coordinate, xmax, and proceeds downstream toward the right-hand x
coordinate, xmin. As the program proceeds downstream, it tracks the
positions of all the straight lines, or paths, in the flow. These paths
includewaves, the surfaces of the input geometry, and the boundaries
of the flow domain.Within the program each of these straight lines is
tracked as a path that consists of a point and a propagation angle. The
program keeps track of all of the paths that intersect the vertical line
corresponding to the current x coordinate.

With the set of paths at a given x coordinate given, a list of possible
intersection points can be determined. Suppose the current x
coordinate is xk, and the paths are listed by ascending z coordinates.
Then two paths with coordinates zj and zj�1 have a downstream
intersection point of

xk;j � xk �
zj�1 � zj

tan 
j�1 � tan 
j
(38)

provided that 
j < 
j�1. Then the x coordinate of the next interaction
point, xk�1, is the minimum of all the xk;j and all of the vertices of the
input polygons that are downstream of xk.

Once an interaction point is found, a three-step process takes
place. First, the nature of the interaction is determined, and the local
flow problem is solved. This consists of determining the state
(pressure, flowpath angle, etc.) above and below the interaction
point. If one of the paths is a surface boundary, the downstream
conditions are determined by either a shock or an expansion.
Otherwise, the solution is determined by a Riemann problem as
described in Sec. II.D. The second step is to add the coordinates of the
interaction point to the polygons of the interacting regions. Finally,
the list of waves and their propagation angles at the current x
coordinate are updated so that the coordinates of the next interaction
point can be determined.

B. Downstream Averaging Model

At the downstream boundary of the reference inlet geometry, it is
useful to define the spatially averaged gas properties, which can be
input into a one-dimensional isolator or combustor model. With the
proposed inlet model, gas properties are not uniform at the
downstream boundary of the inlet because of the possible presence of
waves separating regions of different gas properties. The proposed
method to determine spatially averaged properties requires that the
total fluxes of mass, momentum, and stagnation enthalpy are
constant through the x� x2a plane. The geometry of this scheme is
shown in Fig. 7.

The mass flux into the averaging plane is

�� � �2u2H2 (39)

and the mass flux into the mixing plane is

Fig. 6 Geometry for a wave interaction with a shock and an expansion.

The region of flow in the graphic is the region of the box in Fig. 2. In the
general Riemann problem, both waves could be either a shock or an

expansion. The combination of waves here indicates pD > pA.
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�� �
Xn2
i�1

�1kiu1kiH1ki
cos �1ki (40)

where H1ki
is the height of region 1ki at its downstream edge.

Similarly, the momentum flux out of the inlet is

�u � �2u22H2 (41)

whereas the momentum flux into the averaging plane is

�u �
Xn2
i�1

�1kiu
2
1ki
H1ki

cos2�1ki (42)

Finally, the flux of stagnation enthalpy is

�h � �2u2H2h0;2 (43)

and the flux into the plane is

�h �
Xn2
i�1

�1kiu1kih0;1kiH1ki
cos �1ki (44)

Once the fluxes into the averaging plane have been calculated, the
state variables for the flow out of the inlet can be determined. The
density is u2 ��u=��, the stagnation enthalpy is h0;2 ��h=��,
and the density is

�2 �
��

u2H2

(45)

Then

h2 � h0;2 � 1
2
u22 (46)

and the pressure can be calculated from the equation of state.

C. Blunted Leading Edges

Because a real leading edge will not be infinitely sharp, a model is
needed to account for the curved bow shock around the leading edge.
The geometry of this problem is shown in Fig. 8. To minimize
computational time, the model must be relatively simple. Billig
reports [6] that the shock shape is approximately

�
xb � xbs
rle

� 1� �bs
rle

�
tan2
 � rbs

rle

� ���������������������������������������������
1�

�
zb � zbs
rbs

tan 


�
2

s
� 1

�
(47)

where �xbs; zbs� are the coordinates of a point on the bow shock, rle is
the nose radius, rbs is the radius of curvature of the shock along the
stagnation streamline, �bs is the standoff distance between the shock
and the stagnation point, and 
 is the angle of the oblique shock that
would be generated by the sharp nosewith the same deflection angle.
This expression results from the assumption that the shock shape
should be a hyperbola and that, far away from the leading edge, the
shock should be obliquewith the same shock angle as a sharp leading
edgewould generate. A suggested correlation for the shock radius of
curvature is [6]

rbs
rle
� 1:386 exp

�
1:8

�MA � 1�0:75
�

(48)

and the standoff distance is

�bs
rle
� 0:386 exp

�
4:67

M2
A

�
(49)

Fig. 7 Geometry of the averaging plane at x� x2a for the duct portion
of the inlet. The black lines represent waves from a solution to the flow

through the reference inlet. Region 1k1 is the lowest region that has a
boundary along the averaging plane, region 1k2 is the region above that,

etc. In this example, there are n2 � 6 regions that contact the averaging

plane.

Fig. 8 Graphical description of model for blunt leading edges. The

dashed lines represent the sharp leading edge and the oblique shocks

attached to it, and the hashed bold line represents the blunted leading
edge. The thick bold curve is the bow shock around the blunted leading

edge, and the gray line connecting points f, h, i, and g is the path of the

shock used in the model.
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These results are obtained from experimental results in which the
deflection angles are large, and there is evidence that they are not
accurate when the deflection angles are small [3]. When �zbs �
zb�=rle is large, Eq. (47) asymptotically converges to an oblique
shock that connects points h and f or points i and g in Fig. 8a
depending on which value of 
 is used.

Consider a general case in which the leading edge is situated so
that the preshock state above the leading edge is state A and the
preshock state below the leading edge is D, as marked in Fig. 8. In
most cases, states A and D are identical. In the case of a sharp nose,
the upper downstream state, B, is calculated using the standard
oblique shock relations with a deflection angle �B–�A. In the blunt-
leading-edge model, states B and C are calculated in the sameway as
in the sharp-leading-edge model, but the oblique shock is displaced
some distance in the z direction. This creates extra regions, E and F,
which must be calculated in some other manner.

Assuming that �B and��C are not necessarily the same angle, the
center of the circle that forms the blunt leading edge is located at

xa � xb
rle

�
cos 1

2
��B � �C�

sin 1
2
��B � �C�

(50)

and

za � zb
rle

�
sin 1

2
��B � �C�

sin 1
2
��B � �C�

(51)

Then the z coordinate of point h is

zh � zb
rle

cot 
B �
xa � xb � �bs

rle
� 1� rbs

rle
cot2
B (52)

and the z coordinate of point i is found using the same formula, only
replacing 
B with 
C. The vertical displacement distances are HE �
zh � za and HF � zi � za.

The remaining task is to estimate the conditions in regions E and F.
These regions will not be uniform in an actual flow because fluid
passes through different points on a curved shock. The streamline
passing through point f in Fig. 8a has the same postshock conditions
as regionB,whereas the streamline that intersects the shock at point d
passes through a normal shock and thus has a significantly higher
entropy. However, far away from the leading edge, region E has a
uniform pressure. The model further assumes that temperature and
velocity are also uniform throughout region E. To calculate TE and
uE, consider the conservation of mass flux through the line
connecting points a and h. Then,

�AuA cos �A � �EuE cos �E (53)

which can be used to iteratively solve for TE assuming there is a
relationship between TE and uE. For an adiabatic nose,

hA � 1
2
u2A � hE � 1

2
u2E (54)

D. Simple Boundary-Layer Model

The boundary-layer properties at the outflow of a scramjet inlet
can have a significant impact on the performance of the combustion
chamber. In addition, boundary layers tend to interact with and
strengthen a shock near a leading edge. For these reasons an effort
was made to include a model for a boundary layer. A displacement
thickness is calculated, and the edge of the boundary layer is
considered to be the actual surface of the vehicle. The displacement
thickness, which is denoted �, is calculated using Eckert’s reference
temperature method. For a turbulent boundary layer, the reference
temperature is

T� � 1
2
�Te � Tw� �

���������
Pr�

3
p

�T0 � Te� (55)

where Te is the temperature at the edge of the boundary layer, and Tw
is the temperature of thewall. The edge conditions are taken from the

entropy layer at a leading edge or whatever region is adjacent to the
vertex in general.

To simplify the model further, the shape of the boundary layer is
assumed to be a straight line connecting the current vertex and the
edge of the boundary at the next downstream vertex. Consider a line
that connects two vertices, a and b, of a polygon that represents an
object in the flow. The total distance along the polygon boundary
from the leading edge to the current vertex isLa, and the total distance
from the leading edge to point b is Lb. According to White [12], the
change in displacement thickness for a turbulent boundary layer is
approximately

�b � �a � 0:14
��

��ue
�L6=7

b � L
6=7
a � (56)

Because the boundary-layer edge is considered to be a surface in
this model, there is no flow across this surface. This means that the
oblique wave must account for the increased area of the surface.
Because the growth of the boundary layer is dependent on the
conditions behind the shock or expansion, this creates a feedback
between the strength of the wave in the inviscid region and the shape
of the boundary layer. The current viscous model solves this system
iteratively at each surface vertex that is not a trailing edge.

IV. Results

For validation the proposedmethod is applied to a hypersonic inlet
geometry that is a two-dimensional projection of an experimental
geometry investigated by Emami et al. [13]. Experimental data were
obtained for this configurationwith a freestreamMach number of 4.0
for a range of cowl angles. Section IV.A compares these data to the
results predicted by the two-dimensional reduced-order model.

The remaining results were obtained for an inlet geometry shown
in Fig. 1, which has the dimensions listed in Table 1. Figure 9
shows the results of the proposed method for the reference geometry
at several flight conditions. For the reference inlet, the current
implementation of the algorithm requires between 0.03 and 0.4 s
assuming a calorically perfect gas. For the calorically imperfect
gas model, the time required is between 0.8 and 6.5 s using
MathematicaTM. The current MATLAB® implementation requires
about half the computational time, and further reductions can be
expected using Fortran or C++.

Fig. 9 Reduced-ordermodel results for various flight freestreamMach

numbers at an angle of attack of �� 0, where the darker shades
represent regions of higher pressure, white represents freestream

pressure, and black represents p=p1 � 90. The expansion at the

shoulder is modeled using nex � 20 in each case.
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A. Comparison to Experiment

A sample geometry of the experiment of Emami et al. [13] is
shown in Fig. 10. The inlet has the opposite vertical orientation of the
inlet in Fig. 1 to be consistent with the experimental apparatus and
keep it clearly separate from the three-ramp inlet used elsewhere in
the paper.

The relevant dimensions of the inlet are shown in Table 2. In
Fig. 10, the angle between horizontal and the bottom surface of the
cowl leading edge is denoted �cl. The hinge for this rotation is directly
above (has the same x coordinate) as the inlet shoulder. In the
experimental data, �cl was allowed to vary between 0 and 11 deg.
However, small values of �cl cause the inlet to unstart.

The experiment of Emami et al. [13] had pressure taps, which can
measure static pressure along a surface at many points along the
centerline of the geometry. Three pressure taps downstream of the
cowl leading edge are used to compare the experimental results with
the reduced-order model results. The first pressure tap is along the
bottom surface of the cowl 5.84 cm downstream of the cowl leading
edge. The second pressure tap is on the bottom surface of the cowl
10.3 cm downstream of the cowl leading edge. The third pressure
tap is on the inlet ramp 0.23 cm upstream of the shoulder. These
pressures were recorded for a range of �cl. For comparison, the
pressures were calculated at the same points using the sharp-edged
viscous version of the proposed reduced-order model. The combined
results are shown in Fig. 11.

The internal section of the experimental inlet was only 5.08 cm
wide, meaning that the aspect ratio of the isolator was 5.0. Although
higher aspect ratios would better justify the assumption of a two-
dimensional flow (which is explicit in the proposed reduced-order
model), the predicted results are quite similar to the experimental
data. There is a 10% underprediction of the pressure at station 1,
which is likely due to a pressure increase caused by a bow shock at
the very slightly rounded cowl leading edge. This is also a possible
cause of the underpredicted pressures at the other two stations for low
values of �cl. There is also a disagreement about shock positions. The
evidence of a shock can be readily seen at stations 1 and 2 in both the
experimental and modeled data sets. However, the two data sets
disagree about the value of �cl that causes the shock to pass over each
station. This is most likely due to unmodeled shock/boundary-layer
interactions. The present reduced-order viscous model only models
shock/boundary-layer interactions at leading edges and other corners
of the inlet surface, and Fig. 10 clearly shows that the cowl shock
interacts with the boundary layer of the inlet ramp upstream of the
inlet shoulder. As a result, the present reduced-order model
underpredicts the angle of the reflected shock by about 1 deg.

At other locations, however, the predicted pressure matches
closely. Except for the incorrect shock position in state 1, all errors
are bounded to 10%. The remaining errors could be reduced by using
the model for a blunted leading edge. The edges were assumed to be

infinitely sharp in this comparison because no data for the edge
radius of the experimental setup were provided. This provides a
measure of experimental validation for the proposed method. A
comparison to experimental values of p2=p1 and p02=p01, as
defined in Sec. III.B, would be better, but that would be difficult data
to obtain experimentally.

B. Comparison to CFD

CFDwas used to compute the viscous flow over the reference inlet
at a flightMach number ofM1 � 10 and an angle of attack of �� 0.
The reference inlet was recreated by a two-dimensional grid
consisting of approximately 1:3 	 106 triangular cells. This grid was
constructed such that special attention was given to capturing the
correct boundary-layer effects along the length of the inlet ramps,
as well as providing for resolving appropriate oblique shock thick-
nesses inside the engine intake.

Fig. 10 Reduced-order solution for theEmami et al. [13] geometrywith
�cl � 6:5 deg, where the darker shades represent regions of higher

pressure, white represents freestream pressure, and black represents

p=p1 � 40.

Fig. 11 Comparison of experiment and reduced-ordermodel. The dots
are data fromEmami et al. [13], and the solid line shows the prediction of

the reduced-order model.

Table 2 Relevant lengths for the experimental inlet

of Emami et al. [13]; the inlet ramp has an 11 deg incline

Surface Length

Inlet ramp (horizontal) 24.816 cm
Inlet ramp (vertical) 4.8260 cm
Isolator height 1.0160 cm
Forward cowl length 11.176 cm

552 DALLE, FOTIA, AND DRISCOLL



The steady viscous simulation of the inlet was created using the
commercial CFDpackageCFD++, operating across a parallel cluster
of 8 AMD 64-bit Opteron processors, each with a minimum of 2 GB
of RAM. This arrangement allowed for a total simulation time of
approximately four days, consisting of just over 30,000 solver
iterations, in which a normalized convergence on the order of 10�4

was reached. The turbulence in the flow was modeled using a
standard k–" scheme.

The results of this CFD computation are shown in Fig. 12. The
CFD result appears very similar to that of Fig. 9c, which is the
reduced-order simulation of the same flight conditions. As a
quantification of this similarity, Fig. 13 shows the nondimensional
temperature along the downstream boundary of the inlet. Each
vertical segment of the result from the proposed inviscid calorically
imperfect model represents the temperature of one polygon of the
flow solution. The two results have the same trend, and the average
temperature, T2, is accurate to within 1.16%. The spatially averaged
properties from both solution methods are listed in Table 3. This
comparison shows that the calorically imperfect inviscid model can
be expected to predict the thermodynamic properties to within 10%.

C. Resolution of Discrete Expansion Fans

One of the key parameters directly affecting the amount of
computation time required in this model is the number of discrete
waves in an expansion fan, nex. Therefore, determining an
appropriate value ofnex is crucial formaximizing the efficiency of the
code. Figure 14 shows the relative error associated with using small
values of nex for one flight condition of the reference inlet. The three
quantities considered are the pressure recovery factor, p0;2=p0;1; the
compression ratio, p2=p1; and the average outflow Mach number,
M2. The large errors that occur when an expansion is modeled as a
singlewave can be explained by the fact that single-wave expansions

do not occupy any area, and as a result, the locations of the wave
interactions are not correct.

However, for any value of nex other than one, the results are quite
similar. Errors of less than 5% could likely be considered acceptable
considering that the error associated with assuming a two-
dimensional flow is at least as large. Therefore, the results of the
following sections are obtained using nex � 2.

D. Effects of Varying Flight Conditions on Reference Inlet

One of the most important benefits of this solution method is the
ability to estimate the performance of a scramjet inlet over a wide

Fig. 12 High-fidelity viscous flow solution as computed byCFD++. The

flight Mach number is M1 � 10, and the angle of attack is �� 0. The

color scale is the same as Fig. 9.

Fig. 13 Normalized temperature along the z axis of the inlet outflow
plane for both the calorically imperfect inviscid inlet model and a two-

dimensional CFD result.

Table 3 Averaged outflow properties of CFD and

calorically imperfect inviscid model

CFD Proposed model Relative error

p2=p1 34.70 35.39 0.0199
T2=T1 3.603 3.645 0.0156
u2=u1 0.9289 0.9302 0.0013
p0;2=p0;1 0.3331 0.3552 0.0664

Fig. 14 Relative errors in p0;2=p0;1 (bold line with circles), p2=p1
(dashed line with squares), and M2 (gray line with diamonds) plotted

against the expansion discretization parameter, nex, for the reference

inlet at a flight condition ofM1 � 10:0 and �� 0. The reference values
were obtained using nex � 40.

Fig. 15 Pressure recovery factor, p0;2=p0;1, plotted for the reference

inlet at various flight conditions. The design flight condition ofM1 � 8:0
and �� 0 is marked.
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range of flight conditions. Figures 15 and 16 show plots of the
pressure recovery factor and T2, respectively, for the reference inlet
assuming either a constant angle of attack or constant freestream
Mach number. For the cases requiring blunted leading edges, nose
radii of rle � 5 mm are assumed. For comparison, the results of a
further simplifiedmodel are shown as a dotted line in Figs. 15 and 16.
In this model there are only four shocks, which are assumed to have
the locations shown Fig. 1 regardless of flight conditions. In this
model there are no shock interactions, and the inlet outflow is always
uniform.

For the calorically perfect gas model, the flow can be
parameterized entirely by M1 and �. On the other hand, the
thermally perfect gas model also requires a stagnation enthalpy. To
determine h0, a constant dynamic pressure of 97:8 kPa is assumed.
The dynamic pressure and Mach number uniquely define a static
pressure. With the freestream pressure known, the freestream
temperature is determined using a standard atmosphere model.

Figure 15, which shows the effects of real gas considerations and
wave interactions on the pressure recovery factor for the reference
inlet, shows that the simplified model predicts performance
accurately near the design condition ofM1 � 8:0, �� 0. At higher
Mach numbers, themore realistic pressure recovery factor estimate is
much lower, that is, both the solid lines in Fig. 15 lie well below the
dotted line except at the design point. This can be explained by
the strong shocks that continue to reflect in the internal portion of the
inlet. For lower angles of attack, the simplified model actually
predicts a lower pressure recovery factor. This is because of the
expansion at the inlet shoulder, which is not considered in the
simplified model. Thus, the increased pressure recovery factor is
obtained at the cost of a lower static pressure.

For lower flight Mach numbers, the blunted leading edge has a
very significant effect. This happens because the blunted leading
edge of the cowl pushes the interaction of the cowl shock even further

upstream of the shoulder, as shown in Fig. 17. Because the cowl
shock has moved upstream, it does not interact with the expansion at
the shoulder before reflecting off the inlet body. Similar effects occur
when the angle of attack is increased above the design condition,
resulting in sharp discontinuity in the pressure recovery factor near
�� 0:6 deg. An increasing angle of attack has an effect similar to a
decreasing Mach number because the initial bow shock must turn
the flow through a greater angle, which increases the strength of the
shock. Thus, if the preshock Mach number is held constant, the
postshock Mach number will decrease as the angle of attack
increases.

The predictions of the calorically perfect and calorically imperfect
gas models are compared in Fig. 16. For a given enthalpy, the
calorically imperfect model will predict a lower temperature. Thus, it
is possible for the temperature estimate to be significantly changed
by the choice of the gas model while the pressure and density are
relatively unaffected. In addition, the wave angles will be slightly
different for each model, and so the conditions at which the cowl
shockmoves upstream of the shoulderwill be changed. This explains
the differing locations of the discontinuities in Fig. 16.

V. Conclusions

The present work shows that it is possible to use the proposed
reduced-order model to compute the spatially averaged properties on
the output plane of a supersonic inlet to an accuracy of 3% with a
computational time of less than a few seconds. The proposedmethod
includes the effects of multiple wave interactions and a calorically
imperfect gas model necessary for the high temperatures in hyper-
sonic flows. The results were compared to experimental data, and the
model inaccuracies were found to be limited to 10%. Furthermore,
possible improvements were made visible. An architecture is also
introduced that allows for the modeling of blunted leading edges.

The computational savings relative toCFD are immense, and there
is also no need to assemble a grid beforehand. The method can be
applied to a geometry under a wide range of supersonic conditions.
For a control-oriented model, these properties are essential. Scramjet
inlets are a particularly useful application of this algorithm. A
control-oriented model of the scramjet isolator, combustor, and
nozzle requires an accurate estimate of the thermodynamic properties
at the downstream boundary of the inlet. A comparison to CFD
shows that the averaged thermodynamic properties at the end of a
scramjet inlet can be estimated, and the proposed model can be used
in a control-oriented model of a scramjet vehicle.
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Fig. 16 Averaged inlet outflow temperature plotted for the reference at

various flight conditions. The design flight condition of M1 � 8:0 and

�� 0 is marked.

Fig. 17 Inviscid flow for the internal portion of the inlet for a flight

condition of M1 � 7:0 and �� 0, where the darker shades represent

regions of higher pressure, white represents freestream pressure, and

black represents p=p1 � 90. The expansion at the shoulder is modeled
using nex � 2 in each case.
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