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Mistuning Identification of Blisks
at Higher Frequencies
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There is a large body of research on reduced-order modeling of bladed disks and integrally bladed disks
(blisks) for predicting the mistuned vibration response. However, most work to date has focused on the lower
frequency families of blade-dominated modes. Relatively few studies have considered the response in higher
frequency regions that feature more complex blade motions and more closely spaced families of modes. More-
over, some reduced-order modeling techniques for mistuned blisks make use of simplifications inherent in
lower frequency ranges and neglect complexities of higher frequency ranges. In this study, key challenges of
higher frequency regimes are considered. Procedures are presented and evaluated for reduced-order modeling
and mistuning identification of blisks at frequency ranges beyond the first few families of blade-dominated
modes. It is shown that mistuning patterns can be identified for higher mode families, and the mistuning pat-
tern for each family is generally unique when the physical mistuning is not uniform throughout each blade.
Finally, a procedure to choose appropriate measurement points for modeling and mistuning identification is
proposed.

I. Introduction

STRUCTURES that consist of a cyclic assembly of identical substructures are said to possess cyclic symmetry. The
design of a single stage of a turbomachinery rotor, or bladed disk, typically features cyclic symmetry. Using

cyclic symmetry routines in commercial finite element software enables one to analyze the entire bladed disk using a
model of only one sector, which results in considerable reduction of computational costs.

However, there are always small structural deviations among blades, called mistuning. Although mistuning is typ-
ically small (e.g., blade-alone natural frequency variations of 1–5%), it can lead to a dramatic increase in maximum
blade stress and is a major driver for high cycle fatigue in turbine engines. From a modeling perspective, mistuning de-
stroys the cyclic symmetry, such that the full bladed disk needs to be modeled. Therefore, several efficient approaches
for reduced-order modeling of mistuned bladed disks have been developed.1–7

These reduced-order models treat mistuning as a variation in natural frequencies for one or more modes of an
isolated blade. For bladed disks with inserted blades, one can measure the natural frequencies of manufactured blades
directly. However, this is not possible with integrally bladed disks (blisks), which are becoming more prevalent in
newer and next-generation engines. For blisks, several mistuning identification methods have been developed that use
experimental response data for the full blisk in order to extract individual blade mistuning parameters. These methods
range from techniques based on lumped parameter models8, 9 to more advanced approaches requiring information from
a finite element model.10–22

The combination of work on modeling and identification of mistuning in blisks has made it possible to accurately
model blisks at a fraction of the computational cost compared to finite element analysis. However, in general, the
current techniques have only been validated for predictions in lower frequency ranges.

In higher frequency ranges, one is more likely to observe system modes that feature a combination of blade and disk
motion. Moreover, it is more likely that the blade portion of system normal modes will respond like a combination
of blade-alone mode shapes rather than one single mode shape. Another difficulty with higher frequencies is the
localization of motion in certain portions of the blade. At lower frequencies, the motion of the response is relatively
uniform throughout the blade. Also, it is generally assumed that mistuning is constant for the entire blade. However,
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the physical sources of mistuning (e.g., variation in blade thickness from the nominal design) are generally not uniform
throughout the blade, and therefore the mistuning pattern changes for different blade-alone mode shapes if they feature
motion in different regions of the blade. This is important for higher frequency modes as blades exhibit motion
localized to smaller regions.

Most reduced-order modeling methods to date have not addressed the issues specific to mistuning in higher fre-
quency ranges. In fact, some methods are specifically formulated for isolated, lower-frequency families of blade-
dominated modes.17 One exception is the component mode mistuning (CMM) method developed by Lim et al.,6, 7

which allows different mistuning patterns for different blade-alone modes. The method was validated numerically
for a higher frequency range with two overlapping families of blade-dominated modes.7 However, the CMM-based
mistuning identification method19–21 has only been validated in lower frequency ranges.

This work is an extension of previous work by the authors23 on improving robustness of the CMM-based mistun-
ing identification technique. The previous work considered only lower frequency regimes. The focus of this work is
to extend CMM-based mistuning identification to higher frequency ranges. First, this work will consider the identi-
fication of multiple mistuning patterns. Demonstrating that the mistuning identification method can identify multiple
mistuning patterns ensures that the appropriate mistuning parameters can be identified for the realistic case of non-
uniform physical mistuning in each blade. Next, this work tackles the issue of selecting measurement points to use for
mistuning identification which considers the vibration of smaller regions of the blade for higher modes. To this end,
the effective independence distribution vector (EIDV)24, 25 method is used in an iterative approach to identify measure-
ment points that yield the highest accuracy for mistuning identification given a limited amount of measurement data
to be collected.

II. Theory

A. Multiple Mistuning Patterns

The governing equation for a mistuned blisk in tuned system modal coordinates has been expressed by Lim et al.7 for
the CMM reduced order model neglecting mass mistuning as

�!2p + (1 + j
)
h
�s + ��;s + �sTK��s

i
p = fs; (1)

where ! is the response frequency of the system, p represents the system modal coordinates, �s are the tuned system
eigenvalues, �s is the blade portion of the tuned system mode shapes, and f s is the modal forcing vector. The
diagonal matrix ��;s contains the differences in the eigenvalues of the assumed nominal tuned system and the actual
tuned system as suggested in Lim et al.19, 20, and referred to as cyclic modeling error. This equation can be simplified
by assuming that the blade portion of the tuned mode shapes can be represented as a linear combination of cantilevered
blade mode shapes as follows

�!2p + (1 + j
)
h
�s + ��;s + qT�cb

T
K��cbq

i
p = fs;

(2)
�!2p + (1 + j
)

�
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�
p = fs;

where q represents the participation the cantilevered blade mode shape in the system blade mode shape, and �cb

are the cantilevered blade modes shapes. The change in the cantilevered blade eigenvalues between the tuned and
mistuned blisks is ��;cb.

The use of cantilevered blade mode shapes to represent the blade portion of system modes implies that mistuning
appears in the equations as ��;cb. This also means that one tuned system normal mode (blade portion) can be repre-
sented as a linear combination of multiple cantilevered blade mode shapes. At lower frequencies, modes tend to be
closely spaced in frequency, and the blade motion can be well represented by the cantilevered blade mode shape. As
frequencies increase and veerings become more common, the motion of the blades can be a complicated combination
of multiple cantilevered blade mode shapes. Therefore, to obtain accurate predictions, one should include as many
cantilevered blade mode shapes as necessary to predict the blade portion of the system normal mode. The diagonal ma-
trix ��;cb contains the deviations of the cantilevered blade eigenvalues from their nominal. In the case where multiple
cantilevered blade normal modes are needed to represent the blade portion of the system normal mode, the matrix has
multiple entries for each blade. This corresponds to eigenvalue deviations for each blade for each cantilevered blade
mode used. This formulation accounts for the cases where mistuning is manifested differently for each cantilevered
blade mode shape, and leads to an accurate reduced-order model.
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Additionally, one may relate mistuning to localized regions in the geometry. Consider the geometry of a blade
divided into N regions of interest. Let us assume that a small change in the blade properties at location n is denoted
by �n. The mistuning for mode m for the entire blade caused by local mistuning associated with the nth location in
the blade is defined as

��nm = f m(�n) = f m j�n=0 +
dfm

d�n

����
�n=0

�n +O(�n2); (3)

where f is a complicated, unknown function which is zero for a tuned system. Hence, assuming that mistuning is
proportional to the change in the blade, and neglecting higher order terms, Eq. 3 becomes

��nm = f m(�n) =
@fm

@�n

����
�n=0

�n: (4)

Similarly, the mistuning for mode m for the entire blade with N mistuning locations can be written using the same
assumptions as

��m = f m(�) =
@fm

@�1

����
�=0
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@�n

����
�=0

�N ; (5)

where � = [�1 ; : : : ; �N ]T . If one uses the mistuning identification procedure,21, 23 in general it is possible to deter-
mine multiple distinct mistuning patterns related to different blades. Then consider the case whenN distinct mistuning
values are determined for N modes
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which yields N equations with N unknowns �� = C � �. At this point, a single blade may be mapped by solving
Eq. 4 for the coefficients Cij = @fm

@�n

���
�n=0

denoting the nth location. This mapping may be computed by arbitrarily

assuming a local mistuning value and using the mistuning identification procedure to determine the blade mistuning
values. This can be done for coefficients 1 through N , which can then be substituted into Eq. 6. Next, the mistuning
values of the actual blade with N local mistuning locations can be identified using the CMM procedure. Finally, Eq.
6 can be solved for the local mistuning values �.

B. Iterative Measurement Point Selection for Mistuning Identification

The CMM reduced-order model transforms the governing equations from physical coordinates x to modal coordinates
p in order to reduce the model size using the equation

x = �sp; (7)

where �s is the tuned modal matrix (mass normalized). To reduce the size of the model, �s is truncated to include a
select group of modes in the frequency range of interest. For mistuning identification, the physical degrees of freedom
(DOF) are measured experimentally. The tuned system normal mode shapes can be found from the finite element
model (FEM) of the tuned system. Using this information, the modal coordinates p can be found.

There are two key reasons why determining the appropriate modal coordinates is difficult. First, only a significantly
reduced subset of DOF can be measured because the physical coordinates x are determined experimentally. This
means that DOF must be strategically chosen to best represent the physical motion and thereby the mode shapes.
Second, Eq. 7 is a least squares problem when solving for modal coordinates because the number of modes used for
the reduced-order model is smaller than the total number of DOF.23 The quality of the solution of the least squares
problem depends on the quality of the measurement points used (in the physical domain).

Since the selection of the reduced DOF to represent the response in the physical domain is important, an algorithm
is developed to chose the most appropriate points. Generalizing the work of the authors,23 the direct reduced-order
model (DROM) concept is extended. The previous application of DROMs made use of numerically generated test data
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in modal coordinates, in essence creating a set of surrogate data to be used for p. With this information, the system
could be interrogated to determine the correct number of tuned system mode shapes �s to be used in the model. For
the algorithm herein, the current technique is modified to generate surrogate physical data x to account for the error
created in the least squares transformation from physical to modal coordinates. This approach better describes how
actual data affects the transformation. In the previous work, the measurement points were chosen using the effective
independent distribution vector (EIDV).24, 25 That approach is employed here in an iterative fashion.

The DROM interrogates the system and determines which set of tuned system modes provides the best basis for
identifying mistuning. In the previous work, a candidate set of modes were used to determine the EIDV measurement
points. However, for each degenerate case of the candidate set of modes, the EIDV measurement points might be less
suitable. In this work, the EIDV algorithm is used for each set of possible IROM modes to determine measurement
points which are best suited for the identification procedure. Using DROM generated data for all possible EIDV mea-
surement point combinations, each IROM can be interrogated with the optimal set of EIDV measurment points. This
provides the best set of measurement points for the best set of basis modes to be used in the mistuning identification
procedure.

III. Results

The results presented are related to the tuned finite element model shown in Fig. 1a. The model has two moduli
of elasticity shown by different colors. At this point, even though there are multiple material parameters in the model,
it is still cyclically symmetric, and therefore tuned. In Fig. 1b, the frequency versus nodal diameter map is shown up
to 20 kHz, which is the effective range for the first six cantilevered blade mode families. It is noted that at the higher
frequency ranges, significant veering regions are present. These regions make mistuning identification more difficult
because of an assumption in the basic CMM formulation that mistuned modes closely spaced in frequency can be
represented by tuned modes in that same frequency range, a concept introduced by Yang and Griffin.26 As veering
regions become more dominant, this assumption is violated even in regions of high modal density. Therefore, this
system is suitable to test the novel methods proposed herein.

(a) FEM of the blisk with 24 blades.
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(b) Frequency vs. Nodal Diameter.

Figure 1. Overview of the tuned FEM of a blisk with 24 blades.

A. Multiple Mistuning Patterns

To demonstrate the approach, multiple mistuning patterns are investigated for the 24-bladed disk in Fig. 1a, which is
modified such that the blade portion is divided into four segments with differing modulus of elasity. The subsequent
mistuned model generated from the tuned 24-blade disk is shown in Fig 2. Note that each section of the blade has a
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distinct random change in modulus of elasticity of under 5%. These physical changes result in a different mistuning
pattern for the six different cantilevered blade modes used in the model. This is demonstrated by comparing results
for the first cantilevered blade mode family and the fifth in Fig. 3.

Figure 2. FEM of blisk with multiple mistuning patterns.
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Figure 3. Model updating parameters for 1st and 5th cantilevered blade modes.

To demonstrate the current capabilities of the mistuning identification algorithm, Figs. 4a-4f show that these
different mistuning patterns can indeed be identified. It should be noted that the current mistuning identification
procedure makes use of a combination of the author’s previous work,23 and the measurement point iteration algorithm
which is presented in the following section. It is clear from Figs. 4a-4f that the mistuning can be well identified for
each cantilevered blade mode family. Since the last cantilevered blade mode family has a contributions up to 20kHz,
the results are sufficient to suggest that mistuning can be identified in higher frequency ranges without significant
loss of accuracy. As it is well known that forced response amplitudes of mistuned systems are highly sensitive to
mistuning, the ability to identify mistuning and subsequently model mistuning is critical to get accurate predictions.
Furthermore, these results demonstrate that six distinct mistuning patterns can be identified, which allows for the
modeling of non-proportional mistuning.

Because distinct mistuning patterns exist in this case, it is possible that one may be able to extract information
about the location and amount of mistuning from a physical perspective. Consider Fig. 5a and 5b which show the
first and six cantilevered blade modes. It is evident that changing the frequencies of each of these cantilevered blade
modes will have different effects on the same physical location of the blade. This general idea was employed to
back out variations in the modulus of elasticity of four locations on a blade using the mistuning identification. As
mentioned in Sec. IIA, it is theoretically possible to identify these four locations with the first four mistuning patterns.
However, in practice, this results in the inversion of an ill-conditioned matrix C, which heavily places reliance on the
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(a) Blade stiffness mistuning for 1st CB mode.
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(b) Blade stiffness mistuning for 2nd CB mode.
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(c) Blade stiffness mistuning for 3rd CB mode.
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(d) Blade stiffness mistuning for 4th CB mode.
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(e) Blade stiffness mistuning for 5th CB mode.
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(f) Blade stiffness mistuning for 6th CB mode.

Figure 4. Model updating parameters for 1st through 6th cantilevered blade modes (0-18000 Hz). MistID values represent mistuning values
obtained using the proposed mistuning identification approach.

(a) 1st cantilevered blade mode (2106 Hz). (b) 6th cantilevered blade mode (17861 Hz).

Figure 5. Comparison of the response of blade portions for different CB modes.
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accuracy of the mistuning results. Physically, ill conditioning is caused by the fact that the first four cantilevered blade
mode families are not distinguishable enough to accurately determine these parameters. As more cantilevered blade
mode families are added, additional sensitivity to specific locations of a blade is added. Therefore, to improve the
conditioning of matrix C, additional mistuning patterns were identified.

It was determined that only four mistuning patterns are needed to obtain accurate predictions of the physical
mistuning. The patterns that were used came from the 1st, 3rd, 5th, and 6th cantilevered blade mode families. The
results are shown in Fig. 6. Modulus of elasticity variations were identified for four different locations for each
blade. Although the theoretical limit to the number of locations to identify is the number of elements, clearly there are
practical limits to the resolution that can be obtained.

In general, a particular set of mistuning patterns is best for identifying the modulus of elasticity variations in
the blade. Next, a novel way is proposed to practically determine which mistuning families are needed to obtain
accurate predictions. The variations in modulus of elasticity are computed by inverting the coefficient matrix C as
described in Sec. IIA, and multiplying it by mistuning values from various cantilevered blade mode families for a given
physical blade. It is rather inexpensive to get the coefficient matrix C and surrogate mistuning patterns by applying
a mistuning pattern to a cantilevered blade and computing the modal frequency. This can done before collecting
expensive measurement data. With a greater number surrogate mistuning patterns than the physical locations to be
identified and with the corresponding coefficient matrix C, it is possible to compute variations in the modulus of
elasticity. By slightly perturbing the mistuning patterns for less than the maximum expected patterns, identifying
variations in the modulus of elasticity, and then recomputing the mistuning patterns, one can compute a residual. If
the residual is low for all mistuning families, it is likely that the computed variation in modulus of elasticity is correct.
However, if the residual is high for any one of the mistuning families, then more or different mistuning patterns are
needed to determine the change in modulus of elasticity. The concept is demonstrated in Fig. 7. The plot shows that
using only mistuning families one through four yields the line with circles. These results demonstrate that family six
is not accurately represented and that more or different families must be used. The line with diamonds shows that an
improved identification of variations in the modulus of elasticity are obtained by using mistuning families one, two,
five, and six. Note that all mistuning families had low residuals in this case, including families two and four.
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(b) Variation at the trailing edge root.
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(c) Variation at the leading edge tip.
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(d) Variation at the trailing edge tip.

Figure 6. Identification of modulus of elasticity variations at specified blade locations using MistID results.

B. Iterative Measurement Point Selection for Mistuning Identification

The algorithm for the proposed iterative method is shown in Fig. 8. This approach features two improvements
compared to the previous work of the authors.23 First, for the forward problem, the forced response analysis is used
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Figure 7. Improvement of modulus of elasticity variation using residual calculations for 6th CB mode.
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Figure 8. Flow diagram for IROM evaluation using surrogate data and EIDV measurement iteration.

to generate surrogate data for the identification procedure. This takes into account the error that comes from the
transformation from physical to modal coordinates. The second improvement compared to the previous work is the
iteration on the EIDV measurement points which is an essential part of identifying mistuning in higher frequency
ranges.

Considering again Fig. 5, the necessity of being selective for the limited amount of measurement points becomes
obvious. Although these are not the system modes that EIDV uses to determine the measurement points, it is important
to remember that CMM uses the cantilevered blade mode to approximate the blade portion of the system modes. In
Fig. 9a, the mistuning results are presented for family six using a valid but suboptimal EIDV measurement point
(per blade) for the given frequency range, and then the optimal point for the IROM selected modes. It is clear that
results with lower accuracy are obtained if a suboptimal point is used. Figure 9b shows the mistuning error over all
possible IROM sizes. The DROM forced response surrogate data used with the mistuning algorithm determines that
the optimal set of modes happens to be all of the modes in the regions. It should be noted that it is coincidental that all
of the modes are used.

The ANSYS generated forced response results for suboptimal EIDV measurement points indicate that a different
mode set would be used and the minimum error would be only slightly less than the error for the optimal point (at
that number of modes). However, it is clear that, with the optimal EIDV measurement point in conjunction with the
optimal number of modes, the error is minimized with the given set of measurement points. It should also be noted
that the DROM surrogate data is obtained using several random mistuning patterns to compute the forced response.
Then, the algorithm selects the worse error out of those patterns for a given number of IROM modes. This explains
why the DROM curve has more error than the optimal curve.

IV. Conclusions

Mistuning ID and reduced-order model updating in higher frequency ranges has been discussed. The identification
of multiple mistuning patterns and how these affect modeling results at higher modes was considered. The specific
geometric location of blade imperfections that cause mistuning becomes more important at higher frequencies, because
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(a) Model updating parameters for 6th CB mode
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Figure 9. Justification of iterative EIDV procedure using 6th cantilevered blade mode.

the wavelength decreases and the blade response features higher amplitudes in smaller regions of each blade. Thus, it
becomes necessary to determine how each mode is affected by mistuning by identifying a (unique) set of mistuning
values for each blade mode type. Using the CMM-based mistuning identification method, it is possible to identify
multiple mistuning patterns. It is also possible to subsequently determine the locations of the physical mistuning
sources. A method has also been proposed to improve the accuracy of such results using surrogate mistuning patterns
and computing residuals using the identified physical parameters. The importance of the multiple mistuning patterns
on the blisk modeling at higher modes has been highlighted.

Due to more complicated blade response shapes at higher frequencies, the limitation of experimentally measuring
only a few points per blade is very important. To select points that well represent the system mode shapes used in
the CMM model, the EIDV procedure is used in an iterative manner for multiple sets of candidate modes in order to
determine the best EIDV measurement points. This is done by first using a set of EIDV measurement points chosen
from a candidate mode set. The mistuning identification procedure computes the EIDV measurement points for each
considered IROM mode set. This allows for a better set of measurement points for the modes actually used in the
identification procedure. These measurement points are more sensitive to mistuning and better able to represent the
mode shapes used in the reduced-order model for predictions.

Overall, the approaches presented in this work significantly enhance the identification and modeling of mistuning
in higher frequency ranges. Therefore, this work helps enable the design and analysis of blisks throughout the entire
operating range.
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