
Approximate Aeroelastic Modeling of Flapping Wings:

Comparison with CFD and Experimental Data

Abhijit Gogulapati ∗, Peretz P. Friedmann †, Eugene Kheng ‡, and Wei Shyy §

Department of Aerospace Engineering, The University of Michigan, Ann Arbor, 48109, USA

Results generated from an aeroelastic model obtained by coupling a nonlinear structural
dynamic model based on MARC with an approximate aerodynamic model that incorporates
leading edge vortices and a wake model are presented. The aerodynamic model, used in
our earlier studies, is extended to forward flight. Results presented describe structural
dynamic and aeroelastic studies conducted on isotropic and anisotropic wings in hover.
For the cases considered, the approximate model shows reasonable agreement with the
CFD based results. Comparisons with experiment indicate that the approximate model
captures trends accurately, but under predicts the magnitude of thrust. Preliminary results
obtained for a rigid flapping wing in forward flight indicate that, for the cases considered,
peak lift generated by the wing increases as forward flight speed increases.

Nomenclature

A1 −A11 Coefficients that are computed from the airfoil degrees of freedom
C Complex plane
CS1 Cylindrical surface normal to the stroke plane; defined by motion of the airfoil
CS2 Skewed cylindrical wake surface
CL Lift coefficient
CT Thrust coefficient; for helicopters, CT = T

ρ∞πR2
span(ΩRspan)2

cr Root chord
d̃ Distance between a vortex and a point on the airfoil;

measured along the composite airfoil wake surface
E Young’s modulus
(êr, êφ) Radial and angular unit vectors, shown in Figure 7.
f Flapping frequency
h Plunge degree of freedom of the airfoil
j, k Span station number
L Lift
l Lead-lag degree of freedom of the airfoil
M User defined number of sections
Nsections Total number of aerodynamic span stations on the wing
Nθ Discretization of the circle
nwksubit Number of wake sub-iterations
papplied Pressure that is applied on the wing
pcomputed Pressure that is computed using the unsteady Bernoulli principle
plimit An upper bound value for pressure
Rj Radial location of the jth spanwise section with respect to the wing root
Rspan Span of a finite wing, measured from root to the tip
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R Radial coordinate of a point on the circle in the complex plane
∆Rjk Distance between points on sections CS1j and CS1k that have the same

angular coordinate θ on the circle in the complex plane, shown in Figure 8.
rc Vortex core radius
T Thrust
t Time
th Wing thickness
Utip Maximum tip speed
u∞, v∞ Components of the free stream velocity resolved parallel and normal to the stroke plane
V∞ Free stream velocity vector
V∞ Magnitude of free stream velocity
vi Inflow velocity through the rotor disk or stroke plane
∆vflex

x , ∆vflex
y Incremental components of velocity due to airfoil flexibility,

measured in the airfoil fixed xz coordinate system
vθ Tangential component of fluid velocity on the circle
X Cartesian coordinate system
(X,Y, Z) Cartesian coordinate system; subscript indicates original location,

left superscript indicates projection, see Figure 4
(XSP , YSP , ZSP ) Coordinate system fixed to the stroke plane, shown in Figure 4
ỹ, z̃ Coordinates of the center of a section of the airfoil-wake surface, Figure 4
Zv Complex coordinate of a vortex on C
znw Height of the near wake region, shown in Figure 5

Greek Symbols
α Pitch angle
αR Angle between the tip path plane and the free stream velocity vector
β Flap angle
βSP Angle between the stroke plane and the free stream velocity vector
β0 Flap amplitude
χcs2, χTPP Skew angle
φ Angular position of the vortex on CS1 or CS2
ϕ Sweep angle of the instantaneous position of the feathering axis of the wing
εΓ Circulation limit
ε = (τ − ıσ)/R
γ0|fs Component of vorticity due to free stream
γ0|us Component of vorticity due to airfoil velocities
γ1|lev+wk Component of vorticity due to shed vortices
dΓΓΓv Circulation vector of a vortex
dΓv Magnitude of circulation of a vortex
θ Angular coordinate on the circle in the complex plane
θ1 Angle between d̃ and ∆Rjk, shown in Figure 8.
τ, σ Thickness and camber parameters in the aerodynamic formulation
λ Inflow ratio
µ Advance ratio
µ∞ Viscosity of the free stream
ν Poisson’s ratio
Ω, ω Circular frequency
ρ Density of the material
ρ∞ Free stream density of the fluid

Additional Subscripts and Superscripts
(·)j , (·)k Span station number
p (·) Projected quantity
(·)v Property of a generic vortex
z̃ (·) Projection onto the z = z̃ plane
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I. Introduction

During the last decade there has been considerable interest in micro air vehicles (MAVs) for both military
and civilian missions that involve confined spaces, such as buildings, or short distances. These vehicles
typically have maximum geometric dimensions of 15 cm, maximum weight of 100 grams, and are expected
to operate at low Reynolds number (102 < Re < 105) and low forward flight speed (< 15 m/s).1 In
particular, flapping wing designs, which are inspired by hover-capable biological flyers such as insects, bats,
and hummingbirds, have received considerable attention due to the exceptional flight capabilities observed
in the biological counterparts.1

A significant portion of the research on flapping wing vehicles has focused on understanding the mech-
anisms that generate unsteady aerodynamic forces. This research1–6 has identified leading edge vortices
(LEVs), wake capture, and tip vortices, as the primary force generating mechanisms. Attempts to model
the aerodynamic environment in a quantitative manner have been based on two approaches: (1) computa-
tional fluid dynamics (CFD) simulations based on the solution of the Navier Stokes (NS) equations and (2)
approximate aerodynamic models based on potential flow solutions. Simulations using CFD yield the best
resolution of the unsteady flow field. However, such approaches require significant amounts of computer time
and are expensive when conducting parametric studies. Approximate aerodynamic models offer a compro-
mise between accuracy and computational efficiency and thus are suitable for trend and design studies. It
is important to emphasize that the approximate models that have practical applications have to be able to
model the effect of LEVs and wake capture.

The approximate unsteady aerodynamic theories used for flapping wing problems can be classified as
assumed (or prescribed) wake and free wake models. Assumed wake models are classical unsteady models
such as Theodorsen’s theory.7 Reference [8] incorporated the effect of the LEVs in Theodorsen’s theory by
modifying the unsteady aerodynamic lift and moment expressions using the Polhamus leading edge suction
analogy.9 This model8 was compared to experiments and was capable of predicting the trends in aerodynamic
forces.

Free wake models account for evolution of the wake, thereby providing a reasonable approximation to
the development of the unsteady wake during a flapping cycle. In particular, free wake models that account
for LEVs are two-dimensional formulations that use a discrete vortex representation of the wake.10–12 These
formulations are suitable for flapping wings in hover following simplifying assumptions on the geometry
of the shed wake. The model developed in Ref. [10], which accounts for separation close to the leading
edge, compared well with experimental data for airfoils in steady flow. In this approach the chordwise
location of the separation point, which may be obtained using independent computations or experiments, is
explicitly incorporated into the formulation. Reference [11] presented the development of a vortex blob based
formulation that simulates the unsteady flow field around flexible thin airfoil that is undergoing prescribed
rigid body motion as well as prescribed deformation. The model displayed good correlation with previously
published data for rigid airfoils; however, the study indicated that further investigation was required before
the formulation could be used for aeroelastic studies. References [12, 13] presented the development and
implementation of a discrete vortex model that is applicable to insect-like flapping wings in hover. The
model was used to simulate rigid wings undergoing insect-like kinematics, and for the limited number of
cases considered, compared well with experimental data.13

For the case of forward flight, the presence of a free stream alters the shed wake geometry and the
subsequent wing-wake interaction in a significant manner. Therefore, additional modifications are needed
before such two dimensional formulations10–12 can be used to model forward flight. Based on the review of
the literature it appears that free wake models that incorporate LEVs have not been considered for flapping
wings in forward flight.

The importance of wing flexibility in enhancing the lift producing capability of flapping wings has been
considered in a number of studies. Studies that have attempted to examine this issue in a systematic manner
include Refs. [8,14–19]. An important finding of Refs. [14,15], which was later corroborated by experiments
conducted in Ref. [8], was that a dominant component of the loading on flapping wings is due to inertia loads.
Reference [8] considered wing models based on membranes reinforced by metal beams. The aerodynamic
loads were obtained by Theodorsen’s theory modified using Polhamus analogy. This study, which considered
wing flexibility in a linear manner, concluded that wing flexibility altered aerodynamic loads and therefore
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cannot be neglected. Reference [16], which considered a linear finite element model of a hawkmoth wing
that was combined with CFD based flow field description, reported that spanwise flexibility had a favorable
impact on thrust generated and power consumed by the flapping wing. Reference [17, 20] described a
nonlinear aeroelastic model that is obtained by coupling a nonlinear finite element model of the wing with
an approximate model. These studies, which examined representative MAV wings undergoing prescribed
motion noted that for the cases considered, effect of aerodynamic loads was small compared to effect of inertia
loads, that wing flexibility had a small but favorable impact on lift generation. References [18, 19] describe
the development of a computational aeroelastic framework obtained by combining geometrically nonlinear
beam and shell based structural dynamic models with a CFD based flow field. These studies, which examined
isotropic low aspect ratio wings undergoing prescribed plunge motion, reported that flexibility increased lift
and thrust generation for the range of kinematics considered.

The overall objective of this research is to develop an understanding of the effect of flexibility on the
performance of anisotropic flapping wings in hover and forward flight. To achieve this objective the aeroelastic
model described in Refs [17, 20] is employed for the case of hover. The aeroelastic model is based on a
nonlinear FE model of the wing that is based on MSC MARC21 combined with the approximate unsteady
aerodynamic model that was originally developed in Refs [12,13]. The specific objectives of the paper are:

1. Extend the aerodynamic formulation to the case of forward flight.

2. Verify the structural dynamic model by comparison with experimental data.

3. Compare results obtained using the approximate aeroelastic model with CFD and/or available exper-
imental data for flapping wings in hover.

4. Examine the effect of a forward flight on forces generated by rigid flapping wings.

II. Nonlinear Aeroelastic Model

The aeroelastic model is obtained by coupling a nonlinear finite element model of the wing with an
approximate aerodynamic model that incorporates LEVs and a free wake; a detailed description of the
individual components and formulation of the aeroelastic equations of motion for flapping wings in hover
was presented in Refs [17, 20]. In this section, a summary of the aeroelastic model including modifications
to the aerodynamic formulation to incorporate flapping wings in forward flight are presented.

A. Structural Dynamic Model and Wing Kinematics

The structural dynamic models of representative MAV wings are developed in MARC21 using shell elements
that are capable of undergoing large amplitude rigid body motion as well as moderate-to-large flexible
deformation. A variety of constitutive laws are available so that isotropic as well as anisotropic wings may
be constructed. Wing kinematics, which consist of large amplitude rigid body rotations prescribed at the
root, are applied as displacement boundary conditions at one or more nodes.

B. Approximate Aerodynamic Model

The unsteady aerodynamic loads generated on representative MAV wings are obtained using an approximate
model that was developed in Refs [12,13]. This formulation, originally derived for the case of hover, is based
on two-dimensional potential flow and uses a vorticity/circulation approach to compute the aerodynamic
loads. The model was modified to account for spanwise and chordwise flexibility of flapping wings as described
in Refs [17,20]. In the current paper, the aerodynamic formulation is extended to incorporate forward flight;
details of the derivation along with an outline of overall approach are presented next.

Outline of the Aerodynamic Formulation

The overall approach, which retains the essential aspects of the hover formulation,12 is summarized in
Figure 1. First, the wing is divided into several spanwise stations, as shown in Figure 2, where each section
is represented as an airfoil. For each airfoil, an airfoil-wake surface that facilitates convenient definition
of the airfoil degrees of freedom (DOF), and provides a reasonable approximation to the geometry of the
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shed wake, is identified. Subsequently, the airfoil and the airfoil-wake surface are transformed to a circle
on a complex plane via a conformal mapping; consequently, the airfoil bound and shed wake vorticity are
computed on the complex plane. The quasi-steady component of vorticity is obtained by neglecting the effect
of the shed wake. The strength of shed vorticity is computed by enforcing a stagnation condition at the
leading edge (LE) and a Kutta condition at the trailing edge (TE). The airfoil bound vorticity is obtained as
a sum of the quasi-steady and wake-induced vorticity on the airfoil. Next, the vorticity on the complex plane
is transformed back to the airfoil-wake surface using an inverse transform. Subsequently, the unsteady loads
acting on the airfoil are obtained from the total vorticity either using the vortex impulse method, which
yields the integrated force and moment, or the unsteady Bernoulli equation, which yields pressure. Finally,
the shed vorticity is convected using the Rott-Birkhoff equation, which is derived from Biot-Savart law for
two dimensional flow.

Divide wing into 

spanwise stations

Identify wake surface

Compute quasi-steady 

vorticity and circulation

Airfoil-wake

surface

Circle in a

complex plane

Generalized

Joukowski transform

Airfoil-wake

surface

Circle in a

complex plane

Inverse transform

Compute strengths of vortices

shed into the wake

Kutta condition at trailing edge

Stagnation condition at leading edge

Wake evolution using 

the Rott-Birkhoff equation

Compute unsteady loads

Pressure using unsteady Bernoulli equation

Force/moment using vortex impulse method

Compute bound vorticity

For each spanwise station

Figure 1. Schematic of the aerodynamic for-
mulation.
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Wing section used in 

aerodynamic analysis

R j

Figure 2. Spanwise sections on a flapping wing. Rj denotes
radial location of the section.

1. Definition of the Airfoil-Wake Surface

Wing kinematics of biological flapping wing flyers, in both hover and forward flight, consists of a predominant
sweep or flap motion in the stroke plane (SP), pitching about the feathering axis, and a comparatively small
elevation angle.1,22 Therefore, the feathering axis of the wing is assumed to move on the stroke plane (SP).12

Consequently, the surface described by the airfoil motion is a cylinder that is normal to the stroke plane;
this surface is labelled as CS1j in Figure 4. For the case of hover,12 the shed wake is assumed to be confined
to CS1j ; therefore, CS1j is a convenient choice for the airfoil-wake surface. For the case of forward flight,
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TPP

TPP
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V  cos∞ α
R

Rotary Wing Vehicle

SP
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u∞

ZSP

χ
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YSP

βSP

V  cos∞

V  sin∞v∞=

u∞=

=

Flapping Wing Vehicle

Shaded region indicates shed wake

βSP

βSP

βSP

V∞

V∞

Figure 3. Shed wakes of rotary and flapping wing vehicles.

the vortices shed into the wake are carried away with the free stream due to velocity of forward flight;
consequently, the wake is no longer confined to CS1j . Therefore, a suitable airfoil-wake surface has to be
identified.

Chapters 12 and 14 of Ref [1] present rough comparisons between rotating propeller-type wings and
flapping wings due to perceived similarities in the aerodynamic environments. Specifically, similarities such
as the spanwise varying free stream velocity, overall geometry of the shed wake in hover, and presence of
LEVs, are highlighted in Chapter 12. Chapter 14, which examined LEV formation and behavior at high
angles of attack, concluded that both rotating as well as flapping wings generated conical LEVs that were
stabilized by axial (radial) flow. Experiments conducted on insects in forward flight22 suggest that the
inclination of the stroke plane to the direction of flight increases with increase in forward flight speed. This
limited body of information suggests that one may assume that a limited degree of similarity exists between
rotary and flapping wing vehicles. A wake surface for flapping wing vehicles in forward flight can be viewed
to be somewhat similar to the concept of a prescribed wake that is sometimes used for a helicopter in forward
flight. Specifically, one may assume that the wake is shed on a skewed cylindrical surface, denoted by CS2j ,
whose axis is inclined to the stroke plane at an angle χcs2 as depicted in Figures 3 and 4 respectively.

For a helicopter in forward flight, the tip path plane (TPP) is inclined at angle αR to the direction of
flight and the wake is skewed with respect to the axis of the rotor, as depicted in Figure 3. The skew angle,
χTPP, is a function of the free stream velocity due to forward flight, and the induced velocity the represents
the inflow normal to the rotor disk. According to Ref [23] (pp 453-458) an approximation that is used for
prescribed skewed cylindrical wakes for helicopters in forward flight is given by Eq (1)

χTPP = tan−1

(
λ

µ

)
(1)

where the inflow ratio and advance ratio are given by:

λ =
vi

RspanΩ
and µ =

V∞ cos αR

RspanΩ
(2)

Note that the inflow ratio23 for helicopters in forward flight is estimated using momentum theory by Eq (3)

λ = µ tan αR +
CT√

µ2 + λ2
(3)

where αR and CT are obtained from the trim state of a helicopter in steady level forward flight. It should
be noted that the trim state of a flapping wing MAV cannot be clearly identified due to the highly unsteady
operating conditions and lack of clearly defined control surfaces. Thus the similarities between a helicopter
and a flapping wing MAV are speculative, and the current study represents a first attempt at incorporating
forward flight into the formulation.
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Figure 4. Surfaces used for each spanwise section. XSP −YSP defines the stroke plane (SP). Red dot indicates
current location of a vortex particle moving on CS2j .

Thus, it is assumed that the skew angle of the wake surface for flapping wings is also given by a relation
similar to Eq (1), provided that the advance ratio for a flapping wing MAV is given by:

µ =
V∞ cosβSP

2πfβ0Rspan
(4)

where βSP is illustrated in Figure 3. A more complicated issue is the identification of the inflow velocity
for a flapping wing MAV. Earlier attempts to compute induced velocity24,25 for flying insects were based
on concepts of quasi-steady attached flow, momentum theory, and blade element theory. In Refs [24, 25],
the mean inflow velocity of a flapping wing in hover was obtained by performing a 2D analysis of a flapping
wing and incorporating the mean lift coefficient into momentum theory. This approach ignored LEVs, wing
rotation, and wing-wake interaction and therefore has questionable validity.

In the current study, the component of the free stream normal to the stroke plane is used as an ap-
proximation to the inflow velocity through the stroke plane. The stroke plane inclination angles observed
for insects in forward flight are relatively large. Experiments on insects in hover and forward flight22 show
that the values of βSP , shown in Figure 3, are 20 degrees, 35 degrees, 45 degrees, and 60 degrees, for µ
corresponding to 0, 0.05, 0.1, and 0.15 respectively. Thus, the component of free stream velocity normal to
the stroke plane can be substantial and it is assumed here that it provides an approximation to the inflow
velocity. The validity of this approximation can be re-examined when additional experimental data and/or
CFD based analyses of flapping wings in forward flight become available. The implications of this assumption
are

vi ≈ v∞ such that λ =
v∞

2πfβ0Rspan
(5)

Substituting Eqs (4) and (5) into Eq (1), the skew angle for flapping wing vehicles is given by

χcs2 = tan−1

(
v∞
u∞

)
= βSP (6)

where u∞ and v∞ are shown in Figures 3 and 4 respectively. Note that Eq (6) is not valid for the case of
hover, when both u∞ → 0 and v∞ → 0. Therefore, it is assumed that χcs2 → π

2 when u∞ → 0; this accounts
for hover as well as bird-like flapping motion in which the direction of flight is normal to the stroke plane.

7 of 29

American Institute of Aeronautics and Astronautics



For the general case, i.e. u∞ 6= 0 and v∞ 6= 0, CS1j and CS2j intersect on the stroke plane but do
not overlap, as shown in Figure 4. Moreover, CS2j intersects CS1’s associated with other wing sections.
This implies that the interaction between the wing and the wake is three dimensional (3D) in spite of the
simplifying assumptions used.

In the present analysis, an airfoil-wake surface that is a composite of CS1j and CS2j , denoted by
CS1j ∪CS2j in Figure 5, is used to formulate the governing equations. It is divided into near and far wake
regions to facilitate incorporation of the 3D wing-wake interaction in a computationally efficient manner. It
is assumed that the 3D interaction is limited to the near wake region, wherein the near wake region is defined
on CS1j and has a height znw as shown in Figure 5. The far wake region is defined on CS2j . An important
step in modeling the 3D interaction involves projecting the positions and strengths of vortices from CS2’s
onto CS1’s; this is described in subsequent sections. Also, note that the composite airfoil-wake surface is
used to facilitate the conformal mapping and the subsequent calculation of airfoil bound and shed vorticity;
however, this surface is not employed in the wake model.

2. Conformal Mapping

A crucial step in the hover formulation was the transformation of the airfoil-wake surface to a complex plane
using a generalized Joukowski mapping.12 For the case of forward flight, the mapping function used in Ref
[12] may be used without modification. Consequently, the airfoil on CS1j ∪CS2j is transformed to a circle
on a complex plane, where the complex plane is denoted by Cj . The steps involved in the transformation
are shown in Figure 5. Following the transformation, vorticity and circulation are computed on the circle in
Cj .

x

ιy

R

LE TE

θ

Generalized Kutta-

Joukowski transform

Circle in a complex plane

CS1
Near wake

region

CS2 j

j

Far wake

region

X

Z

Flattened airfoil-wake surface

U CS2 jCS1 j

Cj

Inverse transform

XI

z nw

z

x

b l

h

X

Z

α

Figure 5. Transformation of the airfoil-wake to the circle in the complex plane.

3. Quasi-steady Vorticity

Quasi-steady vorticity,12 computed on the circle, is obtained as a sum of two components: (a) a free stream
component that is computed from the instantaneous pitch angle and free stream velocity, and (b) an unsteady
component that is computed from airfoil kinematics.
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Free stream component of vorticity

The free stream velocity vector, denoted by V∞, is assumed to lie in the YSP − ZSP plane. It is resolved
into components, u∞ along YSP and v∞ along ZSP respectively, as shown in Figure 6(a).

ZSP

Y
SP

χ

V 8

CS2

u 8

v 8

(a) Free stream veloc-
ity vector resolved nor-
mal and parallel to the
stroke plane.

cos

XSP

YSP

R j

ϕ

ϕ

u 8

u 8

(b) Component of u∞ normal
to the instantaneous position of
the wing.

Figure 6. Components of free stream velocity vector.

The free stream velocity experienced by each wing section is assumed to be equal to
(√

(u∞ cosϕ)2 + v2∞

)
,

where ϕ denotes the instantaneous sweep angle of the feathering axis of the wing as shown in Figure 6(b).
Subsequently, the vorticity and circulation due to the free stream velocity and pitch angle12 are given by

γ0(θ, t)|fs = −2
(√

(u∞ cosϕ)2 + v2∞

)
[sin(θ − α) + sin α] (7)

Γ0(t)|fs = −4πR

(√
(u∞ cosϕ)2 + v2∞

)
sin α

Unsteady component of vorticity

The derivation and subsequent expression of the unsteady component is identical to the one presented in
Ref [20]; The expression for the tangential velocity of the fluid on the surface of a flexible airfoil is given by

vθ(θ, t)|us =
1
R

[
−A1 cos θ − (A2 +

1
2
A7) cos 2θ + A3 sin θ + (A4 − 1

2
A5 +

1
2
A6) sin 2θ

−A8 sin θ cos 2θ + A9 sin θ sin 2θ −A10 cos θ cos 2θ + A11 cos θ sin 2θ]

+
∆vflex

x

R
[τ (sin θ − sin 2θ) + σ (cos θ − cos 2θ)] + (8)

+
∆vflex

y

R
[−2R cos θ + τ (cos θ − cos 2θ)− σ (sin θ − sin 2θ)]
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where A1 −A11 are given in Ref [12]. The vorticity on the circle is obtained as

γ0(θ, t)|us = vθ(θ, t)|us +
Γ0(t)
2πR

(9)

where

Γ0(t) = 2π

[
2R

(
l̇ sin α + ḣ cosα

)
+ α̇

(
1
2
τ2 +

1
2
σ2 − 2R(R + a)

)]
(10)

4. Determination of Shed Vorticity

At each time step, the vorticity shed into the wake is determined by imposing a Kutta condition at the TE
and a stagnation condition at the LE on the circle in the complex plane as follows:

At the TE:

Γ0 = −



∮

lev+wk

R
(

Zv + R

Zv −R

)
dΓv


 (11)

At the LE:

1
R

[
A1 −

(
A2 +

1
2
A7

)
+ A10

]
− 2U∞ sin α =

1
2πR




∮

lev+wk

R
(

Zv −R

Zv + R

)
dΓv


 (12)

where, R denotes real part.
Note that Eqs (11) and (12) are derived for vorticity on Cj . For the case of hover, the airfoil as well as

the wake vorticity are confined to CS1j ; therefore, the strengths and locations of the vortices are obtained
in a straightforward manner. For the case of forward flight, the vorticity shed by a section interacts with
other sections, as mentioned earlier. Therefore, these effects have to incorporated in the wake integrals.
In the present approach, the wake integrals that capture the effect of vorticity shed by other sections on
CS1j ∪ CS2j are derived by projecting the vorticity that lies on CS2’s onto CS1j ∪ CS2j .

Projection of vorticity

Based on the discussion on unsteady panel methods presented in Ref. [26], the irrotational inviscid 2D vortex
particle used in Refs [12, 13, 17, 20] may be assumed to represent a 2D panel that has a single collocation
point, as indicated in Figure 7. The width of the panel is equal to the width of the section from which it was
shed, and length at the time of shedding is equal to the distance moved by the shedding edge (LE or TE)
during a time step. This equivalence allows one to project wake vorticity on CS2j onto CS1’s as follows:

Consider a vortex that is currently located on CS2j at z = z̃, as indicated by the red dot in Figure 4.
Top view of the z = z̃ plane is shown in Figure 7. Let (Rj , φj) denote the radial and angular coordinates of
the vortex in the (Xz̃ − Yz̃) frame, as shown in Figure 7. The vortex represents a panel whose circulation
vector dΓΓΓv is given by

dΓΓΓv = dΓv êr (φj) (13)

where êr (φj), which denotes the unit vector in the radial direction as shown in Figure 7, is given by

êr (φj) = cos φj êXz̃ + sin φj êYz̃ (14)

Moreover, from Figure 7, note that

êXz̃ ‖ êz̃XSP
and êYz̃ ‖ êz̃YSP

(15)

The radial and angular coordinates of the vortex in the (z̃XSP −z̃ YSP ) frame, denoted by (Rk, φk) as shown
in Figure 7, are given by

Rk =
[
(Rj cos φj)2 + (Rj sin φj − ỹ)2

] 1
2 (16)

And

φk = tan−1

(
Rj cosφj

Rj sinφj − ỹ

)
(17)
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Where, the subscript ‘k’ denotes the kth spanwise station with respect to CSP ; for the general case k R j.
Furthermore, z̃XSP , z̃YSP , and z̃CSP denote the projections of XSP , YSP , and CSP onto the z = z̃ plane.

Subsequently, vorticity is projected from CS2j to CS1k; the strength of the projected vortex, denoted
by pdΓΓΓv, is given by

pdΓΓΓv =p dΓv êr(φk) where pdΓv = dΓv êr(φj) · êr(φk) (18)

Then from Eqs. (14), (15), and (18), one obtains

pdΓv = dΓv cos (φj − φk) (19)

Thus, a vortex that has strength dΓv and located at (Rj , φj , z̃) on CS2j corresponds to a projected vortex
of strength pdΓv located at (Rk, φk, z̃) on CS1k.

Effect of a vortex on various airfoils

In order to accurately model the 3D wing-wake interaction, it is necessary to quantify the effect of a shed
vortex on various wing sections. In this context, it is important to note that the aerodynamic formulation
is strictly 2D and does not support a mathematically consistent extension to 3D. Inclusion of 3D effects in a
mathematically consistent manner necessitates rederivation of the formulation that would also increase the
computational expense significantly. Therefore, an ad hoc extension, which is obtained from aerodynamic
analysis of fixed wings using 3D unsteady panel methods,26 is used. In this approach, an expression that
approximates the effect of a projected vortex, located on CS1k, on an airfoil that is located on CS1j , k R j,
is derived as follows.
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Consider a uniform rectangular wing, as shown in Figure 8. All wing sections have the same geometric
properties; consequently, the corresponding circles in Cj ’s have the same radius R. Let ∆Rjk = |Rk −Rj |
denote the distance between sections CS1j and CS1k, as shown in Figure 8. Let d̃ denote the distance
between a vortex on CS1k and a point on the airfoil section, also on CS1k, that has coordinates (R, θ) on
Ck. Then, the velocity induced by the vortex at this point is given by

vθ =
pdΓv

2πd̃
(20)

Now consider a point on the jth airfoil section that has coordinates (R, θ) on Cj . The effect of the vortex at
this point, obtained in the wing fixed (X, Y, Z) coordinate system, is given by

vθ =
pdΓv cos θ1

2π
√

d̃2 + (∆Rjk)2
(21)

where θ1, shown in Figure 8, is given by

cos θ1 =
d̃√

d̃2 + (∆Rjk)2
(22)

From Eqs (21) and (22), one obtains

vθ =
pdΓv cos θ1

2πd̃

d̃√
d̃2 + (∆Rjk)2

=

(
pdΓv cos2 θ1

)

2πd̃
(23)

Thus, the RHS of Eq (23) is obtained by replacing pdΓv in Eq (20) with pdΓv cos2 θ1.
Equations (20) - (23) are derived in physical space, denoted by X ; however, note that the shed vorticity

is computed in the complex plane. Therefore, the validity of the relations in a space that is obtained via
conformal transformation of the physical space need to be examined. In this context, consider the following
argument: if an angle-preserving (conformal) mapping was used to transform the wing and its shed wake
to a three dimensional solid and its shed wake, then, from the properties of conformal transformation it
follows that quantities such as circulation and rotations (angles) are preserved. This implies that pdΓv and
θ1, and consequently pdΓv cos2 θ1, are preserved during the mapping. This implies that replacing pdΓv with
pdΓv cos2 θ1 in the transformed space is equivalent to the same replacement in physical space.
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The effect of a vortex that lies on CS1k on other sections is obtained in three steps: (1) obtain the influence
of the vortex at location θ on the circle on CS1k, (2) obtain d̃ and ∆Rjk, as defined earlier, corresponding
to the a point on CS1j that has the same angular coordinate θ, and (3) multiply the expressions obtained
in step (1) by cos2 θ1 from Eq (22).

This derivation applies only to rectangular wings with uniform cross sections. For a different planform
or varying geometric properties along the span, Eq (22) is no longer exact; however, Eqs (20) - (23) may still
be used in an approximate sense.

Modified Constraint Conditions

Following the projection of vorticity, the Kutta condition, Eq (11), and the stagnation condition, Eq (12),
are modified as follows:

Kutta condition:

Γ0 = −
∮

lev+wk

R
(

Zv + R

Zv −R

)
pdΓv

︸ ︷︷ ︸
Vortices on CS1j

−
∮

lev+wk

R
(

Zv + R

Zv −R

)
dΓv

︸ ︷︷ ︸
Vortices on CS2j

(24)

Stagnation condition:

1
R

[
A1 −

(
A2 +

1
2
A7

)
+ A10

]
− 2U∞ sinα =

1
2πR




∮

lev+wk

R
(

Zv −R

Zv + R

)
pdΓv




︸ ︷︷ ︸
Vortices on CS1j

+
1

2πR




∮

lev+wk

R
(

Zv −R

Zv + R

)
dΓv




︸ ︷︷ ︸
Vortices on CS2j

(25)

5. Effect of shed vorticity

The airfoil wake surface, shown in Figure 5, contains airfoil bound vorticity, projected vortices in the near
wake region (CS1j), and unprojected vortices in the far wake region (CS2j). The effect of the shed vorticity
at a point on the airfoil on CS1j is given by the following integrals:

(γ1 (θ, t) |wk+lev)j = −Γ0(t)
2πR

−





1
2πR

∮

CS1j

R
(

Zv + Reıθ

Zv −Reıθ

)
pdΓv +

1
2πR

∮

CS2j

R
(

Zv + Reıθ

Zv −Reıθ

)
dΓv





︸ ︷︷ ︸
Vortices on CS1j ∪ CS2j

−
Nsections∑

k=1,
k 6=j

1
2πR




∮

CS1k

R
(

Zv + Reıθ

Zv −Reıθ

)
pdΓv cos2 θ1




︸ ︷︷ ︸
Vortices on CS1k, k 6= j

(26)

The second term in Eq (26) includes the effect of vorticity shed from other sections. Evaluation of this
integral for the entire combination of vortices at all sections is computationally expensive; therefore, for a
practical approximation, only a limited number of sections are considered using proximity argument. Thus,
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Eq (26) can be replaced by Eq (27).

(γ1 (θ, t) |wk+lev)j = −Γ0(t)
2πR

−





1
2πR

∮

CS1j

R
(

Zv + Reıθ

Zv −Reıθ

)
pdΓv +

1
2πR

∮

CS2j

R
(

Zv + Reıθ

Zv −Reıθ

)
dΓv





︸ ︷︷ ︸
Vortices on CS1j ∪ CS2j

−
j+M∑

k=j−M,
k 6=j

1
2πR




∮

CS1k

R
(

Zv + Reıθ

Zv −Reıθ

)
pdΓv cos2 θ1




︸ ︷︷ ︸
Vortices on CS1k

(27)

6. Calculation of the bound vorticity

Following the derivation in Ref [12], the airfoil bound vorticity on the circle corresponding to the jth section
is obtained as a combination of the wake free and wake induced components. The wake free component
is obtained from the quasi-steady vorticity. The wake induced component is obtained as a sum of the
contributions from the vortices on CS1j ∪ CS2j and CS1j±m, for m = 1, 2, ..., M .

(γb)j = (γ0|fs)j + (γ0|us)j + (γ1|wk+lev)j±m (28)

where, m = 0,±1,±2, ...,±M , and γ0|fs, γ0|us, and γ1|wk+lev are given in Eqs (7), (9), and (27) respectively.

7. Wake evolution

We assume that the shed wake, which is confined to CS2j , is not affected by vorticity associated with other
sections. Consequently, the evolution of the wake, obtained from the Rott-Birkhoff equation, is determined
on CS2j . The expression for velocity of each vortex has contributions from airfoil bound vorticity, which is
projected from CS1j to CS2j , and shed vortices on CS2j . The final expression for velocity and subsequent
numerical implementation of the wake model follow from the description provided in Refs [12,13,17,20].

C. The Aeroelastic Model

The equations of motion representing the aeroelastic response problem are obtained from an updated La-
grangian (UL) approach.27,28 An approximate solution is obtained by referring all the quantities (stress,
strain and displacements) of the deformed configuration to the equilibrium configuration obtained in the
previous time step, and linearizing the resulting equations of motion (EOM). Implementation of the UL for-
mulation in MARC 27, 28 is illustrated by Figure 9 and was summarized in Ref. [17]. The implementation
of the aeroelastic model is shown in the block diagram given in Figure 9. At each time step, rigid body
motion is prescribed as displacements at specified nodes. The aerodynamic loads, computed based on the
wing motion at the beginning of each time step, are applied to the structure via FORCEM, a user defined
subroutine in MARC. This subroutine is called from the main program for each step of the Newton-Raphson
iteration within a time step to ensure convergence of the structural displacements for the applied loads.
Finally, the vortices shed into the wake are convected at the end of the time step.

III. Results and Discussion

The results presented in this section consist of different groups: (1) structural dynamic comparisons
with experimental data, (2) rigid and isotropic flapping wings in hover, (3) anisotropic flapping wings in
hover, and (4) preliminary results on rigid flapping wings in forward flight. All the results are based on a
Zimmerman planform, shown in Figures 2 and 11, that have an aspect ratio of 7.65, cr = 25 mm, Rspan = 75
mm respectively.29 The finite element models of the wings, shown in Figure 2, are obtained using 1263
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Figure 9. Formulation of the aeroelastic equations (left) and implementation of the aeroelastic model (right)
in MARC

shell elements (Element type 75 in MARC) that are capable of modeling large rigid body motion as well as
moderate-to-large flexible deformation.

The unsteady aerodynamic loads calculated using the approximate aerodynamic model were computed for
the following set of parameters: Nsections = 59, Nθ = 101, rc = 0.1 × chord, and nwksubit = 4 respectively.
The numerical experiments were conducted in air (ρ∞ = 1.209 kg/m3) and leading edge separation was
assumed for all cases. A previous study20 noted that the interaction of the airfoil with previously shed
vortices generated large amplitude numerical oscillations in the aerodynamic loads that had to be eliminated
before the unsteady loads could be applied on the structure. In the current study, a pressure based filter that
is described by Eq (29) was found to limit the magnitude of numerical noise without introducing significant
errors in the calculation of pressure.

papplied = maximum {pcalculated, plimit} (29)

where,

plimit =
1
2
ρ∞U2

tip where Utip = 2πfβ0Rspan (30)

Subsequently, the load signals obtained from the approximate model are smoothed using digital filters avail-
able in MATLAB, version 8.0, for the purpose of presentation in this paper. The filters are based on
Chebyshev functions and are implemented in MATLAB using the filtfilt command. A sample comparison of
the original and smoothed signals is shown in Figure 10. Note that all figures associated with the results
section are presented at the end of the document.

A. Structural Dynamic Comparisons

The computed and experimentally determined29 mode shapes and frequencies for anisotropic Zimmerman
wings are compared so as to validate the structural dynamic models. The anisotropic wings, shown in Figure
12, are built from an unstressed CAPRAN film (membrane) that is supported by a carbon fiber based spar-
batten skeleton. Using the notation used in Ref [29], the wings are labeled as LiBj where i and j denote the
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number of prepreg layers used in the construction of the LE spar and the battens, shown in Figure 11. The
nominal elastic properties of the materials used were provided by the respective manufacturers.

The natural frequencies of the wings were identified using a Laser Doppler Vibrometer (LDV) that uses
the phase shift between the incident and reflected light to obtain a frequency response spectrum of the
structure.29 The experiments involve visual tracking of the wing surface using high speed cameras to obtain
the deformation pattern. The translucent CAPRAN film, shown in Figure 12 (right), is not conducive to
visual tracking. Therefore, a dense speckle pattern was generated by spraying black acrylic paint, shown in
Figure 12 (left), to facilitate tracking of the wing. The CAPRAN film is very thin, lightweight, and flexible,
and the change in geometric and material properties of the film due to the paint speckle that is deposited on
the film had to be determined experimentally. Tests to measure thickness and Young’s modulus of the films
were done at the University of Michigan. Subsequently, these properties were used to generate the structural
dynamic and aeroelastic results.

1. Tensile Tests on the CAPRAN Membrane

The Young’s moduli of the films were measured by tensile tests using specimens shown in Figure 13. Tensile
test samples are manufactured to a total length of 25 ± 1 mm, a gauge length of 13 ± 2 mm and a height
of 2.5 ± 0.5 mm. The tests were carried out under displacement control loading at a nominal rate of 0.018
mm/s. The small scale tensile tester is shown in Figure 14. Strains are determined using optical images taken
with a high resolution camera of a speckle pattern, distributed on the surface of the film using acrylic paint
applied with an airbrush or a spray can. Unpainted films could not be tracked; therefore, a light speckle
pattern, expected to have an insignificant effect on the material properties of the film, was deposited on the
unpainted films. Specimens of the densely and lightly painted films, labeled as Heavy dots and Light dots are
shown in Figure 15. Thicknesses of the samples are measured with the aid of a Phillips XL30 Environmental
Scanning Electron Microscope (SEM).

The SEM measurements indicated that there was little or no change in thickness of the film due to the
paint; an average value of 15 microns is therefore used in calculations. The thicknesses are listed in Table
1; a sample image from the SEM is shown in Figure 16. The characteristic stress-strain curves obtained
after the post-processing of the data are shown in Figures 17(a) and 17(b). The results indicate that the
elastic moduli of the painted (heavy dots) and lightly painted (light dots) films are approximately the same,
where an averaged value of E = 2.74 GPa is used in calculations. However, static weight measurements show
that the paint increases the weight, and the density, of the films by approximately 16%. The densities and
Young’s moduli of the painted and unpainted films are given in Table 1.

Unpainted Film Painted film
Density, kg/m3 1186.0 1383.7

Young’s modulus, GPa 2.72± 0.16 2.76± 0.21
Thickness, ( ×10−6 m ) 15.17± 0.90 14.96± 0.57

Table 1. Density and Young’s moduli of the painted and unpainted films.

2. Comparison of Mode Shapes and Frequencies

The experimentally determined and computed mode shapes and frequencies for anisotropic Zimmerman
wings are shown in Figure 18 and Tables 4 and 5 respectively.

Note that the experiments29 were conducted in air; this implies that the mode shapes and frequencies
that are identified correspond to aeroelastic modes that include added mass effects7 as well as coupling effects
between bending and torsion. In an aeroelastic system, a useful indicator of the relative importance of the
inertial to aerodynamic forces is the mass ratio7 that is described by Eq (31).

Mass ratio =
ρthcr

0.25πρ∞c2
r

(31)

where, the thickness of the composite and the membrane are given in Table 3. A lower bound of the mass
ratio for the anisotropic wings is obtained by considering a representative cross section that is composed
entirely of the membrane material, illustrated in Figure 19 (left). The mass ratio can also be computed by
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considering a more realistic cross section as shown in Figure 19 (right). The values of the mass ratios are given
in Table 2. The calculations indicate that the added mass effects are most likely to be significant for modes
that have a predominant contribution from the membrane, and these will be relatively insignificant for modes
that have a predominant contribution from the composite skeleton. An examination of the experimentally
determined mode shapes shows that the first mode has a predominant contribution from the skeleton; this
indicates that the first measured frequency is a reasonable approximation to the first natural frequency.

Mass ratio
Cross-section composed of membrane material 0.88 (lower bound)

Realistic cross-section 235 (L1B1)

Table 2. Mass ratios corresponding to sample cross-section of the wing

The finite element models use the nominal values for the wing geometry, material and elastic properties.
However, the elastic properties of the carbon fiber prepreg are modified by adjusting the recommended
properties so as to obtain a reasonable overall correlation with experimentally obtained frequencies and
mode shapes. The recommended and adjusted elastic properties are given in Table 3.

Recommended values Adjusted values used in the
structural dynamic model

Carbon fiber prepreg E11 = 233 GPa E11 = 233 GPa
E22 = 23.1 GPa E22 = 23.1 GPa

(Properties of one layer) E12 = 3 GPa E12 = 10.5 GPa (L1B1, L1B2)
E12 = 15.5 GPa (all other configs)

ν12 = 0.05 ν12 = 0.05
ρ = 1740 kg/m3 ρ = 1740 kg/m3

Thickness = 0.1 mm Thickness = 0.1 mm
Capran membrane E = 2.5− 3.5 GPa E = 2.76 GPa
(From experiments) ν12 = n/a ν12 = 0.489 (Incompressible)

ρ = 1160 kg/m3 ρ = 1384 kg/m3

Thickness = 12-20 microns Thickness = 15 microns

Table 3. Material properties of the composite and membrane

Wing label Mode 1 Mode 2
Experiment 23 50

L1B1 FE model 21.5 49
Experiment 22 45

L1B2 FE model 19.5 46.2
Experiment 42 84

L2B1 FE model 47 88
Experiment 41 52

L2B2 FE model 44 86.1
Experiment 59 104

L3B1 FE model 65 107
Experiment 67 n/a

L3B2 FE model 64 101

Table 4. Comparison of frequencies, in Hz, of various wing configurations

A comparison of the frequencies, shown in Table 4, indicates that there is reasonable agreement (approx
20% error) between the computed and measured values. The computations yield closely spaced modes, listed
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in Table 5, that contain a predominant contribution from the membrane. These modes were not identified
in the experiments. However, the frequency spectrum obtained from the experiments29 show several smaller
peaks that were ignored. It is conceivable that these correspond to the closely spaced modes. The cases that
show significantly higher error are identified in bold. The experiments indicate a decrease in the natural
frequency for the second and third modes from 84 Hz and 126 Hz for L2B1 to 52 Hz and 84 Hz for L2B2.
This decrease appears to be questionable based on the trends observed in the other configurations. This
discrepancy may be due to the manner in which the modes were identified from the frequency response
spectrum.29

Wing label Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
L1B1 21.5 49 73.8 77.4 106.5 111.5
L1B2 19.5 46.2 74.2 78.5 100.5 107.5
L2B2 47 72 76.5 88 109 118.8
L2B2 44 74 78.7 86.1 109 118.5
L3B2 65 75.5 76.8 107 109 120
L3B2 64 78 79 101 109 120

Table 5. Computed frequencies, in Hz, of various wing configurations. Frequencies used for comparison with
experiment are identified in bold.

A qualitative comparison of the mode shapes obtained for L1B1 and L1B2 is shown in Figure 18. These
results indicate that the FE model shows reasonable agreement with the experimental results for the cases
considered.

The numerical simulations indicate that the shear moduli of the materials used has a significant impact
on the placement and spacing of frequencies. Therefore, additional studies that examine the sensitivity of
the measured frequencies, and consequently the thrust generated, due to variations in the material properties
may be necessary.

B. Rigid and Isotropic Flapping Wings in Hover

The lift and thrust generated by rigid and isotropic wings undergoing prescribed flapping motion are shown
in Figure 20. Note that the lift and thrust are the components of the aerodynamic force resolved parallel to
and normal to the stroke plane respectively. The flapping motion, which corresponds to rotation about ZSP

shown in Figure 4, is described by Eq (32)

β(t) = β0 sin(2πft) (32)

where β0 = 5 deg and f = 10 Hz. The wing thickness, density, and Poisson’s ratio were 0.4mm, 2700 kg/m3,
and 0.3 respectively. The number of time steps per flapping cycle used to discretize the motion for each
case are listed in Table 6. The CFD based results, which are presented in Ref [30], were computed using the
aeroelastic model that is described in Refs [18,19]. The lift and thrust were non-dimensionalized as described
by Eq (33).

CL =
L

1
2ρ∞U2

tipRspancroot

and CT =
T

1
2ρ∞U2

tipRspancroot

where Utip = 4πβ0f (33)

The results, shown in Figure 20, indicate that the approximate aeroelastic model compares well with
the CFD based model for the cases considered. Note that a periodic or steady state solution was not
observed for the case of E=0.1 GPa; therefore, an accurate assessment of the differences between the CFD
and approximate result is difficult.

E, GPa Rigid 70 10 0.1
Time steps per cycle 200 200 250 300

Table 6. Number of time steps per cycle used for the isotropic wing cases
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C. Anisotropic Flapping Wings in Hover

The computed and experimentally measured magnitudes of thrust generated by anisotropic wings are com-
pared. The results, which are obtained for a flapping amplitude of 35o for a range of flapping frequencies, are
shown in Figures 21, 22, and 23 respectively. A relative comparison of thrust generated by all configurations
is shown in Figure 24. The experimental results were obtained from Ref [29] and computations are based on
the approximate aeroelastic model. Note that the experiments were conducted using two wings undergoing
symmetric flapping motion, whereas the computations were performed by considering a single wing; there-
fore, the thrust obtained from the simulations was multiplied by a factor of two to facilitate comparison with
the experimental result. The number of time steps used per flapping cycle for each case are summarized
in Table 7. Furthermore, the circulation limit20 was fixed at 2.0. For all the cases considered, simulations
were carried out for a total of 6 flapping cycles, and an approximate steady state in forces was reached after
about 2 cycles.

5 Hz 10 Hz 15 Hz 20 Hz 25 Hz 30 Hz 35 Hz 40 Hz
L1B1, L1B2 200 200 250 400 400 500 600 600
L2B1, L2B2 200 200 200 250 300 350 400 400
L3B1, L3B2 200 200 200 250 300 350 400 400

Table 7. Number of time steps per cycle used for various wing configurations for the range of flapping
frequencies considered.

It is evident from the results that the approximate aeroelastic model under-predicts the thrust for all cases
considered. However, some of the trends are captured in an accurate manner: specifically, the peak in thrust
observed for L1B1 for flapping frequency in the vicinity of its first natural frequency is important; see Figure
21. Furthermore, the computations indicate that the thrust generated reduces as the number of prepreg
layers in the battens is increased. An explanation of this behavior is due to the fact that reinforcing the
battens increases the torsional stiffness of the wing thereby reducing the twist angle of the wing. Therefore,
the total force generated by the wing and its component normal to the stroke plane, i.e. thrust, are both
reduced. This trend is not evident from the experimental results.

D. Preliminary Forward Flight Results

The effect of forward flight on the lift production is examined by considering rigid Zimmerman wings un-
dergoing prescribed flap motion for a range of free stream velocities. Preliminary results were obtained for
small amplitude flap motion for the case of znw = 0 wherein the effect of vortices shed by other sections is
not considered, i.e. the 3D effects due to forward flight are ignored; however, the movement of the vortices
on the skewed wake surface is considered by using the time dependent projected strengths of the vortices in
the calculation of shed and bound vorticity.

Results were obtained for χcs2 = 20 degrees, β0 = 5 degrees, f = 10 Hz, and µ = 0.0, 0.05, 0.1, 0.15, 0.2,
respectively, where µ is defined in Eq (4) and the flapping motion is described by Eq (32). For the cases
considered, the wing sections are normal to the stroke plane due to the absence of wing feathering or twisting;
consequently, the thrust produced, which is the component of the aerodynamic force parallel to the wing
chord, was several orders of magnitude smaller than the lift. Therefore, the thrust is not included for
comparison purposes. Figure 25 shows the lift coefficients generated by the rigid wing for case of hover and
forward flight. The results show an increase in lift due to forward flight. Note that the peaks in lift that
correspond to the advancing part of the stroke are greater than the peaks that correspond to the retreating
side. This corresponds to the effect of a time varying free stream that arises due to the flapping motion of
the wing and the forward flight speed.

IV. Concluding Remarks

The approximate aerodynamic model for flapping wings, originally developed for hover, is extended to
forward flight. Results for structural dynamic studies on anisotropic wings, aeroelastic studies on isotropic
and anisotropic wings, are also presented in the paper.
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1. Forces computed using the approximate aeroelastic model were compared with those obtained from a
CFD-based aeroelastic model and experiments for several Zimmerman wing configurations for the case
of hover. The comparisons indicate that the approximate model shows good agreement with CFD for
the cases considered. Comparisons with the results obtained from experimental studies on anisotropic
wings indicate that the approximate model captures some of the important trends accurately, but under
predicts magnitude of the thrust generated. Additional tests are needed before an accurate assessment
of the error is possible.

2. Preliminary results obtained for rigid flapping wings in forward flight indicated that forward flight
increases lift generation for prescribed wing kinematics. The results also show that the lift generated
during the advancing half of the cycle is larger compared to the force generated during the retreating
half of the stroke. Subsequent studies will focus on comparisons with available results for flapping
wings in forward flight, as well as examination of the effect of wing flexibility.
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Figure 10. Sample comparison of original and filtered load signals

Figure 11. Anisotropic wing configurations, from Ref [29].

Figure 12. Painted (left) and unpainted wings (right).
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Figure 13. Tensile test specimens.

Figure 14. Experimental setup.

Figure 15. Specimens of the film. Dense speckle (heavy dots) - left and light speckle (light dots) - right.
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Figure 16. Sample image from the SEM indicating thickness of the film.
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Figure 17. Stress-strain curves for the painted (heavy dots) and unpainted (light dots) films.
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Figure 18. Comparison of mode shapes: Experiment29 (left) and FE model - current study (right)
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Figure 19. Cross sections used to compute mass ratios for the anisotropic wings.
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(d) E = 0.1 GPa

Figure 20. Force coefficients generated by rigid and flexible wings undergoing prescribed flapping motion
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study
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Figure 24. Thrust generated by all configurations: Experiment29 (left), Computation (right)
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Figure 25. Comparison of lift coefficients for a rigid flapping wing for various advance ratios
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