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The lattice Boltzmann method offers an alternative framework compared to the Navier-

Stokes simulations. However, the applicability of this method to simulate moving boundary 

problems has not received sufficient attention. In this work, different treatments of the no-

slip condition of lattice Boltzmann method for the moving boundary problem of rigid and 

flexible wings flapping in a fluid have been analyzed. Schemes based on interpolation have 

been considered in the scope of flapping and plunging wing simulations to analyze the 

accuracy of the solution near the moving boundary. It is shown that interpolation resolves 

the exact location of the wall accurately when the distance from the nearest lattice,      , 

unlike the halfway bounceback method. Flow past a vertically oscillating plate at   = 100 

with two different amplitudes is simulated. The presence of large fluctuations in forces, due 

to different levels of accuracy of pressure and velocity, at the time instant when an 

oscillating plate crosses into the adjoining lattice is shown. For a three-dimensional zero-

thickness flat plate undergoing hovering motion with delayed rotation, interpolation schemes 

show better agreement with Navier-Stokes solution as compared to the halfway bounceback 

method. The flow field computed using interpolation indicates a continuous variation of 

pressure and vorticity near the surface of the wing. Lattice Boltzmann simulation of a finite-

thickness flat plate is also shown to be in good agreement with the Navier-Stokes solution. 

Preliminary results of a two-link flexible wing model undergoing pitching and plunging 

motion are also presented. Through simulations using the flexible-particle model, good 

agreement with the force and deflection angle recorded in earlier experiments is reported.  

Nomenclature 

   = transformation matrix from the space coordinate to the body-fixed coordinate 

b = wing span 

   = drag coefficient 

   = lift coefficient 

  = chord length of flat plate 

   = speed of sound 

   = phase space velocity vector 

    = phase space velocity vector opposite to    

  = Young‟s modulus of the segment 

f = excitation frequency of the wing 

   = distribution function 

  
  = hydrodynamic forces acting on segment i 

  = Shear modulus of segment i 

      = rotational and translational shape functions 
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   = constraint force acting on the joint between segment i and j 

   = moment of inertia of the segment 

   = torsion constant of the segment 

  = identity matrix 

     = inertial moment matrix of segment i 

   = angular momentum of segment i 

  = reduced frequency 

   = mass of segment i 

 = total number of segments 

         = number of lattice points 

ni = unit normal vector to the bending plane 

p = pressure 

   = free-stream velocity 

Re = Reynolds number 

    = angular rotation tensor 

   = positional vector of segment i  from the origin of global coordinate system (           ) 

   = quaternion (=                 
 

) 

    = rate of strain tensor 

  = time 

  
  = bending torque 

  
  = twisting torque 

  
  = hydrodynamic torque 

  
  = constraint torque 

  = velocity vector of fluid (        ) 
   = local wall velocity 

   = weight in the direction given by  

   = positional vector of the node inside of solid 

   = positional vector of the fluid node 

   = positional vector of the solid wall 

 

  = pitching angle of the wing 

   = initial pitch angle of the wing 

   = amplitude of pitch angle of the wing 

   = unit length of one lattice 

   = unit lattice time 

  = fractional distance of the nearest fluid node from wall node 

   = time increment 

     = equilibrium bending angle 

     = deflection angle of passive component of the wing with respect to driver component 

      = equilibrium twisting angle 

         = Euler angles 

  = dimensionless relaxation time 

  = kinematic viscosity of fluid 

  = density of fluid  

   = contribution of external forces 

    = angular velocity with respect to body-fixed coordinate system 

       = amplitude of plunging motion 

   = anglular velocity of the segment i 

 

I. Introduction 

ICRO air vehicles (MAVs) have generated substantial and rapidly growing interest in the engineering and 

science communities. The MAVs are originally defined as flying vehicle about 15 cm in size and are M 
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developed to reconnoiter in confined spaces (inside buildings, tunnels etc). This requires power-efficiency, high-

maneuverability, and low-speed flight with stable hover. With the rapid progress made in structural and material 

technologies, miniaturization of power plants, communication, visualization, and control devices, numerous MAVs 

have been developed. Overall, alternative MAV concepts, based on fixed wing, rotary wing, and flapping wing have 

been investigated [1-3]. One of most successful fixed-winged MAV‟s size is just barely over 10 cm [4].  

MAVs usually operate in the low Reynolds number regime (less than O (10
5
)), which compared with large, 

manned flight vehicles have unfavorable aerodynamic performances, such as low lift-to-drag ratio. On the other 

hand, the MAV‟s small geometric dimension results in favorable scaling characteristics, such as reduced stall speed 

and better structural survivability. In the flapping-wing MAV development, there is great potential for collaborative 

research between biologists and engineers as MAVs and biological flyers share similar dimensions, weight, flight 

speeds, and flight environment. With respect to maneuvering a body efficiently through space, birds not only 

represent some of nature‟s finest locomotion experiments but also show greater performance than human-made 

aircrafts. The primary reasons for such superior maneuvering and flight characteristics include the „scaling laws‟ 

with respect to a vehicle‟s size and material property, as well as intuitive but well-developed sensing, navigation, 

and control capabilities [1, 5]. There are general references that offer broad accounts of biological flight including 

geometric scaling laws, power, morphology, simplified modeling, and unsteady aerodynamics [1].  

Numerous studies have shown that biological flapping flyers utilize several unsteady mechanisms to keep afloat 

and control their flight [1, 5-12]. However, the role of these mechanisms is dependent on wing kinematics, wing 

deformation, size of flyer and flight environment. Specifically, enhancement of aerodynamic force due to leading 

edge vortex (LEV) generation is the most likely general mechanism in flapping flight [1, 5, 9-12]. In addition to the 

LEV, wake-capturing mechanism is sensitive to wake structure and orientation of wing when the two interact [5], 

and tip vortices can enhance lift generation when the proper wing kinematics is utilized [6]. Some other unsteady 

aerodynamic mechanisms that could play a role are discussed in literature as well [1, 5].  

Numerical simulations performed to investigate fluid physics that emanates from the flapping motion of a wing 

have primarily relied on employing the Navier-Stokes equation-based macroscopic method. These approaches have 

been very successful to solve flow field around moving boundaries. However, considerable challenges still exist, 

such as the development of robust and computationally efficient schemes of remeshing, grid generation, and 

efficient matrix solvers to name a few. Recently, there has been much progress in developing and employing the 

method of lattice Boltzmann equation (LBE) as an alternative, non-traditional computational technique for solving 

complex fluid dynamic systems. In the LBE approach, one solves the kinetic equation for the particle distribution 

function and the macroscopic quantities can then be obtained by evaluating the hydrodynamic moments of the 

distribution function. Other highlighting features of the lattice Boltzmann method (LBM) are:  

1. The solution method is local in nature, as the governing equation does not need any information from 

the neighboring nodes. 

2. It employs a stationary, commonly Cartesian, mesh for both fixed and moving boundary problems. 

3. The solution process is non-iterative, does not require any matrix inversion, and hence takes minimal 

computation at each time step. 

4. LBE recovers the incompressible Navier-Stokes equations using the Chapman-Enskog expansion. 

5. It can be parallelized easily. 
 

In the past, Sui et al. [13] have presented a hybrid immersed-boundary and multi-block LBM which was applied 

for the simulation of a flapping wing. They studied the two-dimensional hovering of an elliptical shape wing with 

dragonfly-like kinematics at Re= 157, and showed good agreement with the results of a previous study. They 

emphasized that their method not only preserved the advantages of both the immersed-boundary method and LBM, 

it also improved the accuracy and efficiency by employing a multi-block strategy. Gao et al. [14, 15] investigated 

the ground effect on insect hovering using a two-dimensional immersed boundary-LBM. They examined normal and 

dragonfly hovering mode at Re= 100. They showed that, in the normal hovering mode, the symmetry of the flow 

field is destroyed when the foil moves away from the ground, and the back-stroke is the major contributor to the 

vertical force. In the dragonfly hovering mode, the ground effect mainly affected the horizontal force when the foil 

moved away from the ground [14, 15]. Liu, Liu and Lu [16] studied the aerodynamics of the two-dimensional two-

winged insect hovering flight and have examined the effect of Reynolds number (25 to 100), wing kinematics (i. e. 

stroke amplitude and angle of attack), and flight environment (i.e. effect of ground clearance). It was shown that the 

time-averaged vertical and horizontal forces were weakly dependent on the stroke amplitude as it varied from 3.0 to 

5.0, corresponding to the range of amplitude-to-chord ratio employed in the small insect flight [17]. A weak 

dependency of aerodynamic performance was identified for Reynolds number in the range from to 50 to 100. 

Moreover, the aerodynamic forces were significantly enhanced for small ground clearance due to the ground effect. 
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More recently, Wu, Shu, and Zhang [18] performed numerical investigation of the flow around two-dimensional 

hovering elliptical shape with pitching and plunging airfoil at Re= 75. Their results showed reasonable agreement 

with the results of previous studies [19, 20]; however, the results simulated delayed rotation showed slight 

discrepancy when compared with [19, 20]. In addition, LBM has also been applied for simulation of aerodynamics 

due to forewing and hindwing interaction in gliding dragonfly flight [21]. A multi-block lattice Boltzmann method 

[22] and second-order accurate treatment for the boundary conditions [23] was employed and a systematic study for 

angle of attack of forewing (0º -6 º) and hindwing (6 º -12 º), chord ratios, and different Reynolds numbers (Re= 

300, 1000, and 2000) was conducted. The vertical force generated at Re= 300 was compared with that at Re= 2000. 

It was shown that the lift on the wings increased with increasing Reynolds number. Finally, the authors concluded 

that forewing/hindwing interactions can enhance the total lift force effectively and reduce the drag force on the 

wings compared to two isolated wings due to triangular camber effect [24]. 

In spite of these studies, a major challenge in LBM simulations is the handling of no-slip, slip and symmetric 

boundary conditions. In particular, no-slip boundary treatment on the surface of the wing is at the core of flapping 

wing simulations. Yu, Mei and Shyy have proposed second-order accurate linear- and quadratic treatments by 

considering momentum balance in the direction of the discrete velocity set [25]. They have shown smooth variation 

of force histories compared to other boundary treatments [25]. However, these boundary treatments have not been 

investigated in the scope of flapping and plunging wing simulations to analyze the accuracy of the solution near the 

moving boundary. A systematic study is needed that could validate these techniques applied for the simulation of 

aerodynamics of MAVs and low Reynolds number flapping wing flyers. In addition, the range of Re=O(10
2
) falls in 

the flight regime of a fruitfly, one of most representative insects investigated in biological flapping research [1, 5-

12]. Thus, the objectives of the present study are: 1) assessment of several no-slip boundary treatments of stationary 

and moving boundaries at Re = 100, 2) to investigate fluid physics behind zero- and finite-thickness flat plate 

undergoing pitching and plunging at Re=       , and 3) to show preliminary results of 3D two-link flexible wing 

model under pitching and plunging motion.  

  

II. Methodology and Case Description 

A. Governing equations 

LBM is a simulation technique in which the discretized Boltzmann‟s equation is solved for the particle 

distribution function on a regular, uniform Cartesian grid. This discretized form of the equation is derived from the 

more general Boltzmann‟s equation that is a function of space, time and phase-space. This Boltzmann‟s equation is 

discretized in the phase-vector space that yields the differential form of the LBE that is an equation for the particle 

distribution function as a function of position and time. The LBE has an inbuilt collision operator that mimics the 

role of collisions of atoms or molecules in a gas or liquid. The single-time relaxation form of Bhatnagar-Gross-

Krook (BGK) is the most commonly used form of this collision operator that converts the Boltzmann‟s equation into 

a linear differential equation, which could be readily discretized and solved through a time marching procedure. 

Thus, 

   
  

         
      

  
 

 
   

 

(1) 

when discretized in time and discrete-velocity space gives 

                            

  
 
                    

  
  

           
        

 
    

(2) 

Assuming        , Eq. (2) simplifies to the most commonly used „explicit‟ lattice Boltzmann equation (LBE), 

given as 

                         
           

        

 
    

(3) 
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In the LBE,   is the dimensionless relaxation time and    
accounts for contributions from any external forces acting 

on the fluid.   
  

 represents the equilibrium distribution function, which depends only on local density and velocity. 

For a three-dimensional lattice (D3Q19) it can be expressed in the following form: 

  
  
 

 
  
 

  
 

 

 
   

   

   
 
 

 

  
   

    

  
 

 
      

 

   
 

 
   

   
 
 

 
 

  
   

    

  
 

 
      

 

   
 

 
   

   
 
 

  

    

      

        

 

(4) 

 

where   
      is the speed of sound (in lattice units). Equation (3) is solved as a two-step process. The first step 

involves the collision step, in which the distributions undergo the following rule: 

  
                

           
        

 
    

(5a) 

The second step involves propagating the distributions to the nearest nodes, and is known as the streaming step: 

                  
      

 
(5b) 

There are many models for the phase-space discretization. Some of the commonly used models are the D2Q9 (two-

dimensional, 9 speed), D3Q15 (three-dimensional, 15 speed) and D3Q19 (three-dimensional, 19 speed). The zeroth- 

and first-order moments of the particle distribution function with the phase space vector at each location yield the 

macroscopic density and momentum flux, as 

   
        

 

          
 

 
(6) 

The leading truncation error of a velocity-space discretization is taken into account in a way such that to ensure that 

the kinematic viscosity in the Navier-Stokes equation derived from Eq. (3) becomes 

     
 

 
   

    
(7) 

where the positivity of the viscosity requires that      . 

In this work, the D2Q9 and D3Q19 form of the discrete velocity space have been used that yield a square and 

cubic lattice for the space discretization, respectively. For these models, the phase space velocities are shown in 

Figure 1. The velocity vectors are given as: 

    

      
                

         

  
     

          
          

 

(8) 

for the D2Q9 lattice arrangement, and  

    

        
                             

                                 

  
     

          
           

 

(9) 

for the D3Q19 configuration, where   is the lattice speed and is given by         .  
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(a) D2Q9                                                             (b) D3Q19 

Figure 1: Lattice arrangement for the D2Q9 and D3Q19 discretization. 

 

 
Figure 2: Layout of the regularly spaced lattices and curved wall boundary (solid red). The hollow and filled 

circles denote fluid and wall nodes respectively. The solid squares denote the boundary nodes inside the solid. 

 

B. Boundary treatments 

Halfway bounceback method 

 Devising newer and reliable boundary conditions in the BGK variant of the LBE has received considerable 

attention in the past [22, 23, 25-32]. Some of the boundary conditions commonly encountered in fluid flows are 

related to stationary or moving wall, inlet or outlet velocity, and inlet/outlet pressure. Since LBM deals with the 

particle distribution function as the dependent variable, specification of velocity or pressure boundary conditions 

becomes a highly complex process. In many scenarios, solving for the distribution function based on the 

macroscopic variables on the boundary could lead to a set of equations that may not have a closed form solution. 

With regard to such issues, simple rules have been formulated and proposed in literature through which a closure, 

which is physically harmonious to the problem and at the same time is easy to implement with good accuracy, can 

be achieved.   
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A common method of prescribing the zero-velocity boundary condition at a wall is to reflect the distribution 

functions opposite to the incoming direction. This technique, however, leads to first-order accuracy at the wall 

nodes. Ziegler [31] has proposed the shifting of the wall (boundary) half-mesh into the fluid. In other words, the 

reflection of distribution functions occurs halfway between the nodes, which yields second order accuracy at the 

wall. This scheme is popularly known as the halfway bounceback method. As is was shown by Ladd [28], and with 

reference to Figure 2, the distribution functions reflected back from the solid into the fluid nodes can be written as  

                   
 

  
       

(10) 

where    is weight in the direction given by α,     is the lattice vector opposite to     and    is the local wall 

velocity. 

The fluid momentum carried by each of the distributions cancels off completely halfway between the wall and fluid 

nodes, thereby making the boundary treatment second-order accurate. However, the halfway bounceback treatment 

does not account for any other distance of the wall from the nearest lattice, except      . As a result, the true 

curvilinear object, as shown in Figure 3a, is inherently resolved in a staircase fashion, as shown in Figure 3b. This 

results in loss of accuracy, as a true representation of the object is lost in the process of enforcing the no-slip 

boundary condition. A remedy for this misrepresentation is to use interpolating boundary conditions that may 

account for any fractional distance from the fluid nodes. 

 

                             
(a) True shape of the solid                                   (b) Halfway representation of the solid 

Figure 3: The true and halfway bounceback representation of a curved geometry. 

 

Interpolation method 

 In this formulation, as shown in figure 2, the location of the wall is recorded and used to calculate the 

fractional distance of the nearest fluid node from which distribution would be streamed to the corresponding wall 

node. Hence, 

  
       

       
 

(11) 

According to the definition,      . In this work, the unified treatment for an irregularly aligned boundary is 

utilized according to the formulation of Yu et al. [22]. The linear (first-order expansion) and quadratic (second-

order) interpolation schemes have been used to specify the distribution functions reflected from a moving boundary 

node into the fluid.  

A. First-order 

From Figure 2, after the streaming step the distributions        and        are known. Accordingly, the 

distribution function at the surface of the wall (  ) can be approximated using linear interpolation as 

                               (12) 

To ensure no-slip condition on the wall, the reflected distribution from the wall node is modified to account for 

the momentum gained from the moving wall. As a result, 
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(13) 

Finally, using         and            , the incoming distribution at the fluid node can be written as 

                
 

   
                       

(14) 

 

B. Second-order 

The second-order treatment follows a procedure similar to the first-order interpolation. However, the lattice node 

denoted by              is also included in the interpolation. Accordingly, the distribution at the wall node is 

constructed as  

                               
      

 
                            

(15) 

 Using no-slip condition at the moving boundary (i.e. Eq. (13)), the incoming distribution at the fluid node can be 

written as 

                
 

   
                       

            

       
 
           

       
 

        

          
  

(16) 

  

 

 
Figure 4: The beam segments are connected through ball and socket joints indicated by circle. 

 

C. Flexible particle method 

The lattice Boltzmann flexible particle method has been reported by Qi [30] and will be described briefly. In the 

model, a flexible solid object described as a chain of rigid beam segments are in contact with each other through ball 

and socket joints [30], as shown in Figure 4. During motion, the following condition has to be satisfied at any time: 

         
       

         (17) 

where   is the total number of beam segments;   is the mass center of the i
th

 beam segment; and    is the vector 

from its mass center to the joint  , where index   varies from 1 to    , and the beam segments are labeled by index 

  in an increasing order. In fact,   
    

    
 , where constant velocity   

  
 

 
      is  the semi-axis of the 
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segment, and fixed along the   -direction or the span-wise direction in a body-fixed coordinate system;    is the 

rotational transformation matrix of segment   from the global space coordinate system to the body-fixed coordinate 

system. The prime sign   denotes the body-fixed coordinate system. Equation (17) may be rewritten as: 

         
      

       
    

         (18)  

The wing, as a whole, can bend and twist through rotation around the ball and socket joints. The bending and 

twisting moments are proportional to the deformation angles as  

  
     

       
 

   
(19a)  

  
     

  
      

 

 
    

(19b)  

where                        is the unit normal to the bending plane;      is the equilibrium bending angle; 

    is the bending flexural rigidity with Young‟s modulus   and the moment of inertia of the cross-section area   , 

    if     
         , otherwise     ;     

  is the equilibrium twisting angle;     is torsional rigidity;   is 

he shear modulus;    is the torsion constant. 

The equations of translational and rotational motion for each constituent segment of the wing may be expressed 

as:  

        
  (20a)  

          
    

    
  (20b)  

where    is the mass of fiber segment;   
  is the hydrodynamic force for i

th
 segment;      is the inertial moment 

matrix;    
  is hydrodynamic torque; and     is the angular velocity of the fiber segment. 

As shown in Figure 4, a constraint force (  ) is added at each joint to force the chain of the discretized segment 

to movie and rotate as a flexible body at each time step. In general, translation and rotation are nonlinear functions 

of the constraint forces in the constraint Eq. (18). To solve the constraint forces, displacement and rotation of fiber 

segments are expanded, upto second-order, in a power series of time step.  In the half leap-frog algorithm [32], for 

translation, the position of the mass center of the segment   can be written as  

                        
  

 
  
  

 
  
      

     

 
          

(21)  

where    is the velocity of mass center of segment at        and    is the time step. It should be noted that the 

same formulas could be written for other segments with the corresponding index. For rotation of the segment, the 

rotational transformational matrix (  ) from the space coordinate to the body-fixed coordinate is associated with 

quaternion                      
 
 by  

    

   
     

     
     

                                     

                     
     

     
     

                   

                                       
     

     
     

 

  

 

 

(22) 

Euler angles of each segment (  ,   , and   ) can be directly related to the quaternion [33] by 
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(23a)  

        
 

 
             

 

 
    

(23b)  

         
 

 
             

 

 
    

(23c)  

        
 

 
              

 

 
    

(23d)  

A leap-frog algorithm [33] can be applied to the current problem with constraint forces. First, the angular 

moment    is introduced from time         to time  ,  

     =   
     

  

 
  
     (24)  

where   
                

  

 
      is the  angular moment without the constraint force at time  , while the 

constraint torque for segment   is   
       

    
    

      
 . The angular velocity     in the body- fixed 

coordinate could be obtained by 

                     (25)  

This angular velocity (   ) could be computed through the following equation 

                
 

      
  

(26)  

where 

  

0

0

0

0

1

2

i ix iy iz

ix i iz iy
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q q q q

q q q q
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q q q q

q q q q

   
 

 
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   

B Q
 

(27)  

Furthermore, it is known that  

     
  

 
        

  

 
       

(28)  

Substituting Eq. (26) into Eq. (28), and using Eqs. (24) and (25), it can be rewritten as: 

     
  

 
        

  

 
      

   

 
      

(29)  

Where  

               
 

              
  

 

 

(30)  
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and  

               
 

          
    

  

 

 

(31)  

The angular moment at a half time step    
  

 
) is 

     
  

 
 =   

    
  

 
      

     (32)  

where   
    

  

 
       

  

 
         . The angular velocity    at a half time step in the body-fixed 

coordinate is 

      
  

 
          

  

 
      

  

 
  

(33)  

Using Eq. (26) again at   
  

 
 we compute 

      
  

 
            

  

 
          

     

 
           

 

      
  

 
 
  

(34)  

while      
  

 
  in Eq. (33) could be calculated by applying Eq. (22) at   

  

 
. It is noted that the term       in the 

right hand of Eq. (34) can be ignored as it leads to higher order terms in the later equations. Moreover,  

                       
  

 
  

(35)  

Using Eq. (33) and substituting Eq. (34) into Eq. (35), it may be rewritten as: 

                    
  

 
           

(36)  

where 

             
 

        
  

 
       

  

 
 
  

(37a)  

             
 

        
  

 
       

  

 
 
  

(37b)  

             
 

        
  

 
   

    
  

(37c)  

During the procedure described earlier, the accuracy is kept up to the second order in   , and any higher order 

terms than two are truncated. The quaternion should be normalized before substituting into Eq. (22) so that    
     is satisfied.            can then be substituted into Eq. (18) to resolve the constraint force   .  
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D. Case descriptions 

1. Zero thickness flat plate 

a. Stationary zero thickness flat plate with zero angle of attack at Re= 100  

 In this study, flow past a stationary plate at              has been simulated using different ways of 

handling the no-slip boundary condition on the wall. Figure 6 shows the schematic with the domain and boundary 

conditions enforced on each boundary of the two-dimensional setup. The domain was discretized into       

         lattices. The length of the plate was equivalent to 40 lattice nodes. At the inlet, uniform flow was 

prescribed based on the method of bounceback of the non-equilibrium distribution function [34]. At the outlet, an 

extrapolation scheme was used to determine the incoming distribution functions: 

                                                  

Symmetry boundary conditions were applied at the top and bottom faces of the domain. The role of the location of 

the wall and the its handling by the different LBM treatments was also analyzed by placing the wall at different 

distances from the nearest lattice. An in-house Navier-Stokes based solver [6] has been used for the purpose of 

validating the lattice Boltzmann results. 

 

Figure 5: Flow past a stationary plate (shown in red) with the enforced boundary conditions. 

 

b. Vertically oscillating plate with zero angle of attack at Re=100 

 In addition to the earlier problem, flow past a vertically oscillating plate at                has also 

been simulated for different amplitudes of the plate, keeping the frequency at a fixed value. This allows to analyze 

the role of temporally varying distance of the plate from the nearest lattices for different schemes of the no-slip 

boundary condition on the solid wall. The schematic with the domain and the direction of motion of the plate is 

shown in Figure 6. The domain was discretized into                lattices, and similar boundary 

conditions as earlier were enforced on each of the outer boundaries. The plate, which comprised of 40 lattice nodes, 

was placed at        at time    . The displacement motion of the oscillating plate (from the initial position) 

was prescribed based on the following kinematics: 

 

                 
 

(38) 

where    and   are the amplitude and frequency, respectively, that define the motion of the plate. 

Two different of amplitudes were considered in this study:           and          . The former ensures that 

the plate remains confined within a particular lattice at all times, whereas the latter makes sure that the plate crosses 

the lattice when           . 
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Figure 6: Flow past a vertically oscillating plate (shown in red) with the kinematics and boundary conditions. 

 

c. Three-dimensional wing hovering with delayed rotation  at Re = 100 

The simplified kinematics governing the rotational (pitching) and translational (plunging) motion of a rigid zero-

thickness wing adopted in this work are described in Eq. (39). The rotational motion is governed by the flapping 

frequency ( ) and the angular amplitude (  ), whereas the translational motion depends on the plunging amplitude 

(  ) and the flapping frequency.  

                        (39a) 

                   (39b)  

For the delayed rotation case simulated in this work, the following parameters were chosen for direct comparison 

of results obtained through a finite-volume Navier-Stokes solver [34]:                                 
The Reynolds number is defined based on the maximum translational velocity and the chord width, and is given as 

   
     

 
. The wing position and orientation for this set of governing parameters is shown in Figure 7 for both 

forward and backward strokes. The simulation domain comprised of             lattice nodes, and the aspect 

ratio of the wing was fixed at  
  

  
  , based on the span and the chord lengths. The chord length was equivalent to 

40 lattice nodes. 

  

(a) Forward stroke (b) Backward stroke 

Figure 7: Forward and backward strokes, with the orientation of the wing, as described by Eq. (39). 

 

 

2. Finite thickness flat plate 

a. Three-dimensional wing hovering with advanced rotation at Re= 136 

For three-dimensional finite thickness flat plate with the advanced rotation case, the following parameters 

presented in Eq. (39) were chosen for direct comparison with the Navier-Stokes solutions [34]:              
                , and  = 0.8 Hz. The Reynolds number was 136 and the aspect ratio of the wing was 2.5. 
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The thickness of the plate is 7.5 % of chord. A cylinder simulation box was used and the radius of the cylinder is 

500 lattice nodes. The chord length was equivalent to 40 lattice nodes. The flow velocity in   direction (i.e. 

spanwise direction) and velocity gradient in   and   directions on symmetrical plane were set to zero. No-slip 

boundary condition was enforced using the halfway bounceback method.  

 

b. Three-dimensional flexible wing hovering with advanced rotation at Re= 100  

For the three-dimensional flexible pitching and plunging wing case simulated in this work, the prescribed motion 

of the plate described by Tommey and Eldredge [35] was followed. The kinematics could be mathematically 

described as  

         
      

     
 

(40a) 

        
      

     
       

(40b)  

where the rotational shape function is                            and the translational shape function is 

                       
      

 
, with the start-up conditioner given by       

                

       
. In this study, 

the following parameters were chosen for a direct comparison with the published data [35]:              
                  , and         . The Reynolds number, based on the peak angular velocity, was 100. 

Two simulation domains were considered:            and            lattice nodes. An equivalent chord 

length of 48 and 72 lattice nodes was used for each simulation. The two-dimensional simulations [35] used a wing 

with an infinitely long span.  Although the present simulations were conducted in three-dimensions, an infinite span 

was imitated by choosing a span that covered the entire length in the periodic direction.  Solid walls were set at the 

bottom and top boundaries of the simulation box in the vertical or Y-direction. Periodicity was applied in the 

horizontal and span directions. The total number of the segments in the flexible particle model was set at  =2 and 

the same damping force as that in Tommey and Eldredge [35] was incorporated. The two-segment wing had the 

same set-up as Tommey and Eldredge [35] and underwent flapping at the center of the simulation box.  

III. Results and Discussions 

1. Zero thickness flat plate in free stream at Re= 100 

We first visit the two-dimensional problem of uniform flow past a stationary zero thickness flat plate at   = 100. 

The motivation behind selecting the zero-thickness plate for LBM simulations can be explained as follows. 

Commonly, LBM employs the use of a Cartesian, stationary, and non-adaptive grid on which the evolution of the 

distribution function occurs. For flows related to movement of a solid object with some thickness (for example, 

sedimentation of a sphere and hovering of a finite-thickness plate), a lattice, that was confined to the interior of the 

solid object at an earlier time step, can, all of a sudden, be exposed to the fluid side of the domain. In such a case, 

fluid mass needs to be 'created' at this newly emerged node, and mass 'destroyed' at the node that may have entered 

the solid object [23, 28]. A method commonly adopted to create mass on this newly fluid node involves prescribing 

distribution that equals the equilibrium function corresponding to the solid velocity and mean fluid density [28]. 

However, this may lead to large fluctuations in the pressure field, which manifest in the form of sudden jumps in the 

aerodynamic forces [23]. Thus, to avoid this frequent creation and destruction of mass during the course of the 

simulation, the results in this section rely on zero-thickness solid objects. The velocity profiles near the surface of 

the plate computed using LBM have been compared with those obtained through a finite-volume based Navier-

Stokes solver [6].  

 

 

A. Stationary and zero angle of attack  

 

Flow past a stationary flat plate aligned with the direction of incoming flow is simulated at   = 100. The 

description of the domain and the boundary conditions was provided in sub-section D of section II. Typically in 

LBM, aerodynamic forces due to the interaction of a stationary or moving wall with a fluid can be computed based 
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on the momentum exchange [25,27,28] or the stress-integration [27] methods. As the surface of a solid may not 

necessarily be aligned with the fluid nodes at any given time instant, the stress integration method involves 

extrapolation of pressure and shear stress from the latter to the former. This renders the computation difficult to 

implement, especially for a rapidly moving boundary. Due to its local operation and ease of implementation, the 

current study employs the momentum exchange method for the calculation of forces. In Table 1, a comparison of the 

steady state drag coefficient computed using Navier-Stokes (NS) and different LBM wall treatments is shown. Drag 

coefficient, computed in LBM using bounceback, first-and second-order interpolation, showed a deviation from the 

NS solution by less than 5%.  The stream-wise velocity profile as a function of the distance normal to the flat plate, 

at its mid-point, is shown in Figure 8 (a). From Figure 8(a), it can be observed that velocity profile in the region 

close to the solid plate, when the plate is placed in the middle of the lattices (i.e.       ), computed using the 

bounce back, first-order and second-order interpolations is in excellent agreement with the NS solution. Similar 

simulations were also conducted with the plate placed at locations other than halfway between the lattice, and the L2 

error norm for the velocity obtained using halfway bounceback and second-order interpolation for two other 

positions (      and    ) are shown in Figure 8(b). The L2 norm was defined as 

 

   
                  

 
  

   

         
    

   
 (41) 

 

The profile obtained through second-order interpolation with the wall placed at different locations indicates good 

agreement with the NS solution. Although the velocity profile obtained through halfway bounceback matches well 

with second-order interpolation for      , the former shows significant deviation when compared to cases where 

the wall location is not halfway between the lattice as is shown in Figure 8 (b). As a result, accuracy of the flow field 

can be compromised when using halfway bounceback to enforce the no-slip boundary condition near the plate for 

any general      .  

 

Table 1: Comparison of drag coefficient between LBM and NS solutions at Re= 100 

 CD 

Navier-Stokes 0.343 

Halfway bounceback 0.362 

Linear Interpolation 0.360 

Second-order Interpolation 0.358 

 

 

 
(a) Horizontal velocity profile as a function of distance away from the stationary plate with Navier-Stokes and 

different lattice Boltzmann treatments for      . 
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(b) L2 norm calculated for horizontal velocity as a function of fractional distance away from fluid node with 

halfway bounceback and second-order interpolation.  

 

Figure 8: Comparison of stream-wise velocity profile near the flat plate at the mid-point for   = 100 obtained 

through Navier-Stokes, halfway bounceback, first and second-order interpolations methods. 

 

B. Vertically oscillating and zero angle of attack  

We now address the two-dimensional problem of uniform flow past an oscillating, zero thickness flat plate at 

  = 100. Details regarding the simulation setup were given in sub-section D of section II. The aerodynamic forces 

computed using different boundary treatments in the context of LBM have been compared with each other. 

 

B.1 Amplitude of oscillating plate:            

 

We first consider the case of a vertically oscillating plate with an amplitude given by         , and at a 

frequency given by         . This amplitude ensures that the plate remains confined within the cells given by 

         and         . As a result, the momentum transfer occurs only along links in a certain direction. 

For example, at node „A‟ in Figure 9(a), links 4, 7 and 8 will undergo bounce-back, and at „B‟ nodes 2, 5 and 6 will 

be bounced-back. This occurs for the course of the simulation. A comparison of the instantaneous drag and lift 

coefficients for different lattice Boltzmann boundary treatments is shown in Figure 10. The dotted line in the figure 

indicates the displacement of the plate as a function of time, given by Eq. (38). It was found that for all solid-fluid 

boundary treatments considered, the drag and lift forces showed no fluctuation (or noise) when recorded over many 

cycles.  

 

B.2 Amplitude of oscillating plate:           

 

The drag and lift coefficient for a slightly higher amplitude of oscillation      of the flat plate are shown in 

Figure 11. Again, the dotted line in the figure indicates the displacement of the plate as a function of time, given by 

Eq. (38). Drag and lift forces show high fluctuations and non-smoothness at the exact time instant when the plate 

crosses into the adjoining cell, indicated by the time instants corresponding to            . For instance, in 

Figure 11(a), the drag coefficient shows an increase from         to         for halfway bounceback method 

at this time instant. This crossing of the nodes results in reversal of the direction of momentum transfer from the 

moving boundary. Unlike the previous case, the momentum transfer occurs along link directions that are dynamic 

and change with the position of the plate. As shown in Figure 9, for instance, at node „A‟ links 4, 7 and 8 will 

undergo bounce-back at time     . If the plate crosses into the adjoining cell at         , the link directions 

will be reversed, and links 2, 5 and 6 will be involved in momentum exchange. As shown in Figure 11, the use of 

interpolation results in lowering of the magnitude of fluctuation i.e. from         (for halfway bounceback) to 

        and         using linear and quadratic interpolation, respectively. However, interpolation could not 

eliminate these fluctuations. Figure 12 shows pressure and vorticity contours around the plate before and after the 
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plate has crossed the lattice to investigate its effect on pressure and velocity around a moving boundary. It can be 

seen that vorticity contour at two time instants are very similar while pressure distributions near the plate show the 

presence of a large low pressure region when the plate has crossed the lattice. The appearance of this low pressure 

region explains the sudden increase or decrease in force coefficients at this very time instant.  Earlier studies have 

speculated that the source of fluctuations in LBM could be attributed to the approximation of the distribution 

function on the new fluid nodes through an equilibrium distribution [22, 31]. Since the current simulations deal with 

solid objects of zero-thickness, it has been guaranteed that the creation of new distribution functions is not the 

source of fluctuations so commonly observed in LBM. Results of the present study indicate that the crossing of the 

plate and reversal of the bounce-back links is the main source of large fluctuations in the forces. 

 

 

  
(a)      (a)         

 

Figure 9: Link bounceback at (a) time       before the plate (shown in red) has crossed into the cell B-C, 

and (b) time         just after the plate has crossed into the cell B-C. 

 

 

  

  
(a) Drag coefficient (b) Lift coefficient 

Figure 10: Comparison of instantaneous drag and lift coefficient of LBM solutions between different 

boundary treatments (  = 100 and          ). The dotted blue line indicates the kinematics of the 

oscillating plate. 
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(a) Drag coefficient (b) Lift coefficient 

Figure 11: Comparison of instantaneous drag and lift coefficient of LBM solutions between different 

boundary treatments (  = 100 and          ). The dotted blue line indicates the kinematics of the 

oscillating plate.  

  

Vorticity contour Vorticity contour 

  
Pressure contour Pressure contour 

  
(1) Before crossing (2) After crossing 

Figure 12: Contours of vorticity and pressure around the oscillating zero thickness plate at two time instants: 

(1) before crossing lattice, and (2) after crossing lattice. Arrow indicates the direction of wing movement. 
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C. Wing with delayed rotation hovering at   = 100  

The complex fluid dynamics around a zero-thickness flat plate undergoing hovering motion is simulated, using 

different treatments of the moving boundary condition, for the case of delayed rotation of the plate. The parameters 

governing the kinematics were chosen to be the following:      ,   = 1 Hz,    = 90º,    = -45º, and   = 60º. 

The aerodynamic forces computed using halfway bounceback and second-order interpolation have been compared 

with results from an in-house finite-volume based Navier-Stokes solver [6].  

Figure 13 shows force comparison between Navier-Stokes solution [6] and LBM solutions with two different no-

slip boundary treatments (i.e. halfway bounceback and second order interpolation). Good agreement between the 

LBM and Navier-Stokes results is noticeable. In addition, results obtained through second order interpolation show a 

relatively better agreement with the NS solution. When compared with the halfway bounceback method, the use of 

second-order interpolation resulted in decreased fluctuations as observed in the time history of drag and lift 

coefficients. However, the use of interpolation could not completely eliminate the fluctuations in the force history. 

In particular, the fluctuations were prominent near the time instant corresponding to    =5.4, which corresponds to 

the peak lift coefficient as is shown in Figure 13(b). The pressure and vorticity contours around this time instant are 

shown in Figure 14 and 15 respectively. It can be observed that although vorticity around the wing is smooth and 

continuous, pressure shows significant discontinuity at    =5.4. The high fluctuation in the forces could hence be 

attributed to this acoustic phenomenon. 

Streamwise vorticity contours at two different wing sections, namely at mid-span and the wing-tip, and iso Q 

contours around the wing for the NS and LBM simulations, with two different no-slip boundary treatments, are 

shown in Figures 15 and 16 respectively.    is defined as 

 

                     (42) 

                   

where     and     are the angular rotation and rate-of-strain tensors, respectively, and are components of the 

velocity gradient tensor                  . A high value of   would suggest a higher level of coherence in the 

vortical flow structure. The vorticity computed using LBM shows good agreement with the NS solution. Moreover, 

from Figure 16, it can be observed that the far field vortical structure is more dissipated, which is likely to be due to 

the coarse grid topology and resolution for the NS computations, as compared to the LBM solution. The three-

dimensional iso-  contours predicted by LBM are shown in Figure 17. The corresponding   contours at the mid-

span for the three different simulations are shown in Figure 18. It can be observed that the flow predictions through 

the halfway bounceback show significant discontinuity in the velocity field pattern near the wing surface. However, 

the flow field computed using second-order interpolation shows a better prediction, especially around the wing, than 

that with the halfway bounceback method (see Figure 18 (b) and (c)). For the Reynolds number considered in the 

current study, the 3D LBM computation requires substantially less time than the Navier-Stokes computation, due to 

the former's non-iterative nature and the utilization of a fixed grid. 
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(a) Drag coefficient 

 
(b) Lift coefficient 

Figure 13: Comparison between the results of 3D LBM simulation obtained through halfway bounceback 

(black dot line) and second order interpolation (red dashed line) with the Navier-Stokes simulation (solid blue 

line) at Re= 100 and      . 
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(a)     = 5.36 (b)     = 5.4 (c)     = 5.44 

Figure 14: Pressure contours around the hovering wing for three different time instants near the peak lift 

computed using the second-order interpolation at Re=100. 

 

   
(a)     = 5.36 (b)     = 5.4 (c)     = 5.44 

Figure 15: Vorticity contours around the hovering wing for three different time instants near the peak lift 

computed using the second-order interpolation at Re=100. 

 

 

   
(a-1) Navier-Stokes solution at 

mid span 

(b-1) LBM solution with halfway 

bounceback at mid span 

(c-1) LBM solution with second 

order interpolation at mid span 
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(a-2) NS solution at wing tip (b-2) LBM solution with halfway 

bounceback at wing tip 

(c-2) LBM solution with second 

order interpolation at wing tip 

Figure 16: Comparison of spanwise vorticity contours around hovering flat plate at the middle of stroke 

(highlighted in red in Figure 7 (a)) at Re= 100 and      . Arrow indicates the translational direction of the 

wing movement. 

 

 

 

   
(a) NS solution (b) LBM solution with halfway 

bounceback  

(c) LBM solution with second 

order interpolation  

Figure 17: Comparison of iso- (=4) surfaces snapshots around hovering flat plate at the middle of stroke 

(highlighted in red in Figure 7 (a)) at Re= 100 and      . The wing is translating and rotating along the X- 

and Z-axis respectively. 

 

 

   
(a) NS solution at mid span (b) LBM solution with halfway 

bounceback at mid span 

(c) LBM solution with second 

order interpolation at mid span 

Figure 18: Comparison of iso-  contour snapshots around hovering flat plate the middle of stroke 

(highlighted in red in Figure 7 (a)) at Re= 100 and       . Arrow indicates the direction of wing movement. 
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2. Finite thickness flat plate 

 

In this section, the results of two different case studies will be presented: 1) three-dimensional LBM simulation 

of a finite-thickness rigid wing with advanced rotation under hovering condition at   = 136, and 2) three-

dimensional LBM simulation of flexible wing with advance rotation under hovering condition at   = 100. The 

results will be compared with the available published data [6, 35].  

 

A. Wing with advanced rotation hovering at    = 136 

 

Results obtained through the lattice Boltzmann simulation of a finite-thickness flat plate have been compared 

against a Navier-Stokes based computation [6]. The computational set-up and wing kinematics were described in 

sub-section D of section II. The results for lift and drag coefficients over multiple cycles, obtained through the two 

methods, are compared in Figure 19. It can be seen that both lift and drag coefficient computed by LBM is in good 

agreement with Navier-Stokes solution. The presence of two peaks in the force histories during each up- and down-

stroke is observable. The first peak at the beginning of a half-stroke is due to wake capture. The second peak at the 

end of the half-stroke is attributed to rotational circulation. These unsteady mechanisms were also found to be 

consistent with the earlier published findings [36].  

 

B. 3D Flexible wing simulation with advanced rotation at    = 100 

 

The computed lift forces using the present method have been compared with those using the viscous vortex 

particle method (VVPM) [20, 35]. The time history of the resultant angle of deflection is directly compared with 

those of experiments [35], and is shown in Figure 20. The 'driver' segment was prescribed the kinematics as 

explained in sub-section D of section II earlier. The 'driven' segment responds to the motion of the 'driver', with the 

links connected at all times through a ball-and-socket joint attached at their respective ends. Two different mesh 

spacing were simulated to test for grid independence of the presented results. As shown in Figure 20, refinement of 

the mesh did not lead to any appreciable change in the magnitude of the vertical force and the deflection angle. In 

addition, the vertical force and the deflection angle were found to be in good agreement with the experiments [35]. 

The pressure and vorticity contours obtained using the flexible wing model of LBM are shown in Figure 21. The 

wing configuration, including the bending angle between the 'driver' and 'driven' segment is also shown. From 

Figure 21(b), the presence of a trailing edge vortex that is attached to the 'driven' segment is observable. The 

presence of a low pressure region on the upper side of the two segments can be discerned as well. This contributes to 

the generation of a positive lift at this time instant, as is shown in Figure 20(a).  

 

  
(a) Drag coefficient (b) Lift coefficient 

Figure 19: Comparison between the results of 3D LBM and Navier-Stokes simulations at   = 136 and  =0.71 
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(a) Lift coefficient (b) Deflection angle (    ) 
Figure 20: Comparison between the results of 3D LBM simulation, VVPM simulation, and the experiment at 

Re= 100 and       . 

 

  
(a) Pressure (b) Vorticity 

Figure 21: Contour plots, taken at middle of span, of (a) pressure, and (b) vorticity at Re=100 using the 3D 

lattice Boltzmann flexible wing simulation. The upper and lower wings denote the 'driver' and 'driven' 

segments respectively. The wing is moving in the westward direction in the current configuration taken at 

t/T=2.0. 

 

IV. Conclusions 

In this work, various treatments of the no-slip condition, namely halfway bounceback, first- and second-order 

interpolations, for the moving boundary problem of rigid and flexible wings flapping in a fluid at rest have been 

analyzed. The halfway bounceback method has a popular choice for imposing the no-slip boundary condition; 

however, its accuracy in resolving the true shape of thin and irregularly aligned objects can be compromised due to 

the staircase pattern associated with the exchange of momentum in the key step of this method. Hence, treatments 

based on interpolation were also considered in the scope of flapping and plunging wing simulations to analyze the 

accuracy of the solution near the moving boundary. Through the use of simple examples, such as uniform flow past 

stationary and oscillating flat plates, it was shown that the halfway bounceback, first- and second-order interpolation 

yield velocity profiles that were consistent with a finite-volume based Navier-Stokes solver. For the case of flow 

past a stationary plate, interpolation schemes unlike the halfway method, were found to resolve the exact location of 

the wall accurately when the distance from the nearest lattice,      .  
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Flow past a vertically oscillating plate at   = 100 was used as a preliminary exercise to explain the presence of 

fluctuations in the aerodynamic force history. Two different amplitudes were simulated:        and       . For the 

former, the lift and drag coefficients did not show any fluctuations. The latter case showed large fluctuations at the 

time instant when the plate crossed into the adjoining lattice. This crossing of the nodes resulted in reversal of the 

direction of momentum transfer from the moving boundary. For the case with the higher amplitude, momentum 

transfer occurs along link directions that are dynamic and change with the position of the plate. Current results 

suggest that the crossing of the plate and reversal of the bounce-back links is the main source of large fluctuations in 

the forces. Although the velocity field shows negligible change due to reversal of bounceback, the large fluctuations 

could be attributed to the sudden appearance of a low pressure region, and hence a large pressure differential, near 

the plate after it has crossed into the adjacent cell. The dissimilarity in the prediction of macroscopic variables 

before and after crossing of a lattice indicates different levels of accuracy of pressure and velocity around the 

moving boundary in LBM. Since the exhibition of lower level of accuracy in pressure has not been analyzed so far, 

further investigation is necessary and will be directed towards possible improvements applicable to this aspect of 

moving boundary simulations in the framework of LBM. 

The treatment of the boundary condition, accuracy of the computed pressure and velocity fields are key to 

flapping wing computations. To analyze these aspects, three-dimensional simulations were conducted for a zero-

thickness flat plate undergoing hovering motion using different treatments of the moving boundary condition, for the 

case of delayed rotation of the plate. Results obtained through second order interpolation show better agreement 

with the NS solution, as compared to the halfway bounceback method. The use of second interpolation resulted in 

decreased fluctuations in the time history of drag and lift coefficients when compared with the halfway bounceback 

method. Moreover, the flow predictions through the halfway bounceback show significant discontinuity in the 

velocity field pattern near the wing surface. The flow field computed using second-order interpolation indicated a 

more continuous representation of the flow near the wing. In lattice Boltzmann simulations, the computational time 

is directly linked to the choice of the dimensionless relaxation parameter    ; a lower value of this parameter will 

mean a longer time to complete one time-period of wing hovering motion. For the Reynolds number considered in 

the current study, with the lowest relaxation time parameter chosen (      ), employing LBM indicated 

significant savings in computational time as compared to the Navier-Stokes simulation, due to the former's non-

iterative nature and the utilization of a fixed grid. 

Results obtained through the lattice Boltzmann simulation of a finite-thickness flat plate were found to be in 

good agreement with the Navier-Stokes solution. Preliminary results of a three-dimensional two-link flexible wing 

model undergoing pitching and plunging motion were also presented. It was shown that vertical force computed 

using the three-dimensional lattice Boltzmann-based flexible wing model is in good agreement with the 

experimental findings. In addition, the deflection of the passive link closely resembles the true deflection as was 

observed in the same experiments. In the future, simulations with the effect of span-wise flexibility using the 

flexible-wing model will be presented.  
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