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Three-Dimensional Carbuncles and Euler Fluxes 
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Hypersonic flow computations have proved to be very troublesome due to appearance of 
shock anomalies (instabilities and oscillations), such as carbuncle phenomenon. These 
anomalies are categorized into one-dimensional and multidimensional modes, and they both 
arise from many factors and their combinations. Accurate prediction of hypersonic heating, 
a key issue in hypersonic flow computations, is therefore challenging especially for three 
dimensions. In the preceding studies, we focused on one- or two-dimensional shock 
anomalies and heating. In the present study, we extend these discussions to three dimensions 
motivated by the following reasons: 1) Naively, multidimensional shock anomalies are 
considered to develop more likely in three dimensions than in two dimensions, but it cannot 
be proved mathematically, nor has it been numerically demonstrated; specifically, it is not 
clear yet whether the third dimension plays another role which is absent in two dimensions. 
2) Most of proposed remedies for multidimensional anomalies had been tested in one- or 
two-dimensional setups in the literature, but it is not guaranteed whether multidimensional 
dissipations of such methods actually work well in three dimensions. To clarify those, we 
conducted numerical experiments proposed by the authors along with other benchmark tests 
in three dimensions for five popular fluxes. The results show that three-dimensional 
anomalies are quite complicated particularly in their development, and they can either be 
partly removed or (even worse) enhanced by multidimensional dissipations. Therefore, 
although most of the existing Euler fluxes are designed based on one or two dimensions and 
readily extendable to three-dimensions, it is desirable to invent a new method in 
consideration of the presented three-dimensional behaviors of the captured shock. 

Nomenclature 
cp = specific heat at constant pressure 
Cp = pressure coefficient 
E = total energy 
Ek, Fk = inviscid and viscous flux vectors in k-direction (k = 1, 2, 3, corresponding to x, y, z, respectively) 
H = total enthalpy 
M = Mach number 
P = pressure 
Pr = Prandtl number, 0.72 
q = heat-transfer rate 
R  = Radius of sphere, 0.1 m 
Re  = Reynolds number 
ρ = density 
T = temperature 
V = velocity 
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u, v, w = velocity components in Cartesian coordinates 
x, y, z = Cartesian coordinates 
φ = angle from the nose (= 0) of cylinder or sphere 
Δmin = minimum grid spacing (near the wall) 
γ = specific heat ratio, 1.4 
κ = thermal conductivity, κ = μcp/Pr 
μ = molecular viscosity 
 
Subscripts 
cell = value based on the minimum grid spacing 
F-R = Fay-Riddell’s theoretically predicted value 
w = value on the wall 
∞ = freestream value 
0 = stagnation value 
1 = post-shock value 
2 = pre-shock value 

I. Introduction 
 YPERSONIC flow computations have proven to be very troublesome due 
to appearance of shock anomalies (instabilities or oscillations), such as 

carbuncle phenomenon1 (Figs. 1 and 2). Such anomalies arise from the 
following factors and their combinations2: flow conditions (Mach number, 
Reynolds number, and the ratio of specific heats), mesh (size, aspect ratio, etc.), 
and numerical methods (flux function, accuracy, etc.). The authors3 recently 
reported that any flux functions can lead to those anomalous solutions 
depending on the shock location relative to grid lines. Moreover, they made 
clear that there are at least two causes of the shock anomalies: one is a one-
dimensional effect and the other is a multidimensional one. The former 
appeared to be alleviated by adding dissipation to the shock-normal (1D) 
direction; whereas the latter could be suppressed by multidimensional 
dissipation terms that are usually effective to the shock-perpendicular (Multi-
D) direction.4-10 However, when both of the two causes arise at the same time, 
these dissipations do not work well. Thus, a flux function which is free from 
those two kinds of instabilities is needed, although we do not have had it yet to 
the best of the authors’ knowledge. 

 Accurate prediction of hypersonic heating, a key issue in hypersonic flow 
computations, is therefore challenging, 11,12 especially for three-dimensional, 
complex geometries. For heating 
computations, the authors13 suggested the 
use of flux functions satisfying the 
following three properties: 
I. Shock stability/robustness (i.e., free 

from both 1D and Multi-D anomalies) 
II. Conservation of total enthalpy (and 

hence, total temperature) 
III. Resolving boundary-layer (and hence, 

temperature gradient) 
Unfortunately, it turned out that we had no flux perfectly satisfying all the properties. Nevertheless, the criteria 

introduced therein for hypersonic heating computations and the classification of Euler fluxes are considered useful 
pieces of information in choosing/developing Euler fluxes (for details, please see [13]). 

As reviewed above, in the preceding papers,3,13 we focused on one-dimensional or two-dimensional (2D) issues. 
In the present study, we will extend these discussions to three dimensions (3D) motivated by the following reasons: 

1. Naively, Multi-D shock anomalies are considered to develop more likely in 3D. Specifically, it is not still 
clear whether the third dimension (added dimension into a 2D setup) plays another role which is absent in 2D. 

H 

 

Figure 1. Two-dimensional, 
converged, carbuncle solution. 

 

a) Good (physically 
correct and stable) 

   

 
b) Fair (shock 
‘oscillation’) 

 

 
c) Poor (shock 
‘instability,’ called 
‘carbuncle’) 

Figure 2. Typical solutions for 1-1/2-D test. 

M=6
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2. Most of proposed remedies4-8 for shock anomalies had been tested in 1D and 2D setups in the literature with 
the claim that “3D extension is straightforward.” It is true in a mathematical sense, however, in conjunction 
with 1., it is questionable whether Multi-D methods developed according to such a claim actually work well 
for 3D problems. 

3. It is already known to be troublesome to extend some of Multi-D methods developed in 2D considerations to 
3D. Yoon et al.10 stated in their recent work that the difficulties in 3D extension encountered by their 2D-
based limiter are due to the fact that “cells do not belong to the same plane,” for instance. Moreover, from the 
authors’ experience, a Multi-D hybrid flux using two vectors of normal and parallel to the shock6 can face a 
difficulty in uniquely determining the shock-parallel direction in 3D space, though one of those vectors can 
be (arbitrary) defined: The problem is that the needed dissipation to suppress shock anomalies may differ 
from one direction to another. 

We will conduct numerical experiments proposed by the authors3,13 along with benchmark tests12,15 for popular 
or recently-developed Euler fluxes in 3D. The final remarks will be presented with regard to new insights into three-
dimensional shock anomalies, and to further improvements or developments of flux functions. 

II. Computational Method 

A. Governing Equations 
The governing equations are the compressible Euler or Navier-Stokes equations: 

 

 
where ρ is density, ui velocity components in Cartesian coordinates, E total energy, p pressure, H total enthalpy (H = 
E + (p/ρ) ), and T temperature. The working gas is assumed to be air approximated by the calorically perfect gas 
model with the specific heat ratio γ =1.4. The Prandtl number is Pr=0.72. The viscosity μ is calculated by the 
Sutherland’s formula, and the Stokes’ hypothesis is employed: that is, λ =-2μ/3. 

B. Computational Method 
The following methods are used for computations herein, if not mentioned otherwise. 
As for spatial discretization, the 

primitive variables at each cell-
interface are simply interpolated from 
the cell-center values (first-order) for 
inviscid cases, or second-order 
accuracy is guaranteed by Van 
Albada-limited16 MUSCL 
reconstruction17 for viscous cases. 
Then, inviscid fluxes at the cell-
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Table 1. Classification of Euler Fluxes Based on Three-Properties for 
Hypersonic Heating13 

Group 1 Group 2 Group 3 Group 4 
Flux Functions Roe 

(E-Fix) Van Leer Hänel AUSM+, 
AUSMPW+ 

I. Shock Stability/ 
Robustness Poor Good Good Fair 

II. H-preserving N N Y Y 
III. B-L Resolution Y N N Y  
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interface are calculated from Roe (E-Fix) (Roe18 with Harten’s entropy-fix19), Van Leer’s FVS,20 Hänel,21 
AUSM+,22 or AUSMPW+.5 Roe’s FDS (Group 1) is, for example, less dissipative, though it is known to be 
vulnerable to shock anomalies (e.g., carbuncle phenomenon).2,3 Van Leer’s FVS (Group 2), on the other hand, had 
been known to be free from such shock anomalies, but actually exhibit them in extreme cases.13 Hänel (Group 3) is a 
variant of Van Leer’s FVS, having total enthalpy conserving property. AUSM+ (Group 4), which can be regarded as 
a mixture of FDS and FVS, is more stable than Roe’s flux,2,3 though it also suffers from shock anomalies under 
certain conditions.3,13 AUSMPW+ (Group 4) is an improved AUSM+ equipped with a multidimensional dissipation 
term. These fluxes were categorized as in Table 1.13 Other Multi-D fluxes6-9 are also of interest, but not covered in 
the current paper; instead, we will focus on only representative fluxes chosen from each Group in order to clearly 
compare behaviors of fluxes in different groups. 

These fluxes are briefly described in 2D forms below. 
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Viscous fluxes are computed by using second-order central difference, while for time integration, first-order 
Euler explicit method (for inviscid cases) or LU-SGS (for viscous cases) is employed. No turbulence model or real 
gas model has been used. 

III. Preliminaries: Two-Dimensional Shock Anomalies and Heating 
In this section, along with a few new results, some of our precedent work3,13 are reviewed. 

A. Two-Dimensional Planar Shock3,13 

 As shown in Ref. [3], 
development mechanism of 
multidimensional (Multi-D) shock 
anomalies are distinct from their 1D 
counterpart, although the former 
anomalies are related to the latter: 1D 
shock oscillation appears depending 
on the relative positioning of the 
shock to the grid line; while the 
Multi-D oscillations can be triggered 
by 1D one in certain conditions; 
moreover, the Multi-D shock 
irregularities can develop if the 
numbers of grid points is increased in 
the shock perpendicular direction,13 
as shown in Figs. 3 and 4. This 
suggested the possibility that the 
increment of the grid points is 
equivalent to increment of degrees of 
freedom for numerical errors to 
develop. 

B. Two-Dimensional Shock 
Anomaly Test for Cylinder3 

The (shock-aligned) grid used in 
this test had originally been provided 
by Dr. Jeffery White, NASA Langley. 
§  We eliminated asymmetry of the 
received grid first, and made it 
                                                           
§ Private communication with Jeffery White et al., NASA Langley Research Center, Apr. 2007. 

a) Grid 
 

 
 

  

b) Result of Van Leer’s FVS 
 
 
 

 

Figure 3. 1-1/2-dimensional steady shock test (50 × 25 cells)3,13. 

a) Grid 

 

 
 

b) Result of Van 
Leer’s FVS 

 

 

Figure 4. Modified 1-1/2-dimensional test (50 × 250 cells).13 

ishock=12+ε 
M∞=6.0 

i 

j 



 
American Institute of Aeronautics and Astronautics 

 

6 of 24

slightly dilated so that one grid line closest to the theoretical shock took all the possible locations relative to the 
shock. The grid system and the computational conditions are: 

- Grid: 120 (circumferential) × 48 (wall-normal) 
- CFL = 0.5 
- Computational timesteps: 50,000 steps 
- Flow condition: M∞=6.0 
In the results, 1D, or (1D-triggered) Multi-D shock anomaly appeared on some grids, whereas it did not emerge 

on the other grids (Fig. 5). From this difference it had been revealed that the relative positioning of the grid line to 
the shock played an important role. 

 

C. LAURA Benchmark9,15: Two-Dimensional Hypersonic Heating Test 
This is a viscous, hypersonic (M∞=17) benchmark test used for LAURA and FUN3D codes15, employing a 

shock-aligned grid. The grid was provided by Dr. Peter Gnoffo, NASA Langley** as a 3D mesh (appears later), but 
one slice of it was taken and used here as a 2D version. Then, as in the previous test, we made the same modification 
on this grid, i.e., the “original grid” was dilated a half-cell width as the “modified grid.”  

- Grid: 30 × 64, Δmin = 2.66e-6 m 
- CFL = 200 
- Computational timesteps: 100,000 steps 
- Flow conditions: V∞ = 5000 m/s (M∞=17), Re = 376,930 /m, ρ∞= 0.001 kg/m3, T∞ = 200 K, Tw = 500 K 
With the above setup, the cell Reynolds number is Recell = 1.00, ratio of Pitot pressure to free stream pressure 

P10/P2 = 387.6, and Fay-Riddell’s23 stagnation heating 46.5 W/cm2 (slightly smaller than LAURA-predicted value9 
of 52 W/cm2). 

Computed results are summarized in Figs. 6-9. One can see that Roe (E-Fix) suffered from shock anomaly in the 
modified grid (Fig. 7a) (although the calculation almost converged as shown in Fig. 9c), but not in the original grid 
(Fig. 6a). This anomaly clearly affected surface pressure and, more severely, surface heating rates (more than 20% 
overestimation) (Figs. 8a, 8b, 9a, and 9b). Other flux functions yielded symmetry and stable (almost converged) 
solutions with exception of AUSM+ (oscillatory results on either of the two grids). Van Leer and Hänel resulted in 
poor predictions of heating, as expected. In addition, we point out here that a non-shock aligned grid produces 
similar results as shown in [13]. 

Having presented our recent results in two dimensions, we will proceed to three-dimensional discussions. 

                                                           
** Private communication with Peter Gnoffo, NASA Langley Research Center, Mar. 2009. 

a) original grid 

 

b) modified grid 

 
  

Figure 5.   Cp contours with grid around 2D cylinder (Roe, second-order).3 
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IV. Three-Dimensional Hypersonic Heating Tests 

A. Three-dimensional Planar Shock 
This is an extended planar shock test (from III-A) to three dimensions. 
- Test #1: The grid consists of 10 of the 2D grids (Fig. 3a) stacked in the additional dimension (50×25×10 cells, 

Fig. 10a). 
- Test #2: The grid is equivalent to the 2D grid in Fig. 4a, but used with three-dimensional code (50×250×1 cells). 
- Test #3: The grid consists of 10 of the 2D grids (Fig. 4a) stacked in the additional dimension (50×250×10 cells). 
All the cells are isotropic, and the computational conditions are the same as the 2D case, such as M∞=6.0. The 

initial shock position parameter3, ε, is taken as 0.0 or 0.5 (the initial shock is imposed exactly on a cell-interface 

a) Roe (E-Fix) 

  

b) Van Leer 

 

c) Hänel 

 

d) AUSM+ 

 

e) AUSMPW+ 

 
Figure 6. Pressure contours (0 < P/P∞ < 386) for circular-cylinder (second-order in space; freestream Mach 

number M∞=17). [2D, original grid; 30×64 cells] 

a) Roe (E-Fix) 

  

b) Van Leer 

 

c) Hänel 

 

d) AUSM+ 

 

e) AUSMPW+ 

 
Figure 7. Pressure contours (0 < P/P∞ < 386) for circular-cylinder (second-order in space; freestream Mach 

number M∞=17). [2D, modified (half-cell dilated) grid; 30×64 cells]. 
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when ε=0.0, and at the cell-center when ε=0.5; see Fig. 3a). Then, only selected results will be presented below. 
The results for Test #1 are shown in Figs. 10-13. The Roe (E-Fix) (Fig. 10b) showed total breakdown 

(carbuncle) in three dimensions. The shock shape is irregular, i.e., the instability occurs in every direction with 
respect to the shock. Results of Van Leer (Fig. 11), on the other hand, are stable as in the 2D case (Fig. 3b).  
AUSM+ (Fig. 12) showed a stable result for ε=0.0, but oscillatory for ε=0.5, in consistent with the 2D cases in Ref. 
[13]. AUSMPW+ (ε=0.0) once showed a regular oscillation in both directions perpendicular to the captured shock 
(Fig. 13a), but later the original planar shape was recovered (Figs. 13b and 13c). This recovery seems to be due to 
Multi-D dissipation term in AUSMPW+. The similar behavior was already observed in 2D and in another Multi-D 
flux,6 but its effectiveness in 3D (in the current particular case) has been confirmed. 
a) Pressure 
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c) L2-norm of density residual 
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c) L2-norm of density residual 

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

0 20,000 40,000 60,000 80,000 100,000

time steps

L
2-

no
rm

 o
f d

en
si

ty
 r

es
id

ua
l

Roe (E-Fix)
VanLeer
Hanel
AUSM+
AUSMPW+

Figure 8. Surface pressure and heating profiles, and 
residual histories for cylinder (second-order in 
space; freestream Mach number M∞=12). [2D, 

original grid]. 

Figure 9. Surface pressure and heating profiles, and 
residual histories for cylinder (second-order in 
space; freestream Mach number M∞=12). [2D, 

modified (half-cell dilated) grid]. 
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The set of the results for Test #2 are shown in Figs. 14 (Van Leer) and 15 (AUSMPW+). Not surprisingly, the 
results of Van Leer are technically the same to those in 2D (Fig. 4), demonstrating that the 3D setup (e.g., ghost cells 
in the third direction) plays no significant roles. AUSMPW+, known to be less robust than Van Leer,13 exhibited 
earlier and worse development of shock instability than Van Leer. In spite of these unsurprising outcomes, it is 
interesting to compare the result in Fig. 15 (AUSMPW+ in Test #2) with those in Fig. 11 (AUSMPW+ in Test #1). 
Although the same numbers of cells are used as a total in those two tests, the ‘recovery’ seen in Test #1 was not 
observed in Test #2, that is to say, the Multi-D term in AUSMPW+ did not work properly in Test #2. Thus, it is 
hypothesized that the mechanism of birth and/or growth of (pure) 2D shock anomaly (Test #2) is significantly 
different from its 3D counterpart (Test #1), and so is the needed dissipation to suppress it. If so, even though the 
dissipation term was effective in both cases to ‘detect’ the shock, the amount of dissipation was not enough to ‘cure’ 
the anomaly in Test #2. Then, it is worth trying to modify the ‘weight function w’ in Eq. (8d), for instance, so that 
the dissipation is adequately controlled when instability or oscillation arises and gradually grows only in a particular 
direction. Unfortunately, however, modifications in the following turned out to make no substantial differences in 
the occurrence of instabilities. This issue seems to need further investigation and left as a future work. 

Test #3 results are presented in Figs. 16 (Van Leer) and 17 (AUSMPW+). Astonishingly, the 3D results in Fig. 
16 are more stable than the 2D ones in Fig. 14, but in conjunction with the above hypothesis and the results in Figs. 
3 and 4 (III-A), numerical dissipation added by cells in the third direction seemed to have a favorable effect in this 
case. In AUSMPW+ case (Fig. 17), in contrast, reached an unstable solution: small wiggles appeared at 5,000 steps 
(Figs. 17a and 17b), the breakdown of the shock shape occurred (during 5,000-10,000 steps, Figs. 17a and 17c) 
earlier than the 2D case (during 10,000-40,000 steps, Figs. 15b and 15c), and finally, developed instability remained 
at 40,000 steps (Fig. 17d). Note that the final state in Fig. 17d looks similar to the 2D result (Fig. 15c), rather than 
another 3D result in Test #1 (Fig. 13c). Therefore, the Multi-D dissipation term in AUSMPW+ does not seem to be 
effective in cure of this ‘2D dominant’ anomaly. 
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a) Grid 

 
 
 
 
 

b) Roe (E-Fix),  ε=0.5, 5,000 steps 

 
Figure 10. Three-dimensional steady planar shock test #1 (50 × 25 × 10 cells) (colors: Mach number; gray: 

M=1.5 iso-surface). 

Third Dimension (Direction) 
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a)  ε=0.0, 5,000 steps 

 

b) ε=0.0, 40,000 steps 

 

c) ε=0.5, 40,000 steps 

 
Figure 11. Three-dimensional steady planar shock test #1 (50 × 25 × 10 cells), Van Leer. 

a)  ε=0.0, 40,000 steps 

 

b) ε=0.5, 40,000 steps 

 

 

Figure 12. Three-dimensional steady planar shock test #1 (50 × 25 × 10 cells), AUSM+. 

a)  ε=0.0, 5,000 steps 

 

b) ε=0.0, 10,000 steps 

 

c)  ε=0.0, 50,000 steps 

 
Figure 13. Three-dimensional steady planar shock test #1 (50 × 25 × 10 cells), AUSMPW+. 
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B. Three-dimensional Shock Anomaly Test for Cylinder 
The grid in Section III-B has been extended to three dimensions (100 cells in the third direction). 
- Grid: 120 × 48 × 100 (evenly spaced) 
- CFL = 0.5 
- Computational timesteps: 50,000 steps 
- Flow condition: M∞=6.0 
The results are shown in Figs. 18-20. Figure 18 focused on the development of the “3D carbuncle” for Roe (E-

Fix) case. It is seen from the results that Multi-D shock anomalies developed in every direction: More precisely, the 
“carbuncle instability” seemed to have occurred in the 2D slice (500 steps, Fig. 18b), while in the third direction, the 
shock “oscillation” developed (1,500 steps, Fig. 18c). Then, both of these anomalies developed until 5,000 steps 
(Figs. 18d-f), and this catastrophic solution remained unchanged to 50,000 steps (Fig. 18g), showing the density 
residual decreased by more than seven orders of magnitude (Fig. 19a). Solutions of this kind, i.e., “converged 
carbuncles,” are also reported in 2D (Fig. 18a or Refs. [3, 6]). 

 

a)  ε=0.0, 5,000 steps 

 

b) ε=0.0, 40,000 steps 

 
Figure 14. Three-dimensional steady planar shock test #2 (50 × 250 × 1 cells), Van Leer. 

a)  ε=0.0, 5,000 steps 

 

b)  ε=0.0, 10,000 steps 

 

c)  ε=0.0, 40,000 steps 

 
Figure 15. Three-dimensional steady planar shock test #2 (50 × 250 × 1 cells), AUSMPW+. 
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a)   ε=0.0, 5,000 steps 

 

b)   ε=0.0, 40,000 steps 

 

c)   ε=0.0, 40,000 steps (side view) 

 
Figure 16. Three-dimensional steady planar shock test #3 (50 × 250 × 10 cells), Van Leer. 

a)  AUSMPW+, ε=0.0, 5,000 steps 

 

b)  AUSMPW+, ε=0.0, 5,000 steps (blow-up view) 
 

 
c)  AUSMPW+, ε=0.0, 10,000 steps 

 

d)  AUSMPW+, ε=0.0, 40,000 steps 

 
Figure 17. Three-dimensional steady planar shock test (50 × 250 × 10 cells). 
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a) Grid and Reference 2D “Carbuncle” Result3 

  
b) 500 steps 

 

 

 
c) 1,500 steps 

 

 
 

 
d) 2,000 steps 

 

 

 
Figure 18.  Snapshots of developing 3D carbuncle for circular-cylinder (Roe E-Fix, first-order both in space 
and time; freestream Mach number M∞=6.0); Cp contours (left; 0 < Cp < 50) and iso-Mach-number surface 

(right; M=1.5) [except for a) of grids and reference 2D result], continued. 

Third Dimension (Direction) 
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e) 2,500 steps 

 

 

 
f) 5,000 steps 

 

 

 
g) 50,000 steps 

 

 

Figure 18.  Snapshots of developing 3D carbuncle for circular-cylinder (Roe E-Fix, first-order both in space 
and time; freestream Mach number M∞=6.0); Cp contours (left; 0 < Cp < 50) and iso-Mach-number surface 

(right; M=1.5) [except for a) of grids and reference 2D result], concluded. 
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In contrast to the planar shock case (Fig. 10), the shock anomalies in this case appeared to have developed in 

different modes in different directions, and also, in different rates. These differences seem to be due to the fact that 
the cells in the third direction are totally the same from one slice to another, while in a slice the cells in the rest of 
the two dimensions are different. Then, there appeared to be two possibilities: 

 i) 2D carbuncle triggered 3D oscillation, i.e., the appearance of the 3D oscillation was totally dependent on the 
2D carbuncle. 

ii) 2D carbuncle developed faster than 3D oscillation, i.e., the 3D oscillation gently and subliminally developed 
while the 2D instability emerged. 

We examined this by comparing L2 norms of |Δv| [= |vupper - (- vlower)|, i.e., |v(i, j, k) + v(imax+1-i, j, k)|, which is 
velocity difference between cells sharing the same x and z coordinates but having opposite signs in y] and |w| (in the 
third dimension), as shown in Fig. 19b. According to this figure, the instabilities both in y and z directions arose 
from the very beginning of the computation as the form of round-off errors, and they grew exponentially with time. 
Thus, it is said that the possibility ii) above was almost right with the slight correction that the only difference in the 
instabilities in those two directions is not in their growth rates but the initial magnitudes. Therefore, in this case, 2D 
and 3D shock instabilities are strongly related and share the same cause; they developed in the same rate, yet in 
different appearances. 

In AUSM+ or Van Leer results (Figs. 20b and 20c), however, no evidence of shock anomalies is seen: These 
flow patterns remained stable and symmetry even in the 3D setup. The same holds for even in further extended grid 
case of 120 × 48 × 500, though the results are omitted. 
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b) Velocity asymmetry in v and w components 
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Figure 19. Residual and asymmetry histories for circular-cylinder (M∞=6.0). [3D grid] 

a) Grid and Reference 2D “Stable” 
Result (AUSM+)3 

 

b) AUSM+, 50,000 steps 

 

c) Van Leer, 50,000 steps 

 
Figure 20. Cp contours (0 < Cp < 47) for circular-cylinder [AUSM+ and Van Leer’s FVS, first-order both in 

space and time; M∞=6.0]. 
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C. LAURA Benchmark Hypersonic Heating Test (3D)9 
This is the 3D extension (10 cells in the third direction) of Section III-C, viscous, M∞=17, hypersonic heating test, 

which was previously used, for example, in Ref. [9]. The grid was provided by Dr. Peter Gnoffo, as stated before. 
The grid system has 30 × 64 × 10 cells, and the flow and computational conditions are the same as in the 2D test 
(Section III-C). 

The results are shown in Figs. 21 – 26. According to these figures, the Roe (E-Fix) case was affected by three-
dimensional effect: the shock shape (Fig. 21a), surface pressure (about 5%, Fig. 21b), and heating (more than 50%, 
Fig. 21c) exhibited asymmetry in the crossflow direction (= the third dimension), as in the previous test (IV-B). It is 
noteworthy that, in this case, the Roe (E-Fix) result suffered from shock anomaly only in the third dimension and 
maintained the 2D stable, symmetric solution (Fig. 6a) in each 2D plane; in contrast to the example seen in Fig. 20d 
in which anomalies appeared in every direction whereas the corresponding 2D solution was stable. Thus, this result 
confirms the above-mentioned fact that simply adding one dimension (one degree of freedom) to computational 
space could lead to an anomalous distribution of physical values in that direction. 

Other fluxes showed almost as the same trends as in 2D cases: Van Leer and Hänel reached converged, 
symmetry solutions with surface heating underestimated; AUSM+, again, suffered from numerical oscillations; 
AUSMPW+ solutions are indistinguishable from the 2D solution. 

D. “Challenge” Problem for Sphere (3D)24 
This is a genuinely three-dimensional test, referred to as a “challenge” problem in [24] of viscous, hypersonic 

(M∞=12) heating. A shock-aligned grid provided by Dr. Peter Gnoffo (through Dr. Bil Kleb) †† was used. We 
conducted this test to demonstrate how difficult it is to obtain satisfactory heating profiles by existing methods, and 
how Multi-D terms work to improve the solutions. 

- Grid: 45 × 160 × 125 = 900,000 cells and 40 × 40 × 125 = 200,000 cells; totally 1,100,000 cells (Fig. 27) 
- Radius: R = 0.1m 
- CFL = 200 
- Computational timesteps: 10,000 steps 
- Flow conditions: V∞ = 4167 m/s (M∞=12), Re = 0.5e+6 (based on radius R), Recell=5 (based on minimum grid 

spacing Δmin = 1.e-6 m), ρ∞= 0.0216 kg/m3, T∞ = 300 K, Tw = 800 K 
With the above setup, ratio of Pitot pressure to free stream pressure is P10/P2 = 185.9, and Fay-Riddell’s23 

stagnation heating 550.1 W/cm2 (smaller than 627 W/cm2 in [24] and LAURA’s prediction9 of 590 W/cm2). 
Roe (E-Fix) calculation diverged, thus, only the results of Van Leer, AUSM+, and AUSMPW+ are shown. 

Surface pressure profiles shown in Figs. 27b and 28 are almost symmetry and in good agreement with reference data. 
AUSM+ yielded a very slight glitch at φ≈15º (data at an angle φ stand for all the circumferential data in this test), 
but this is suppressed by Multi-D term in AUSMPW+. Calculated heating, however, are totally underestimated or 
asymmetry as shown in Fig. 29, even with this hexahedral mesh. Gnoffo9 recently developed a multidimensional 
version of Roe flux, and the results shown therein were much better than the original Roe, though asymmetry was 
also seen in heating. Similarly, AUSMPW+, having Multi-D dissipation term, showed here better performance than 
its precedent version, AUSM+, with respect to preservation of symmetry. These results confirm the necessity of 
Multi-D terms in Euler fluxes for realization of a method free from Multi-D shock anomalies. 

In addition, the heating contours of our results (Figs. 29b and 29c) showed different shapes from Ref. [9] (or Fig. 
29d), possibly due to the use of different implicit time integration methods. Fig. 30 shows density residual histories 
of the present computations, and AUSM+ and AUSMPW+ exhibited around three orders drop in the residual. From 
the engineering point of view, these solutions can be regarded as ‘converged,’ and thus we stopped our calculations 
(although even with this level of residual decrease, it is speculated that shock anomalies grow later3). 

 
 

                                                           
†† Private communication with Peter Gnoffo and Bil Kleb, NASA Langley Research Center, Mar. 2009. 
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a) Roe (E-Fix) 

 

b)  Van Leer 

 

c) Hänel 

 

d)  AUSM+ 

 

e) AUSMPW+ 

 

    
Figure 21. Pressure (top; 0 < P/P∞ < 390) and Mach number (bottom; 0 < M∞ < 17) contours for circular-

cylinder (second-order in space; freestream Mach number M∞=17). [3D grid] 
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c) L2-norm of density residual 
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c) L2-norm of density residual 

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

0 20,000 40,000 60,000 80,000 100,000

time steps

L
2-

no
rm

 o
f d

en
si

ty
 r

es
id

ua
l

VanLeer, 3D

VanLeer, 2D

 
Figure 22. Surface pressure and heating profiles, and 

residual histories for cylinder (second-order in 
space; freestream Mach number M∞=12). [Roe (E-

Fix), 3D grid] 

Figure 23. Surface pressure and heating profiles, and 
residual histories for cylinder (second-order in 

space; freestream Mach number M∞=12). [Van Leer, 
3D grid] 
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c) L2-norm of density residual 
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c) L2-norm of density residual 
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Figure 24. Surface pressure and heating profiles, and 

residual histories for cylinder (second-order in 
space; freestream Mach number M∞=12). [Hänel, 3D 

grid] 

Figure 25. Surface pressure and heating profiles, and 
residual histories for cylinder (second-order in 

space; freestream Mach number M∞=12). [AUSM+, 
3D grid] 
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c) L2-norm of density residual 

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

0 20,000 40,000 60,000 80,000 100,000

time steps

L
2-

no
rm

 o
f d

en
si

ty
 r

es
id

ua
l

AUSMPW+, 3D

AUSMPW+, 2D

 
Figure 26. Surface pressure and heating profiles, and 

residual histories for cylinder (second-order in 
space; freestream Mach number M∞=12). 

[AUSMPW+, 3D grid] 

a) Grid 

 
 

b) Pressure contours (AUSM+) 

 

Figure 27. Computational grid and typical solution 
for M∞=12 Candler’s ‘challenge’ problem.24 [3D 

grid] 



 
American Institute of Aeronautics and Astronautics 

 

21 of 24

 

a) Van Leer 

 

 

b) AUSM+ 

 

 
c) AUSMPW+ 

 

 

d) Ref. [9] Gnoffo 

         

 
Figure 28. Surface pressure contours (top; 0 < P/P∞ < 190) and profiles (bottom) (3D, sphere).
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a) Van Leer 

 

 

b) AUSM+ 

 

 
c) AUSMPW+ 

 

 

d) Ref. [9] Gnoffo 

         

 
Figure 29. Surface heating contours (top; 0 < q < 600 [W/cm2]) and profiles (bottom) (3D, sphere). 
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V. Final Remarks 
We made a comparative study on the behaviors of flux functions with regard to two- and three-dimensional 

shock anomalies (instabilities and oscillations). The following features are noteworthy for hypersonic flow 
computations in three dimensions (3D): 

1. A simple expectation that three-dimensional shock anomalies always appear more likely than two-
dimensional (2D) counterpart turned out to be false. Rather, the development of shock anomalies is seen in 
every direction and quite complicated in three dimensions. For instance, in a two-dimensional setup in three 
dimensions (circular-cylinder in 2D), computations reached the following solutions: 
a. 3D case that exhibited carbuncle in 2D: The “carbuncle” developed in the two-dimensional slice, while 
the shock “oscillation” appeared in the third direction. These anomalies developed from the very begging of 
the computation with the same growth rate. 
b. 3D cases that were stable in 2D: Depending on the cases of different grids or different flux functions, 
either the following two solutions were obtained: i) the totally symmetry solution, or ii) the stable, symmetry 
solution remained in the two-dimensional slice, whereas the shock “oscillation” developed in the third 
direction. 

2. Multidimensional dissipations considered in AUSMPW+ flux function worked to suppress anomalous 
behaviors in limited cases, but not effective for genuinely two-dimensional or a genuinely three-dimensional 
development of shock anomalies. 

3. AUSM-type fluxes generally yielded satisfactory predictions of heating for a two-dimensional problem in 
three dimensions for a cylinder, but not for a genuinely three-dimensional problem for a sphere. 

 It is demonstrated that multidimensional dissipation is effective, but not perfectly. This is partly because such 
dissipation terms had been developed under two-dimensional considerations, and partly because those terms do not 
always work successfully even in two dimensions. Consequently, a flux function showing good or fair robustness 
against the shock in two dimensions can either succeed or fail to reproduce acceptable solutions in three dimensions. 
Thus, when one attempts to test a flux function, it is recommended to keep it in mind that investigations only in two 
dimensions are not enough to accurately predict behaviors of the flux in three dimensions. In addition, although 
most of the existing Euler fluxes were designed based on one- or two-dimensions but readily extendable to three-
dimensions, it is desirable to invent a new method in consideration of the presented three-dimensional behaviors of 
the captured shock. If there is a flux function showing no anomalous solutions in all the tests presented here, the flux 
can be regarded as robust enough in three dimensions. 
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Figure 30. Residual histories for sphere (M∞=12). [3D grid] 
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