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Calculation of low-thrust control laws with equivalent average trajectory dynamics but
di�erent thrust pro�les is studied using an averaged method based on Fourier series rep-
resentation of the thrust control. Fourier coe�cients of order 2 and higher are used to
transform variable-magnitude controls into controls with constant thrust arcs, which can
be implemented more easily by low-thrust propulsion systems. Fuel cost reduction through
selection of higher-order Fourier coe�cients is also discussed.

Nomenclature

a semi-major axis
E eccentric anomaly
e eccentricity
F thrust acceleration
FR radial thrust acceleration
FS normal thrust acceleration
FW circumferential thrust acceleration
i inclination
o any orbital element
M mean anomaly
n mean motion

 longitude of the ascending node
! argument of periapsis
� standard gravitational parameter

I. Introduction

Previous work1,2 has demonstrated an averaging method to model low-thrust spacecraft trajectory dy-
namics using Fourier series representation of the control. Gauss’s variational equations were averaged to
de�ne a set of secular equations, which are functions of only 14 of the thrust Fourier coe�cients, regardless
of the order of the original Fourier series. These secular equations can represent thrust controls of varying
magnitude and direction, and accurately represent the average trajectory over many spiral orbits. Iterative
methods using these averaged secular equations have been shown to solve orbital targeting and optimal
control problems.

The current study explores the use of the Fourier coe�cients beyond the 14 that appear in the averaged
secular equations. These higher-order coe�cients do not a�ect the fundamental trajectory dynamics; thus
they can be used to modify a calculated optimal control to meet implementation requirements or further
reduce fuel costs without altering the trajectory.

To demonstrate this concept, several methods have been developed to transform a variable-magnitude
control into a step control. Most current low-thrust spacecraft engines are able to operate over a range
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of thrust levels, but operators of these systems often prefer to minimize switching between throttle points.
Therefore a control based on constant thrust arcs is desirable. This paper will present three methods for
selecting higher-order Fourier coe�cients to create constant-thrust controls with average trajectory dynamics
equivalent to those of variable-thrust controls. Extensions of this method to fuel cost reduction will also be
discussed.

II. Methods

Previously, we derived the secular equations by averaging the Gauss form of the Lagrange Planetary
Equations over one orbit period with respect to mean anomaly. We assumed an acceleration vector with
a su�ciently low magnitude that the size and shape of the orbit does not change signi�cantly over one
revolution:

_o =
1

2�

Z 2�

0

_o dM: (1)

Here o represents any orbit element. We resolved the thrust acceleration vector ~F along the radial, normal,
and circumferential directions and represented each component as a Fourier series expanded in eccentric
anomaly,

~F = FRr̂ + FW ŵ + FS (ŵ � r̂) (2)

FR =
1X
k=0

�
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�
(3)
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k=0

�
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�
; (5)

where r̂ = ~r
j~rj and ŵ = ~r�~v

j~r�~vj . When these Fourier series for the thrust vector components are substituted
into the averaged Gauss equations and the independent parameter for the averaging is shifted to eccentric
anomaly, the orthogonality conditions eliminate all but the 0th, 1st, and 2nd order coe�cients of each thrust
acceleration Fourier series. Thus, the averaged secular Gauss equations are:
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These equations are functions of the 14 coe�cients
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: (12)

These secular equations can be used to e�ciently solve orbital targeting problems using an iterative
method, as described previously.2 We minimze a cost function while solving for a set of 14 coe�cients that
control the trajectory to meet the targeting objectives. Any cost function that is a function of the thrust
acceleration may be used, but we often prefer the form

J (~�) =
1

2�

Z 2�

0

�
F 2
R + F 2

S + F 2
W

�
dM; (13)

which represents the minimum energy solution. This cost function allows us to analytically evaluate the
necessary partial derivatives to iteratively update the control coe�cients in Equation 12. Targeting methods
using this approach have been shown to e�ciently and accurately solve orbital targeting problems over many
spiral orbits.

III. Coe�cient Selection

Only the 14 coe�cients of the thrust acceleration Fourier series shown in Equation 12 control the average
trajectory dynamics of the low-thrust spacecraft. However, the other coe�cients of order 3 and higher can
still a�ect the shape and frequency of the control itself. They may be set to zero, or they may be selected
to shape the control into a more desirable form without altering the average trajectory.

In this paper we explore several approaches for selecting these higher-order coe�cients. First, they may
be selected to reduce the fuel or energy cost of a transfer. An existence proof of this cost-reduction potential
has previously been developed.3

The coe�cients may also be selected to transform the control into a form that is more easily implemented
by existing low-thrust engines. Current electric propulsion systems operate on a range of �xed throttle points,
and minimal switching is preferred. Thus it is desirable to transform our continuously-varying controls into
step functions that produce equivalent average trajectory dynamics. In some cases, the magnitude of the
total thrust acceleration within the step function can also be made constant, to mimic the design of a typical
spacecraft with one gimbaled low-thrust engine.

A. Existence of Equivalent, Lower-Cost Control

Previously,3 we have shown that Fourier coe�cients beyond the 14 that appear in the secular equations can
reduce the cost of a transfer without a�ecting the trajectory. For example, if the �2 coe�cient for any of
the three directional Fourier series is nonzero, the higher order � coe�cients of that direction can be chosen
according to Equation 14,

�n = (e�)n�2
�2; (14)
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where e is eccentricity and 0 < � < 1. If n ! 1, the reduction in the minimum energy cost function
(Equation 13) is

�J = �1
2
�2

2

e2

1� (e�)2
(1� �) : (15)

In practice, this method generally results in very small reductions in total energy cost. Other methods
may be developed to improve or optimize the coe�cient selection methodology for greater cost reductions.

B. Equivalent Control Function: One Step

The higher-order thrust acceleration Fourier coe�cients may also be used to shape the control function for
improved implementation. There are many possible ways to perform this shaping transformation. As a
simple case for our initial analysis, we choose a function shape with only one step per orbit.

Assume the 14 relevant Fourier coe�cients of a control have been selected to achieve a given orbit transfer.
We may then select additional coe�cients to make the control take the form of a step function. We begin
by considering the step function pictured in Figure 1.

Figure 1. Step Tangential Acceleration

This function is de�ned by three parameters: A, E1, and E2, or equivalently, A, �E = E2 � E1, and
E = E1+E2

2 . The Fourier series for this function is de�ned by equations 16-19.
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The 0th, 1st, and 2nd order coe�cients are �xed by our targeting requirements. For simplicity in our initial
analysis, we consider only the 0th and 1st order coe�cients in a single-direction force:
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We can re-write these equations,

E = tan�1
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and �nd that Equations 24 and 25 lead to the following equation:

�E � 4�0p
�2

1 + �2
1

sin
�

�E
2

�
= 0: (26)

Equation 26 is plotted in Figure 2 for various values of the coe�cient c = � 4�0p
�2

1+�
2
1

. For a solution to exist,

c must be less than approximately -2.

Figure 2. Equation 26, plotted for a range of values of c

Assuming the values of �0, �1, and �1 from the targeting control are such that c < �2, we can solve
for A, �E, and E and use these values in Equations 17-19 to generate higher-order coe�cients for the force
Fourier series.

Figures 3 and 4 show an example of this method. In this example, the Fourier coe�cients for the
original force function were chosen to make c < �2, and the resulting trajectory was determined using both
the Newtonian equations of motion and averaged secular equations (plotted in blue and red, respectively).
Then, the above approach was used to re-calculate Fourier coe�cients from order 2 to 100 and the resulting
trajectories were again determined using both the Newtonian and averaged secular equations (plotted in black
and green, respectively). As shown in Figure 3, the two di�erent controls accomplish the same targeting
objectives.
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Figure 3. Trajectories due to \equivalent" initial and step thrust acceleration

Figure 4. Initial continuously-varying thrust acceleration and its \equivalent" step acceleration
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This method is e�ective, but its applicability is limited by the c < �2 restriction. Also, the signi�cant
coe�cients �2 and �2 are neglected, which may cause disparities between the trajectories due to the original
and transformed controls, particularly over long time spans. (This re-calculating of �2 and �2 is responsible
for the di�erence between the red and green plots in Figure 3).

C. Equivalent Control Function: Two Steps

To avoid the limitations and inaccuracies of the one-step approach, we consider a step function shape with
�ve de�ning parameters, to match the maximum number of signi�cant coe�cients in each of the force
directions. The function in Figure 5 is de�ned by A, E1, E2, E3, and E4 or, equivalently, A, �E1 = E2�E1,
E1 = E1+E2

2 , �E2 = E4 � E3, E2 = E3+E2
4 .

Figure 5. Two steps of same magnitude (opposite sign) and di�erent duration

As above, the 0th, 1st, and 2nd order Fourier coe�cients for this function are �xed by the original control:

�0 =
A

2�
(�E1 ��E2) (27)

�1 =
2A
�

�
cosE1 sin

�E1

2
� cosE2 sin

�E2

2

�
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2
� sinE2 sin
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2

�
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�2 = =
A

�
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�
(30)

�2 =
A

�

�
sin 2E1 sin �E1 � sin 2E2 sin �E2

�
: (31)

By de�nition, there are several constraints on the angles, which can be used to �nd constraints between
the coe�cients and the amplitude,

0 � �Ei � 2� (32)
0 � Ei � 2� (33)

�2� � �E1 ��E2 � 2�; (34)

where i = 1; 2. From these, and allowing A to be positive or negative, the following limits can be placed on
the coe�cients:

�jAj � �0 � jAj (35)

�jAj � ��1

4
� jAj (36)

�jAj � ��1

4
� jAj (37)

�jAj � ��2

2
� jAj (38)

�jAj � ��2

2
� jAj: (39)
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These relations dictate a minimum magnitude of A in order for real solutions to exist. To solve Equa-
tions 27-31 using a numerical method, a good starting guess is A = maxf�0;

��1
4 ; ��1

4 ; ��2
2 ; ��2

2 g or A =
minf�0;

��1
4 ; ��1

4 ; ��2
2 ; ��2

2 g, whichever is largest in magnitude.
As the magnitude of A increases beyond this minimum, the relative sizes of the pulses must decrease,

according to Equation 27. The following relations may also be useful in choosing initial guesses for the
unknown parameters:

�2
1 + �2

1 =
�

2A
�

�2 �
sin2 �E1

2
+ sin2 �E2

2
� 2 cos

�
E1 � E2

�
sin

�E1

2
sin

�E2

2

�
(40)

�2
2 + �2

2 =
�
A

�

�2 �
sin2 �E1 + sin2 �E2 � 2 cos 2

�
E1 � E2

�
sin

�E1

2
sin

�E2

2

�
: (41)

Figures 6 - 9 show an example of this method. The initial control was the solution to a targeting problem
in which all six orbital elements were changed over three revolutions. Each directional component of the
control was transformed into a two-step control with equivalent average trajectory dynamics. Matlab’s fsolve
function was used to solve Equations 27 - 31, initialized with guesses based on the relations described above.

Figure 6. Trajectories due to \equivalent" inital and two-step controls

8 of 15

American Institute of Aeronautics and Astronautics



Figure 7. Thrust Acceleration vs. Time

Figure 8. Thrust Acceleration vs. Eccentric Anomaly
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Figure 9. Total Thrust Acceleration
p

F 2
W + F 2

R + F 2
S

This approach e�ectively transforms each directional component of the control into an \equivalent" step
control. The velocity increment, �V , for the orbit transfer with the original control was 2320.6 m/s. The �V
for the transfer with the step control was 2436.5 m/s, a 5% increase. Simulations indicate that transformation
to a step control in this manner usually results in a decrease or small increase in �V .

Solutions have been found to exist for most cases when the initial control is the solution to a targeting
problem. In some cases, multiple solutions for A, E1;2, and �E1;2 can be found, although these di�erent
solution sets usually describe the same step function.

D. Constant-Magnitude Control

These transformations to equivalent controls are motivated by the operational pro�les of low-thrust propul-
sion systems. The method described in the previous section transforms each directional component of the
control to a step function, which is a valuable improvement, but does not consider the relations between the
directional components. As shown in Figure 9, this can result in a lot of switching for the spacecraft engine,
which must change its thrust direction and magnitude at each increment.

A more applicable approach should consider the control for all thrust directions simultaneously. We
consider a control made up of three steps of constant magnitude, as pictured in Figure 10. The direction
of the force, �, stays constant throughout the step, but may be di�erent for each step. To simplify the
calculations, we consider the case of planar thrust only, as shown in Figure 11.
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Figure 10. Three steps of constant magnitude, varying direction and duration

This thrust acceleration pro�le has 10 unknown parameters: A, E1, E2, E3, �E1, �E2, �E3, �1, �2,
and �3.

Figure 11. Planar Acceleration

Using the de�nitions of Fourier coe�cients, we can write equations for the nine key acceleration coe�cients
in terms of these unknown parameters (the tenth coe�cient, �R2 , does not appear in the averaged equations,
so we set it to zero). We solve for the unknowns, then use them to calculate higher-order Fourier coe�cients
to transform the control into step form.
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�sk =
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k�

3X
i=1
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�
kEi

�
sin
�
k�Ei

2

��
(47)

An example of this method is shown below. The initial control was the solution to a targeting problem in
which semi-major axis was increased and eccentricity was decreased over three orbits while the other orbital
elements were held constant. Table 1 shows the parameters of the solution step function. Figures 12 - 14
show the implementation of this solution.

Table 1. Parameters of Equivalent Constant-Magnitude Step Function

A (m=s2) 382.3 �E2 (deg:) 59.8
E1 (deg:) 114.3 �E3 (deg:) 62.1
E2 (deg:) 247.8 �1 (deg:) 167.3
E3 (deg:) 337.4 �2 (deg:) 185.6

�E1 (deg:) 181.8 �3 (deg:) 186.7

Figure 12. Total Thrust Acceleration
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Figure 13. Spacecraft Trajectory

Figure 14. Thrust Acceleration vs. Time
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The velocity increment, �V , for the orbit transfer with the original control was 1503.8 m/s. The �V for
the transfer with the constant-magnitude step control was 1515.6 m/s, a 0.79% increase.

To make this method fully general, out-of-plane thrust acceleration should be included. This would
require a step control de�ned by 14 parameters with a single acceleration magnitude and variable thrust
direction in three dimensions. Any function shape that meets these criteria could be used. For example,
four steps of the same magnitude and duration and di�erent angles, as shown in Figure 15, could be de�ned
by the 14 parameters A, E1, E2, E3, E4, �E, �1, �2, �3, �4, �1, �2, �3, and �4.

Figure 15. Four steps of constant magnitude and duration, varying direction in 3D
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To shape the original control into this form, we would write the equations for the 14 key coe�cients
in terms of these 14 unknown parameters, solve for the unknowns, then use them to calculate higher-order
Fourier coe�cients of the thrust acceleration. The problem of 14 simultaneous equations is challenging, but
solutions should exist for some cases. Future work will consider which types of problems can be solved in
this manner.

IV. Conclusions

A general, variable-magnitude, low-thrust control can be transformed into various other types of controls
by selection of Fourier coe�cients of order 2 or 3 and above. The transformed controls lead to spacecraft
trajectories with equivalent average trajectory dynamics.

These transformations can reduce the energy cost of an orbit transfer. They can also reduce the amount
of throttling required by the low-thrust engine, by shaping the control into a step function. In some cases,
the magnitude of the steps may be set constant, such that the control is simply a set of on/o� times and
thrust directions.

Numerical examples have shown that transformation to equivalent step controls can increase or decrease
the velocity increment required for a given orbit transfer. Future work will explore the mathematical basis
for these changes in �V , to determine cases and methods in which both shaping and cost reduction can be
achieved.
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