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A three-dimensional (3D) theoretical morphospace of gomphonemoid and cymbelloid
diatoms was skeletonized using concepts from extended Reeb graph analysis and Morse
theory. The resultant skeleton tree was matched to a cladogram of the same group of
related taxa using adjacency matrices of the trees and ordinated with multidimensional
scaling (MDS) of leaf nodes. From this, an unweighted path matrix based on the num-
ber of branches between leaf nodes was ordinated to determine degree of matched tree
structures. A constrained MDS of the path matrix, weighted by ranked MDS leaf node
groups as facets, was used to interpret taxon environmental tolerances and habitat pref-
erences with respect to adaptive value. The methods developed herein provided a way
to combine results from morphological and phylogenetic analyses and interpret those
results with respect to an aspect of evolutionary process, namely, adaptation.
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1. Introduction

One of the most important concepts in biology is the concept of morphological
change over time. This concept is measured in many ways, but in all instances,
capturing this concept as a quantity is a useful assessment and indicator for the
direction and timing of evolution.

The multitude of organisms and how they are related to one another is encom-
passed in the concept of morphological change over time. We identify the extent of
variety in many ways, but our first inclination is to look at morphological forms,
and we want to know how the forms are related, so we look at organisms’ common
ancestor. In this regard, the study of taxa morphological variation and phylogenetic
history is instrumental. More specifically, total morphological variation may be used
as a kind of boundary to phylogenetic history, and phylogenetic history may be used
as a direction in which only particular forms of morphological variation exist.
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What is the relation between all the possible morphological variants and shared
common ancestry for a group of related taxa? There have been many studies done
separately on morphological variation and cladistic analyses of taxon relatedness,
but rarely has there been an attempt to combine results to produce a single outcome.
To determine how morphological change and shared common ancestry are related,
deriving a commonality between these disparate types of biological assessment is
methodologically necessary.

Morphospace is an important concept in studying organism form, for example,
by shape,1 surface,2,3 size,4 growth,5 character spaces,6 or genome.7 A theoretical
morphospace is the extent of all possible morphologies for a group of organisms.4

In general, a theoretical morphospace will be broadest at the base or in valleys
indicating less adaptive morphology (depicting most similarity)8 and smallest at
local peaks indicating more adaptive morphology (depicting most dissimilarity).9

Functions, relations, statistics, or other mathematics may be the basis of theoretical
morphospaces.

Cladograms are topological trees10 as nested hierarchies11 that represent the
descendants of a shared common ancestor for a group of related taxa11 as directed,
connected acyclic graphs.12 Such graphs are topological spaces since twisting tree
branches at their vertices does not change the relation among terminal endpoints or
leaf nodes. The process of producing a “best” phylogenetic tree is an NP-complete
optimization problem.13 As such, cladograms are not representative of a fixed tree of
shared common ancestry. Rather, cladograms represent a best possible hypothesis
at a given time.

Theoretical morphospace is defined by morphological transitions and the extent
that they are representations of adaptive fitness as an adaptive landscape.9,14 That
is, those characteristics of an organism’s existence that contribute to fitness also
define adaptive value. Using the geometric characteristics of a theoretical mor-
phospace, different types of fitness may be identified. From terminology in geo-
morphic studies, “peaks” are maximum fitness, “valleys” are minimum fitness, and
“passes” or saddles (= saddle points) between maxima and minima represent inter-
mediate fitness that implies morphological transition.

The cladogram is also a representation of adaptive radiation15 and is composed
of nodes and branches whereby internodes, outgroups, and terminal or leaf nodes
may be characterized as saddles, minima, and maxima, respectively. Both theo-
retical morphospaces and cladograms contain information about adaptive changes
over time. That is, an adaptive walk14 may be used to map the changes in mor-
phology for a group of taxa, or cladograms may show changes in morphology or
other characters that are successful at a given time of adaptive radiation. A possi-
ble inference made from a shared common ancestry is that the taxa depicted in a
cladogram exhibit a combination of characters that are successful in perpetuating
the existence of those taxa at a given time. That success may be related to fitness
as an adaptive value.
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A cladogram may be embedded in, mapped to, or matched within a theoretical
morphospace to determine the relation that shared common ancestry has to mor-
phological variants and may be a generalization of the placement of descendants,
and if known, their immediate ancestor. The degree of matching from node to node
is a measure of placement of the cladogram within a theoretical morphospace. The-
oretical morphospace may act as the boundary extension of variation within a clade
or for an entire phylogeny, or a phylogeny may act as a constraint on all the possible
morphologies allowed in theoretical morphospace.

Creating a framework relating theoretical morphospace and cladogram involves
characterizing the “essential backbone” or “skeleton” of a morphospace as a topo-
logical structure and matching this to a cladogram. If maxima, minima and saddles
on the “essential backbone” of morphospace and nodes in a cladogram have mean-
ing in terms of adaptive fitness with shared common ancestry, then the degree of
matching between the two topological structures will exhibit varying degrees of an
evolutionary process, such as adaptive fitness.

Using a general, rough framework of a fitness or adaptive landscape, theo-
retical morphospaces and cladograms may be related to each other using graph-
matching techniques. To illustrate the method, the 3D theoretical morphospace for
gomphonemoid and cymbelloid diatoms3 will be skeletonized and matched to the
cladogram16 for these same diatoms. The results from graph matching may be used
in an assessment of taxon adaptation of gomphonemoid and cymbelloid diatoms to
their environment.

To this end, we will develop the characterization of a 3D theoretical morphospace
as a topological space and how a skeleton tree is extracted. Then, the skeleton tree
will be matched to the cladogram and evaluated by mapping information about
taxon environmental preferences to the graph matched structures indicating taxon
adaptation.

2. Methods

The methodology for constructing a skeleton tree from the topological properties of
the theoretical morphospace, and for graph matching the skeleton tree to a clado-
gram of gomphonemoid and cymbelloid diatoms, is fully detailed in the Appendix.

3. Results

The 3D theoretical morphospace was rotated approximately 180◦ (Fig. 1), and its
outline curve is shown in Fig. 2. Contours are drawn in the y − z plane based on
peaks, valleys, and at points of inflection in its outline curve (Fig. 3). Contours of
the rotated 3D theoretical morphospace in the x− y plane are illustrated in Fig. 4.
Within the contours (Fig. 3), triangulations are drawn (Fig. 5), and critical areas
and their influence zones are marked by critical points as maxima, minima and
saddles (Fig. 6). Critical points are thinned and illustrated in Fig. 7. Connections
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Fig. 1. 3D theoretical morphospace z − y projection.

Fig. 2. 3D theoretical morphospace z − y projection outline.
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Fig. 3. 3D theoretical morphospace z − y projection of contour lines on outline.

Fig. 4. 3D theoretical morphospace x− y projection of contour lines. Darkest areas are minima,
lightest areas are maxima, and shades of gray are local maxima, minima or saddles.

between critical points are overlaid on the contour diagram as a skeleton tree via
an extended Reeb Graph (Fig. 8).

From Kociolek and Stoermer16, the naviculoid-gomphonemoid-cymbelloid
cladogram is depicted and modified to show critical points (Fig. 9). The 3D the-
oretical morphospace3 with taxon labels Didymosphenia, Reimeria, Encyonema,
and Cymbella for cymbelloid forms and Gomphonema, Gomphoneis, and
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Fig. 5. 3D theoretical morphospace z − y projection of triangulated contour lines.

Fig. 6. 3D theoretical morphospace z − y projection of all maxima (�), minima (�) and
saddles (�).
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Fig. 7. 3D theoretical morphospace z − y projection of thinned critical points for taxon labeled
critical areas and influence zones.

Fig. 8. 3D theoretical morphospace z − y projection of connections between critical points as a
skeleton tree.
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Fig. 9. Cladogram of naviculoid-cymbelloid-gomphonemoid taxa16 with maxima (�), minima
(�) and saddles (�).

Gomphocymbella for gomphonemoid forms is also depicted with skeleton tree
overlain on the morphospace (Fig. 10). The naviculoid forms of Anomoeoneis and
Placoneis are represented as one basal node and are at the origin of the 3D the-
oretical morphospace and cladogram as the root (Fig. 9). The methods used to
produce Figs. 8 and 10, depicted in a stepwise fashion in Figs. 3, 5, 6, and 7, are
fully elucidated in the Appendix A, Sections A.1–A.5.

Initially, cladogram and the skeleton tree of 3D theoretical morphospace are
depicted as Gini trees17 in Fig. 11. Note that, at each clade level, the graphs
are matched for naviculoid forms, Gomphonema, Gomphoneis, and Didymosphenia
(Fig. 11). In addition, note that there are mismatches for Reimeria, Encyonema,
Cymbella, and Gomphocymbella (Fig. 11). However, because 3D theoretical mor-
phospace includes morphological variation for each taxon, some of the taxa occur
more than once in the skeleton tree. This depiction of variation in the skeleton tree
is helpful in matching it to a static graph such as a cladogram.

Adjacency matrices were determined for both the skeleton tree and the clado-
gram, and the matrices were analyzed by MDS. S-stress was 0.005. The resultant
ordination depicts the structures in eigenspace (Fig. 12). The coordinates in a large
ring on the periphery are internodes, and coordinates grouped in the center are leaf
nodes (Fig. 12). It is the leaf nodes that we turn our attention to, since they are of
interest in further analyses.
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Fig. 10. Labeled 3D theoretical morphospace3 with superimposed skeleton tree.

Fig. 11. Gini trees of cladogram on the left and skeleton tree on the right. Taxon names: nav
= naviculoid, reim = Reimeria, ency = Encyonema, cymb = cymbelloid (Cymbella), didy =
Didymosphenia, gomp = gomphonemoid (Gomphonema), gocy = Gomphocymbella, and neis =
Gomphoneis.

MDS of only the leaf nodes from both trees is shown in Fig. 13. Clustered
groups are circumscribed as facets in a facet diagram. Axial partitions18 were drawn
to separate the larger general taxon affiliations. From left to right, taxa progress
from most recent common ancestor, naviculoid, to mostly crescentic forms, then to
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Fig. 12. MDS of adjacency matrices for skeleton tree and cladogram depicting internodes at the
periphery of the diagram that are encircling leaf nodes clustered around the origin. Taxon names:
nav = naviculoid, reim = Reimeria, ency = Encyonema, cymb = cymbelloid (Cymbella), didy =
Didymosphenia, gomp = gomphonemoid (Gomphonema), gocy = Gomphocymbella, and neis =
Gomphoneis. Cladogram names are preceded by “c” and skeleton tree names are preceded by “s”.

Fig. 13. From MDS in Fig. 6, leaf nodes group clusters as circumscribed facets with dashed lines
as axial partitions. S-stress = 0.005. For taxon name identification, see Fig. 12.
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clavate forms for both the skeleton tree and cladogram, and this agrees with both
tree structures independently.

Each leaf node group (Fig. 13) is composed of particular taxa. On the left, nav-
iculoid forms from both trees and Reimeria from the skeleton tree comprise the
first group. In the center and at the top of the leaf node diagram, Encyonema
and Gomphoneis from the cladogram form another group. Around the origin,
a third group has Didymosphenia, Cymbella, Encyonema, and Gomphocymbella
from the skeleton tree with Reimeria and Gomphoneis from the cladogram. In the
center and at the bottom of the leaf node diagram, Gomphoneis from the skele-
ton tree with Cymbella and Didymosphenia from the cladogram form the next
group. Finally, Gomphoneis and gomphonemoid forms from the skeleton tree with
Gomphocymbella and gomphonemoid forms from the cladogram are the taxa in the
group on the right (Fig. 13).

3.1. Graph matched structures and interpretation

An unweighted path matrix was devised from the number of branches in each tree
from taxon to taxon and ordinated using MDS. The path matrix is a comparison of
each taxon from one kind of tree to the other (Fig. 14). For taxa with multiple leaf
nodes, only one representation per taxon was used. In this regard, the leaf node that
was first maximum encountered on the skeleton tree was used in the unweighted
path matrix.

Fig. 14. MDS of path matrices for skeleton tree and cladogram, showing divergent paths of
branching patterns for each tree. For taxon name identification, see Fig. 12.
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Divergent paths occurred between the skeleton tree and cladogram branching
patterns (Fig. 14). For the skeleton tree, the trajectory of taxa is a cluster in
the lower left of the MDS diagram that includes Cymbella, Encyonema, Reimeria,
Didymosphenia, and naviculoid, followed by gomphonemoid and Gomphoneis in the
lower center, and finally in the upper right, Gomphocymbella is depicted (Fig. 14).
For the cladogram, the trajectory of taxa starts in the upper left of the MDS
diagram with Cymbella and Didymosphenia, followed by Encyonema, Reimeria,
and naviculoid descending into the lower right. The taxa that occur on the right side
are gomphonemoid, Gomphocymbella, and Gomphoneis (Fig. 9). When considering
tree paths, graph matching for all taxa does not occur, and this is expected given
the comparison of trees in the Gini tree diagram (Fig. 11).

Branching and leaf node patterns were combined and used in weighted path
matrix analysis. Using MDS of leaf nodes (Fig. 13) as a facet diagram, taxon groups
as cluster constraints were used as weights in the path matrix. The weights were
set at 5 = within-group taxa, 4 = adjacent between-group taxa, and 3 = non-
adjacent between group taxa. Weights are arbitrary values but must be set in a
descending order to identify relative taxon position as approximate change in clade
age or skeleton tree level with respect to both trees. Each group weights taxon
paths by constraining each path, thereby equilibrating paths with respect to clade
age or skeleton tree level, so skeleton tree and cladogram taxa are best matched.
For further details on graph matching using path and weighted path matrices, see
the methodological explanation given in Appendix A, Sections A.6–A.8.

Fig. 15. Constrained MDS of skeleton tree and cladogram weighted path matrix, where weights
are based on clusters from Fig. 13. Constrained MDS shows proximity of taxa from each tree
and habitat preferences and environmental tolerances19–22 in an approximate adaptive walk. For
taxon name identification, see Fig. 12. S-stress = 0.005.
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Constrained MDS eigenspace depicts degree of graph matching between clado-
gram and skeleton tree (Fig. 15). In addition, habitat preferences19,20,21 and
environmental tolerances19,22 are super imposed on constrained MDS path space to
depict an approximate adaptive walk with regard to graph matched cladogram and
skeleton tree. This adaptive walk is depicted on the first dimension of constrained
MDS path space (Fig. 15). From left to right, there is a progression from freshwater
and specific substrates to almost saline and non-specific substrates for habitat pref-
erences of taxa (Fig. 15). In addition, taxa on the left are tolerant of pH 7 or slightly
above this, while taxa on the right are tolerant of pH much greater than 7 (Fig. 15).
Cymbelloid taxa generally occur on the left, while gomphonemoid and naviculoid
taxa occur on the right (Fig. 15). Constrained MDS path space agrees with previ-
ous analyses of naviculoid, gomphonemoid, and cymbelloid habitat preferences and
environmental tolerances.3

4. Discussion

Construction of theoretical morphospaces and cladograms is a well-established prac-
tice in biological research. Constructing a skeleton tree from a theoretical mor-
phospace is a novel way to evaluate the matching of morphological with phyloge-
netic change. The branching in the skeleton tree of gomphonemoid and cymbel-
loid morphologies depicts adaptive environmental characters. The branching in the
cladogram depicts distribution of those adaptive characters with respect to how
gomphonemoid and cymbelloid morphologies are related.

It has long been established that there is no single method for quantitatively
assessing the evolutionary history of a group of related taxa.23 Both morphological
and phylogenetic studies and combination studies thereof are valuable in advancing
our knowledge about the dynamics of morphological trends in evolving lineages.24

However, care must be taken when combining morphospaces and cladograms. For
instance, in one study, properties of right triangles were used in a geometric algo-
rithm to linearly map a cladogram to morphospace.25 This method may produce
erroneous conclusions if results are based on linear transitions in large clades or a
sparse record of morphological diversity.26

In our work, we matched skeletonized theoretical morphospace with a clado-
gram in a topological framework as a way to circumvent geometric assumptions.
Optimization methods may be applicable in determining the best possible skeleton
tree, just as such methods are used to determine the best cladogram. For multiple
taxon labels identified in a skeletonized theoretical morphospace, choices other than
first maximum encountered may be used. The key is consistency throughout the
graph matching process. For larger numbers of taxa, optimization concerns about
the skeletonization and graph matching processes need to be addressed.

Using an extended Reeb graph was a simple, efficient way to skeletonize a 3D
theoretical morphospace. Reeb graphs are well known to be reliable in terms of
reconstructing 3D shapes from the extracted skeleton.27,28 Medial axis models,29
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including shock graphs,30 are also used to skeletonize 3D shapes. However, these
methods may entail high computational cost and are sensitive to noise.29

Sometimes, minor critical points, especially multiple saddles, are indicated in
the extended Reeb graph because of the presence of noise or an insufficient sam-
pling of morphologies that constitutes the theoretical morphospace. In this case,
simplification of the skeleton may be necessary to remove such obscuring factors,
thereby preserving the global structure of the skeleton.31 To thin32,33 minor critical
points, averaging multiple saddles32 may be used to preserve the original 3D the-
oretical morphospace shape. Theoretical morphospaces are usually simple figures,
and dealing with multiple saddles should be a relatively straightforward exercise.
If need be, optimization algorithms can be used.

There are many ways to graph match structures. The methods that we used
are simple, efficient, and computationally inexpensive. Other methods involving
metrics, such as the geodesic34 or Fréchet distances,35 may be used, but are not
necessarily applicable in the case of theoretical morphospaces. Other methods are
computationally expensive.36 Such methods may be warranted when considering
more complicated structures, but this situation is unwarranted with simple struc-
tures such as theoretical morphospaces.

In the most difficult cases, inexact graph matching or fuzzy graph matching
between the skeleton tree and cladogram may still be achieved. This entails com-
paring the structures in an overall sense and the compatibility of their graph labels
(i.e., names of taxa) by using relaxation-labeling methods.37,38 In this way, an
approximate matching will occur.

In general, graph matching tree structures and evaluation of them may induce
additional research. Such research may include matters concerning existence of
organism form, directionality in clade branching, and diversification of taxa. Such
matters are important in furthering our understanding of evolution.

Overall, skeletonizing a 3D theoretical morphospace and matching it to a clado-
gram for a group of related taxa produces meaningful, novel ways of interpreting
adaptive fitness. Such interpretations have implications not only for understand-
ing the evolution of the taxa used in our study, gomphonemoid and cymbelloid
diatoms, but also for the interpretation of particular adaptive measures such as
environmental tolerances and habitat preferences.
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Appendix A

The following is a compendium of mathematical steps necessary in order to con-
struct a skeleton tree from a theoretical morphospace, and match the tree to a
cladogram for a group of related taxa.
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A.1. Theoretical morphospace and topological characteristics

A 3D theoretical morphospace is a topological space, X , that has topological
properties9 and is a collection of subsets, A ⊆ X . Then, X is a closed set if
X − A = {x |x ∈ X, x /∈ A} is an open set.39 That is, for topological space X ,
and x ∈ X < A, the set is open, and for x ∈ X ≤ A, the set is closed if the
boundary of A is equal to A. The subsets, A, are the taxon spaces that occupy
3D theoretical morphospace, X . Each taxon space, when removed from the entire
3D theoretical morphospace, is an open set in 3D theoretical morphospace, X −A,
when each A does not include its own boundary. That is, each A is an open subset
if a point and those points in its neighborhood are in A. In 3D theoretical mor-
phospace, if each taxon group is identified as a non-overlapping open set of pairwise
comparisons,2,3 and these open sets occupy distinct areas of the topological space
that comprise the 3D theoretical morphospace, then the topological space, X , is
also a Hausdorff space.39

Consider that the total 3D theoretical morphospace is bounded in x− y, y − z,
and x−z planes. Within this bounded space, we can define the 3D theoretical mor-
phospace itself as a closed surface. Moreover, this closed surface can be shown to be
compact since on the surface of a closed 3D theoretical morphospace, a finite num-
ber of polygons, such as triangles, can be drawn. The 3D theoretical morphological
space is a compact closed topological space.39

Even more specifically, we can define this 3D theoretical morphospace surface
as a two-dimensional (2D) surface that is a 2-manifold, M . In the neighborhood of
a point on the 2-manifold, there is a planar surface or chart, and the collection of
charts is an atlas on the surface of a 3D theoretical morphospace that resembles
Euclidean space.39 If there is a differentiable function, f , on M with respect to two
critical points, then M is homeomorphic to a sphere.40 The critical points may be
degenerate or non-degenerate, and homeomorphism still holds true. An open subset,
A, of M is also a manifold18 that is homeomorphic to an n-dimensional space, �n.

Globally, we also define the 2-manifold as embedded in a metric space, S, that is
a generalized 3D Euclidean space, �3, and for every pair of points x, y ∈ S, there is a
distance function,39 d, having properties of d(x, y)

{≥0, if x �= y
=0, if x = y

}
, d(x, y) = d(y, x),

and d(x, y) ≤ d(x, z) + d(z, y) for any z ∈ S.
For M as a topological space X embedded in a metric space, S, for subsets A ⊆

X , there is a function, d, for every pair of points in A ⊆ X , and every metric space
is Hausdorff.39 A 3D theoretical morphospace is a compact 2-manifold,39,41 and as
such, 3D theoretical morphospace has the same local properties as 3D Euclidean
space and local coordinates and functions that are smooth.41 That is, 3D theoretical
morphospace as a compact 2-manifold has a differentiable structure between smooth
functions on the 2-manifold.

A.2. Theoretical morphospace and Reeb graphs

Within the compact 2-manifold that is the 3D theoretical morphospace, morpholog-
ical transitions may be modeled by using a Reeb graph42 as a proxy for an adaptive
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walk that is finite. Reeb graphs are topological graphs of distinct points, including
critical points such as maxima, minima or saddles that may occur on the boundary
of a 3D theoretical morphospace.

Reeb graphs are quotient spaces of manifolds.43 A quotient space is the topo-
logical gluing together of distinct boundary points of a space that are identified by
an equivalence relation. That is, a quotient space is the set of equivalence relations
where (X1, f(X1)) ∼ (X2, f(X2)) if and only if f(X1) = f(X2) and X1 and X2

are in the same connected space of f−1(f(X1)). For the Reeb graph of manifold M

with real-valued function, f : M → �, the quotient space, M × �n, is defined as
(x1, f(x1)) ∼ (x2, f(x2)) ⇔ f(x1) = f(x2). That is, the equivalence relation of a
Reeb graph is a quotient space, and it follows since the 3D theoretical morphospace
that is a compact 2-manifold is a quotient space.39

A.3. Theoretical morphospace and level sets

A contour diagram of 3D theoretical morphospace may be defined as a topologi-
cally discrete surface on which contour lines may be drawn. A contour line is the
intersection of an arbitrary surface and a plane.44 The plane is parallel to the base
of the theoretical morphospace, and evenly spaced planes parallel to the base will
intersect the theoretical morphospace forming cross-sectional spaces45 or contours.

That is, to define a contour line, let {(x1, . . . , xn)|f(x1, . . . , xn) = c} be a level
set of points for a real scalar-valued function, f . The contour line is a level curve
and is a cross-section of f when f(x, y) = c. For each of m-level curves, the function
f , has a different constant value. For c = 2, a level curve is produced for a function
in two variables, f(x, y). For c = 3, level surfaces are produced, and the contour
plot is a function of three variables, f(x, y, z). Level curves on the 3D theoretical
morphospace are contours that are parallel to the base of the morphospace and can
be defined by a height function, h. Then, f : M → � is a function on M where each
point on M is p = (x, y, z), and from the z-coordinate, f is a height function.41

To further characterize the contours, those that are adjacent to one another can
be subjected to triangulation, if connections made between contours proceeds in the
same direction, and the initial nodes are designated to be proximal. A triangulated
mesh of the contours will define the surface in terms of polygons.46 Triangulariza-
tion of the contours of the 2-manifold surface47 serves as a way to interpolate the
surface.31 The triangulated portions of a contour are localized flat areas.48

A.4. Theoretical morphospace and determining critical points

Reeb graphs represent contours of a surface as points,45 are a generalization of con-
tour trees,49 and are the fundamental structures defining the topology of shape.49

Reeb graphs are dependent on distinct boundary points for their construction. Such
points are identified as critical points, x0, since the tangent space to M at x0 is in
the tangent space at x0 of the level set at h. At each point for several values on M ,
a Jacobian matrix of partial derivatives can be calculated, and the minimum rank
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is the highest value of regular points, while singular values are critical points.27

The type of critical point — maximum, minimum or saddle — is determined by
eigenvalue sign in a Hessian matrix of second partial derivatives.40,41,43

For a function f : M → � defined on the surface of the 2-manifold, M , there is a
point p0, of M that is a critical point since ∂f

∂x (p0) = 0 and ∂f
∂y (p0) = 0 with respect

to local coordinates in the neighborhood of p0. If a function has all non-degenerate
critical points (i.e.,f ′′(p0) �= 0), then it is a Morse function.40 Morse theory can
be used to construct Reeb graphs,43 and is concerned with how the shape of space
(manifold) controls distribution of the critical points of a function locally, and how
critical points of a function affect the shape (topologically) of space globally.

However, in 3D theoretical morphospace, degenerate points (i.e., f ′′(p0) = 0)
may be very important in characterizing the space. With maxima, minima and
saddles as well as using functions other than Morse, an extended Reeb graph
(ERG)50,51 may be constructed and is based on finding critical areas of the 3D
theoretical morphospace from its triangulated contour surface, influence zones of
the critical areas, and using the relations among critical areas to devise a new graph
structure.43,52 Taxon labels are used to find inclusive important critical areas as
influence zones, and therefore critical points in the ERG. Another important point
is the origin in a 3D theoretical morphospace since it is a constraining factor for
the start of ERG construction.

ERGs may be applied to a 3D theoretical morphospace discrete surface M , to
determine the height function h, where h is not required to be Morse.43 For discrete
surfaces, critical areas of the smallest size are considered, and finding a critical point
is topologically equivalent to the critical area as an influence zone.48 Alternatively,
if M is a continuous surface with f : M → �3, then in two variables, h :M → � is
the height function, and M = {x, y ∈ M |h = f(x, y)} in the ERG.48

Intersections of the 2-manifold surface with planes orthogonal to the x−z, y−z

or x − z plane and the contours of the surface also define level sets of the height
function h. That is, the 3D theoretical morphospace as a 2-manifold can be depicted
as a contour diagram where contours (level curves) are drawn at critical points of
the critical areas, and the 2-manifold of f in one variable, Mk = {x ∈ M |h− f(x)},
is a change in level sets of a smooth function f , as h varies. For an ERG as a quotient
space, the height function h, is defined with respect to the contours and used with
respect to the critical points in critical areas with influence zones found on the
2-manifold50 in 3D Euclidean space. If the height function is Morse, then the local
behavior around a critical point is defined by the cross-sectional contours.43,50,51,52

A.5. Connecting critical points and constructing a skeleton tree

The ERG of critical points of critical areas and their influence zones represents
how changes in level sets of the 2-manifold surface are connected by splitting and
merging as a contour tree. That is, for an ERG G, of M under h, Gh(M) = Ph(M),
Arch(M), where P is a node (=critical point) set and Arc is an arc (= connection
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or edge) set. For Ph(M) = {Pi ∈ M}, Pi is a critical point of M in that Pi ∈ h(M).
The topological space between points and arcs does not change.41,43

Change in height from lowest to highest elevation provides the general direction
of critical point connections. To connect critical points, a maximum is a peak, and
sequentially adjacent critical points are maxima, if there is an increase in the height
function, minima if there is a decrease, and saddles if there is a decrease then
an increase. A minimum is a valley, and sequentially adjacent critical points are
minima, if there is a decrease in the height function, maxima if there is an increase,
and saddles if there is an increase then a decrease. A saddle is a transition between
maxima and minima with respect to the height function. To connect saddle areas,
all points closest to each other that occur as maxima are connected to a saddle
until the first point encountered beyond this is less than the maxima connected to
the saddle. At this stage, the saddle is connected to an adjacent saddle determined
in the same way, and the process continues until the ERG is complete.

Let the critical points of the ERG be p, and the first critical point is p1. Of
the critical areas, CA, the first critical area is CA1. By definition, if the area is
a maximum, it is a part of the Reeb graph.43 If the area is a minimum, then its
influence zone is the area adjacent to it. If the nearest adjacent area is a saddle,
then from the critical point and arc sets, the arc, Arcp1−saddle1 = (p1,CA1) is
the connection between critical areas defined by their critical points. If the nearest
adjacent area is not a saddle, then CA2 is determined by recursion until a maximum
is found. In this way, ERG branch terminations are determined from connection to
p1. Subsequently, the next critical area is found, and the process is repeated until
all branches of the ERG are formed.

Change in elevation is the representation of the hierarchical features of the criti-
cal point extraction process that are translated into the edge connections of critical
points (=vertices). That is, from triangulated contours of the 2-manifold, points
adjacent to one another from one contour to the next may be compared in terms
of the elevation that each point represents. The higher the point, it then becomes
the next connecting point in the hierarchical sequence of skeleton connectors in an
ascending order.50 Across a contour boundary, multiple points may be evaluated
to determine whether there is an upward or downward change in direction, and
this will affect the hierarchy of the skeleton connectors. The skeleton tree reflects a
hierarchical relation among the points31,32 where a minimum point (origin) is the
root node, a maximum point is a leaf node, and branched nodes are the saddle
points.53

Taxon names as labels within 3D theoretical morphospace constrain branching
with respect to hierarchical meaning from point to point of the ERG. Moreover,
contours of 3D theoretical morphospace have a hierarchical structure that may
be nested from the base to the apex of peaks, and this structure influences the
hierarchical nature of the tree.27 The resultant skeleton tree is a directed acyclic
graph.
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A.6. Numerical representation of skeleton trees and cladograms

Simple, less time-consuming graph matching methods include clustering algo-
rithms in conjunction with adjacency matrices that are representations of tree
decomposition.54 Adjacency matrices include elements as 0 and +1 to represent
no connection between adjacent nodes and connection between adjacent nodes,
respectively.32 The skeleton tree and cladogram are oriented graphs without paral-
lel edges. For either of the graphs, the set of vertices, V , where there are n vertices,
v1, . . . , vn, in the set, and E is the set of edges, an n × n adjacency matrix of the
oriented graph, Adji,j = [ai,j ], is defined as Adji,j =

{
1, if (vi, vj) ∈ E
0, otherwise ,55 where the

ith and jth elements of v in V are in E when taxa are adjacent to each other. In
the skeleton tree and cladogram, there are no self-looping or 1s on the diagonal of
the adjacency matrices since each graph is directed and acyclic.

A.7. Graph matching of tree nodes

Since proximity between tree structures is an important result of graph matching,
the multivariate distance method, multidimensional scaling (MDS),18,56 is ideally
suited to evaluate graph-matched structures that have been decomposed into adja-
cency matrices. Moreover, MDS facilitates understanding the structure of the data
that represent skeletonized theoretical morphospace and cladogram and interpreta-
tion of results with respect to adaptive characters of taxa in terms of environmental
preferences information.

MDS is used to compare multiple eigenspaces within one ordination and evaluate
the graph matching on a node-to-node basis.57 MDS is used to depict points in
space so that geometric distances reflect empirical relationships.58 One of the best
computer programs in use to perform MDS is alternating least squares scaling
(ALSCAL).59,60 ALSCAL can handle any type of data, including data where some
of the values are missing.56

ALSCAL is an optimization program where, initially, a dissimilarity matrix
is calculated from adjacency matrices of the skeleton tree and cladogram. From
this, disparities are calculated so that the dissimilarities are mapped to the dis-
parities as ϕ(δ2

rs,i) = d̂2
rs,i, where {d̂2

rs,i} are least squares estimates of {d2
rs,i}.56

These estimates depend on minimization of the loss function, S-stress,59 which
is defined as S-stress =

∑
r

∑
s

∑
i(d

2
rs,i − d̂2

rs,i)
2, where the squared distance

between pairs of taxa is calculated for all possible combinations of taxa. Mini-
mization of S-stress means that the ordination depicts actual distances56 between
taxa.

A.8. Graph matching of tree paths

Adjacency matrices are representative of node identity in trees. Branches are paths
between nodes, and counting the number of paths between nodes from one taxon
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to another can be used as the content of a path matrix of trees for graph match-
ing purposes. MDS of path matrices can be used as another indication of the
degree to which a skeleton tree and cladogram are matched structures. By count-
ing the number of steps from leaf node to leaf node, paths between taxa for
the skeleton tree and cladogram can be determined as the sum of the number
of steps. For the skeleton tree and cladogram, taxa are numbered consecutively
with regard to their placement in a Gini tree.17 From this, the sums for each
taxon-to-taxon set of branching connections are the elements of the unweighted
path matrix, and MDS is used to determine the degree of graph matching between
skeleton tree and cladogram paths. The unweighted path matrix for either the
cladogram or skeleton tree is square, symmetric. Elements on the diagonal for the
path between a given taxon and itself are 0s, and the form of the unweighted path
matrix is




tree(path)11 · · · tree(path)1n

...
. . .

...

tree(path)n1 · · · tree(path)nn


 (A.1)

where tree represents either the cladogram or skeleton tree, and there are n elements
representing taxa for each tree. For MDS, taxon names are the rows, and taxon
names for the cladogram and skeleton tree are the columns. From this, the paths
of taxa in the cladogram and skeleton tree can be depicted in MDS path space to
determine degree of graph matching.

Graph-matched structure evaluation is also done using path matrices in a con-
strained MDS. In this case, weights in the matrices18 indicate the relation among
nodes across both tree structures as an ordering of branches from root to leaf nodes.
Using facet theory,18,58,61 MDS leaf node clusters serve as facets of matched taxa
that are cluster constraints.62

From MDS of leaf node clusters in a facet diagram, weights are based on the
closeness of leaf nodes using each taxon label only once. These weights are num-
bered with respect to closeness that taxa in a facet of leaf nodes have to each other
and to other taxa in other facets. The highest ranking goes to within-cluster group
adjacency, next highest ranking goes to between-cluster group adjacency, and low-
est ranking goes to taxa in non-adjacent clusters. Rankings are used as weights
and constrain the order relation18 between branching patterns in skeleton tree and
cladogram.

To construct weighted path submatrices, each submatrix is constructed by only
the branching between leaf nodes, and these values are reported in the lower half.
In the upper half of the weighted path submatrix, weights as rankings between taxa
are given. Each weighted path submatrix is square, asymmetric and has integers
as its elements. However, because the facet diagram may contain more than one
representation of a given taxon in more than one facet, weights from taxon to taxon
are not necessarily the same for each weighted submatrix. For either the cladogram
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or skeleton tree, the weighted path submatrix is of the general form



tree11 · · · tree(weight)1n

...
. . .

...

tree(path)n1 · · · treenn


 (A.2)

where there are n elements for the path lower matrix or weight upper matrix for the
cladogram or skeleton tree or a combination of both. For paths and weights from a
given taxon to itself, the diagonal elements of each submatrix are 0 s.

Four weighted path submatrices result in cladogram paths to cladogram weights,
skeleton tree paths to cladogram weights, cladogram paths to skeleton tree weights,
and skeleton tree paths to skeleton tree weights taxa comparisons. Each of the
submatrices is arranged as one of four blocks in a single weighted path matrix and
is partitioned as






clad11 · · · clad (weight)1q

...
. . .

...

clad (path)j1 · · · clad jq







skel ↔ clad11 · · · skel (weight)1r

...
. . .

...

clad (path)k1 · · · skel ↔ cladkr







clad ↔ skel11 · · · clad (weight)1s

...
. . .

...

skel (path)l1 · · · clad ↔ skel ls







skel11 · · · skel (weight)1t

...
. . .

...

skel (path)m1 · · · skelmt







(A.3)

where clad and skel elements are the qth, rth, sth, and tth entries for weights as
well as the jth, kth, lth, and mth entries for paths for the cladogram or skelton tree
or a combination of both.

The four-block square, asymmetric matrix is analyzed using MDS, and the con-
strained results are ordinated in path space. Published data on environmental and
habitat preferences for each taxon are mapped to the weighted MDS ordination in
path space, and taxon adaptation or adaptive ability is inferred.


