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Acute lung injury (ALI) is a dev-
astating cause of respiratory
failure associated with signifi-
cant morbidity and mortality

(1, 2). Despite the wealth of existing
knowledge about risk factors for death in
this syndrome, providers remain unable
to determine which patients with ALI will

ultimately die during their hospital stay.
The majority of patients with ALI who die
do so in the context of a decision to forgo
life-sustaining treatment driven in large
part by patient preferences (3–5).

Prognostication in the intensive care
unit (ICU) is an important part of com-
munication with surrogates, and often

plays a role in the decision to forgo life-
sustaining treatment (6, 7). Incapacitated
patients rely on surrogates, such as their
family members, to represent their
wishes during ICU care, and surrogates
often rely on clinician estimates of the
likelihood of survival and functional re-
covery from acute illness when deciding
whether to forgo life-sustaining treatment
for their loved ones (7). Documented cog-
nitive and noncognitive biases held by phy-
sicians may overly influence their prog-
nostic estimates for a given patient and
have the potential to misrepresent true
risk of death (8–11). Objective prognostic
models, such as the Acute Physiology As-
sessment and Chronic Health Evaluation
(APACHE) III score (12) and Simplified
Acute Physiology Score III (13), can pro-
vide estimated probabilities of death for
an individual patient in the ICU. How-

Objective: We sought to develop a simple point score that
would accurately capture the risk of hospital death for patients
with acute lung injury (ALI).

Design: This is a secondary analysis of data from two randomized
trials. Baseline clinical variables collected within 24 hours of enroll-
ment were modeled as predictors of hospital mortality using logistic
regression and bootstrap resampling to arrive at a parsimonious model.
We constructed a point score based on regression coefficients.

Setting: Medical centers participating in the Acute Respiratory
Distress Syndrome Clinical Trials Network (ARDSnet).

Patients: Model development: 414 patients with nontraumatic ALI
participating in the low tidal volume arm of the ARDSnet Acute
Respiratory Management in ARDS study. Model validation: 459 pa-
tients participating in the ARDSnet Assessment of Low tidal Volume
and elevated End-expiratory volume to Obviate Lung Injury study.
Model Validation: 459 patients participating in the ARDSnet Assess-
ment of Low tidal Volume and elevated End-expiratory volume to
Obviate Lung Injury trial.

Interventions: None.
Measurements and Main Results: Variables comprising the

prognostic model were hematocrit <26% (1 point), bilirubin >2
mg/dL (1 point), fluid balance >2.5 L positive (1 point), and age

(1 point for age 40–64 years, 2 points for age >65 years). Predicted
mortality (95% confidence interval) for 0, 1, 2, 3, and 4� point totals
was 8% (5% to 14%), 17% (12% to 23%), 31% (26% to 37%), 51%
(43% to 58%), and 70% (58% to 80%), respectively. There was an
excellent agreement between predicted and observed mortality in the
validation cohort. Observed mortality for 0, 1, 2, 3, and 4� point
totals in the validation cohort was 12%, 16%, 28%, 47%, and 67%,
respectively. Compared with the Acute Physiology Assessment and
Chronic Health Evaluation III score, areas under the receiver operat-
ing characteristic curve for the point score were greater in the
development cohort (0.72 vs. 0.67, p � 0.09) and lower in the
validation cohort (0.68 vs. 0.75, p � 0.03).

Conclusions: Mortality in patients with ALI can be predicted
using an index of four readily available clinical variables with
good calibration. This index may help inform prognostic discus-
sions, but validation in nonclinical trial populations is necessary
before widespread use. (Crit Care Med 2009; 37:1913–1920)
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ever, experts recommend against use of
these models for predicting outcomes for
individual patients, in part, because of
their inability to convey uncertainty in
estimated probabilities of death for an
individual patient and the complexity in-
volved in their calculation (14).

The goal of this study was to develop a
simple, disease-specific multivariable
predictive scorecard for mortality to be
used at the bedside in patients with early
ALI. Given the importance of well-cali-
brated models for individual prognostica-
tion (15), we sought to maximize the con-
cordance between predicted and actual
probabilities of hospital death across point
strata for our model, and, thus, to arrive at
a system that might classify patients into
groups for planning patient care.

MATERIALS AND METHODS

Study Population. The model derivation
population arose from the 861 patients partic-
ipating in the Acute Respiratory Distress Syn-
drome Clinical Trials Network (ARDSNet) low
tidal volume study (Acute Respiratory Man-
agement in ARDS) (16). Briefly, intubated,
mechanically ventilated patients meeting
American European Consensus Conference
(17) definition for ALI were randomized
within 36 hours of meeting the last qualifying
American European Consensus Conference
criterion to receive tidal volumes of 6 or 12
mL/kg predicted body weight. Demographics,
comorbidities, ALI precipitating cause, physi-
ology, and radiographic and ventilator data were
recorded within the 24 hours before change in
ventilator settings for all enrolled patients. Vital
status for each patient was determined at hospi-
tal discharge. We limited our development co-
hort to all patients randomized into the 6 mL/kg
arm of the parent study to eliminate tidal vol-
ume as a predictive variable in the analysis be-
cause current best practice involves low tidal
volume ventilation for this population (n �
473). Patients with trauma as the primary risk
factor for ALI were excluded because of the low
mortality rate in this subgroup (18).

Model Development. Our general strategy
to develop a predictive model for death con-
sisted of three steps. First, we identified vari-
ables previously reported as associated with
mortality or severity of illness in ALI. Baseline
values were selected to minimize missing data
and to allow for mortality prediction at the be-
ginning of ALI. Next, we constructed a parsimo-
nious multivariable model based on these pre-
dictors. Finally, we validated the final predictive
model in an independent sample of patients.

When deciding the covariates to be retained
as candidate predictors for the multivariable
model, we considered the clinical relevance and
generalizability of each covariate; the amount of
missing data (retaining the measure with the
least missing data); and finally, the amount of

spread in the covariate’s scale (retaining the
measure with the most variability) in that order.
We assessed the collinearity among the predic-
tors using the Pearson correlation coefficient, �2

tests, and analysis of variance/Student’s t tests.
When highly correlated covariates quantified the
same clinical information (e.g., A-a difference
and PaO2), we selected the covariate that was
more clinically relevant and had less missing
data and more variability.

Multivariable Modeling. The resulting
baseline clinically relevant covariates with
minimal collinearity were entered into a mul-
tivariable logistic regression model. These
variables included demographics (age, sex,
race/ethnicity); weight; respiratory physiology
(PaO2/FIO2, PACO2, positive end-expiratory pres-
sure, number of opacified quadrants on frontal
chest radiograph [19], volume/pressure-
targeted ventilation, assist/control ventila-
tion); primary ALI risk factor as coded by the
clinical coordinator and physician investigator
within 36 hours of ALI onset (pneumonia,
sepsis, aspiration, other/none); timing of ALI
onset (hospital days before ARDSnet screen,
days with ALI before randomization); and
physiologic and laboratory derangement
(number of nonpulmonary organ failures, va-
sopressor use, net 24-hour fluid balance be-
fore enrollment, 24-hour urine output before
enrollment, peak bilirubin, peak creatinine,
lowest systolic blood pressure, lowest hemat-
ocrit). All peak and nadir values were identi-
fied during the 24-hour period before enroll-
ment. We included continuous variables in
categorical form to simplify point calcula-
tion from the final model. We determined
cut points for continuous variables by as-
sessing each variable’s functional form us-
ing generalized additive models (20). We
evaluated two-way multiplicative interac-
tions for each covariate, which were ex-
cluded from the final model if they were not
statistically significant.

Variable selection in the multivariable re-
gression framework used a bootstrap algo-
rithm (21). We generated 1000 bootstrap sam-
ples from the original dataset. Each bootstrap
sample was the same size of the original der-
ivation sample; however, patients in each
bootstrap sample were randomly drawn from
the original data with replacement (21).
Within each bootstrap sample, we performed
stepwise logistic regression with thresholds of
p � 0.10 for selection and p � 0.20 for vari-
able elimination. Predictors present in at least
600 runs (e.g., 60% of the 1000 generated
bootstrap samples) were entered in a final lo-
gistic regression model using the original data
(22, 23). This method determines the empiri-
cal distribution of a variable’s likelihood of
being included in the model, thereby quanti-
fying the strength of evidence that a given
variable is indeed a true independent predictor
of death and compares favorably to more tra-
ditional cross-validation or isolated automated
model development methods (23).

Score Generation. Point scores were as-
signed to each covariate by rounding the re-
gression coefficients in the final model to in-
tegers (24). We then calculated a point score
for each patient in the cohort and plotted the
resulting receiver operating characteristic
curve. The receiver operating characteristic
curve graphically describes the overall perfor-
mance of our point score (25). Discrimination
of the model was summarized with area under
the curve (AUC) of the receiver operating
characteristic curve (25). In addition, we de-
rived positive likelihood ratio (LR�) estimates
for each level of the point score to be able to
estimate how much a prior probability of
death would be influenced by an observed
point score. The LR� summarizes how many
more times likely patients who die are to have
that particular point total than patients who
survive (26, 27). Predicted probabilities of
death and their respective confidence intervals
for each point strata were generated from a
logistic regression with mortality as the out-
come and the point totals per patient as the
sole predictor. Posttest probabilities of death
were generated using hypothetical, provider-
determined pretest probabilities of death and
the LR� for each point category as previously
described (27). We calculated confidence in-
tervals for posttest probabilities of death by
incorporating the uncertainty in the LR. Pre-
test probabilities were assumed to have no
uncertainty. We assessed calibration using the
Hosmer-Lemeshow statistic with p � 0.10 in-
dicating that fit was inadequate (28). Given the
low power of this test in small samples, we also
compared the actual and predicted mortality
within each point stratum for the develop-
ment and validation cohorts.

Model Validation. We assessed internal va-
lidity of our model by comparing the AUC of
our point score to that of the predicted mor-
tality estimated from the APACHE III score
(12) using the method outlined by DeLong et
al (29). APACHE probabilities of death were
generated by fitting the APACHE III score in a
logistic model where hospital death was the
outcome. We assessed external validity by ap-
plying our model to an independent database,
which consisted of the same target study pop-
ulation used in constructing the prediction
model (participants in the ARDSnet clinical
trial, Assessment of Low tidal Volume and
elevated End-expiratory volume to Obviate
Lung Injury [ALVEOLI]) (30). Briefly, ALVE-
OLI randomized 549 intubated, mechanically
ventilated patients meeting the American Eu-
ropean Consensus Conference definition for
ALI or ARDS within 36 hours to receive higher
or lower positive end-expiratory pressure. All
patients received tidal volumes of 6 mL/kg
predicted body weight. Baseline variables col-
lected in ALVEOLI were similar to those cap-
tured in Acute Respiratory Management in
ARDS. Patients were followed up until dis-
charge. We limited our analysis of ALVEOLI to
patients without trauma as the primary ALI
risk factor (n � 505).
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As a sensitivity analysis, we determined the
influence of missing data on our model by
performing multiple imputation (SAS PROC
MI) for each incomplete covariate as described
by Rubin and Schenker (31). The imputed model
and mortality estimates derived from the im-
puted model were identical to those from com-
plete case analysis. We also used the same vari-
ables and cut points to determine model
performance for predicting 28-day mortality.

The Institutional Review Board for each
center participating in ARDSnet approved the
parent studies. All statistical analyses were
conducted with SAS 9.1 (Statistical Analysis
Systems, Cary, NC) and Stata 9.2 (StataCorp,
College Station, TX). All tests of significance
used a two-sided � � 0.05.

RESULTS

Of the 902 patients participating in the
ARDSnet low tidal volume study, 429 were
randomized to the 12 mL/kg tidal volume
arm and excluded. Of the remaining 473
patients, 59 (12%) were excluded because
of trauma as the primary risk factor for ALI,
leaving 414 patients (88% of patients in the
6 mL/kg arm) available for analysis. Demo-
graphics, ALI risk factor, severity of illness,
and laboratory and physiology data for the
cohort are shown in Table 1. Of the 414
patients in the development cohort, 139
(33%) died at hospital discharge, similar to
the 31% mortality reported in the 6 mL/kg

arm of the parent study (16). In general, pa-
tients who were dead at hospital discharge
were older and had a greater severity of
physiologic and laboratory derangement.

Multivariable Modeling. During mul-
tivariable modeling, 64 additional pa-
tients were excluded because of missing
data for bilirubin (n � 38, 9%), fluid bal-
ance (n � 24, 6%), and hematocrit (n � 2).
Variables retained in the final regression of
the covariates present in �60% of the
bootstrap iterations included age, hemat-
ocrit, 24-hour fluid balance, and biliru-
bin. The model derived from imputed
data was identical to that derived by com-
plete case analysis. For simplicity, we re-
port only the results of the complete case
analysis. Point values generated from the
regression coefficients for each of these
covariates are shown in Table 2. The re-
sulting point total for each patient was
incorporated in a regression with hospital
mortality as the outcome. We refer to this
model as the custom model. Predicted
mortality by point total for the develop-
ment cohort and observed mortality in
the development and validation cohorts
are presented in Table 3. The mean pre-
dicted mortality for each point strata was
very close to the observed mortality in
both the development and the validation
cohorts. In all strata, observed mortality in
the validation cohort fell within the confi-
dence bounds of the predicted mortality.

LR� and 95% confidence intervals for
each point total in the combined cohorts
are also shown in Table 3. By using the
LR�s from Table 3, we calculated the
hypothetical posttest probability of death
as a function of point total from our
model over a range of pretest probabili-
ties of death (Table 4).

The comparison between predicted
mortality estimated from the APACHE III
score and the mortality rate predicted by
the custom model is illustrated in Figure
1. Overall, there was considerable spread
in the predicted mortality estimated from

Table 2. Model-based points for each cut point in
predictive variables in the final multivariable
model

Variable

Points

0 1 2

Age (yrs) �39 40–64 �65
Bilirubin (mg/dL) �2.0 �2.0 —
Net 24-hr volume

(in–out), mL
�2500 �2500 —

Hematocrit (%) �26 �26 —

Table 1. Baseline characteristics of patients eligible for model development by vital status

Variablea

Vital Status at Hospital
Dischargeb

pAlive Dead

Cases 275 139
Age, years, median (IQR) 48 (37–61) 60 (45–72) �0.001
Male (%) 59 61 0.61
Race (%) 0.27

White 75 70
Black 17 19
Hispanic 4 4
Other/unknown 4 7

Timing of ALI
Hospital days before ALI, median (IQR) 2 (1–5) 4 (1–8) 0.001
ALI days before randomization, median (IQR) 1 (0–1) 1 (0–1) 0.97

Primary ALI risk factor (%) 0.59
Pneumonia 36 33
Sepsis 28 34
Aspiration 17 19
Multiple transfusion 3 2
None/other 16 12

Severity of illness
APACHE III score 79 (27) 96 (30) �0.001
Number of organ failures, median (IQR) 1 (0–1) 1 (0–2) 0.01
Net volume during preceding 24 hrs (mL) 2276 (3616) 3361 (4546) 0.01
Vasopressor use (%) 38 49 0.03

Respiratory physiology
Minute ventilation (L/min) 13 (4) 14 (4) 0.1
Plateau pressure (mm Hg) 29 (7) 31 (8) 0.01
PEEP, mm Hg, median (IQR) 8 (5–10) 10 (5–10) 0.11
PaO2/FIO2 ratio 152 (71) 135 (61) 0.02
pH 7.37 (0.1) 7.36 (0.1) 0.67
PaCO2 (mm Hg) 36 (8) 36 (8) 0.98

Additional physiology and laboratoriesc

Systolic blood pressure (mm Hg) 89 (19) 83 (19) 0.003
Twenty-four–hour urine output (mL) 2400 (1539) 2068 (1612) 0.05
Glucose (mg/dL) 177 (100) 184 (90) 0.48
Creatinine (mg/dL) 1.6 (1.5) 1.8 (1.4) 0.22
Hematocrit (%) 30 (6) 29 (5) 0.04
Bilirubin (mg/dL) 1.6 (1.9) 2.4 (3.3) 0.02

IQR, interquartile range; ALI, acute lung injury; APACHE, Acute Physiology Assessment and
Chronic Health Evaluation; PaO2, partial pressure of arterial oxygen; PaCO2, partial pressure of arterial
carbon dioxide.

aData were missing for plateau pressure in 87 (21%) patients, bilirubin, 38 (9%); PaCO2, 30 (7%);
PaO2/FIO2, 30 (7%); fluid balance, 27 (7%); glucose, 26 (6%); creatinine, 23 (6%); urine output, 22
(5%); minute ventilation, 4 (�1%); pH, 3 (�1%); hematocrit, 3 (�1%); APACHE III in two;
vasopressor in two; primary ALI risk factor in one; systolic blood pressure in one; bnumbers reflect
mean (SD) unless otherwise noted. Percentages may not add to 100 due to rounding; cnumbers
represent worst values over the 24-hr period surrounding enrollment day.
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the APACHE III score within each point
total. Hosmer-Lemeshow goodness of fit
test for the custom model in the devel-
opment and validation cohort showed
no evidence of inadequate fit (�df�3

2 � 1.5,
p � 0.67 and �df�3

2 � 1.0, p � 0.79,
respectively).

Receiver operating characteristic
curves for the custom model in the de-
velopment and validation cohorts are
compared with APACHE III in Figure 2.
The custom model outperformed
APACHE III in the development cohort
and performed worse than APACHE III in
the validation cohort. The AUC for the
custom model in the derivation set was
0.72 compared with 0.67 for APACHE III
(p � 0.09). When applied to the valida-
tion cohort, the AUC for the custom
model was 0.68, whereas the AUC for
APACHE III was 0.75 (p � 0.03).

Twenty-Eight–Day Mortality. At 28
days, 90 (26%) patients in the develop-
ment cohort died. Predicted 28-day mor-
tality, observed 28-day mortality, and
LR� for the development and validation

cohorts are present in Table 5. In general,
28-day mortality was lower than hospital
mortality for each point total; however,
there was good agreement between pre-
dicted and observed mortality for each
point total in the validation cohort. LR�s
for each point total were similar to those
reported for hospital mortality. Discrim-
ination of the custom model in the devel-
opment cohort was similar to discrimina-
tion in the validation cohort (AUC 0.71
vs. 0.71, respectively). Hosmer-Leme-
show goodness of fit test for the custom
model for 28-day mortality in the devel-
opment and validation cohort showed no
evidence of inadequate fit (�df�3

2 � 0.37,
p � 0.95 and �df�3

2 � 1.04, p � 0.79,
respectively).

DISCUSSION

We developed and validated a simple,
easily calculable scoring model that accu-
rately predicts hospital mortality for pa-
tients with ALI. Our simple point score,
incorporating age, 24-hour fluid balance,

hematocrit, and bilirubin, is able to dis-
criminate patients with high mortality
from those with a lower mortality. Im-
portantly, observed mortality in the vali-
dation dataset fell within predicted mor-
tality ranges for the point total strata,
indicating good model calibration. Fur-
thermore, the accuracy of the model’s
prediction for 28-day mortality was sim-
ilar to that predicting hospital mortality.
These results support the use of this model
as a useful clinical tool for prognostication,
classification, and counseling.

Our results are notable for the excel-
lent concordance or calibration between
our custom model’s predicted mortality
rate and the observed mortality in each
point strata within the validation cohort.
Although the AUC of our model in the
validation cohort was worse than in the
development cohort, calibration re-
mained intact. Discrimination refers to a
model’s ability to distinguish survivors
from nonsurvivors. The AUC represents
the probability that a patient who died had
a greater predicted probability of dying
than a patient who survived. Calibration
refers to the agreement between predicted
probabilities and the actual, observed prob-
abilities. Ideally, a predictive model
should have excellent discrimination
(AUC �0.9) and calibration (observed
rates � predicted rates). Maximizing cal-
ibration is of primary importance when a
model is used to counsel patients or their
families about prognosis (15), because
patients and their families are more in-
terested in accurate assessment of the
probability of death (calibration), not nec-
essarily how sick the patient is relative to
other patients (discrimination) (15).

This model can be used to inform
prognosis (e.g., in counseling patients or
families) but should not be used for de-
cision making (e.g., withdrawal of sup-
port). The literature documenting the
presence of cognitive biases in physician
decision making is extensive (8, 10). Con-
fronted with the task of prognosticating
in the complex environment of the ICU,
physicians must assess the probability of
an uncertain event. Physicians often use
heuristics or simple rules of thumb in
place of explicit analysis of probabilities
to reduce these complex tasks to simpler
judgments (8). Although often useful
when used by experienced ICU attending
physicians (32), these heuristics can lead
to severe errors in assessing the probabil-
ity of an event. For example, the availabil-
ity of recent memories (e.g., “the last
patient I cared for…”) (8, 10), an aversion

Table 3. Predicted and observed hospital mortality, and positive likelihood ratios in the derivation set
(ARMA) and the validation set (ALVELOLI)

Total Points

Predicted Mortality Observed Mortality
Diagnostic Likelihood Ratio

� (95% CI)a% 95% CI ARMA ALVEOLI

0 8.0 (4.6–13.7) 8.1 12.3 0.30 (0.16–0.54)
1 16.5 (11.9–22.5) 16.0 16.3 0.47 (0.34–0.64)
2 31.0 (26.0–36.6) 30.1 27.8 0.98 (0.79–1.23)
3 50.6 (42.7–58.4) 54.4 46.5 2.50 (1.94–3.22)
4� 70.0 (58.1–79.5) 60.0 66.7 4.13 (2.12–8.07)

CI, confidence interval; ARMA, Acute Respiratory Management in Acute Respiratory Distress
Syndrome; ALVEOLI, Assessment of Low Tidal Volume and Elevated End-Expiratory Pressure to
Obviate Lung Injury.

aPooled likelihood ratios for ARMA and ALVEOLI. Positive likelihood ratio (LR�) can be multiplied
by the pretest odds of outcome to get the posttest odds of outcome. Pretest odds can be calculated as
p/1�p, where p � pretest probability of disease. Posttest probability is calculated as (posttest odds/1 �
posttest odds).

Table 4. Estimated posttest percent hospital mortality (95% confidence interval) for a range of pretest
rates of death

Pretest Estimated
Mortality (%)

Calculated Point Total for Patient

0 1 2 3 4�

5 2 (1–3) 2 (2–3) 5 (4–6) 12 (9–14) 18 (10–30)
10 3 (2–6) 5 (4–7) 10 (8–12) 22 (18–26) 31 (19–47)
25 9 (5–15) 14 (10–18) 25 (21–29) 45 (39–52) 58 (41–73)
50 23 (14–35) 32 (26–39) 50 (44–55) 71 (66–76) 81 (68–89)
75 47 (33–62) 59 (51–66) 75 (70–79) 88 (85–91) 93 (86–96)
90 73 (60–83) 81 (76–85) 90 (88–92) 96 (95–97) 97 (95–99)
95 85 (76–91) 90 (87–92) 95 (94–96) 98 (97–98) 99 (98–99)

aPosttest percents calculated using likelihood ratios reported in Table 3 and Bayes’ Theorem.
Confidence intervals incorporate the uncertainty in the estimated likelihood ratios; bnumbers repre-
sent a hypothetical, bedside assessment of the chance of dying before calculation of point score.
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to change therapeutic course (status-quo
bias) (11, 33), or the potential to feel
more responsible for an adverse outcome
because of active treatment compared
with inaction (regret/outcome bias) (10)
can unduly influence a physician’s esti-
mates of prognosis in the ICU. There are
often additional factors that ought not
play a role in prognostic decision making,
such as physician age, experience and re-
ligion, patient age and race, and other
conscious or unconscious biases that im-
pede rational and compassionate decision
making in critically ill patients (9, 34–
37). These biases may contribute to the
discrepancy between an attending physi-

cian’s predicted outcome and the pa-
tient’s actual outcome (38).

For these reasons, there is a great
need for objective measures to facilitate
prognostication in critically ill patients
who are immune to bias and subjectivity.
To date, however, experts advocate
against using traditional severity-of-
illness measures (e.g., APACHE, Simpli-
fied Acute Physiology Score) for decision
making at the end of life for multiple
reasons (32, 39, 40). There is little evi-
dence to suggest that prognostication
systems influence the physician’s deci-
sions on caring for patients at the end of
life (41). Additional objections stem from

the inability of severity scores to convey
uncertainty in estimated probabilities of
death, the poor concordance between in-
dividual predictions among different se-
verity models (39), the poor performance
of such models at the extremes of esti-
mated probabilities (e.g., close to zero or
to one), and the complexity involved in
their calculation (42). On the basis of the
above limitations, we caution physicians
in the solitary use of our model purely for
decision making in individual patients;
ICU severity of illness scores, including
our point score, will never predict patient
outcomes with 100% certainty. Although
accurate for populations of patients, such
models can never truly account for all
uncertainty when applied to individuals.
Nonetheless, families value prognostic
discussions and use mortality estimates
to prepare emotionally for the possibility
that a patient may not survive even when
they appreciate that prognostic estimates
may not be correct (43, 44). Providing
stratum-specific estimates of mortality,
such as those provided by our point
score, to patients and their families has
been recommended by many risk com-
munication experts (45, 46).

Although the use of scoring systems as
a sole guide to making decisions about
whether to initiate or continue to provide
intensive care is inappropriate (40), they
can provide an objective means for pro-
viders to inform their own assessment of
prognosis. Combining clinician estimates
of mortality with model estimates of mor-
tality improves one’s overall ability to dis-
criminate patients who live from those
who die compared with either estimate
alone (41, 47). Given physicians’ pessi-
mistic estimates of mortality, whether
combining physician and model esti-
mates improves agreement between the
expected and actual mortality is still un-
clear (47, 48).

Providers can use the LRs from our
model at the bedside similarly to a diag-
nostic test to estimate the posttest prob-
ability of death. Figure 3 illustrates a hy-
pothetical “case study” examining how a
prior probability of death of 0.4 (based on
population estimates from the literature)
is updated to a probability of 0.74 with
the knowledge that the patient’s point
score is 4. It is important to note that
population-based data support a pretest
mortality in all patients with ALI of ap-
proximately 40% (49). Given this esti-
mate, most patients with ALI will have
posttest mortalities, indicating a signifi-
cant chance of surviving to hospital dis-

Figure 1. Calibration plot. For each patient in the validation dataset, the predicted mortality estimated
from the Acute Physiology Assessment and Chronic Health Evaluation (APACHE) III score is plotted
against the point total from the custom model developed from the Acute Respiratory Distress
Syndrome Network low tidal volume study. Patients with an APACHE III predicted mortality over-
lapping with the custom model predicted mortality in the validation cohort are shown using triangles
(within). Closed circles (above) indicate patients where APACHE III predicts a greater rate of death
than predicted by the simple model. Open circles (below) indicate patients where APACHE III predicts
a lower rate of death than predicted by the simple model.
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Figure 2. Receiver operating characteristic (ROC) curves for the custom model. A, comparison of the
ROC curves for the custom model and Acute Physiology Assessment and Chronic Health Evaluation
(APACHE) III score (area 0.72 vs. 0.67, p � 0.09) in the development cohort. B, comparison between
custom model and APACHE III (area 0.68 vs. 0.75, p � 0.03) in the validation cohort.
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charge. We also stress that, in practice,
providers often have an uncertainty in
their estimated pretest probability of
death. Our analyses do not incorporate
this uncertainty and, thus, confidence in-
tervals around the posttest probabilities
are too narrow.

There are several strengths to our
analysis. We used a well-defined cohort of
patients with ALI cared for in hospitals
throughout the United States. We subse-
quently validated our model using an in-
dependent cohort of patients arising from
a similar patient population. Finally, our
score, using only four readily available
clinical variables, is considerably easier to
calculate than the APACHE III predicted
probability of death or Simplified Acute

Physiology Score III predicted probability
of death, yet maintaining excellent dis-
crimination and calibration.

We also recognize several limitations
to our analysis. First, our model was de-
rived on data from the ARDSNet low tidal
volume study, a study conducted over 10
years ago. The mortality of ALI has de-
creased over time as implementation of
evidence-based therapy in this disease
improved (50). We attempted to address
this limitation by validating the model in
a more contemporary population of pa-
tients (ALVEOLI); nevertheless, our
model may perform differently in more
current ALI cohorts. Second, our deriva-
tion population had a small number of
deaths, limiting our ability to evaluate all

potential predictors of death without
overfitting the model (51). Third, in con-
trast to development of APACHE III, our
model development was limited to vari-
ables available in the dataset; we were
unable to evaluate some potentially im-
portant predictors, such as pulmonary
dead space and positive end-expiratory
pressure responsiveness, because they
were not collected routinely in this co-
hort (52–54). We were also unable to
evaluate the predictive ability of other
comorbidities, such as chronic liver dis-
ease and metastatic cancer (55), because
patients with these underlying illnesses
were excluded from the parent study.
Fourth, in addition to excluding trauma
patients, we excluded 15% (64 of 414) of
the cohort because of missing data to
maximize the utility of our model in
practice. This may have influenced the
variables selected for our model and may
bias the mortality within each strata
when applied. Validation of our model in
populations with complete data is impor-
tant before its routine use. Fifth, our
model was derived in a cohort collected
from multiple academic tertiary care hos-
pitals participating in a randomized trial
with specific exclusion criteria. Docu-
mented differences between academic-
based and community-based patients
with ALI and patients enrolled vs. not
enrolled in randomized trials may pre-
vent generalization to the broader com-
munity (49). Furthermore, our inclusion
of fluid balance, a treatment-dependent
variable, may influence the performance
of our model under different practice pat-
terns. Further validation of this model in
a contemporary, large, multicenter study
should be performed before widespread
adoption. Finally, APACHE III was devel-
oped to predict mortality using data dur-
ing the first 24 hours of ICU stay; there-
fore, our use of APACHE III scores
generated at the time of enrollment may
have resulted in underperformance of
APACHE III.

CONCLUSIONS

We have developed a simple prognos-
tic score that accurately identifies groups
of patients with ALI at high risk of death.
This model can facilitate a provider’s as-
sessment of prognosis when informing
patients and their families about the possi-
ble outcomes of ALI. Before widespread
use, this model should be validated in con-
temporary nonclinical trial populations.

You evaluate a 70-year-old (2 points) patient with non-traumatic acute lung injury (ALI) and
would like to estimate the probability of hospital death.  Based upon population estimates from
the literature you assume tha t the chance o f death is 40% (pre-test probability of 0.4). Based
upon lack of other information you estimate that mortality may be as low as 30% or as high as
60% chance of death.  At the onset of ALI the patient has a hematocrit of 23% (1 point), bilirubin
of 2.4 mg/dL (1 point), and has net positive fluid balance of 1000 mL (0 points) in the preceding
24-hour period.

pretestprobability= ppre = 0.4

pretestodds=
ppre

(1− ppre )
=

0.4
0.6

= 0.67

posttestodds= pre- testodds× LR+
LR+(95%CI)for4 points= 4.13(2.12,8.07)
posttest odds= Opost = 0.67× 4.13= 2.77

posttestprobability(95%CI) = ppost =
Opost

1+Opost
=

2.77
3.77

= 0.74(0.59− 0.84)

Similarly,
if ppre = 0.3,ppost = 0.64(0.48− 0.78);
if ppre = 0.6,ppost = 0.86(0.76− 0.92).

Figure 3. Example calculation of posttest probability of death. Confidence intervals for the posttest
probability integrate uncertainty in the likelihood ratio. LR�, positive likelihood ratio; CI, confidence
interval.

Table 5. Predicted and observed 28-day mortality in the derivation set (ARMA) and the validation set
(ALVELOLI)

Total
Points

Predicted Mortality Observed Mortality
Diagnostic Likelihood Ratio

� (95% CI)a% 95% CI ARMA ALVEOLI

0 6.6 (3.6–11.8) 5.4 6.2 0.20 (0.09–0.45)
1 13.2 (9.1–18.7) 13.0 10.4 0.42 (0.29–0.60)
2 24.6 (20.0–29.8) 25.2 25.3 1.08 (0.87–1.37)
3 41.1 (33.7–49.0) 42.2 41.8 2.33 (1.81–3.00)
4� 60.0 (47.3–71.6) 55.0 53.3 3.82 (2.00–7.27)

CI, confidence interval; ARMA, Acute Respiratory Management in Acute Respiratory Distress
Syndrome; ALVEOLI, Assessment of Low Tidal Volume and Elevated End-Expiratory Pressure to
Obviate Lung Injury.

aPooled likelihood ratios for ARMA and ALVEOLI. Positive likelihood ratio (LR�) can be multiplied
by the pretest odds of outcome to get the posttest odds of outcome. Pretest odds can be calculated as
p/1�p, where p � pretest probability of disease. Posttest probability is then calculated as (posttest
odds/1 � posttest odds).
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