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ABSTRACT
Theoretical description of diffusion growth of a gas bubble

after its nucleation in supersaturated liquid solution is presented.
We study the influence of Laplace pressure on the bubble growth.
We consider two different solubility laws: Henry’s law, which
is fulfilled for the systems where no gas molecules dissociation
takes place and Sievert’s law, which is fulfilled for the systems
where gas molecules completely dissociate in the solvent into
two parts. We show that the difference between Henry’s and
Sievert’s laws for chemical equilibrium conditions causesthe dif-
ference in bubble growth dynamics. Assuming that diffusionflux
of dissolved gas molecules to the bubble is steady we obtain dif-
ferential equations on bubble radius for both solubility laws. For
the case of homogeneous nucleation of a bubble, which takes
place at a significant pressure drop bubble dynamics equations
for Henry’s and Sievert’s laws are solved analytically. Forboth
solubility laws three characteristic stages of bubble growth are
marked out. Intervals of bubble size change and time intervals
of these stages are found. We also obtain conditions of diffusion
flux steadiness corresponding to consecutive stages. The fulfill-
ment of these conditions is discussed for the case of nucleation of
water vapor bubbles in magmatic melts. For Sievert’s law thean-
alytical treatment of the problem of bubble dissolution in apure
solvent is also presented.

∗Address all correspondence to this author.

INTRODUCTION

This paper presents a theoretical description of diffusion
growth of a gas bubble in liquid solution as a result of a consider-
able pressure drop (in the order of 103 times). These conditions
of bubble growth process are observed in magmatic melts during
volcanic eruptions [1, 2]. After such a significant pressuredrop
the solution becomes strongly supersaturated; and homogeneous
(fluctuational) nucleation of gas bubbles becomes possible. It is
the growth dynamics of such bubbles that is the subject of the
present paper. It has to be noted that the growth regularities of a
solitary bubble are crucial for the description of the wholekinet-
ics of phase transition in supersaturated solution [3–5].

While describing gas bubble growth in supersaturated solu-
tion two rough approximations are traditionally made [3–7]:
1. The flux of the dissolved gas towards the bubble is assumed
to be steady.
2. The consideration is limited to bubbles with the radius that is
large enough to neglect the Laplace pressure in comparison with
the external pressure of the solution.

In the present paper, while exploiting the steady approxi-
mation, we take into account the Laplace pressure in the bubble
considering the bubble from the very moment of its nucleation.
Accounting for the time-dependent Laplace pressure in the bub-
ble makes both gas density in the bubble and the equilibrium
concentration of the dissolved gas at the surface of the bubble
time-dependent as well.
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Gas bubble growth in a solution taking into account the
Laplace pressure was considered as early as in 1950 in the classi-
cal paper by Epstein and Plesset [8], where the authors obtained
the equation for the bubble radius as a function of time. In order
to relate the equilibrium concentration of the dissolved gas and
the solution pressure, [8] presupposed the fulfillment of Henry’s
law: i. e. the proportional dependence between these two values.
Indeed, Henry’s law is fulfilled for the solution ofCO2 in mag-
matic melt [7]; however, it is not valid for the solution ofH2O
vapor [3, 6]. In this case, which is crucial for practical reasons,
Sievert’s law is observed: the equilibrium concentration of the
dissolved gas is proportional to the square root of the solution
pressure [9]1.

We analyze the bubble growth dynamics in both cases: for
Henry’s and Sievert’s laws. For Sievert’s law we obtain the equa-
tion for the bubble radius as a function of time analogous to [8],
which has not been obtained previously.

Our analysis shows that, irrespective of the law applied to
gas solubility, three characteristic stages can be marked out in
the growth dynamics. During the first stage the bubble radiusis
growing with an increasing rate. On the second stage the growth
rate decreases. The third stage, when the growth rate continues
to decrease, begins when the Laplace pressure inside the bubble
becomes comparable with the external pressure of the solution.
We demonstrate that during the first two stages the time depen-
dence of the bubble radius is different for the cases of Henry’s
and Sievert’s laws, while during the third stage this distinction is
no longer observed.

For both Henry’s and Sievert’s laws we obtain intervals
within which the bubble radius changes on each stage, as well
as time limits and conditions when the steady approximationis
applicable. We show that, as the radius of the bubble increases,
the steady condition becomes stricter; and, consequently,as a
rule, the steady regime of a multistage bubble growth gradually
gives way to the nonsteady one.

We obtain analytical expression for the time when Laplace
pressure influences on bubble growth vanishes and thereforesub-
stantiate the estimation of this time made in [11]. After this time
passed the bubble growth reaches a self-similar regime [12].

We also analyze whether the steady approximation is appli-
cable to the case of gas bubbles in magma described by Navon
[6] and Chernov et al. [3] for large radius of a bubble (neglecting
Laplace pressure).

Besides that, we present the analytical description of bubble
dissolution in the pure solvent for the Sievert’s solubility law,
which was not present before in literature.

1Sometimes both cases are referred to as ”Henry’s law”, but in the present
paper, in order to avoid confusion, we will use the term ”Sievert’s law” for the
case with a square root, following e. g. [10].

EQUILIBRIUM CONCENTRATION OF DISSOLVED GAS
Let us consider a gas solution in liquid which previously

was in equilibrium state at temperatureT and pressureP0. The
concentration of the dissolved gas in the solution under such con-
ditions will be denoted asn0.

Then we instantly relieve the external pressure to valueΠ in
such way that solution becomes supersaturated. The temperature
and volume of the solution remain the same, thus valuen0 still
serves for the dissolved gas concentration.

It is more convenient to express the state of the solution in
terms of dimensionless variables: supersaturationζ and gas sol-
ubility s

ζ ≡ n0−n∞

n∞
, (1)

s≡ kTn∞

Π
, (2)

wheren∞ is the equilibrium concentration of dissolved gas,k is
the Boltzmann’s constant.

When some time passes after the pressure drop, a gas bub-
ble nucleates and begins growing regularly. Following [3] we
assume that the bubble is in mechanical equilibrium with theso-
lution, and its dynamics is governed only by diffusion process.
This assumption will be discussed in Appendix A. The time of
the bubble nucleation is considered ast = 0. The radius of the
bubble will be denoted asR. We consider the situation when the
solvent is in its stable liquid state; therefore, we assume that the
bubble consists of gas only, but not of the solvent vapor. Thegas
in the bubble is considered to be ideal.

When the bubble is studied after some timet0 since its nu-
cleation, its radius complies with the strong inequality

R≫ 2σ/Π, (3)

whereσ is the surface tension of the pure solvent (it is true while
the solution is considered as diluted). Eq. (3) allows us to neglect
the influence of Laplace pressure on the bubble growth. There-
fore, we can write the following equations for the pressure in the
bubblePR and for the equilibrium solution concentration near the
surface of the bubblenR:

PR = Π, (4)

nR = n∞. (5)
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The subscription∞ denotes that the equilibrium concentration
n∞ is related with the equilibrium near the flat surface of phase
separation (R→ ∞). From Eq. (4) it follows that the gas concen-
tration in the bubbleng is constant. Using the ideal gas law we
have

ng =
Π
kT

. (6)

When Eqs. (3), (4), (5) are fulfilled and, therefore, Laplace
pressure is negligible, the bubble dynamics is evident for the case
of steady-state diffusion and can be even described analytically
for the non-steady case [11,12].

From the moment of bubble nucleation and till Eq. (3) be-
comes valid, Laplace pressure influences bubble growth. Thus
both quantitiesPR andnR become radius-dependent (and, there-
fore, time-dependent). ForPR now we have

PR = Π+
2σ
R

. (7)

In order to write the equation fornR we need to know the sol-
ubility law. For the simplest case of Henry’s law the equilibrium
concentration of dissolved gas is proportional to the correspond-
ing pressure

nR

n∞
=

PR

Π
. (8)

However, Henry’s law is fulfilled only in such systems where
there is no molecules dissociation during gas dissolution.In an-
other important case when the gas molecules completely dissoci-
ate in the solvent into two parts the Henry’s law is replaced with
so-called Sievert’s law (see e. g. [13]), and, therefore, Eq. (8) is
replaced with the following one:

nR

n∞
=

√

PR

Π
. (9)

Sievert’s law is fulfilled for water vapor dissolved in a silicate
melt [9]. Such solutions are important both for glass production
[10] and for volcanic systems [3,6].

The replacement of Eq. (8) with Eq. (9) means that the
boundary condition for the gas diffusion problem will be dif-
ferent for Henry’s and Sievert’s laws. The change of boundary
condition, as we will see further, leads to the change of bubble
dynamics.

BUBBLE DYNAMICS EQUATION
After the nucleation of the bubble, when its growth can be

considered regular (i. e. the bubble can not be dissolved by
fluctuations), its growth is governed by the diffusion flux ofgas
molecules into it. In this paper we will study the case when the
diffusion flux can be assumed as steady. The conditions when
such approximation is valid will be discussed further.

Taking into account the equality of gas concentration at the
bubble surface to the equilibrium concentrationnR and the equal-
ity of gas concentration far from the bubble to the initial con-
centrationn0, we can write a simple expression for the steady
diffusion flux densityjD

jD = D
n0−nR

R
. (10)

HereD is the diffusion coefficient of gas molecules in the pure
solvent (we assume that the solution is diluted).

Now let us write the expression for the number of gas
moleculesN in the bubble. Exploiting the ideal gas law and us-
ing Eq. (7) we have

N =
4π

3kT
R3
[

Π+
2σ
R

]

. (11)

Differentiating Eq. (11), using denotation (6), we obtain

dN
dt

= 4πngR2 dR
dt

[

1+
Rσ

R

]

, (12)

where

Rσ ≡ 4
3

σ
Π

(13)

is the characteristic size of the bubble.
Material balance between the dissolved gas and the gas in

the growing bubble gives us the following equality

dN
dt

= 4πR2 jD. (14)

Substituting expression for diffusion flux density Eq. (10)and
the rate of change of the number of molecules Eq. (12) into
material balance equation (14) we have

ng
dR
dt

[

1+
Rσ

R

]

= D
n0−nR

R
. (15)
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Or, exploiting Eqs. (2) and (6), we equivalently have

RṘ

[

1+
Rσ

R

]

= Ds
n0−nR

n∞
. (16)

Using Eqs. (1), (7) and, correspondingly for Henry’s law
and Sievert’s law, (8) and (9), the fraction in the r. h. s. of Eq.
(16) can be expressed as

n0−nR

n∞
= ζ− 2σ

ΠR
(17)

and

n0−nR

n∞
= ζ+1−

√

1+
2σ
ΠR

. (18)

After exploiting in Eqs. (17) or (18) the definition ofRσ (13), we
have, correspondingly,

n0−nR

n∞
= ζ− 3

2
Rσ

R
(19)

and

n0−nR

n∞
= ζ+1−

√

1+
3
2

Rσ

R
. (20)

Eqs. (19) and (20) allows us to rewrite the equation of bubble
dynamics (16) in the final form, namely

RṘ

[

1+
Rσ

R

]

= Ds

[

ζ− 3
2

Rσ

R

]

(21)

for Henry’s solubility law; and

RṘ

[

1+
Rσ

R

]

= Ds

[

ζ+1−
√

1+
3
2

Rσ

R

]

(22)

for Sievert’s solubility law.
While Eq. (21) was obtained as early as in 1950 in paper by

Epstein and Plesset [8], Eq. (22) was not obtained previously. In
paper by Cable and Frade it was presented only a special case of
Eq. (22), whenζ = −1:

RṘ

[

1+
Rσ

R

]

= −Ds

√

1+
3
2

Rσ

R
(23)

(Eq. (34) in [10]). Such value of supersaturation corresponds to
the dissolution of gas bubble in the pure solvent. And even for
this special case of Eq. (22) analytical solution was not obtained.
We present the analytical solution of Eq. (23) in Appendix B.

CRITICAL BUBBLE AND INITIAL CONDITION FOR THE
BUBBLE GROWTH

The obtained equations for the bubble growth dynamics (21)
and (22) can be applied to the cases of both homogeneous and
heterogeneous nucleation. Below we will consider only the ho-
mogeneous nucleation case.

Homogeneous nucleation of a gas bubble in a supersatura-
tion solution means fluctuational mechanism of its appearance
and needs a significant pressure drop (in the order of 103 times).
It is these conditions of bubble nucleation that take place in mag-
matic melts during volcanic eruptions [3]. Since we decidedto
describe only regular growth of a bubble, we need to exclude the
very process of nucleation from our examination and consider a
bubble only when it is already supercritical.

Under the notion of critical bubble we understand, as usu-
ally [4, 14], such a bubble which radiusRc corresponds to the
extremum of work of bubble formation. Critical bubble is in me-
chanical equilibrium with solution at the initial pressureP0 and
in chemical equilibrium with solution with concentrationn0

PRc = P0, (24)

nRc = n0. (25)

These two conditions together with the solubility law unambigu-
ously define the value ofRc.

Condition (24), using Eq. (7), evidently gives us

Rc =
2σ

P0−Π
, (26)

and condition (25) allows us to connect valueP0 with the super-
saturationζ.

Substituting Eqs. (24) and (25) in Eq. (8) (Henry’s law) and
Eq. (9) (Sievert’s law) we have correspondingly

n0

n∞
=

P0

Π
(27)

and

n0

n∞
=

√

P0

Π
. (28)
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For Henry’s law we have evidently from Eq. (27) using Eq. (1)

P0 = Π(ζ+1) . (29)

And, substituting Eq. (29) in Eq. (26), we have

Rc =
2σ
Πζ

, (30)

the well-known expression for the radius of a critical bubble (e. g.
[4,14]).

For Sievert’s law, when Eq. (27) is replaced by Eq. (28) we
have

P0 = Π
(

n0

n∞

)2

, (31)

or, using Eq. (1),

P0 = Π(ζ+1)2 . (32)

Finally, substituting Eq. (32) in Eq. (26) for the critical bubble
radius, we have

Rc =
2σ

Π [(ζ+1)2−1]
. (33)

Using Eq. (13) and Eq. (30) or Eq. (33) correspondingly we
can write the relations betweenRσ andRc for both Henry’s and
Sievert’s laws

Rσ =
2
3

ζRc, (34)

Rσ =
2
3

[

(ζ+1)2−1
]

Rc (35)

which will be exploited later.
Here it is important to make a remark considering quantity

s– gas solubility. Eqs. (1) and (2) give us

s=
n0kT

Π
1

ζ+1
. (36)

If Henry’s law is fulfilled, we haveζ+1 = P0/Π and, therefore,

s=
n0kT

P0
, (37)

s is a tabular value defined only by the initial state of the solution
(before the pressure drop).

Since we consider Sievert’s law, we have (see (32))ζ+1 =
√

P0/Π; thus instead of Eq. (37), we obtain

s=
n0kT√

P0Π
. (38)

Here it is convenient to introduce constantK as the coefficient
of proportionality in Sievert’s law:K ≡ n0/

√
P0. It allows us to

rewrite Eq. (38) in the following form:

s= K
kT√

Π
. (39)

Eq. (39) shows us that in the case of Sievert’s law the solubility
values depends on the final state of the solution. In the current
paper a solubility value for Sievert’s law is understood as gas
solubility at the final pressureΠ – after the pressure drop.

To deal with the dynamics equations (21) and (22) one needs
to provide it with a reasonable initial condition, i. e. to choose the
value of constantRi , initial radius of the bubble, in the following
equality

R(t)|t=0 = Ri . (40)

In papers [8, 10] there was no special meaning assigned to the
value ofRi : the reason of appearance of the bubble was totally
excluded from discussion. Here we assume that the bubble nu-
cleated fluctuationally, i. e. crossed the barrier corresponding to
radiusRc. It means thatRi has to be not less thanRc, but ev-
idently we cannot use the radius of a critical bubbleRc as the
initial value for the radius.

A bubble that nucleates fluctuationally in the solution is ca-
pable of regular growth if it passed and, moreover, moved away
from the near-critical region where fluctuations are still strong
enough. Thus we choose, following [15],Ri = 2Rc, i. e.

R(t)|t=0 = 2Rc. (41)

Such value guarantees the absence of fluctuations and, as we will
see further, provides us with convenient expressions.

The necessary condition for the fluctuational nucleation ofa
bubble is a high pressure drop (P0/Π ∼ 103) and, consequently,
high supersaturationζ ∼ 103 for Henry’s law andζ ∼ 30÷40 for
Sievert’s law. Further we will use the following strong inequali-
ties for the supersaturation correspondingly:

ζ ≫ 10, (42)
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ζ ≫ 1. (43)

THREE STAGES OF BUBBLE GROWTH
Before we find the explicit solution of equations (21) and

(22), describing the size growth of a far supercritical bubble as
a dependence on time from the moment of its nucleation. Let
us consider the change of the character of bubble growth pro-
cess with the increase of its size. This will let us mark out the
representative stages of growth and to determine corresponding
characteristic bubble sizes. Duration of the consecutive stages
and the character of bubble radius time dependence on each stage
will be considered in the next section.2

It will be more convenient to consider both cases of solubil-
ity laws separately.

Henry’s law
Let us rewrite Eq. (21) in the equivalent form which will be

more appropriate for its analysis:

Ṙ= Dsζ
(

1− Rc

R

)

1
R

(

1
1+Rσ/R

)

, (44)

where we took into account Eqs. (13) and (30).
Each of the three co-factors dependent onR emphasized in

the right hand side of Eq. (44) describes its physically different
contribution to the dynamics of the supercritical bubble growth
process. Co-factor 1−Rc/R, increasing withR, corresponds to
the fast (the scale of change ofR is Rc) increase of the driving
force of the process (the valuen0 − nR) with the growth ofR.
Co-factor 1/R, decreasing with the growth ofR, describes, as it
is seen from Eq. (10), the contribution related to the decrease
of the gradient of solution concentration near the bubble surface,
which decreases the bubble growth rate with the growth ofR.
Finally, co-factor 1/(1+Rσ/R), which increases with the growth
of R, takes into account the counteraction of Laplace pressure
to the bubble growth, i. e. the fact that the bubble growth is
facilitated by the reduction of Laplace pressure with the growth
of R, while other factors are equal (the scale of its change isRσ).
Notwithstanding the mentioned reduction of counteraction, the
resulting contribution of the last two factors always leadsto the
deceleration of growth with the increase of bubble size.

From Eqs. (34) and (42) it can be seen thatRσ ≫ Rc. Using
this inequality, equation (44) and boundary condition (41), we
have that the growth rate of the bubble radius in its dependence
from this radius has to reach the maximum value achieved at
certain bubble radiusRm from the interval 2Rc ≤ R≤ Rσ. Thus it

2It has to be noticed that the stages of our interest do not haveanything in
common with the stages of evolution of the whole ensemble of bubbles during
the decomposition of liquid solution supersaturated with gas.

is natural to consider the growth in the following interval of sizes

2Rc ≤ R≤ Rm (45)

as a first stage of bubble evolution, where the determining factor
is the increase of the driving force of the growth. At this stage
bubble growth goes with the increasing in time rate, reaching its
maximum atRm.

In order to obtainRm we will consider the rate of bubble
growth as a function of its radius and differentiate both parts of
Eq. (44) with respect toR:

dṘ
dR

= Dsζ
Rc (Rc +Rσ)− (R−Rc)

2

R2 (R+Rσ)2 . (46)

The quantityRm is defined by the extremal condition

dṘ
dR

∣

∣

∣

∣

R=Rm

= 0, (47)

which using Eq. (46) leads to the following result

Rm = Rc +
(

R2
c +RcRσ

)1/2
. (48)

Accounting for the strong inequalityRσ ≫ Rc, we can simplify
the obtained expression forRm:

Rm ≃ (RcRσ)1/2 . (49)

The second stage of the process will be when the bubble
growth occurs within the interval of sizes

Rm ≤ R≤ Rσ. (50)

During all this stage, asRm≃ (RcRσ)1/2 ≫ Rc, it is already valid
that R≫ Rc, thus the driving forcen0−nR remains practically
constant. As a result, bubble growth decelerates, although, as
it was noted above, the counteraction of Laplace pressure tothe
growth gradually is attenuated.

The Laplace contribution 2σ/R to the pressure inside the
bubble decreases during the second stage by(Rσ/Rc)

1/2 times
and at the completion of this stage becomes comparable with the
external pressureΠ contribution (from Eq. (13) we have strict
equality 2σ/Rσ = 3Π/2 ). It is this physical condition that de-
fines the completion of the second stage.
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Figure 1. Growth rate of bubble radius dR/dt (measured in dimen-

sionless units Dsζ/Rσ) as a function of R. Solid curve corresponds to

Henry’s law, Eq. (44). Dotted curve corresponds to Sievert’s law, Eq.

(52). For both solubility laws P0/Π = 103.

On the subsequent, third stage, which corresponds to the in-
terval of sizes

R≥ Rσ, (51)

monotonous decelerated bubble growth continues. At the same
time, the role of Laplace pressure continues to decrease gradu-
ally, and the pressurePR inside the bubble approaches to a con-
stant value equal to the external pressureΠ. As it will be shown
further, this process is rather protracted, so the concluding phase
of the third stage, when the pressure inside the bubble practically
does not change and the use of self-similar solution [11, 12]is
possible, comes only in the interval of sufficiently large sizes of
the bubble, when the conditionR≫ Rσ is satisfied with a certain
reserve.

Sievert’s law
Let us investigate behavior of bubble growth rateṘwith the

increase of bubble radius for Sievert’s solubility law. From Eq.
(22) evidently stems.

Ṙ=
Ds

R+Rσ

[

ζ+1−
√

1+
3
2

Rσ

R

]

. (52)

Eq. (52) can be also written in the form similar to Eq. (44), to
mark out three co-factors. The character of bubble growth rate is
presented graphically in Fig. 1.

Differentiating Eq. (52) onRwe obtain

dṘ
dR

=
Ds

(R+Rσ)2





3
4

Rσ(R+Rσ)
√

1+ 3
2

Rσ
R R2

−
(

ζ+1−
√

1+
3
2

Rσ

R

)



 .

(53)
It can be easily seen, that, as it is for Henry’s law, here bub-

ble radius growth rate as a function of variableR also has the
only maximum. Denote the corresponding radius asRm, we can
obtain its value from Eq. (47). Using Eq. (53) we rewrite this
equation as

RRσ +R2
σ +

4
3

R2
(

1+
3
2

Rσ

R

)

− 4
3

R2

√

1+
3
2

Rσ

R
(ζ+1) = 0.

(54)
Assuming that the sought quantityRm is considerably less

than Rσ, we will use for R in Eq. (54) the strong inequality
3Rσ/2R≫ 1. Below we will need this inequality to be even
more stronger

Rσ/3R≫ 1. (55)

It will allow us to omit the second addend in the brackets and the
second addend in the square root in Eq. (54). So this equation
can be rewritten as:

√

8
3

√

Rσ(ζ+1)R3/2−3RRσ −R2
σ = 0. (56)

Using Eq. (55) we can also omit the second addend in Eq. (56)
in comparison with the third one. After such a simplificationEq.
(56) becomes solvable; and forRm we have:

Rm ≃
3
√

3
2

Rσ

(ζ+1)2/3
. (57)

Substituting Eq. (57) in the second addend in Eq. (56) we can
find a first order correction toRm in Eq. (57). We have

Rm ≃
3
√

3
2

Rσ

(ζ+1)2/3

(

1+
3 3
√

3
2

1

(ζ+1)2/3

)2/3

. (58)

Numerical solution of Eq. (54) forζ = 30 gives for inaccuracy
of approximate solution Eq. (58) the value less than 2%, and this
value evidently decreases with the increase ofζ.

As soon as we explained the behavior of the valueṘ and
found the value ofRm we can use the ideas proposed for Henry’s
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law to determine the stages of bubble growth. On each stage the
character of bubble growth is different from any other. The three
consecutive stages of growth are still defined by Eqs. (45), (50)
and (51).

In the next two sections we will obtain the time dependence
of bubble radiusR for each stage and duration of each stage.
Also we will obtain conditions of steadiness of bubble growth
for each stage.

TIME DEPENDENCE OF BUBBLE RADIUS
Let us now solve the differential equations (21) and (22) for

the time dependence of the bubble radius with the initial condi-
tion (40) of homogeneous nucleation of the bubble. As it was
in the previous section it is more convenient here to consider
Henry’s and Sievert’s laws separately.

Henry’s law
At first we will rewrite Eq. (21) in the form which is appro-

priate for integration:

RṘ+(Rσ +Rc)Ṙ+(Rσ +Rc)Rc
Ṙ/Rc

R/Rc−1
= Dsζ. (59)

Integrating Eq. (59), we obtain

R2

2
+(Rσ +Rc)R+(Rσ +Rc)Rc ln

(

R
Rc

−1

)

= Dsζ(t + τ) ,

(60)
whereτ is the constant which has time dimensionality and which
is defined by the initial value of radius at timet = 0. Using initial
condition (40), from Eq. (60) we find

τ =
2Rc(Rσ +2Rc)

Dsζ
. (61)

Excluding timeτ from Eq. (60) by means of Eq. (61), we obtain

R2−4R2
c

2
+(Rσ +Rc)(Rσ−2Rc)+(Rσ +Rc)Rc ln

(

R
Rc

−1

)

= Dsζt.

(62)
Validity of the general Eq. (62), which strictly takes into ac-

count Laplace pressure influence on the bubble growth process,
is limited only by the condition of applicability of steady ap-
proximation (10) for the diffusion flux. Equation (62) does not
imply the smallness of quantityRc/Rσ which follows from Eqs.
(34) and (42). Eq. (62) complies with the results obtained inpa-
pers [8,10] for the particular case of steady growth of a bubble.

Now let us consider the third stage of bubble growth, when
R≥ Rσ. First of all, let us note that at the end of the first stage,
when the bubble radiusR approaches the value(RcRσ)1/2, and
with even more assurance on the second and the third stages,
one can neglect the logarithmic addend in Eq. (62). Moreover,
since during the third stage the main contribution in the l. h. s.
of Eq. (62) gradually tends to the first addend, equal toR2/2;
and the contribution of the second addend (influence of Laplace
pressure) decreases, neglect of logarithmic contributionbecomes
fairly justified. As a result, equation Eq. (62) conformablyto the
third stage of bubble growth can be written in the form of

R2

2
+RσR= Dsζt. (63)

Sievert’s law
Unlike the case of Henry’s law (Eq. (21)) solution of Eq.

(22) in general case is too cumbersome and, as we will ensure
in the current section, when inequality (43) is fulfilled, iseven
not necessary. Here we present solutions of this equation for two
particular cases:

R≪ Rσ (64)

– the first and the second stages and

R≫ Rc (65)

– the second and the third stages. When strong inequality (43)
is fulfilled, these two cases cover the whole rangeR≥ 2Rc of
regular growth of the bubble radius, and that is the reason why
general solution of Eq. (22) is not necessary for the system under
consideration.

Let us begin with the case when inequality (64) is fulfilled.
In this case we can omit 1 in comparison withRσ/R in the l. h.
s. of Eq. (22) and we can also omit 1 in comparison with the
fraction 3Rσ/2R in the r. h. s. of this equation. Thus we have

Ṙ=
Ds
Rσ

[

ζ+1−
√

3
2

Rσ

R

]

. (66)

Separating variables and exploiting Eq. (35) forRσ under the
square root, we can rewrite Eq. (66) in the form which allows its
integration:

dR

1−
√

Rc/R
=

Ds(ζ+1)

Rσ
dt. (67)

8



Integrating Eq. (67) with initial condition (40), we finallyhave

R−2Rc +Rc ln

(

R
Rc

−1

)

+2
√

Rc

(√
R−

√

2Rc

)

+Rc ln

(√
2+1√
2−1

√
R−√

Rc√
R+

√
Rc

)

=
Ds
Rσ

(ζ+1)t.

(68)

This formula is different from Eq. (62), which means that, when
inequality (64) is fulfilled, there is a significant difference in the
character of growth between Sievert’s law and Henry’s law.

Now let us proceed to the other case. At first, using Eq. (35)
we can rewrite Eq. (22) equivalently in the form of

Ṙ[R+Rσ]

1−
√

1
(ζ+1)2 + Rc

R

= Ds(ζ+1). (69)

This form makes it obvious that, when strong inequality (65)
together with inequality (43) are fulfilled, the whole square root
in the denominator of the l. h. s. of Eq. (69) can be omitted in
comparison with 1. Therefore, we have

Ṙ[R+Rσ] = Ds(ζ+1). (70)

This expression can be easily integrated. But the use of the initial
condition Eq. (40) is not just as a result of the fulfillment of
strong inequality (65). There is arbitrariness in the choice of
the initial condition for integration of Eq. (70), but the most
convenient is to choose a condition at such an ”average” radius
which simultaneously satisfies Eqs. (64) and (65), e. g.

R(t)|t=ta = Ra ≡
√

RcRσ. (71)

Due toRa ≪ Rσ, we can use Eq. (68) to obtain the explicit value
for time ta defined in Eq. (71). Using inequalityRa ≫ Rc, Eq.
(68) gives us

ta ≃
RaRσ

Ds(ζ+1)
. (72)

Now, integrating Eq. (70) with initial condition (71), we have

R2−R2
a

2
+Rσ(R−Ra) = Ds(ζ+1)(t − ta), (73)

or, rewritingRa using Eq. (71) andta using Eq. (72), we have

R2

2
+RσR− RσRc

2
= Ds(ζ+1)t. (74)

R/Rσ

dR2

dt

0

0.2

0.4

0.6

0.8

1

e−2 e−1
1 e2 e3 e4

Figure 2. Growth rate of bubble radius squared dR2/dt (measured in

dimensionless units 2Dsζ) as a function of R. Solid curve corresponds

to Henry’s law, Eq. (44). Dotted curve corresponds to Sievert’s law, Eq.

(52). For both solubility laws P0/Π = 103.

With the increase ofR the contribution of the third addend
in the l. h. s. of Eq. (74) decreases and atR≥ Rσ (on the third
stage) we can already write

R2

2
+RσR= Ds(ζ+1)t. (75)

If we also used in Eq. (75) strong inequality (43), Eq. (75) will
become identical to Eq. (63). It means that, when inequalityR≥
Rσ is fulfilled, any difference in the character of growth between
Sievert’s law and Henry’s law disappears.

When the bubble radius becomes as large as

R≫ Rσ, (76)

Eq. (63) transforms into the well-known Scriven’s [12] self-
similar dependence for the steady-state case

R2 = 2Dsζt, (77)

whendR2/dt = const. This trend of Eq. (63) toward Eq. (77)
was discussed in detail in [15]. This trend is presented graphi-
cally in Fig. 2.

DURATION OF CONCECUTIVE STAGES
Henry’s law

Eq. (62), giving the explicit dependence of bubble radius
on time, allows us, in particular, to find characteristic times cor-
responding to consecutive stages. According to Eqs. (45) and
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(48), at the end of the first stage the bubble radius reaches, the
valueRm = (RcRσ)1/2. Substituting valueR = Rm to Eq. (62)
and considering that, (by virtue of inequalitiesRc ≪ Rm ≪ Rσ),
the main contribution to the l. h. s. of Eq. (62) is made by
the second addend, we obtain the expression for the first stage
durationt1

t1 =
R2

σ
Dsζ

(

Rc

Rσ

)1/2

. (78)

Using Eq. (34), expression (78) can be also presented in the form

t1 =

(

3
2

)1/2 R2
σ

Dsζ3/2
. (79)

As it follows from (79), with the increase of initial supersatura-
tion of the solution, the first stage duration decreases proportion-
ally to 1/ζ3/2.

The second stage of bubble growth starts at the time point
t1 and finishes at the time pointt2 defined by the condition
R|t=t2

= Rσ. Substituting valueR= Rσ to the equation (62) and
considering that, by virtue of inequalityRc ≪ Rσ, the main con-
tribution to the l. h. s. of Eq. (62) is made by the first and the
second addends, we obtain the expression fort2

t2 =
3
2

R2
σ

Dsζ
. (80)

As one can see from this expression,t2 dependence on initial so-
lution supersaturation is defined by multiplier 1/ζ. The duration
of the second stage is much longer than the duration of the first
stage, as from Eqs. (79) and (80) it follows that

t2
t1

=

(

3ζ
2

)1/2

≫ 1. (81)

Now let us consider the third stage of bubble growth, when
R≥ Rσ and t ≥ t2. First of all, let us note that at the end of
the first stage, when the bubble radiusR approaches the value
(RcRσ)1/2, and with even more assurance on the second and the
third stages, one can neglect the logarithmic addend in Eq. (62)
(it was taken into account earlier, when Eqs. (78) and (80) were
obtained).

Due to Eq. (51) the duration of the third stage of bubble
growth is infinite. But it is reasonable to estimate the time from
the beginning of the third stage and to the moment when bubble
radius reaches the valueR0 defined in [11],

R0 ≡ 20×2σ/Π. (82)

It is assumeda priori in [11], that when radius reaches valueR0

the influence of Laplace pressure on the bubble growth is negli-
gible.

As it was found in the previous section, on the third stage
of bubble growth the time dependence of bubble radius is given
by the simple equation – Eq. (63). Let us introduce timet3 as
a duration of bubble growth in the size intervalRσ ≤ R≤ R0.
Using Eqs. (63) and (82) we evidently have

t3 ≃ 480
R2

σ
Dsζ

. (83)

The duration of the third stage is much longer than the dura-
tion of the second stage (and, moreover, the first stage), as from
Eqs. (80) and (83) it follows that

t3
t2

≃ 320. (84)

Eq. (84) and strong inequality (81) allow us to evaluate the
whole duration of bubble growth in the interval of sizes 2Rc ≤
R≤ R0 ast3. In [11] the estimation of this durationt0 was given
by the following equation

t0 ≃
R2

0

2Dsζ
. (85)

Using Eqs. (13) and (82) we havet0 ≃ 450R2
σ

Dsζ ; and therefore

t3− t0
t3

≃ 6%. (86)

Sievert’s law
Using Eq. (69) and (58) we can obtain expressions for du-

ration of the first two stagest1 andt2 for the Sievert’s law anal-
ogous to Eqs. (78) and (80). These expression are too cumber-
some, while the qualitatively the time-scale hierarchy forSiev-
ert’s law is similar to the one for Henry’s law. Therefore we will
not present these expressions here.

As long as on the third stage the dynamic equation of bubble
growth for Henry’s law Eq. (63) and for Sievert’s law Eq. (75)
are exactly the same (we need to accountζ ≫ 1 also), all the
results presented above for the third stage duration are valid for
Sievert’s law also.

STEADY FLUX CONDITIONS
The diffusion flux of molecules toward a growing bubble can

be considered steady when the bubble growth is slow enough in
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comparison with the ”diffusion cloud” growth. To be more exact,
the radius of the bubble has to be much smaller than the radius
of this cloud – the diffusion length. We can express it as

R≪ (DtR)1/2, (87)

wheretR is the characteristic time of the bubble radius change,
tR ≡ R/Ṙ the time in which the bubble radius changes signifi-
cantly. Evidently, Eq. (87) can be rewritten as

(

RṘ/D
)1/2 ≪ 1. (88)

We can make this condition more explicit for Henry’s and Siev-
ert’s laws by means of Eq. (21) and Eq. (22) correspondingly:

(

sζ
R−Rc

R+Rσ

)1/2

≪ 1 (89)

and



s
(ζ+1)−

√

1+ 3
2

Rσ
R

1+ Rσ
R





1/2

≪ 1. (90)

Now exploiting Eqs. (89) and (90) let us obtain the condi-
tions for diffusion flux to be steady on each stage defined above.
We will write these condition as inequalities for the value of sol-
ubility, not for supersaturation. The value of supersaturation is
already fixed by Eqs. (42) and (43).

Obviously the larger the bubble is the more strict condition
for steadiness is (see Fig. 3). The general condition for bubble
growth to be steady at any time is the condition atR≫ Rσ. From
both Eqs. (89) and (90) we have

s1/2 ≪
(

1
ζ

)1/2

. (91)

This condition is sufficient for steadiness on the third stage for
both Henry’s and Sievert’s laws.

For bubble growth to be steady during the whole second
stage it is sufficient to be steady atR= Rσ. This condition, using
Eq. (42), transforms Eq. (89)

s1/2 ≪
(

2
ζ

)1/2

. (92)

Exactly the same result will be for Sievert’s law (see Eq. (43)
and Eq. (90) atR= Rσ).

For bubble growth to be steady during the whole first stage
it is sufficient to be steady atR= Rm. It is to be reminded that the
quantityRm has different values for Henry’s and Sievert’s laws
(see Eq. (49) and Eq. (57)). For Henry’s law, using Eq. (35) this
condition leads to

s1/2 ≪
(

2
3ζ

)1/4

. (93)

And for Sievert’s law to

s1/2 ≪
(

2
3ζ

)1/6

. (94)

Obtaining Eq. (94) we used not only Eq. (43), but even more
strict conditionζ2/3 ≫ 1 3

Finally, let us also write the condition of steadiness at the
very beginning of the regular growth of the bubble, exploiting
Eqs. (89) and (90) withR= 2Rc. For Henry’s and Sievert’s laws
we have correspondingly

s1/2 ≪
(

2
3

)1/2

(95)

and4

s1/2 ≪ ζ1/2. (96)

Let us mention the following interesting observation. Since
for R≫ Rσ the bubble dynamics is exactly the same for both
Henry’s and Sievert’s solubility laws, the condition of steady
growth for R≫ Rσ is also the same (see Eq. (91) above). For
the case of homogeneous nucleation, when the pressure drop
P0/Π ∼ 103, the steady condition atR≫ Rσ as a rule is violated
in cases of both Henry’s and Sievert’s laws. For Henry’s law,
whens∼ 10−2, it is violated due to high supersaturation values
ζ ∼ 103. For Sievert’s law, when corresponding supersaturation
values are significantly lessζ ∼ 30÷40, values of gas solubility
are significantly higher than for Henry’s law (see next section),
and that is the reason of the violation of the steady condition.

3This condition is still fulfilled thanζ ∼ 30÷40.

4While deriving Eq. (96), the numerical coefficient
(

3
(

1−1/
√

2
))1/2

in its

l. h. s. was replaced with 1 for shortness.
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)
1
2

0

0.2

0.4

0.6

0.8

1

e−1
1

Figure 3. Parameter characterizing the steadiness of bubble growth as

a function of bubble radius R, l. h. s. of Eq. (88). Solid curves – Henry’s

law, s= 10−2 and s= 10−3. Dotted curves – Sievert’s law, s= 1 and

s= 10−1. For both solubility laws P0/Π = 103. For each solubility law

the upper curve corresponds to higher values of solubility.

While for Henry’s law solubilitys is a tabular value (see Eq.
(37)), for Sievert’s law it can be adjusted via settlement ofthe
final pressureΠ value5.

In order to satisfy the condition (91) of steady growth the
value of gas solubilitys has to be decreased. From Eq. (32) for
the supersaturation we have

ζ =

√

P0

Π
−1. (97)

Than, using Eqs. (39), (97), let us rewrite productsζ in the fol-
lowing form

sζ = K
kT√

Π

(

√

P0

Π
−1

)

. (98)

Eq. (98) shows us that in order to weaken limitation (91) one
needs to increase the final pressureΠ, leaving the ratioP0/Π
constant.

BUBBLE GROWTH IN VOLCANIC SYSTEMS
This section contains the analysis of the steady growth con-

dition obtained in the previous section for bubble nucleation in
volcanic systems. Previously, e. g. in papers [6] and [3] the

5It is evident that condition (91) can be satisfied at the givensolubility value
when one decreases the solution supersaturationζ (the case of heterogeneous
nucleation).

study of such systems exploited steady approximation without
the analysis on its applicability.

For our evaluations we will use parameters from [3] for the
case of homogeneous nucleation of water vapor bubbles in a
magmatic melt. We have

P0 = 100 MPa Π = 0,1 MPa

T = 1150 K w = 3% ρm = 2300 kg/m3.
(99)

Herew is gas mass fraction of the dissolved gas (water vapor),
andρm is magma density.

Let us express the values ofs andζ using data given. From
Eq. (97), in accordance with (99), we haveζ≃ 31. Then we need
to calculaten0 and substitute it into Eq. (38) to obtain the value
of solubility. As long as we are given mass density of magma
and mass fraction of gas, it is convenient to write

n0 = ρ0
NA

µ
, (100)

where ρ0 is mass density of the dissolved gas,NA = 6 ×
1023 mol−1 is the Avogadro constant andµ= 1.8×10−3 kg/mol
is the molar mass of the dissolved gas (water). Finally, we need
to express the mass density of the dissolved gas. Evidently,we
have

ρ0 = wρm, (101)

and, therefore,

s= wρm
NAkT

µ
√

P0Π
. (102)

Using data (99) in Eq. (102), we haves≃ 12.
Now we can see that for volcanic systems, where the pres-

sure drop is of the order of 103 and solubility is more than 1,
both conditions (91) and (92) are violated, and steady approxi-
mation is not valid for radii of the order ofRσ. Even in the very
beginning of bubble regular growth, whenR = 2Rc, the steady
condition (96) is fulfilled only at its breaking point: the values
of ζ1/2 exceed the value ofs1/2, but these values are of the same
order of magnitude.

CONCLUSION
In the presented paper we obtained the equations for the bub-

ble growth dynamics in the gas solution with Henry’s and Siev-
ert’s solubility laws. We solved these equations analytically for
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case of bubble growth in strongly supersaturated solution.The
equation for the Sievert’s law was solved also for the case of
bubble dissolution in the pure solvent.

We showed that, irrespective of the to gas solubility law,
three characteristic stages could be marked out in the growth
dynamics. During the first stage the bubble radius is growing
with an increasing rate. On the second stage the growth rate
decreases. The third stage, when the growth rate continues to
decrease, begins when the Laplace pressure inside the bubble
becomes comparable with the external pressure of the solution.
We demonstrated that during the first two stages the time depen-
dence of the bubble radius is different for the cases of Henry’s
and Sievert’s laws, while during the third stage this distinction is
no longer observed.

For both Henry’s and Sievert’s laws we obtained intervals
within which the bubble radius changes on each stage, as wellas
durations of consecutive stages.

While obtaining the dynamics equation we assumed the dif-
fusion flux to be steady. We obtained conditions when this steady
approximation is applicable. We showed that usually, as thera-
dius of the bubble increases, the steady regime of bubble growth
gradually gives way to the nonsteady one.

Application of the obtained conditions for the volcanic sys-
tem consisting of water vapor dissolved in the silicate melt
showed that the process in such system as a rule cannot be con-
sidered as steady.
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NOMENCLATURE
D Diffusion coefficient of gas molecules in the solvent,m2s−1

jD Diffusion flux density of gas molecules to the bubble,
m−2s−1

K Proportionality coefficient in Sievert’s law,m−3Pa−1/2

n0 Initial concentration of dissolved gas (number density of
molecules),m−3

n∞ Equilibrium concentration of dissolved gas at the flat sur-
face of phase separation,m−3

nR Equilibrium concentration of dissolved gas at the surface of
bubble with radiusR, m−3

nRc Equilibrium concentration of dissolved gas at the surface
of critical bubble,m−3

ng Gas concentration at pressureΠ, m−3

N Number of molecules in the bubble
NA The Avogadro constant, 6×1023 mol−1

P0 Initial pressure (before the drop),Pa
PR Pressure in the bubble with radiusR, Pa
PRc Pressure in the critical bubble,Pa
Pe Peclet number
R Radius of the bubble,m
R0 Radius of the bubble, when Laplace pressure in it is negli-

gible,m
Ra ”Average” radius of the bubble in the interval 2Rc ≪ Ra ≪

Rσ, m
Rc Critical bubble radius,m
Ri Initial value of bubble radius,m
Rm Radius of a bubble corresponding to the maximum of the

growth rate,m
s Gas solubility
t Time,s
t0 Time when the bubble radius reaches the valueR0, when

Laplace pressure in it is negligible,s
t1 Duration of the first stage of bubble growth,s
t2 Duration of the second stage of bubble growth,s
t3 Duration of the third stage of bubble growth,s
ta ”Average” time, corresponding to the sizeRa, s
td Time of bubble dissolution in pure solvent,s
T Temperature of the system,K
w Mass fraction of dissolved gas
x Integration variable
η Dynamic viscosity of liquid solvent,Pa s
µ Molar mass of dissolved gas,kg mol−1

Π Pressure after the drop,Pa
ρ0 Mass density of dissolved,kg m−3

ρm Magma mass density,kg m−3

σ Surface tension of the solvent,N m−1

ζ Solution supersaturation
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Appendix A: Effect of solvent viscosity on the bubble
growth

In the current paper we neglected the solvent viscosity. Its
influence on bubble dynamics can be estimated using Rayleigh-
Plesset equation (see e. g. [16]). To take the solvent viscosity
into account one needs to replace Eq. (7) with the following
equality:

PR = Π+
2σ
R

+4η
Ṙ
R

, (103)

whereη is the dynamic viscosity of the solvent. The inertial
terms in Rayleigh-Plesset equation are negligible for any reason-
able bubble growth rate.

To neglect the viscous term in Eq. (103) (the third addend)
in comparison with the surface tension term (the second addend)
the following strong inequality has to be fulfilled:

η ≪ σ
2Ṙ

. (104)

This inequality, evidently, is equivalent to inequalityPe≫ 1,
wherePe is Peclet number.

The higher the bubble growth ratėR is, the stronger the
inequality (104) is. The strongest condition takes place when
R= Rm. Using Eqs. (49) and (57) in Eqs. (44) and (52) corre-
spondingly, for both Henry’s and Sievert’s laws we have

Ṙ≤ Ṙ
∣

∣

R=Rm
≃ Dsζ

Rσ
. (105)

Therefore, using Eq. (13), we can rewrite strong inequality(104)
as

η ≪ σ2

DsζΠ
, (106)

where multiplier 2/3 in the r. h. s. is omitted for shortness.
Let us estimate the value in the r. h. s. of inequality (106).

Typical values of surface tension both for water and for volcanic
systems [6] areσ ∼ 10−1 N m−1; both for Henry’s and Siev-
ert’s lawssζ ∼ 10; diffusion coefficientD ∼ 10−11 m2 s−1 [3];
pressureΠ ∼ 105 Pa. Substituting these values, we have:

η ≪ 103 Pa s. (107)

It should be noted that ”common” liquids at normal conditions
always satisfy this condition: for water we haveη ∼ 10−3 Pa s
and even for glycerolη ∼ 1 Pa s[17].

For volcanic systems the values of viscosity that satisfy
strong inequality (107) are quite typical whenSiO2 content is
not too high (basalt, andesite and dactite melts) [1]. However,
for rhyolite melts (∼ 70% SiO2) viscosity can reach the values
of 107 Pa s[6]; and, therefore, effect of solvent viscosity has to
be taken into account.

We do not discuss here the oscillating settlement of the me-
chanical equilibrium between the bubble and the solution: as it
was shown in [18] this settlement occurs much faster than the
settlement of chemical equilibrium, unless the liquid viscosity is
extremely low.
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Appendix B: Dissolution of the gas bubble in a pure
solvent: Sievert’s solubility law

Eq. (23) allows us to obtain the radius-time relation for the
bubble of arbitrary initial sizeR|t=0 = Ri which is put in the pure
solvent and also the time of its dissolutiontd, R|t=td

= 0.
Separating variables, we can rewrite Eq. (23) as

1+ Rσ
R

√

1+ 3
2

Rσ
R

RdR= −Dsdt, (108)

or equivalently as





√

1+
3
2

Rσ

R
− 1

2

Rσ
R

√

1+ 3
2

Rσ
R



RdR= −Dsdt. (109)

Using the variablex ≡
√

1+ 3
2

Rσ
R for integrating in Eq. (109)

instead ofR we have

3
2

R2
σ

[

3
x2

(x2−1)3 − 1
(x2−1)2

]

dx= Dsdt. (110)

Eq. (110) can be easily integrated and therefore we obtain

[

1
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R

√

R2 +
3
2

RσR− 1
8

Rσ

√
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3
2

RσR
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32

R2
σ ln

(

4
3

R
Rσ

− 4
3

1
Rσ

√
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3
2

RσR+1

)]∣

∣

∣

∣

∣

Ri

R

= Dst.

(111)
Eq. (111) gives us an explicit relation between the bubble radius
Rand timet.

Let us find the timetd of total dissolution (R→ 0) from ar-
bitrary initial radiusRi

td =
1

Ds

[

1
2

Ri

√

R2
i +

3
2

RσRi −
1
8

Rσ

√

R2
i +

3
2

RσRi
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32

R2
σ ln

(

4
3

Ri

Rσ
− 4

3
1

Rσ
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R2
i +

3
2

RσRi +1

)]

.

(112)

The latter expression can be simplified for the two particular
cases and short analytical expressions for timetd can be obtained.
The first case isRi ≫ Rσ:

td =
R2

i

2Ds
. (113)

And the second isRi ≪ Rσ:

td =

(

2
3

)3/2 R3/2
i R1/2

σ
Ds

. (114)

Let us also obtain the expression for dissolution time fromRi =
Rσ

td = 0.435
R2

σ
Ds

. (115)
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