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ABSTRACT

Theoretical description of diffusion growth of a gas bubble
after its nucleation in supersaturated liquid solutionrissgnted.
We study the influence of Laplace pressure on the bubble growt
We consider two different solubility laws: Henry’s law, whi
is fulfilled for the systems where no gas molecules dissiotiat
takes place and Sievert's law, which is fulfilled for the syss
where gas molecules completely dissociate in the solveat in
two parts. We show that the difference between Henry’s and
Sievert’s laws for chemical equilibrium conditions cauthesdif-
ference in bubble growth dynamics. Assuming that diffusiox
of dissolved gas molecules to the bubble is steady we obifin d
ferential equations on bubble radius for both solubilityda For

the case of homogeneous nucleation of a bubble, which takes

place at a significant pressure drop bubble dynamics eaqusatio
for Henry’s and Sievert's laws are solved analytically. Both
solubility laws three characteristic stages of bubble ghoare
marked out. Intervals of bubble size change and time inkerva
of these stages are found. We also obtain conditions ofsiiffu
flux steadiness corresponding to consecutive stages. Tile fu
ment of these conditions is discussed for the case of numheait
water vapor bubbles in magmatic melts. For Sievert’s lavatine
alytical treatment of the problem of bubble dissolution ipuse
solvent is also presented.

*Address all correspondence to this author.

INTRODUCTION

This paper presents a theoretical description of diffusion
growth of a gas bubble in liquid solution as a result of a coeisi
able pressure drop (in the order offtimes). These conditions
of bubble growth process are observed in magmatic meltagluri
volcanic eruptions [1, 2]. After such a significant pressinep
the solution becomes strongly supersaturated; and horaogen
(fluctuational) nucleation of gas bubbles becomes possibie
the growth dynamics of such bubbles that is the subject of the
present paper. It has to be noted that the growth regusdfia
solitary bubble are crucial for the description of the whdleet-
ics of phase transition in supersaturated solution [3-5].

While describing gas bubble growth in supersaturated solu
tion two rough approximations are traditionally made [3-7]
1. The flux of the dissolved gas towards the bubble is assume
to be steady.
2. The consideration is limited to bubbles with the raditet ik
large enough to neglect the Laplace pressure in comparighn w
the external pressure of the solution.

In the present paper, while exploiting the steady approxi-
mation, we take into account the Laplace pressure in thelbubb
considering the bubble from the very moment of its nucleatio
Accounting for the time-dependent Laplace pressure in tite b
ble makes both gas density in the bubble and the equilibriur
concentration of the dissolved gas at the surface of thelbubb
time-dependent as well.



Gas bubble growth in a solution taking into account the
Laplace pressure was considered as early as in 1950 in gw-cla
cal paper by Epstein and Plesset [8], where the authorsnalatai
the equation for the bubble radius as a function of time. teor
to relate the equilibrium concentration of the dissolved gad
the solution pressure, [8] presupposed the fulfillment afifis
law: i. e. the proportional dependence between these twesal
Indeed, Henry's law is fulfilled for the solution €O, in mag-
matic melt [7]; however, it is not valid for the solution 6O
vapor [3, 6]. In this case, which is crucial for practicalseas,
Sievert’s law is observed: the equilibrium concentratidrihe
dissolved gas is proportional to the square root of the mwiut
pressure [9}.

We analyze the bubble growth dynamics in both cases: for
Henry's and Sievert's laws. For Sievert's law we obtain thea
tion for the bubble radius as a function of time analogousjp [
which has not been obtained previously.

Our analysis shows that, irrespective of the law applied to
gas solubility, three characteristic stages can be markedho
the growth dynamics. During the first stage the bubble raidius
growing with an increasing rate. On the second stage thetgrow
rate decreases. The third stage, when the growth rate cestin
to decrease, begins when the Laplace pressure inside théebub
becomes comparable with the external pressure of the soluti
We demonstrate that during the first two stages the time depen
dence of the bubble radius is different for the cases of Henry
and Sievert’s laws, while during the third stage this digion is
no longer observed.

For both Henry’'s and Sievert's laws we obtain intervals

EQUILIBRIUM CONCENTRATION OF DISSOLVED GAS

Let us consider a gas solution in liquid which previously
was in equilibrium state at temperatureand pressur®. The
concentration of the dissolved gas in the solution unden son-
ditions will be denoted asg.

Then we instantly relieve the external pressure to vAlue
such way that solution becomes supersaturated. The tetupera
and volume of the solution remain the same, thus valustill
serves for the dissolved gas concentration.

It is more convenient to express the state of the solution ir
terms of dimensionless variables: supersaturatiand gas sol-
ubility s

~ Np— N
Z: No ) (1)
kT

wheren,, is the equilibrium concentration of dissolved gkss
the Boltzmann’s constant.

When some time passes after the pressure drop, a gas bu
ble nucleates and begins growing regularly. Following [& w
assume that the bubble is in mechanical equilibrium withsthe
lution, and its dynamics is governed only by diffusion prese
This assumption will be discussed in Appendix A. The time of
the bubble nucleation is consideredtas 0. The radius of the

within which the bubble radius changes on each stage, as well pupble will be denoted &R. We consider the situation when the

as time limits and conditions when the steady approximaton
applicable. We show that, as the radius of the bubble inesgas
the steady condition becomes stricter; and, consequeatly
rule, the steady regime of a multistage bubble growth griddua
gives way to the nonsteady one.

We obtain analytical expression for the time when Laplace
pressure influences on bubble growth vanishes and thesafbre
stantiate the estimation of this time made in [11]. Aftesttine
passed the bubble growth reaches a self-similar regime [12]

We also analyze whether the steady approximation is appli-

solvent is in its stable liquid state; therefore, we assumethe
bubble consists of gas only, but not of the solvent vapor. gase
in the bubble is considered to be ideal.

When the bubble is studied after some titpsince its nu-
cleation, its radius complies with the strong inequality

R> 20/, 3)

whereg is the surface tension of the pure solvent (it is true while

cable to the case of gas bubbles in magma described by Navonthe solution is considered as diluted). Eqg. (3) allows ustglect

[6] and Chernov et al. [3] for large radius of a bubble (netjfer
Laplace pressure).

Besides that, we present the analytical description of leubb
dissolution in the pure solvent for the Sievert's solupiliaw,
which was not present before in literature.

1sometimes both cases are referred to as "Henry’s law”, butdrptesent
paper, in order to avoid confusion, we will use the term "8i¢'g law” for the
case with a square root, following e. g. [10].

the influence of Laplace pressure on the bubble growth. There
fore, we can write the following equations for the pressaréhe
bubblePr and for the equilibrium solution concentration near the
surface of the bubbleg:

PR="1, )

()

NR = Ne.



The subscriptioro denotes that the equilibrium concentration
N. IS related with the equilibrium near the flat surface of phase
separationiR — ). From Eq. (4) it follows that the gas concen-
tration in the bubbley is constant. Using the ideal gas law we
have

(6)

When Egs. (3), (4), (5) are fulfilled and, therefore, Laplace
pressure is negligible, the bubble dynamics is evidentiectse
of steady-state diffusion and can be even described aocaillyti
for the non-steady case [11,12].

From the moment of bubble nucleation and till Eq. (3) be-
comes valid, Laplace pressure influences bubble growth.s Thu
both quantitie$r andnr become radius-dependent (and, there-
fore, time-dependent). Fé&&k now we have

20
Pr=MN+—.

- ™

In order to write the equation faz we need to know the sol-
ubility law. For the simplest case of Henry’s law the equiliin
concentration of dissolved gas is proportional to the cpoad-
ing pressure

R _ PR

Nw I~ ®)

However, Henry's law is fulfilled only in such systems where
there is no molecules dissociation during gas dissolufiomn-
other important case when the gas molecules completelyaiss
ate in the solvent into two parts the Henry’s law is replacét w
so-called Sievert’s law (see e. g. [13]), and, therefore, BYis
replaced with the following one:

I’]R_ %
Ne VI ©)

Sievert's law is fulfilled for water vapor dissolved in a sdte
melt [9]. Such solutions are important both for glass praiduc
[10] and for volcanic systems [3, 6].

The replacement of Eq. (8) with Eq. (9) means that the
boundary condition for the gas diffusion problem will be-dif
ferent for Henry’s and Sievert's laws. The change of boupdar
condition, as we will see further, leads to the change of mbb
dynamics.

BUBBLE DYNAMICS EQUATION

After the nucleation of the bubble, when its growth can be
considered regular (i. e. the bubble can not be dissolved b
fluctuations), its growth is governed by the diffusion fluxgafs
molecules into it. In this paper we will study the case when th
diffusion flux can be assumed as steady. The conditions whe
such approximation is valid will be discussed further.

Taking into account the equality of gas concentration at the
bubble surface to the equilibrium concentratigrand the equal-
ity of gas concentration far from the bubble to the initiaheo
centrationng, we can write a simple expression for the steady
diffusion flux densityjp

. nop—n
ib=D oR R

(10)

HereD is the diffusion coefficient of gas molecules in the pure
solvent (we assume that the solution is diluted).

Now let us write the expression for the number of gas
moleculesN in the bubble. Exploiting the ideal gas law and us-
ing Eq. (7) we have

an 20
N_3kTR3{|'|+R . (11)
Differentiating Eq. (11), using denotation (6), we obtain
dN dR Ry
e _4nngR2a [1+R}, (12)
where
40
Ro=3p (13)

is the characteristic size of the bubble.
Material balance between the dissolved gas and the gas i
the growing bubble gives us the following equality

dN

i = 4R jp.

(14)

Substituting expression for diffusion flux density Eq. (HX
the rate of change of the number of molecules Eq. (12) intc
material balance equation (14) we have

dR Ry _ No — NR
ngdt{1+R]—DR . (15)



Or, exploiting Egs. (2) and (6), we equivalently have

Rs

No —NR
R .

RR{1+ }::Ds (16)
Using Eqgs. (1), (7) and, correspondingly for Henry's law
and Sievert's law, (8) and (9), the fraction inther. h. s. qf E

(16) can be expressed as

Np — NR 20
={——= 17
Neo ¢ NR (17)
and
MR 1oy j142 (18)
No nrR

After exploiting in Egs. (17) or (18) the definition &; (13), we
have, correspondingly,

Nop — NR 3Rg
. 2R 9)
and
No — NR . B §7R0'
e ={+1 “1+2R' (20)

Egs. (19) and (20) allows us to rewrite the equation of bubble
dynamics (16) in the final form, namely

214 Rl 3Ro
w0l 2%] @
for Henry’s solubility law; and

: Ro| 3Rs
RR[1+R] =Ds|{+1- 1+§ﬁ (22)

for Sievert's solubility law.

While Eq. (21) was obtained as early as in 1950 in paper by
Epstein and Plesset [8], Eq. (22) was not obtained prewotrsl
paper by Cable and Frade it was presented only a special tase o
Eq. (22), wherf = —1:

Rs

_ /1, 3R
R:| = —Ds 1+§E

RR{14- (23)

(Eq. (34) in [10]). Such value of supersaturation corresisco
the dissolution of gas bubble in the pure solvent. And even fo
this special case of Eq. (22) analytical solution was ncdioletd.
We present the analytical solution of Eq. (23) in Appendix B.

CRITICAL BUBBLE AND INITIAL CONDITION FOR THE
BUBBLE GROWTH

The obtained equations for the bubble growth dynamics (21
and (22) can be applied to the cases of both homogeneous al
heterogeneous nucleation. Below we will consider only the h
mogeneous nucleation case.

Homogeneous nucleation of a gas bubble in a supersatur:
tion solution means fluctuational mechanism of its appezran
and needs a significant pressure drop (in the order dfifes).

It is these conditions of bubble nucleation that take placeag-
matic melts during volcanic eruptions [3]. Since we decited
describe only regular growth of a bubble, we need to exclhde t
very process of nucleation from our examination and comside
bubble only when it is already supercritical.

Under the notion of critical bubble we understand, as usu-
ally [4, 14], such a bubble which radil®; corresponds to the
extremum of work of bubble formation. Critical bubble is iem
chanical equilibrium with solution at the initial pressi®gand
in chemical equilibrium with solution with concentratiog

Pr. = P, (24)

NR, = No. (25)

These two conditions together with the solubility law unagnib

ously define the value d®..
Condition (24), using Eq. (7), evidently gives us

20
R

(26)
and condition (25) allows us to connect valgwith the super-
saturation.

Substituting Egs. (24) and (25) in Eqg. (8) (Henry’s law) and
Eq. (9) (Sievert's law) we have correspondingly

nn P
2-2 27
Neo M 27)
and
No Po
22 28
Noo I (28)



For Henry’s law we have evidently from Eq. (27) using Eq. (1)  sis a tabular value defined only by the initial state of the otu
(before the pressure drop).
Po=M(C+1). (29) Since we consider Sievert’s law, we have (see (§2))1 =
+/Po/M; thus instead of Eq. (37), we obtain

And, substituting Eq. (29) in Eq. (26), we have

nokT
s= . (38)
20 VPl
Here it is convenient to introduce constdhias the coefficient
the well-known expression for the radius of a critical bub(al. g. of proportionality in Sievert's lawK = no/+/Rp. It allows us to
[4,14)). rewrite Eq. (38) in the following form:
For Sievert’s law, when Eqg. (27) is replaced by Eq. (28) we
have KT
s=K—. 39
Vi (39)
2
No
Po=nN{(—) , (31) . . , T
Neo Eq. (39) shows us that in the case of Sievert's law the satybil
values depends on the final state of the solution. In the current
or, using Eq. (1), paper a solubility value for Sievert's law is understood as g
solubility at the final pressur@ — after the pressure drop.
Po =+ 1)2. 32) To deal with the dynamics equations (21) and (22) one need

to provide it with a reasonable initial condition, i. e. tcocise the
value of constan®;, initial radius of the bubble, in the following

Finally, substituting Eq. (32) in Eq. (26) for the criticalttble equality

radius, we have

20 R(t)i=o = R:. (40)

AR DI 3

In papers [8, 10] there was no special meaning assigned to th
Using Eqg. (13) and Eq. (30) or Eq. (33) correspondingly we Value ofR: the reason of appearance of the bubble was totally

can write the relations betwed andR; for both Henry’s and excluded from discussion. Here we assume that the bubble nt
Sievert's laws cleated fluctuationally, i. e. crossed the barrier corragpu to

radiusR;. It means thaR, has to be not less thar., but ev-
) idently we cannot use the radius of a critical bubBleas the
Ro = éch, (34) initial value for the radius.
A bubble that nucleates fluctuationally in the solution is ca
pable of regular growth if it passed and, moreover, moved/awa
from the near-critical region where fluctuations are stilbsg

Ry = % [(C+ 1)2— 1R (35) enough. Thus we choose, following [15,= 2R, i. e.
which will be exploited later. R(t)[t—0 = 2R (41)
Here it is important to make a remark considering quantity
s—gas solubility. Egs. (1) and (2) give us Such value guarantees the absence of fluctuations and, al we w
see further, provides us with convenient expressions.
o nokT 1 (36) The necessary condition for the fluctuational nucleatioa of

bubble is a high pressure droy( ~ 10% and, consequently,
high supersaturatiofi~ 10° for Henry’s law and ~ 3040 for

If Henry’s law is fulfilled, we have + 1 = P/ and, therefore, Sievert’s law. Further we will use the following strong inedj-
ties for the supersaturation correspondingly:

N +1

. nokT
S= TO, (37) Z > 10, (42)



(> 1 (43) is natural to consider the growth in the following intervabzes

THREE STAGES OF BUBBLE GROWTH 2Re<R<Rm (45)
Before we find the explicit solution of equations (21) and
(22), describing the size growth of a far supercritical Hekds as a first stage of bubble evolution, where the determiniopfa

a depen_dence on time from the moment of its nucleation. Let g the increase of the driving force of the growth. At thisggta
us consider the change of the character of bubble growth pro- pypple growth goes with the increasing in time rate, reagh
cess with the increase of its size. This will let us mark oet th  maximum atR,.

representative stages of growth and to determine correappn In order to obtainRy we will consider the rate of bubble

characteristic bubble sizes. Duration of the consecut®ges  growth as a function of its radius and differentiate bottpaf
and the character of bubble radius time dependence on eagh st £q. (44) with respect t&:

will be considered in the next sectién.
It will be more convenient to consider both cases of solubil-

ity laws separately. drR DL Re(Re+Rg) — (R— Rc)z_ (46)
dR R2(R+Rg)?
Henry’s law
Let us rewrite Eq. (21) in the equivalent form which willbe  The quantityRy, is defined by the extremal condition
more appropriate for its analysis:
drR
: R\ 1 1 — =0 (47)
R=D|1-=|=|-—=—— 44 ’
(o Dieke) @
where we took into account Egs. (13) and (30). which using Eq. (46) leads to the following result

Each of the three co-factors dependentroemphasized in
the right hand side of Eq. (44) describes its physicallyedéht 12
contribution to the dynamics of the supercritical bubblevgh Rn=Rc+ (R§+ RcRo) . (48)
process. Co-factor 4 R;/R, increasing withR, corresponds to
the fast (the scale of change Bfis R;) increase of the driving
force of the process (the valug — ng) with the growth ofR.
Co-factor ¥R, decreasing with the growth &, describes, as it
is seen from Eq. (10), the contribution related to the dexrea
of the gradient of solution concentration near the bubbléase, Rm ~ (RCRG)l/Z. (49)
which decreases the bubble growth rate with the growtR.of
Finally, co-factor ¥(1+ Rs/R), which increases with the growth )
of R, takes into account the counteraction of Laplace pressure The second_st_age o_f the process will be when the bubbl
to the bubble growth, i. e. the fact that the bubble growth is 9rowth occurs within the interval of sizes
facilitated by the reduction of Laplace pressure with thengh
of R, while other factors are equal (the scale of its chand®)s Rn<R<Ry. (50)
Notwithstanding the mentioned reduction of counteractibe
resulting contribution of the last two factors always letalthe ) ) 12 o )
deceleration of growth with the increase of bubble size. During all this stage, a8n =~ (ReRo)™/“ > Re, itis already valid

From Egs. (34) and (42) it can be seen tRat> Re. Using thatR > R, thus the driving forceng — ng remains practically
this inequality, equation (44) and boundary condition (442 constant. As a result, bubble groyvth decelerates, althoagh
have that the growth rate of the bubble radius in its deperelen it was noted abO\{e, the counteraction of Laplace pressuteeto
from this radius has to reach the maximum value achieved at 9"owth gradually is attenuated.

certain bubble radiugy from the interval R < R< Ry. Thus it The Laplace contribution®/R to the pressure inside the
bubble decreases during the second stagéRayR;)Y/? times

and at the completion of this stage becomes comparable lgth t
2|t has to be noticed that the stages of our interest do not aaything in external pressurél contribution (from Eq. (13) we have strict

common with the stages of evolution of the whole ensemble of leshduring e_qua“ty /R = :?>|'| /2). Itis this physical condition that de-
the decomposition of liquid solution supersaturated with ga fines the completion of the second stage.

Accounting for the strong inequalify; > R., we can simplify
the obtained expression f&8:



Differentiating Eq. (52) ofR we obtain

dR _ Ds 3R0(R+Ro)_<z+l_ 1+3Ra>

dR (R+Ry)? |4 /1+%%R2 2 R
(53)

It can be easily seen, that, as it is for Henry’s law, here bub-
ble radius growth rate as a function of varialitealso has the
only maximum. Denote the corresponding radiufRgswe can
obtain its value from Eq. (47). Using Eq. (53) we rewrite this
equation as

RF{;+R§+%’R2 <1+3R") > 1+f—(Z+1) 0.

¢ 2R 2R
(54)
Figure 1. Growth rate of bubble radius dR/dt (measured in dimen- Assuming that the sought quantiB, is considerably less
sionless units DS( /Ry) as a function of R Solid curve corresponds to than R;, we will use forR in Eq. (54) the strong inequality
Henry's law, Eq. (44). Dotted curve corresponds to Sievert’s law, Eq. 3R;/2R > 1. Below we will need this inequality to be even
(52). For both solubility laws Po/I1 = 10°. more stronger
Rs/3R> 1. (55)

On the subsequent, third stage, which corresponds to the in-
terval of sizes
It will allow us to omit the second addend in the brackets ed t
R> Ry, (51) second add_end in t.he square root in Eq. (54). So this equatio
can be rewritten as:

monotonous decelerated bubble growth continues. At theesam ) )

time, the role of Laplace pressure continues to decreaskigra \/;\/%(Z +1)R¥2 - 3RR, — RZ = 0. (56)
ally, and the pressuriey inside the bubble approaches to a con-
stant value equal to the external presdureAs it will be shown
further, this process is rather protracted, so the conatuphase

of the third stage, when the pressure inside the bubbleipatigt
does not change and the use of self-similar solution [11j4.2]
possible, comes only in the interval of sufficiently largeesi of

Using Eq. (55) we can also omit the second addend in Eq. (56
in comparison with the third one. After such a simplificatiea.
(56) becomes solvable; and fBf, we have:

the bubble, when the conditidd>> Ry is satisfied with a certain N \f Ro 57
reserve. Rm > 2 T+ 1)2/3 (57)
Sievert’s law Substituting Eq. (57) in the second addend in Eq. (56) we car

Let us investigate behavior of bubble growth rRteith the find a first order correction tBy in Eq. (57). We have
increase of bubble radius for Sievert’s solubility law. Fr&q.

(22) evidently stems. . B R X 373 1 2/3 o)
5 3R 2 (13 2 (Q+123)
S

Numerical solution of Eq. (54) fof = 30 gives for inaccuracy
of approximate solution Eq. (58) the value less than 2%, hisd t
Eq. (52) can be also written in the form similar to Eq. (44), to value evidently decreases with the increasé.of

mark out three co-factors. The character of bubble growtthisa As soon as we explained the behavior of the vaRiand
presented graphically in Fig. 1. found the value oR,, we can use the ideas proposed for Henry’s



law to determine the stages of bubble growth. On each stage th
character of bubble growth is different from any other. Tireé
consecutive stages of growth are still defined by Egs. (48), (
and (51).

In the next two sections we will obtain the time dependence
of bubble radiusk for each stage and duration of each stage.
Also we will obtain conditions of steadiness of bubble grhowt
for each stage.

TIME DEPENDENCE OF BUBBLE RADIUS

Let us now solve the differential equations (21) and (22) for
the time dependence of the bubble radius with the initiabcon
tion (40) of homogeneous nucleation of the bubble. As it was
in the previous section it is more convenient here to comside
Henry’s and Sievert's laws separately.

Henry’s law
At first we will rewrite Eq. (21) in the form which is appro-
priate for integration:

R/R

RR+(R0+RC)R+(R0+RC)RCR/RC_1 =

DSL.  (59)

Integrating Eq. (59), we obtain

R?

B+ (Ro+RIR+ (R + R)ReIn (;‘cl> DS (t41).

(60)
wheret is the constant which has time dimensionality and which
is defined by the initial value of radius at tirhe- 0. Using initial
condition (40), from Eq. (60) we find

_ 2R(Rs+2R) .

T= DS (61)

Excluding timet from Eq. (60) by means of Eq. (61), we obtain

+(Ro-+Re) (Rg — 2Re) + (R + Ro)Reln (;c _1> _pstt,
(62)
Validity of the general Eq. (62), which strictly takes into-a
count Laplace pressure influence on the bubble growth pspces
is limited only by the condition of applicability of steady-a
proximation (10) for the diffusion flux. Equation (62) doestn
imply the smallness of quantif./R; which follows from Egs.
(34) and (42). Eq. (62) complies with the results obtaineplain
pers [8, 10] for the particular case of steady growth of a keibb

R?—4R2
2

Now let us consider the third stage of bubble growth, when
R > Ry. First of all, let us note that at the end of the first stage,
when the bubble radiuR approaches the valu&.R,)Y?, and
with even more assurance on the second and the third stage
one can neglect the logarithmic addend in Eq. (62). Moreover
since during the third stage the main contribution in the.lsh
of Eq. (62) gradually tends to the first addend, equakig2;
and the contribution of the second addend (influence of lcapla
pressure) decreases, neglect of logarithmic contriblotgmomes
fairly justified. As a result, equation Eq. (62) conformatuythe
third stage of bubble growth can be written in the form of

§ + RyR= DsZt. (63)

Sievert’s law

Unlike the case of Henry’s law (Eqg. (21)) solution of Eg.
(22) in general case is too cumbersome and, as we will ensur
in the current section, when inequality (43) is fulfilled,eigen
not necessary. Here we present solutions of this equatidwéo
particular cases:

R< Ry (64)
— the first and the second stages and
R> R; (65)

— the second and the third stages. When strong inequality (43
is fulfilled, these two cases cover the whole rafyg 2R; of
regular growth of the bubble radius, and that is the reason wh
general solution of Eq. (22) is not necessary for the systedenu
consideration.

Let us begin with the case when inequality (64) is fulfilled.
In this case we can omit 1 in comparison wikh/R in the I. h.
s. of Eq. (22) and we can also omit 1 in comparison with the
fraction Ry /2Rin the r. h. s. of this equation. Thus we have

/3Rs
{+1- 2R]'

Separating variables and exploiting Eg. (35) Ry under the
square root, we can rewrite Eq. (66) in the form which alloss i
integration:

. Ds
R=—" 66
R (66)

dR

1-J/R/R

Ds(C+1)
Ry

dt. (67)



Integrating Eq. (67) with initial condition (40), we finalhave

R—2R; + Reln (R—1> +2VR; (VR- V2R)

Re
(68)
V2+1vR—y/R:\ Ds
+Rcln<\[ 1\/§+W> Ra(Z+)

This formula is different from Eq. (62), which means that.emnh
inequality (64) is fulfilled, there is a significant differemin the
character of growth between Sievert’s law and Henry’s law.

Now let us proceed to the other case. At first, using Eq. (35)
we can rewrite Eq. (22) equivalently in the form of

F'Q[R+ Ro]

Ds(+1).
=

(69)

(Z+ 1)2

This form makes it obvious that, when strong inequality (65)
together with inequality (43) are fulfilled, the whole sqaiaoot

in the denominator of the I. h. s. of Eq. (69) can be omitted in
comparison with 1. Therefore, we have

R[R+Rs] =Ds( +1). (70)
This expression can be easily integrated. But the use ofttial i
condition Eq. (40) is not just as a result of the fulfillment of
strong inequality (65). There is arbitrariness in the choié
the initial condition for integration of Eq. (70), but the sio
convenient is to choose a condition at such an "averagetsadi

which simultaneously satisfies Egs. (64) and (65), e. g.

=Ra=/ReRs.

Due toR; < Ry, we can use Eq. (68) to obtain the explicit value
for time t, defined in Eq. (71). Using inequalifg, > R, Eq.
(68) gives us

R(U)fi—, = (71)

RaRo
Ds({+1)

~

tai

(72)

Now, integrating Eq. (70) with initial condition (71), we V&

R—R

2

+Rs(R—Ra) = Ds({+1)(t —ta), (73)

or, rewritingR, using Eq. (71) ant} using Eq. (72), we have

g_FRGR_@f

2= = Ds(+1t.

(74)

0.84

0.6+

dR?
d

0.2

R/R,

Figure 2. Growth rate of bubble radius squared dRz/dt (measured in
dimensionless units 2DS() as a function of R. Solid curve corresponds
to Henry’s law, Eq. (44). Dotted curve corresponds to Sievert's law, Eq.
(52). For both solubility laws Py /I = 10°.

With the increase oR the contribution of the third addend
inthe l. h. s. of Eq. (74) decreases andRat R; (on the third
stage) we can already write

§+ Ro,R= Ds(Z + 1)t.

(75)
If we also used in Eq. (75) strong inequality (43), Eq. (75 wi
become identical to Eq. (63). It means that, when inequBlity
Ry is fulfilled, any difference in the character of growth betmne
Sievert’s law and Henry’s law disappears.
When the bubble radius becomes as large as
R> Ry, (76)
Eq. (63) transforms into the well-known Scriven’s [12] self
similar dependence for the steady-state case
R? = 2Ds(t, (77)
whendRe/dt = const This trend of Eq. (63) toward Eq. (77)

was discussed in detail in [15]. This trend is presentedhgrap
cally in Fig. 2.

DURATION OF CONCECUTIVE STAGES
Henry’s law

Eq. (62), giving the explicit dependence of bubble radius
on time, allows us, in particular, to find characteristicasrcor-
responding to consecutive stages. According to Eqs. (48) an



(48), at the end of the first stage the bubble radius reaches, t
value Ry, = (ReRy)Y/2. Substituting valueR = Ry, to Eq. (62)
and considering that, (by virtue of inequalitiBs < Ry, < Ry),

the main contribution to the I. h. s. of Eq. (62) is made by
the second addend, we obtain the expression for the firse stag

durationt;
( )1/2

Using Eg. (34), expression (78) can be also presented imthe f

tl:( >1/2 R2

DL
As it follows from (79), with the increase of initial supetsea-
tion of the solution, the first stage duration decreasesqgtiom-
ally to 1/2%/2.

The second stage of bubble growth starts at the time point
t1 and finishes at the time poirty defined by the condition
Rli_t, = Rs. Substituting valu®k = R, to the equation (62) and
considering that, by virtue of inequalif: < Ry, the main con-
tribution to the I. h. s. of Eq. (62) is made by the first and the
second addends, we obtain the expressiotyfor

3RS

= 5D’

_R
DY

Re

ty Ro (78)

3

: (79)

to (80)

As one can see from this expressitindependence on initial so-
lution supersaturation is defined by multiplief{l The duration

of the second stage is much longer than the duration of the firs
stage, as from Eqs. (79) and (80) it follows that

1/2
( ) > 1,

Now let us consider the third stage of bubble growth, when
R > Ry andt > to. First of all, let us note that at the end of
the first stage, when the bubble radiRsapproaches the value
(RcRo)l/z, and with even more assurance on the second and the
third stages, one can neglect the logarithmic addend in &2). (
(it was taken into account earlier, when Eqgs. (78) and (80¢we
obtained).

Due to Eq. (51) the duration of the third stage of bubble
growth is infinite. But it is reasonable to estimate the timoaf
the beginning of the third stage and to the moment when bubble
radius reaches the vallg defined in [11],

E8
2

2 _

6o (81)

Ro = 20x 20/I. (82)
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It is assumeda priori in [11], that when radius reaches valBg
the influence of Laplace pressure on the bubble growth is-negl
gible.

As it was found in the previous section, on the third stage
of bubble growth the time dependence of bubble radius isngive
by the simple equation — Eqg. (63). Let us introduce timas
a duration of bubble growth in the size intenR} < R < Ry.
Using Egs. (63) and (82) we evidently have

RS
t3~ 480—DSZ.

(83)

The duration of the third stage is much longer than the dura:
tion of the second stage (and, moreover, the first stagejoas f
Egs. (80) and (83) it follows that

(84)

Eqg. (84) and strong inequality (81) allow us to evaluate the
whole duration of bubble growth in the interval of sizeR. X
R < Rp ast3. In [11] the estimation of this duratiap was given
by the following equation

to ~ ﬁ (85)
Using Egs. (13) and (82) we hatge~ 450%; and therefore
Bl _ 6o (86)
t3

Sievert’s law

Using Eg. (69) and (58) we can obtain expressions for du-
ration of the first two stages andt; for the Sievert’s law anal-
ogous to Egs. (78) and (80). These expression are too cumbe
some, while the qualitatively the time-scale hierarchy Saev-
ert’s law is similar to the one for Henry’s law. Therefore witl w
not present these expressions here.

As long as on the third stage the dynamic equation of bubble
growth for Henry's law Eq. (63) and for Sievert’s law Eq. (75)
are exactly the same (we need to accoint 1 also), all the
results presented above for the third stage duration aie feal
Sievert’s law also.

STEADY FLUX CONDITIONS
The diffusion flux of molecules toward a growing bubble can
be considered steady when the bubble growth is slow enough i



comparison with the "diffusion cloud” growth. To be more eka

Exactly the same result will be for Sievert's law (see Eq.) (43

the radius of the bubble has to be much smaller than the radiusand Eg. (90) aR = Ry).

of this cloud — the diffusion length. We can express it as

R< (Dtg)Y/?, (87)

wheretg is the characteristic time of the bubble radius change,
tr = R/R the time in which the bubble radius changes signifi-
cantly. Evidently, Eq. (87) can be rewritten as

(RR/D)"? < 1. (88)

We can make this condition more explicit for Henry’'s and Siev
ert’s laws by means of Eq. (21) and Eq. (22) correspondingly:

_ 1/2
(SZ :;_ 2;) <1 (89)
and
/2
@+y- 1+ 3%\
S TR < 1 (90)
R

Now exploiting Egs. (89) and (90) let us obtain the condi-
tions for diffusion flux to be steady on each stage defined@bov
We will write these condition as inequalities for the valdesaol-
ubility, not for supersaturation. The value of supersdtanais
already fixed by Eqs. (42) and (43).

Obviously the larger the bubble is the more strict condition
for steadiness is (see Fig. 3). The general condition foblaub
growth to be steady at any time is the conditioRa$> R;. From
both Egs. (89) and (90) we have

1/2
s? <« (1> .

z (91)

This condition is sufficient for steadiness on the third stégy
both Henry’s and Sievert’s laws.

For bubble growth to be steady during the whole second
stage it is sufficient to be steadyRit= R;. This condition, using
Eq. (42), transforms Eq. (89)

2 « (2>1/2.

Z (92)
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For bubble growth to be steady during the whole first stage
itis sufficient to be steady &= Ry,. Itis to be reminded that the
quantity Ry, has different values for Henry’s and Sievert’s laws
(see Eq. (49) and Eq. (57)). For Henry’s law, using Eq. (3B) th
condition leads to

a2 0\ /4
< (31) . (93)
And for Sievert’s law to
a2 0\ 1/6
< (31) . (94)

Obtaining Eq. (94) we used not only Eq. (43), but even more
strict condition%/3 > 13

Finally, let us also write the condition of steadiness at the
very beginning of the regular growth of the bubble, expiajti
Egs. (89) and (90) witlR = 2R;. For Henry’s and Sievert’s laws
we have correspondingly

1/2
2 « <2) (95)
3
and'
s/2 « 72, (96)

Let us mention the following interesting observation. ®inc
for R> Ry the bubble dynamics is exactly the same for both
Henry’'s and Sievert’s solubility laws, the condition of aty
growth forR > Ry is also the same (see Eq. (91) above). For
the case of homogeneous nucleation, when the pressure dr
Po/M ~ 103, the steady condition & > Ry as a rule is violated
in cases of both Henry's and Sievert's laws. For Henry’s law,
whens~ 1072, it is violated due to high supersaturation values
{ ~ 10%. For Sievert's law, when corresponding supersaturatior
values are significantly legs~ 3040, values of gas solubility
are significantly higher than for Henry’s law (see next seuoti
and that is the reason of the violation of the steady conditio

3This condition is still fulfilled thar ~ 30+ 40.

. - . - 2.
4While deriving Eq. (96), the numerical coefﬁme(ﬁ (1— 1/\@)) inits
I. h. s. was replaced with 1 for shortness.



R/R,
Figure 3. Parameter characterizing the steadiness of bubble growth as
a function of bubble radius R, I. h. s. of Eq. (88). Solid curves — Henry’s
law, s= 102 and S= 10~ 3. Dotted curves — Sievert's law, S= 1 and
s=10"1. For both solubility laws Po/M = 103. For each solubility law
the upper curve corresponds to higher values of solubility.

While for Henry's law solubilitysis a tabular value (see Eq.
(37)), for Sievert's law it can be adjusted via settlementhaf
final pressurél value.

In order to satisfy the condition (91) of steady growth the
value of gas solubilitys has to be decreased. From Eq. (32) for
the supersaturation we have

_ /R

Z_I_Il.

(97)

Than, using Egs. (39), (97), let us rewrite prodstcin the fol-

lowing form
Po
(\/ mo 1) '

Eq. (98) shows us that in order to weaken limitation (91) one
needs to increase the final pressfteleaving the ratioPy/I1
constant.

T

= Nl (98)

BUBBLE GROWTH IN VOLCANIC SYSTEMS

This section contains the analysis of the steady growth con-
dition obtained in the previous section for bubble nuctaain
volcanic systems. Previously, e. g. in papers [6] and [3] the

51t is evident that condition (91) can be satisfied at the gs@nbility value
when one decreases the solution supersaturdtitthe case of heterogeneous
nucleation).
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study of such systems exploited steady approximation witho
the analysis on its applicability.

For our evaluations we will use parameters from [3] for the
case of homogeneous nucleation of water vapor bubbles in
magmatic melt. We have

Po =100 MPa M =0,1 MPa

99
T=1150K w=3% pm=2300kgm>. (29)

Herew is gas mass fraction of the dissolved gas (water vapor)
andpm is magma density.

Let us express the values ®and{ using data given. From
Eq. (97), in accordance with (99), we have: 31. Then we need
to calculateng and substitute it into Eq. (38) to obtain the value
of solubility. As long as we are given mass density of magma
and mass fraction of gas, it is convenient to write

Na
No =pPo—-,
P H

(100)
where pg is mass density of the dissolved gady = 6 x
10?3 mol ! is the Avogadro constant apo= 1.8 x 103 kg/mol

is the molar mass of the dissolved gas (water). Finally, walne
to express the mass density of the dissolved gas. Evidewtly,
have

Po = WPm, (101)
and, therefore,
NakT
p— . l 2
Y (02

Using data (99) in Eq. (102), we hase- 12.

Now we can see that for volcanic systems, where the pres
sure drop is of the order of #0and solubility is more than 1,
both conditions (91) and (92) are violated, and steady appro
mation is not valid for radii of the order &;. Even in the very
beginning of bubble regular growth, whéh= 2R, the steady
condition (96) is fulfilled only at its breaking point: theluas
of 7%/2 exceed the value af/2, but these values are of the same
order of magnitude.

CONCLUSION

In the presented paper we obtained the equations for the bul
ble growth dynamics in the gas solution with Henry’s and Siev
ert's solubility laws. We solved these equations analyitidar



case of bubble growth in strongly supersaturated solutidre Py Initial pressure (before the droPa
equation for the Sievert's law was solved also for the case of Py Pressure in the bubble with radiRsPa
bubble dissolution in the pure solvent. Pz, Pressure in the critical bubblBa

We showed that, irrespective of the to gas solubility law, Pe Peclet number
three characteristic stages could be marked out in the growt R Radius of the bubblemn

dynamics. During the first stage the bubble radius is growing R, Radius of the bubble, when Laplace pressure in it is negli-

with an increasing rate. On the second stage the growth rate gible,m
decreases. The third stage, when the growth rate contioues t R, "Average” radius of the bubble in the intervaR2< R, <
decrease, begins when the Laplace pressure inside theebubbl Rs, M

becomes comparable with the external pressure of the goluti R. Critical bubble radiusm
We demonstrated that during the first two stages the timerdepe R |njtial value of bubble radiusn
dence of the bubble radius is different for the cases of Henry Rn Radius of a bubble corresponding to the maximum of the
and Sievert's laws, while during the third stage this digtion is growth ratem
no longer observed. s Gas solubility
For both Henry's and Sievert's laws we obtained intervals t Time,s
within which the bubble radius changes on each stage, aswell t Time when the bubble radius reaches the vaRsewhen

dura\';i/ohr_nls ofbctons_eCL::]ive dstage_s. i d the dif Laplace pressure in it is negligible,
le obtaining the dynamics equation we assumedtne dit- - ration of the first stage of bubble growth,

fusion f_qu tp be_ steady. We obtained conditions when thisdste t, Duration of the second stage of bubble groveth,
approximation is applicable. We showed that usually, agdhe . .

: . ; ts Duration of the third stage of bubble growth,
dius of the bubble increases, the steady regime of bubbiethyro N . . .
gradually gives way to the nonsteady one. la Average tme, c_orresp.ond_mg o the siFg, s

Application of the obtained conditions for the volcanic-sys t Pme of bubblefd;]ssolunonmm pure solvest,
tem consisting of water vapor dissolved in the silicate melt emperatu_re oft € System,
showed that the process in such system as a rule cannot be con?V Mass fraction of dissolved gas
X Integration variable

sidered as steady.
Y n Dynamic viscosity of liquid solvenfa s
i Molar mass of dissolved galsg mol*
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Appendix A: Effect of solvent viscosity on the bubble
growth

In the current paper we neglected the solvent viscosity. Its
influence on bubble dynamics can be estimated using Rayleigh
Plesset equation (see e. g. [16]). To take the solvent \itycos
into account one needs to replace Eqg. (7) with the following
equality:

20 R
=N+ +4an= 103
Pr tR T4 (103)
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wheren is the dynamic viscosity of the solvent. The inertial
terms in Rayleigh-Plesset equation are negligible for @agon-
able bubble growth rate.

To neglect the viscous term in Eqg. (103) (the third addend)
in comparison with the surface tension term (the secondratjde
the following strong inequality has to be fulfilled:

n< (104)

2R’

This inequality, evidently, is equivalent to inequal@e > 1,
wherePeis Peclet number.

The higher the bubble growth raf is, the stronger the
inequality (104) is. The strongest condition takes placemwh
R = Ry. Using Eqgs. (49) and (57) in Egs. (44) and (52) corre-
spondingly, for both Henry’s and Sievert’s laws we have

- DX

R<Rjg g = o

(105)

Therefore, using Eq. (13), we can rewrite strong inequélif4)
as

g2

D’ (106)

n<«<

where multiplier 23 in the r. h. s. is omitted for shortness.

Let us estimate the value in the r. h. s. of inequality (106).
Typical values of surface tension both for water and for anic
systems [6] ares ~ 1071 N m%; both for Henry’s and Siev-
ert’s lawss{ ~ 10; diffusion coefficienD ~ 1011 m? s71 [3];
pressurdl ~ 10° Pa. Substituting these values, we have:

n<10°Pas (107)

It should be noted that "common” liquids at normal condition
always satisfy this condition: for water we haye- 1072 Pa s
and even for glyceral ~ 1 Pa s[17].

For volcanic systems the values of viscosity that satisfy
strong inequality (107) are quite typical wh&iO, content is
not too high (basalt, andesite and dactite melts) [1]. Heaxev
for rhyolite melts ¢ 70% SiOy) viscosity can reach the values
of 10’ Pa s[6]; and, therefore, effect of solvent viscosity has to
be taken into account.

We do not discuss here the oscillating settlement of the me
chanical equilibrium between the bubble and the solutianit a
was shown in [18] this settlement occurs much faster than the
settlement of chemical equilibrium, unless the liquid eisity is
extremely low.



Appendix B: Dissolution of the gas bubble in a pure And the second i& < Ry:
solvent: Sievert’s solubility law

Eqg. (23) allows us to obtain the radius-time relation for the 3/2 3/2R<1,/2
bubble of arbitrary initial sizdR|,_, = R which is put in the pure tg= (2) i (114)
solvent and also the time of its dissolutiin R|;_;, = 0. 3 Ds

Separating variables, we can rewrite Eq. (23) as
Let us also obtain the expression for dissolution time fijm:

1+
—RdR= —Dsdt (108)

m\w P2y

1+ R2
tg = 0.435[)—S . (115)
or equivalently as

] RdR= —Dsdt (109)

Using the variablex = y/1+ 3% for integrating in Eq. (109)
instead ofR we have

8.2[, X 1
SR [u(xz_l)g — (x2_1)2} dx=Dsdt  (110)

Eqg. (110) can be easily integrated and therefore we obtain

R,/R2+ ROR—fRG\/RZ—k RsR
3 4R 41 [
(111)

Eq. (111) gives us an explicit relation between the bubldausa
Rand timet.

Let us find the timey of total dissolution R — 0) from ar-
bitrary initial radiusR;

lm/az ROR——RM/R% RoR

= Dst.
R

(112)

The latter expression can be simplified for the two particula
cases and short analytical expressions for tinoan be obtained.
The first case iR > Rg:

_ R
ta= 5o (113)
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