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ABSTRACT 
The present investigation focuses on the numerical simulation 
of inertia driven dynamics of 3-D sheet and cloud cavitation on 
a 2-D NACA 0015 hydrofoil. Special emphasis is put on the 
numerical analysis of the re-entrant flow, the break-up of the 
sheet cavity and the formation of clouds. We demonstrate that 
our CFD-Tool CATUM (CAvitation Technische Universität 
München) is able to predict even delicate 3-D flow features 
such as irregular break-up patterns, cavitating hairpin and 
horseshoe vortices, 3-D instabilities in spanwise direction  and 
the formation and propagation of shocks due to collapsing 
clouds close to the trailing edge of the hydrofoil. The 
numerically predicted flow features agree well with the 
experimental observations of Kawanami et al [1].   

INTRODUCTION 
Kawanami et al [1] investigate the 3-D structure of the 
cavitating flow around a NACA 0015 hydrofoil with cord 
length lcord=0.08 m and span lspan=0.15 m. The hydrofoil is 
placed within a rectangular test section, the angle of attack is 
8.36°. They observe that the dimensionless spanwise length 
lcav,s/lcord of the clouds is roughly proportional to the 
dimensionless length lcav,c/lcord of the sheet cavity along the cord 
of the hydrofoil. Furthermore, they show the formation and 
shedding of multiple clouds if lcav,c<<lspan (Fig. 1). An 
interesting situation arises at the region of lcav,c/lcord>0.5, where 
Kawanami et al observe irregular break-up patterns. If 
lcav,c/lcord≈1, then the irregular pattern is replaced by the 
shedding of one single cloud that covers the full width of the 
test section. Franc [2] refers the previously stated 3-D aspects 
of cloud shedding as being intrinsic instabilities - often referred 
as self-excited instabilities. Although the width of the test 
section might influence the characteristics of multiple shedding 
and irregular break-up, the physical origin of these instabilities 
seems to be determined by the cavity itself. It is known that the 
basic shedding mechanisms - the formation of re-entrant flow, 
the resulting separation of the sheet cavity, the formation of a 
downstream traveling spanwise vortex and the subsequent 
break-up into numerous cloudy structures - are mainly inertia 
controlled [3]. The aim of this investigation is to 
demonstrate that the occurrence of irregular break-up 

patterns and of 3-D spanwise instabilities is essentially 
inertia controlled as well. The key idea is to focus exclusively 
on the inviscid dynamics of cavitating flows by means of 
numerical simulation. This allows distinguishing inertia driven 
instabilities from instabilities due to viscosity/turbulence.  

PHYSICAL MODEL 
It is known that highly purified water can reach significant 
metastable thermodynamic states including tension [4]. The 
classical nucleation theory predicts that homogeneous 
nucleation is negligible for the typically arising flow conditions 
within hydraulic machinery. It is widely accepted that flow 
induced evaporation - cavitation - is dominated by 
heterogeneous processes such as the growth of liquid embedded 
gas bubbles [5]. Provided that the number density and the 
average size of heterogeneous nuclei are sufficiently large, the 
onset of evaporation occurs close to the saturation conditions 
defined by the Clausius-Clapeyron relation. Concerning natural 
(unpurified) water as working fluid within large scale hydraulic 
machinery, it is reasonable to neglect metastable 
thermodynamic conditions and to assume stable 
thermodynamic conditions exclusively. This assumption is 
questionable for operating conditions close to cavitation 
inception, yet it is sophisticated for sufficiently developed 
cavitating flow such as the investigated sheet and cloud 
cavitation. If we consider an open thermodynamic system at 
one instant in time t=t1 with given total mass m(t1), total 
internal energy U(t1) and fixed volume V, then the fundamental 
laws of thermodynamics imply that the only stable 
thermodynamic state is the equilibrium state, denoted by the 
subscript “eq”. It follows that the pressure peq(t1), the 
temperature Teq(t1) and the mass specific Gibbs energy geq(t1) 
are spatially and temporally constant within the specified 
thermodynamic system. Moreover, the system has minimal 
total Gibbs energy Geq(t1) and maximal total entropy Seq(t1). 
This information provides a unique and complete specification 
of the thermodynamic state including the phase properties (e.g. 
the mass fractions of liquid and vapor) of the system at time 
instant t=t1.  The previous consideration is the thermodynamic 
basis for modeling and simulation of cavitating flows due to the 
following aspects.  
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1) If the numerical method is a finite volume method, then the 
derivation of the stable thermodynamic state within each finite 
volume follows exactly the previously described consideration 
for each instant in time. The spatial resolution of the model is 
then consistent with the spatial resolution of the numerical 
approach, which is defined by the size of the finite volumes.  
2) The phase properties are directly obtainable from the total 
mass and the total internal energy U within each finite volume. 
Contrary to other models, the thermodynamic model does 
neither require the specification of (unknown) parameters nor 
does it require the formulation and solution of additional 
transport equations. 
3) The model takes compressibility effects into account. This is 
necessary for simulation of shock formation and propagation.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4) The model is applicable to simulate saturated mixtures as 
well as pure vapor sheets and pure liquid flow.  
5) If the model is combined with a conservative numerical 
algorithm (conservative Euler solver), then the combination of 
both provides a mathematically well posed hyperbolic problem 
where the speed of sound is implicitly defined by the 
equilibrium speed of sound ceq.  
6) The model includes the effects of the latent heat due to phase 
transition. 
As our major interests are intrinsic instabilities of wave and 
inertia driven flows the governing equations are the 3-D 
compressible time dependent Euler equations. Several 
experimental and numerical investigations show that the 
dynamics of developed cavitating flow is only weakly 
dependent on the Reynolds number (see Fig. 1). Presuming that 

Fig. 1 Multiple shedding of clouds on a 2-D NACA 0015 hydrofoil 
The arising cloud patterns show a correlation of the length lcav,c of the cavity along the cord with the spanwise length lcav,s of the 
shedded clouds. For lcav,c /lcord≈0.8 irregular break-up is observed, for lcav,c /lcord≈1.0 a single cloud is shedded.  
NACA 0015, lcord=0.08 m, lspan=0.15 m, 8.36° angle of attack, uin=6.0 m/s -12 m/s, Tin≈299 K, Rec=3.5·105 - 6.9·105,  
σref =1.05 - 2.13, fluid water/water vapor. 
The experiments indicate that the arising structures are independent of the Reynolds number. 
Experiments and data from [1], reproduced with permission from Hajime Yamaguchi. 
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the boundary layers of the investigated flow remain attached as 
long as phase transition does not occur, the inviscid treatment 
of the fluid leads to suitable physical models that can be 
simulated significantly more efficient and more accurate than 
viscous fluids. However, the inclusion of viscous effects within 
the model is possible.  
Let q  be the vector of conserved quantities composed by the 
density ρ, the components ui of the velocities in coordinate 
direction ix  and the specific total energy E as the sum of the 
specific internal energy e per unit mass and the specific kinetic 
energy 0.5·∑(ui)2. Let ( )qFi  be the physical flux in coordinate 
direction ix , while ijδ  and p denote the Kronecker symbol and 
the pressure respectively 
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The differential or pointwise form of the Euler equations can be 
written as  
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Instead of enforcing the conservation principles in a pointwise 
fashion we use the weak form of the Euler equations. 
Therefore, we partition the flow domain into disjoint fixed 
control volumes kC  of a corresponding volume kV , a surface 

kS  and an outer unit normal vector t
3,k2,k1,kk )nnn(n = . The 

weak form of the Euler equations for each control volume kC  
follows as  
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By defining the cell average operator kA  
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we assign to all weak solutions within the cell kC  their 
common integral average value ( )qAq kk = . It turns out that 
the weak form of the Euler equations resembles a system of 
evolution equations of the cell averages of weak solutions 
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The closure of the defined initial-boundary value problem (5) 
necessitates constitutive relations for the thermodynamic 

quantities kρ , ke , kp  as well as consistent initial and 
boundary conditions. In this section we assume that consistent 
initial and boundary data are available. Thus, the physical 
fluxes along the boundary surfaces are known and hence, 
equation (5) reduces to an initial value problem. At each instant 
in time and for each control volume kC  the known values kq  
determine the average density kρ , velocity ku  and total energy 

kE  within the control volume kC . Therefore, the average 
specific internal energy ke  is known as well. We now follow 
the thermodynamic considerations stated at the beginning of 
this section by interpreting each control volume kC at each 
instant in time as an open thermodynamic system with known 
total mass mk, total internal energy Uk and fixed volume Vk. In 
order to obtain the stable thermodynamic states peq and Teq 
from the known conditions we relate them by suitable 
equations of state. The most accurate database for the 
thermodynamic properties of water, water vapor and saturated 
mixtures of water and water vapor is the IAPWS - International 
Association for the Properties of Water and Steam - database. 
They provide “state of the art” equations of state, so called 
reference equations of state [6]. Although it is possible to apply 
these equations to determine the unknown thermodynamic 
properties, we prefer to use suitable approximate equations. 
The reason therefore is given by the fact that the evaluation of 
the IAPWS equations is enormously time consuming. Although 
our approximate equations are significantly more efficient then 
the IAPWS equations, they are still highly accurate within the 
relevant thermodynamic regime of the considered flow.  
Following an idea of Saurel et al. [7], we distinguish the 
following three cases. 
 
Case 1) The stable thermodynamic state corresponds to a pure 
liquid state. Here, we apply a modified Tait model  
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to relate the pressure pk to the density kρ and the temperature Tk 

of the liquid. The temperature Tk is obtained by a caloric 
equation that relates the known specific internal energy ek to 
the unknown temperature Tk. Even though the temperature 
variation of the liquid is typically small, the modification of the 
Tait equation remains necessary in order to ensure a continuous 
connection of the Tait model to the temperature dependent 
saturation conditions - see case 2). For water we use the 
constants B=3300 bar and N=7.15. 
 
Case 2) The stable thermodynamic state corresponds to a 
saturated mixture of water and water vapor. The stable 
coexistence of both phases implies that the pressure kp  is 
determined by the Clausius-Clapeyron relation and the average 
density kρ  within each cell kC  is a convex combination of the 
saturation densities sat,lρ , sat,vρ  of liquid and vapor. The 
temperature kT  is a function of the mass specific internal 
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energy ek. By defining the vapor volume fraction kα  and the 
vapor mass fraction kε  we obtain the unknown quantities kT , 

kα , kε  and kp  as unique solutions of the system 
 

( ) ( ) ( )ksat,lkksat,vkk T1T ρ⋅α−+ρ⋅α=ρ                 (7)                                                
 

( ) ( ) ( )ksat,lkksat,vkk Te1Tee ⋅ε−+⋅ε=                   (8)                                                
 

( )ksat,vkkk Tρ⋅α=ρ⋅ε                              (9)                                                                 
 

)T(pp ksatk =                                      (10)                                                                   
 

1,0 <εα< .                             (11)                                                              
 
Thereby, the incorporated temperature dependent saturation 
conditions are modeled by the Oldenbourg polynomials [8].   
 
Case 3) The stable thermodynamic state corresponds to a pure 
vapor state. Here, the applied constitutive relation models pure 
vapor as calorically perfect gas, where the ratio of the specific 
heats is given by κ=1.327 and the specific gas constant is 461.5 
J/kg K.  
 
The comparison of the described thermodynamic closure 
relations with respect to the IAPWS data [6] demonstrates that 
the relations accurately model the behavior of water and water 
vapor for a large range of thermodynamic subcritical 
conditions, especially for the temperature range of 283 K ≤ T ≤ 
350 K. 
 

NUMERICAL METHOD 
The CFD-Tool CATUM (CAvitation Technische Universität 
München) is based on a semi-discrete unsplit finite volume 
method that operates on block structured meshes. The spatial 
discretization is obtained by a modified flux function that 
enables time accurate simulations of compressible high and low 
Mach number flows including wave dynamics and shock 
propagation [9]. We apply non-linear reconstruction procedures 
(TVB, TVD) to the primitive variables and obtain 2nd order 
accurate approximations of smooth quantities as well as sharp 
representations of discontinuous flow features.  The temporal 
discretization is obtained by a 2nd order accurate explicit 4-
stage Runge-Kutta method with enlarged stability region. Our 
CFD-Tool CATUM relies on an approximate solution of the 
evolution equation (5) for each control volume kC . The 
thermodynamic model is given by the constitutive relations (6)-
(11). By replacing the physical fluxes )q(F  in Eq. (5) with the 

numerical fluxes ( )*qF , we obtain a set of ordinary differential 
equations, which represent a semi-discrete unsplit finite volume 
method for hexahedral volumes 
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For presentation purposes we assume that kq  and iq  are the 
average conserved quantities within two adjacent control 
volumes kC , iC  and let i,kS  be the shared surface 

iki,k CCS ∩=  which is supposed to be perpendicular to the 1x  
spatial direction. We further assume that the 1x  spatial direction 
increases from kC  to iC . Hence, the required flux is the 
approximate flux )q(F1  in 1x  spatial direction. Provided that 

the flow is subsonic, the approximate states *q  at the shared 
surface are obtained by the following procedure. The 
approximate velocity *

1u  is given by 
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The pressure kp , the density kρ , the speed of sound kc  and 
the k,1u  velocity component correspond to the cell average 
values within cell kC , otherwise the values correspond to cell 

iC . Equation (13) can be interpreted as an approximate 
solution for the resulting velocity of the associated Riemann 
problem between cells kC  and iC  . A detailed derivation of 
Eq. (13) based on the theory of characteristics was recently 
published (Schmidt et al [10]). The pressure *p  at the shared 
surface is defined by 

2
pp:p ik* +

= .                                (14) 

 
Assuming that the value of *

1u  as defined by Eq. (13) is 
positive, the upwind character of the discretization is obtained 
by defining the remaining quantities at the shared surface as 
 

.E:E,u:u,u:u,: k
*
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Otherwise, if *
1u  as defined by Eq. (13) is negative, the 

subscripts k  in Eq. (15) are replaced by i . With these 
definitions the numerical fluxes are completely defined. In 
contrast to classical numerical flux functions the proposed 
numerical flux is consistent with respect to the asymptotic 
behavior of the governing equations for 0M → . Therefore, the 
novel method enables the simulation of low Mach number 
flows including wave dynamics without the well known draw 
backs of classical schemes as stated in the introduction part of 
this investigation. The consistency with respect to 0M →  is 
achieved by Eq. (14) which defines the pressure *p  at the 
shared surface as the arithmetic mean of the pressure within the 
adjacent cells. The proposed flux function is replaced by pure 
upwinding of all quantities if the flow is locally supersonic. In 
order to ensure high resolution of discontinuities such as shocks 
and contact waves we apply the minmod TVD-limiter to 
reconstruct the density field and the WENO-3 procedure to 
reconstruct the velocity field. This choice is based on the 
observation that the density field requires a monotone 
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reconstruction procedure in order to avoid oscillations in 
regions of large gradients, especially in regions where 
evaporation/condensation takes place.   
The temporal discretization is obtained by a 4-stage Runge-
Kutta method. The 2nd order accurate low-storage time 
discretization for cell kC  is given by 
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Here, the expression )q(D i

s  corresponds to the spatial 
discretization as given by Eq. (12). In order to optimize the 
stability region of the method, numerical stability tests have 
been performed. The resulting coefficients 4...1i=α  are 

11.01 =α , 2766.02 =α , 5.03 =α  and 0.14 =α  which enable 
stable time integration for CFL-numbers up to 2.0. A detailed 
description of the CFD-Tool CATUM including validation 
examples is given by Schmidt et al. [10]. The derivation of 
weakly reflective boundary conditions for simulation of wave 
dynamics within cavitating flows is given by Schnerr et al. [11]. 
The numerical analysis of cavitating flows within fuel injection 
nozzles and around profiles of propeller blades are published 
by Schmidt et al.[12,13] and Sezal et al.[14].     

 
NUMERICAL RESULTS 
We simulate the cavitating flow around a 2-D NACA 0015 
hydrofoil (angle of attack 6°, cord length lcord=0.13 m, span 
width lspan=0.3 m) that is placed in the middle of a rectangular 
test section (height 0.3 m, depth 0.3 m, length 0.9 m). The walls 
of the test section and the surface of the hydrofoil are modelled 
as inviscid adiabatic walls. At the inlet of the numerical domain 
the velocity uin=30 m/s and the static temperature Tin=293 K of 
the pure liquid inflow are prescribed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At the outlet we apply an asymptotic boundary condition for 
the static pressure pexit=4.5 bar. The resulting cavitation number 
is σref=1.0. The numerical domain is discretized by 2·105 cells 
(coarse grid G1), 4·105 cells (medium grid G2), 3·106 cells (fine 
grid G3) and 2.4·107 cells (finest/target grid G4). All 
computational grids are structured multi-block hexahedral 
grids. Let ∆x be the characteristic length of the smallest 
computational cell, then the numerical time step is necessarily 
of the order of  ΔtCFD ~ ∆x/cl, where cl is the speed of sound of 
pure liquid. Hence, the numerical time step ΔtCFD and the 
characteristic length ∆x are directly related. The finest grid 
(target grid) used for this investigation leads to the 
characteristic length ∆x≈0.4 mm of the smallest cells, which is 
at least one order of magnitude larger than the radius of a 
typical micro-bubble and definitely one order of magnitude 
larger than the Taylor microscale, which provides an indication 
of the minimum length scale on which inertia effects are still 
dominant over viscous effects. The resulting numerical time 
step for the finest grid is ΔtCFD,fine=8.5·10-8s. These small 
numerical time steps are necessary to resolve wave dynamics 
such as shock formation and propagation. In order to accelerate 
the numerical simulation we apply a grid sequencing technique. 
At first, a simulation on the coarse gird is performed until the 
typical periodic shedding of the cavitating flow is observed. To 
determine the shedding frequency we analyse the integrated 
vapor volume content Vvap [%] within the computational 
domain. Figure 2 depicts the temporal evolution of Vvap during 
the simulated time interval of Δtsim≈0.25 s. The simulated time 
interval Δtcoarse=0.15 s on the coarse grid corresponds to 
approximately 17 shedding cycles. This time interval is 
sufficient to ensure that the disturbances due to the initialization 
of the flow field are no longer present.  As the minimum cell 
size of the coarse grid is significantly larger than the one of the 
target grid, the numerical time step is larger as well. 
Additionally, the number of evolution equations (5) is by 2 
orders of magnitude smaller. Thus, the numerical effort to 
simulate 17 shedding cycles on the coarse grid is about 500 
times smaller than on the finest grid. The grid sequencing 
technique takes advantage of this fact by using the established  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Temporal evolution of the total vapor volume content Vvap [%] within the computational domain 
Grid sequencing procedure applied to 4 successively refined grids: G1 - 2·105 cells (coarse grid), G2 - 4·105 cells (medium 
grid), G3 - 3·106 cells (fine grid), G4 - 2.4·107 cells (finest/target grid). The coarse grids G1/G2 contain low frequency 
disturbances that vanish on the finest grid. See Fig. 3 for detailed information of the simulation on the finest grid G4.  
Shedding frequency f≈100 Hz, ΔtCFD,fine=8.5·10-8 s. 
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solution obtained for the coarse grid as an improved initial 
solution for the following finer grids. Thereby, all necessary 
quantities are interpolated to the next finer grid in a 
conservative manner and the simulation is continued. Due to 
the significantly improved initial solution, the simulation of 1 
to 5 consecutive shedding cycles is sufficient to obtain an 
established solution on the finer grid. The process is continued 
until the finest grid (target grid) is reached.  Figure 3 depicts 
the zoomed temporal evolution of Vvap during the simulated 
time interval of Δtsim≈0.05 s on the grids G3 (fine) and G4 
(finest). The marked time instants correspond to the 
subsequently analysed flow features. On the finest grid with 
2.4·107 cells the simulation is performed on 192 processors. 
The required simulation time to simulate 5 shedding cycles is 4 
weeks.  
 
Single-phase reference solution 
In order to relate the flow properties of the cavitating flow we 
calculate a single-phase reference solution of the same 
numerical set-up, including the same solution algorithm, 
computational grid (medium grid G2), initial and boundary 
conditions. We disable the phase transition routines of our 
numerical method and, hence, the thermodynamic model is 
given by Eq. (6). We observe a maximum velocity umax=53.1 
m/s and a minimum pressure coefficient cp=-2.37 
(corresponding to a minimum “pressure” of pmin=-6.0 bar). The 
numerically predicted drag coefficient is cd, num≈10-4, which is 
two orders of magnitude smaller than experimentally observed 
drag coefficients for comparable Reynolds numbers. As 
expected, the single-phase flow field is perfectly two 
dimensional, e.g. the variation of the thermodynamic 
quantities and of the velocities in spanwise direction is of 
the order of the numerical round-off error (approx. 10-15 for 
normalized quantities).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The steady single-phase solution only depends on the boundary 
conditions but not on the initial conditions. Moreover, the 
inviscid single-phase solution is stable - any enforced 
disturbance damps out and the unique steady solution recovers.  
 
Grid dependence of cavitating flows 
Neither the assumed inviscid flow nor the thermodynamic 
model defines a physical limit of the spatial resolution. 
However, in practice the resolution is limited by the available 
hardware resources. The key questions are as follows.  
1) Is the model suitable to predict the fragmentation of coherent 
structures such as clouds and sheets into smaller unities? 
2) Are large scale properties such as shedding frequencies and 
characteristic void fraction distributions (basic shapes of sheet 
and cloud cavities) grid independent? 
3) Provided that 1) and 2) are fulfilled, then how fine has the 
spatial resolution to be chosen in order to ensure that the 
desired flow information is resolved? 
In order to investigate 1) and 2) we analyse the structure of the 
cavitating flow as obtained during the grid sequencing process. 
Figure 4 depicts a comparison of the predicted vapor volume 
fraction of all four grids. The glossy surfaces are iso-surfaces of 
the vapor volume fraction α=0.05. It is important to note that 
the depicted flow patterns do not correspond to the same instant 
in time. The reason therefore is that the applied grid sequencing 
technique operates consecutively from the coarsest to the finest 
grid. However, the depicted comparison of the resolved 
cavitation structures is still representative as it shows 
corresponding time instants with respect to the shedding 
process. Our observations are as follows. The simulation 
predicts the periodic shedding of at least one cloud - 
independent of the applied computational grid. The shedding 
frequencies are within a range of fmin=90 Hz to fmax=107 Hz. 
During the first 10 cycles the flow field on the coarse grid G1 
is essentially two dimensional. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Zoom of Fig. 2 - total vapor volume [%] versus time - computation on the finest grid G4   
Dots 1 to 5 denote equidistant time instants Δt=2·10-3 s of one shedding cycle with ΔTcycle=0.01 s - see Fig. 5. 
Dots A to E denote the break-up of the sheet cavity for 5 consecutive cycles - see Fig. 6. 
The black dot denotes the time instant analysed in Fig. 7, the re-entrant flow analysis is performed within the  
marked time interval between dots C and D - see Fig. 8,9. 
Shedding frequency f≈100 Hz, ΔtCFD,fine=8.5·10-8 s, grid resolution G4 - 2.4·107 cells. 
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After about 10 cycles the first spanwise variation of the shape 
of the cloud is visible. During a few subsequent cycles the 
spanwise variation intensifies and reaches a constant order of 
magnitude (pic 1 of Fig. 4) - a return to a 2-D pattern is not 
observed. A possible explanation could be that the re-entry flow 
leads to the onset of the (inviscid) Rayleigh-Taylor instability. 
Thereby, the re-entry flow is lastingly altered in spanwise 
direction, which results in a non-uniform deformation of the 
sheet cavity. The first grid sequencing step to the medium grid 
does not significantly alter the characteristics of the flow field 
(pic 2 of Fig. 4). The structure of the sheet cavity is still 
approximately 2-D close to the leading edge, but the richness of 
the structures within the cloud is slightly increased. The same 
observation is obtained at the second grid sequencing step to 
the fine grid. Here, we have to note that the simulation time on 
the fine grid is supposed to be too short to observe significant 
differences with respect to the medium grid. However, the last 
grid sequencing step to the target grid provides new insight into  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the arising dynamics. Both, the sheet and the cloud contain 
small scale structures that cannot be resolved on the coarser 
grids and the 3-D character of the predicted flow is well 
represented (pic 4 of Fig. 4). The observed rise of small scale 
structures with increasing spatial resolution motivates the 
following conclusion. Unsteady solutions of cavitating flows 
are typically grid dependent with respect to small scale 
properties. However, large scale properties such as shedding 
frequencies and characteristic void fraction distributions (basic 
shape of sheet and cloud cavities) seem to be less dependent on 
the chosen spatial resolution.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Increase of resolved cavitation structures on 4 different computational grids as obtained during grid sequencing 
Perspective view of the hydrofoil and iso-surfaces of the vapor volume fraction α=0.05.  
Large scale structures are essentially grid independent, resolved small scale structures (richness of the flow) increases with grid 
refinement - grid dependence of unsteady cavitating flow. Observed 3-D instabilities are inertia driven (inviscid flow model) and 
develop naturally - self-excited instabilities. Shedding frequency f≈100 Hz, grid resolution G1 (coarse) - 2·105 cells, G2 (medium) - 
4·105 cells, G3 (fine) - 3·106 cells, G4 (finest/target) - 2.4·107 cells. 
NACA 0015, 6° angle of attack, lcord=0.13 m, lspan=0.3 m, uin=30 m/s, Tin=293 K, pexit=4.5 bar, σref =1.0, fcycle≈100 Hz, Tcycle≈0.01 s.
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Fig. 5 Numerically predicted cavitation structures at time instants 1-5 during the shedding cycle A-B as defined in Fig. 3 
Iso-surfaces of the vapor volume fraction α=0.05, top view - left, perspective view - right 
Flow:          water/water vapor, uin=30 m/s, Tin=293 K, pexit=4.5 bar, σref =1.0, fcycle≈100 Hz, Tcycle≈0.01 s 
Hydrofoil:   NACA 0015, 6° angle of attack, lcord=0.13 m, lspan=0.3 m 
Simulation: CATUM, finest grid G4 2.4·107 cells, 2nd order in space and time, ΔtCFD=8.5·10-8 s. 

           

Top view - suction side Perspective view - suction side
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Shedding pattern on the target grid 
Figure 5 depicts a series of 5 equidistant instants in time of the 
arising cavitation structures during the shedding cycle A-B 
(Fig. 3) with fcycle≈100 Hz as observed on the finest grid with 
2.4·107 cells. The 5 time instants are denoted by blue dots 1-5 
along the temporal evolution of the vapor volume content Vvap 
in Fig. 3. The left column presents the top view of the suction 
side (LE-leading edge, TE-trailing edge) and the right column 
depicts the corresponding perspective view. The glossy surfaces 
are iso-surfaces of the vapor volume fraction α=0.05. Due to 
different illumination of the iso-surfaces the small scale 
disturbances of the sheet cavity are clearly visible within the 
top view but they are less pronounced within the perspective 
view.  At time instant 1 we observe an irregular break-up of the 
cavity and the formation of cavitating hairpin vortices in 
streamwise direction. The hairpins connect the larger structures 
in spanwise direction, both together form crescent shaped 
regions [15]. At the right hand side, the re-entry flow nearly 
reaches the leading edge of the foil. The streamwise length of 
the cavity is lcav/lcord≈0.8 at this instant in time. In accordance 
with Kawanami at al. [1] we observe a complete separation of 
the sheet cavity up to its onset close to the leading edge. At 
time instant 2 the formation of a new sheet cavity is partially 
visible. The irregular break-up pattern is integrated into a single 
coherent cloud. At time instant 3 the redeveloped sheet cavity 
covers roughly one third of the suction side of the hydrofoil. 
Close to the trailing edge we observe cavitating horseshoe 
vortices at the end of the downstream travelling cloud. At time 
instant 4 the downstream part of the sheet cavity is no longer 
fully attached to the surface of the hydrofoil and the 
downstream travelling cloud reaches the trailing edge where it 
fragments and collapses. At time instant 5 the sheet cavity 
nearly reaches its maximum length and the re-entrant flow is 
already present.   
 
Comparison of arising break-up patterns 
Although the previously described shedding process is periodic 
with respect to large scale dynamics it varies from cycle to 
cycle with respect to small scale phenomena. In order to 
indicate the bandwidth of small scale structures we discuss the 
break-up patterns for 5 consecutive shedding cycles A-E as 
defined within Fig.  3. The selected time instants correspond to 
the same relative position within the shedding process - the 
instant where the re-entrant flow reaches the onset of the sheet 
cavity close to the leading edge. Figure 6 depicts a series of top 
views of the suction side of the hydrofoil. Glossy surfaces 
correspond to iso-surfaces of the vapor volume fraction α=0.05 
and the flow is from top to bottom. The time interval between 
two successive pictures is Δt=Tcycle=0.01 s. The uppermost 
picture A of Fig. 6 depicts the break-up pattern of the 
previously discussed shedding cycle A-B. The break-up 
patterns of the following two cycles (Pics 2 and 3 of Fig. 6) 
contain 5 to 6 crescent shaped regions that occur at 
approximately the same positions. In cycle 4 we observe a 
break-up pattern that is biased to the left side of the sheet 
cavity. This pattern D distinguishes from all others as the length 
of the cavity along the cord is noticeably reduced. The 
lowermost picture of Fig. 6 depicts the break-up pattern of 
cycle 5. We conclude that the numerically predicted small 

scale structures undergo significant variations from cycle to 
cycle and the overall flow field is highly 3-D.          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Break-up patterns A to E of 5 consecutive 
shedding cycles  
Top view of the suction side of the hydrofoil at 
time instants A to E with Δtpic=Tcycle=0.01 s as 
denoted with red dots in Fig. 3. The selected time 
instants correspond to the same relative position 
within consecutive shedding cycles. Iso-surfaces 
of the void fraction α=0.05 demonstrate the 
occurrence of irregular break-up patterns including 
hairpin vortices and crescent shaped regions.  
Finest grid G4 - 2.4·107 cells, ΔtCFD=8.5·10-8 s. 
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The predicted inner structure of a cloud 
Figure 7 provides further insight into the arising small scale 
structures within a typical sheet and cloud cavitation pattern at 
one instant in time - see Fig. 3. We define the analysis plane A-
A, which is indicated within the top view of the suction side of 
the hydrofoil (Fig. 7 - top). The corresponding vapor volume 
fraction α within this plane is depicted at the bottom of Fig. 7. 
As expected, the void fraction α is approximately uniform 
within the sheet cavity. However, the downstream travelling 
cloud contains a significantly non-uniform distribution of the 
void fraction. The results of our simulations indicate that this 
non-uniformity is mainly due to superposition of cavitating 
vortices during the formation of the cloud. The inhomogeneity 
of the void fraction distribution and of the velocity field plays 
an important role at the stage of the cloud collapse. We observe 
that regions with low values of the void fraction partially 
condense during the advection of the cloud downstream to the 
trailing edge. The resulting fragmentation into smaller cloud 
structures lead to a series of violent cloud collapses including 
the formation and propagation of shocks with instantaneous 
pressure rises of up to 2400 bar. These shocks are known to be 
a driving mechanism of cavitation erosion. Moreover, they 
enforce total pressure losses, vorticity production and further 
alternation of the flow field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis of re-entry flow 
In this section we analyse the shedding process as it is 
predicted by the applied model. It is important to review that 
the model is based on the assumptions of inviscid and adiabatic 
flow and equilibrium thermodynamics within each 
computational cell. It can be shown that these assumptions 
imply that the total entropy remains constant along each 
particle path as long as the flow is continuous (shock free). 
However, the model predicts a discontinuous 
recondensation at the closure region of the sheet cavity. The 
states on both sides of the discontinuity fulfill the Rankine-
Hugoniot conditions as known from gasdynamic shocks. We 
observe a maximum total pressure loss of up to 70% close 
to the surface of the hydrofoil and significant formation of 
vorticity. Figure 8 depicts a series of 5 instants in time with 
time intervals Δt1-2=2.5·10-3 s, Δt2-3=1.5·10-3 s, Δt3-4=1.0·10-3 s 
and Δt4-5=1.0·10-3 s. The complete time interval Δt1-5 is marked 
in Fig. 3. The left column contains the vapor volume fraction α 
within the plane A-A as defined in Fig. 7. The right column 
shows the corresponding x component of the velocity. At the 
first time instant a recently developed sheet cavity nearly 
reaches the position of the thickness maximum of the hydrofoil. 
The sheet undergoes further growth along the cord of the 
hydrofoil and its closure region steepens up. The x component 
of the velocity within the sheet is u1≈44 m/s and the static 
pressure is the vapor pressure. At time instant 2 the sheet cavity 
consists of two portions, an attached upstream part and a 
detached downstream part. The upstream part of the sheet is no 
longer growing - its position on the surface of the hydrofoil is 
frozen for a short time. At the end of the upstream part, 
particularly close to the surface of the hydrofoil, we observe a 
discontinuous variation of the void fraction and of the x 
component of the velocity u1 (black arrow in pic 2 of Fig. 8). 
This is the position where significant vorticity production is 
observed - see subsequent section and Fig. 9. The velocity 
directly downstream of the discontinuity is nearly zero but 
further downstream a re-entry jet is already present and reaches 
a value of u1≈-5 m/s of the x component of the velocity. The 
downstream part of the sheet is still growing along the 
spanwise direction. At time instant 3 the reverse flow covers 
roughly one third of the thickness of the downstream part of the 
sheet (δre-entrant≈3 mm). The x component of the velocity of the 
re-entrant jet is u1≈-20 m/s close to the end of the downstream 
part. Additionally, the two parts of the sheet are no longer 
directly linked together - the downstream part is from now on 
termed as cloud. The discontinuous transition at the end of the 
upstream part moves towards the leading edge with u1≈-7 m/s 
(position of black arrow in pics 3,4 of Fig. 8). At time instant 4 
the maximum thickness of the re-entry flow is δre-entrant≈7 mm 
and the x component of the velocity is u1≈-30 m/s. The 
remaining attached sheet terminates slightly upstream to the 
thickness maximum of the hydrofoil and the cloud starts to 
grow in height. At time instant 5 the previously attached sheet 
forms another cloud as the re-entry flow reaches the onset 
position of the cavity close to the leading edge. The maximum 
value of the x component of the velocity of the re-entry flow at 
this instant in time is u1≈-52 m/s.   
 
 

A 

A 

A-A 

Fig. 7 Inner structure of the cavity  
Top - typical sheet and cloud cavitation on the suction side 
of the hydrofoil, iso-surfaces of the void fraction α=0.05. 
Bottom - void fraction α at plane A-A indicating the 
complex inner structure of the flow within the cloud.  
Time instant is marked within Fig. 3. 
Finest grid G4 - 2.4·107 cells, ΔtCFD=8.5·10-8 s. 
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Fig. 8 Development and subsequent separation of a sheet cavity - analysis of the re-entrant jet   
left     void fraction α at 5 instants in time with intervals Δt1-2=2.5·10-3 s, Δt2-3=1.5·10-3 s, Δt3-4=1.0·10-3 s, Δt4-5=1.0·10-3 s. 
right   x component of the velocity u1 corresponding to t1 - t5, black isolines correspond to the void fraction α=0.05. 
The time interval t1 - t5 is indicated within Fig. 3. Arrows point to the attached part of the sheet where the discontinuity appears.     
Finest grid G4 - 2.4·107 cells, ΔtCFD=8.5·10-8 s. 
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Vorticity production due flow discontinuities 
As stated in the previous section, the predicted formation of 
vorticity is due to the discontinuous condensation at the closure 
region of the sheet during the growth process and during the 
collapse of the cavity. Hence, the flow is strongly rotational 
even before the re-entrant jet and the shedding mechanism 
become relevant. Figure 9 corresponds to the same instant in 
time as pic 2 of Fig. 8. The upper picture shows iso-surfaces of 
the vapor volume fraction α=0.05 on the suction side of the 
hydrofoil. The lower one depicts iso-surfaces of the magnitude 
|ω|=104 1/s of the vorticity vector.  It is observed that the onset 
of strong vorticity is located within the sheet cavity, precisely at 
that location where the attached part of the cavity recondenses. 
The growth of the detached part of the sheet results in the 
advection of the vorticity along the hydrofoil (smooth iso-
surface of Fig. 9). The fragmentation of the sheet and the 
subsequent cloud shedding alters the flow field and leads to a 
rich vortical flow pattern. It is obvious that such pronounced 3-
D characteristics result in highly 3-D cavitation structures as 
observed and discussed within this investigation.          
 
Shock induced maximum loads 
The collapse of a cloud or of a small structure within a cloud 
enforces the acceleration of the surrounding liquid towards the 
center of the cloud, comparable to the flow field of an isolated 
sink. At the instance of the final collapse, a significant part of 
the kinetic energy of the surrounding liquid is transferred to the 
formation of a shock, which leads to the discontinuous 
deceleration of the velocity towards the center of the cloud. The 
approximately spherical shock front propagates with a velocity 
uS≈1500 m/s through the liquid. Due to the rise of the pressure 
behind the shock, the collapse of surrounding clouds/bubbles is 
initiated or intensified. With respect to cavitation erosion this 
process is especially important if it takes place close to the 
surface of the hydrofoil. The CFD-Tool CATUM enables the 
simulation of shock formation and propagation [9-14] and 
provides a prediction of shock induced maximum loads on the 
surface of the hydrofoil. The key idea is to record the static 
pressure within all computational cells that are located at the 
surface of the hydrofoil for the time interval ΔtA-E=0.04 s as 
denoted within Fig. 3. The computational cells at the surface of 
the hydrofoil are thus interpreted as pressure transducers. The 
corresponding sampling frequency of the numerical transducers 
is fsample≈107 Hz, the average area of each of the numerical 
transducers is 0.5 mm x 1.2 mm = 0.6 mm². Those positions 
where the highest pressure peaks are recognized provide an 
indication of erosion sensitive areas. Figure 10 depicts an 
output of the numerical transducers. For each computational 
cell at the surface of the hydrofoil the maximum pressure 
during the time interval ΔtA-E=0.04 s is determined and 
visualized. We observe instantaneous maximum loads of 2400 
bar close to the trailing edge of the hydrofoil. It should be noted 
that the analysed time interval ΔtA-E=0.04 s is extremely short 
compared to experimental investigations [16] on cavitation 
erosion. However, our previous investigations [13,14] indicate 
that 5 to 10 shedding cycles provide sufficient data to 
determine the locations where erosion is most likely to occur.         
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Correlation of void fraction α and vorticity |ω|  
Iso-surfaces of the vapor volume fraction α=0.05 
(top) and iso-surfaces of the magnitude |ω|=104 1/s 
of the vorticity vector (bottom) on the suction side 
of the hydrofoil. The corresponding time instant t2 
is defined in Fig. 8.  
Finest grid G4 - 2.4·107 cells, ΔtCFD=8.5·10-8 s. 
 

α=0.05 

|ω|=104 1/s

Fig. 10 Instantaneous maximum loads    
Analysis of occurring maximum pressure within each 
computational cell at the suction side of the hydrofoil 
during the analysis interval A to E with ΔtA-E=0.04 s as 
defined in Fig. 3. The maximum pressure at the trailing 
edge is pmax=2400 bar.  
Finest grid G4 - 2.4·107 cells, ΔtCFD=8.5·10-8 s. 
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CONCLUSION 
The investigation focuses on wave and inertia driven 
mechanisms of cavitating flows. We apply the CFD-Tool 
CATUM (CAvitation Technische Universität München) to 
simulate the 3-D flow around a 2-D hydrofoil with special 
emphasis on self-excited instabilities in spanwise direction. It is 
demonstrated that these instabilities are predictable by the 
assumption of inviscid flow and equilibrium thermodynamics. 
The importance of sufficient resolution in space and time is 
analyzed by a grid dependence study. Large scale 
characteristics are only weakly dependent on the resolution 
while small scale structures are strongly grid dependent. The 
simulation predicts various irregular break-up patterns, hairpin 
and horseshoe vortices. These delicate features of the flow vary 
from cycle to cycle, strong periodicity is not observed for the 
investigated set-up. The development of the re-entry jet as part 
of the shedding mechanism is analyzed. Here, we observe 
significant vorticity production during the growth and the 
collapse of the sheet cavity. It is demonstrated that the vorticity 
production is caused by a discontinuity at the end of the 
attached part of the cavity where condensation takes place. The 
discontinuity fulfills Rankine-Hugoniot conditions as known 
from gasdynamic shocks. Contrary to the discontinuity related 
with the formation and break-up of the sheet cavity, we observe 
shocks due to collapsing fragments of clouds. These shocks 
produce significant maximum loads of pmax≈2400 bar, 
particularly close to the trailing edge of the investigated 
hydrofoil. We conclude that the dynamics of sheet and cloud 
cavitation are essentially inertia controlled. Hence, the 
application of an inviscid flow model to simulate cavitating 
flows is justified - provided that it is ensured that the boundary 
layers of the corresponding single-phase flow remain attached. 
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NOMENCLATURE 
 
u, ui      velocity, velocity components      
c            speed of sound                             
M          Mach number        
            vector of conserved quantities      
              flux-vector in direction xi    
ρ           density        
ρv,sat           saturation vapor density  
ρl,sat           saturation liquid density    
E          mass specific total energy     
e           mass specific internal energy   
U   total internal energy 
p           static pressure      
T           static temperature     
α           vapor volume fraction    
ε           vapor mass fraction    

σref         cavitation number    
xi           coordinate direction     
ΔtCFD      numerical time step     
Vvap       integrated vapor volume [%]          
f           frequency 
lcord     cord length 
lspan     span width 
lcav,c     length of the cavity along the cord 
lcav,s     spanwise length of a shedded cloud 
δre-entrant   thickness of re-entrant jet 
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