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ABSTRACT

In this paper we shortly describe basic aspects of the the-
ory of pressure envelopes which in the frame work of poténtia
flows allows one to design a wing section shape that gener-
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In a seaway, the cavitation numhgand changes in angles
of attack (the latter can be caused by a sea state or by control
devices of incidence variations) depend on the craft's gpee
Thus according to craft operating requirements varioussyp

ates exactly a specified pressure envelope. By means of this of pressure envelopes can be desired to operate in a seaway

theory we analyze and modify a series of hydrofoils designed
by Eppler. The modifications based on shifts and proportiona
stretches of the dependence of the maximum velocity on the
angle of attack. Besides, applying the theory, we solve an op
timal problem and design a series of optimal hydrofoils whic
have a maximal width of the pressure bucket. We present ac-
curate estimates of the maximal width as a function of the cav
itation number and angle of attack.

INTRODUCTION

In hydrofoil theory the pressure envelope means the depen-
denceF'(«) of the minimal pressure coefficient, taken with op-
posite sign, on the angle of attack

_ 2poo - pmin(a)

2
po,

F(a) = —=Cpmin(@)

wherep.,i, is the minimal pressure on the profile surfage,
is the pressure at infinity,, is the velocity at infinityp is the
density of the fluid.

The functionF'(«) is one of the main characteristics of hy-
drofoils, which allows the cavitation-free incidence rang be
predicted in advance. The classical condition of nonctmiga
flow implies that the pressugemust be greater than the vapour
pressurep, everywhere in the fluid (see e.g. [1]). In terms of
F(a) this condition can be written as

Poo — Po
=2
“ pU3

F(CY) <Qa

)

where(Q is the vapour cavitation number.

without the danger of cavitation.
Let us introduce the function

fla) =1+ F(a). 1)

It follows from the Bernoulli equation that(«) defines the
dependence of the maximal velocity on the profile surface on
the angle of attack. In a series of works by Avhadiev and Mak-
lakov it has been developed a method of designing hydrofoils
whose pressure envelopes coincide with a function spedified
advance (see [2] -[4], [6]). A systematical presentatiothef
method can be found in the monographs [5], [7].

In this paper we analyze a series of hydrofoils designed
by Eppler (€816, €817, €836, €837, €838, €874, see [8]) and
demonstrate how it is possible to modify the series by means
of proportional stretch (shrink) and shift of the functifx)
along thea-axis. Besides, we solve an optimal problem and
design a series of optimal hydrofoils which have maximal
widths of the pressure bucket. We present accurate essmate
of the maximal width as a function of the cavitation number
and angle of attack.

1. BASIC ASPECTS OF THE PRESSURE ENVEL OPE
THEORY

Consider a two-dimensional potential flow of an ideal in-
compressible fluid over a single profile. Let= z(t) be the
conformal mapping of the domain exterior to the unit circle
in the parametri¢-plane onto the flow region in the-plane.
The correspondence of points is{oco) = oo, 2(1) = 0 (see
Fig. 1, a, b). The origin of the coordinate system in thglane
is at the trailing edge. The mappirg= z(t) matches in one-



to-one manner the points on the parametric circumferende an
the points on the profile. Let be a polar angle in the paramet-
ric t-plane,« be an angle of attack relative to the zero-lift line.
We denote by (v, «) the velocity distribution along the para-
metric circle at the angle of attack The velocity at infinity is
taken to be unity.
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Figure 1. Physicat-plane; b) parametrit-plane

The complex potentialy of the flow as a function of the
parametric variableis

w(t):uo(e_iat—i— eio‘/t+2i sin«alog t), (2)

whereug > 0 is a constant which has the dimension of the
velocity potential. Be means of the formula

dw dw

FriT 2'(t) ©))

and (2) we find

(4)

’U(’Yv O[) = Ug

(ei'y _ 1)[6” _ ei(w+2a)]
Z(e'7)

The functionz(t) can be represented in the forait) =
e~z (t), wherezo(t) maps conformally the domain > 1
onto the exterior of the hydrofoil located at the zero lifgén
of attack. Therdm z{(c0) = 0. From equations (2), (3) and
the conditionv,, = 1 we find thatz{(co0) = ug. From the
relation (4) we deduce

v(7, @) = |cos(v/2 — a)|g(7), (5)
where the function

4ug| sin~y/2]
9(y) =~
)= Taatem)

is 27-periodic and continuous.

It follows from (5) that for the potential flow the function
g(v) completely defines the velocity distribution along the pro-
file surface at any angle of attaek If the functiong(~) is
known, then the shape of the profile can be easily restored. In
deed, from (6) we find

(6)

i .
P(y) = log|24(€') /us| = log [4sin 2| ~log g(),

wherey € [—m,7]. The functionP(v) is a real part of the
function x(t) = log(z{(t)/uo), which is analytic in the exte-
rior of the unit circle. Hencex(¢) can be restored by means of

the Schwarz integral:

I el +1¢
ty=— [ Ply)——d 7
Xt =—o | POlgm— 4 7

and here we take into account that z{,(c0) = 0. Further, we

deduce .

20(t) = ug / ex(t) dy, ®)
1

and setting = el”, define thereby the contour of the profile
in parametric form. The constanyg is a proportionality factor
which should be chosen such that the profile has a given chord
length.

Sincez((c0) = up, we havey(oco) = 0. By means of the
Schwarz integral we deduce the condition, which provides th
given (unit) velocity at infinity:

/ log g() dy — 27 log 2 = 0. 9
Tho contour of the profile has to be closed, which means that
in the expansion of the functiodz/ d¢ in powers ofl /¢ the
coefficient of1/¢ is zero. In terms ofj(~) the conditions of
closedness takes the form

/ log g(y) cosydy + 7 =0, / log g() sinydy = 0.

s s (10)

Let us introduce the function

fla) = m’zymxv('y, a). (11)

This function will be an envelope of the family of the func-
tionsv(v, a), if v is taken as a parameter of the family and
is taken as a variable. We have the same for the pressure en-
velope function. Thug(«) can be called a velocity envelope.
Bernoulli’s integral relates the velocity envelogéx) to the
pressure envelopB(a) by the simple relation (1).

The mathematical formulation of the problem of hydrofoil
design with a given pressure envelope consists in finging
periodic, continuous functiog(+) from the equation

max g(7)| cos(y/2 — a)| = f(a), (12)
vER
where f(«) is a given function. This equation is the basic
equation of the pressure envelope theory.

Eq. (12) is neither integral, nor differential. It is a nevpéy
of equations that can be characterized as those of conwoluti
type obtained by replacing integral by maximum (see [6]).

Theoretically the angles of attack relative to the zerb-lif
line can be changed in the range /2 < o < 7/2. A practi-
cal range of change of for hydrofoils does not exceed several
degrees. However, in solving Eq. (12) we assume the pressure
envelope functionf(«) to be given for—7/2 < a < w/2.
The matter is that the values ¢f«) at the unrealisticly large
angles of attack define the shape of the profile near the lgadin



edge and itis well known that this shape is of greatimpoganc whereg,,(; f) is defined by (16), and the constants are ob-

in hydrofoil design. tained by the substitution @f,, (~; f) for g(v) in the left hand

It follows from (12) thatf(=x/2) = f(—=/2), hence the sides of the conditions (9), (10).
function f(«) can be continued periodically onto the entire We define a nose part of the profile as a a set of the points on
a-axis by settingf(« + 7) = f(a). Thus we assume that the profile surface where the maximums of velocity are latate
the function f(«) is w-periodic and defined for ang € asa changes in the ranger /2 < a < 7/2. The correspond-
(—o0, +00). We shall call a point on the profile surface, where ing set on the parametric circumference we denotévbyin
the maximum velocity locates at = +7/2, a hydrodynamic the general case the nose part may be disconnected and may

leading edge. Generally speaking, the hydrodynamic Igadin consist of isolated points and arcs, Fig. 2.

edge does not coincides with the geometric one except of sym- b
1

metric profiles. Lety, be the image of the geometric leading Y
edge on the parametric circle afglbe the image of the hydro- El q
dynamic leading edge. Our computations have demonstrated S

that for hydrofoils the ratigy,, — v4|/74 is not more than sev-

eral tenths of a percent. This is a hydrodynamic interpieat Figure 2. Profiles with disconnected (a) and connected (b)
of the non-realistic angles of attack= +m/2. nose parts.
The functiong() is connected with the derivativg(v) of From the results of the works [2] — [6] it follows the fol-

the conformal mapping by the formula (6). Since the profile is  |owing theorem.
smooth, except of the trailing edge point, a solution to EQ) (

belongs to the class &¥r-periodic, nonnegative, continuous Theorem 1 1) For solvability of the basic equation (12) in
functions which can vanish only at the points= 2n, n € Z. the classG it is necessary and sufficient thita) € T'. The
The set of such functions we denote®y functiong,,,(v; f) defined by the formula (16) belongs to the
Denote byT the set of strictly positive2r-periodic and classG, strictly positive and satisfies Eq. (12); the function
trigonometrically convex functions. The definition of the 1/gm (27, f) € T-_ _ _
trigonometrical convexity is similar to that of the ordigaon- 2) If the functionf(a) € T'is the velocity envelope for a
vexity (see [9]): A functionf(«) is trigonometrically convex ~ certain profile, thenf(«) > 1, and there exists such an angle
if for two arbitrary pointsa; andas, 0 < as — aq < m, the of attacka.. that
following inequality holds glae —0) <0 < glae +0) (20)
fla) <H(a) a1 <a<a, (13) whereq(«) is defined by the formula (15); the constaris,
where K, K, satisfy the inequality
Si — S — AK =Ky—+/K? 4+ K2>0. 21
H(a) = flay)sin(as — a) + f(az)sin(a — a1) (14) o— /KT + K3 (21)

sin(az — a1) 3) If the functionf(«) € T is the velocity envelope for a

Geometrically the inequality (13) means that the the grdph o  certain profile with a connected nose part, then
f(a) for a € a1, az] lies not above the trigonometrical chord,

_ ) + -
determined by Eq. (14). gEPy; < gmg'yj ji; 1]:2: 7 i Pg’ 707}’ (22)
Let f € T. We introduce the functions ) = gmTs TE oY b
() wherey;” = q(a. + 0), 75 =alac —0), and the constants
q(a) = 2 |a + arctan Flo) |’ (15) Ky, K, and K>, besides (21), satisfy the condition
«
Qe = arg(K1 + iKQ) S (’Y&,VJ) (23)
L f(@) 16 | | |
gm (75 f) = m : (16) In this theorem we have tried to concentrate the basic prop-

ok | cos(7/2 — )]

Besides, we define the following constants, which are the-fun
tionals depending offi(«) € T

erties of the velocity envelopes for realistic profiles \witih
self-intersections.
The conditionf(«) € T, i.e. the condition of trigono-
™ metrical convexity, is of great importance since it throwss
Ko = / log gm (73 f) dy — 27 log 2, 17 enormous quantity of functions which cannot be realized as
velocity envelopes. Indeed, in [9] it is proved thatfif«) is
™ continuous and has the first and second piecewise continuous
K= / log g (7; f) cosydy +, (18) derivatives, then such a function is trigopnometricallyoonif

—T

—T

- and only if
Ky = [ﬂloggm(V;f) siny dy, (19) (@) + f(a) >0, f(a—0)< f(a+0), (24)



where f'(ac — 0) and f’(« + 0) are the derivatives of («)

on the left and right respectively, the first inequality hold
at the points of continuity of’(«), the second holds at the
points of discontinuity. The first inequality is analogooghe
condition f”(«) > 0 for ordinary convex functions. The in-
equalities (24) means, for example, that the functfda) =
acosa + bsin(a) — ¢, wherea andb are certain constants,
cannot be a part of the velocity envelope no matter how small
ise > 0. But for anye < 0 this function is admissible.

The inequality (20) is equivalent to the statement that the
location of the maximal velocity cannot be at the point of the
trailing edge. It follows from (20) that any velocity envpko
(or pressure envelope) has at least one point of discotyiafii
its derivative. When the angle of attack passes ftor a.. to
o > a., the location of the maximal velocity will jump from
the lower surface of the profile to the upper one. At «a,
the maximal velocity lies on the upper and lower surfaces si-
multaneously. In what follows, the angle of attagk will be
called acentral angle of attack

The parameterd K anda, are the key parameters, respon-
sible for geometry of hydrofoils. Roughly speakiny/X" de-
termines the thickness of the profile part near the trailing a
a. determines the curvature of this part. The parametexe
shall call aneccentricityof the profile. Ifa. = 0, the profile
will be calledcentered

BesidesAK anda,. we introducek,, = AK/Ky. If ky,
AK anda, are known the constanfs,, K;, K, can be re-
stored uniquely.

2. DESIGNING CLOSURE COMPONENT

As follows from the relation (22), for the profile with a con-
nected nose part the functigity) is known everywhere, ex-
cept for the segmerityy, v, ), whereg(y) < gm(7; f). This
segment defines the pressure recovery region of the proéte. L
g(7) = gm(7) exp[—m(y)] on this segment, anck(~) is the
desired function. This function must satisfy the condition

m(y) >0, m(yg)=0, m(y)=0 (25)
[ mas = o (26)
Yo

+
Yo
m(y)sinydy = K. (27)

/%*
v,

0

m(y) cosydy = Ki, /

Yo
On the segmerity;", v, ] the velocity
v(y, @) = gm(v; £) 7™ cos(v/2 — a)).

From the point of view of favorable development of the bound-
ary layer on this segment a nonseparated flow will be provided
if v(~, a) is close as possible to a constant value. This desired
closeness can be achieved if we minimize the functional

/%*
~

0

d 2
{d—7 logv(v, a)} dry

with respect ton() anda. It is possible to prove that on the
segmenty,", v, | the function

gm (v f) = flac)/ cos(v/2 — ac).
Then

I= / [% tan(y/2 — a.) — %tan(v/? —a) —m/'(y)

Yo

2
dy.

The differencel tan(v/2—a.)— 1 tan(y/2—a) has the order
of |a — a.| and for hydrofoils is very small. Because of this
we can omit it to get finally

L " ()

0

I[m)] (28)

Thus, the problem of finding the closure component is re-
duced to the minimization of the functional (28) under the-co
strains (25)—(26). After discretization we obtain a quédra
programming problem whose solvability is provided by the
conditions (21) and (23) of Theorem 1.

3. SIMPLE TRANSFORMATIONSOF THE VELOCITY
ENVELOPES

We investigate the question how the functign(~; f) and
the constanté(y, K1, K2 will change if we stretch or shift the
velocity envelopef («). Let for a certain profile the functions
f(a) andg,,(v; f) are known. It follows from (16) that, il
is a constant value, thes,, (v, Af) = Agm (v, f), i.e. un-
der the proportional stretch ¢gf(«) the functiong,,, (v, f) also
changes proportionally. We shall mark the new values of the
constants by a star. From (17)—(19) we infer

K} =2nlog A+ Ky, AK*=2rlogA+ AK

K=K, K=K,

i.e. the constanf{, changes, buf; and K, remain the
same. Hence, by means of the stretch we always can sat-
isfy the condition (21). To do so it is enough to choose
A > exp[-AK/(2m)]. If we want to get a desired value of
k}, by means of the stretch, we set

kKo — AK

A= e
2m(1 — k)

exp (29)
Now consider the functiory(« — «5), whose graph is
shifted with respect to the graph ffa) by the anglex, along

the a-axis. From (16), (17)—(19) we deduce

gm(’Y;f(a - as)) = gm(’y — 2a; f(Oé)),

K = Ko,
K} = (K1 —7m)cos2as — Kosin2a, + 7
K3 = Ky cos2a, + (K1 — 7) sin 2a,.

Thus, the shift of the functiorf(a) by the anglex leads to
the shift of the functiory,,(v; f) by 2« along they-axis. The

(30)



constantK, remains the same, but the constaitsand K5 To determine the functionf(«) for these profiles we have
change according to (30). By means of the shift we always can used a very accurate method of conformal mappings based on

satisfy the condition (23). solving an integral equation. In Fig. 4 we demonstrate tkspr

For a centered profile with zero eccentricity.( = 0) sure envelope for the series. The functignRd~; f) have been
the constantks = 0. Because of this any profile can be found from Eq. (16) by solving the minimization problem. To
centered by means of the shift g{a) by the anglea, = defineg,, (vy; f) accurately we have developed a special numer-
$ arctan[K,/(m — K1)). ical algorithm. The characteristics of the pressure empesof

the series are shown in Table 1. In Table 1 all angular charac-
teristics are presented in degrees. The angles the zero lift
angle of attack. The parameteg defines the lift coefficient

0 C, = 8rnugsina. The valueF(a.) is the minimal value of
- F(a).

E818 Table 1.
-0.2

Namg o9 | ug | o 'yar Yo |F(ac)|AK| ky | e
EB17|-4.350.2711.72 68|-126) 0.47 |0.130.20-26.5
> 04l EB18]-4.340.261.70 68|-132 042 |0.140.22-29.9
o EB874]-0.660.2660.40 117-144 0.36 |0.250.41]-9.64
, EB36 0 [0.274 0 |96 96| 0.340.080.17 0
-0-6 E837| 0 |0.279 0 |104-104 0,50 0.150.22 0

E838 0 [0.283 0 [99|-99| 0.59|0.140.21 O

-0.8 E838 According to criteria (21) and (23) the limiting values of
L L1 — the parameterdA K, k,, are zeroes. As one can see from Ta-

0 02 04 0.6 08 ! ble 1, the symmetric profile E836 has the closest to zero pa-
rameters. For this reason we choose E836 for the stretch and
shift modifications of its functiorf ().

N
T

-l i N Figure 5.
150 We should note that pure shift modifications are danger-
- :g}; ous. Indeed, profile E836 is symmetric and, hence, centered
= | €874 with Ky = 0, a.=0. For this profileKy = AK/k,, = 0.494,
g, :ggg K, = Ky—AK = 0.417. From formulas (30) one can deduce
1+ 838 that with the shift by the angle, the complex poin&; +i K3
i moves along the circumference of radius— K7) with the
i center at the poin¢r,0) (see Fig. 5). As one can see from
- Fig. 5, the pointK{ + iK; leaves the trapping circle of ra-
05 « dius K even for very smalk, and the criterion (21) will be
L - | ‘ | violated. A simple geometric reasoning show that for a cen-
5 0 5 10 tered profile the maximal possible shift without change&gf
04 is defined by the formula
Figure 4. Pressure envelopes for Eppler’s series 1 K2 + K2 + 2Ky7 — 272

max(ae) = 5 arccos (e
4. ANALY SIS OF EPPLER’S SERIES (K =)

Our aim now is to analyze the series of Eppler’s profiles by For E836 the maximal shift angle is on®y59° and for this
computing for them the parametetss, k,, anda.. We be- shift the profile will be nonrealistic necessarily. A biggift
lieve that these parameters are of great importance forgny h  can be obtained if we allow changes &f. So, in modifi-
drofoil design. The geometry of Eppler’s series can be found cations of E836 we conserve the paramétgr= 0.1 and to-

in his monograph [8]. The series is shown in Fig. 3. gether with the shift make the corresponding stretcfi(of) by



the formula (29). The results of such modifications are shown
in Fig. 6 and in Table 2.

As one can see from Fig. 6 and Table 2, maintaining the
parametek,, = 0.1, we are able to make the shift ¢fa) by
the anglex, = 3°. For the anglex, = 4° the profile is already
nonrealistic and has a point of self-intersection. The figand
table demonstrate the critical values of the eccentridityle
a.. We come to the conclusion that for the velocity envelopes
with || > 30° the profiles are either nonrealistic at all (with
self-intersections), or they have a very thin trailing edgehe
profile with o, = 3° in Fig. 6.

b)
E836
0/1/2/3/4
0, 5
Figure 6. Modifications of profile €836.
Table 2.
Name| a9 | ug |ae War Yo | F(ac)|AK | ky | e
E836| 0 |0.274 0 | 96(-96| 0.34 {0.080.17] O
as=0| 0 ]0.277 0 |96|-96| 0.33|0.05 0.1| O
as = 1]-1.780.2761.0| 98 |-94| 0.34 |0.05 0.1|-12.7
as = 2(-3.630.2742.0{100-92| 0.35|0.05 0.1|-24.1
as = 3|-5.130.2703.0{102-90| 0.38 |0.06 0.1 (-37.1]
as = 4(-6.320.2664.0{104-88| 0.41 |0.07| 0.1|-40.4

5.ESTIMATESOF THE WIDTH OF PRESSURE ENVE-
LOPE BUCKETS

Let fo > 1, ay, AKy > 0and~y, € [0, n] be given val-
ues. We formulate the following optimization problem: find
the maximald > 0 and a corresponding realistic profile such
that the velocity envelope for this profile satisfies the ¢ond
tions

f(a) Sfoa o e [aw_d7aw+d] (31)
f(aw_d):f(aw""d):fO (32)
% =%, % <, AK > AK,. (33)

We shall solve the problem under a natural assumption that
the central angle of attaek. € (o, —d, a,, +d). In this prob-
lem the parametef, is connected with the cavitation number
@ by the simple relationfy = /1 + Q. The intervalg0, o]
and[—~o, 0] define the dimensions of the pressure recovery re-
gions on the upper and lower surfaces of the desired profiles,
respectively. The valued is the width of the bottom of the
pressure bucket.

The parameteA K is introduced to get meaningful, geo-
metrically realistic profiles. Indeed, according to theeasion
(21) AK > 0. At AK = 0 the profile is necessarily nonreal-
istic. But if AK is very small, the profile will be either with
self-intersection or its trailing edge will be very thick.ehice
we need to have some positive reserve for the valukigffor
geometrically realistic profiles.

So, if we know the cavitation numbé&p and specify the
middle«,, of the bottom of the pressure bucket, the solution to
the problem will give us the maximal width of this bottom un-
der the restriction (33) on dimensions of the pressure mgov
region.

To solve the problem we need the following comparison
theorem.

Theorem 2 Let f(«) and f*(«) be two trigonometrically
convex, strictly positivesr-periodic functions. Iff(a) <
f*(a), thenAK < AK*, and the equality is possible if and
only if f(a) = f*(«).

Thus, any decrease ¢f«) leads to decrease of the param-
eterA K. This theorem has been proved only recently, and not
to overloud the paper by pure mathematical reasoning we omit
its proof.

Consider now any profile with the velocity envelopg)
which satisfies the constrains (31)—(33). Lketbe the cen-
tral angle of attack of this profile. We denofe = f(«.),
a1 = Qqy — d, g = Qi + d.

Now we join sequently five point&xe — 7, fo), (a1, fo),

(a07 .fC)' (0427 .fo)' (0[1 +, .fo) in the plandaa f) by trigono-

metrical chords. The equations for these chords we find from

(14). As a result we obtain a trigonometrically convexcilyi

positive,r-periodic function:

__ Jfo[sin(a—az)+sin(a—ai)]
sin(as—a1) ’

fesin(a—ai1)— fo sin(a—a.)

] sin(ac—al_) ’
fe sin(az—a)+ fo sin(a—a.)

sin(as —ac) ’

folsin(a—as)+sin(a—ai)]
sin(og—a) ’

/2 <a<ao

o < a<ag

[ (@)

a. < a<az
ag <a<m/2

(34)
The parameters related to the functifi(«) we shall mark
by a star. Since the functiofi*(«) is formed by trigonometri-
cal chords off(«), we getf(a) < f*(a) and by Theorem 2
AK* > AK > AK,. Moreover, at the point. we have

[ (ae+0) > f(ae+0), f(ac—0)< f'(ae—0).

But the boundaries, and~, of the pressure recovery region
are defined by the formutg| = g(a. +0), 75 = g(a. — 0),
whereq(a) is determined by (15). Hence; ™ > 7, 74~ <

v - So, the restrictions (33) for the functioff («) are ful-
filled.

Now we formulate the following auxiliary optimization
problem: maximizel for the functionf*(«) > 1, defined by
(34), under the restrictions (33).

If a solution to the auxiliary problem possesses the prop-
erty AK = AKj, then it will be the solution to the initial




problem. Indeed, lef**(«) be such a solution to the auxil-
iary problem withd = d.,.x and f(a) be any function, dif-
ferent fromf**(«), that satisfies the restrictions (31)—(33) for
somed. Construct forf(«) the majorant functiory*(«) by
means of (34). The functiorfi*(«) satisfies the restrictions
(33). If f*(«) is different from f**(«), thend < dpax. But
the casef*(a) = f**(«) is only possible iff («) = f**(«),
because otherwisAK|[f] < AK[f**] = AK, and the re-
striction AK[f] > AKy will be violated.

25F
\ 0.55
% 2:‘\ 0.5
s 0.45
Sl %
I 0.35
Fk
i 0.3
lf_-_—‘““~0%
.
0.5F Q=02
OO0~ 05 1 15 2 25 3 3
Uy
Figure 7. The graphs of the functiods .. (., ) for
different@.
X s
%% ""02 04 x 06 08 1
S
01g 0.2 04 x 06 08 1
o aF2l —

o
o
N

Figure 8. The shapes of optimal profilesat= 0.35.

We have investigated the auxiliary problem numerically
and come to the conclusion that for all its solutioh®” =
AKjy. So, for the given cavitation numbéJ, the medial an-
gle oy, of the pressure bucket and the angde which defines
the dimensions of the pressure recovery region, we are able t
design a series of optimal profiles. In Fig. 7 we demonstrate
the functionsl,,.x(«) for different values of). In these com-
putations we choosA K, = 0.06, 7o = 80°. We stop the
increase ofx,, when the eccentricity, of the obtained pro-
files exceeds$0°, since further increase leads to nonrealistic

profiles. So, every point on the graphs of Fig. 7 associatds wi
some geometrically realistic optimal profile. For the psint
(aw, dmax), Mmarked by circles in Fig. 7, the shapes of such
profiles are shown in Fig. 8. Their pressure envelopes one can
see in Fig. 9.
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Figure 9. The pressure envelopes for optimal profiles at
Q = 0.35.

CONCLUSIONS

In this paper we have worked out some practical criteria
for designing hydrofoils by a given pressure envelope. In
particular, the parameterA K and o, which are the func-
tionals of the pressure envelope, have been introducedt and
has been demonstrated that for geometrically realistifilpso
AK = 0.6 and the eccentricity angler.| < 30°. In working
out these criteria the series of Eppler’s hydrofoile turasto
be helpful. We have shown how it is possible to stretch and
shift the pressure envelopes and presented the resultelof su
modifications.

Besides, we have given accurate estimates of the widths of
pressure buckets and designed a series of optimal geometri-
cally realistic profiles, which realize these estimates. f&8o
our attention have been mainly stressed on geometrical re-
quirements and the development of the boundary layer have
not been considered. The velocity envelopes for the optimal
profile have the simplest shape: they consist of four sirzgoi
functions and have angular points. But we have strictly pdov
that, if the boundary layer is not taken into account, the ob-
tained envelopes are optimal. It is clear that restrictiohs
nonseparated boundary layer should be included in the mesig
procedure. Certainly these restrictions will make the gues
envelopes smoother, but at the same time will lead to degreas
of the width of pressure buckets.
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