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ABSTRACT
In this paper we shortly describe basic aspects of the the-

ory of pressure envelopes which in the frame work of potential
flows allows one to design a wing section shape that gener-
ates exactly a specified pressure envelope. By means of this
theory we analyze and modify a series of hydrofoils designed
by Eppler. The modifications based on shifts and proportional
stretches of the dependence of the maximum velocity on the
angle of attack. Besides, applying the theory, we solve an op-
timal problem and design a series of optimal hydrofoils which
have a maximal width of the pressure bucket. We present ac-
curate estimates of the maximal width as a function of the cav-
itation number and angle of attack.

INTRODUCTION
In hydrofoil theory the pressure envelope means the depen-

denceF (α) of the minimal pressure coefficient, taken with op-
posite sign, on the angle of attackα:

F (α) = −Cp min(α) = 2
p∞ − pmin(α)

ρv2
∞

,

wherepmin is the minimal pressure on the profile surface,p∞
is the pressure at infinity,v∞ is the velocity at infinity,ρ is the
density of the fluid.

The functionF (α) is one of the main characteristics of hy-
drofoils, which allows the cavitation-free incidence range to be
predicted in advance. The classical condition of noncavitating
flow implies that the pressurep must be greater than the vapour
pressurepv everywhere in the fluid (see e.g. [1]). In terms of
F(a) this condition can be written as

F (α) < Q, Q = 2
p∞ − pv

ρv2
∞

,

whereQ is the vapour cavitation number.

In a seaway, the cavitation numberQ and changes in angles
of attack (the latter can be caused by a sea state or by control
devices of incidence variations) depend on the craft’s speed.
Thus according to craft operating requirements various types
of pressure envelopes can be desired to operate in a seaway
without the danger of cavitation.

Let us introduce the function

f(α) =
√

1 + F (α). (1)

It follows from the Bernoulli equation thatf(α) defines the
dependence of the maximal velocity on the profile surface on
the angle of attack. In a series of works by Avhadiev and Mak-
lakov it has been developed a method of designing hydrofoils
whose pressure envelopes coincide with a function specifiedin
advance (see [2] -[4], [6]). A systematical presentation ofthe
method can be found in the monographs [5], [7].

In this paper we analyze a series of hydrofoils designed
by Eppler (e816, e817, e836, e837, e838, e874, see [8]) and
demonstrate how it is possible to modify the series by means
of proportional stretch (shrink) and shift of the functionf(α)
along theα-axis. Besides, we solve an optimal problem and
design a series of optimal hydrofoils which have maximal
widths of the pressure bucket. We present accurate estimates
of the maximal width as a function of the cavitation number
and angle of attack.

1. BASIC ASPECTS OF THE PRESSURE ENVELOPE
THEORY

Consider a two-dimensional potential flow of an ideal in-
compressible fluid over a single profile. Letz = z(t) be the
conformal mapping of the domain exterior to the unit circle
in the parametrict-plane onto the flow region in thez-plane.
The correspondence of points is:z(∞) = ∞, z(1) = 0 (see
Fig. 1, a, b). The origin of the coordinate system in thez-plane
is at the trailing edge. The mappingz = z(t) matches in one-
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to-one manner the points on the parametric circumference and
the points on the profile. Letγ be a polar angle in the paramet-
ric t-plane,α be an angle of attack relative to the zero-lift line.
We denote byv(γ, α) the velocity distribution along the para-
metric circle at the angle of attackα. The velocity at infinity is
taken to be unity.

Zero-lift line
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Figure 1. Physicalz-plane; b) parametrict-plane

The complex potentialw of the flow as a function of the
parametric variablet is

w(t) = u0( e−i αt + ei α/t + 2i sinα log t), (2)

whereu0 > 0 is a constant which has the dimension of the
velocity potential. Be means of the formula

dw

dz
=

dw

dt

/

z′(t) (3)

and (2) we find

v(γ, α) = u0

∣

∣

∣

∣

( ei γ − 1)[ ei γ − ei (π+2α)]

z′( ei γ)

∣

∣

∣

∣

. (4)

The functionz(t) can be represented in the formz(t) =
e−i αz0(t), wherez0(t) maps conformally the domain|t| > 1
onto the exterior of the hydrofoil located at the zero lift angle
of attack. ThenIm z′0(∞) = 0. From equations (2), (3) and
the conditionv∞ = 1 we find thatz′0(∞) = u0. From the
relation (4) we deduce

v(γ, α) = | cos(γ/2 − α)|g(γ), (5)

where the function

g(γ) =
4u0| sinγ/2|
|z′0( ei γ)| (6)

is 2π-periodic and continuous.
It follows from (5) that for the potential flow the function

g(γ) completely defines the velocity distribution along the pro-
file surface at any angle of attackα. If the functiong(γ) is
known, then the shape of the profile can be easily restored. In-
deed, from (6) we find

P (γ) = log |z′0( ei γ)/u0| = log
∣

∣

∣
4 sin

γ

2

∣

∣

∣
− log g(γ),

whereγ ∈ [−π, π]. The functionP (γ) is a real part of the
functionχ(t) = log(z′0(t)/u0), which is analytic in the exte-
rior of the unit circle. Hence,χ(t) can be restored by means of

the Schwarz integral:

χ(t) = − 1

2π

∫ π

−π

P (γ)
ei γ + t

ei γ − t
dγ, (7)

and here we take into account thatIm z′0(∞) = 0. Further, we
deduce

z0(t) = u0

t
∫

1

eχ(t) dt, (8)

and settingt = ei γ , define thereby the contour of the profile
in parametric form. The constantu0 is a proportionality factor
which should be chosen such that the profile has a given chord
length.

Sincez′0(∞) = u0, we haveχ(∞) = 0. By means of the
Schwarz integral we deduce the condition, which provides the
given (unit) velocity at infinity:

∫ π

−π

log g(γ) dγ − 2π log 2 = 0. (9)

Tho contour of the profile has to be closed, which means that
in the expansion of the functiondz/ dt in powers of1/t the
coefficient of1/t is zero. In terms ofg(γ) the conditions of
closedness takes the form
∫ π

−π

log g(γ) cos γ dγ + π = 0,

∫ π

−π

log g(γ) sinγ dγ = 0.

(10)
Let us introduce the function

f(α) = max
γ

v(γ, α). (11)

This function will be an envelope of the family of the func-
tionsv(γ, α), if γ is taken as a parameter of the family andα
is taken as a variable. We have the same for the pressure en-
velope function. Thusf(α) can be called a velocity envelope.
Bernoulli’s integral relates the velocity envelopef(α) to the
pressure envelopeF (α) by the simple relation (1).

The mathematical formulation of the problem of hydrofoil
design with a given pressure envelope consists in finding2π-
periodic, continuous functiong(γ) from the equation

max
γ∈R

g(γ)| cos(γ/2 − α)| = f(α), (12)

wheref(α) is a given function. This equation is the basic
equation of the pressure envelope theory.

Eq. (12) is neither integral, nor differential. It is a new type
of equations that can be characterized as those of convolution
type obtained by replacing integral by maximum (see [6]).

Theoretically the angles of attack relative to the zero-lift
line can be changed in the range−π/2 ≤ α ≤ π/2. A practi-
cal range of change ofα for hydrofoils does not exceed several
degrees. However, in solving Eq. (12) we assume the pressure
envelope functionf(α) to be given for−π/2 ≤ α ≤ π/2.
The matter is that the values off(α) at the unrealisticly large
angles of attack define the shape of the profile near the leading
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edge and it is well known that this shape is of great importance
in hydrofoil design.

It follows from (12) thatf(π/2) = f(−π/2), hence the
function f(α) can be continued periodically onto the entire
α-axis by settingf(α + π) = f(α). Thus we assume that
the functionf(α) is π-periodic and defined for anyα ∈
(−∞, +∞). We shall call a point on the profile surface, where
the maximum velocity locates atα = ±π/2, a hydrodynamic
leading edge. Generally speaking, the hydrodynamic leading
edge does not coincides with the geometric one except of sym-
metric profiles. Letγg be the image of the geometric leading
edge on the parametric circle andγn be the image of the hydro-
dynamic leading edge. Our computations have demonstrated
that for hydrofoils the ratio|γn − γg|/γg is not more than sev-
eral tenths of a percent. This is a hydrodynamic interpretation
of the non-realistic angles of attackα = ±π/2.

The functiong(γ) is connected with the derivativez′0(γ) of
the conformal mapping by the formula (6). Since the profile is
smooth, except of the trailing edge point, a solution to Eq. (12)
belongs to the class of2π-periodic, nonnegative, continuous
functions which can vanish only at the pointsγ = 2nπ, n ∈ Z.
The set of such functions we denote byG.

Denote byT the set of strictly positive,2π-periodic and
trigonometrically convex functions. The definition of the
trigonometrical convexity is similar to that of the ordinary con-
vexity (see [9]): A functionf(α) is trigonometrically convex
if for two arbitrary pointsα1 andα2, 0 < α2 − α1 < π, the
following inequality holds

f(α) ≤ H(α) α1 < α < α2, (13)

where

H(α) =
f(α1) sin(α2 − α) + f(α2) sin(α − α1)

sin(α2 − α1)
. (14)

Geometrically the inequality (13) means that the the graph of
f(α) for α ∈ [α1, α2] lies not above the trigonometrical chord,
determined by Eq. (14).

Let f ∈ T . We introduce the functions

q(α) = 2

[

α + arctan
f ′(α)

f(α)

]

, (15)

gm(γ; f) = min
α∈R

f(α)

| cos(γ/2 − α)| . (16)

Besides, we define the following constants, which are the func-
tionals depending onf(α) ∈ T :

K0 =

∫ π

−π

log gm(γ; f) dγ − 2π log 2, (17)

K1 =

∫ π

−π

log gm(γ; f) cosγ dγ + π, (18)

K2 =

∫ π

−π

log gm(γ; f) sin γ dγ, (19)

wheregm(γ; f) is defined by (16), and the constants are ob-
tained by the substitution ofgm(γ; f) for g(γ) in the left hand
sides of the conditions (9), (10).

We define a nose part of the profile as a a set of the points on
the profile surface where the maximums of velocity are located
asα changes in the range−π/2 ≤ α ≤ π/2. The correspond-
ing set on the parametric circumference we denote byN . In
the general case the nose part may be disconnected and may
consist of isolated points and arcs, Fig. 2.

Figure 2. Profiles with disconnected (a) and connected (b)
nose parts.

From the results of the works [2] – [6] it follows the fol-
lowing theorem.

Theorem 1 1) For solvability of the basic equation (12) in
the classG it is necessary and sufficient thatf(α) ∈ T . The
functiongm(γ; f) defined by the formula (16) belongs to the
classG, strictly positive and satisfies Eq. (12); the function
1/gm(2γ, f) ∈ T .

2) If the functionf(α) ∈ T is the velocity envelope for a
certain profile, thenf(α) > 1, and there exists such an angle
of attackαc that

q(αc − 0) < 0 < q(αc + 0) (20)

whereq(α) is defined by the formula (15); the constantsK0,
K1, K2 satisfy the inequality

∆K = K0 −
√

K2
1 + K2

2 > 0. (21)

3) If the functionf(α) ∈ T is the velocity envelope for a
certain profile with a connected nose part, then

g(γ) = gm(γ; f) for γ 6∈ [γ+
0 , γ−

0 ],
g(γ) ≤ gm(γ; f) for γ ∈ [γ+

0 , γ−

0 ],
(22)

whereγ+
0 = q(αc + 0), γ−

0 = q(αc − 0), and the constants
K0, K1 andK2, besides (21), satisfy the condition

αe = arg(K1 + i K2) ∈ (γ−

0 , γ+
0 ) (23)

In this theorem we have tried to concentrate the basic prop-
erties of the velocity envelopes for realistic profiles without
self-intersections.

The conditionf(α) ∈ T , i. e. the condition of trigono-
metrical convexity, is of great importance since it throws away
enormous quantity of functions which cannot be realized as
velocity envelopes. Indeed, in [9] it is proved that iff(α) is
continuous and has the first and second piecewise continuous
derivatives, then such a function is trigonometrically convex if
and only if

f ′′(α) + f(α) ≥ 0, f ′(α − 0) < f ′(α + 0), (24)
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wheref ′(α − 0) andf ′(α + 0) are the derivatives off(α)
on the left and right respectively, the first inequality holds
at the points of continuity off ′(α), the second holds at the
points of discontinuity. The first inequality is analogous to the
conditionf ′′(α) ≥ 0 for ordinary convex functions. The in-
equalities (24) means, for example, that the functionf(α) =
a cosα + b sin(α) − ε, wherea and b are certain constants,
cannot be a part of the velocity envelope no matter how small
is ε > 0. But for anyε ≤ 0 this function is admissible.

The inequality (20) is equivalent to the statement that the
location of the maximal velocity cannot be at the point of the
trailing edge. It follows from (20) that any velocity envelope
(or pressure envelope) has at least one point of discontinuity of
its derivative. When the angle of attack passes fromα < αc to
α > αc, the location of the maximal velocity will jump from
the lower surface of the profile to the upper one. Atα = αc

the maximal velocity lies on the upper and lower surfaces si-
multaneously. In what follows, the angle of attackαc will be
called acentral angle of attack.

The parameters∆K andαe are the key parameters, respon-
sible for geometry of hydrofoils. Roughly speaking,∆K de-
termines the thickness of the profile part near the trailing and
αe determines the curvature of this part. The parameterαe we
shall call aneccentricityof the profile. Ifαe = 0, the profile
will be calledcentered.

Besides∆K andαe we introducekw = ∆K/K0. If kw,
∆K andαe are known the constantsK0, K1, K2 can be re-
stored uniquely.

2. DESIGNING CLOSURE COMPONENT
As follows from the relation (22), for the profile with a con-

nected nose part the functiong(γ) is known everywhere, ex-
cept for the segment(γ+

0 , γ−

0 ), whereg(γ) ≤ gm(γ; f). This
segment defines the pressure recovery region of the profile. Let
g(γ) = gm(γ) exp[−m(γ)] on this segment, andm(γ) is the
desired function. This function must satisfy the conditions

m(γ) ≥ 0, m(γ+
0 ) = 0, m(γ−

0 ) = 0 (25)

∫ γ
+

0

γ
−

0

m(γ) dγ = K0, (26)

∫ γ
+

0

γ
−

0

m(γ) cos γ dγ = K1,

∫ γ
+

0

γ
−

0

m(γ) sinγ dγ = K2. (27)

On the segment[γ+
0 , γ−

0 ] the velocity

v(γ, α) = gm(γ; f) e−m(γ | cos(γ/2 − α)|.

From the point of view of favorable development of the bound-
ary layer on this segment a nonseparated flow will be provided
if v(γ, α) is close as possible to a constant value. This desired
closeness can be achieved if we minimize the functional

I =

∫ γ
+

0

γ
−

0

[

d

dγ
log v(γ, α)

]2

dγ

with respect tom(γ) andα. It is possible to prove that on the
segment[γ+

0 , γ−

0 ] the function

gm(γ; f) = f(αc)/ cos(γ/2 − αc).

Then

I =

γ
+

0
∫

γ
−

0

[

1

2
tan(γ/2 − αc) −

1

2
tan(γ/2 − α) − m′(γ)

]2

dγ.

The difference12 tan(γ/2−αc)− 1
2 tan(γ/2−α) has the order

of |α − αc| and for hydrofoils is very small. Because of this
we can omit it to get finally

I[m] =

∫ γ
+

0

γ
−

0

[m′(γ)]2 dγ. (28)

Thus, the problem of finding the closure component is re-
duced to the minimization of the functional (28) under the con-
strains (25)–(26). After discretization we obtain a quadratic
programming problem whose solvability is provided by the
conditions (21) and (23) of Theorem 1.

3. SIMPLE TRANSFORMATIONS OF THE VELOCITY
ENVELOPES

We investigate the question how the functiongm(γ; f) and
the constantsK0, K1, K2 will change if we stretch or shift the
velocity envelopef(α). Let for a certain profile the functions
f(α) andgm(γ; f) are known. It follows from (16) that, ifA
is a constant value, thengm(γ, Af) = Agm(γ, f), i. e. un-
der the proportional stretch off(α) the functiongm(γ, f) also
changes proportionally. We shall mark the new values of the
constants by a star. From (17)–(19) we infer

K∗

0 = 2π log A + K0, ∆K∗ = 2π log A + ∆K

K∗

1 = K1, K∗

2 = K2,

i. e. the constantK0 changes, butK1 and K2 remain the
same. Hence, by means of the stretch we always can sat-
isfy the condition (21). To do so it is enough to choose
A > exp[−∆K/(2π)]. If we want to get a desired value of
k∗

w by means of the stretch, we set

A = exp
k∗

w K0 − ∆K

2π(1 − k∗
w)

. (29)

Now consider the functionf(α − αs), whose graph is
shifted with respect to the graph off(α) by the angleαs along
theα-axis. From (16), (17)–(19) we deduce

gm(γ; f(α − αs)) = gm(γ − 2αs; f(α)),

K∗

0 = K0,
K∗

1 = (K1 − π) cos 2αs − K2 sin 2αs + π
K∗

2 = K2 cos 2αs + (K1 − π) sin 2αs.
(30)

Thus, the shift of the functionf(α) by the angleα leads to
the shift of the functiongm(γ; f) by 2α along theγ-axis. The
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constantK0 remains the same, but the constantsK1 andK2

change according to (30). By means of the shift we always can
satisfy the condition (23).

For a centered profile with zero eccentricity (αe = 0)
the constantK2 = 0. Because of this any profile can be
centered by means of the shift off(α) by the angleαs =
1
2 arctan[K2/(π − K1)].
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Figure 3. Eppler’s series of hydrofoils.

Figure 4. Pressure envelopes for Eppler’s series

4. ANALYSIS OF EPPLER’S SERIES
Our aim now is to analyze the series of Eppler’s profiles by

computing for them the parameters∆K, kw andαe. We be-
lieve that these parameters are of great importance for any hy-
drofoil design. The geometry of Eppler’s series can be found
in his monograph [8]. The series is shown in Fig. 3.

To determine the functionsf(α) for these profiles we have
used a very accurate method of conformal mappings based on
solving an integral equation. In Fig. 4 we demonstrate the pres-
sure envelope for the series. The functionsgm(γ; f) have been
found from Eq. (16) by solving the minimization problem. To
definegm(γ; f) accurately we have developed a special numer-
ical algorithm. The characteristics of the pressure envelopes of
the series are shown in Table 1. In Table 1 all angular charac-
teristics are presented in degrees. The angleα0 is the zero lift
angle of attack. The parameteru0 defines the lift coefficient
Cy = 8πu0 sinα. The valueF (αc) is the minimal value of
F (α).

Table 1.

Name α0 u0 αc γ+
0 γ−

0 F (αc) ∆K kw αe

E817 -4.35 0.2711.72 68 -126 0.47 0.13 0.20 -26.5
E818 -4.34 0.2681.70 68 -132 0.42 0.14 0.22 -29.9
E874 -0.66 0.2660.40 117 -144 0.36 0.25 0.41 -9.64
E836 0 0.274 0 96 -96 0.34 0.08 0.17 0
E837 0 0.279 0 104 -104 0.50 0.15 0.22 0
E838 0 0.283 0 99 -99 0.59 0.14 0.21 0

According to criteria (21) and (23) the limiting values of
the parameters∆K, kw are zeroes. As one can see from Ta-
ble 1, the symmetric profile E836 has the closest to zero pa-
rameters. For this reason we choose E836 for the stretch and
shift modifications of its functionf(α).

0 π
K0 K1

2αs

Figure 5.

We should note that pure shift modifications are danger-
ous. Indeed, profile E836 is symmetric and, hence, centered
with K2 = 0, αe=0. For this profileK0 = ∆K/kw = 0.494,
K1 = K0−∆K = 0.417. From formulas (30) one can deduce
that with the shift by the angleαs the complex pointK∗

1 +iK∗

2

moves along the circumference of radius(π − K1) with the
center at the point(π, 0) (see Fig. 5). As one can see from
Fig. 5, the pointK∗

1 + iK∗

2 leaves the trapping circle of ra-
diusK0 even for very smallαs, and the criterion (21) will be
violated. A simple geometric reasoning show that for a cen-
tered profile the maximal possible shift without changes ofK0

is defined by the formula

max(αe) =
1

2
arccos

K2
0 + K2

1 + 2K1π − 2π2

2π(K1 − π)
.

For E836 the maximal shift angle is only2.59◦ and for this
shift the profile will be nonrealistic necessarily. A biggershift
can be obtained if we allow changes ofK0. So, in modifi-
cations of E836 we conserve the parameterkw = 0.1 and to-
gether with the shift make the corresponding stretch off(α) by
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the formula (29). The results of such modifications are shown
in Fig. 6 and in Table 2.

As one can see from Fig. 6 and Table 2, maintaining the
parameterkw = 0.1, we are able to make the shift off(α) by
the angleαe = 3◦. For the angleαe = 4◦ the profile is already
nonrealistic and has a point of self-intersection. The figure and
table demonstrate the critical values of the eccentricity angle
αe. We come to the conclusion that for the velocity envelopes
with |αe| > 30◦ the profiles are either nonrealistic at all (with
self-intersections), or they have a very thin trailing edgeas the
profile withαe = 3◦ in Fig. 6.

Figure 6. Modifications of profile e836.

Table 2.

Name α0 u0 αc γ+
0 γ−

0 F (αc) ∆K kw αe

E836 0 0.274 0 96 -96 0.34 0.08 0.17 0
αs = 0 0 0.277 0 96 -96 0.33 0.05 0.1 0
αs = 1 -1.78 0.2761.0 98 -94 0.34 0.05 0.1 -12.7
αs = 2 -3.63 0.2742.0 100 -92 0.35 0.05 0.1 -24.1
αs = 3 -5.13 0.2703.0 102 -90 0.38 0.06 0.1 -37.1
αs = 4 -6.32 0.2664.0 104 -88 0.41 0.07 0.1 -40.4

5. ESTIMATES OF THE WIDTH OF PRESSURE ENVE-
LOPE BUCKETS

Let f0 > 1 , αw, ∆K0 > 0 andγ0 ∈ [0, π] be given val-
ues. We formulate the following optimization problem: find
the maximald > 0 and a corresponding realistic profile such
that the velocity envelope for this profile satisfies the condi-
tions

f(α) ≤ f0, α ∈ [αw − d, αw + d] (31)

f(αw − d) = f(αw + d) = f0 (32)

γ+
0 ≥ γ0, γ−

0 < −γ0, ∆K ≥ ∆K0. (33)

We shall solve the problem under a natural assumption that
the central angle of attackαc ∈ (αw−d, αw +d). In this prob-
lem the parameterf0 is connected with the cavitation number
Q by the simple relationf0 =

√
1 + Q. The intervals[0, γ0]

and[−γ0, 0] define the dimensions of the pressure recovery re-
gions on the upper and lower surfaces of the desired profiles,
respectively. The value2d is the width of the bottom of the
pressure bucket.

The parameter∆K0 is introduced to get meaningful, geo-
metrically realistic profiles. Indeed, according to the criterion
(21)∆K > 0. At ∆K = 0 the profile is necessarily nonreal-
istic. But if ∆K is very small, the profile will be either with
self-intersection or its trailing edge will be very thick. Hence
we need to have some positive reserve for the value of∆K for
geometrically realistic profiles.

So, if we know the cavitation numberQ and specify the
middleαw of the bottom of the pressure bucket, the solution to
the problem will give us the maximal width of this bottom un-
der the restriction (33) on dimensions of the pressure recovery
region.

To solve the problem we need the following comparison
theorem.

Theorem 2 Let f(α) andf∗(α) be two trigonometrically
convex, strictly positive,π-periodic functions. Iff(α) ≤
f∗(α), then∆K ≤ ∆K∗, and the equality is possible if and
only if f(α) ≡ f∗(α).

Thus, any decrease off(α) leads to decrease of the param-
eter∆K. This theorem has been proved only recently, and not
to overloud the paper by pure mathematical reasoning we omit
its proof.

Consider now any profile with the velocity envelopef(α)
which satisfies the constrains (31)–(33). Letαc be the cen-
tral angle of attack of this profile. We denotefc = f(αc),
α1 = αw − d, α2 = αw + d.

Now we join sequently five points(α2 − π, f0), (α1, f0),
(αc, fc), (α2, f0), (α1 + π, f0) in the plane(α, f) by trigono-
metrical chords. The equations for these chords we find from
(14). As a result we obtain a trigonometrically convex, strictly
positive,π-periodic function:

f∗(α) =























− f0[sin(α−α2)+sin(α−α1)]
sin(α2−α1) , π/2 ≤ α < α1

fc sin(α−α1)−f0 sin(α−αc)
sin(αc−α1) , α1 ≤ α < αc

fc sin(α2−α)+f0 sin(α−αc)
sin(α2−αc)

, αc ≤ α < α2

f0[sin(α−α2)+sin(α−α1)]
sin(α2−α1)

, α2 ≤ α < π/2

(34)
The parameters related to the functionf∗(α) we shall mark
by a star. Since the functionf∗(α) is formed by trigonometri-
cal chords off(α), we getf(α) < f∗(α) and by Theorem 2
∆K∗ ≥ ∆K ≥ ∆K0. Moreover, at the pointαc we have

f∗′(αc + 0) ≥ f ′(αc + 0), f∗′(αc − 0) ≤ f ′(αc − 0).

But the boundariesγ+
0 andγ−

0 of the pressure recovery region
are defined by the formulaγ+

0 = q(αc + 0), γ−

0 = q(αc − 0),
whereq(α) is determined by (15). Hence,γ∗+

0 > γ+
0 , γ∗−

0 <
γ−

0 . So, the restrictions (33) for the functionf∗(α) are ful-
filled.

Now we formulate the following auxiliary optimization
problem: maximized for the functionf∗(α) > 1, defined by
(34), under the restrictions (33).

If a solution to the auxiliary problem possesses the prop-
erty ∆K = ∆K0, then it will be the solution to the initial

6



problem. Indeed, letf∗∗(α) be such a solution to the auxil-
iary problem withd = dmax andf(α) be any function, dif-
ferent fromf∗∗(α), that satisfies the restrictions (31)–(33) for
somed. Construct forf(α) the majorant functionf∗(α) by
means of (34). The functionf∗(α) satisfies the restrictions
(33). If f∗(α) is different fromf∗∗(α), thend ≤ dmax. But
the casef∗(α) ≡ f∗∗(α) is only possible iff(α) ≡ f∗∗(α),
because otherwise∆K[f ] < ∆K[f∗∗] = ∆K0 and the re-
striction∆K[f ] ≥ ∆K0 will be violated.

α0

d m
ax

0 0.5 1 1.5 2 2.5 3 3.50

0.5

1

1.5

2

2.5

Q=0.2

0,25
0.3

0.35

0.4

0.45
0,5

0.55

0.6

Figure 7. The graphs of the functionsdmax(αw) for
differentQ.
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0 0.2 0.4 0.6 0.8 1
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0 αw=0

x

y

0 0.2 0.4 0.6 0.8 1
-0.1

0 αw=1.1

x

y

0 0.2 0.4 0.6 0.8 1
-0.1

0 αw=2.1

Figure 8. The shapes of optimal profiles atQ = 0.35.

We have investigated the auxiliary problem numerically
and come to the conclusion that for all its solutions∆K =
∆K0. So, for the given cavitation numberQ, the medial an-
gle αw of the pressure bucket and the angleγ0, which defines
the dimensions of the pressure recovery region, we are able to
design a series of optimal profiles. In Fig. 7 we demonstrate
the functionsdmax(α) for different values ofQ. In these com-
putations we choose∆K0 = 0.06, γ0 = 80◦. We stop the
increase ofαw when the eccentricityαe of the obtained pro-
files exceeds30◦, since further increase leads to nonrealistic

profiles. So, every point on the graphs of Fig. 7 associates with
some geometrically realistic optimal profile. For the points
(αw, dmax), marked by circles in Fig. 7, the shapes of such
profiles are shown in Fig. 8. Their pressure envelopes one can
see in Fig. 9.

α
f

-2 0 2 40.2

0.4

0.6

0.8

1 2.1αw=0 1.1

Figure 9. The pressure envelopes for optimal profiles at
Q = 0.35.

CONCLUSIONS
In this paper we have worked out some practical criteria

for designing hydrofoils by a given pressure envelope. In
particular, the parameters∆K and αe, which are the func-
tionals of the pressure envelope, have been introduced, andit
has been demonstrated that for geometrically realistic profiles
∆K ≈ 0.6 and the eccentricity angle|αe| ≤ 30◦. In working
out these criteria the series of Eppler’s hydrofoile turns out to
be helpful. We have shown how it is possible to stretch and
shift the pressure envelopes and presented the results of such
modifications.

Besides, we have given accurate estimates of the widths of
pressure buckets and designed a series of optimal geometri-
cally realistic profiles, which realize these estimates. Sofar
our attention have been mainly stressed on geometrical re-
quirements and the development of the boundary layer have
not been considered. The velocity envelopes for the optimal
profile have the simplest shape: they consist of four sinusoidal
functions and have angular points. But we have strictly proved
that, if the boundary layer is not taken into account, the ob-
tained envelopes are optimal. It is clear that restrictionsof
nonseparated boundary layer should be included in the design
procedure. Certainly these restrictions will make the pressure
envelopes smoother, but at the same time will lead to decrease
of the width of pressure buckets.
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